WorldWideScience

Sample records for fiber bundle model

  1. Fiber Bundle Model Under Heterogeneous Loading

    Science.gov (United States)

    Roy, Subhadeep; Goswami, Sanchari

    2018-03-01

    The present work deals with the behavior of fiber bundle model under heterogeneous loading condition. The model is explored both in the mean-field limit as well as with local stress concentration. In the mean field limit, the failure abruptness decreases with increasing order k of heterogeneous loading. In this limit, a brittle to quasi-brittle transition is observed at a particular strength of disorder which changes with k. On the other hand, the model is hardly affected by such heterogeneity in the limit where local stress concentration plays a crucial role. The continuous limit of the heterogeneous loading is also studied and discussed in this paper. Some of the important results related to fiber bundle model are reviewed and their responses to our new scheme of heterogeneous loading are studied in details. Our findings are universal with respect to the nature of the threshold distribution adopted to assign strength to an individual fiber.

  2. Local load-sharing fiber bundle model in higher dimensions.

    Science.gov (United States)

    Sinha, Santanu; Kjellstadli, Jonas T; Hansen, Alex

    2015-08-01

    We consider the local load-sharing fiber bundle model in one to five dimensions. Depending on the breaking threshold distribution of the fibers, there is a transition where the fracture process becomes localized. In the localized phase, the model behaves as the invasion percolation model. The difference between the local load-sharing fiber bundle model and the equal load-sharing fiber bundle model vanishes with increasing dimensionality with the characteristics of a power law.

  3. The avalanche process of the multilinear fiber bundles model

    International Nuclear Information System (INIS)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2012-01-01

    In order to describe the smooth nonlinear constitutive behavior in the process of fracture of ductile micromechanics structures, the multilinear fiber bundle model was constructed, based on the bilinear fiber bundle model. In the multilinear fiber bundle model, the Young modulus of a fiber is assumed to decay K max times before the final failure occurs. For the large K max region, this model can describe the smooth nonlinear constitutive behavior well. By means of analytical approximation and numerical simulation, we show that the two critical parameters, i.e. the decay ratio of the Young modulus and the maximum number of decays, have substantial effects on the failure process of the bundle. From a macroscopic view, the model can provide various shapes of constitutive curves, which represent diverse kinds of tensile fracture processes. However, at the microscopic scale, the statistical properties of the model are in accord with the classical fiber bundle model. (paper)

  4. Simulation of finite size effects of the fiber bundle model

    Science.gov (United States)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2018-01-01

    In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.

  5. A fiber bundle-plastic chain model for quasi-brittle materials under uniaxial loading

    International Nuclear Information System (INIS)

    Shan, Zhi; Yu, Zhiwu

    2015-01-01

    A fiber bundle-plastic chain model for quasi-brittle materials under both uniaxial compression and tension conditions is developed. By introducing a plastic chain model into the fiber bundle model, a bundle-chain model for quasi-brittle materials is proposed with physical considerations. The model achieves a novel and convenient approach to describe the stochastic effective stress-driven plasticity. It is found that the numerical solutions obtained with this model agree with experimental results when subjected to both monotonic and cyclic uniaxial loading. The model generates a numerical solution with higher accuracy than the present models, when compared with the experimental results on certain problems. An example is shown which utilizes this model to describe the stochastic properties of a constitutive model given as standard. Furthermore, the difference between the existing plastic fiber bundle models in the literature and this model is also obtained in this work. (paper)

  6. Heterotic line bundle models on elliptically fibered Calabi-Yau three-folds

    Science.gov (United States)

    Braun, Andreas P.; Brodie, Callum R.; Lukas, Andre

    2018-04-01

    We analyze heterotic line bundle models on elliptically fibered Calabi-Yau three-folds over weak Fano bases. In order to facilitate Wilson line breaking to the standard model group, we focus on elliptically fibered three-folds with a second section and a freely-acting involution. Specifically, we consider toric weak Fano surfaces as base manifolds and identify six such manifolds with the required properties. The requisite mathematical tools for the construction of line bundle models on these spaces, including the calculation of line bundle cohomology, are developed. A computer scan leads to more than 400 line bundle models with the right number of families and an SU(5) GUT group which could descend to standard-like models after taking the ℤ2 quotient. A common and surprising feature of these models is the presence of a large number of vector-like states.

  7. Statistical model with two order parameters for ductile and soft fiber bundles in nanoscience and biomaterials.

    Science.gov (United States)

    Rinaldi, Antonio

    2011-04-01

    Traditional fiber bundles models (FBMs) have been an effective tool to understand brittle heterogeneous systems. However, fiber bundles in modern nano- and bioapplications demand a new generation of FBM capturing more complex deformation processes in addition to damage. In the context of loose bundle systems and with reference to time-independent plasticity and soft biomaterials, we formulate a generalized statistical model for ductile fracture and nonlinear elastic problems capable of handling more simultaneous deformation mechanisms by means of two order parameters (as opposed to one). As the first rational FBM for coupled damage problems, it may be the cornerstone for advanced statistical models of heterogeneous systems in nanoscience and materials design, especially to explore hierarchical and bio-inspired concepts in the arena of nanobiotechnology. Applicative examples are provided for illustrative purposes at last, discussing issues in inverse analysis (i.e., nonlinear elastic polymer fiber and ductile Cu submicron bars arrays) and direct design (i.e., strength prediction).

  8. Hierarchical composites: Analysis of damage evolution based on fiber bundle model

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2011-01-01

    A computational model of multiscale composites is developed on the basis of the fiber bundle model with the hierarchical load sharing rule, and employed to study the effect of the microstructures of hierarchical composites on their damage resistance. Two types of hierarchical materials were consi...

  9. Stability in a fiber bundle model: Existence of strong links and the effect of disorder

    Science.gov (United States)

    Roy, Subhadeep

    2018-05-01

    The present paper deals with a fiber bundle model which consists of a fraction α of infinitely strong fibers. The inclusion of such an unbreakable fraction has been proven to affect the failure process in early studies, especially around a critical value αc. The present work has a twofold purpose: (i) a study of failure abruptness, mainly the brittle to quasibrittle transition point with varying α and (ii) variation of αc as we change the strength of disorder introduced in the model. The brittle to quasibrittle transition is confirmed from the failure abruptness. On the other hand, the αc is obtained from the knowledge of failure abruptness as well as the statistics of avalanches. It is observed that the brittle to quasibrittle transition point scales to lower values, suggesting more quasi-brittle-like continuous failure when α is increased. At the same time, the bundle becomes stronger as there are larger numbers of strong links to support the external stress. High α in a highly disordered bundle leads to an ideal situation where the bundle strength, as well as the predictability in failure process is very high. Also, the critical fraction αc, required to make the model deviate from the conventional results, increases with decreasing strength of disorder. The analytical expression for αc shows good agreement with the numerical results. Finally, the findings in the paper are compared with previous results and real-life applications of composite materials.

  10. Fiber bundles in non-relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Moylan, P.

    1979-11-01

    The problem of describing a quantum-mechanical system with symmetry by a fiber bundle is considered. The quantization of a fiber bundle is introduced. Fiber bundles for the Kepler problem and the rotator are constructed. The fiber bundle concept provides a new model for a physical system: it provides a model for an elementary particle with extension having integral values of spin. 5 figures

  11. Self-organized dynamics in local load-sharing fiber bundle models.

    Science.gov (United States)

    Biswas, Soumyajyoti; Chakrabarti, Bikas K

    2013-10-01

    We study the dynamics of a local load-sharing fiber bundle model in two dimensions under an external load (which increases with time at a fixed slow rate) applied at a single point. Due to the local load-sharing nature, the redistributed load remains localized along the boundary of the broken patch. The system then goes to a self-organized state with a stationary average value of load per fiber along the (increasing) boundary of the broken patch (damaged region) and a scale-free distribution of avalanche sizes and other related quantities are observed. In particular, when the load redistribution is only among nearest surviving fiber(s), the numerical estimates of the exponent values are comparable with those of the Manna model. When the load redistribution is uniform along the patch boundary, the model shows a simple mean-field limit of this self-organizing critical behavior, for which we give analytical estimates of the saturation load per fiber values and avalanche size distribution exponent. These are in good agreement with numerical simulation results.

  12. Standard-model bundles

    CERN Document Server

    Donagi, Ron; Pantev, Tony; Waldram, Dan; Donagi, Ron; Ovrut, Burt; Pantev, Tony; Waldram, Dan

    2002-01-01

    We describe a family of genus one fibered Calabi-Yau threefolds with fundamental group ${\\mathbb Z}/2$. On each Calabi-Yau $Z$ in the family we exhibit a positive dimensional family of Mumford stable bundles whose symmetry group is the Standard Model group $SU(3)\\times SU(2)\\times U(1)$ and which have $c_{3} = 6$. We also show that for each bundle $V$ in our family, $c_{2}(Z) - c_{2}(V)$ is the class of an effective curve on $Z$. These conditions ensure that $Z$ and $V$ can be used for a phenomenologically relevant compactification of Heterotic M-theory.

  13. Simulation of spatial and temporal properties of aftershocks by means of the fiber bundle model

    Science.gov (United States)

    Monterrubio-Velasco, Marisol; Zúñiga, F. R.; Márquez-Ramírez, Victor Hugo; Figueroa-Soto, Angel

    2017-11-01

    The rupture processes of any heterogeneous material constitute a complex physical problem. Earthquake aftershocks show temporal and spatial behaviors which are consequence of the heterogeneous stress distribution and multiple rupturing following the main shock. This process is difficult to model deterministically due to the number of parameters and physical conditions, which are largely unknown. In order to shed light on the minimum requirements for the generation of aftershock clusters, in this study, we perform a simulation of the main features of such a complex process by means of a fiber bundle (FB) type model. The FB model has been widely used to analyze the fracture process in heterogeneous materials. It is a simple but powerful tool that allows modeling the main characteristics of a medium such as the brittle shallow crust of the earth. In this work, we incorporate spatial properties, such as the Coulomb stress change pattern, which help simulate observed characteristics of aftershock sequences. In particular, we introduce a parameter ( P) that controls the probability of spatial distribution of initial loads. Also, we use a "conservation" parameter ( π), which accounts for the load dissipation of the system, and demonstrate its influence on the simulated spatio-temporal patterns. Based on numerical results, we find that P has to be in the range 0.06 sequences. This means that the system requires a small difference in the spatial distribution of initial stress, and a very particular fraction of load transfer in order to generate realistic aftershocks.

  14. Computational imaging through a fiber-optic bundle

    Science.gov (United States)

    Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.

    2017-05-01

    Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.

  15. Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level

    Science.gov (United States)

    Guan, Kang; Wu, Jianqing; Cheng, Laifei

    2016-01-01

    The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration) process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites’ thermal conductivity is matrix cracking’s density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites. PMID:28774130

  16. Chiral equations and fiber bundles

    International Nuclear Information System (INIS)

    Mateos, T.; Becerril, R.

    1992-01-01

    Using the hypothesis g = g (lambda i ), the chiral equations (rhog, z g -1 ), z -bar + (rhog, z -barg -1 ), z = 0 are reduced to a Killing equation of a p-dimensional space V p , being lambda i lambda i (z, z-bar) 'geodesic' parameters of V p . Supposing that g belongs to a Lie group G, one writes the corresponding Lie algebra elements (F) in terms of the Killing vectors of V p and the generators of the subalgebra of F of dimension d = dimension of the Killing space. The elements of the subalgebras belong to equivalence classes which in the respective group form a principal fiber bundle. This is used to integrate the matrix g in terms of the complex variables z and z-bar ( Author)

  17. Change in the Pathologic Supraspinatus: A Three-Dimensional Model of Fiber Bundle Architecture within Anterior and Posterior Regions

    Directory of Open Access Journals (Sweden)

    Soo Y. Kim

    2015-01-01

    Full Text Available Supraspinatus tendon tears are common and lead to changes in the muscle architecture. To date, these changes have not been investigated for the distinct regions and parts of the pathologic supraspinatus. The purpose of this study was to create a novel three-dimensional (3D model of the muscle architecture throughout the supraspinatus and to compare the architecture between muscle regions and parts in relation to tear severity. Twelve cadaveric specimens with varying degrees of tendon tears were used. Three-dimensional coordinates of fiber bundles were collected in situ using serial dissection and digitization. Data were reconstructed and modeled in 3D using Maya. Fiber bundle length (FBL and pennation angle (PA were computed and analyzed. FBL was significantly shorter in specimens with large retracted tears compared to smaller tears, with the deeper fibers being significantly shorter than other parts in the anterior region. PA was significantly greater in specimens with large retracted tears, with the superficial fibers often demonstrating the largest PA. The posterior region was absent in two specimens with extensive tears. Architectural changes associated with tendon tears affect the regions and varying depths of supraspinatus differently. The results provide important insights on residual function of the pathologic muscle, and the 3D model includes detailed data that can be used in future modeling studies.

  18. Robustness of power systems under a democratic-fiber-bundle-like model.

    Science.gov (United States)

    Yağan, Osman

    2015-06-01

    We consider a power system with N transmission lines whose initial loads (i.e., power flows) L(1),...,L(N) are independent and identically distributed with P(L)(x)=P[L≤x]. The capacity C(i) defines the maximum flow allowed on line i and is assumed to be given by C(i)=(1+α)L(i), with α>0. We study the robustness of this power system against random attacks (or failures) that target a p fraction of the lines, under a democratic fiber-bundle-like model. Namely, when a line fails, the load it was carrying is redistributed equally among the remaining lines. Our contributions are as follows. (i) We show analytically that the final breakdown of the system always takes place through a first-order transition at the critical attack size p(☆)=1-(E[L]/max(x)(P[L>x](αx+E[L|L>x])), where E[·] is the expectation operator; (ii) we derive conditions on the distribution P(L)(x) for which the first-order breakdown of the system occurs abruptly without any preceding diverging rate of failure; (iii) we provide a detailed analysis of the robustness of the system under three specific load distributions-uniform, Pareto, and Weibull-showing that with the minimum load L(min) and mean load E[L] fixed, Pareto distribution is the worst (in terms of robustness) among the three, whereas Weibull distribution is the best with shape parameter selected relatively large; (iv) we provide numerical results that confirm our mean-field analysis; and (v) we show that p(☆) is maximized when the load distribution is a Dirac delta function centered at E[L], i.e., when all lines carry the same load. This last finding is particularly surprising given that heterogeneity is known to lead to high robustness against random failures in many other systems.

  19. Cellulosic Fibers: Effect of Processing on Fiber Bundle Strength

    DEFF Research Database (Denmark)

    Thygesen, Anders; Madsen, Bo; Thomsen, Anne Belinda

    2011-01-01

    A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding, and cotto......A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding...

  20. Illustrative white matter fiber bundles

    NARCIS (Netherlands)

    Otten, R.J.G.; Vilanova, A.; Wetering, van de H.M.M.

    2010-01-01

    Diffusion Tensor Imaging (DTI) has made feasible the visualization of the fibrous structure of the brain whitematter. In the last decades, several fiber-tracking methods have been developed to reconstruct the fiber tracts fromDTI data. Usually these fiber tracts are shown individually based on some

  1. Robust fiber clustering of cerebral fiber bundles in white matter

    Science.gov (United States)

    Yao, Xufeng; Wang, Yongxiong; Zhuang, Songlin

    2014-11-01

    Diffusion tensor imaging fiber tracking (DTI-FT) has been widely accepted in the diagnosis and treatment of brain diseases. During the rendering pipeline of specific fiber tracts, the image noise and low resolution of DTI would lead to false propagations. In this paper, we propose a robust fiber clustering (FC) approach to diminish false fibers from one fiber tract. Our algorithm consists of three steps. Firstly, the optimized fiber assignment continuous tracking (FACT) is implemented to reconstruct one fiber tract; and then each curved fiber in the fiber tract is mapped to a point by kernel principal component analysis (KPCA); finally, the point clouds of fiber tract are clustered by hierarchical clustering which could distinguish false fibers from true fibers in one tract. In our experiment, the corticospinal tract (CST) in one case of human data in vivo was used to validate our method. Our method showed reliable capability in decreasing the false fibers in one tract. In conclusion, our method could effectively optimize the visualization of fiber bundles and would help a lot in the field of fiber evaluation.

  2. Numerical Investigation of Characteristic of Anisotropic Thermal Conductivity of Natural Fiber Bundle with Numbered Lumens

    Directory of Open Access Journals (Sweden)

    Guan-Yu Zheng

    2014-01-01

    Full Text Available Natural fiber bundle like hemp fiber bundle usually includes many small lumens embedded in solid region; thus, it can present lower thermal conduction than that of conventional fibers. In the paper, characteristic of anisotropic transverse thermal conductivity of unidirectional natural hemp fiber bundle was numerically studied to determine the dependence of overall thermal property of the fiber bundle on that of the solid region phase. In order to efficiently predict its thermal property, the fiber bundle was embedded into an imaginary matrix to form a unit composite cell consisting of the matrix and the fiber bundle. Equally, another unit composite cell including an equivalent solid fiber was established to present the homogenization of the fiber bundle. Next, finite element thermal analysis implemented by ABAQUS was conducted in the two established composite cells by applying proper thermal boundary conditions along the boundary of unit cell, and influences of the solid region phase and the equivalent solid fiber on the composites were investigated, respectively. Subsequently, an optional relationship of thermal conductivities of the natural fiber bundle and the solid region was obtained by curve fitting technique. Finally, numerical results from the obtained fitted curves were compared with the analytic Hasselman-Johnson’s results and others to verify the present numerical model.

  3. Fiber bundle geometry and space-time structure

    International Nuclear Information System (INIS)

    Nascimento, J.C.

    1977-01-01

    Within the framework of the geometric formulation of Gauge theories in fiber bundles, the general relation between the bundle connection (Gauge field) and the geometry of the base space is obtained. A possible Gauge theory for gravitation is presented [pt

  4. A compressed sensing approach for resolution improvement in fiber-bundle based endomicroscopy

    Science.gov (United States)

    Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.

    2018-02-01

    Endomicroscopy techniques such as confocal, multi-photon, and wide-field imaging have all been demonstrated using coherent fiber-optic imaging bundles. While the narrow diameter and flexibility of fiber bundles is clinically advantageous, the number of resolvable points in an image is conventionally limited to the number of individual fibers within the bundle. We are introducing concepts from the compressed sensing (CS) field to fiber bundle based endomicroscopy, to allow images to be recovered with more resolvable points than fibers in the bundle. The distal face of the fiber bundle is treated as a low-resolution sensor with circular pixels (fibers) arranged in a hexagonal lattice. A spatial light modulator is located conjugate to the object and distal face, applying multiple high resolution masks to the intermediate image prior to propagation through the bundle. We acquire images of the proximal end of the bundle for each (known) mask pattern and then apply CS inversion algorithms to recover a single high-resolution image. We first developed a theoretical forward model describing image formation through the mask and fiber bundle. We then imaged objects through a rigid fiber bundle and demonstrate that our CS endomicroscopy architecture can recover intra-fiber details while filling inter-fiber regions with interpolation. Finally, we examine the relationship between reconstruction quality and the ratio of the number of mask elements to the number of fiber cores, finding that images could be generated with approximately 28,900 resolvable points for a 1,000 fiber region in our platform.

  5. Time-dependent fiber bundles with local load sharing. II. General Weibull fibers.

    Science.gov (United States)

    Phoenix, S Leigh; Newman, William I

    2009-12-01

    Fiber bundle models (FBMs) are useful tools in understanding failure processes in a variety of material systems. While the fibers and load sharing assumptions are easily described, FBM analysis is typically difficult. Monte Carlo methods are also hampered by the severe computational demands of large bundle sizes, which overwhelm just as behavior relevant to real materials starts to emerge. For large size scales, interest continues in idealized FBMs that assume either equal load sharing (ELS) or local load sharing (LLS) among fibers, rules that reflect features of real load redistribution in elastic lattices. The present work focuses on a one-dimensional bundle of N fibers under LLS where life consumption in a fiber follows a power law in its load, with exponent rho , and integrated over time. This life consumption function is further embodied in a functional form resulting in a Weibull distribution for lifetime under constant fiber stress and with Weibull exponent, beta. Thus the failure rate of a fiber depends on its past load history, except for beta=1 . We develop asymptotic results validated by Monte Carlo simulation using a computational algorithm developed in our previous work [Phys. Rev. E 63, 021507 (2001)] that greatly increases the size, N , of treatable bundles (e.g., 10(6) fibers in 10(3) realizations). In particular, our algorithm is O(N ln N) in contrast with former algorithms which were O(N2) making this investigation possible. Regimes are found for (beta,rho) pairs that yield contrasting behavior for large N. For rho>1 and large N, brittle weakest volume behavior emerges in terms of characteristic elements (groupings of fibers) derived from critical cluster formation, and the lifetime eventually goes to zero as N-->infinity , unlike ELS, which yields a finite limiting mean. For 1/21 but with 0bundle models where beta(rho+1) mimics the Weibull exponent for fiber strength.

  6. Catastrophic Failure and Critical Scaling Laws of Fiber Bundle Material

    Directory of Open Access Journals (Sweden)

    Shengwang Hao

    2017-05-01

    Full Text Available This paper presents a spring-fiber bundle model used to describe the failure process induced by energy release in heterogeneous materials. The conditions that induce catastrophic failure are determined by geometric conditions and energy equilibrium. It is revealed that the relative rates of deformation of, and damage to the fiber bundle with respect to the boundary controlling displacement ε0 exhibit universal power law behavior near the catastrophic point, with a critical exponent of −1/2. The proportion of the rate of response with respect to acceleration exhibits a linear relationship with increasing displacement in the vicinity of the catastrophic point. This allows for the prediction of catastrophic failure immediately prior to failure by extrapolating the trajectory of this relationship as it asymptotes to zero. Monte Carlo simulations are completed and these two critical scaling laws are confirmed.

  7. Fluorescence Endoscopy in vivo based on Fiber-bundle Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zufiria, B.; Gomez-Garcia, P.; Stamatakis, K.; Vaquero, J.J.; Fresno, M.; Desco, M.; Ripoll, J.; Arranz, A.

    2016-07-01

    High-resolution imaging techniques have become important for the determination of the cellular organization that is coupled to organ function. In many cases the organ can be viewed without the need of ionizing radiation techniques in an easier way. This is the case of the gastrointestinal tract, an organ that can be directly accessed with endoscopy avoiding any invasive procedure. Here we describe the design, assembly and testing of a fluorescence high-resolution endoscope intended for the study of the cellular organization of the colon in an experimental mouse model of colon carcinoma. Access to the colon of the mouse took place using a fiber-optic bundle that redirects the light coming from a LED to produce fluorescence and detect it back through the fiber bundle. Results from in vivo and ex-vivo test using our fluorescence fiber bundle endoscope show altered tissue structure and destruction of the intestinal crypts in tumor-bearing areas compared with healthy tissue. (Author)

  8. MAVEN EUV Modelled Data Bundle

    Data.gov (United States)

    National Aeronautics and Space Administration — This bundle contains solar irradiance spectra in 1-nm bins from 0-190 nm. The spectra are generated based upon the Flare Irradiance Spectra Model - Mars (FISM-M)...

  9. A mathematical description of nerve fiber bundle trajectories and their variability in the human retina

    NARCIS (Netherlands)

    Jansonius, N. M.; Nevalainen, J.; Selig, B.; Zangwill, L. M.; Sample, P. A.; Budde, W. M.; Jonas, J. B.; Lagreze, W. A.; Airaksinen, P. J.; Vonthein, R.; Levin, L. A.; Paetzold, J.; Schiefer, U.

    2009-01-01

    We developed a mathematical model wherein retinal nerve fiber trajectories can be described and the corresponding inter-subject variability analyzed. The model was based on traced nerve fiber bundle trajectories extracted from 55 fundus photographs of 55 human subjects. The model resembled the

  10. Vision, healing brush, and fiber bundles

    Science.gov (United States)

    Georgiev, Todor

    2005-03-01

    The Healing Brush is a tool introduced for the first time in Adobe Photoshop (2002) that removes defects in images by seamless cloning (gradient domain fusion). The Healing Brush algorithms are built on a new mathematical approach that uses Fibre Bundles and Connections to model the representation of images in the visual system. Our mathematical results are derived from first principles of human vision, related to adaptation transforms of von Kries type and Retinex theory. In this paper we present the new result of Healing in arbitrary color space. In addition to supporting image repair and seamless cloning, our approach also produces the exact solution to the problem of high dynamic range compression of17 and can be applied to other image processing algorithms.

  11. Introduction to the theory of fiber bundles and connections I

    International Nuclear Information System (INIS)

    Socolvsky, M.

    1990-01-01

    In lectures 1 and 2 we discuss basic concepts of topology and differential geometry: definition of a topological space and of Hausdorff, compact, connected and paracompact spaces; topological groups and actions of groups on spaces; differentiable manifolds, tangent vectors and 1 forms; partitions of unity and Lie groups. In lecture 3 we present the concept of a fiber bundle and discuss vector bundles and principal bundles. The concept of a connection on a smooth vector bundle is defined in lecture 4, together with the associated concepts of curvature and parallel transport; as an illustration we present the Levi-Civita connection on a Riemannian manifold. Finally, in lecture 5 we define connections on principal bundles and present examples with the Lie groups U(1) and SU(2). For reasons of space the present article only includes lectures 1, 2 and 3. Lectures 4 and 5 will be published in a forthcoming paper. (Author)

  12. A mathematical model for describing the retinal nerve fiber bundle trajectories in the human eye : Average course, variability, and influence of refraction, optic disc size and optic disc position

    NARCIS (Netherlands)

    Jansonius, Nomdo M.; Schiefer, Julia; Nevalainen, Jukka; Paetzold, Jens; Schiefer, Ulrich

    2012-01-01

    Previously we developed a mathematical model for describing the retinal nerve fiber bundle trajectories in the superior-temporal and inferior-temporal regions of the human retina, based on traced trajectories extracted from fundus photographs. Aims of the current study were to (i) validate the

  13. Development of a position sensor based on a four quadrant structured optic fiber bundle

    International Nuclear Information System (INIS)

    Boukellal, Younes; Ducourtieux, Sebastien

    2015-01-01

    This article reports on the development of a new kind of 2D displacement sensor based on an optic fiber bundle whose fiber arrangement has been customized to provide an input sensitive surface with four quadrants. The fibers of each quadrant are regrouped to form four output arms. The aim is to reach behavior similar to that of a quad cell photodiode when illuminated by a laser spot. In this paper, we present the motivations for developing such a sensor and its design. Prior to the fabrication of a first prototype, the optic fiber bundle has been modelled and compared to a quad cell photodiode. It has an active surface which is 10 mm in diameter and which comprises 40 000 fibers of 50 µm core diameter. For this experimental test, a specific electronic conditioning circuit has been developed to process the signals. From both modelled and experimental results, fiber optic bundle and quad cell photodiode behavior has proved to be very similar, provided that the number of fibers is sufficient to achieve a statistical effect on the detected displacement, i.e. the laser spot diameter is rightly chosen as a function of the fiber diameter. For the use of the bundle as position sensor, a laser spot size of 5 mm has been fixed to achieve a good compromise between sensitivity and displacement range. With this spot size, sensitivity and displacement range have been experimentally evaluated to 2 mV µm −1 and 3.8 mm respectively with a corresponding displacement resolution of 5 nm in the best case. (paper)

  14. Fiber bundle probes for interconnecting miniaturized medical imaging devices

    Science.gov (United States)

    Zamora, Vanessa; Hofmann, Jens; Marx, Sebastian; Herter, Jonas; Nguyen, Dennis; Arndt-Staufenbiel, Norbert; Schröder, Henning

    2017-02-01

    Miniaturization of medical imaging devices will significantly improve the workflow of physicians in hospitals. Photonic integrated circuit (PIC) technologies offer a high level of miniaturization. However, they need fiber optic interconnection solutions for their functional integration. As part of European funded project (InSPECT) we investigate fiber bundle probes (FBPs) to be used as multi-mode (MM) to single-mode (SM) interconnections for PIC modules. The FBP consists of a set of four or seven SM fibers hexagonally distributed and assembled into a holder that defines a multicore connection. Such a connection can be used to connect MM fibers, while each SM fiber is attached to the PIC module. The manufacturing of these probes is explored by using well-established fiber fusion, epoxy adhesive, innovative adhesive and polishing techniques in order to achieve reliable, low-cost and reproducible samples. An innovative hydrofluoric acid-free fiber etching technology has been recently investigated. The preliminary results show that the reduction of the fiber diameter shows a linear behavior as a function of etching time. Different etch rate values from 0.55 μm/min to 2.3 μm/min were found. Several FBPs with three different type of fibers have been optically interrogated at wavelengths of 630nm and 1550nm. Optical losses are found of approx. 35dB at 1550nm for FBPs composed by 80μm fibers. Although FBPs present moderate optical losses, they might be integrated using different optical fibers, covering a broad spectral range required for imaging applications. Finally, we show the use of FBPs as promising MM-to-SM interconnects for real-world interfacing to PIC's.

  15. The fiber bundle formalism for the quantization in curved spaces

    International Nuclear Information System (INIS)

    Wyrozumski, T.

    1989-01-01

    We set up a geometrical formulation of the canonical quantization of free Klein-Gordon field on a gravitational background. We introduce the notion of the Bogolubov bundle as the principal fiber bundle over the space of all Cauchy surfaces belonging to some fixed foliation of space-time, with the Bogolubov group as the structure group, as a tool in considering local Bogolubov transformations. Sections of the associated complex structure bundle have the meaning of attaching Hilbert spaces to Cauchy surfaces. We single out, as physical, sections defined by the equation of parallel transport on the Bogolubov bundle. The connection is then subjected to a certain nonlinear differential equation. We find a particular solution, which happens to coincide with a formula given by L.Parker for Robertson-Walker space-times. Finally, we adopt the adiabatic hypothesis as the physical input to the formalism and fix in this way a free parameter in the connection. Concluding, we comment on a possible geometrical interpretation of the regularization of stress-energy tensor and on generalizations of the formalism toward quantum gravity. 14 refs. (Author)

  16. An estimation of the fine structure constant using fiber bundles

    International Nuclear Information System (INIS)

    Ross, D.K.

    1986-01-01

    Ross calculates g 0 /e, where g 0 is the strength of an elementary magnetic monopole and e is the charge on the electron, in terms of a ratio of loop sizes in the twisted and untwisted principal fiber bundles with U (1) the structure group and R 3 -(0) the base space. The result involves the present distance around the U (1) space and, rather surprisingly, the structure of the quantum gravitational vacuum. Combining this result with the expression for eg 0 from the Dirac quantization conditions gives a final estimate for the fine structure constant, alpha, near 1/100

  17. Photoacoustic imaging of hidden dental caries by using a bundle of hollow optical fibers

    Science.gov (United States)

    Koyama, Takuya; Kakino, Satoko; Matsuura, Yuji

    2018-02-01

    Photoacoustic imaging system using a bundle of hollow-optical fibers to detect hidden dental caries is proposed. Firstly, we fabricated a hidden caries model with a brown pigment simulating a common color of caries lesion. It was found that high frequency ultrasonic waves are generated from hidden carious part when radiating Nd:YAG laser light with a 532 nm wavelength to occlusal surface of model tooth. We calculated by Fourier transform and found that the waveform from the carious part provides frequency components of approximately from 0.5 to 1.2 MHz. Then a photoacoustic imaging system using a bundle of hollow optical fiber was fabricated for clinical applications. From intensity map of frequency components in 0.5-1.2 MHz, photoacoustic images of hidden caries in the simulated samples were successfully obtained.

  18. Brittle-to-ductile transition in a fiber bundle with strong heterogeneity.

    Science.gov (United States)

    Kovács, Kornél; Hidalgo, Raul Cruz; Pagonabarraga, Ignacio; Kun, Ferenc

    2013-04-01

    We analyze the failure process of a two-component system with widely different fracture strength in the framework of a fiber bundle model with localized load sharing. A fraction 0≤α≤1 of the bundle is strong and it is represented by unbreakable fibers, while fibers of the weak component have randomly distributed failure strength. Computer simulations revealed that there exists a critical composition α(c) which separates two qualitatively different behaviors: Below the critical point, the failure of the bundle is brittle, characterized by an abrupt damage growth within the breakable part of the system. Above α(c), however, the macroscopic response becomes ductile, providing stability during the entire breaking process. The transition occurs at an astonishingly low fraction of strong fibers which can have importance for applications. We show that in the ductile phase, the size distribution of breaking bursts has a power law functional form with an exponent μ=2 followed by an exponential cutoff. In the brittle phase, the power law also prevails but with a higher exponent μ=9/2. The transition between the two phases shows analogies to continuous phase transitions. Analyzing the microstructure of the damage, it was found that at the beginning of the fracture process cracks nucleate randomly, while later on growth and coalescence of cracks dominate, which give rise to power law distributed crack sizes.

  19. A retracting wire knife for cutting fiber bundles and making sheet lesions of brain tissue.

    Science.gov (United States)

    Shibata, M; Russell, I S

    1979-07-01

    A retracting knife which has two cutting wires for the transection of fiber bundles is described. The knife holds the fiber bundles of the stria terminalis between the two cutting wires and transects them by a shearing movement as the wires close. In addition, the feasability of such a knife producing a sheet lesion around the n. caudatus is also described.

  20. Wave equations on a de Sitter fiber bundle. [Semiclassical wave function, bundle space, L-S coupling

    Energy Technology Data Exchange (ETDEWEB)

    Drechsler, W [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)

    1975-01-01

    A gauge theory of strong interaction is developed based on fields defined on a fiber bundle. The structural group of the bundle is taken to be the Lsub(4,1) de Sitter group. An internal variable xi, varying in the fiber over a space-time point x, is introduced as a means to describe - with the help of a semiclassical wave function psi(x,xi) defined on the bundle space - the internal structure of extended hadrons in a framework using differential geometric techniques. Three basic nonlinear wave equations for psi(x,xi) are established which are of integro-differential type. The nonlinear coupling terms in these de Sitter gauge invariant equations represent physically a generalized spin orbit coupling or a generalized spin coupling for the motion taking place in the fiber. The motivation for using a bigger space for the definition of hadronic matter wave functions as well as the implications of this geometric approach to strong interaction physics is discussed in detail, in particular with respect to the problem of hadronic constituents. The proposed fiber bundle formalism allows a dynamical description of extended structures for hadrons without implying the necessity of introducing any constituents.

  1. 3D interferometric shape measurement technique using coherent fiber bundles

    Science.gov (United States)

    Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen

    2017-06-01

    In-situ 3-D shape measurements with submicron shape uncertainty of fast rotating objects in a cutting lathe are expected, which can be achieved by simultaneous distance and velocity measurements. Conventional tactile methods, coordinate measurement machines, only support ex-situ measurements. Optical measurement techniques such as triangulation and conoscopic holography offer only the distance, so that the absolute diameter cannot be retrieved directly. In comparison, laser Doppler distance sensors (P-LDD sensor) enable simultaneous and in-situ distance and velocity measurements for monitoring the cutting process in a lathe. In order to achieve shape measurement uncertainties below 1 μm, a P-LDD sensor with a dual camera based scattered light detection has been investigated. Coherent fiber bundles (CFB) are employed to forward the scattered light towards cameras. This enables a compact and passive sensor head in the future. Compared with a photo detector based sensor, the dual camera based sensor allows to decrease the measurement uncertainty by the order of one magnitude. As a result, the total shape uncertainty of absolute 3-D shape measurements can be reduced to about 100 nm.

  2. Determining physiological cross-sectional area of extensor carpi radialis longus and brevis as a whole and by regions using 3D computer muscle models created from digitized fiber bundle data.

    Science.gov (United States)

    Ravichandiran, Kajeandra; Ravichandiran, Mayoorendra; Oliver, Michele L; Singh, Karan S; McKee, Nancy H; Agur, Anne M R

    2009-09-01

    Architectural parameters and physiological cross-sectional area (PCSA) are important determinants of muscle function. Extensor carpi radialis longus (ECRL) and brevis (ECRB) are used in muscle transfers; however, their regional architectural differences have not been investigated. The aim of this study is to develop computational algorithms to quantify and compare architectural parameters (fiber bundle length, pennation angle, and volume) and PCSA of ECRL and ECRB. Fiber bundles distributed throughout the volume of ECRL (75+/-20) and ECRB (110+/-30) were digitized in eight formalin embalmed cadaveric specimens. The digitized data was reconstructed in Autodesk Maya with computational algorithms implemented in Python. The mean PCSA and fiber bundle length were significantly different between ECRL and ECRB (p < or = 0.05). Superficial ECRL had significantly longer fiber bundle length than the deep region, whereas the PCSA of superficial ECRB was significantly larger than the deep region. The regional quantification of architectural parameters and PCSA provides a framework for the exploration of partial tendon transfers of ECRL and ECRB.

  3. Noncommutative generalization of SU(n)-principal fiber bundles: a review

    International Nuclear Information System (INIS)

    Masson, T

    2008-01-01

    This is an extended version of a communication made at the international conference 'Noncommutative Geometry and Physics' held at Orsay in april 2007. In this proceeding, we make a review of some noncommutative constructions connected to the ordinary fiber bundle theory. The noncommutative algebra is the endomorphism algebra of a SU(n)-vector bundle, and its differential calculus is based on its Lie algebra of derivations. It is shown that this noncommutative geometry contains some of the most important constructions introduced and used in the theory of connections on vector bundles, in particular, what is needed to introduce gauge models in physics, and it also contains naturally the essential aspects of the Higgs fields and its associated mechanics of mass generation. It permits one also to extend some previous constructions, as for instance symmetric reduction of (here noncommutative) connections. From a mathematical point of view, these geometrico-algebraic considerations highlight some new point on view, in particular we introduce a new construction of the Chern characteristic classes

  4. Combining high power diode lasers using fiber bundles for beam delivery in optoacoustic endoscopy applications

    Science.gov (United States)

    Gawali, Sandeep Babu; Leggio, Luca; Sánchez, Miguel; Rodríguez, Sergio; Dadrasnia, Ehsan; Gallego, Daniel C.; Lamela, Horacio

    2016-05-01

    Optoacoustic (OA) effect refers to the generation of the acoustic waves due to absorption of light energy in a biological tissue. The incident laser pulse is absorbed by the tissue, resulting in the generation of ultrasound that is typically detected by a piezoelectric detector. Compared to other techniques, the advantage of OA imaging (OAI) technique consists in combining the high resolution of ultrasound technique with the high contrast of optical imaging. Generally, Nd:YAG and OPO systems are used for the generation of OA waves but their use in clinical environment is limited for many aspects. On the other hand, high-power diode lasers (HPDLs) emerge as potential alternative. However, the power of HPDLs is still relatively low compared to solid-state lasers. We show a side-by-side combination of several HPDLs in an optical fiber bundle to increase the amount of power for OA applications. Initially, we combine the output optical power of several HPDLs at 905 nm using two 7 to 1 round optical fiber bundles featuring a 675 μm and 1.2 mm bundle aperture. In a second step, we couple the output light of these fiber bundles to a 600 μm core diameter endoscopic fiber, reporting the corresponding coupling efficiencies. The fiber bundles with reasonable small diameter are likely to be used for providing sufficient light energy to potential OA endoscopy (OAE) applications.

  5. Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle.

    Science.gov (United States)

    Andresen, Esben Ravn; Bouwmans, Géraud; Monneret, Serge; Rigneault, Hervé

    2013-03-01

    We report a step toward scanning endomicroscopy without distal optics. The focusing of the beam at the distal end of a fiber bundle is achieved by imposing a parabolic phase profile across the exit face with the aid of a spatial light modulator. We achieve video-rate images by galvanometric scanning of the phase tilt at the proximal end. The approach is made possible by the bundle, designed to have very low coupling between cores.

  6. High-resolution imaging of retinal nerve fiber bundles in glaucoma using adaptive optics scanning laser ophthalmoscopy.

    Science.gov (United States)

    Takayama, Kohei; Ooto, Sotaro; Hangai, Masanori; Ueda-Arakawa, Naoko; Yoshida, Sachiko; Akagi, Tadamichi; Ikeda, Hanako Ohashi; Nonaka, Atsushi; Hanebuchi, Masaaki; Inoue, Takashi; Yoshimura, Nagahisa

    2013-05-01

    To detect pathologic changes in retinal nerve fiber bundles in glaucomatous eyes seen on images obtained by adaptive optics (AO) scanning laser ophthalmoscopy (AO SLO). Prospective cross-sectional study. Twenty-eight eyes of 28 patients with open-angle glaucoma and 21 normal eyes of 21 volunteer subjects underwent a full ophthalmologic examination, visual field testing using a Humphrey Field Analyzer, fundus photography, red-free SLO imaging, spectral-domain optical coherence tomography, and imaging with an original prototype AO SLO system. The AO SLO images showed many hyperreflective bundles suggesting nerve fiber bundles. In glaucomatous eyes, the nerve fiber bundles were narrower than in normal eyes, and the nerve fiber layer thickness was correlated with the nerve fiber bundle widths on AO SLO (P fiber layer defect area on fundus photography, the nerve fiber bundles on AO SLO were narrower compared with those in normal eyes (P optic disc, the nerve fiber bundle width was significantly lower, even in areas without nerve fiber layer defect, in eyes with glaucomatous eyes compared with normal eyes (P = .026). The mean deviations of each cluster in visual field testing were correlated with the corresponding nerve fiber bundle widths (P = .017). AO SLO images showed reduced nerve fiber bundle widths both in clinically normal and abnormal areas of glaucomatous eyes, and these abnormalities were associated with visual field defects, suggesting that AO SLO may be useful for detecting early nerve fiber bundle abnormalities associated with loss of visual function. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. A mathematical model for describing the retinal nerve fiber bundle trajectories in the human eye: average course, variability, and influence of refraction, optic disc size and optic disc position.

    Science.gov (United States)

    Jansonius, Nomdo M; Schiefer, Julia; Nevalainen, Jukka; Paetzold, Jens; Schiefer, Ulrich

    2012-12-01

    Previously we developed a mathematical model for describing the retinal nerve fiber bundle trajectories in the superior-temporal and inferior-temporal regions of the human retina, based on traced trajectories extracted from fundus photographs. Aims of the current study were to (i) validate the existing model, (ii) expand the model to the entire retina and (iii) determine the influence of refraction, optic disc size and optic disc position on the trajectories. A new set of fundus photographs was collected comprising 28 eyes of 28 subjects. From these 28 photographs, 625 trajectories were extracted. Trajectories in the temporal region of the retina were compared to the existing model. In this region, 347 of 399 trajectories (87%) were within the 95% central range of the existing model. The model was extended to the nasal region. With this extension, the model can now be applied to the entire retina that corresponds to the visual field as tested with standard automated perimetry (up to approximately 30° eccentricity). There was an asymmetry between the superior and inferior hemifields and a considerable location-specific inter-subject variability. In the nasal region, we found two "singularities", located roughly at the one and five o'clock positions for the right optic disc. Here, trajectories from relatively widespread areas of the retina converge. Associations between individual deviations from the model and refraction, optic disc size and optic disc position were studied with multiple linear regression. Refraction (P = 0.021) and possibly optic disc inclination (P = 0.09) influenced the trajectories in the superior-temporal region. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Size Scaling and Bursting Activity in Thermally Activated Breakdown of Fiber Bundles

    KAUST Repository

    Yoshioka, Naoki

    2008-10-03

    We study subcritical fracture driven by thermally activated damage accumulation in the framework of fiber bundle models. We show that in the presence of stress inhomogeneities, thermally activated cracking results in an anomalous size effect; i.e., the average lifetime tf decreases as a power law of the system size tf ∼L-z, where the exponent z depends on the external load σ and on the temperature T in the form z∼f(σ/T3/2). We propose a modified form of the Arrhenius law which provides a comprehensive description of thermally activated breakdown. Thermal fluctuations trigger bursts of breakings which have a power law size distribution. © 2008 The American Physical Society.

  9. Effect of the Maximum Dose on White Matter Fiber Bundles Using Longitudinal Diffusion Tensor Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Tong; Chapman, Christopher H. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Tsien, Christina [Department of Radiation Oncology, Washington University at St Louis, St Louis, Missouri (United States); Kim, Michelle; Spratt, Daniel E.; Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Cao, Yue, E-mail: yuecao@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan (United States)

    2016-11-01

    Purpose: Previous efforts to decrease neurocognitive effects of radiation focused on sparing isolated cortical structures. We hypothesize that understanding temporal, spatial, and dosimetric patterns of radiation damage to whole-brain white matter (WM) after partial-brain irradiation might also be important. Therefore, we carried out a study to develop the methodology to assess radiation therapy (RT)–induced damage to whole-brain WM bundles. Methods and Materials: An atlas-based, automated WM tractography analysis was implemented to quantify longitudinal changes in indices of diffusion tensor imaging (DTI) of 22 major WM fibers in 33 patients with predominantly low-grade or benign brain tumors treated by RT. Six DTI scans per patient were performed from before RT to 18 months after RT. The DTI indices and planned doses (maximum and mean doses) were mapped onto profiles of each of 22 WM bundles. A multivariate linear regression was performed to determine the main dose effect as well as the influence of other clinical factors on longitudinal percentage changes in axial diffusivity (AD) and radial diffusivity (RD) from before RT. Results: Among 22 fiber bundles, AD or RD changes in 12 bundles were affected significantly by doses (P<.05), as the effect was progressive over time. In 9 elongated tracts, decreased AD or RD was significantly related to maximum doses received, consistent with a serial structure. In individual bundles, AD changes were up to 11.5% at the maximum dose locations 18 months after RT. The dose effect on WM was greater in older female patients than younger male patients. Conclusions: Our study demonstrates for the first time that the maximum dose to the elongated WM bundles causes post-RT damage in WM. Validation and correlative studies are necessary to determine the ability and impact of sparing these bundles on preserving neurocognitive function after RT.

  10. CFD modeling of secondary flows in fuel rod bundles

    International Nuclear Information System (INIS)

    Baglietto, Emilio; Ninokata, Hisashi

    2004-01-01

    An optimized non-linear eddy viscosity model is introduced, for calculations of detailed coolant velocity distribution in a tight lattice fuel bundle. The low Reynolds formulation has been optimized based on DNS data for channel flow. The non-linear stress-strain relationship has been modified in the coefficients to model the flow anisotropy, which causes the formation of turbulence driven secondary flows inside the bundle subchannels. Predictions of the model are first compared to experimental measurements of secondary flows in a triangularly arrayed rod bundle with p/d=1.3. Subsequently wall shear stress and velocity predictions are compared with different experimental data for a rod bundle with p/d=1.17. The model shows to be able to correctly reproduce the scale of the secondary motion, and to accurately reproduce both wall shear stress and velocity distributions inside the rod bundle subchannels. (author)

  11. Diffusion tensor imaging for nerve fiber bundles in the brain stem and spinocerebellar degeneration

    International Nuclear Information System (INIS)

    Honma, Tsuguo

    2009-01-01

    Diffusion tensor imaging (DTI) can create an image of the anisotropic nature of diffusion and express it quantitatively. Nerve fibers have a large anisotropic diffusion, and it is possible to obtain images of the nerve fiber bundle. The purpose of this study is to observe the nerve fiber bundles in the brain stem using DTI and study its potential for diagnosing the type of spinocerebellar degeneration (SCD). Fractional anisotropy (FA) maps and 3D-tractography images were obtained for 41 subjects with no brain stem abnormalities. We created an apparent diffusion coefficient (ADC) map and an FA map using DTI for 16 subjects in the disease group (11 with hereditary SCD and 5 with non-hereditary SCD) and 25 in the control group. The diffusion value of the pons and middle cerebellar peduncle was measured using ADC, and the degree of anisotropic diffusion was measured using FA. The pyramidal tract, superior cerebellar peduncle, and inferior cerebellar peduncle were clearly demonstrated for all cases. ADC for the middle cerebellar peduncle in spinocerebellar ataxin (SCA)1 was significantly higher, similar to that for the pons in dentatorubro-pallidoluysian atrophy (DRPLA). In MSA-C, ADC for both the pons and middle cerebellar peduncle was significantly elevated and FA was significantly decreased. There were no significant changes in SCA3. We could observe the nerve fiber bundles in the brain stem using DTI. FA and ADC measurements with DTI can aid in diagnosing the type of SCD. (author)

  12. Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI

    International Nuclear Information System (INIS)

    Magro, Elsa; Moreau, Tristan; Gibaud, Bernard; Seizeur, Romuald; Morandi, Xavier

    2012-01-01

    Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. These results raise questions about the functional role of these MRI tracks and their relation with laterality. (orig.)

  13. Gauge theory and gravitation: an approach to a fiber bundle formalism

    International Nuclear Information System (INIS)

    Mello, L.A. de.

    1986-01-01

    The thesis is composed of two different parts. A formal complete and rigorous mathematical part-of topics of differential manilfolds, exterior calculus, riemannian geometry, principal fiber bundle (p.f.) with connections and linear connections and a second part of application of this mathematical formalism concerning physical theories, particularly the Maxwell eletromagnetism (EM), gauge theory of Yang-Mills (Y-M), the GRT, and the gravitation theory of Einstein-Cartan. (E.C.) [pt

  14. Influence of Bundle Diameter and Attachment Point on Kinematic Behavior in Double Bundle Anterior Cruciate Ligament Reconstruction Using Computational Model

    Directory of Open Access Journals (Sweden)

    Oh Soo Kwon

    2014-01-01

    Full Text Available A protocol to choose the graft diameter attachment point of each bundle has not yet been determined since they are usually dependent on a surgeon’s preference. Therefore, the influence of bundle diameters and attachment points on the kinematics of the knee joint needs to be quantitatively analyzed. A three-dimensional knee model was reconstructed with computed tomography images of a 26-year-old man. Based on the model, models of double bundle anterior cruciate ligament (ACL reconstruction were developed. The anterior tibial translations for the anterior drawer test and the internal tibial rotation for the pivot shift test were investigated according to variation of bundle diameters and attachment points. For the model in this study, the knee kinematics after the double bundle ACL reconstruction were dependent on the attachment point and not much influenced by the bundle diameter although larger sized anterior-medial bundles provided increased stability in the knee joint. Therefore, in the clinical setting, the bundle attachment point needs to be considered prior to the bundle diameter, and the current selection method of graft diameters for both bundles appears justified.

  15. Infrared Imaging of Cotton Fiber Bundles Using a Focal Plane Array Detector and a Single Reflectance Accessory

    Directory of Open Access Journals (Sweden)

    Michael Santiago Cintrón

    2016-11-01

    Full Text Available Infrared imaging is gaining attention as a technique used in the examination of cotton fibers. This type of imaging combines spectral analysis with spatial resolution to create visual images that examine sample composition and distribution. Herein, we report on the use of an infrared instrument equipped with a reflection accessory and an array detector system for the examination of cotton fiber bundles. Cotton vibrational spectra and chemical images were acquired by grouping pixels in the detector array. This technique reduced spectral noise and was employed to visualize cell wall development in cotton fibers bundles. Fourier transform infrared spectra reveal band changes in the C–O bending region that matched previous studies. Imaging studies were quick, relied on small amounts of sample and provided a distribution of the cotton fiber cell wall composition. Thus, imaging of cotton bundles with an infrared detector array has potential for use in cotton fiber examinations.

  16. Prevalence of Split Nerve Fiber Layer Bundles in Healthy People Imaged with Spectral Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Sirel Gür Güngör

    2016-12-01

    Full Text Available Objectives: The presence of retinal nerve fiber layer (RNFL split bundles was recently described in normal eyes scanned using scanning laser polarimetry and by histologic studies. Split bundles may resemble RNFL loss in healthy eyes. The aim of our study was to determine the prevalence of nerve fiber layer split bundles in healthy people. Materials and Methods: We imaged 718 eyes of 359 healthy persons with the spectral domain optical coherence tomography in this cross-sectional study. All eyes had intraocular pressure of 21 mmHg or less, normal appearance of the optic nerve head, and normal visual fields (Humphrey Field Analyzer 24-2 full threshold program. In our study, a bundle was defined as ‘split’ when there is localized defect not resembling a wedge defect in the RNFL deviation map with a symmetrically divided RNFL appearance on the RNFL thickness map. The classification was performed by two independent observers who used an identical set of reference examples to standardize the classification. Results: Inter-observer consensus was reached in all cases. Bilateral superior split bundles were seen in 19 cases (5.29% and unilateral superior split was observed in 15 cases (4.16%. In 325 cases (90.52% there was no split bundle. Conclusion: Split nerve fiber layer bundles, in contrast to single nerve fiber layer bundles, are not common findings in healthy eyes. In eyes with normal optic disc appearance, especially when a superior RNFL defect is observed in RNFL deviation map, the RNLF thickness map and graphs should also be examined for split nerve fiber layer bundles.

  17. Multiple Iterations of Bundle Adjustment for the Position Measurement of Fiber Tips on LAMOST

    Directory of Open Access Journals (Sweden)

    Feng Mingchi

    2014-08-01

    Full Text Available In the astronomical observation process of multi-object fiber spectroscopic telescope, the position measurement of fiber tips on the focal plane is difficult and critical, and is directly related to subsequent observation and ultimate data quality. The fibers should precisely align with the celestial target. Hence, the precise coordinates of the fiber tips are obligatory for tracking the celestial target. The accurate movement trajectories of the fiber tips on the focal surface of the telescope are the critical problem for the control of the fiber positioning mechanism. According to the special structure of the LAMOST telescope and the composition of the initial position error, this paper aims at developing a high precision and robust measurement method based on multiple iterations of bundle adjustment with a few control points. The measurement theory of the proposed methodology has been analyzed, and the measurement accuracy has been evaluated. The experimental results indicate that the new method is more accurate and more reliable than the polynomial fitting method. The maximum position error of the novel measurement algorithm of fiber tips with simulated and real data is 65.3 μm, and most of the position errors conform to the accuracy requirement (40 μm.

  18. SCADOP: Phenomenological modeling of dryout in nuclear fuel rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Arnab, E-mail: arnie@barc.gov.in; Chandraker, D.K., E-mail: dineshkc@barc.gov.in; Vijayan, P.K., E-mail: vijayanp@barc.gov.in

    2015-11-15

    Highlights: • Phenomenological model for annular flow dryout is presented. • The model evaluates initial entrained fraction using a new methodology. • The history effect in annular flow is predicted and validated. • Rod bundle dryout is predicted using subchannel methodology. • Model is validated against experimental dryout data in tubes and rod bundles. - Abstract: Analysis and prediction of dryout is of important consequence to safety of nuclear fuel clusters of boiling water type of reactors. Traditionally, experimental correlations are used for dryout predictions. Since these correlations are based on operating parameters and do not aim to model the underlying phenomena, there has been a proliferation of the correlations, each catering to some specific bundle geometry under a specific set of operating conditions. Moreover, such experiments are extremely costly. In general, changes in tested bundle geometry for improvement in thermal-hydraulic performance would require re-experimentation. Understanding and modeling the basic processes leading to dryout in flow boiling thus has great incentive. Such a model has the ability to predict dryout in any rod bundle geometry, unlike the operating parameter based correlation approach. Thus more informed experiments can be carried out. A good model can, reduce the number of experiments required during the iterations in bundle design. In this paper, a phenomenological model as indicated above is presented. The model incorporates a new methodology to estimate the Initial Entrained Fraction (IEF), i.e., entrained fraction at the onset of annular flow. The incorporation of this new methodology is important since IEF is often assumed ad-hoc and sometimes also used as a parameter to tune the model predictions to experimental data. It is highlighted that IEF may be low under certain conditions against the general perception of a high IEF due to influence of churn flow. It is shown that the same phenomenological model is

  19. Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI

    Energy Technology Data Exchange (ETDEWEB)

    Magro, Elsa [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); Moreau, Tristan; Gibaud, Bernard [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); Seizeur, Romuald [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); INSERM UMR 1101 LaTIM, Brest (France); Morandi, Xavier [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Pontchaillou, Service de Neurochirurgie, Rennes (France)

    2012-11-15

    Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. These results raise questions about the functional role of these MRI tracks and their relation with laterality. (orig.)

  20. Design and verification of the 'GURI 01' bundle model

    International Nuclear Information System (INIS)

    Benito, G.D.

    1990-01-01

    This work presents a general description of the 'GURI 01' bundle model, designed by INVAP S.E., under international radioactive material transportation regulations, as a B(U) type bundle for international transportation up to a maximum of 350000 Ci of Co60. Moreover, the methodologies used and the results obtained from the structural evaluation of the mechanic essay and from the evaluation of the thermal behaviour under normal or accident conditions are briefly discussed. (Author) [es

  1. In-Situ Imaging and Quantification of Tritium Surface Contamination via Coherent Fiber Bundle

    International Nuclear Information System (INIS)

    Gentile, Charles A.; Parker, John J.; Zweben, Stewart J.

    2001-01-01

    Princeton Plasma Physics Laboratory (PPPL) has developed a method of imaging tritium on in-situ surfaces for the purpose of real-time data collection. This method expands upon a previous tritium imaging concept, also developed at PPPL. Enhancements include an objective lens coupled to the entry aperture of a coherent fiber optic (CFO) bundle, and a relay lens connecting the exit aperture of the fiber bundle to an intensifier tube and a charge-coupled device (CCD) camera. The system has been specifically fabricated for use in determining tritium concentrations on first wall materials. One potential complication associated with the development of D-T [deuterium-tritium] fueled fusion reactors is the deposition of tritium (i.e., co-deposited layer) on the surface of the primary wall of the vacuum vessel. It would be advantageous to implement a process to accurately determine tritium distribution on these inner surfaces. This fiber optic imaging device provides a highly practical method for determining the location, concentration, and activity of surface tritium deposition. In addition, it can be employed for detection of tritium ''hot-spots'' and ''hide-out'' regions present on the surfaces being imaged

  2. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    Science.gov (United States)

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.

  3. Multiplexed fluorescent microarray for human salivary protein analysis using polymer microspheres and fiber-optic bundles.

    Science.gov (United States)

    Nie, Shuai; Benito-Peña, Elena; Zhang, Huaibin; Wu, Yue; Walt, David R

    2013-10-10

    Herein, we describe a protocol for simultaneously measuring six proteins in saliva using a fiber-optic microsphere-based antibody array. The immuno-array technology employed combines the advantages of microsphere-based suspension array fabrication with the use of fluorescence microscopy. As described in the video protocol, commercially available 4.5 μm polymer microspheres were encoded into seven different types, differentiated by the concentration of two fluorescent dyes physically trapped inside the microspheres. The encoded microspheres containing surface carboxyl groups were modified with monoclonal capture antibodies through EDC/NHS coupling chemistry. To assemble the protein microarray, the different types of encoded and functionalized microspheres were mixed and randomly deposited in 4.5 μm microwells, which were chemically etched at the proximal end of a fiber-optic bundle. The fiber-optic bundle was used as both a carrier and for imaging the microspheres. Once assembled, the microarray was used to capture proteins in the saliva supernatant collected from the clinic. The detection was based on a sandwich immunoassay using a mixture of biotinylated detection antibodies for different analytes with a streptavidin-conjugated fluorescent probe, R-phycoerythrin. The microarray was imaged by fluorescence microscopy in three different channels, two for microsphere registration and one for the assay signal. The fluorescence micrographs were then decoded and analyzed using a homemade algorithm in MATLAB.

  4. Single-Phase Bundle Flows Including Macroscopic Turbulence Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Yoon, Seok Jong; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    To deal with various thermal hydraulic phenomena due to rapid change of fluid properties when an accident happens, securing mechanistic approaches as much as possible may reduce the uncertainty arising from improper applications of the experimental models. In this study, the turbulence mixing model, which is well defined in the subchannel analysis code such as VIPRE, COBRA, and MATRA by experiments, is replaced by a macroscopic k-e turbulence model, which represents the aspect of mathematical derivation. The performance of CUPID with macroscopic turbulence model is validated against several bundle experiments: CNEN 4x4 and PNL 7x7 rod bundle tests. In this study, the macroscopic k-e model has been validated for the application to subchannel analysis. It has been implemented in the CUPID code and validated against CNEN 4x4 and PNL 7x7 rod bundle tests. The results showed that the macroscopic k-e turbulence model can estimate the experiments properly.

  5. CANDU fuel bundle deformation modelling with COMSOL multiphysics

    International Nuclear Information System (INIS)

    Bell, J.S.; Lewis, B.J.

    2012-01-01

    Highlights: ► The deformation behaviour of a CANDU fuel bundle was modelled. ► The model has been developed on a commercial finite-element platform. ► Pellet/sheath interaction and end-plate restraint effects were considered. ► The model was benchmarked against the BOW code and a variable-load experiment. - Abstract: A model to describe deformation behaviour of a CANDU 37-element bundle has been developed under the COMSOL Multiphysics finite-element platform. Beam elements were applied to the fuel elements (composed of fuel sheaths and pellets) and endplates in order to calculate the bowing behaviour of the fuel elements. This model is important to help assess bundle-deformation phenomena, which may lead to more restrictive coolant flow through the sub-channels of the horizontally oriented bundle. The bundle model was compared to the BOW code for the occurrence of a dry-out patch, and benchmarked against an out-reactor experiment with a variable load on an outer fuel element.

  6. Influence of Fiber Bundle Morphology on the Mechanical and Bonding Properties of Cotton Stalk and Mulberry Branch Reconstituted Square Lumber

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2016-08-01

    Full Text Available The mechanical properties of natural fiber composites can be strengthened in the longitudinal direction if the fiber is formed in a parallel manner. Reconstituted cotton stalk lumber and mulberry branch lumber were fabricated using hot-press technology, and the effects of fiber morphology on their mechanical and bonding properties were investigated. The fiber bundle size had a great influence on the mechanical and bonding properties of the final products. The maximum specific modulus of rupture (MOR and specific modulus of elasticity (MOE of the reconstituted lumber were obtained for medium-size fiber bundles, and the maximum MOR and MOE of reconstituted cotton stalk lumber was 130.3 MPa·g-1·cm-3 and 12.9 GPa·g-1·cm-3, respectively. The maximum MOR and MOE of the mulberry branch lumber was 147.2 MPa·g-1·cm-3 and 14.7 GPa·g-1·cm-3, respectively. Mechanical interlocking structures in the lumber were observed via fluorescence microscopy, showing that phenol-formaldehyde adhesive had penetrated into several cell layers of the fiber bundle under heating and pressure. The adhesive penetration capacity was stronger when the fiber bundles were smaller in size and density. The reconstituted lumber fabricated from both materials exhibited excellent mechanical performance in the parallel direction. Therefore, reconstituted cotton stalk and mulberry branch lumber are attractive potential materials for the construction industry.

  7. Restriction of Preferences to the Set of Consumption Bundles, In a Model with Production and Consumption Bundles

    NARCIS (Netherlands)

    Schalk, S.

    1999-01-01

    In contrast to the neo-classical theory of Arrow and Debreu, a model of a private ownership economy is presented, in which production and consumption bundles are treated separately. Each of the two types of bundles is assumed to establish a con- vex cone. Production technologies can convert

  8. Turbine-blade tip clearance and tip timing measurements using an optical fiber bundle sensor

    Science.gov (United States)

    Garcia, Iker; Beloki, Josu; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon

    2013-04-01

    Traditional limitations of capacitive, inductive or discharging probe sensor for tip timing and tip clearance measurements are overcome by reflective intensity modulated optical fiber sensors. This paper presents the signals and results corresponding to a one stage turbine rig which rotor has 146 blades, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on turbine casing. It is composed of a central illuminating fiber that guides the light from a laser to the turbine blade, and two concentric rings of receiving fibers that collect the reflected light. Two photodetectors turn this reflected light signal from the receiving rings into voltage. The electrical signals are acquired and saved by a high-sample-rate oscilloscope. In tip clearance calculations the ratio of the signals provided by each ring of receiving fibers is evaluated and translated into distance. In the case of tip timing measurements, only one of the signals is considered to get the arrival time of the blade. The differences between the real and theoretical arrival times of the blades are used to obtain the deflections amplitude. The system provides the travelling wave spectrum, which presents the average vibration amplitude of the blades at a certain nodal diameter. The reliability of the results in the turbine rig testing facilities suggests the possibility of performing these measurements in real turbines under real working conditions.

  9. A new study on diffusion tensor imaging of the whole visual pathway fiber bundle and clinical application

    Institute of Scientific and Technical Information of China (English)

    TAO Xiao-feng; WANG Zhong-qiu; GONG Wan-qing; JIANG Qing-jun; SHI Zeng-ru

    2009-01-01

    Background With conventional imaging methods only the morphous of the visual nerve fiber bundles can be demonstrated, while the earlier period functional changes can not be demonstrated. We hypothesized that diffusion tensor imaging (DTI) would demonstrated the whole optic never fiber bundle and visual pathway and the earlier period functional changes. The purpose of the present study was to evaluate the application of DTI technique in the demonstration of the whole optic never fiber bundle and visual pathway, and the influence of orbital tumors on them. Methods GE 1.5T signa HD MR System, and the software package DTV2 were adopted. The total 45 subjects were enrolled, including 15 volunteers and 30 patients. All patients had ocular proptosis from minor to major. Seven patients had visual acuity decrescence. Results The nerve fiber bundles, e.g. optic chiasma, optic tract and optic radiation in posterior visual pathway were well demonstrated in all cases. Wherein, the intact whole visual pathway fiber bundles were clearly revealed in 10 volunteers and 17 patients, and optic nerve was not wholly revealed in the rest of the subjects. Shift of optic nerve caused by compression and partial deformation were seen in 7 patients with orbital tumor. In 6 of 7 patients, DTI displayed significant abscise and deformation of visual nerve. Chi-square test indicated significant correlation between visual acuity decrescence and DTI visual nerve non-display. Conclusions Visual nerve fiber bundles and the whole visual pathway were visualized in most of patients with DTI. It might be an effective method of providing imaging evidence for visual nerve fiber earlier period functional changes, and laid a foundation for the study in other cranial nerves.

  10. Section sigma models coupled to symplectic duality bundles on Lorentzian four-manifolds

    Science.gov (United States)

    Lazaroiu, C. I.; Shahbazi, C. S.

    2018-06-01

    We give the global mathematical formulation of a class of generalized four-dimensional theories of gravity coupled to scalar matter and to Abelian gauge fields. In such theories, the scalar fields are described by a section of a surjective pseudo-Riemannian submersion π over space-time, whose total space carries a Lorentzian metric making the fibers into totally-geodesic connected Riemannian submanifolds. In particular, π is a fiber bundle endowed with a complete Ehresmann connection whose transport acts through isometries between the fibers. In turn, the Abelian gauge fields are "twisted" by a flat symplectic vector bundle defined over the total space of π. This vector bundle is endowed with a vertical taming which locally encodes the gauge couplings and theta angles of the theory and gives rise to the notion of twisted self-duality, of crucial importance to construct the theory. When the Ehresmann connection of π is integrable, we show that our theories are locally equivalent to ordinary Einstein-Scalar-Maxwell theories and hence provide a global non-trivial extension of the universal bosonic sector of four-dimensional supergravity. In this case, we show using a special trivializing atlas of π that global solutions of such models can be interpreted as classical "locally-geometric" U-folds. In the non-integrable case, our theories differ locally from ordinary Einstein-Scalar-Maxwell theories and may provide a geometric description of classical U-folds which are "locally non-geometric".

  11. Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle

    NARCIS (Netherlands)

    Amelink, A.; Hoy, C.L.; Gamm, U.A.; Sterenborg, H.J.C.M.; Robinson, D.J.

    2014-01-01

    We have recently demonstrated a means for quantifying the absorption and scattering properties of biological tissue through multidiameter single-fiber reflectance (MDSFR) spectroscopy. These measurements can be used to correct single-fiber fluorescence (SFF) spectra for the influence of optical

  12. An Optical Fiber Bundle Sensor for Tip Clearance and Tip Timing Measurements in a Turbine Rig

    Directory of Open Access Journals (Sweden)

    María Asunción Illarramendi

    2013-06-01

    Full Text Available When it comes to measuring blade-tip clearance or blade-tip timing in turbines, reflective intensity-modulated optical fiber sensors overcome several traditional limitations of capacitive, inductive or discharging probe sensors. This paper presents the signals and results corresponding to the third stage of a multistage turbine rig, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on the turbine casing. To eliminate the influence of light source intensity variations and blade surface reflectivity, the sensing principle is based on the quotient of the voltages obtained from the two receiving bundle legs. A discrepancy lower than 3% with respect to a commercial sensor was observed in tip clearance measurements. Regarding tip timing measurements, the travel wave spectrum was obtained, which provides the average vibration amplitude for all blades at a particular nodal diameter. With this approach, both blade-tip timing and tip clearance measurements can be carried out simultaneously. The results obtained on the test turbine rig demonstrate the suitability and reliability of the type of sensor used, and suggest the possibility of performing these measurements in real turbines under real working conditions.

  13. Evaluation of a respiratory assist catheter that uses an impeller within a hollow fiber membrane bundle.

    Science.gov (United States)

    Mihelc, Kevin M; Frankowski, Brian J; Lieber, Samuel C; Moore, Nathan D; Hattler, Brack G; Federspiel, William J

    2009-01-01

    Respiratory assist using an intravenous catheter may be a potential treatment for patients suffering from acute or acute-on-chronic lung failure. The objective of this study was to evaluate a novel respiratory catheter that uses an impeller within the fiber bundle to enhance gas exchange efficiency, thus requiring a smaller fiber bundle and insertional size (25 Fr) and permitting simple percutaneous insertion. Bench testing of gas exchange in deionized water was used to evaluate eight impeller designs. The three best performing impeller designs were evaluated in acute studies in four calves (122 + or - 10 kg). Gas exchange increased significantly with increasing impeller rotation rate. The degree of enhancement varied with impeller geometry. The maximum gas exchange efficiency (exchange per unit surface area) for the catheter with the best performing impeller was 529 + or - 20 ml CO(2)/min/m(2) and 513 + or - 21 ml CO(2)/min/m(2) for bench and animal studies, respectively, at a rotation rate of 20,000 rpm. Absolute CO(2) exchange was 37 and 36 ml CO(2)/min, respectively. Active mixing by rotating impellers produced 70% higher gas exchange efficiency than pulsating balloon catheters. The sensitivity of gas exchange to impeller design suggests that further improvements can be made by computational fluid dynamics-based optimization of the impeller.

  14. Laser scanning endoscope via an imaging fiber bundle for fluorescence imaging

    Science.gov (United States)

    Yeboah, Lorenz D.; Nestler, Dirk; Steiner, Rudolf W.

    1994-12-01

    Based on a laser scanning endoscope via an imaging fiber bundle, a new approach for a tumor diagnostic system has been developed to assist physicians in the diagnosis before the actual PDT is carried out. Laser induced, spatially resolved fluorescence images of diseased tissue can be compared with images received by video endoscopy using a white light source. The set- up is required to produce a better contrast between infected and healthy tissue and might serve as a constructive diagnostic help for surgeons. The fundamental idea is to scan a low-power laser beam on an imaging fiber bundle and to achieve a spatially resolved projection on the tissue surface. A sufficiently high laser intensity from the diode laser is concentrated on each single spot of the tissue exciting fluorescence when a dye has previously been accumulated. Subsequently, video image of the tissue is recorded and stored. With an image processing unit, video and fluorescence images are overlaid producing a picture of the fluorescence intensity in the environment of the observed tissue.

  15. Kinematics of semiclassical spin and spin fiber bundle associated with so(n) Lie-Poisson manifold

    International Nuclear Information System (INIS)

    Deriglazov, A A

    2013-01-01

    We describe geometric construction underlying the Lagrangian actions for non-Grassmann spinning particles proposed in our recent works. If we discard the spatial variables (the case of frozen spin), the problem reduces to formulation of a variational problem for Hamiltonian system on a manifold with so(n) Lie-Poisson bracket. To achieve this, we identify dynamical variables of the problem with coordinates of the base of a properly constructed fiber bundle. In turn, the fiber bundle is embedded as a surface into the phase space equipped with canonical Poisson bracket. This allows us to formulate the variational problem using the standard methods of Dirac theory for constrained systems.

  16. Vibrations of turbine blades bundles model with rubber damping elements

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2014-01-01

    Roč. 21, č. 1 (2014), s. 45-52 ISSN 1802-1484 R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : mathematical model * bundle of five blades * rubber damping elements * eigenmodes Subject RIV: BI - Acoustics http://www.engineeringmechanics.cz/obsahy.html?R=21&C=1

  17. Simulation of propagation in a bundle of skeletal muscle fibers: Modulation effects of passive fibers

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; F.A., Roberge

    1997-01-01

    source current (I-ma) enters the passive tissue as a radial load current (I-ep) while the rest flows longitudinally in the cleft between the active and adjacent passive fibers. The conduction velocity of 1.32 m/s was about 30% lower than on an isolated fiber in a Ringer bath, in close agreement...... rate of rise of the action potential upstroke (V-max) from 512 to 503 V/s. Increasing the phase angle of the passive fiber membrane impedence (Z(m)) increases the phase delay between I-ma and I-ep, thereby increasing phi(epp) which in turn slows down propagation and increases V-max....

  18. Relativistic rotators: a quantum mechanical de Sitter bundle

    International Nuclear Information System (INIS)

    Boehm, A.

    1976-02-01

    If de Sitter fiber bundle over space time is the classical picture of hadrons then for a quantum mechanical description one has to generalize the concept of a principal fiber bundle to a bundle that contains the representation of the group of motion. This idea is related to the relativistic rotator model, and the radius of the de Sitter fiber is determined from the experimental hadron spectrum

  19. Electrochemically modified carbon fiber bundles as selective sorbent for online solid-phase microextraction of sulfonamides

    International Nuclear Information System (INIS)

    Ling, Xu; Zhang, Wenpeng; Chen, Zilin

    2016-01-01

    The authors show that carbon fiber bundles electrochemically modified with the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is a viable sorbent for online solid-phase microextraction (SPME) of the sulfonamides (sulfadiazine, sulfadimidine and sulfamethoxazole) prior to their determination by HPLC. The fibers were packed in a tube loop made from polyether ether ketone (PEEK) that was coupled to the HPLC system for online SPME. Preconcentration factors can reach values of up to 300, and the limit of detection (at an S/N ration of 3) can be as low as 0.05 ng⋅mL −1 . The method was applied to the analysis of the sulfonamides in spiked rat plasma with intra-day and inter-day RSDs of <3.33 and <4.57 %, and with recoveries in the range from 91.7 to 97.8 % in spiked plasma. The in-tube SPME was also applied to the determination of the 3 sulfonamides in rat plasma after oral administration (tablet powder) with high sensitivity. In addition to its efficient extraction, the PEEK tube based SPME has chemical and mechanical stability under even harsh conditions. (author)

  20. Elastic deformation and failure in protein filament bundles: Atomistic simulations and coarse-grained modeling.

    Science.gov (United States)

    Hammond, Nathan A; Kamm, Roger D

    2008-07-01

    The synthetic peptide RAD16-II has shown promise in tissue engineering and drug delivery. It has been studied as a vehicle for cell delivery and controlled release of IGF-1 to repair infarcted cardiac tissue, and as a scaffold to promote capillary formation for an in vitro model of angiogenesis. The structure of RAD16-II is hierarchical, with monomers forming long beta-sheets that pair together to form filaments; filaments form bundles approximately 30-60 nm in diameter; branching networks of filament bundles form macroscopic gels. We investigate the mechanics of shearing between the two beta-sheets constituting one filament, and between cohered filaments of RAD16-II. This shear loading is found in filament bundle bending or in tensile loading of fibers composed of partial-length filaments. Molecular dynamics simulations show that time to failure is a stochastic function of applied shear stress, and that for a given loading time behavior is elastic for sufficiently small shear loads. We propose a coarse-grained model based on Langevin dynamics that matches molecular dynamics results and facilities extending simulations in space and time. The model treats a filament as an elastic string of particles, each having potential energy that is a periodic function of its position relative to the neighboring filament. With insight from these simulations, we discuss strategies for strengthening RAD16-II and similar materials.

  1. Automated segmentation of white matter fiber bundles using diffusion tensor imaging data and a new density based clustering algorithm.

    Science.gov (United States)

    Kamali, Tahereh; Stashuk, Daniel

    2016-10-01

    Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods. However, most conventional unsupervised methods require the number of clusters be known in advance which is not possible in most applications. The purpose of this study is to design an unsupervised segmentation algorithm for brain white matter fiber bundles which can automatically segment fiber bundles using intrinsic diffusion tensor imaging data information without considering any prior information or assumption about data distributions. Here, a new density based clustering algorithm called neighborhood distance entropy consistency (NDEC), is proposed which discovers natural clusters within data by simultaneously utilizing both local and global density information. The performance of NDEC is compared with other state of the art clustering algorithms including chameleon, spectral clustering, DBSCAN and k-means using Johns Hopkins University publicly available diffusion tensor imaging data. The performance of NDEC and other employed clustering algorithms were evaluated using dice ratio as an external evaluation criteria and density based clustering validation (DBCV) index as an internal evaluation metric. Across all employed clustering algorithms, NDEC obtained the highest average dice ratio (0.94) and DBCV value (0.71). NDEC can find clusters with arbitrary shapes and densities and consequently can be used for WM fiber bundle segmentation where there is no distinct boundary between various bundles. NDEC may also be used as an effective tool in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity. Copyright

  2. Adaptive optics imaging of healthy and abnormal regions of retinal nerve fiber bundles of patients with glaucoma.

    Science.gov (United States)

    Chen, Monica F; Chui, Toco Y P; Alhadeff, Paula; Rosen, Richard B; Ritch, Robert; Dubra, Alfredo; Hood, Donald C

    2015-01-08

    To better understand the nature of glaucomatous damage of the macula, especially the structural changes seen between relatively healthy and clearly abnormal (AB) retinal regions, using an adaptive optics scanning light ophthalmoscope (AO-SLO). Adaptive optics SLO images and optical coherence tomography (OCT) vertical line scans were obtained on one eye of seven glaucoma patients, with relatively deep local arcuate defects on the 10-2 visual field test in one (six eyes) or both hemifields (one eye). Based on the OCT images, the retinal nerve fiber (RNF) layer was divided into two regions: (1) within normal limits (WNL), relative RNF layer thickness within mean control values ±2 SD; and (2) AB, relative thickness less than -2 SD value. As seen on AO-SLO, the pattern of AB RNF bundles near the border of the WNL and AB regions differed across eyes. There were normal-appearing bundles in the WNL region of all eyes and AB-appearing bundles near the border with the AB region. This region with AB bundles ranged in extent from a few bundles to the entire AB region in the case of one eye. All other eyes had a large AB region without bundles. However, in two of these eyes, a few bundles were seen within this region of otherwise missing bundles. The AO-SLO images revealed details of glaucomatous damage that are difficult, if not impossible, to see with current OCT technology. Adaptive optics SLO may prove useful in following progression in clinical trials, or in disease management, if AO-SLO becomes widely available and easy to use. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  3. Confocal Adaptive Optics Imaging of Peripapillary Nerve Fiber Bundles: Implications for Glaucomatous Damage Seen on Circumpapillary OCT Scans.

    Science.gov (United States)

    Hood, Donald C; Chen, Monica F; Lee, Dongwon; Epstein, Benjamin; Alhadeff, Paula; Rosen, Richard B; Ritch, Robert; Dubra, Alfredo; Chui, Toco Y P

    2015-04-01

    To improve our understanding of glaucomatous damage as seen on circumpapillary disc scans obtained with frequency-domain optical coherence tomography (fdOCT), fdOCT scans were compared to images of the peripapillary retinal nerve fiber (RNF) bundles obtained with an adaptive optics-scanning light ophthalmoscope (AO-SLO). The AO-SLO images and fdOCT scans were obtained on 6 eyes of 6 patients with deep arcuate defects (5 points ≤-15 db) on 10-2 visual fields. The AO-SLO images were montaged and aligned with the fdOCT images to compare the RNF bundles seen with AO-SLO to the RNF layer thickness measured with fdOCT. All 6 eyes had an abnormally thin (1% confidence limit) RNF layer (RNFL) on fdOCT and abnormal (hyporeflective) regions of RNF bundles on AO-SLO in corresponding regions. However, regions of abnormal, but equal, RNFL thickness on fdOCT scans varied in appearance on AO-SLO images. These regions could be largely devoid of RNF bundles (5 eyes), have abnormal-appearing bundles of lower contrast (6 eyes), or have isolated areas with a few relatively normal-appearing bundles (2 eyes). There also were local variations in reflectivity of the fdOCT RNFL that corresponded to the variations in AO-SLO RNF bundle appearance. Relatively similar 10-2 defects with similar fdOCT RNFL thickness profiles can have very different degrees of RNF bundle damage as seen on fdOCT and AO-SLO. While the results point to limitations of fdOCT RNFL thickness as typically analyzed, they also illustrate the potential for improving fdOCT by attending to variations in local intensity.

  4. Snapshot hyperspectral imaging to measure oxygen saturation in the retina using fiber bundle and multi-slit spectrometer

    Science.gov (United States)

    Khoobehi, Bahram; Khoobehi, Aurash; Fournier, Paul

    2012-03-01

    We have developed a snapshot fiber bundle technique that circumvents the issue of saccades of the non-immobilized eye. In this technology, 458 individual fibers are assembled in a two-dimensional array where each fiber represents a portion of the image. These fibers are redistributed into two separate one-dimensional fiber rows interfaced into a two-slit spectrometer. The light from each fiber is decomposed into its spectral components by the spectrometer. Using this innovative technology, we have been able to detect the whole spectrum of hemoglobin using the single light exposure capabilities of a fundus camera. The hemoglobin signature of the retinal arteries, veins, and retina tissue can be recorded. The final result is a complete, 3-dimensional representation of the spectral and spatial information from a single exposure of the patient. By adjusting the field of view on the imaging portion of the fundus camera, the fiber optic cable may encompass a larger area. However, this causes a decrease in spatial resolution, so we increased the area of the fiber array by increasing the number of the fibers from 458 to 648, increased the size of each individual fiber from 10 μm to 20 &μm, and increased the number of slits to four.

  5. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics.

    Science.gov (United States)

    Kocaoglu, Omer P; Cense, Barry; Jonnal, Ravi S; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T

    2011-08-15

    Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3μm(3) resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29-62years). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a 7month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30-50μm, thickness: 10-15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30-45μm, thickness: 20-40μm). Width and thickness RNFB measurements taken 7months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were -0.1±4.0μm (width) and 0.3±1.5μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. An eddy viscosity model for flow in a tube bundle

    International Nuclear Information System (INIS)

    Soussan, D.; Grandotto, M.

    1998-01-01

    The work described in this paper is part of the development of GENEPI a 3-dimensional finite element code, designed for the thermalhydraulic analysis of steam generators. It focuses on the implementation of two-phase flow turbulence-induced viscosity in a tube bundle. The GENEPI code, as other industrial codes, uses the eddy viscosity concept introduced by Boussinesq for single phase flow. The concept assumes that the turbulent momentum transfer is similar to the viscous shear stresses. Eddy viscosity formulation is reasonably well known for single phase flows, especially in simple geometries (i.e., in smooth tube, around a single body, or behind a row of bars/tubes), but there exists very little information on it for two-phase flows. An analogy between single and two-phases is used to set up a model for eddy viscosity. The eddy viscosity model examined in this paper is used for a tube bundle geometry and, therefore, is extended to include anisotropy to the classic model. Each of the main flow directions (cross flow inline, cross flow staggered, and parallel flows) gives rise to a specific eddy viscosity formula. The results from a parametric study indicate that the eddy viscosity in the staggered flow is roughly 1.5 times as large as that for the inline cross flow, 60 times as large as that for the parallel flow, and 105 as large as that for the molecular viscosity. Then, the different terms are combined with each other to result in a global eddy viscosity model for a steam generator tube bundle flow. (author)

  7. New models of droplet deposition and entrainment for prediction of CHF in cylindrical rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibin, E-mail: hb-zhang@xjtu.edu.cn [School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Department of Chemical Engineering, Imperial College, London SW7 2BY (United Kingdom); Hewitt, G.F. [Department of Chemical Engineering, Imperial College, London SW7 2BY (United Kingdom)

    2016-08-15

    Highlights: • New models of droplet deposition and entrainment in rod bundles is developed. • A new phenomenological model to predict the CHF in rod bundles is described. • The present model is well able to predict CHF in rod bundles. - Abstract: In this paper, we present a new set of model of droplet deposition and entrainment in cylindrical rod bundles based on the previously proposed model for annuli (effectively a “one-rod” bundle) (2016a). These models make it possible to evaluate the differences of the rates of droplet deposition and entrainment for the respective rods and for the outer tube by taking into account the geometrical characteristics of the rod bundles. Using these models, a phenomenological model to predict the CHF (critical heat flux) for upward annular flow in vertical rod bundles is described. The performance of the model is tested against the experimental data of Becker et al. (1964) for CHF in 3-rod and 7-rod bundles. These data include tests in which only the rods were heated and data for simultaneous uniform and non-uniform heating of the rods and the outer tube. It was shown that the predicted CHFs by the present model agree well with the experimental data and with the experimental observation that dryout occurred first on the outer rods in 7-rod bundles. It is expected that the methodology used will be generally applicable in the prediction of CHF in rod bundles.

  8. Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Svane, Anne Marie

    2017-01-01

    distributions. We discuss a factorization of the frame bundle projection map through this bundle, the natural sub-Riemannian structure of the frame bundle, the effect of holonomy, and the existence of subbundles where the Hormander condition is satisfied such that the Brownian motions have smooth transition......We discuss the geometric foundation behind the use of stochastic processes in the frame bundle of a smooth manifold to build stochastic models with applications in statistical analysis of non-linear data. The transition densities for the projection to the manifold of Brownian motions developed...... in the frame bundle lead to a family of probability distributions on the manifold. We explain how data mean and covariance can be interpreted as points in the frame bundle or, more precisely, in the bundle of symmetric positive definite 2-tensors analogously to the parameters describing Euclidean normal...

  9. Multiplexed salivary protein profiling for patients with respiratory diseases using fiber-optic bundles and fluorescent antibody-based microarrays.

    Science.gov (United States)

    Nie, Shuai; Benito-Peña, Elena; Zhang, Huaibin; Wu, Yue; Walt, David R

    2013-10-01

    Over the past 40 years, the incidence and prevalence of respiratory diseases have increased significantly throughout the world, damaging economic productivity and challenging health care systems. Current diagnoses of different respiratory diseases generally involve invasive sampling methods such as induced sputum or bronchoalveolar lavage that are uncomfortable, or even painful, for the patient. In this paper, we present a platform incorporating fiber-optic bundles and antibody-based microarrays to perform multiplexed protein profiling of a panel of six salivary biomarkers for asthma and cystic fibrosis (CF) diagnosis. The platform utilizes an optical fiber bundle containing approximately 50,000 individual 4.5 μm diameter fibers that are chemically etched to create microwells in which modified microspheres decorated with monoclonal capture antibodies can be deposited. On the basis of a sandwich immunoassay format, the array quantifies human vascular endothelial growth factor (VEGF), interferon gamma-induced protein 10 (IP-10), interleukin-8 (IL-8), epidermal growth factor (EGF), matrix metalloproteinase 9 (MMP-9), and interleukin-1 beta (IL-1β) salivary biomarkers in the subpicomolar range. Saliva supernatants collected from 291 individuals (164 asthmatics, 71 CF patients, and 56 healthy controls (HC)) were analyzed on the platform to profile each group of patients using this six-analyte suite. It was found that four of the six proteins were observed to be significantly elevated (p < 0.01) in asthma and CF patients compared with HC. These results demonstrate the potential to use the multiplexed protein array platform for respiratory disease diagnosis.

  10. In Situ Strength Model for Continuous Fibers and Multi-Scale Modeling the Fracture of C/SiC Composites

    Science.gov (United States)

    Zhang, Sheng; Gao, Xiguang; Song, Yingdong

    2018-04-01

    A new in situ strength model of carbon fibers was developed based on the distribution of defects to predict the stress-strain response and the strength of C/SiC composites. Different levels of defects in the fibers were considered in this model. The defects in the fibers were classified by their effects on the strength of the fiber. The strength of each defect and the probability that the defect appears were obtained from the tensile test of single fibers. The strength model of carbon fibers was combined with the shear-lag model to predict the stress-strain responses and the strengths of fiber bundles and C/SiC minicomposites. To verify the strength model, tensile tests were performed on fiber bundles and C/SiC minicomposites. The predicted and experimental results were in good agreement. Effects of the fiber length, the fiber number and the heat treatment on the final strengths of fiber bundles and C/SiC minicomposites were also discussed.

  11. On turbulence models for rod bundle flow computations

    International Nuclear Information System (INIS)

    Hazi, Gabor

    2005-01-01

    In commercial computational fluid dynamics codes there is more than one turbulence model built in. It is the user responsibility to choose one of those models, suitable for the problem studied. In the last decade, several computations were presented using computational fluid dynamics for the simulation of various problems of the nuclear industry. A common feature in a number of those simulations is that they were performed using the standard k-ε turbulence model without justifying the choice of the model. The simulation results were rarely satisfactory. In this paper, we shall consider the flow in a fuel rod bundle as a case study and discuss why the application of the standard k-ε model fails to give reasonable results in this situation. We also show that a turbulence model based on the Reynolds stress transport equations can provide qualitatively correct results. Generally, our aim is pedagogical, we would like to call the readers attention to the fact that turbulence models have to be selected based on theoretical considerations and/or adequate information obtained from measurements

  12. Single-shot T1 mapping of the corpus callosum: A rapid characterization of fiber bundle anatomy

    Directory of Open Access Journals (Sweden)

    Sabine eHofer

    2015-05-01

    Full Text Available Using diffusion-tensor MRI and fiber tractography the topographic organization of the corpus callosum (CC has been described to comprise 5 segments with fibers projecting into prefrontal (I, premotor and supplementary motor (II, primary motor (III, and primary sensory areas (IV, as well as into parietal, temporal, and occipital cortical areas (V. In order to more rapidly characterize the underlying anatomy of these segments, this study used a novel single-shot T1 mapping method to quantitatively determine T1 relaxation times in the human CC. A region-of-interest analysis revealed a tendency for the lowest T1 relaxation times in the genu and the highest T1 relaxation times in the somatomotor region of the CC. This observation separates regions dominated by myelinated fibers with large diameters (somatomotor area from densely packed smaller axonal bundles (genu with less myelin. The results indicate that characteristic T1 relaxation times in callosal profiles provide an additional means to monitor differences in fiber anatomy, fiber density, and gray matter in respective neocortical areas. In conclusion, rapid T1 mapping allows for a characterization of the axonal architecture in an individual CC in less than 10 s. The approach emerges as a valuable means for studying neocortical brain anatomy with possible implications for the diagnosis of neurodegenerative processes.

  13. Finite element modelling of different CANDU fuel bundle types in various refuelling conditions

    International Nuclear Information System (INIS)

    Roman, M. R.; Ionescu, D. V.; Olteanu, G.; Florea, S.; Radut, A. C.

    2016-01-01

    The objective of this paper is to develop a finite element model for static strength analysis of the CANDU standard with 37 elements fuel bundle and the SEU43 with 43 elements fuel bundle design for various refuelling conditions. The computer code, ANSYS7.1, is used to simulate the axial compression in CANDU type fuel bundles subject to hydraulic drag loads, deflection of fuel elements, stresses and displacements in the end plates. Two possible situations for the fuelling machine side stops are considered in our analyses, as follows: the last fuel bundle is supported by the two side stops and a side stop can be blocked therefore, the last fuel bundle is supported by only one side stop. The results of the analyses performed are briefly presented and also illustrated in a graphical form. The finite element model developed in present study is verified against test results for endplate displacement and element bowing obtained from strength tests with fuel bundle string and fuelling machine side-stop simulators. Comparison of ANSYS model predictions with these experimental results led to a very good agreement. Despite the difference in hydraulic load between SEU43 and CANDU standard fuel bundles strings, the maximum stress in the SEU43 endplate is about the same with the maximum stress in the CANDU standard endplate. The comparative assessment reveals that SEU43 fuel bundle is able to withstand high flow rate without showing a significant geometric instability. (authors)

  14. Dual CARS and SHG image acquisition scheme that combines single central fiber and multimode fiber bundle to collect and differentiate backward and forward generated photons

    Science.gov (United States)

    Weng, Sheng; Chen, Xu; Xu, Xiaoyun; Wong, Kelvin K.; Wong, Stephen T. C.

    2016-01-01

    In coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) imaging, backward and forward generated photons exhibit different image patterns and thus capture salient intrinsic information of tissues from different perspectives. However, they are often mixed in collection using traditional image acquisition methods and thus are hard to interpret. We developed a multimodal scheme using a single central fiber and multimode fiber bundle to simultaneously collect and differentiate images formed by these two types of photons and evaluated the scheme in an endomicroscopy prototype. The ratio of these photons collected was calculated for the characterization of tissue regions with strong or weak epi-photon generation while different image patterns of these photons at different tissue depths were revealed. This scheme provides a new approach to extract and integrate information captured by backward and forward generated photons in dual CARS/SHG imaging synergistically for biomedical applications. PMID:27375938

  15. Alternative Reimbursement Models: Bundled Payment and Beyond: AOA Critical Issues.

    Science.gov (United States)

    Greenwald, A Seth; Bassano, Amy; Wiggins, Stephen; Froimson, Mark I

    2016-06-01

    The Bundled Payments for Care Improvement (BPCI) initiative was begun in January 2013 by the U.S. Centers for Medicare & Medicaid Services (CMS) through its Innovation Center authority, which was created by the U.S. Patient Protection and Affordable Care Act (PPACA). The BPCI program seeks to improve health-care delivery and to ultimately reduce costs by allowing providers to enter into prenegotiated payment arrangements that include financial and performance accountability for a clinical episode in which a risk-and-reward calculus must be determined. BPCI is a contemporary 3-year experiment designed to test the applicability of episode-based payment models as a viable strategy to transform the CMS payment methodology while improving health outcomes. A summary of the 4 models being evaluated in the BPCI initiative is presented in addition to the awardee types and the number of awardees in each model. Data from one of the BPCI-designated pilot sites demonstrate that strategies do exist for successful implementation of an alternative payment model by keeping patients first while simultaneously improving coordination, alignment of care, and quality and reducing cost. Providers will need to embrace change and their areas of opportunity to gain a competitive advantage. Health-care providers, including orthopaedic surgeons, health-care professionals at post-acute care institutions, and product suppliers, all have a role in determining the strategies for success. Open dialogue between CMS and awardees should be encouraged to arrive at a solution that provides opportunity for gainsharing, as this program continues to gain traction and to evolve. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

  16. Modeling and analysis of thermal damping in heat exchanger tube bundles

    Energy Technology Data Exchange (ETDEWEB)

    Khushnood, Shahab, E-mail: seeshahab@yahoo.co [University of Engineering and Technology, Taxila (Pakistan); Khan, Zaffar Muhammad, E-mail: mafzmlk@hotmail.co [National University of Sciences and Technology, Rawalpindi (Pakistan); Malik, Muhammad Afzaal [National University of Sciences and Technology, Rawalpindi (Pakistan); Iqbal, Qamar, E-mail: qamarch@yahoo.co [University of Engineering and Technology, Taxila (Pakistan); Bashir, Sajid; Khan, Muddasar [University of Engineering and Technology, Taxila (Pakistan); Koreshi, Zafarullah, E-mail: zaffark@yahoo.co [Air University, Islamabad (Pakistan); Khan, Mahmood Anwar [National University of Sciences and Technology, Rawalpindi (Pakistan); Malik, Tahir Nadeem [University of Engineering and Technology, Taxila (Pakistan); Qureshi, Arshad Hussain [University of Engineering and Technology, Lahore (Pakistan)

    2010-07-15

    Most structures and equipment used in nuclear power plant and process plant, such as reactor internals, fuel rods, steam generator tubes bundles, and process heat exchanger tube bundles, are subjected to flow-induced vibrations (FIV). Costly plant shutdowns have been the source of motivation for continuing studies on cross-flow-induced vibration in these structures. Damping has been the target of various research attempts related to FIV in tube bundles. A recent research attempt has shown the usefulness of a phenomenon termed as 'thermal damping'. The current paper focuses on the modeling and analysis of thermal damping in tube bundles subjected to cross-flow. It is expected that the present attempt will help in establishing improved design guidelines with respect to damping in tube bundles.

  17. Resolutions of Cn/Zn orbifolds, their U(1) bundles, and applications to string model building

    International Nuclear Information System (INIS)

    Nibbelink, Stefan Groot; Trapletti, Michele; Walter, Martin G.A.

    2007-01-01

    We describe blowups of C n /Z n orbifolds as complex line bundles over CP n-1 . We construct some gauge bundles on these resolutions. Apart from the standard embedding, we describe U(1) bundles and an SU(n-1) bundle. Both blowups and their gauge bundles are given explicitly. We investigate ten dimensional SO(32) super Yang-Mills theory coupled to supergravity on these backgrounds. The integrated Bianchi identity implies that there are only a finite number of U(1) bundle models. We describe how the orbifold gauge shift vector can be read off from the gauge background. In this way we can assert that in the blow down limit these models correspond to heterotic C 2 /Z 2 and C 3 /Z 3 orbifold models. (Only the Z 3 model with unbroken gauge group SO(32) cannot be reconstructed in blowup without torsion.) This is confirmed by computing the charged chiral spectra on the resolutions. The construction of these blowup models implies that the mismatch between type-I and heterotic models on T 6 /Z 3 does not signal a complication of S-duality, but rather a problem of type-I model building itself: The standard type-I orbifold model building only allows for a single model on this orbifold, while the blowup models give five different models in blow down

  18. Translating Pressure Ulcer Prevention Into Intensive Care Nursing Practice: Overlaying a Care Bundle Approach With a Model for Research Implementation.

    Science.gov (United States)

    Tayyib, Nahla; Coyer, Fiona

    This article reports on the development and implementation process used to integrate a care bundle approach (a pressure ulcer [PU] prevention bundle to improve patients' skin integrity in intensive care) and the Ottawa Model of Research Use (OMRU). The PU prevention care bundle demonstrated significant reduction in PU incidence, with the OMRU model providing a consolidated framework for the implementation of bundled evidence in an effective and consistent manner into daily clinical nursing practice.

  19. Polyelectrolyte bundles

    Energy Technology Data Exchange (ETDEWEB)

    Limbach, H J; Sayar, M; Holm, C [Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany)

    2004-06-09

    Using extensive molecular dynamics simulations we study the behaviour of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction and the bundle size. We show that for the parameter range relevant for sulfonated poly(para-phenylenes) (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting at the possibility that the size of DNA aggregates is, under certain circumstances, thermodynamically limited.

  20. Polyelectrolyte bundles

    International Nuclear Information System (INIS)

    Limbach, H J; Sayar, M; Holm, C

    2004-01-01

    Using extensive molecular dynamics simulations we study the behaviour of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction and the bundle size. We show that for the parameter range relevant for sulfonated poly(para-phenylenes) (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting at the possibility that the size of DNA aggregates is, under certain circumstances, thermodynamically limited

  1. Polyelectrolyte bundles

    Science.gov (United States)

    Limbach, H. J.; Sayar, M.; Holm, C.

    2004-06-01

    Using extensive Molecular Dynamics simulations we study the behavior of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction, and the bundle size. We show that for the parameter range relevant for sulfonated poly-para-phenylenes (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting to the possibility that the size of DNA aggregates is under certain circumstances thermodynamically limited.

  2. The bumper bundle book of modelling NLP modelling made simple

    CERN Document Server

    Burgess, Fran

    2014-01-01

    A Neurolinguistic Programming textbook which focusses on the core activity of NLP - modelling. It covers the thinking behind NLP modelling, presents an extensive range of modelling methodologies and skills, offers applications of modelling, and provides specific details for model and technique construction.

  3. Segmentation of the Cingulum Bundle in the Human Brain: A New Perspective Based on DSI Tractography and Fiber Dissection Study.

    Science.gov (United States)

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao; Ou, Shaowu

    2016-01-01

    The cingulum bundle (CB) is a critical white matter fiber tract in the brain, which forms connections between the frontal lobe, parietal lobe and temporal lobe. In non-human primates, the CB is actually divided into distinct subcomponents on the basis of corticocortical connections. However, at present, no study has verified similar distinct subdivisions in the human brain. In this study, we reconstructed these distinct subdivisions in the human brain, and determined their exact cortical connections using high definition fiber tracking (HDFT) technique on 10 healthy adults and a 488-subject template from the Human Connectome Project (HCP-488). Fiber dissections were performed to verify tractography results. Five CB segments were identified. CB-I ran from the subrostral areas to the precuneus and splenium, encircling the corpus callosum (CC). CB-II arched around the splenium and extended anteriorly above the CC to the medial aspect of the superior frontal gyrus (SFG). CB-III connected the superior parietal lobule (SPL) and precuneus with the medial aspect of the SFG. CB-IV was a relatively minor subcomponent from the SPL and precuneus to the frontal region. CB-V, the para-hippocampal cingulum, stemmed from the medial temporal lobe and fanned out to the occipital lobes. Our findings not only provide a more accurate and detailed description on the associated architecture of the subcomponents within the CB, but also offer new insights into the functional role of the CB in the human brain.

  4. Segmentation of the cingulum bundle in the human brain: a new perspective based on DSI tractography and fiber dissection study

    Directory of Open Access Journals (Sweden)

    Yupeng Wu

    2016-09-01

    Full Text Available The cingulum bundle (CB is a critical white matter fiber tract in the brain, which forms connections between the frontal lobe, parietal lobe, and temporal lobe. In non-human primates, the CB is actually divided into distinct subcomponents on the basis of corticocortical connections. However, at present, no study has verified similar distinct subdivisions in the human brain. In this study, we reconstructed these distinct subdivisions in the human brain, and determined their exact cortical connections using high definition fiber tracking (HDFT technique on 10 healthy adults and a 488-subject template from the Human Connectome Project (HCP-488. Fiber dissections were performed to verify tractography results. Five CB segments were identified. CB-I ran from the subrostral areas to the precuneus and splenium, encircling the corpus callosum. CB-II arched around the splenium and extended anteriorly above the corpus callosum to the medial aspect of the superior frontal gyrus. CB-III connected the superior parietal lobule and precuneus with the medial aspect of the superior frontal gyrus. CB-IV was a relatively minor subcomponent from the superior parietal lobule and precuneus to the frontal region. CB-V, the para-hippocampal cingulum, stemmed from the medial temporal lobe and fanned out to the occipital lobes. Our findings not only provide a more accurate and detailed description on the associated architecture of the subcomponents within the CB, but also offer new insights into the functional role of the CB in the human brain.

  5. Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8

    OpenAIRE

    Yang, Ren; Soper, Steven A.; Wang, Wanjun

    2006-01-01

    This paper describes the design, microfabrication and testing of a pre-aligned array of fiber couplers using direct UV-lithography of SU-8. The fiber coupler array includes an out-of-plane refractive microlens array and two fiberport collimator arrays. With the optical axis of the pixels parallel to the substrate, each pixel of the microlens array can be pre-aligned with the corresponding pixels of the fiberport collimator array as defined by the lithography mask design. This out-of-plane pol...

  6. Split bundle detection in polarimetric images of the human retinal nerve fiber layer

    NARCIS (Netherlands)

    Vermeer, K. A.; Reus, N. J.; Vos, F. M.; Lemij, H. G.; Vossepoel, A. M.

    2007-01-01

    One method for assessing pathological retinal nerve fiber layer (NFL) appearance is by comparing the NFL to normative values, derived from healthy subjects. These normative values will be more specific when normal physiological differences are taken into account. One common variation is a split

  7. Mode-field adapter for tapered-fiber-bundle signal and pump combiners

    Czech Academy of Sciences Publication Activity Database

    Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Bohata, J.; Písařík, M.

    2015-01-01

    Roč. 54, č. 4 (2015), s. 751-756 ISSN 1559-128X R&D Projects: GA ČR(CZ) GAP205/11/1840; GA MPO FR-TI4/734 Institutional support: RVO:67985882 Keywords : Fiber s * Dopant diffusion * Input and outputs Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.598, year: 2015

  8. Multiscale probabilistic modeling of a crack bridge in glass fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    Rypla R.

    2017-06-01

    Full Text Available The present paper introduces a probabilistic approach to simulating the crack bridging effects of chopped glass strands in cement-based matrices and compares it to a discrete rigid body spring network model with semi-discrete representation of the chopped strands. The glass strands exhibit random features at various scales, which are taken into account by both models. Fiber strength and interface stress are considered as random variables at the scale of a single fiber bundle while the orientation and position of individual bundles with respect to a crack plane are considered as random variables at the crack bridge scale. At the scale of the whole composite domain, the distribution of fibers and the resulting number of crack-bridging fibers is considered. All the above random effects contribute to the variability of the crack bridge performance and result in size-dependent behavior of a multiply cracked composite.

  9. Spatial calibration and image processing requirements of an image fiber bundle based snapshot hyperspectral imaging probe: from raw data to datacube

    Science.gov (United States)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2017-06-01

    Hyperspectral imaging was first used in remote sensing and since then, it has been used in many other applications such as cancer diagnosis, precision farming and assessment of the level of flaking in ancient murals. In order to make hyperspectral imaging available for a wide variety of applications, its imagers can be made to operate using different methods and developed into different configurations. This leads to each variant having a set of specifications suitable for certain applications. The many variants of hyperspectral imager produce a set of three-dimensional spatial-spatialspectral datacube, which is made up of hundreds of spectral images of one scene. A snapshot hyperspectral imaging probe has recently been developed by integrating a fiber bundle, which is made up of specially-arranged optical fibers, with a spectrograph-based hyperspectral imager. The snapshot method is able to produce a datacube using the information from each scan. The fiber bundle has 100 fiberlets which are arranged in a row in the one-dimensional proximal end, and are rearranged into a 10×10 hexagonal array in the two-dimensional distal end. The image captured by the two-dimensional end of the fiber bundle is reduced from two to one spatial dimension at the one-dimensional end. The raw data acquired from each scan has to be remapped into a datacube with the correct representation of the spectral and spatial features of the captured scene. This paper reports the spatial calibrations of both ends of the fiber bundle and image processing that have to be performed for such a remapping.

  10. Modeling of fuel bundle vibration and the associated fretting wear in a CANDU fuel channel

    International Nuclear Information System (INIS)

    Mohany, A.; Hassan, M.

    2011-01-01

    In this paper a numerical model is developed to predict the vibration response of a CANDU® fuel bundle and the associated fretting wear in the surrounding pressure tube. One excitation mechanism is considered in this model; turbulence-induced excitation caused by coolant flow inside the fuel channel. The numerical model can be easily adapted to include the effects of seismic events, fuel bundle impact during refuelling and start-up of the reactor, and the acoustic pressure pulsations caused by the primary heat transport (PHT) pumps. The simulation is performed for a typical CANDU fuel bundle with 37 fuel elements. The clearances between the buttons of the inner fuel elements, and between the bearing pads of the outer fuel elements and the pressure tube were measured from an actual fuel bundle. Some variability among the measured clearance values was observed. Therefore, probability density functions of the measured clearance values were established and the simulation was performed for the probabilistic distribution of the clearance values. The contact between the fuel bundle and the pressure tube is modeled using pseudo-force contact method. The proposed modelling technique can be used in future CANDU reactors to avoid fuel and pressure tube fretting damage due to the aforementioned excitation mechanisms. (author)

  11. General Equilibrium Model with a Convex Cone as the Set of Commodity Bundles

    NARCIS (Netherlands)

    Schalk, S.

    1996-01-01

    In this paper, we present a model for an exchange economy which is an extension of the classical model as introduced by Arrow and Debreu.In the classical model, there is a nite number of commodi- ties and a nite number of consumers.The commodities are treated separately, and so a commodity bundle is

  12. An automated repair method of water pipe infrastructure using carbon fiber bundles

    Science.gov (United States)

    Wisotzkey, Sean; Carr, Heath; Fyfe, Ed

    2011-04-01

    The United States water pipe infrastructure is made up of over 2 million miles of pipe. Due to age and deterioration, a large portion of this pipe is in need of repair to prevent catastrophic failures. Current repair methods generally involve intrusive techniques that can be time consuming and costly, but also can cause major societal impacts. A new automated repair method incorporating innovative carbon fiber technology is in development. This automated method would eliminate the need for trenching and would vastly cut time and labor costs, providing a much more economical pipe repair solution.

  13. Composite Service Life Prediction via Fiber Bundle Testing. Evaluation of Testing Equipment and Data Acquisition System

    Science.gov (United States)

    1986-12-01

    strength critical application for modern composites were filament-wound pressure vessels using glass fibers. What has highly motivated the effort of...stiffness to weight ratios the use of which is of cruisial importance in the aerospace industry. Another highly motivating aspect was the very high...single filament r’iber testing and can become more 29 3> C o - Pwo PwS ?w4 Pw3 Pw2 Pwl PSD Ps5 PS4 Ps3 Ps2 PS! homoiogous correspondence t ~ to Life ( Laqt

  14. Assessment of MR-compatibility of SiPM PET insert using short optical fiber bundles for small animal research

    International Nuclear Information System (INIS)

    Kang, H.G.; Hong, S.J.; Ko, G.B.; Yoon, H.S.; Lee, J.S.; Song, I.C.; Rhee, J.T.

    2015-01-01

    Simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) can provide new perspectives in human disease research because of their complementary in-vivo imaging techniques. Previously, we have developed an MR-compatible PET insert based on optical fibers using silicon photomultipliers (SiPM). However when echo planar imaging (EPI) sequence was performed, signal intensity was slowly decreased by −0.9% over the 5.5 minutes and significant geometrical distortion was observed as the PET insert was installed inside an MRI bore, indicating that the PET electronics and its shielding boxes might have been too close to an MR imaging object. In this paper, optical fiber bundles with a length of 54 mm instead of 31 mm were employed to minimize PET interference on MR images. Furthermore, the LYSO crystals with a size of 1.5 × 1.5 × 7.0 mm 3 were used instead of 2.47 × 2.74 × 20.0 mm 3 for preclinical PET/MR applications. To improve the MR image quality, two receive-only loop coils were used. The effects of the PET insert on the SNR of the MR image either for morphological or advanced MR pulse sequences such as diffusion weighted imaging (DWI), functional MRI (fMRI), and magnetic resonance spectroscopy (MRS) were investigated. The quantitative MR compatibility such as B 0 and B 1 field homogeneity without PET, with 'PET OFF', and with 'PET ON' was also evaluated. In conclusion, B 0 maps were not affected by the proposed PET insert whereas B 1 maps were significantly affected by the PET insert. The advanced MRI sequences such as DWI, EPI, and MRS can be performed without a significant MR image quality degradation

  15. The Atiyah bundle and connections on a principal bundle

    Indian Academy of Sciences (India)

    be the fiber bundle constructed as in (1.1) for the universal principal G-bundle. In a work in progress, we hope to show that the universal G-connection can be realized as a fiber bundle over C(EG). Turning this ... a G-invariant vector field on EG|U . In other words, we get a bijective linear map between. A(EG)(U) (the space of ...

  16. Mechanical analysis of congestive heart failure caused by bundle branch block based on an electromechanical canine heart model

    Energy Technology Data Exchange (ETDEWEB)

    Dou Jianhong; Xia Ling; Zhang Yu; Shou Guofa [Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027 (China); Wei Qing; Liu Feng; Crozier, Stuart [School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Brisbane, Queensland 4072 (Australia)], E-mail: xialing@zju.edu.cn

    2009-01-21

    Asynchronous electrical activation, induced by bundle branch block (BBB), can cause reduced ventricular function. However, the effects of BBB on the mechanical function of heart are difficult to assess experimentally. Many heart models have been developed to investigate cardiac properties during BBB but have mainly focused on the electrophysiological properties. To date, the mechanical function of BBB has not been well investigated. Based on a three-dimensional electromechanical canine heart model, the mechanical properties of complete left and right bundle branch block (LBBB and RBBB) were simulated. The anatomical model as well as the fiber orientations of a dog heart was reconstructed from magnetic resonance imaging (MRI) and diffusion tensor MRI (DT-MRI). Using the solutions of reaction-diffusion equations and with a strategy of parallel computation, the asynchronous excitation propagation and intraventricular conduction in BBB was simulated. The mechanics of myocardial tissues were computed with time-, sarcomere length-dependent uniaxial active stress initiated at the time of depolarization. The quantification of mechanical intra- and interventricular asynchrony of BBB was then investigated using the finite-element method with an eight-node isoparametric element. The simulation results show that (1) there exists inter- and intraventricular systolic dyssynchrony during BBB; (2) RBBB may have more mechanical synchrony and better systolic function of the left ventricle (LV) than LBBB; (3) the ventricles always move toward the early-activated ventricle; and (4) the septum experiences higher stress than left and right ventricular free walls in BBB. The simulation results validate clinical and experimental recordings of heart deformation and provide regional quantitative estimates of ventricular wall strain and stress. The present work suggests that an electromechanical heart model, incorporating real geometry and fiber orientations, may be helpful for better

  17. Modelling disassembled fuel bundles using CATHENA MOD-3.5a under LOCA/LOECC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Q M; Sanderson, D B; Dutton, R [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-31

    CATHENA MOD-3.5a is a multipurpose thermalhydraulic computer code developed primarily to analyse postulated loss-of-coolant scenarios for CANDU nuclear reactors. The code contains a generalized heat transfer package that enables it to model the behaviour of a fuel channel in great detail. Throughout the development of the CATHENA code, considerable effort has been devoted to evaluating, validating and documenting its overall capability as a design and safety assessment tool. Specific attention has focused on its ability to predict fuel channel behaviour under postulated accident conditions. This paper describes an investigation of CATHENA`s ability to predict the thermal-chemical responses of a fuel channel in which the 37-element bundles were assumed to disassemble and rearrange into a closed-packed stack of elements at the bottom of the pressure tube. A representative disassembled bundle geometry was modelled during a simulated loss-of-coolant accident scenario using CATHENA MOD-3.5a/Rev 0, with superheated steam being the only coolant available. Thermal conduction in the radial and circumferential directions was calculated for individual fuel elements, the pressure tube, and the calandria tube. Radiation view factors for the intact and disassembled bundle geometries were calculated using a CATHENA utility program. Inter-element metal-to-metal contact was accounted for using the CATHENA solid-solid contact model. An offset pressure-tube configuration, representing a partially sagged pressure tube, and the effect of steam starvation on the exothermic zirconium-steam reaction, were included in the CATHENA model. The CATHENA-predicted results show a dramatic suppression of heat generation from the zirconium-steam reaction when bundle disassembly is initiated. The predicted results show a smaller temperature increase in the fuel sheaths and the pressure tube for the disassembled bundle geometry, compared to the temperature excursion for the intact bundle. (author

  18. Modeling fluid forces and response of a tube bundle in cross-flow induced vibrations

    International Nuclear Information System (INIS)

    Khushnood, Shahab; Khan, Zaffar M.; Malik, M. Afzaal; Koreshi, Zafarullah; Khan, Mahmood Anwar

    2003-01-01

    Flow induced vibrations occur in process heat exchangers, condensers, boilers and nuclear steam generators. Under certain flow conditions and fluid velocities, the fluid forces result in tube vibrations and possible damage of tube, tube sheet or baffle due to fretting and fatigue. Prediction of these forces is an important consideration. The characteristics of vibration depend greatly on the fluid dynamic forces and structure of the tube bundle. It is undesirable for the tube bundles to vibrate excessively under normal operating conditions because tubes wear and eventual leakage can occur leading to costly shutdowns. In this paper modeling of fluid forces and vibration response of a tube in a heat exchanger bundle has been carried out. Experimental validation has been performed on an existing refinery heat exchanger tube bundle. The target tube has been instrumented with an accelerometer and strain gages. The bundle has been studied for pulse, sinusoidal and random excitations. Natural frequencies and damping of the tubes have also been computed. Experimental fluid forces and response shows a reasonable agreement with the predictions. (author)

  19. Dynamic subgrid scale model of large eddy simulation of cross bundle flows

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Barsamian, H.R.

    1996-01-01

    The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization

  20. Model for transversal turbulent mixing in axial flow in rod bundles

    International Nuclear Information System (INIS)

    Carajilescov, P.

    1990-01-01

    The present work consists in the development of a model for the transversal eddy diffusivity to account for the effect of turbulent thermal mixing in axial flows in rod bundles. The results were compared to existing correlations that are currently being used in reactor thermalhydraulic analysis and considered satisfactory. (author)

  1. Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Suk, Ho Chun

    2001-02-01

    This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results.

  2. Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Suk, Ho Chun

    2001-02-01

    This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results.

  3. Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Suk, Ho Chun

    2001-02-01

    This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results

  4. Performance assessment of the RANS turbulence models in nuclear fuel rod bundles

    International Nuclear Information System (INIS)

    In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok; Shin, Chang Hwan

    2005-02-01

    The three experiments for turbulent flow in a rod bundle geometry were simulated in this CFD analysis using various RANS models. The CFD predictions were compared with the experimental and DNS results. The RANS models used here are the nonlinear quadratic/cubic κ-ε models and the second-order closure models (SSG, LRR, RSM-ω). The anisotropic models predicted the secondary flow and showed a significantly improved agreement with the measurements from the standard κ-ε model. In particular, the SSG model resulted in the best performance showing the closest agreement with the experimental results. However, the RANS models could not predict the very high anisotropy observed in a rod bundle with a small pitch-to-diameter ratio

  5. A thermal mixing model of crossflow in tube bundles for use with the porous body approximation

    International Nuclear Information System (INIS)

    Ashcroft, J.; Kaminski, D.A.

    1996-06-01

    Diffusive thermal mixing in a heated tube bundle with a cooling fluid in crossflow was analyzed numerically. From the results of detailed two-dimensional models, which calculated the diffusion of heat downstream of one heated tube in an otherwise adiabatic flow field, a diffusion model appropriate for use with the porous body method was developed. The model accounts for both molecular and turbulent diffusion of heat by determining the effective thermal conductivity in the porous region. The model was developed for triangular shaped staggered tube bundles with pitch to diameter ratios between 1.10 and 2.00 and for Reynolds numbers between 1,000 and 20,000. The tubes are treated as nonconducting. Air and water were considered as working fluids. The effective thermal conductivity was found to be linearly dependent on the tube Reynolds number and fluid Prandtl number, and dependent on the bundle geometry. The porous body thermal mixing model was then compared against numerical models for flows with multiple heated tubes with very good agreement

  6. Particle deposition modeling in the secondary side of a steam generator bundle model

    Energy Technology Data Exchange (ETDEWEB)

    Mukin, Roman, E-mail: roman.mukin@psi.ch; Dehbi, Abdel, E-mail: abdel.dehbi@psi.ch

    2016-04-01

    A steam generator (SG) tube rupture (SGTR) model is studied in this paper. This model based on a experimental facility called Aerosol Trapping In a Steam Generator (ARTIST), which is a model of a scaled steam generator tube bundle consisting of 270 tubes and a guillotine tube to address aerosol deposition phenomena on two different scales: near the tube break, where the gas velocities and turbulence are very intensive, and far away from the break, where the flow velocities are three orders of magnitude lower. Owing to complexity of the flow, 3D simulations with highly resolved computational mesh near the break were done. First, the flow inside an isolated tube with a guillotine tube break has been studied in the framework of Reynolds Averaged Navier Stokes (RANS) approach. The next part is devoted to the simulation of an inclined gas jet entering the SG tube bundle via the guillotine tube breach with more advanced CFD tools. In particular, Detached Eddy Simulation (DES) and RANS are applied to tackle the wide range of flow scales. Flow field velocity comparison showed that DES results are reproducing wavy structure of the flow field in far field from the break observed in experiment. Particle transport and deposition is modelled by Lagrangian continuous random walk (CRW) model, which has been developed and validated previously. It is found that the DES combined with the CRW to supply fluctuating velocity components predicts deposition rates that are generally within the scatter of the measured data. Monodisperse, spherical SiO{sub 2} particles with AMMD = 1.4 μm were used as aerosol particles in simulations. To be economically feasible, the computations were made with the open source CFD code OpenFOAM. Comparison of the calculated flow with the experimental axial velocity distribution data at different vertical levels has been performed.

  7. Influence on rewetting temperature and wetting delay during rewetting rod bundle by various radial jet models

    Energy Technology Data Exchange (ETDEWEB)

    Debbarma, Ajoy; Pandey, Krishna Murari [National Institute of Technology, Assam (India). Dept. of Mechanical Engineering

    2016-03-15

    Numerical investigation of the rewetting of single sector fuel assembly of Advanced Heavy Water Reactor (AHWR) has been carried out to exhibit the effect of coolant jet diameters (2, 3 and 4 mm) and jet directions (Model: M, X and X2). The rewetting phenomena with various jet models are compared on the basis of rewetting temperature and wetting delay. Temperature-time curve have been evaluated from rods surfaces at different circumference, radial and axial locations of rod bundle. The cooling curve indicated the presence of vapor in respected location, where it prevents the contact between the firm and fluid phases. The peak wall temperature represents as rewetting temperature. The time period observed between initial to rewetting temperature point is wetting delay. It was noted that as improved in various jet models, rewetting temperature and wetting delay reduced, which referred the coolant stipulation in the rod bundle dominant vapor formation.

  8. Influence on rewetting temperature and wetting delay during rewetting rod bundle by various radial jet models

    International Nuclear Information System (INIS)

    Debbarma, Ajoy; Pandey, Krishna Murari

    2016-01-01

    Numerical investigation of the rewetting of single sector fuel assembly of Advanced Heavy Water Reactor (AHWR) has been carried out to exhibit the effect of coolant jet diameters (2, 3 and 4 mm) and jet directions (Model: M, X and X2). The rewetting phenomena with various jet models are compared on the basis of rewetting temperature and wetting delay. Temperature-time curve have been evaluated from rods surfaces at different circumference, radial and axial locations of rod bundle. The cooling curve indicated the presence of vapor in respected location, where it prevents the contact between the firm and fluid phases. The peak wall temperature represents as rewetting temperature. The time period observed between initial to rewetting temperature point is wetting delay. It was noted that as improved in various jet models, rewetting temperature and wetting delay reduced, which referred the coolant stipulation in the rod bundle dominant vapor formation.

  9. Simulations and measurements of adiabatic annular flows in triangular, tight lattice nuclear fuel bundle model

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Abhishek, E-mail: asaxena@lke.mavt.ethz.ch [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Zboray, Robert [Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Prasser, Horst-Michael [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2016-04-01

    High conversion light water reactors (HCLWR) having triangular, tight-lattice fuels bundles could enable improved fuel utilization compared to present day LWRs. However, the efficient cooling of a tight lattice bundle has to be still proven. Major concern is the avoidance of high-quality boiling crisis (film dry-out) by the use of efficient functional spacers. For this reason, we have carried out experiments on adiabatic, air-water annular two-phase flows in a tight-lattice, triangular fuel bundle model using generic spacers. A high-spatial-resolution, non-intrusive measurement technology, cold neutron tomography, has been utilized to resolve the distribution of the liquid film thickness on the virtual fuel pin surfaces. Unsteady CFD simulations have also been performed to replicate and compare with the experiments using the commercial code STAR-CCM+. Large eddies have been resolved on the grid level to capture the dominant unsteady flow features expected to drive the liquid film thickness distribution downstream of a spacer while the subgrid scales have been modeled using the Wall Adapting Local Eddy (WALE) subgrid model. A Volume of Fluid (VOF) method, which directly tracks the interface and does away with closure relationship models for interfacial exchange terms, has also been employed. The present paper shows first comparison of the measurement with the simulation results.

  10. A model for the anisotropic response of fibrous soft tissues using six discrete fibre bundles

    KAUST Repository

    Flynn, Cormac

    2011-06-30

    The development of constitutive models of fibrous soft-tissues is a challenging problem. Many consider the tissue to be a collection of fibres with a continuous distribution function representing their orientations. A discrete fibre model is presented consisting of six weighted fibre-bundles. Each bundle is oriented such that it passes through opposing vertices of a regular icosahedron. A novel aspect is the use of simple analytical distribution functions to simulate undulated collagen fibres. This approach yields closed-form analytical expressions for the strain energy of the collagen fibre-bundle that avoids the sometimes costly numerical integration of some statistical distribution functions. The elastin fibres are characterized by a modified neo-Hookean type strain energy function which does not allow for fibre compression. The model accurately simulates biaxial stretching of rabbit-skin (error-of-fit 8.7), uniaxial stretching of pig-skin (error-of-fit 7.6), equibiaxial loading of aortic valve cusp (error-of-fit 0.8), and simple shear of rat septal myocardium (error-of-fit 8.9). It compares favourably with previous soft-tissue models and alternative methods of representing undulated collagen fibres. Predicted collagen fibre stiffnesses range from 8.0thinspaceMPa to 930MPa. Elastin fibre stiffnesses range from 2.0 kPa to 154.4 kPa. © 2011 John Wiley & Sons, Ltd.

  11. A model for the anisotropic response of fibrous soft tissues using six discrete fibre bundles

    KAUST Repository

    Flynn, Cormac; Rubin, M. B.; Nielsen, Poul

    2011-01-01

    The development of constitutive models of fibrous soft-tissues is a challenging problem. Many consider the tissue to be a collection of fibres with a continuous distribution function representing their orientations. A discrete fibre model is presented consisting of six weighted fibre-bundles. Each bundle is oriented such that it passes through opposing vertices of a regular icosahedron. A novel aspect is the use of simple analytical distribution functions to simulate undulated collagen fibres. This approach yields closed-form analytical expressions for the strain energy of the collagen fibre-bundle that avoids the sometimes costly numerical integration of some statistical distribution functions. The elastin fibres are characterized by a modified neo-Hookean type strain energy function which does not allow for fibre compression. The model accurately simulates biaxial stretching of rabbit-skin (error-of-fit 8.7), uniaxial stretching of pig-skin (error-of-fit 7.6), equibiaxial loading of aortic valve cusp (error-of-fit 0.8), and simple shear of rat septal myocardium (error-of-fit 8.9). It compares favourably with previous soft-tissue models and alternative methods of representing undulated collagen fibres. Predicted collagen fibre stiffnesses range from 8.0thinspaceMPa to 930MPa. Elastin fibre stiffnesses range from 2.0 kPa to 154.4 kPa. © 2011 John Wiley & Sons, Ltd.

  12. Application of the finite element method in the modelling of coil bundles

    International Nuclear Information System (INIS)

    Shibui, M.; Zatz, I.J.; Bialek, J.M.

    1983-01-01

    Three different FEM approaches are presented and evaluated as viable interpretations of an actual coil, each limited for use within specified parameter ranges. One is based on solid elements with correctly defined properties permitting the accurate representation of the global behavior of a coil bundle. The other two are more complex and are based on the combination of various elements each accounting for a different aspect of coil behavior which are best resolved via multi-level substructuring. The choice of the best model for the job rests with the analyst who must first resolve what the goals of the analysis are and given the parameters of the problem, which models can be used. The basic idea behind these models is the application of a systematic modelling technique requiring a close correspondence between the capability of the FE themselves and the true mechanical behavior of that portion of the coil being simulated. In order to have analytical solutions for confirming the bending and torsional capabilities of these coil bundle FEM, their behavior is studied via several basic examples. Laminated beam behavior which categorizes the structural nature of many conventional coil bundles is also examined in some depth. Also discussed is a generalized computer program that was developed to accept the description of any conventional coil section and determine an effective stiffness for it to be used in FEM. The various methodologies described in this paper should be applicable to any bundled coil design. Although only conventional coils are discussed, with the proper modifications the concepts and techniques presented can be applied to other configurations as well, such as superconductors. (orig./HP)

  13. A novel model for product bundling and direct marketing in e-commerce based on market segmentation

    Directory of Open Access Journals (Sweden)

    Arash Beheshtian-Ardakani

    2018-01-01

    Full Text Available Nowadays, companies offer product bundles with special discounts in order to sell more products. However, it is important to note that customers show different levels of loyalties to companies, and each segment of the market has unique features, which influences the customers’ buying patterns. The primary purpose of this paper is to propose a novel model for product bundling in e-commerce websites by using market segmentation variables and customer loyalty analysis. RFM model is employed to calculate customer loyalty. Subsequently, the customers are grouped based on their loyalty levels. Each group is then divided into different segments based on market segmentation variables. The product bundles are determined for each market segment via clustering algorithms. Apriori algorithm is also used to determine the association rules for each product bundle. Classification models are applied in order to determine which product bundle should be recommended to each customer. The results demonstrate that the silhouette coefficient, support, confidence, and accuracy values are higher when both customer loyalty level and market segmentation variables are used in product bundling. Accordingly, the proposed model increases the chance of success in direct marketing and recommending product bundles to customers.

  14. Development of a FBR fuel pin bundle deformation analysis code 'BAMBOO' . Development of a dispersion model and its validation

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ukai, Shigeharu; Asaga, Takeo

    2002-03-01

    Bundle Duct Interaction (BDI) is one of the life limiting factors of a FBR fuel subassembly. Under the BDI condition, the fuel pin dispersion would occur mainly by the deviation of the wire position due to the irradiation. In this study the effect of the dispersion on the bundle deformation was evaluated by using the BAMBOO code and following results were obtained. (1) A new contact analysis model was introduced in BAMBOO code. This model considers the contact condition at the axial position other than the nodal point of the beam element that composes the fuel pin. This improvement made it possible in the bundle deformation analysis to cause fuel pin dispersion due to the deviations of the wire position. (2) This model was validated with the results of the out-of-pile compression test with the wire deviation. The calculated pin-to-duct and pin-to-pin clearances with the dispersion model almost agreed with the test results. Therefore it was confirmed that the BAMBOO code reasonably predicts the bundle deformation with the dispersion. (3) In the dispersion bundle the pin-to-pin clearances widely scattered. And the minimum pin-to-duct clearance increased or decreased depending on the dispersion condition compared to the no-dispersion bundle. This result suggests the possibility that the considerable dispersion would affect the thermal integrity of the bundle. (author)

  15. Mathematical model of blades bundle with damping connections

    Czech Academy of Sciences Publication Activity Database

    Pešek, Luděk; Půst, Ladislav; Cibulka, Jan; Bula, Vítězslav

    2013-01-01

    Roč. 63, č. 3 (2013), s. 43-46 ISSN 1729-3774. [Международная научнo-техническая конференция /5./. Alušta, 24.06.2013-28.06.2013] R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : blades vibration * damping elements * rubber * mathematic models Subject RIV: BI - Acoustics

  16. Invariant Theory for Dispersed Transverse Isotropy: An Efficient Means for Modeling Fiber Splay

    Science.gov (United States)

    Freed, alan D.; Einstein, Daniel R.; Vesely, Ivan

    2004-01-01

    Most soft tissues possess an oriented architecture of collagen fiber bundles, conferring both anisotropy and nonlinearity to their elastic behavior. Transverse isotropy has often been assumed for a subset of these tissues that have a single macroscopically-identifiable preferred fiber direction. Micro-structural studies, however, suggest that, in some tissues, collagen fibers are approximately normally distributed about a mean preferred fiber direction. Structural constitutive equations that account for this dispersion of fibers have been shown to capture the mechanical complexity of these tissues quite well. Such descriptions, however, are computationally cumbersome for two-dimensional (2D) fiber distributions, let alone for fully three-dimensional (3D) fiber populations. In this paper, we develop a new constitutive law for such tissues, based on a novel invariant theory for dispersed transverse isotropy. The invariant theory is based on a novel closed-form splay invariant that can easily handle 3D fiber populations, and that only requires a single parameter in the 2D case. The model is polyconvex and fits biaxial data for aortic valve tissue as accurately as the standard structural model. Modification of the fiber stress-strain law requires no re-formulation of the constitutive tangent matrix, making the model flexible for different types of soft tissues. Most importantly, the model is computationally expedient in a finite-element analysis.

  17. Inpatient Consults and Complications During Primary Total Joint Arthroplasty in a Bundled Care Model.

    Science.gov (United States)

    Baumgartner, Billy T; Karas, Vasili; Kildow, Beau J; Cunningham, Daniel J; Klement, Mitchell R; Green, Cindy L; Attarian, David E; Seyler, Thorsten M

    2018-04-01

    The Centers for Medicare and Medicaid Services (CMS) are implementing changes in hospital reimbursement models for total joint arthroplasty (TJA), moving to value-based bundled payments from the fee-for-service model. The purpose of this study is to identify consults and complications during the perioperative period that increase financial burden. We combined CMS payment data for inpatient, professional, and postoperative with retrospective review of patients undergoing primary TJA and developed profiles of patients included in the Comprehensive Care for Joint Replacement bundle undergoing TJA. Statistical comparison of episode inpatient events and payments was conducted. Multiple regression analysis was adjusted for length of stay, disposition, and Charlson-Deyo comorbidity profile. Median total payment was $21,577.36, which exceeded the median bundle target payment of $20,625.00. Adjusted analyses showed that psychiatry consults (increase of $73,123.32; P care unit admission ($14,078.37; P care unit admission, and medical/psychiatric consultation exceeded the CMS target. Although study results showed typical complication rates, acute inpatient consultation significantly increased utilization beyond the CMS target even when adjusted for length of stay, patient comorbidities, and discharge. Needed medical care should continue to be a priority for inpatients, and allowance for individual outliers should be considered in policy discussions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Coupling biochemistry and mechanics in cell adhesion: a model for inhomogeneous stress fiber contraction

    International Nuclear Information System (INIS)

    Besser, Achim; Schwarz, Ulrich S

    2007-01-01

    Biochemistry and mechanics are closely coupled in cell adhesion. At sites of cell-matrix adhesion, mechanical force triggers signaling through the Rho-pathway, which leads to structural reinforcement and increased contractility in the actin cytoskeleton. The resulting force acts back to the sites of adhesion, resulting in a positive feedback loop for mature adhesion. Here, we model this biochemical-mechanical feedback loop for the special case when the actin cytoskeleton is organized in stress fibers, which are contractile bundles of actin filaments. Activation of myosin II molecular motors through the Rho-pathway is described by a system of reaction-diffusion equations, which are coupled into a viscoelastic model for a contractile actin bundle. We find strong spatial gradients in the activation of contractility and in the corresponding deformation pattern of the stress fiber, in good agreement with experimental findings

  19. Are Bundled Payments a Viable Reimbursement Model for Revision Total Joint Arthroplasty?

    Science.gov (United States)

    Courtney, P Maxwell; Ashley, Blair S; Hume, Eric L; Kamath, Atul F

    2016-12-01

    Alternative payment models, such as the Centers for Medicare & Medicaid Services (CMS) Bundled Payment for Care Improvement (BPCI) initiative, aim to decrease overall costs for hip and knee arthroplasties. We asked: (1) Is there any difference in the CMS episode-of-care costs, hospital length of stay, and readmission rate from before and after implementation of our bundled-payment program? (2) Is there any difference in reimbursements and resource utilization between revision THA and TKA at our institution? (3) Are there any independent risk factors for patients with high costs who may not be appropriate for a bundled-payment system for revision total joint arthroplasty (TJA)? Between October 2013 and March 2015, 218 patients underwent revision TKA or THA in one health system. Two hundred seventeen patients were reviewed as part of this study, and one patient with hemophilia was excluded from the analysis as an outlier. Our institution began a BPCI program for revision TJA during this study period. Patients' procedures done before January 1, 2014 at one hospital and January 1, 2015 at another hospital were not included in the bundled-care arrangement (70 revision TKAs and 56 revision THAs), whereas 50 revision TKAs and 41 revision THAs were performed under the BPCI initiative. Patient demographics, medical comorbidities, episode-of-care reimbursement data derived directly from CMS, length of stay, and readmission proportions were compared between the bundled and nonbundled groups. Length of stay in the group that underwent surgery before the bundled-care arrangement was longer than for patients whose procedures were done under the BPCI (mean 4.02 [SD, 3.0 days] versus mean 5.27 days [SD, 3.6 days]; p = 0.001). Index hospitalization reimbursement for the bundled group was less than for the nonbundled group (mean USD 17,754 [SD, USD 2741] versus mean USD 18,316 [SD, USD 4732]; p = 0.030). There was no difference, with the numbers available, in total episode

  20. CFD evaluation of turbulence model on heat transfer in 5 × 5 rod bundles

    International Nuclear Information System (INIS)

    Chao Yanmeng; Yang Lixin; Zhang Yuxiang; Pang Zhengzheng

    2014-01-01

    Different turbulence models may lead to different results when analyzing fuel assemblies using computational fluid dynamics (CFD) method. In this paper, a 5 × 5 rod bundle model was built to analyze the relationship between flow and heat transfer. The pressure drop and Nu were calculated using ANSYS CFX. Three factors evaluating swirling flow and cross-flow were used to analyze the inner relationship between flow field and heat transfer. The performances of various turbulence models, including eddy viscosity model and Reynold stress model, were evaluated. The comparison between numerical and similar experimental results indicates that Reynold stress model is more appropriate for modeling flow features and heat transfer in spacer grids discussed in this paper. (authors)

  1. An Efficient Bundle Adjustment Model Based on Parallax Parametrization for Environmental Monitoring

    Science.gov (United States)

    Chen, R.; Sun, Y. Y.; Lei, Y.

    2017-12-01

    With the rapid development of Unmanned Aircraft Systems (UAS), more and more research fields have been successfully equipped with this mature technology, among which is environmental monitoring. One difficult task is how to acquire accurate position of ground object in order to reconstruct the scene more accurate. To handle this problem, we combine bundle adjustment method from Photogrammetry with parallax parametrization from Computer Vision to create a new method call APCP (aerial polar-coordinate photogrammetry). One impressive advantage of this method compared with traditional method is that the 3-dimensional point in space is represented using three angles (elevation angle, azimuth angle and parallax angle) rather than the XYZ value. As the basis for APCP, bundle adjustment could be used to optimize the UAS sensors' pose accurately, reconstruct the 3D models of environment, thus serving as the criterion of accurate position for monitoring. To verity the effectiveness of the proposed method, we test on several UAV dataset obtained by non-metric digital cameras with large attitude angles, and we find that our methods could achieve 1 or 2 times better efficiency with no loss of accuracy than traditional ones. For the classical nonlinear optimization of bundle adjustment model based on the rectangular coordinate, it suffers the problem of being seriously dependent on the initial values, making it unable to converge fast or converge to a stable state. On the contrary, APCP method could deal with quite complex condition of UAS when conducting monitoring as it represent the points in space with angles, including the condition that the sequential images focusing on one object have zero parallax angle. In brief, this paper presents the parameterization of 3D feature points based on APCP, and derives a full bundle adjustment model and the corresponding nonlinear optimization problems based on this method. In addition, we analyze the influence of convergence and

  2. Unsteady Model for Transverse Fluid Elastic Instability of Heat Exchange Tube Bundle

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2014-01-01

    Full Text Available From the viewpoint of practical application, based on the unsteady analytical model for transverse fluid elastic instability of tube array proposed by Yetisir and the linear attenuation function introduced by Li Ming, a new explicit model based on nonsteady state “streamtube” hypothesis is proposed and solved using complex number method. In the model, numerical integral is avoided and inappropriate aspects in Li Ming model are modified. Using the model, the fluid elastic instability analysis of a single flexible tube is made. The stability graphs for four typical types of tube array are plotted and contrasted with experimental results. It is found that the current explicit model is effective in the analysis of transverse fluid elastic instability of tube bundle.

  3. An engineering, multiscale constitutive model for fiber-forming collagen in tension.

    Science.gov (United States)

    Annovazzi, Lorella; Genna, Francesco

    2010-01-01

    This work proposes a nonlinear constitutive model for a single collagen fiber. Fiber-forming collagen can exhibit different hierarchies of basic units, called fascicles, bundles, fibrils, microfibrils, and so forth, down to the molecular (tropocollagen) level. Exploiting the fact that at each hierarchy level the microstructure can be seen, at least approximately, as that of a wavy, or crimped, extensible cable, the proposed stress-strain model considers a given number of levels, each of which contributes to the overall mechanical behavior according to its own geometrical features (crimp, or waviness), as well as to the basic mechanical properties of the tropocollagen. The crimp features at all levels are assumed to be random variables, whose statistical integration furnishes a stress-strain curve for a collagen fiber. The soundness of this model-the first, to the Authors' knowledge, to treat a single collagen fiber as a microstructured nonlinear structural element-is checked by its application to collagen fibers for which experimental results are available: rat tail tendon, periodontal ligament, and engineered ones. Here, no attempt is made to obtain a stress-strain law for generic collagenous tissues, which exhibit specific features, often much more complex than those of a single fiber. However, it is trivial to observe that the availability of a sound, microstructurally based constitutive law for a single collagen fiber (but applicable at any sub-level, or to any other material with a similar microstructure) is essential for assembling complex constitutive models for any collagenous fibrous tissue.

  4. Models for the cross flow and the turbulent eddy diffusivity in bundles of rods with helical spacers

    International Nuclear Information System (INIS)

    Fernandez y Fernandez, E.; Carajilescov, P.

    1985-01-01

    The fuel elements of a LMFBR type reactor consist of a bundle of rods wrapped by helical wires that work as spacers. The bundle of rods is surrounded by an hexagonal duct. Models for the channel cross flow and for the turbulent eddy diffusivity were developed. In conjunction with these models, the flow redistribution factors permit to estabish a determinist method to calculate the temperature distribution. The obtained results are compared with experimental data available in the literature and with results given by other codes. Although these codes are based on much more complex models, the comparison was very satisfactory. (Author) [pt

  5. TU-CD-BRB-05: Radiation Damage Signature of White Matter Fiber Bundles Using Diffusion Tensor Imaging (DTI)

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, T; Chapman, C; Lawrence, T; Cao, Y [University of Michigan, Ann Arbor, MI (United States); Tsien, C [Washington University at St. Louis, St. Louis, MO (United States)

    2015-06-15

    Purpose: To develop an automated and scalable approach and identify temporal, spatial and dosimetric patterns of radiation damage of white matter (WM) fibers following partial brain irradiation. Methods: An automated and scalable approach was developed to extract DTI features of 22 major WM fibers from 33 patients with low-grade/benign tumors treated by radiation therapy (RT). DTI scans of the patients were performed pre-RT, 3- and 6-week during RT, and 1, 6 and 18 months after RT. The automated tractography analysis was applied to 198 datasets as: (1) intra-subject registration of longitudinal DTI, (2) spatial normalization of individual-patient DTI to the Johns Hopkins WM Atlas, (3) automatic fiber tracking regulated by the WM Atlas, and (4) segmentation of WM into 22 major tract profiles. Longitudinal percentage changes in fractional anisotropy (FA), and mean, axial and radial diffusivity (MD/AD/RD) of each tract from pre-RT were quantified and correlated to 95%, 90% and 80% percentiles of doses and mean doses received by the tract. Heatmaps were used to identify clusters of significant correlation and reveal temporal, spatial and dosimetric signatures of WM damage. A multivariate linear regression was further carried out to determine influence of clinical factors. Results: Of 22 tracts, AD/MD changes in 12 tracts had significant correlation with doses, especially at 6 and 18 months post-RT, indicating progressive radiation damage after RT. Most interestingly, the DTI-index changes in the elongated tracts were associated with received maximum doses, suggesting a serial-structure behavior; while short association fibers were affected by mean doses, indicating a parallel-structure response. Conclusion: Using an automated DTI-tractography analysis of whole brain WM fibers, we reveal complex radiation damage patterns of WM fibers. Damage in WM fibers that play an important role in the neural network could be associated with late neurocognitive function declines

  6. Aluminum surface corrosion and the mechanism of inhibitors using pH and metal ion selective imaging fiber bundles.

    Science.gov (United States)

    Szunerits, Sabine; Walt, David R

    2002-02-15

    The localized corrosion behavior of a galvanic aluminum copper couple was investigated by in situ fluorescence imaging with a fiber-optic imaging sensor. Three different, but complementary methods were used for visualizing remote corrosion sites, mapping the topography of the metal surface, and measuring local chemical concentrations of H+, OH-, and Al3+. The first method is based on a pH-sensitive imaging fiber, where the fluorescent dye SNAFL was covalently attached to the fiber's distal end. Fluorescence images were acquired as a function of time at different areas of the galvanic couple. In a second method, the fluorescent dye morin was immobilized on the fiber-optic imaging sensor, which allowed the in situ localization of corrosion processes on pure aluminum to be visualized over time by monitoring the release of Al3+. The development of fluorescence on the aluminum surface defined the areas associated with the anodic dissolution of aluminum. We also investigated the inhibition of corrosion of pure aluminum by CeCl3 and 8-hydroxyquinoline. The decrease in current, the decrease in the number of active sites on the aluminum surface, and the faster surface passivation are all consistent indications that cerium chloride and 8-hydroxyquinoline inhibit corrosion effectively. From the number and extent of corrosion sites and the release of aluminum ions monitored with the fiber, it was shown that 8-hydroxyquinoline is a more effective inhibitor than cerium chloride.

  7. Semi-empirical model for the calculation of flow friction factors in wire-wrapped rod bundles

    International Nuclear Information System (INIS)

    Carajilescov, P.; Fernandez y Fernandez, E.

    1981-08-01

    LMFBR fuel elements consist of wire-wrapped rod bundles, with triangular array, with the fluid flowing parallel to the rods. A semi-empirical model is developed in order to obtain the average bundle friction factor, as well as the friction factor for each subchannel. The model also calculates the flow distribution factors. The results are compared to experimental data for geometrical parameters in the range: P(div)D = 1.063 - 1.417, H(div)D = 4 - 50, and are considered satisfactory. (Author) [pt

  8. Substantiation and verification of the heat exchange crisis model in a rod bundles by means of the KORSAR thermohydraulic code

    International Nuclear Information System (INIS)

    Bobkov, V.P.; Vinogradov, V.N.; Efanov, A.D.; Sergeev, V.V.; Smogalev, I.P.

    2003-01-01

    The results of verifying the model for calculating the heat exchange crisis in the uniformly heated rod bundles, realized in the calculation code of the improved evaluation KORSAR, are presented. The model for calculating the critical heat fluxes in this code is based on the tabular method. The experimental data bank of the Branch base center of the thermophysical data GNTs RF - FEhI for the rod bundles, structurally similar to the WWER fuel assemblies, was used by the verification within the wide range of parameters: pressure from 0.11 up to 20 MPa and mass velocity from 5- up to 5000 kg/(m 2 s) [ru

  9. Two-phase flow modeling in the rod bundle subchannel analysis

    International Nuclear Information System (INIS)

    Hisashi, Ninokata

    2006-01-01

    In order to practice a design-by-analysis of thermohydraulics design of BWR fuel rod bundles, the subchannel analysis would play a major role. There, the immediate concern is improvement in its predictive capability of CHF due in particular to the film dryout (boiling transition phenomena: BT) on the fuel rod surface. Constitutive equations in the subchannel analysis formulation are responsible for the quality of calculated results. The constitutive equations are a result of integration of the local and instantaneous description of two-phase flows over the subchannel control volume. In general, they are expressed in terms of subchannel-control-volume- as well as area-averaged two-phase flow state variables. In principle the information on local and instantaneous physical phenomena taking place inside subchannels must be counted for in the algebraic form of the equations on the basis of a more mechanistic modeling approach. They should include also influences of the multi-dimensional subchannel geometry and fluid material properties. Thermohydraulics phenomena of interests in this deed are: 1) vapor-liquid re-distribution by inter-subchannel exchanges due to the diversion cross flow, turbulent mixing and void drift, 2) liquid film behaviors, 3) transition of two-phase flow regimes, 4) droplet entrainment and deposition and 5) spacer-droplet interactions. These are considered to be five key factors in understanding the BT in BWR fuel rod bundles. In Japan, a university-industry consortium has been formed under the sponsorship of the Ministry of Economics, Trade and Industry. This paper describes an outline of the on-going project and, first, an outline of the current efforts is presented in developing a new two-fluid three field subchannel code NASCA being aimed at predicting onset of BT, and post BT phenomena in advanced BWR fuel rod bundles including those of the tight lattice configuration for a higher conversion. Then the current methodology adopted to improve

  10. Two-phase flow modeling in the rod bundle subchannel analysis

    International Nuclear Information System (INIS)

    Hisashi, Ninokata

    2004-01-01

    Full text of publication follows:In order to practice a design-by-analysis of thermohydraulics design of BWR fuel rod bundles, the subchannel analysis would play a major role. There, the immediate concern is improvement in its predictive capability of CHF due in particular to the film dryout (boiling transition phenomena: BT) on the fuel rod surface. Constitutive equations in the subchannel analysis formulation are responsible for the quality of calculated results. The constitutive equations are a result of integration of the local and instantaneous description of two-phase flows over the subchannel control volume. In general, they are expressed in terms of subchannel-control-volume- as well as area-averaged two-phase flow state variables. In principle the information on local and instantaneous physical phenomena taking place inside subchannels must be counted for in the algebraic form of the equations on the basis of a more mechanistic modeling approach. They should include also influences of the multi-dimensional subchannel geometry and fluid material properties. Thermohydraulics phenomena of interests in this deed are: 1) vapor-liquid re-distribution by inter-subchannel exchanges due to the diversion cross flow, turbulent mixing and void drift, 2) liquid film behaviors, 3) transition of two-phase flow regimes, 4) droplet entrainment and deposition and 5) spacer-droplet interactions. These are considered to be five key factors in understanding the BT in BWR fuel rod bundles. In Japan, a university-industry consortium has been formed under the sponsorship of the Ministry of Economics, Trade and Industry. This paper describes an outline of the on-going project and, first, an outline of the current efforts is presented in developing a new two-fluid three field subchannel code NASCA being aimed at predicting onset of BT, and post BT phenomena in advanced BWR fuel rod bundles including those of the tight lattice configuration for a higher conversion. Then the current

  11. A Validation of Subchannel Based CHF Prediction Model for Rod Bundles

    International Nuclear Information System (INIS)

    Hwang, Dae-Hyun; Kim, Seong-Jin

    2015-01-01

    A large number of CHF data base were procured from various sources which included square and non-square lattice test bundles. CHF prediction accuracy was evaluated for various models including CHF lookup table method, empirical correlations, and phenomenological DNB models. The parametric effect of the mass velocity and unheated wall has been investigated from the experimental result, and incorporated into the development of local parameter CHF correlation applicable to APWR conditions. According to the CHF design criterion, the CHF should not occur at the hottest rod in the reactor core during normal operation and anticipated operational occurrences with at least a 95% probability at a 95% confidence level. This is accomplished by assuring that the minimum DNBR (Departure from Nucleate Boiling Ratio) in the reactor core is greater than the limit DNBR which accounts for the accuracy of CHF prediction model. The limit DNBR can be determined from the inverse of the lower tolerance limit of M/P that is evaluated from the measured-to-predicted CHF ratios for the relevant CHF data base. It is important to evaluate an adequacy of the CHF prediction model for application to the actual reactor core conditions. Validation of CHF prediction model provides the degree of accuracy inferred from the comparison of solution and data. To achieve a required accuracy for the CHF prediction model, it may be necessary to calibrate the model parameters by employing the validation results. If the accuracy of the model is acceptable, then it is applied to the real complex system with the inferred accuracy of the model. In a conventional approach, the accuracy of CHF prediction model was evaluated from the M/P statistics for relevant CHF data base, which was evaluated by comparing the nominal values of the predicted and measured CHFs. The experimental uncertainty for the CHF data was not considered in this approach to determine the limit DNBR. When a subchannel based CHF prediction model

  12. Modeling fiber motion in a pulp pressure screen: the effect of slot shape

    International Nuclear Information System (INIS)

    Dong, S.; Salcudean, M.; Gartshore, I.

    2003-01-01

    A pressure screen is a piece of equipment in the pulp and paper industry used either to remove contaminants from the pulp suspension or to separate fibers having different properties. Contaminants such as fiber bundles, bark and plastic specks are introduced when fibers are separated from the wood by mechanical or chemical pulping processes. Contaminants significantly affect the strength and smoothness of the paper and must be removed before the final paper is produced. The screen plate is a critical part of the pressure screen and its design is the key to screen performance. This paper uses a new and comprehensive CFD simulation tool to examine the flow and fiber behavior in a single slot screen having any reasonable slot shape. -This simulation tool includes three coupled models: first, the flow model solves the Reynolds Averaged Navier-Stokes (RANS) equation using the standard k - ε turbulence model to predict the flow field in the equipment. Second, a three-dimensional flexible fiber model is used to track the fiber trajectory in the screen. Third, a very general wall model is used to deal with the case when a fiber touches the equipment wall. The simulated results show that the slot shape has a critical influence on fiber behavior and screen performance. Three general slot shapes were investigated: the smooth slot, the step-step contour slot and slope-slope contour slot. Of these the slope-slope contour slot provides the best passage for the fibers with a length of 1mm and 3mm. (author)

  13. The MIMIC Model as a Tool for Differential Bundle Functioning Detection

    Science.gov (United States)

    Finch, W. Holmes

    2012-01-01

    Increasingly, researchers interested in identifying potentially biased test items are encouraged to use a confirmatory, rather than exploratory, approach. One such method for confirmatory testing is rooted in differential bundle functioning (DBF), where hypotheses regarding potential differential item functioning (DIF) for sets of items (bundles)…

  14. Assessment of fluid-to-fluid modelling of critical heat flux in horizontal 37-element bundle flows

    International Nuclear Information System (INIS)

    Yang, S.K.

    2006-01-01

    Fluid-to-fluid modelling laws of critical heat flux (CHF) available in the literature were reviewed. The applicability of the fluid-to-fluid modelling laws was assessed using available data ranging from low to high mass fluxes in horizontal 37-element bundles simulating a CANDU fuel string. Correlations consisting of dimensionless similarity groups were derived using modelling fluid data (Freon-12) to predict water CHF data in horizontal 37-element bundles with uniform and non-uniform axial-heat flux distribution (AFD). The results showed that at mass fluxes higher than ∼4,000 kg/m 2 s (water equivalent value), the vertical fluid-to-fluid modelling laws of Ahmad (1973) and Katto (1979) predict water CHF in horizontal 37-element bundles with non-uniform AFD with average errors of 1.4% and 3.0% and RMS errors of 5.9% and 6.1%, respectively. The Francois and Berthoud (2003) fluid-to-fluid modelling law predicts CHF in non-uniformly heated 37-element bundles in the horizontal orientation with an average error of 0.6% and an RMS error of 10.4% over the available range of 2,000 to 6,200 kg/m 2 s. (author)

  15. Development of the tube bundle structure for fluid-structure interaction analysis model

    International Nuclear Information System (INIS)

    Yoon, Kyung Ho; Kim, Jae Yong

    2010-02-01

    Tube bundle structures within a Boiler or heat exchanger are laid the fluid-structure, thermal-structure and fluid-thermal-structure coupled boundary condition. In these complicated boundary conditions, Fluid-structure interaction (FSI) occurs when fluid flow causes deformation of the structure. This deformation, in turn, changes the boundary conditions for the fluid flow. The structural analysis discipline, and then independently analyzed each other. However, the fluid dynamic force effect the behavior of the structure, and the vibration amplitude of the structure to fluid. FSI analysis model was separately created fluid and structure model, and then defined the fsi boundary condition, and simultaneously analyzed in one domain. The analysis results were compared with those of the experimental method for validating the analysis model. Flow-induced vibration test was executed with single rod configuration. The vibration amplitudes of a fuel rod were measured by the laser vibro-meter system in x and y-direction. The analyses results were not closely with the test data, but the trend was very similar with the test result. In fsi coupled analysis case, the turbulent model was very important with the reliability of the accuracy of the analysis model. Therefore, the analysis model will be needed to further study

  16. Development of the tube bundle structure for fluid-structure interaction analysis model - Intermediate Report -

    International Nuclear Information System (INIS)

    Yoon, Kyung Ho; Kim, Jae Yong; Lee, Kang Hee; Lee, Young Ho; Kim, Hyung Kyu

    2009-07-01

    Tube bundle structures within a Boiler or heat exchanger are laid the fluid-structure, thermal-structure and fluid-thermal-structure coupled boundary condition. In these complicated boundary conditions, Fluid-structure interaction (FSI) occurs when fluid flow causes deformation of the structure. This deformation, in turn, changes the boundary conditions for the fluid flow. The structural analysis have been executed as follows. First of all, divide the fluid and structural analysis discipline, and then independently analyzed each other. However, the fluid dynamic force effect the behavior of the structure, and the vibration amplitude of the structure to fluid. FSI analysis model was separately created fluid and structure model, and then defined the fsi boundary condition, and simultaneously analyzed in one domain. The analysis results were compared with those of the experimental method for validating the analysis model. Flow-induced vibration test was executed with single rod configuration. The vibration amplitudes of a fuel rod were measured by the laser vibro-meter system in x and y-direction. The analyses results were not closely with the test data, but the trend was very similar with the test result. In fsi coupled analysis case, the turbulent model was very important with the reliability of the accuracy of the analysis model. Therefore, the analysis model will be needed to further study

  17. Vibration of fuel bundles

    International Nuclear Information System (INIS)

    Chen, S.S.

    1975-06-01

    Several mathematical models have been proposed for calculating fuel rod responses in axial flows based on a single rod consideration. The spacing between fuel rods in liquid metal fast breeder reactors is small; hence fuel rods will interact with one another due to fluid coupling. The objective of this paper is to study the coupled vibration of fuel bundles. To account for the fluid coupling, a computer code, AMASS, is developed to calculate added mass coefficients for a group of circular cylinders based on the potential flow theory. The equations of motion for rod bundles are then derived including hydrodynamic forces, drag forces, fluid pressure, gravity effect, axial tension, and damping. Based on the equations, a method of analysis is presented to study the free and forced vibrations of rod bundles. Finally, the method is applied to a typical LMFBR fuel bundle consisting of seven rods

  18. Ephaptic coupling of myelinated nerve fibers

    DEFF Research Database (Denmark)

    Binczak, S.; Eilbeck, J. C.; Scott, Alwyn C.

    2001-01-01

    Numerical predictions of a simple myelinated nerve fiber model are compared with theoretical results in the continuum and discrete limits, clarifying the nature of the conduction process on an isolated nerve axon. Since myelinated nerve fibers are often arranged in bundles, this model is used...

  19. A model for dispersed flow heat transfer in rod bundles during reflood

    International Nuclear Information System (INIS)

    Wong, S.

    1980-01-01

    The present model calculates the heat transfer characteristics of the non-equilibrium dispersed droplet flow regime above the quench front during reflood by solving simultaneously the wall-to-vapor interactions, wall-to-droplet interactions and vapor-to-droplet interactions by an iterative numerical method. The unique feature in the present study is various heat transfer mechanisms are combined in an overall energy balance equation, and the convective heat transfer to vapor is obtained by calculating the vapor temperature distributions at the heated walls. The reactor rod bundle geometry, axial variations of vapor temperature and flow properties, radiative heat transfers, and enhancement of heat transfer due to turbulence are considered carefully, so that the present model could be used to predict PWR (Pressurized Water Reactor) reflood heat transfers, and hence the fuel cladding wall temperature transients. In order to achieve closure of the problem formulations, the droplet size and its motion are determined from the FLECHT (Full Length Emergency Cooling Heat Transfer Program) low flooding rate series consine axial power shape test data. The model is then verified by comparing the heat transfer predictions with FLECHT low flooding rate series skewed axial power shape test data. Comparisons of predictions with data show satisfactory agreements

  20. Algebraic stress model for axial flow in a bare rod-bundle

    International Nuclear Information System (INIS)

    de Lemos, M.J.S.

    1987-01-01

    The problem of predicting transport properties for momentum and heat across the boundaries of interconnected channels has been the subject of many investigations. In the particular case of axial flow through rod-bundles, transport coefficients for channel faces aligned with rod centers are known to be considerably higher than those calculated by simple isotropic theories. And yet, it was been found that secondary flows play only a minor role in this overall transport, being turbulence highly enhanced across that hypothetical surface. In order to numerically predict the correct amount of the quantity being transported, the approach taken by many investigators was then to artificially increase the diffusion coefficient obtained via a simple isopropic theory (usually the standard k-ε model) and numerically match the correct experimentally observed mixing rates. The present paper reports an attempt to describe the turbulent stresses by means of an Algebraic Stress Model for turbulence. Relative turbulent kinetic energy distribution in all three directions are presented and compared with experiments in a square lattice. The strong directional dependence of transport terms are then obtained via a model for the Reynolds stresses. The results identify a need for a better representation of the mean-flow field part of the pressure-strain correlation term

  1. Model-based traction force microscopy reveals differential tension in cellular actin bundles.

    Science.gov (United States)

    Soiné, Jérôme R D; Brand, Christoph A; Stricker, Jonathan; Oakes, Patrick W; Gardel, Margaret L; Schwarz, Ulrich S

    2015-03-01

    Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs.

  2. Cadherin-23 may be dynamic in hair bundles of the model sea anemone Nematostella vectensis.

    Directory of Open Access Journals (Sweden)

    Pei-Ciao Tang

    Full Text Available Cadherin 23 (CDH23, a component of tip links in hair cells of vertebrate animals, is essential to mechanotransduction by hair cells in the inner ear. A homolog of CDH23 occurs in hair bundles of sea anemones. Anemone hair bundles are located on the tentacles where they detect the swimming movements of nearby prey. The anemone CDH23 is predicted to be a large polypeptide featuring a short exoplasmic C-terminal domain that is unique to sea anemones. Experimentally masking this domain with antibodies or mimicking this domain with free peptide rapidly disrupts mechanotransduction and morphology of anemone hair bundles. The loss of normal morphology is accompanied, or followed by a decrease in F-actin in stereocilia of the hair bundles. These effects were observed at very low concentrations of the reagents, 0.1-10 nM, and within minutes of exposure. The results presented herein suggest that: (1 the interaction between CDH23 and molecular partners on stereocilia of hair bundles is dynamic and; (2 the interaction is crucial for normal mechanotransduction and morphology of hair bundles.

  3. Coulomb friction modelling in numerical simulations of vibration and wear work rate of multispan tube bundles

    International Nuclear Information System (INIS)

    Antunes, J.; Axisa, F.; Beaufils, B.; Guilbaud, D.

    1990-01-01

    The working life of heat exchanger multispan tube bundles subjected to flow-induced vibration, is heavily dependent on nonlinear interaction between the loosely supported tubes and their supports. Reliable wear prediction techniques must account for a number of factors controlling impact-sliding tube response, such as tube support gap, contact stiffness, impact damping, Coulomb friction and squeeze film effect at supports. Tube fretting wear potential risk may then be adequately quantified by an equivalent wear work rate. A simple model is presented which accounts for the key aspects of dry friction and is well suited to the efficient explicit numerical integration schemes, specifically through nonlinear model superposition. Extensive parametric two-dimensional simulations, under random vibration induced by flow turbulence, are presented. Also, the effect of permanent tube-support preload, arising from cross flow drag, tube-support misalignment and thermal expansion, is investigated. Results show that frictional forces consistently reduce wear work rates, which decrease for high values of the coefficient of friction. Such reductions may be extremely important for the limiting case when preload and frictional forces are of sufficient magnitude to overcome dynamic forces, preventing tube-support relative motion. (author)

  4. Is there value in retrospective 90-day bundle payment models for shoulder arthroplasty procedures?

    Science.gov (United States)

    Odum, Susan M; Hamid, Nady; Van Doren, Bryce A; Spector, Leo R

    2018-05-01

    The Centers for Medicare & Medicaid Services Bundled Payments for Care Improvement (BPCI) initiative was implemented as part of the Affordable Care Act. We implemented a retrospective payment model 2 for a 90-day total shoulder arthroplasty (TSA) episode to assess the value of TSA BPCI at our private practice. Expenditures and postacute event rates of 132 fee-for-service (FFS) patients who underwent a TSA operation between 2009 and 2012 were compared with 333 BPCI patients who had a TSA operation in 2015. The 90-day postacute events included an inpatient rehabilitation facility (IRF), skilled nursing facility (SNF), and home health (HH) admissions and readmissions. Expenditures were converted to 2016 dollars using the Consumer Price Index. Wilcoxon tests and multivariate generalized estimating equation were used to assess independent cost-drivers. The median FFS expenditure was $21,157 (interquartile range, $16,894-$30,748) compared with $17,894 (interquartile range, $15,796-$20,894) for BPCI (P model, we found BPCI had a 4% decrease in expenditures (P = .08). All postacute events were independently associated with higher expenditures. Our private practice implemented cost-containment practices, including clinical guidelines, patient navigators, and a BPCI management team. IRF and SNF utilization and the 90-day readmission rate significantly decreased. As a result, we were able to control the postacute spending, which resulted in decreased costs of performing TSA surgery. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  5. Measurement and modeling of two-phase flow parameters in scaled 8 Multiplication-Sign 8 BWR rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Schlegel, J.P.; Liu, Y.; Paranjape, S.; Hibiki, T. [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Ishii, M., E-mail: ishii@purdue.edu [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Grid spacers have a significant but not well understood effect on flow behavior and development. Black-Right-Pointing-Pointer Two different length scales are present in rod bundles, which must be accounted for in modeling. Black-Right-Pointing-Pointer An easy-to-implement empirical model has been developed for the two-phase friction multiplier. - Abstract: The behavior of reactor systems is predicted using advanced computational codes in order to determine the safety characteristics of the system during various accidents and to determine the performance characteristics of the reactor. These codes generally utilize the two-fluid model for predictions of two-phase flows, as this model is the most accurate and detailed model which is currently practical for predicting large-scale systems. One of the weaknesses of this approach however is the need to develop constitutive models for various quantities. Of specific interest are the models used in the prediction of void fraction and pressure drop across the rod bundle due to their importance in new Natural Circulation Boiling Water Reactor (NCBWR) designs, where these quantities determine the coolant flow rate through the core. To verify the performance of these models and expand the existing experimental database, data has been collected in an 8 Multiplication-Sign 8 rod bundle which is carefully scaled from actual BWR geometry and includes grid spacers to maintain rod spacing. While these spacer grids are 'generic', their inclusion does provide valuable data for analysis of the effect of grid spacers on the flow. In addition to pressure drop measurements the area-averaged void fraction has been measured by impedance void meters and local conductivity probes have been used to measure the local void fraction and interfacial area concentration in the bundle subchannels. Experimental conditions covered a wide range of flow rates and void fractions up to 80%.

  6. Gauss-Kronrod-Trapezoidal Integration Scheme for Modeling Biological Tissues with Continuous Fiber Distributions

    Science.gov (United States)

    Hou, Chieh; Ateshian, Gerard A.

    2015-01-01

    Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation. PMID:26291492

  7. A Gauss-Kronrod-Trapezoidal integration scheme for modeling biological tissues with continuous fiber distributions.

    Science.gov (United States)

    Hou, Chieh; Ateshian, Gerard A

    2016-01-01

    Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element (FE) analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation.

  8. Holomorphic bundles over elliptic manifolds

    International Nuclear Information System (INIS)

    Morgan, J.W.

    2000-01-01

    In this lecture we shall examine holomorphic bundles over compact elliptically fibered manifolds. We shall examine constructions of such bundles as well as (duality) relations between such bundles and other geometric objects, namely K3-surfaces and del Pezzo surfaces. We shall be dealing throughout with holomorphic principal bundles with structure group GC where G is a compact, simple (usually simply connected) Lie group and GC is the associated complex simple algebraic group. Of course, in the special case G = SU(n) and hence GC = SLn(C), we are considering holomorphic vector bundles with trivial determinant. In the other cases of classical groups, G SO(n) or G = Sympl(2n) we are considering holomorphic vector bundles with trivial determinant equipped with a non-degenerate symmetric, or skew symmetric pairing. In addition to these classical cases there are the finite number of exceptional groups. Amazingly enough, motivated by questions in physics, much interest centres around the group E8 and its subgroups. For these applications it does not suffice to consider only the classical groups. Thus, while often first doing the case of SU(n) or more generally of the classical groups, we shall extend our discussions to the general semi-simple group. Also, we shall spend a good deal of time considering elliptically fibered manifolds of the simplest type, namely, elliptic curves

  9. Effect of Bundled Payments and Health Care Reform as Alternative Payment Models in Total Joint Arthroplasty: A Clinical Review.

    Science.gov (United States)

    Siddiqi, Ahmed; White, Peter B; Mistry, Jaydev B; Gwam, Chukwuweike U; Nace, James; Mont, Michael A; Delanois, Ronald E

    2017-08-01

    In an effort to control rising healthcare costs, healthcare reforms have developed initiatives to evaluate the efficacy of alternative payment models (APMs) for Medicare reimbursements. The Center for Medicare and Medicaid Services Innovation Center (CMMSIC) introduced the voluntary Bundled Payments for Care Improvement (BPCI) model experiment as a means to curtail Medicare cost by allotting a fixed payment for an episode of care. The purpose of this review is to (1) summarize the preliminary clinical results of the BPCI and (2) discuss how it has led to other healthcare reforms and alternative payment models. A literature search was performed using PubMed and the CMMSIC to explore different APMs and clinical results after implementation. All studies that were not in English or unrelated to the topic were excluded. Preliminary results of bundled payment models have shown reduced costs in total joint arthroplasty largely by reducing hospital length of stay, decreasing readmission rates, as well as reducing the number of patients sent to in-patient rehabilitation facilities. In order to refine episode of care bundles, CMMSIC has also developed other initiatives such as the Comprehensive Care for Joint Replacement (CJR) pathway and Surgical Hip and Femur Fracture (SHFFT). Despite the unknown future of the Affordable Care Act, BPCI, and CJR, preliminary results of alternative models have shown promise to reduce costs and improve quality of care. Moving into the future, surgeon control of the BPCI and CJR bundle should be investigated to further improve patient care and maximize financial compensation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Electro-mechanical response of a 3D nerve bundle model to mechanical loads leading to axonal injury.

    Science.gov (United States)

    Cinelli, I; Destrade, M; Duffy, M; McHugh, P

    2018-03-01

    Traumatic brain injuries and damage are major causes of death and disability. We propose a 3D fully coupled electro-mechanical model of a nerve bundle to investigate the electrophysiological impairments due to trauma at the cellular level. The coupling is based on a thermal analogy of the neural electrical activity by using the finite element software Abaqus CAE 6.13-3. The model includes a real-time coupling, modulated threshold for spiking activation, and independent alteration of the electrical properties for each 3-layer fibre within a nerve bundle as a function of strain. Results of the coupled electro-mechanical model are validated with previously published experimental results of damaged axons. Here, the cases of compression and tension are simulated to induce (mild, moderate, and severe) damage at the nerve membrane of a nerve bundle, made of 4 fibres. Changes in strain, stress distribution, and neural activity are investigated for myelinated and unmyelinated nerve fibres, by considering the cases of an intact and of a traumatised nerve membrane. A fully coupled electro-mechanical modelling approach is established to provide insights into crucial aspects of neural activity at the cellular level due to traumatic brain injury. One of the key findings is the 3D distribution of residual stresses and strains at the membrane of each fibre due to mechanically induced electrophysiological impairments, and its impact on signal transmission. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Perspective: adopting an asset bundles model to support and advance minority students' careers in academic medicine and the scientific pipeline.

    Science.gov (United States)

    Johnson, Japera; Bozeman, Barry

    2012-11-01

    The authors contend that increasing diversity in academic medicine, science, technology, engineering, and mathematics requires the adoption of a systematic approach to retain minority high school and college students as they navigate the scientific pipeline. Such an approach should focus on the interrelated and multilayered challenges that these students face. The authors fuse an alternative conceptualization of the scientific and technical human capital theoretical framework and the theory of social identity contingencies to offer a conceptual model for targeting the critical areas in which minority students may need additional support to continue toward careers in science. Their proposed asset bundles model is grounded in the central premise that making greater progress in recruiting and retaining minorities likely requires institutions to respond simultaneously to various social cues that signal devaluation of certain identities (e.g., gender, race, socioeconomic status). The authors define "asset bundles" as the specific sets of abilities and resources individuals develop that help them succeed in educational and professional tasks, including but not limited to science and research. The model consists of five asset bundles, each of which is supported in the research literature as a factor relevant to educational achievement and, the authors contend, may lead to improved and sustained diversity: educational endowments, science socialization, network development, family expectations, and material resources. Using this framework, they suggest possible ways of thinking about the task of achieving diversity as well as guideposts for next steps. Finally, they discuss the feasibility of implementing such an approach.

  12. The scintillating optical fiber isotope experiment: Bevalac calibrations of test models

    International Nuclear Information System (INIS)

    Connell, J.J.; Binns, W.R.; Dowkontt, P.F.; Epstein, J.W.; Israel, M.H.; Klarmann, J.; Washington Univ., St. Louis, MO; Webber, W.R.; Kish, J.C.

    1990-01-01

    The Scintillating Optical Fiber Isotope Experiment (SOFIE) is a Cherenkov dE/dx-range experiment being developed to study the isotopic composition of cosmic rays in the iron region with sufficient resolution to resolve isotopes separated by one mass unit at iron. This instrument images stopping particles with a block of scintillating optical fibers coupled to an image intensified video camera. From the digitized video data the trajectory and range of particles stopping in the fiber bundle can be determined; this information, together with a Cherenkov measurement, is used to determine mass. To facilitate this determination, a new Cherenkov response equation was derived for heavy ions at energies near threshold in thick Cherenkov radiators. Test models of SOFIE were calibrated at the Lawrence Berkeley Laboratory's Bevalac heavy ion accelerator in 1985 and 1986 using beams of iron nuclei with energies of 465 to 515 MeV/nucleon. This paper presents the results of these calibrations and discusses the design of the SOFIE Bevalac test models in the context of the scientific objectives of the eventual balloon experiment. The test models show a mass resolution of σ A ≅0.30 amu and a range resolution of σ R ≅250 μm. These results are sufficient for a successful cosmic ray isotope experiment, thus demonstrating the feasibility of the detector system. The SOFIE test models represent the first successful application in the field of cosmic ray astrophysics of the emerging technology of scintillating optical fibers. (orig.)

  13. Development of a Fast Breeder Reactor Fuel Bundle Deformation Analysis Code - BAMBOO: Development of a Pin Dispersion Model and Verification by the Out-of-Pile Compression Test

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ito, Masahiro; Ukai, Shigeharu

    2004-01-01

    To analyze the wire-wrapped fast breeder reactor fuel pin bundle deformation under bundle/duct interaction conditions, the Japan Nuclear Cycle Development Institute has developed the BAMBOO computer code. This code uses the three-dimensional beam element to calculate fuel pin bowing and cladding oval distortion as the primary deformation mechanisms in a fuel pin bundle. The pin dispersion, which is disarrangement of pins in a bundle and would occur during irradiation, was modeled in this code to evaluate its effect on bundle deformation. By applying the contact analysis method commonly used in the finite element method, this model considers the contact conditions at various axial positions as well as the nodal points and can analyze the irregular arrangement of fuel pins with the deviation of the wire configuration.The dispersion model was introduced in the BAMBOO code and verified by using the results of the out-of-pile compression test of the bundle, where the dispersion was caused by the deviation of the wire position. And the effect of the dispersion on the bundle deformation was evaluated based on the analysis results of the code

  14. Prediction of velocity distributions in rod bundle axial flow, with a statistical model (K-epsilon) of turbulence

    International Nuclear Information System (INIS)

    Silva Junior, H.C. da.

    1978-12-01

    Reactor fuel elements generally consist of rod bundles with the coolant flowing axially through the region between the rods. The confiability of the thermohydraulic design of such elements is related to a detailed description of the velocity field. A two-equation statistical model (K-epsilon) of turbulence is applied to compute main and secondary flow fields, wall shear stress distributions and friction factors of steady, fully developed turbulent flows, with incompressible, temperature independent fluid flowing axially through triangular or square arrays of rod bundles. The numerical procedure uses the vorticity and the stream function to describe the velocity field. Comparison with experimental and analytical data of several investigators is presented. Results are in good agreement. (Author) [pt

  15. Modeling of SBS Phase Conjugation in Multimode Step Index Fibers

    National Research Council Canada - National Science Library

    Spring, Justin B

    2008-01-01

    ... limited, double-pass high-power amplifiers or coherent beam combination. Little modeling of such a fiber-based phase-conjugator has been done, making it difficult to make decisions about the right fiber to use...

  16. Assessment of RELAP5/MOD3.3 condensation models for the tube bundle condensation in the PCCS of ESBWR

    International Nuclear Information System (INIS)

    Zhou, W.; Wolf, B.; Revankar, S.T.

    2011-01-01

    The passive containment condenser system (PCCS) in an ESBWR reactor consists of vertical tube bundle submerged in a large pool of water. The condensation model for the PCCS in a thermalhydraulics code RELAP5/MOD3.3 consists of the default Nusselt model and an alternate condensation model from UCB condensation correlation. An assessment of the PCCS condensation model in RELAP5/MOD3.3 was carried out using experiments conducted on a single tube and tube bundle PCCS tests at Purdue University. The experimental conditions were simulated with the default and the alternate condensation models in the REALP5/MOD3.3 beta version of the code. The default model and the UCB model (alternate model) give quite different results on condensation heat transfer for the PCCS. The default model predicts complete condensation well whereas the UCB model predicts the through flow condensation well. Based on this study it was found that none of the models in REALP5 can predict complete condensation as well as the through flow condensation well. (author)

  17. Assessment of RELAP5/MOD3.3 condensation models for the tube bundle condensation in the PCCS of ESBWR

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W., E-mail: wenzzhou@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wolf, B. [Purdue University, West Lafayette, IN 47907 (United States); Revankar, S. [Purdue University, West Lafayette, IN 47907 (United States); POSTECH, Pohang (Korea, Republic of)

    2013-11-15

    The passive containment condenser system (PCCS) in an ESBWR reactor consists of vertical tube bundle submerged in a large pool of water. The condensation model for the PCCS in a thermalhydraulics code RELAP5/MOD3.3 consists of the default Nusselt model and an alternate condensation model from UCB condensation correlation. An assessment of the PCCS condensation model in RELAP5/MOD3.3 was carried out using experiments conducted on a single tube and tube bundle PCCS tests at Purdue University. The experimental conditions were simulated with the default and the alternate condensation models in the REALP5/MOD3.3 beta version of the code. The default model and the UCB model (alternate model) give quite different results on condensation heat transfer for the PCCS. The default model predicts complete condensation well whereas the UCB model predicts the through flow condensation well. Based on this study it was found that none of the models in REALP5 can predict complete condensation as well as the through flow condensation well.

  18. Development of drift-flux model based on 8 x 8 BWR rod bundle geometry experiments under prototypic temperature and pressure conditions

    International Nuclear Information System (INIS)

    Ozaki, Tetsuhiro; Suzuki, Riichiro; Mashiko, Hiroyuki; Hibiki, Takashi

    2013-01-01

    The drift-flux model is one of the imperative concepts used to consider the effects of phase coupling on two-phase flow dynamics. Several drift-flux models are available that apply to rod bundle geometries and some of these are implemented in several nuclear safety analysis codes. However, these models are not validated by well-designed prototypic full bundle test data, and therefore, the scalability of these models has not necessarily been verified. The Nuclear Power Engineering Corporation (NUPEC) conducted void fraction measurement tests in Japan with prototypic 8 x 8 BWR (boiling water reactor) rod bundles under prototypic temperature and pressure conditions. Based on these NUPEC data, a new drift-flux model applicable to predicting the void fraction in a rod bundle geometry has been developed. The newly developed drift-flux model is compared with the other existing data such as the two-phase flow test facility (TPTF) data taken at the Japan Atomic Energy Research Institute (JAERI) [currently, Japan Atomic Energy Agency (JAEA)] and low pressure adiabatic 8 x 8 bundle test data taken at Purdue University in the United States. The results of these comparisons show good agreement between the test data and the predictions. The effects of power distribution, spacer grids, and the bundle geometry on the newly developed drift-flux model have been discussed using the NUPEC data. (author)

  19. Implementation of a phenomenological DNB prediction model based on macroscale boiling flow processes in PWR fuel bundles

    International Nuclear Information System (INIS)

    Mohitpour, Maryam; Jahanfarnia, Gholamreza; Shams, Mehrzad

    2014-01-01

    Highlights: • A numerical framework was developed to mechanistically predict DNB in PWR bundles. • The DNB evaluation module was incorporated into the two-phase flow solver module. • Three-dimensional two-fluid model was the basis of two-phase flow solver module. • Liquid sublayer dryout model was adapted as CHF-triggering mechanism in DNB module. • Ability of DNB modeling approach was studied based on PSBT DNB tests in rod bundle. - Abstract: In this study, a numerical framework, comprising of a two-phase flow subchannel solver module and a Departure from Nucleate Boiling (DNB) evaluation module, was developed to mechanistically predict DNB in rod bundles of Pressurized Water Reactor (PWR). In this regard, the liquid sublayer dryout model was adapted as the Critical Heat Flux (CHF) triggering mechanism to reduce the dependency of the model on empirical correlations in the DNB evaluation module. To predict local flow boiling processes, a three-dimensional two-fluid formalism coupled with heat conduction was selected as the basic tool for the development of the two-phase flow subchannel analysis solver. Evaluation of the DNB modeling approach was performed against OECD/NRC NUPEC PWR Bundle tests (PSBT Benchmark) which supplied an extensive database for the development of truly mechanistic and consistent models for boiling transition and CHF. The results of the analyses demonstrated the need for additional assessment of the subcooled boiling model and the bulk condensation model implemented in the two-phase flow solver module. The proposed model slightly under-predicts the DNB power in comparison with the ones obtained from steady-state benchmark measurements. However, this prediction is acceptable compared with other codes. Another point about the DNB prediction model is that it has a conservative behavior. Examination of the axial and radial position of the first detected DNB using code-to-code comparisons on the basis of PSBT data indicated that the our

  20. Physical modeling and numerical simulation of subcooled boiling in one- and three-dimensional representation of bundle geometry

    International Nuclear Information System (INIS)

    Bottoni, M.; Lyczkowski, R.; Ahuja, S.

    1995-01-01

    Numerical simulation of subcooled boiling in one-dimensional geometry with the Homogeneous Equilibrium Model (HEM) may yield difficulties related to the very low sonic velocity associated with the HEM. These difficulties do not arise with subcritical flow. Possible solutions of the problem include introducing a relaxation of the vapor production rate. Three-dimensional simulations of subcooled boiling in bundle geometry typical of fast reactors can be performed by using two systems of conservation equations, one for the HEM and the other for a Separated Phases Model (SPM), with a smooth transition between the two models

  1. Dynamic subgrid scale model used in a deep bundle turbulence prediction using the large eddy simulation method

    International Nuclear Information System (INIS)

    Barsamian, H.R.; Hassan, Y.A.

    1996-01-01

    Turbulence is one of the most commonly occurring phenomena of engineering interest in the field of fluid mechanics. Since most flows are turbulent, there is a significant payoff for improved predictive models of turbulence. One area of concern is the turbulent buffeting forces experienced by the tubes in steam generators of nuclear power plants. Although the Navier-Stokes equations are able to describe turbulent flow fields, the large number of scales of turbulence limit practical flow field calculations with current computing power. The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (Smagorinsky, 1963) (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization

  2. Cavity Formation Modeling of Fiber Fuse in Single-Mode Optical Fibers

    Directory of Open Access Journals (Sweden)

    Yoshito Shuto

    2017-01-01

    Full Text Available The evolution of a fiber-fuse phenomenon in a single-mode optical fiber was studied theoretically. To clarify both the silica-glass densification and cavity formation, which have been observed in fiber fuse propagation, we investigated a nonlinear oscillation model using the Van Der Pol equation. This model was able to phenomenologically explain both the densification of the core material and the formation of periodic cavities in the core layer as a result of a relaxation oscillation.

  3. Development of Bundle Position-Wise Linear Model for Predicting the Pressure Tube Diametral Creep in CANDU Reactors

    International Nuclear Information System (INIS)

    Lee, Jae Yong; Na, Man Gyun

    2011-01-01

    Diametral creep of the pressure tube (PT) is one of the principal aging mechanisms governing the heat transfer and hydraulic degradation of a heat transport system. PT diametral creep leads to diametral expansion that affects the thermal hydraulic characteristics of the coolant channels and the critical heat flux. Therefore, it is essential to predict the PT diametral creep in CANDU reactors, which is caused mainly by fast neutron irradiation, reactor coolant temperature and so forth. The currently used PT diametral creep prediction model considers the complex interactions between the effects of temperature and fast neutron flux on the deformation of PT zirconium alloys. The model assumes that long-term steady-state deformation consists of separable, additive components from thermal creep, irradiation creep and irradiation growth. This is a mechanistic model based on measured data. However, this model has high prediction uncertainty. Recently, a statistical error modeling method was developed using plant inspection data from the Bruce B CANDU reactor. The aim of this study was to develop a bundle position-wise linear model (BPLM) to predict PT diametral creep employing previously measured PT diameters and HTS operating conditions. There are twelve bundles in a fuel channel and for each bundle, a linear model was developed by using the dependent variables, such as the fast neutron fluxes and the bundle temperatures. The training data set was selected using the subtractive clustering method. The data of 39 channels that consist of 80 percent of a total of 49 measured channels from Units 2, 3 and 4 were used to develop the BPLM models. The remaining 10 channels' data were used to test the developed BPLM models. The BPLM was optimized by the maximum likelihood estimation method. The developed BPLM to predict PT diametral creep was verified using the operating data gathered from the Units 2,3 and 4 in Korea. Two error components for the BPLM, which are the epistemic

  4. Assessment of CCFL model of RELAP5/MOD3 against simple vertical tubes and rod bundle tests

    International Nuclear Information System (INIS)

    Cho, Sung Jae; Arne, Nam Sung; Chung, Bub Dong; Kim, Hho Jung

    1991-01-01

    The CCFL model used in RELAP5/MOD3 version 5m5 has been assessed against simple vertical tubes and rod bundle tests performed at a facility of Korea Atomic Energy Research Institute. The effect of changes in tube diameter and nodalization of tube section were investigated. The roles of interfacial drags on the flooding characteristics are discussed. Difference between the calculation and the experiment are also discussed. A comparison between model assessment results and the test data showed that the calculated value lay well on the experimental flooding curve specified by user, but the pressure jump before onset of flooding was not calculated

  5. Evolution of a 90-day model of care for bundled episodic payments for congestive heart failure in home care.

    Science.gov (United States)

    Feld, April; Madden-Baer, Rose; McCorkle, Ruth

    2016-01-01

    The Centers for Medicare and Medicaid Services Innovation Center's Episode-Based Payment initiatives propose a large opportunity to reduce cost from waste and variation and stand to align hospitals, physicians, and postacute providers in the redesign of care that achieves savings and improve quality. Community-based organizations are at the forefront of this care redesign through innovative models of care aimed at bridging gaps in care coordination and reducing hospital readmissions. This article describes a community-based provider's approach to participation under the Bundled Payments for Care Improvement initiative and a 90-day model of care for congestive heart failure in home care.

  6. Cohesive fracture model for functionally graded fiber reinforced concrete

    International Nuclear Information System (INIS)

    Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery

    2010-01-01

    A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. In addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.

  7. Constitutive Modeling of the Mechanical Properties of Optical Fibers

    Science.gov (United States)

    Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.

    1998-01-01

    Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.

  8. Two-tensor streamline tractography through white matter intra-voxel fiber crossings

    DEFF Research Database (Denmark)

    Qazi, Arish Asif; Kindlmann, G; O'Donnell, L

    2008-01-01

    An inherent drawback of the traditional diffusion tensor model is its limited ability to provide detailed information about multidirectional fiber architecture within a voxel. This leads to erroneous fiber tractography results in locations where fiber bundles cross each other. In this paper, we p...

  9. Resin flow/fiber deformation model for composites

    International Nuclear Information System (INIS)

    Gutowski, T.G.

    1985-01-01

    This paper presents a resin flow/fiber deformation model that can be used to predict the behavior of composites during the molding cycle. The model can take into account time varying pressure and viscosity and output the time history of the fiber volume fraction. With this known, the composite thickness, resin pressure, and fiber pressure can all be determined as a function of time. The results of this model are in good agreement with experimentally measured values. 10 references, 9 figures

  10. A model of the fluid temperature field in a turbulent flow parallel to heated tube bundle

    International Nuclear Information System (INIS)

    Carvalho Tofani, P. de.

    1986-01-01

    Basic understanding of thermal-hydraulic phenomena is essential to achieving reactor fuel assembly performance analysis. In this paper, a dimensionless parameter - a normalized fluid temperature - is defined and applied to fluid temperature measurements at particular positions at the exit plane of a bank of nine heated tubes, under different transverse heat flux shapes. This parameter presents an asymptotic trend to equilibrium values, which depend upon considered positions and flux shapes; when increasing the bulk Reynolds Number. Proposed correlations underlie the present approach to predict the fluid temperature field within the tube bundle. (Author) [pt

  11. Perspective: Adopting an Asset Bundle Model to Support and Advance Minority Students’ Careers in Academic Medicine and the Scientific Pipeline

    Science.gov (United States)

    Johnson, Japera; Bozeman, Barry

    2012-01-01

    The authors contend that increasing diversity in the scientific pipeline (e.g., academic medicine, science, technology, engineering and mathematics) requires a systematic approach to retain minority high school and college students. Such an approach should focus on the interrelated and multilayered challenges that these students face. The authors fuse an alternative conceptualization of the scientific and technical human capital theoretical framework and the theory of social identity contingencies to offer a conceptual model for targeting the critical areas in which minority students may need additional support in order to continue toward a career in science. Their proposed asset bundles model is grounded in the central premise that making greater progress in recruiting and retaining minorities likely requires institutions to respond simultaneously to various social cues that signal devaluation of certain identities (e.g., gender, race, or socioeconomic status). The authors define “asset bundles” as the specific sets of abilities and resources individuals develop that help them succeed in educational and professional tasks, including but not limited to science and research. The model consists of five asset bundles, each of which is supported in the research literature as a factor relevant to educational achievement and, the authors contend, may lead to improved and sustained diversity: educational endowments, science socialization, network development, family expectations, and material resources. Using this framework, they suggest possible ways of thinking about the task of achieving diversity as well as guideposts for next steps. Finally, they discuss the feasibility of implementing such an approach. PMID:23018329

  12. Micro-Mechanical Modeling of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Stang, Henrik

    1999-01-01

    of Fiber Reinforced Concrete (FRC) on the micro- the meso- as well as the macro-level, i.e. modeling aspects of fiber-matrix interaction, overall constitutive modeling and structural modeling. Emphasis is placed on the micro- and meso-aspects, however, some basic results on the macro-level are also...

  13. Modeling of the energy savings of variable recruitment McKibben muscle bundles

    Science.gov (United States)

    Meller, Michael A.; Chipka, Jordan B.; Bryant, Matthew J.; Garcia, Ephrahim

    2015-03-01

    McKibben artificial muscles are often utilized in mobile robotic applications that require compliant and light weight actuation capable of producing large forces. In order to increase the endurance of these mobile robotic platforms, actuation efficiency must be addressed. Since pneumatic systems are rarely more than 30% efficient due to the compressibility of the working fluid, the McKibben muscles are hydraulically powered. Additionally, these McKibben artificial muscles utilize an inelastic bladder to reduce the energy losses associated with elastic energy storage in the usual rubber tube bladders. The largest energy losses in traditional valve-controlled hydraulic systems are found in the valving implementation to match the required loads. This is performed by throttling, which results in large pressure drops over the control valves and significant fluid power being wasted as heat. This paper discusses how these throttling losses are reduced by grouping multiple artificial muscles to form a muscle bundle where, like in skeletal muscle, more elements that make up the muscle bundle are recruited to match the load. This greatly lessens the pressure drops by effectively changing the actuator area, leading to much higher efficiencies over a broader operation envelope. Simulations of several different loading scenarios are discussed that reveal the benefits of such an actuation scheme.

  14. Effects of two-phase mixing and void drift models on subchannel void fraction predictions in vertical bundles

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.H. [McMaster Univ., Hamilton, Ontario (Canada)], E-mail: leungk4@mcmaster.ca

    2009-07-01

    The evaluation of the subchannel code ASSERT against the OECD/NEA BFBT benchmark data demonstrated that at low pressures, the void fraction in the corner and side subchannels of a vertical bundle was over-predicted. Preliminary results suggest that this was due to the use of Carlucci's empirical correlation for void drift beyond its applicable range of pressure. Further examination indicates that the choice of the mixing and void drift models has a negligible effect on the error of the subchannel void fraction predictions. A single, isolated subchannel was simulated and results suggest that the root cause behind the over-prediction is inadequate mixing at the sides and corners of the bundle. Increasing the magnitude of the void drift coefficients in Carlucci's model at low pressure was found to improve the overall accuracy of the predictions. A simple correlation relating {omega} to the outlet pressure was found to increase the number of points falling within experimental error by 1.0%. (author)

  15. Effects of two-phase mixing and void drift models on subchannel void fraction predictions in vertical bundles

    International Nuclear Information System (INIS)

    Leung, K.H.

    2009-01-01

    The evaluation of the subchannel code ASSERT against the OECD/NEA BFBT benchmark data demonstrated that at low pressures, the void fraction in the corner and side subchannels of a vertical bundle was over-predicted. Preliminary results suggest that this was due to the use of Carlucci's empirical correlation for void drift beyond its applicable range of pressure. Further examination indicates that the choice of the mixing and void drift models has a negligible effect on the error of the subchannel void fraction predictions. A single, isolated subchannel was simulated and results suggest that the root cause behind the over-prediction is inadequate mixing at the sides and corners of the bundle. Increasing the magnitude of the void drift coefficients in Carlucci's model at low pressure was found to improve the overall accuracy of the predictions. A simple correlation relating Ω to the outlet pressure was found to increase the number of points falling within experimental error by 1.0%. (author)

  16. Measurement and model development of the droplet diameter in rod bundles with spacer grids in the reactor core

    Energy Technology Data Exchange (ETDEWEB)

    No, Hee Cheon; Lee, Eo Hwak; Yoo, Seung Hun; Jin, Hyung Gon; Kim, In Hun [KAIST, Daejeon (Korea, Republic of)

    2010-05-15

    To understand and to predict the heat transfer between superheated steam and droplets properly during reflood phase of LBLOCA of APR1400, it is very important to measure broken droplet sizes by spacer grids. A study, therefore, has been performed to investigate droplet size in rod bundles with spacer grids and to develop a spacer grid droplet size model for safety analysis codes. Experiments were conducted with liquid droplets (SMD of 300{approx}700 {mu}m) impacting on various spacer grids at air superficial velocity of 10 and 20 m/s based on FLECHT SEASET. The test channel and the grids were heated to 150 .deg. C to prevent the formation of liquid film during tests. The spacer grids were designed refer to the Korean fuel rod bundles (Korean Standard Fuel, Plus 7) of APR1400 with various blockage area ratio and grid geometries (strap thickness, mixing vane) and about 15,000 droplets were measured at upstream and downstream of the grids in 16 tests. As a result, the measurement of broken droplet size by spacer grids with photography method is presented and the droplet size model related to spacer grids as a function of blockage area ratio is suggested in this report

  17. Development of generalized boiling transition model applicable for wide variety of fuel bundle geometries. Basic strategy and numerical approaches

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Sadatomi, Michio; Okawa, Tomio

    2003-01-01

    In order to establish a key technology to realize advanced BWR fuel designs, a three-year project of the advanced subchannel analysis code development had been started since 2002. The five dominant factors involved in the boiling transitional process in the fuel bundles were focused. They are, (1) inter-subchannel exchanges, (2) influences of obstacles (3) dryout of liquid film, (4) transition of two-phase flow regimes and (5) deposition of droplets. It has been recognized that present physical models or constitutive equations in subchannel formulations need to be improved so that they include geometrical effects in the fuel bundle design more mechanistically and universally. Through reviewing literatures and existent experimental results, underlying elementary processes and geometrical factors that are indispensable for improving subchannel codes were identified. The basic strategy that combines numerical and experimental approaches was proposed aiming at establishment of mechanistic models for the five dominant factors. In this paper, the present status of methodologies for detailed two-phase flow studies has been summarized. According to spatial scales of focused elementary processes, proper numerical approaches were selected. For some promising numerical approaches, preliminary calcitonins were performed for assessing their applicability to investigation of elementary processes involved in the boiling transition. (author)

  18. Modeling illumination performance of plastic optical fiber passive daylighting system

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, F; Ahmad, A [Universiti Teknologi MARA, Shah Alam (Malaysia). Faculty of Electrical Engineering; Ahmed, A Z [Universiti Teknologi MARA, Shah Alam (Malaysia). Bureau of Reseaarch and Consultancy

    2006-12-15

    of the most direct methods of utilizing solar energy for energy conservation is to bring natural light indoors to light up an area. This paper reports on the investigation of the feasibility to utilize large core optical fibers to convey and distribute solar light passively throughout residential or commercial structures. The focus of this study is on the mathematical modeling of the illumination performance and the light transmission efficiency of solid core end light fiber for optical day lighting systems. The Meatball simulations features the optical fiber transmittance for glass and plastic fibers, illumination performance over lengths of plastic end-lit fiber, spectral transmission, light intensity loss through the large diameter solid core optical fibers as well as the transmission efficiency of the optical fiber itself. It was found that plastic optical fiber has less transmission loss over the distance of the fiber run which clearly shows that the Plastic Optical Fiber should be optimized for emitting visible light. The findings from the analysis on the performance of large diameter optical fibers for day lighting systems seems feasible for energy efficient lighting system in commercial or residential buildings.

  19. Modeling illumination performance of plastic optical fiber passive daylighting system

    International Nuclear Information System (INIS)

    Sulaiman, F.; Ahmad, A.; Ahmed, A.Z.

    2006-01-01

    One of the most direct methods of utilizing solar energy for energy conservation is to bring natural light indoors to light up an area. This paper reports on the investigation of the feasibility to utilize large core optical fibers to convey and distribute solar light passively throughout residential or commercial structures. The focus of this study is on the mathematical modeling of the illumination performance and the light transmission efficiency of solid core end light fiber for optical day lighting systems. The Meatball simulations features the optical fiber transmittance for glass and plastic fibers, illumination performance over lengths of plastic end-lit fiber, spectral transmission, light intensity loss through the large diameter solid core optical fibers as well as the transmission efficiency of the optical fiber itself. It was found that plastic optical fiber has less transmission loss over the distance of the fiber run which clearly shows that the Plastic Optical Fiber should be optimized for emitting visible light. The findings from the analysis on the performance of large diameter optical fibers for day lighting systems seems feasible for energy efficient lighting system in commercial or residential buildings

  20. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services.

    Science.gov (United States)

    Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien

    2014-09-23

    Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers' adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs.

  1. Fluid structure interaction in tube bundles

    International Nuclear Information System (INIS)

    Brochard, D.; Jedrzejewski, F.; Gibert, R.J.

    1995-01-01

    A lot of industrial components contain tube bundles immersed in a fluid. The mechanical analysis of such systems requires the study of the fluid structure interaction in the tube bundle. Simplified methods, based on homogenization methods, have been developed to analyse such phenomenon and have been validated through experimental results. Generally, these methods consider only the fluid motion in a plan normal to the bundle axis. This paper will analyse, in a first part, the fluid structure interaction in a tube bundle through a 2D finite element model representing the bundle cross section. The influence of various parameters like the bundle size, and the bundle confinement will be studied. These results will be then compared with results from homogenization methods. Finally, the influence of the 3D fluid motion will be investigated, in using simplified methods. (authors). 11 refs., 12 figs., 2 tabs

  2. Nonabelian bundle 2-gerbes

    OpenAIRE

    Jurco, Branislav

    2009-01-01

    We define 2-crossed module bundle 2-gerbes related to general Lie 2-crossed modules and discuss their properties. A 2-crossed module bundle 2-gerbe over a manifold is defined in terms of a so called 2-crossed module bundle gerbe, which is a crossed module bundle gerbe equipped with an extra sructure. It is shown that string structures can be described and classified using 2-crossed module bundle 2-gerbes.

  3. Numerical modeling of hybrid fiber-reinforced concrete (hyfrc)

    International Nuclear Information System (INIS)

    Hameed, R.; Turatsinze, A.

    2015-01-01

    A model for numerical simulation of mechanical response of concrete reinforced with slipping and non slipping metallic fibers in hybrid form is presented in this paper. Constitutive law used to model plain concrete behaviour is based on plasticity and damage theories, and is capable to determine localized crack opening in three dimensional (3-D) systems. Behaviour law used for slipping metallic fibers is formulated based on effective stress carried by these fibers after when concrete matrix is cracked. A continuous approach is proposed to model the effect of addition of non-slipping metallic fibers in plain concrete. This approach considers the constitutive law of concrete matrix with increased fracture energy in tension obtained experimentally in direct tension tests on Fiber Reinforced Concrete (FRC). To simulate the mechanical behaviour of hybrid fiber-reinforced concrete (HyFRC), proposed approaches to model non-slipping metallic fibers and constitutive law of plain concrete and slipping fibers are used simultaneously without any additive equation. All the parameters used by the proposed model have physical meanings and are determined through experiments or drawn from literature. The model was implemented in Finite Element (FE) Code CASTEM and tested on FRC prismatic notched specimens in flexure. Model prediction showed good agreement with experimental results. (author)

  4. Simplification of neural network model for predicting local power distributions of BWR fuel bundle using learning algorithm with forgetting

    International Nuclear Information System (INIS)

    Tanabe, Akira; Yamamoto, Toru; Shinfuku, Kimihiro; Nakamae, Takuji; Nishide, Fusayo.

    1995-01-01

    Previously a two-layered neural network model was developed to predict the relation between fissile enrichment of each fuel rod and local power distribution in a BWR fuel bundle. This model was obtained intuitively based on 33 patterns of training signals after an intensive survey of the models. Recently, a learning algorithm with forgetting was reported to simplify neural network models. It is an interesting subject what kind of model will be obtained if this algorithm is applied to the complex three-layered model which learns the same training signals. A three-layered model which is expanded to have direct connections between the 1st and the 3rd layer elements has been constructed and the learning method of normal back propagation was applied first to this model. The forgetting algorithm was then added to this learning process. The connections concerned with the 2nd layer elements disappeared and the 2nd layer has become unnecessary. It took a longer computing time by an order to learn the same training signals than the simple back propagation, but the two-layered model was obtained autonomously from the expanded three-layered model. (author)

  5. Comparative evaluation of fiber fuse models

    International Nuclear Information System (INIS)

    Davis, D.D.; Mettler, S.C.; DiGiovanni, D.J.

    1997-01-01

    A phenomenon which results in the catastrophic destruction of the guiding properties of an optical fiber has been observed at laser power densities on the order of 3 x 10 6 watts/cm 2 in the core. This phenomenon is characterized by the propagation of a bright visible light from the point of initiation toward the laser source. The term 'fiber fuse' has been used because of the similarity in appearance to a burning fuse. The fiber fuse has been shown to start when the end of the fiber is contacted. It has also been initiated spontaneously from mechanical splices. This paper reports experimental data gathered on the fiber fuse and discusses their relationship to proposed physical mechanisms

  6. Program description of FIBRAM (Fiber Optic Radiation Attenuation Model): a radiation attenuation model for optical fibers

    International Nuclear Information System (INIS)

    Ingram, W.J.

    1987-06-01

    The report describes a fiber-optics system model and its computer implementation. This implementation can calculate the bit error ratio (BER) versus time for optical fibers that have been exposed to gamma radiation. The program is designed so that the user may arbitrarily change any or all of the system input variables and produce separate outputs. The primary output of the program is a table of the BER as a function of time. This table may be stored on magnetic media and later incorporated into computer graphic programs. The program was written in FORTRAN 77 for the IBM PC/AT/XT computers. Flow charts and program listings are included in the report

  7. Modelling of Extrinsic Fiber Optic Sagnac Ultrasound Interferometer ...

    African Journals Online (AJOL)

    Ultrasonic waves are used extensively in nondestructive testing both for characterization of material properties, in this paper, we describe a fiber optic sensor suitable for detection of ultrasonic waves. This sensor is based on an extrinsic fiber optic sagnac interferometer. The proposed sensor model can act as a conventional ...

  8. Signal detection by active, noisy hair bundles

    Science.gov (United States)

    O'Maoiléidigh, Dáibhid; Salvi, Joshua D.; Hudspeth, A. J.

    2018-05-01

    Vertebrate ears employ hair bundles to transduce mechanical movements into electrical signals, but their performance is limited by noise. Hair bundles are substantially more sensitive to periodic stimulation when they are mechanically active, however, than when they are passive. We developed a model of active hair-bundle mechanics that predicts the conditions under which a bundle is most sensitive to periodic stimulation. The model relies only on the existence of mechanotransduction channels and an active adaptation mechanism that recloses the channels. For a frequency-detuned stimulus, a noisy hair bundle's phase-locked response and degree of entrainment as well as its detection bandwidth are maximized when the bundle exhibits low-amplitude spontaneous oscillations. The phase-locked response and entrainment of a bundle are predicted to peak as functions of the noise level. We confirmed several of these predictions experimentally by periodically forcing hair bundles held near the onset of self-oscillation. A hair bundle's active process amplifies the stimulus preferentially over the noise, allowing the bundle to detect periodic forces less than 1 pN in amplitude. Moreover, the addition of noise can improve a bundle's ability to detect the stimulus. Although, mechanical activity has not yet been observed in mammalian hair bundles, a related model predicts that active but quiescent bundles can oscillate spontaneously when they are loaded by a sufficiently massive object such as the tectorial membrane. Overall, this work indicates that auditory systems rely on active elements, composed of hair cells and their mechanical environment, that operate on the brink of self-oscillation.

  9. CFD modeling of turbulent mixing through vertical pressure tube type boiling water reactor fuel rod bundles with spacer-grids

    Science.gov (United States)

    Verma, Shashi Kant; Sinha, S. L.; Chandraker, D. K.

    2018-05-01

    Numerical simulation has been carried out for the study of natural mixing of a Tracer (Passive scalar) to describe the development of turbulent diffusion in an injected sub-channel and, afterwards on, cross-mixing between adjacent sub-channels. In this investigation, post benchmark evaluation of the inter-subchannel mixing was initiated to test the ability of state-of-the-art Computational Fluid Dynamics (CFD) codes to numerically predict the important turbulence parameters downstream of a ring type spacer grid in a rod-bundle. A three-dimensional Computational Fluid Dynamics (CFD) tool (STAR-CCM+) was used to model the single phase flow through a 30° segment or 1/12th of the cross segment of a 54-rod bundle with a ring shaped spacer grid. Polyhedrons were used to discretize the computational domain, along with prismatic cells near the walls, with an overall mesh count of 5.2 M cell volumes. The Reynolds Stress Models (RSM) was tested because of RSM accounts for the turbulence anisotropy, to assess their capability in predicting the velocities as well as mass fraction of potassium nitrate measured in the experiment. In this way, the line probes are located in the different position of subchannels which could be used to characterize the progress of the mixing along the flow direction, and the degree of cross-mixing assessed using the quantity of tracer arriving in the neighbouring sub-channels. The predicted dimensionless mixing scalar along the length, however, was in good agreement with the measurements downstream of spacers.

  10. Strategic Aspects of Bundling

    International Nuclear Information System (INIS)

    Podesta, Marion

    2008-01-01

    The increase of bundle supply has become widespread in several sectors (for instance in telecommunications and energy fields). This paper review relates strategic aspects of bundling. The main purpose of this paper is to analyze profitability of bundling strategies according to the degree of competition and the characteristics of goods. Moreover, bundling can be used as price discrimination tool, screening device or entry barriers. In monopoly case bundling strategy is efficient to sort consumers in different categories in order to capture a maximum of surplus. However, when competition increases, the profitability on bundling strategies depends on correlation of consumers' reservations values. (author)

  11. Zebrafish Models for the Mechanosensory Hair Cell Dysfunction in Usher Syndrome 3 Reveal That Clarin-1 Is an Essential Hair Bundle Protein.

    Science.gov (United States)

    Gopal, Suhasini R; Chen, Daniel H-C; Chou, Shih-Wei; Zang, Jingjing; Neuhauss, Stephan C F; Stepanyan, Ruben; McDermott, Brian M; Alagramam, Kumar N

    2015-07-15

    Usher syndrome type III (USH3) is characterized by progressive loss of hearing and vision, and varying degrees of vestibular dysfunction. It is caused by mutations that affect the human clarin-1 protein (hCLRN1), a member of the tetraspanin protein family. The missense mutation CLRN1(N48K), which affects a conserved N-glycosylation site in hCLRN1, is a common causative USH3 mutation among Ashkenazi Jews. The affected individuals hear at birth but lose that function over time. Here, we developed an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype. Immunolabeling demonstrated that Clrn1 localized to the hair cell bundles (hair bundles). The clrn1 mutants generated by zinc finger nucleases displayed aberrant hair bundle morphology with diminished function. Two transgenic zebrafish that express either hCLRN1 or hCLRN1(N48K) in hair cells were produced to examine the subcellular localization patterns of wild-type and mutant human proteins. hCLRN1 localized to the hair bundles similarly to zebrafish Clrn1; in contrast, hCLRN1(N48K) largely mislocalized to the cell body with a small amount reaching the hair bundle. We propose that this small amount of hCLRN1(N48K) in the hair bundle provides clarin-1-mediated function during the early stages of life; however, the presence of hCLRN1(N48K) in the hair bundle diminishes over time because of intracellular degradation of the mutant protein, leading to progressive loss of hair bundle integrity and hair cell function. These findings and genetic tools provide an understanding and path forward to identify therapies to mitigate hearing loss linked to the CLRN1 mutation. Mutations in the clarin-1 gene affect eye and ear function in humans. Individuals with the CLRN1(N48K) mutation are born able to hear but lose that function over time. Here, we develop an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype

  12. Micromechanical modeling of strength and damage of fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Mishnaevsky, L. Jr.; Broendsted, P.

    2007-03-15

    The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenological analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials. (au)

  13. Numerical prediction of pressure loss in tight-lattice rod bundle by use of 3-dimensional two-fluid model simulation code ACE-3D

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Takase, Kazuyuki; Suzuki, Takayuki

    2009-01-01

    Two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method or particle interaction method. Therefore, two-fluid model is useful for thermal hydraulic analysis in large-scale domain such as a rod bundle. Japan Atomic Energy Agency (JAEA) develops three dimensional two-fluid model analysis code ACE-3D that adopts boundary fitted coordinate system in order to simulate complex shape flow channel. In this paper, boiling two-phase flow analysis in a tight-lattice rod bundle was performed by the ACE-3D. In the results, the void fraction, which distributes in outermost region of rod bundle, is lower than that in center region of rod bundle. The tendency of void fraction distribution agreed with the measurement results by neutron radiography qualitatively. To evaluate effects of two-phase flow model used in the ACE-3D, numerical simulation of boiling two-phase in tight-lattice rod bundle with no lift force model was also performed. In the results, the lift force model has direct effects on void fraction concentration in gap region, and pressure distribution in horizontal plane induced by void fraction distribution cause of bubble movement from the gap region to the subchannel region. The predicted pressure loss in the section that includes no spacer accorded with experimental results with around 10% of differences. The predicted friction pressure loss was underestimated around 20% of measured values, and the effect of the turbulence model is considered as one of the causes of this underestimation. (author)

  14. Bundle Branch Block

    Science.gov (United States)

    ... known cause. Causes can include: Left bundle branch block Heart attacks (myocardial infarction) Thickened, stiffened or weakened ... myocarditis) High blood pressure (hypertension) Right bundle branch block A heart abnormality that's present at birth (congenital) — ...

  15. Modeling fiber Bragg grating device networks in photomechanical polymer optical fibers

    Science.gov (United States)

    Lanska, Joseph T.; Kuzyk, Mark G.; Sullivan, Dennis M.

    2015-09-01

    We report on the modeling of fiber Bragg grating (FBG) networks in poly(methyl methacrylate) (PMMA) polymer fibers doped with azo dyes. Our target is the development of Photomechanical Optical Devices (PODs), comprised of two FBGs in series, separated by a Fabry-Perot cavity of photomechanical material. PODs exhibit photomechanical multi-stability, with the capacity to access multiple length states for a fixed input intensity when a mechanical shock is applied. Using finite-difference time-domain (FDTD) numerical methods, we modeled the photomechanical response of both Fabry-Perot and Bragg-type PODs in a single polymer optical fiber. The polymer fiber was modeled as an instantaneous Kerr-type nonlinear χ(3) material. Our model correctly predicts the essential optical features of FBGs as well as the photomechanical multi-stability of nonlinear Fabry-Perot cavity-based PODs. Networks of PODs may provide a framework for smart shape-shifting materials and fast optical computation where the decision process is distributed over the entire network. In addition, a POD can act as memory, and its response can depend on input history. Our models inform and will accelerate targeted development of novel Bragg grating-based polymer fiber device networks for a variety of applications in optical computing and smart materials.

  16. Development of design technology on thermal-hydraulic performance in tight-lattice rod bundle. 4. Large paralleled simulation by the advanced two-fluid model code

    International Nuclear Information System (INIS)

    Misawa, Takeharu; Yoshida, Hiroyuki; Akimoto, Hajime

    2008-01-01

    In Japan Atomic Energy Agency (JAEA), the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) has been developed. For thermal design of FLWR, it is necessary to develop analytical method to predict boiling transition of FLWR. Japan Atomic Energy Agency (JAEA) has been developing three-dimensional two-fluid model analysis code ACE-3D, which adopts boundary fitted coordinate system to simulate complex shape channel flow. In this paper, as a part of development of ACE-3D to apply to rod bundle analysis, introduction of parallelization to ACE-3D and assessments of ACE-3D are shown. In analysis of large-scale domain such as a rod bundle, even two-fluid model requires large number of computational cost, which exceeds upper limit of memory amount of 1 CPU. Therefore, parallelization was introduced to ACE-3D to divide data amount for analysis of large-scale domain among large number of CPUs, and it is confirmed that analysis of large-scale domain such as a rod bundle can be performed by parallel computation with keeping parallel computation performance even using large number of CPUs. ACE-3D adopts two-phase flow models, some of which are dependent upon channel geometry. Therefore, analyses in the domains, which simulate individual subchannel and 37 rod bundle, are performed, and compared with experiments. It is confirmed that the results obtained by both analyses using ACE-3D show agreement with past experimental result qualitatively. (author)

  17. Evaluation of CASL boiling model for DNB performance in full scale 5x5 fuel bundle with spacer grids

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jun [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-12

    As one of main tasks for FY17 CASL-THM activity, Evaluation study on applicability of the CASL baseline boiling model for 5x5 DNB application is conducted and the predictive capability of the DNB analysis is reported here. While the baseline CASL-boiling model (GEN- 1A) approach has been successfully implemented and validated with a single pipe application in the previous year’s task, the extended DNB validation for realistic sub-channels with detailed spacer grid configurations are tasked in FY17. The focus area of the current study is to demonstrate the robustness and feasibility of the CASL baseline boiling model for DNB performance in a full 5x5 fuel bundle application. A quantitative evaluation of the DNB predictive capability is performed by comparing with corresponding experimental measurements (i.e. reference for the model validation). The reference data are provided from the Westinghouse Electricity Company (WEC). Two different grid configurations tested here include Non-Mixing Vane Grid (NMVG), and Mixing Vane Grid (MVG). Thorough validation studies with two sub-channel configurations are performed at a wide range of realistic PWR operational conditions.

  18. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  19. Numerical prediction of critical heat flux in nuclear fuel rod bundles with advanced three-fluid multidimensional porous media based model

    International Nuclear Information System (INIS)

    Zoran Stosic; Vladimir Stevanovic

    2005-01-01

    Full text of publication follows: The modern design of nuclear fuel rod bundles for Boiling Water Reactors (BWRs) is characterised with increased number of rods in the bundle, introduced part-length fuel rods and a water channel positioned along the bundle asymmetrically in regard to the centre of the bundle cross section. Such design causes significant spatial differences of volumetric heat flux, steam void fraction distribution, mass flux rate and other thermal-hydraulic parameters important for efficient cooling of nuclear fuel rods during normal steady-state and transient conditions. The prediction of the Critical Heat Flux (CHF) under these complex thermal-hydraulic conditions is of the prime importance for the safe and economic BWR operation. An efficient numerical method for the CHF prediction is developed based on the porous medium concept and multi-fluid two-phase flow models. Fuel rod bundle is observed as a porous medium with a two-phase flow through it. Coolant flow from the bundle entrance to the exit is characterised with the subsequent change of one-phase and several two-phase flow patterns. One fluid (one-phase) model is used for the prediction of liquid heating up in the bundle entrance region. Two-fluid modelling approach is applied to the bubbly and churn-turbulent vapour and liquid flows. Three-fluid modelling approach is applied to the annular flow pattern: liquid film on the rods wall, steam flow and droplets entrained in the steam stream. Every fluid stream in applied multi-fluid models is described with the mass, momentum and energy balance equations. Closure laws for the prediction of interfacial transfer processes are stated with the special emphasis on the prediction of the steam-water interface drag force, through the interface drag coefficient, and droplets entrainment and deposition rates for three-fluid annular flow model. The model implies non-equilibrium thermal and flow conditions. A new mechanistic approach for the CHF prediction

  20. A micromorphic model for steel fiber reinforced concrete.

    Science.gov (United States)

    Oliver, J; Mora, D F; Huespe, A E; Weyler, R

    2012-10-15

    A new formulation to model the mechanical behavior of high performance fiber reinforced cement composites with arbitrarily oriented short fibers is presented. The formulation can be considered as a two scale approach, in which the macroscopic model, at the structural level, takes into account the mesostructural phenomenon associated with the fiber-matrix interface bond/slip process. This phenomenon is contemplated by including, in the macroscopic description, a micromorphic field representing the relative fiber-cement displacement. Then, the theoretical framework, from which the governing equations of the problem are derived, can be assimilated to a specific case of the material multifield theory. The balance equation derived for this model, connecting the micro stresses with the micromorphic forces, has a physical meaning related with the fiber-matrix bond slip mechanism. Differently to previous procedures in the literature, addressed to model fiber reinforced composites, where this equation has been added as an additional independent ingredient of the methodology, in the present approach it arises as a natural result derived from the multifield theory. Every component of the composite is defined with a specific free energy and constitutive relation. The mixture theory is adopted to define the overall free energy of the composite, which is assumed to be homogeneously constituted, in the sense that every infinitesimal volume is occupied by all the components in a proportion given by the corresponding volume fraction. The numerical model is assessed by means of a selected set of experiments that prove the viability of the present approach.

  1. Molecular modeling of the microstructure evolution during carbon fiber processing

    Science.gov (United States)

    Desai, Saaketh; Li, Chunyu; Shen, Tongtong; Strachan, Alejandro

    2017-12-01

    The rational design of carbon fibers with desired properties requires quantitative relationships between the processing conditions, microstructure, and resulting properties. We developed a molecular model that combines kinetic Monte Carlo and molecular dynamics techniques to predict the microstructure evolution during the processes of carbonization and graphitization of polyacrylonitrile (PAN)-based carbon fibers. The model accurately predicts the cross-sectional microstructure of the fibers with the molecular structure of the stabilized PAN fibers and physics-based chemical reaction rates as the only inputs. The resulting structures exhibit key features observed in electron microcopy studies such as curved graphitic sheets and hairpin structures. In addition, computed X-ray diffraction patterns are in good agreement with experiments. We predict the transverse moduli of the resulting fibers between 1 GPa and 5 GPa, in good agreement with experimental results for high modulus fibers and slightly lower than those of high-strength fibers. The transverse modulus is governed by sliding between graphitic sheets, and the relatively low value for the predicted microstructures can be attributed to their perfect longitudinal texture. Finally, the simulations provide insight into the relationships between chemical kinetics and the final microstructure; we observe that high reaction rates result in porous structures with lower moduli.

  2. Fuel bundle movement due to reverse flow

    Energy Technology Data Exchange (ETDEWEB)

    Wahba, N N; Akalin, O [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    When a break occurs in the inlet feeder or inlet header, the rapid depressurization will cause the channel flow to reverse forcing the string of bundles to accelerate and impact with upstream shield plug. A model has been developed to predict the bundle motion due to the channel flow reversal. The model accounts for various forces acting on the bundle. A series of five reverse flow, bundle acceleration experiments have been conducted simulating a break in the inlet feeder of a CANDU fuel channel. The model has been validated against the experiments. The predicted impact velocities are in good agreement with the measured values. It is demonstrated that the model may be successfully used in predicting bundle relocation timing following a large LOCA (loss of coolant). (author). 7 refs., 3 tabs., 11 figs.

  3. Modelling of a rod bundle under viscous and uncompressible flow by porous media. Applied to nuclear reactor core

    International Nuclear Information System (INIS)

    Ricciardi, Guillaume; Collard, Bruno; Bellizzi, Sergio; Cochelin, Bruno

    2007-01-01

    This study is about the safety of nuclear reactor core submitted to seismic loading. In order to reduce the incertitude margin of the present day codes we propose to develop a numerical code including the non linear behavior of the fluid/structure coupling. The challenge of this work is to find out a tractable model taking the structure complexity into account. In this paper we model the nuclear reactor core mechanical behavior including the dynamics of both fuel assemblies of fluid. Each rod bundle is considered as a deformable porous media, so the velocity field of the fluid and the displacement field of the structure are defined in the whole domain space. Fluid part and structure part are in a first time considered separately, and in second time, the two parts are coupled. The motion equations of the structure are obtained by a Lagrangian formulation, and to allow the fluid structure coupling, the motion equations of the fluid are obtained by an Arbitrary Lagrangian Eulerian formulation. The finite elements method is applied to spatially discretize the equations. Simulations have been performed to analyze the influence of the fluid and structure characteristics, phenomena observed by the experience have been reproduced qualitatively. (author)

  4. Distinguishing Differential Testlet Functioning from Differential Bundle Functioning Using the Multilevel Measurement Model

    Science.gov (United States)

    Beretvas, S. Natasha; Walker, Cindy M.

    2012-01-01

    This study extends the multilevel measurement model to handle testlet-based dependencies. A flexible two-level testlet response model (the MMMT-2 model) for dichotomous items is introduced that permits assessment of differential testlet functioning (DTLF). A distinction is made between this study's conceptualization of DTLF and that of…

  5. Development of boiling transition analysis code TCAPE-INS/B based on mechanistic methods for BWR fuel bundles. Models and validations with boiling transition experimental data

    International Nuclear Information System (INIS)

    Ishida, Naoyuki; Utsuno, Hideaki; Kasahara, Fumio

    2003-01-01

    The Boiling Transition (BT) analysis code TCAPE-INS/B based on the mechanistic methods coupled with subchannel analysis has been developed for the evaluation of the integrity of Boiling Water Reactor (BWR) fuel rod bundles under abnormal operations. Objective of the development is the evaluation of the BT without using empirical BT and rewetting correlations needed for different bundle designs in the current analysis methods. TCAPE-INS/B consisted mainly of the drift-flux model, the film flow model, the cross-flow model, the thermal conductivity model and the heat transfer correlations. These models were validated systematically with the experimental data. The accuracy of the prediction for the steady-state Critical Heat Flux (CHF) and the transient temperature of the fuel rod surface after the occurrence of BT were evaluated on the validations. The calculations for the experiments with the single tube and bundles were carried out for the validations of the models incorporated in the code. The results showed that the steady-state CHF was predicted within about 6% average error. In the transient calculations, BT timing and temperature of the fuel rod surface gradient agreed well with experimental results, but rewetting was predicted lately. So, modeling of heat transfer phenomena during post-BT is under modification. (author)

  6. Fiber Bragg Grating-Based Performance Monitoring of Piles Fiber in a Geotechnical Centrifugal Model Test

    Directory of Open Access Journals (Sweden)

    Xiaolin Weng

    2014-01-01

    Full Text Available In centrifugal tests, conventional sensors can hardly capture the performance of reinforcement in small-scale models. However, recent advances in fiber optic sensing technologies enable the accurate and reliable monitoring of strain and temperature in laboratory geotechnical tests. This paper outlines a centrifugal model test, performed using a 60 g ton geocentrifuge, to investigate the performance of pipe piles used to reinforce the loess foundation below a widened embankment. Prior to the test, quasidistributed fiber Bragg grating (FBG strain sensors were attached to the surface of the pipe piles to measure the lateral friction resistance in real time. Via the centrifuge actuator, the driving of pipe piles was simulated. During testing, the variations of skin friction distribution along the pipe piles were measured automatically using an optical fiber interrogator. This paper represents the presentation and detailed analysis of monitoring results. Herein, we verify the reliability of the fiber optic sensors in monitoring the model piles without affecting the integrity of the centrifugal model. This paper, furthermore, shows that lateral friction resistance developed in stages with the pipe piles being pressed in and that this sometimes may become negative.

  7. Textile composites based on natural fibers

    CSIR Research Space (South Africa)

    Li, Yan

    2009-04-01

    Full Text Available . The two kinds of fiber surface treatment methods were permanganate treatment and silane treatment. Vinyl ester was used as the matrix. The permeability values of sisal textile before and after fiber surface treatments are listed in Table 3. Comparisons... and more liquid resin flow through inter-bundles. Figure 4. Intra-bundle and inter-bundle flows As reported, permanganate, as an oxidant, can etch sisal fiber surface [20]. Scanning electronic micrograph of a permanganate treated sisal fiber...

  8. Micromechanical Modeling of Fiber-Reinforced Composites with Statistically Equivalent Random Fiber Distribution

    Directory of Open Access Journals (Sweden)

    Wenzhi Wang

    2016-07-01

    Full Text Available Modeling the random fiber distribution of a fiber-reinforced composite is of great importance for studying the progressive failure behavior of the material on the micro scale. In this paper, we develop a new algorithm for generating random representative volume elements (RVEs with statistical equivalent fiber distribution against the actual material microstructure. The realistic statistical data is utilized as inputs of the new method, which is archived through implementation of the probability equations. Extensive statistical analysis is conducted to examine the capability of the proposed method and to compare it with existing methods. It is found that the proposed method presents a good match with experimental results in all aspects including the nearest neighbor distance, nearest neighbor orientation, Ripley’s K function, and the radial distribution function. Finite element analysis is presented to predict the effective elastic properties of a carbon/epoxy composite, to validate the generated random representative volume elements, and to provide insights of the effect of fiber distribution on the elastic properties. The present algorithm is shown to be highly accurate and can be used to generate statistically equivalent RVEs for not only fiber-reinforced composites but also other materials such as foam materials and particle-reinforced composites.

  9. Development of a FBR fuel bundle-duct interaction analysis code-BAMBOO. Analysis model and verification by Phenix high burn-up fuel subassemblies

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ito, Masahiro; Ukai, Shigeharu

    2005-01-01

    The bundle-duct interaction analysis code ''BAMBOO'' has been developed for the purpose of predicting deformation of a wire-wrapped fuel pin bundle of a fast breeder reactor (FBR). The BAMBOO code calculates helical bowing and oval-distortion of all the fuel pins in a fuel subassembly. We developed deformation models in order to precisely analyze the irradiation induced deformation by the code: a model to analyze fuel pin self-bowing induced by circumferential gradient of void swelling as well as thermal expansion, and a model to analyze dispersion of the orderly arrangement of a fuel pin bundle. We made deformation analyses of high burn-up fuel subassemblies in Phenix reactor and compared the calculated results with the post irradiation examination data of these subassemblies for the verification of these models. From the comparison we confirmed that the calculated values of the oval-distortion and bowing reasonably agreed with the PIE results if these models were used in the analysis of the code. (author)

  10. Episodic payments (bundling): PART I.

    Science.gov (United States)

    Jacofsky, D J

    2017-10-01

    Episodic, or bundled payments, is a concept now familiar to most in the healthcare arena, but the models are often misunderstood. Under a traditional fee-for-service model, each provider bills separately for their services which creates financial incentives to maximise volumes. Under a bundled payment, a single entity, often referred to as a convener (maybe the hospital, the physician group, or a third party) assumes the risk through a payer contract for all services provided within a defined episode of care, and receives a single (bundled) payment for all services provided for that episode. The time frame around the intervention is variable, but defined in advance, as are included and excluded costs. Timing of the actual payment in a bundle may either be before the episode occurs (prospective payment model), or after the end of the episode through a reconciliation (retrospective payment model). In either case, the defined costs over the defined time frame are borne by the convener. Cite this article: Bone Joint J 2017;99-B:1280-5. ©2017 The British Editorial Society of Bone & Joint Surgery.

  11. Program Package for 3d PIC Model of Plasma Fiber

    Science.gov (United States)

    Kulhánek, Petr; Břeň, David

    2007-08-01

    A fully three dimensional Particle in Cell model of the plasma fiber had been developed. The code is written in FORTRAN 95, implementation CVF (Compaq Visual Fortran) under Microsoft Visual Studio user interface. Five particle solvers and two field solvers are included in the model. The solvers have relativistic and non-relativistic variants. The model can deal both with periodical and non-periodical boundary conditions. The mechanism of the surface turbulences generation in the plasma fiber was successfully simulated with the PIC program package.

  12. Distributed resistance model for the analysis of wire-wrapped rod bundles

    International Nuclear Information System (INIS)

    Ha, K. S.; Jung, H. Y.; Kwon, Y. M.; Jang, W. P.; Lee, Y. B.

    2003-01-01

    A partial flow blockage within a fuel assembly in liquid metal reactor may result in localized boiling or a failure of the fuel cladding. Thus, the precise analysis for the phenomenon is required for a safe design of LMR. MATRA-LMR code developed by KAERI models the flow distribution in an assembly by using the wire forcing function to consider the effects of wire-wrap spacers, which is important to the analysis for flow blockage. However, the wire forcing function does not have the capabilities of analysis when the flow blockage is occurred. And thus this model was altered to the distributed resistance model and the validation calculation was carried out against to the experiment of FFM 2A

  13. The thermalhydraulics of a pin bundle with a helical wire wrap spacer. Modeling and qualification for a new sub-assembly concept

    International Nuclear Information System (INIS)

    Valentin, B.

    2000-01-01

    For the sub-assembly composed by an hexcan and a pin bundle with an helical wire wrap spacer, the calculation of the maximum clad temperatures, with the design code CADET, imposed to correctly evaluate the heat and mass transfers due to the helical wire. The models use theoretical and experimental arguments which are presented after a brief description of the hydraulic behavior of a such bundle. The design of a new sub-assembly concept, in the framework of high plutonium consumption in fast reactor projects needs to qualify tile models from RAPSODIE, PHENIX and SUPER-PHENIX programs. The qualification program, which could be used, is described. the approach is notably comparative for the hydraulic fields and the past experimental results will be useful. Another approach is briefly presented. It uses a multidimensional code (TRIO) which solves Navier-Stokes equations. The utility and the limits of a such method are described. (author)

  14. Bundling into the future - Structural conditions for business model design in new ICT services

    DEFF Research Database (Denmark)

    Henten, Anders; Godø, Helge

    of services in terms of structural conditions market-wise and in regulatory terms. As the two service categories are relatively new on the market, dominating business model designs have not yet settled and the strategic choices of companies are still open. Being on the market, the discussion on the business......Based on a case study of multi-play and mobile voice over IP (MVoIP) in primarily Denmark and Norway, the paper presents an analysis of the structural conditions for the design of business models regarding new information and communication services. Multi-play and MVoIP represent different kinds...

  15. Polycation induced actin bundles

    OpenAIRE

    Muhlrad, Andras; Grintsevich, Elena E.; Reisler, Emil

    2011-01-01

    Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations an...

  16. Polycation induced actin bundles.

    Science.gov (United States)

    Muhlrad, Andras; Grintsevich, Elena E; Reisler, Emil

    2011-04-01

    Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Matrix remodeling between cells and cellular interactions with collagen bundle

    Science.gov (United States)

    Kim, Jihan; Sun, Bo

    When cells are surrounded by complex environment, they continuously probe and interact with it by applying cellular traction forces. As cells apply traction forces, they can sense rigidity of their local environment and remodel the matrix microstructure simultaneously. Previous study shows that single human carcinoma cell (MDA-MB-231) remodeled its surrounding extracellular matrix (ECM) and the matrix remodeling was reversible. In this study we examined the matrix microstructure between cells and cellular interaction between them using quantitative confocal microscopy. The result shows that the matrix microstructure is the most significantly remodeled between cells consisting of aligned, and densified collagen fibers (collagen bundle)., the result shows that collagen bundle is irreversible and significantly change micromechanics of ECM around the bundle. We further examined cellular interaction with collagen bundle by analyzing dynamics of actin and talin formation along with the direction of bundle. Lastly, we analyzed dynamics of cellular protrusion and migrating direction of cells along the bundle.

  18. Large eddy simulation of new subgrid scale model for three-dimensional bundle flows

    International Nuclear Information System (INIS)

    Barsamian, H.R.; Hassan, Y.A.

    2004-01-01

    Having led to increased inefficiencies and power plant shutdowns fluid flow induced vibrations within heat exchangers are of great concern due to tube fretting-wear or fatigue failures. Historically, scaling law and measurement accuracy problems were encountered for experimental analysis at considerable effort and expense. However, supercomputers and accurate numerical methods have provided reliable results and substantial decrease in cost. In this investigation Large Eddy Simulation has been successfully used to simulate turbulent flow by the numeric solution of the incompressible, isothermal, single phase Navier-Stokes equations. The eddy viscosity model and a new subgrid scale model have been utilized to model the smaller eddies in the flow domain. A triangular array flow field was considered and numerical simulations were performed in two- and three-dimensional fields, and were compared to experimental findings. Results show good agreement of the numerical findings to that of the experimental, and solutions obtained with the new subgrid scale model represent better energy dissipation for the smaller eddies. (author)

  19. Thick filament length and isoform composition determine self-organized contractile units in actomyosin bundles.

    Science.gov (United States)

    Thoresen, Todd; Lenz, Martin; Gardel, Margaret L

    2013-02-05

    Diverse myosin II isoforms regulate contractility of actomyosin bundles in disparate physiological processes by variations in both motor mechanochemistry and the extent to which motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study the contractility of minimal actomyosin bundles formed in vitro by mixtures of F-actin and thick filaments of nonmuscle, smooth, and skeletal muscle myosin isoforms with varied length. Diverse myosin II isoforms guide the self-organization of distinct contractile units within in vitro bundles with shortening rates similar to those of in vivo myofibrils and stress fibers. The tendency to form contractile units increases with the thick filament length, resulting in a bundle shortening rate proportional to the length of constituent myosin thick filament. We develop a model that describes our data, providing a framework in which to understand how diverse myosin II isoforms regulate the contractile behaviors of disordered actomyosin bundles found in muscle and nonmuscle cells. These experiments provide insight into physiological processes that use dynamic regulation of thick filament length, such as smooth muscle contraction. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Principal noncommutative torus bundles

    DEFF Research Database (Denmark)

    Echterhoff, Siegfried; Nest, Ryszard; Oyono-Oyono, Herve

    2008-01-01

    of bivariant K-theory (denoted RKK-theory) due to Kasparov. Using earlier results of Echterhoff and Williams, we shall give a complete classification of principal non-commutative torus bundles up to equivariant Morita equivalence. We then study these bundles as topological fibrations (forgetting the group...

  1. Modelling of the glass fiber length and the glass fiber length distribution in the compounding of short glass fiber-reinforced thermoplastics

    Science.gov (United States)

    Kloke, P.; Herken, T.; Schöppner, V.; Rudloff, J.; Kretschmer, K.; Heidemeyer, P.; Bastian, M.; Walther, Dridger, A.

    2014-05-01

    The use of short glass fiber-reinforced thermoplastics for the production of highly stressed parts in the plastics processing industry has experienced an enormous boom in the last few years. The reasons for this are primarily the improvements to the stiffness and strength properties brought about by fiber reinforcement. These positive characteristics of glass fiber-reinforced polymers are governed predominantly by the mean glass fiber length and the glass fiber length distribution. It is not enough to describe the properties of a plastics component solely as a function of the mean glass fiber length [1]. For this reason, a mathematical-physical model has been developed for describing the glass fiber length distribution in compounding. With this model, it is possible on the one hand to optimize processes for the production of short glass fiber-reinforced thermoplastics, and, on the other, to obtain information on the final distribution, on the basis of which much more detailed statements can be made about the subsequent properties of the molded part. Based on experimental tests, it was shown that this model is able to accurately describe the change in glass fiber length distribution in compounding.

  2. Assessment of a non-uniform heat flux correction model to predicting CHF in PWR rod bundles

    International Nuclear Information System (INIS)

    Dae-Hyun, Hwang; Sung-Quun, Zee

    2001-01-01

    author for the prediction of CHF in a boiling channel with nonuniform axial heat flux distributions. In this study, we assess the applicability of the proposed model for PWR rod bundles. (authors)

  3. Three-dimensional FEM model of FBGs in PANDA fibers with experimentally determined model parameters

    Science.gov (United States)

    Lindner, Markus; Hopf, Barbara; Koch, Alexander W.; Roths, Johannes

    2017-04-01

    A 3D-FEM model has been developed to improve the understanding of multi-parameter sensing with Bragg gratings in attached or embedded polarization maintaining fibers. The material properties of the fiber, especially Young's modulus and Poisson's ratio of the fiber's stress applying parts, are crucial for accurate simulations, but are usually not provided by the manufacturers. A methodology is presented to determine the unknown parameters by using experimental characterizations of the fiber and iterative FEM simulations. The resulting 3D-Model is capable of describing the change in birefringence of the free fiber when exposed to longitudinal strain. In future studies the 3D-FEM model will be employed to study the interaction of PANDA fibers with the surrounding materials in which they are embedded.

  4. Compressive failure model for fiber composites by kink band initiation from obliquely aligned, shear-dislocated fiber breaks

    Energy Technology Data Exchange (ETDEWEB)

    Bai, J.; Phoenix, S.L. [Cornell University, Ithaca, NY (United States). Dept. of Theoretical and Applied Mechanics

    2005-04-01

    Predicting compressive failure of a unidirectional fibrous composite is a longstanding and challenging problem that we study from a new perspective. Motivated by previous modelling of tensile failure as well as experimental observations on compressive failures in single carbon fibers, we develop a new micromechanical model for the compressive failure process in unidirectional, planar composites. As the compressive load is increased, random fiber failures are assumed to occur due to statistically distributed flaws, analogous to what occurs in tension. These breaks are often shear-mode failures with slanted surfaces that induce shear dislocations, especially when they occur in small groups aligned obliquely. Our model includes interactions of dislocated and neighboring intact fibers through a system of fourth-order, differential equations governing transverse deformation, and also allows for local matrix plastic yielding and debonding from the fiber near and within the dislocation arrays. Using the Discrete Fourier Transform method, we find a 'building-block' analytical solution form, which naturally embodies local length scales of fiber microbuckling and instability. Based on the influence function, superposition approach, a computationally efficient scheme is developed to model the evolution of fiber and matrix stresses. Under increasing compressive strain the simulations show that matrix yielding and debonding crucially lead to large increases in bending strains in fibers next to small groups of obliquely aligned, dislocated breaks. From the paired locations of maximum fiber bending in flanking fibers, the triggering of an unstable kink band becomes realistic. The geometric features of the kink band, such as the fragment lengths and orientation angles, will depend on the fiber and matrix mechanical and geometric properties. In carbon fiber-polymer matrix systems our model predicts a much lower compressive failure stress than obtained from Rosen

  5. Unidirectional high fiber content composites: Automatic 3D FE model generation and damage simulation

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    A new method and a software code for the automatic generation of 3D micromechanical FE models of unidirectional long-fiber-reinforced composite (LFRC) with high fiber volume fraction with random fiber arrangement are presented. The fiber arrangement in the cross-section is generated through random...

  6. Silkworm cocoons inspire models for random fiber and particulate composites

    Energy Technology Data Exchange (ETDEWEB)

    Fujia, Chen; Porter, David; Vollrath, Fritz [Department of Zoology, University of Oxford, Oxford OX1 3PS (United Kingdom)

    2010-10-15

    The bioengineering design principles evolved in silkworm cocoons make them ideal natural prototypes and models for structural composites. Cocoons depend for their stiffness and strength on the connectivity of bonding between their constituent materials of silk fibers and sericin binder. Strain-activated mechanisms for loss of bonding connectivity in cocoons can be translated directly into a surprisingly simple yet universal set of physically realistic as well as predictive quantitative structure-property relations for a wide range of technologically important fiber and particulate composite materials.

  7. Competitive nonlinear pricing and bundling

    OpenAIRE

    Armstrong, Mark; Vickers, John

    2006-01-01

    We examine the impact of multiproduct nonlinear pricing on profit, consumer surplus and welfare in a duopoly. When consumers buy all their products from one firm (the one-stop shopping model), nonlinear pricing leads to higher profit and welfare, but often lower consumer surplus, than linear pricing. By contrast, in a unit-demand model where consumers may buy one product from one firm and another product from another firm, bundling generally acts to reduce profit and welfare and to boost cons...

  8. A fiber bridging model for fatigue delamination in composite materials

    International Nuclear Information System (INIS)

    Gregory, Jeremy R.; Spearing, S. Mark

    2004-01-01

    A fiber bridging model has been created to examine the effects of bridging on Mode I delamination fatigue fracture in a carbon fiber polymer-matrix composite. The model uses a cohesive zone law that is derived from quasi-static R-curves to determine the bridging energy applied in the bridged region. Timoshenko beam theory and an iterative self-consistent scheme are used to calculate the bridging tractions and displacements. After applying the bridging model to crack propagation data the scatter in the data was significantly reduced and clear trends were observed as a function of temperature that were not apparent previously. This indicated that the model appropriately accounted for the bridging in the experiments. Scanning electron microscopy crack opening displacement measurements were performed to validate the model's predictions. The measurements showed that the predictions were close to the actual bridging levels in the specimen

  9. Assessment of left ventricular mechanical dyssynchrony in left bundle branch block canine model: Comparison between cine and tagged MRI.

    Science.gov (United States)

    Saporito, Salvatore; van Assen, Hans C; Houthuizen, Patrick; Aben, Jean-Paul M M; Strik, Marc; van Middendorp, Lars B; Prinzen, Frits W; Mischi, Massimo

    2016-10-01

    To compare cine and tagged magnetic resonance imaging (MRI) for left ventricular dyssynchrony assessment in left bundle branch block (LBBB), using the time-to-peak contraction timing, and a novel approach based on cross-correlation. We evaluated a canine model dataset (n = 10) before (pre-LBBB) and after induction of isolated LBBB (post-LBBB). Multislice short-axis tagged and cine MRI images were acquired using a 1.5 T scanner. We computed contraction time maps by cross-correlation, based on the timing of radial wall motion and of circumferential strain. Finally, we estimated dyssynchrony as the standard deviation of the contraction time over the different regions of the myocardium. Induction of LBBB resulted in a significant increase in dyssynchrony (cine: 13.0 ± 3.9 msec for pre-LBBB, and 26.4 ± 5.0 msec for post-LBBB, P = 0.005; tagged: 17.1 ± 5.0 msec at for pre-LBBB, and 27.9 ± 9.8 msec for post-LBBB, P = 0.007). Dyssynchrony assessed by cine and tagged MRI were in agreement (r = 0.73, P = 0.0003); differences were in the order of time difference between successive frames of 20 msec (bias: -2.9 msec; limit of agreement: 10.1 msec). Contraction time maps were derived; agreement was found in the contraction patterns derived from cine and tagged MRI (mean difference in contraction time per segment: 3.6 ± 13.7 msec). This study shows that the proposed method is able to quantify dyssynchrony after induced LBBB in an animal model. Cine-assessed dyssynchrony agreed with tagged-derived dyssynchrony, in terms of magnitude and spatial direction. J. MAGN. RESON. IMAGING 2016;44:956-963. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Computational model of spalling and effective fibers on toughening in fiber reinforced composites at an early stage of crack formation

    Directory of Open Access Journals (Sweden)

    Chong Wang

    Full Text Available This work suggests a computational model that takes account of effective fibers on toughening in FRC at an early stage of crack formation. We derived the distribution of pressure provoked by a random inclined fiber in the matrix and calculated stresses through integrating the pressure and tangent stress along the fiber/matrix interface with the Kelvin's fundamental solution and the Mindlin's complementary solution. The evolution of spalling in the matrix was traced. The percentages of effective fibers were evaluated with variations in strength, interface resistance, diameter and elasticity modulus. The main conclusion is that low elasticity modulus combined high strength of fibers raises dramatically the effective fibers, which would benefit toughening.

  11. Fiber-coupling efficiency of Gaussian-Schell model beams through an ocean to fiber optical communication link

    Science.gov (United States)

    Hu, Beibei; Shi, Haifeng; Zhang, Yixin

    2018-06-01

    We theoretically study the fiber-coupling efficiency of Gaussian-Schell model beams propagating through oceanic turbulence. The expression of the fiber-coupling efficiency is derived based on the spatial power spectrum of oceanic turbulence and the cross-spectral density function. Our work shows that the salinity fluctuation has a greater impact on the fiber-coupling efficiency than temperature fluctuation does. We can select longer λ in the "ocean window" and higher spatial coherence of light source to improve the fiber-coupling efficiency of the communication link. We also can achieve the maximum fiber-coupling efficiency by choosing design parameter according specific oceanic turbulence condition. Our results are able to help the design of optical communication link for oceanic turbulence to fiber sensor.

  12. Fiber

    Science.gov (United States)

    ... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, cooked artichokes, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...

  13. Evaluation of droplet deposition in rod bundle

    International Nuclear Information System (INIS)

    Ji, W.; Gu, C.Y.; Anglart, H.

    1997-01-01

    Deposition model for droplets in gas droplet two-phase flow in rod bundle is developed in this work using the Lagrangian method. The model is evaluated in a 9-rod bundle geometry. The deposition coefficient in the bundle geometry are compared with that in round tube. The influences of the droplet size and gas mass flow rate on deposition coefficient are investigated. Furthermore, the droplet motion is studied in more detail by dividing the bundle channel into sub-channels. The results show that the overall deposition coefficient in the bundle geometry is close to that in the round tube with the diameter equal to the bundle hydraulic diameter. The calculated deposition coefficient is found to be higher for higher gas mass flux and smaller droplets. The study in the sub-channels show that the ratio between the local deposition coefficient for a sub-channel and the averaged value for the whole bundle is close to a constant value, deviations from the mean value for all the calculated cases being within the range of ±13%. (author)

  14. An applied investigation of kenaf-based fiber/polymer composites as potential lightweight materials for automotive components

    Science.gov (United States)

    Du, Yicheng

    Natural fibers have the potential to replace glass fibers in fiber-reinforced composite applications. However, the natural fibers' intrinsic properties cause these issues: (1) the mechanical property variation; (2) moisture uptake by natural fibers and their composites; (3) lack of sound, cost-effective, environment-friendly fiber-matrix compounding processes; (4) incompatibility between natural fibers and polymer matrices; and (5) low heat-resistance of natural fibers and their composites. This dissertation systematically studied the use of kenaf bast fiber bundles, obtained via a mechanical retting method, as a light-weight reinforcement material for fiber-reinforced thermoset polymer composites for automotive applications. Kenaf bast fiber bundle tensile properties were tested, and the effects of locations in the kenaf plant, loading rates, retting methods, and high temperature treatments and their durations on kenaf bast fiber bundle tensile properties were evaluated. A process has been developed for fabricating high fiber loading kenaf bast fiber bundle-reinforced unsaturated polyester composites. The generated composites possessed high elastic moduli and their tensile strengths were close to specification requirements for glass fiber-reinforced sheet molding compounds. Effects of fiber loadings and lengths on resultant composite's tensile properties were evaluated. Fiber loadings were very important for composite tensile modulus. Both fiber loadings and fiber lengths were important for composite tensile strengths. The distributions of composite tensile, flexural and impact strengths were analyzed. The 2-parameter Weibull model was found to be the most appropriate for describing the composite strength distributions and provided the most conservative design values. Kenaf-reinforced unsaturated polyester composites were also proved to be more cost-effective than glass fiber-reinforced SMCs at high fiber loadings. Kenaf bast fiber bundle-reinforced composite

  15. Burnout experiments with 6 x 6, 8 x 8 and 7 x 7 rod bundle test sections using freon as model fluid

    International Nuclear Information System (INIS)

    Fulfs, H.; Katsaounis, A.; Minden, C.v.

    1976-01-01

    This paper reports on burnout experiments at staedy state condition using Freon12 as model fluid. The experiments were carried out with three test sections with 6 x 6, 8 x 8 and 7 x 7 rod bundles. The axial flux distribution of the rods is either constant or reactor like. The transformed measured points using STEVENS and BOURE scaling factors to equivalent water conditions respectively, were compared to the burnout correlation W3 using the reactor layout program DYNAMIT. The DYNAMIT code is a thermohydraulic lay-out reactor program without consideration of mixing flow between the subchannels. (orig.) [de

  16. Analytical Modeling Tool for Design of Hydrocarbon Sensitive Optical Fibers.

    Science.gov (United States)

    Al Handawi, Khalil; Vahdati, Nader; Shiryayev, Oleg; Lawand, Lydia

    2017-09-28

    Pipelines are the main transportation means for oil and gas products across large distances. Due to the severe conditions they operate in, they are regularly inspected using conventional Pipeline Inspection Gages (PIGs) for corrosion damage. The motivation for researching a real-time distributed monitoring solution arose to mitigate costs and provide a proactive indication of potential failures. Fiber optic sensors with polymer claddings provide a means of detecting contact with hydrocarbons. By coating the fibers with a layer of metal similar in composition to that of the parent pipeline, corrosion of this coating may be detected when the polymer cladding underneath is exposed to the surrounding hydrocarbons contained within the pipeline. A Refractive Index (RI) change occurs in the polymer cladding causing a loss in intensity of a traveling light pulse due to a reduction in the fiber's modal capacity. Intensity losses may be detected using Optical Time Domain Reflectometry (OTDR) while pinpointing the spatial location of the contact via time delay calculations of the back-scattered pulses. This work presents a theoretical model for the above sensing solution to provide a design tool for the fiber optic cable in the context of hydrocarbon sensing following corrosion of an external metal coating. Results are verified against the experimental data published in the literature.

  17. Steel fiber reinforced concrete behavior, modelling and design

    CERN Document Server

    Singh, Harvinder

    2017-01-01

    This book discusses design aspects of steel fiber-reinforced concrete (SFRC) members, including the behavior of the SFRC and its modeling. It also examines the effect of various parameters governing the response of SFRC members in detail. Unlike other publications available in the form of guidelines, which mainly describe design methods based on experimental results, it describes the basic concepts and principles of designing structural members using SFRC as a structural material, predominantly subjected to flexure and shear. Although applications to special structures, such as bridges, retaining walls, tanks and silos are not specifically covered, the fundamental design concepts remain the same and can easily be extended to these elements. It introduces the principles and related theories for predicting the role of steel fibers in reinforcing concrete members concisely and logically, and presents various material models to predict the response of SFRC members in detail. These are then gradually extended to d...

  18. Shear Behavior Models of Steel Fiber Reinforced Concrete Beams Modifying Softened Truss Model Approaches.

    Science.gov (United States)

    Hwang, Jin-Ha; Lee, Deuck Hang; Ju, Hyunjin; Kim, Kang Su; Seo, Soo-Yeon; Kang, Joo-Won

    2013-10-23

    Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC) members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%-1.5%, in terms of shear performance.

  19. Shear Behavior Models of Steel Fiber Reinforced Concrete Beams Modifying Softened Truss Model Approaches

    Directory of Open Access Journals (Sweden)

    Joo-Won Kang

    2013-10-01

    Full Text Available Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%–1.5%, in terms of shear performance.

  20. Bundled payment fails to gain a foothold In California: the experience of the IHA bundled payment demonstration.

    Science.gov (United States)

    Ridgely, M Susan; de Vries, David; Bozic, Kevin J; Hussey, Peter S

    2014-08-01

    To determine whether bundled payment could be an effective payment model for California, the Integrated Healthcare Association convened a group of stakeholders (health plans, hospitals, ambulatory surgery centers, physician organizations, and vendors) to develop, through a consensus process, the methods and means of implementing bundled payment. In spite of a high level of enthusiasm and effort, the pilot did not succeed in its goal to implement bundled payment for orthopedic procedures across multiple payers and hospital-physician partners. An evaluation of the pilot documented a number of barriers, such as administrative burden, state regulatory uncertainty, and disagreements about bundle definition and assumption of risk. Ultimately, few contracts were signed, which resulted in insufficient volume to test hypotheses about the impact of bundled payment on quality and costs. Although bundled payment failed to gain a foothold in California, the evaluation provides lessons for future bundled payment initiatives. Project HOPE—The People-to-People Health Foundation, Inc.

  1. Multi-dimensional modeling of two-phase flow in rod bundles and interpretation of velocities measured in BWRs by the cross-correlation technique

    International Nuclear Information System (INIS)

    Analytis, G.Th.; Luebbesmeyer, D.

    1984-04-01

    The authors present an as precise as possible interpretation of velocity measurements in BWRs by the cross-correlation technique, which is based on the radially non-uniform quality and velocity distribution in BWR type bundles, as well as on our knowledge about the spatial 'field of view' of the in-core neutron detectors. After formulating the three-dimensional two-fluid model volume/time averaged equations and pointing out some problems associated with averaging, they expound a little on the turbulence mixing and void drift effects, as well as on the way they are modelled in advanced subchannel analysis codes like THERMIT or COBRA-TF. Subsequently, some comparisons are made between axial velocities measured in a commercial BWR by neutron noise analysis, and the steam velocities of the four subchannels nearest to the instrument tube of one of the four bundles as predicted by COBRA-III and by THERMIT. Although as expected, for well-known reasons, COBRA-III predicts subchannel steam velocities which are close to each other, THERMIT correctly predicts in the upper half of the core three largely different steam velocities in the three different types of BW0 subchannels (corner, edge and interior). (Auth.)

  2. 3D Viscoelastic Finite Element Modelling of Polymer Flow in the Fiber Drawing Process for Microstructured Polymer Optical Fiber Fabrication

    DEFF Research Database (Denmark)

    Fasano, Andrea; Rasmussen, Henrik K.; Marín, J. M. R.

    2015-01-01

    The process of drawing an optical fiber from a polymer preform is still not completely understood,although it represents one of the most critical steps in the process chain for the fabrication of microstructuredpolymer optical fibers (mPOFs). Here we present a new approach for the numerical...... modelling of the fiber drawingprocess using a fully three-dimensional and time-dependent finite element method, giving significant insightinto this widely spread mPOF production technique. Our computational predictions are physically based on theviscoelastic fluid dynamics of polymers. Until now...

  3. Dynamic behaviour of FBR fuel pin bundles

    International Nuclear Information System (INIS)

    Martin, P.H.; Van Dorsselaere, J.P.; Ravenet, A.

    1990-01-01

    A programme of shock tests on a fast neutron reactor subassembly model (SPX1 geometry) including a complete bundle of fuel pins (dummy elements) is being carried out in the BELIER test facility at Cadarache. The purpose of these tests is: to determine the distribution of dynamic forces applied to the fuel rod clads under the impact conditions encountered in a reactor during a earthquake; to reduce as much as possible the conservatism of the methods presently used for the calculation of those forces. The test programme, now being completed, consists of the following steps: impacts on the mock-up in air with an non-compact bundle (situation of the subassembly at beginning of life (BOL) with clearances within the bundle); impacts under the same conditions but with fluid (water) in the subassembly; impacts on the mock-up in air and with a compacted bundle (simulating the conditions of an end-of-life (EOL) bundle with no clearance within the bundle). The accelerations studied in these tests cover the range encountered in design calculations for the subassembly frequencies in beam mode. (author)

  4. Compactifications of the Heterotic string with unitary bundles

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, T.

    2006-05-23

    In this thesis we investigate a large new class of four-dimensional supersymmetric string vacua defined as compactifications of the E{sub 8} x E{sub 8} and the SO(32) heterotic string on smooth Calabi-Yau threefolds with unitary gauge bundles and heterotic five-branes. The first part of the thesis discusses the implementation of this idea into the E{sub 8} x E{sub 8} heterotic string. After specifying a large class of group theoretic embeddings featuring unitary bundles, we analyse the effective four-dimensional N=1 supergravity upon compactification. From the gauge invariant Kaehler potential for the moduli fields we derive a modification of the Fayet-Iliopoulos D-terms arising at one-loop in string perturbation theory. From this we conjecture a one-loop deformation of the Hermitian Yang-Mills equation and introduce the idea of {lambda}-stability as the perturbatively correct stability concept generalising the notion of Mumford stability valid at tree-level. We then proceed to a definition of SO(32) heterotic vacua with unitary gauge bundles in the presence of heterotic five-branes and find agreement of the resulting spectrum with the S-dual framework of Type I/Type IIB orientifolds. A similar analysis of the effective four-dimensional supergravity is performed. Further evidence for the proposed one-loop correction to the stability condition is found by identifying the heterotic corrections as the S-dual of the perturbative part of {pi}-stability as the correct stability concept in Type IIB theory. After reviewing the construction of holomorphic stable vector bundles on elliptically fibered Calabi-Yau manifolds via spectral covers, we provide semi-realistic examples for SO(32) heterotic vacua with Pati-Salam and MSSM-like gauge sectors. We finally discuss the construction of realistic vacua with flipped SU(5) GUT and MSSM gauge group within the E{sub 8} x E{sub 8} framework, based on the embedding of line bundles into both E{sub 8} factors. Some of the appealing

  5. Flow in rod bundles

    International Nuclear Information System (INIS)

    Hazi, G.; Mayer, G.

    2005-01-01

    For power upgrading VVER-440 reactors we need to know exactly how the temperature measured by the thermocouples is related to the average outlet temperature of the fuel assemblies. Accordingly, detailed knowledge on mixing process in the rod bundles and in the fuel assembly head have great importance. Here we study the hydrodynamics of rod bundles based on the results of direct numerical and large eddy simulation of flows in subchannels. It is shown that secondary flow and flow pulsation phenomena can be observed using both methodologies. Some consequences of these observations are briefly discussed. (author)

  6. Analytical Modeling Tool for Design of Hydrocarbon Sensitive Optical Fibers

    Directory of Open Access Journals (Sweden)

    Khalil Al Handawi

    2017-09-01

    Full Text Available Pipelines are the main transportation means for oil and gas products across large distances. Due to the severe conditions they operate in, they are regularly inspected using conventional Pipeline Inspection Gages (PIGs for corrosion damage. The motivation for researching a real-time distributed monitoring solution arose to mitigate costs and provide a proactive indication of potential failures. Fiber optic sensors with polymer claddings provide a means of detecting contact with hydrocarbons. By coating the fibers with a layer of metal similar in composition to that of the parent pipeline, corrosion of this coating may be detected when the polymer cladding underneath is exposed to the surrounding hydrocarbons contained within the pipeline. A Refractive Index (RI change occurs in the polymer cladding causing a loss in intensity of a traveling light pulse due to a reduction in the fiber’s modal capacity. Intensity losses may be detected using Optical Time Domain Reflectometry (OTDR while pinpointing the spatial location of the contact via time delay calculations of the back-scattered pulses. This work presents a theoretical model for the above sensing solution to provide a design tool for the fiber optic cable in the context of hydrocarbon sensing following corrosion of an external metal coating. Results are verified against the experimental data published in the literature.

  7. Modeling and Simulation of Fiber Orientation in Injection Molding of Polymer Composites

    Directory of Open Access Journals (Sweden)

    Jang Min Park

    2011-01-01

    Full Text Available We review the fundamental modeling and numerical simulation for a prediction of fiber orientation during injection molding process of polymer composite. In general, the simulation of fiber orientation involves coupled analysis of flow, temperature, moving free surface, and fiber kinematics. For the governing equation of the flow, Hele-Shaw flow model along with the generalized Newtonian constitutive model has been widely used. The kinematics of a group of fibers is described in terms of the second-order fiber orientation tensor. Folgar-Tucker model and recent fiber kinematics models such as a slow orientation model are discussed. Also various closure approximations are reviewed. Therefore, the coupled numerical methods are needed due to the above complex problems. We review several well-established methods such as a finite-element/finite-different hybrid scheme for Hele-Shaw flow model and a finite element method for a general three-dimensional flow model.

  8. Constitutive modeling of fiber-reinforced cement composites

    Science.gov (United States)

    Boulfiza, Mohamed

    The role of fibers in the enhancement of the inherently low tensile stress and strain capacities of fiber reinforced cementitious composites (FRC) has been addressed through both the phenomenological, using concepts of continuum damage mechanics, and micro-mechanical approaches leading to the development of a closing pressure that could be used in a cohesive crack analysis. The observed enhancements in the matrix behavior is assumed to be related to the ability of the material to transfer stress across cracks. In the micromechanics approach, this is modeled by the introduction of a nonlinear closing pressure at the crack lips. Due to the different nature of cracking in the pre-peak and post peak regimes, two different micro-mechanical models of the cohesive pressure have been proposed, one for the strain hardening stage and another for the strain softening regime. This cohesive pressure is subsequently incorporated into a finite element code so that a nonlinear fracture analysis can be carried out. On top of the fact that a direct fracture analysis has been performed to predict the response of some FRC structural elements, a numerical procedure for the homogenization of FRC materials has been proposed. In this latter approach, a link is established between the cracking taking place at the meso-scale and its mechanical characteristics as represented by the Young's modulus. A parametric study has been carried out to investigate the effect of crack patterning and fiber volume fractions on the overall Young's modulus and the thermodynamic force associated with the tensorial damage variable. After showing the usefulness and power of phenomenological continuum damage mechanics (PCDM) in the prediction of ERC materials' response to a stimuli (loading), a combined PCDM-NLFMsp1 approach is proposed to model (predict, forecast) the complete response of the composite up to failure. Based on experimental observations, this approach assumes that damage mechanics which predicts

  9. Experimental and numerical investigations of BWR fuel bundle inlet flow

    International Nuclear Information System (INIS)

    Hoashi, E; Morooka, S; Ishitori, T; Komita, H; Endo, T; Honda, H; Yamamoto, T; Kato, T; Kawamura, S

    2009-01-01

    We have been studying the mechanism of the flow pattern near the fuel bundle inlet of BWR using both flow visualization test and computational fluid dynamics (CFD) simulation. In the visualization test, both single- and multi-bundle test sections were used. The former test section includes only a corner orifice facing two support beams and the latter simulates 16 bundles surrounded by four beams. An observation window is set on the side of the walls imitating the support beams upstream of the orifices in both test sections. In the CFD simulation, as well as the visualization test, the single-bundle model is composed of one bundle with a corner orifice and the multi-bundle model is a 1/4 cut of the test section that includes 4 bundles with the following four orifices: a corner orifice facing the corner of the two neighboring support beams, a center orifice at the opposite side from the corner orifice, and two side orifices. Twin-vortices were observed just upstream of the corner orifice in the multi-bundle test as well as the single-bundle test. A single-vortex and a vortex filament were observed at the side orifice inlet and no vortex was observed at the center orifice. These flow patterns were also predicted in the CFD simulation using Reynolds Stress Model as a turbulent model and the results were in good agreement with the test results mentioned above. (author)

  10. Irradiated fuel bundle counter

    International Nuclear Information System (INIS)

    Campbell, J.W.; Todd, J.L.

    1975-01-01

    The design of a prototype safeguards instrument for determining the number of irradiated fuel assemblies leaving an on-power refueled reactor is described. Design details include radiation detection techniques, data processing and display, unattended operation capabilities and data security methods. Development and operating history of the bundle counter is reported. (U.S.)

  11. Irradiated fuel bundle counter

    International Nuclear Information System (INIS)

    Campbell, J.W.; Todd, J.L.

    1975-01-01

    The design of a prototype safeguards instrument for determining the number of irradiated fuel assemblies leaving an on-power refueled reactor is described. Design details include radiation detection techniques, data processing and display, unattended operation capabilities and data security methods. Development and operating history of the bundle counter is reported

  12. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  13. Kernel bundle EPDiff

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Lauze, Francois Bernard; Nielsen, Mads

    2011-01-01

    In the LDDMM framework, optimal warps for image registration are found as end-points of critical paths for an energy functional, and the EPDiff equations describe the evolution along such paths. The Large Deformation Diffeomorphic Kernel Bundle Mapping (LDDKBM) extension of LDDMM allows scale space...

  14. Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles

    Science.gov (United States)

    Rickman, S. L.; Iamello, C. J.

    2016-01-01

    Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.

  15. Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; W. Gutmann, Ingomar; Koch, Thomas

    2016-01-01

    The aim of this paper is the understanding of the fiber orientation by investigations in respect to the inner configuration of a polylactic acid matrix reinforced with short carbon fibers after a fused deposition modeling extrusion process. The final parts were analyzed by X-ray, tomography......, and magnetic resonance imaging allowing a resolved orientation of the fibers and distribution within the part. The research contributes to the understanding of the fiber orientation and fiber reinforcement of fused deposition modeling parts in additive manufacturing....

  16. Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    A statistical computational model of strength and damage of unidirectional carbon fiber reinforced composites under compressive and cyclic compressive loading is presented in this paper. The model is developed on the basis of the Budiansky–Fleck fiber kinking condition, continuum damage mechanics...... concept and the Monte-Carlo method. The effects of fiber misalignment variability, fiber clustering, load sharing rules on the damage in composite are studied numerically. It is demonstrated that the clustering of fibers has a negative effect of the damage resistance of a composite. Further, the static...

  17. Bundled payment and enhanced recovery after surgery.

    Science.gov (United States)

    Huang, Jeffrey

    2015-01-01

    Medicare's fee-for-service (FFS) payment model may contribute to unsustainable spending growth. Payers are turning to alternative payment methods. The leading alternative payment model to the FFS problem is bundled payment. The Centers for Medicare & Medicaid Services (CMS) is taking another step to improve healthcare quality at lower cost. The CMS's Center for Medicare and Medicaid Innovation developed four models of bundled payments and 48 discrete clinical condition episodes. Many surgical care procedures are included in the 48 different clinical condition episodes.

  18. A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: Modeling and experimental validation

    International Nuclear Information System (INIS)

    Zhang, Li-Zhi; Zhang, Ning

    2014-01-01

    A compression heat pump driven and membrane-based liquid desiccant air dehumidification system is presented. The dehumidifier and the regenerator are made of two hollow fiber membrane bundles packed in two shells. Water vapor can permeate through these membranes effectively, while the liquid desiccant droplets are prevented from cross-over. Simultaneous heating and cooling of the salt solution are realized with a heat pump system to improve energy efficiency. In this research, the system is built up and a complete modeling is performed for the system. Heat and mass transfer processes in the membrane modules, as well as in the evaporator, the condenser, and other key components are modeled in detail. The whole model is validated by experiment. The performances of SDP (specific dehumidification power), dehumidification efficiency, EER (energy efficiency ratio) of heat pump, and the COP (coefficient of performance) of the system are investigated numerically and experimentally. The results show that the model can predict the system accurately. The dehumidification capabilities and the energy efficiencies of the system are high. Further, it performs well even under the harsh hot and humid South China weather conditions. - Highlights: • A membrane-based and heat pump driven air dehumidification system is proposed. • A real experimental set up is built and used to validate the model for the whole system. • Performance under design and varying operation conditions is investigated. • The system performs well even under harsh hot and humid conditions

  19. Strain Rate Dependent Behavior and Modeling for Compression Response of Hybrid Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    S.M. Ibrahim

    Full Text Available Abstract This paper investigates the stress-strain characteristics of Hybrid fiber reinforced concrete (HFRC composites under dynamic compression using Split Hopkinson Pressure Bar (SHPB for strain rates in the range of 25 to 125 s-1. Three types of fibers - hooked ended steel fibers, monofilament crimped polypropylene fibers and staple Kevlar fibers were used in the production of HFRC composites. The influence of different fibers in HFRC composites on the failure mode, dynamic increase factor (DIF of strength, toughness and strain are also studied. Degree of fragmentation of HFRC composite specimens increases with increase in the strain rate. Although the use of high percentage of steel fibers leads to the best performance but among the hybrid fiber combinations studied, HFRC composites with relatively higher percentage of steel fibers and smaller percentage of polypropylene and Kevlar fibers seem to reflect the equally good synergistic effects of fibers under dynamic compression. A rate dependent analytical model is proposed for predicting complete stress-strain curves of HFRC composites. The model is based on a comprehensive fiber reinforcing index and complements well with the experimental results.

  20. Modeling of Hollow-Fiber Membrane System During Ultrafiltration

    International Nuclear Information System (INIS)

    EI-Bialy, S.H.

    2004-01-01

    The present study aims to evaluate the performance of hollow fiber membrane module during ultrafiltration of aqueous solutions. The model is represented by a set of differential equations for permeate and residue pressure drop and volumetric flow rates in the axial direction, beside the principle equations of both solvent and solute fluxes through the membrane, while osmotic pressure was neglected in model equations. The shell and tube module type was considered where feed pass in the shell and permeate in the bore side. Tortousily factor of membrane pores in addition to concentration polarization modulus were taken into account in calculations. The model was solved numerically with the help of suitable program in both co current and countercurrent flow pattern and comparison of results were carried out

  1. Large eddy simulation of bundle turbulent flows

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Barsamian, H.R.

    1995-01-01

    Large eddy simulation may be defined as simulation of a turbulent flow in which the large scale motions are explicitly resolved while the small scale motions are modeled. This results into a system of equations that require closure models. The closure models relate the effects of the small scale motions onto the large scale motions. There have been several models developed, the most popular is the Smagorinsky eddy viscosity model. A new model has recently been introduced by Lee that modified the Smagorinsky model. Using both of the above mentioned closure models, two different geometric arrangements were used in the simulation of turbulent cross flow within rigid tube bundles. An inlined array simulations was performed for a deep bundle (10,816 nodes) as well as an inlet/outlet simulation (57,600 nodes). Comparisons were made to available experimental data. Flow visualization enabled the distinction of different characteristics within the flow such as jet switching effects in the wake of the bundle flow for the inlet/outlet simulation case, as well as within tube bundles. The results indicate that the large eddy simulation technique is capable of turbulence prediction and may be used as a viable engineering tool with the careful consideration of the subgrid scale model. (author)

  2. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1I4895T/wt mouse model of core myopathy

    International Nuclear Information System (INIS)

    Zvaritch, Elena; MacLennan, David H.

    2015-01-01

    Muscle spindles from the hind limb muscles of adult Ryr1 I4895T/wt (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed

  3. Optical Fibre Bundle

    CERN Multimedia

    These are sample fibre optic cables which are used for networking. Optical fibers are widely used in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data rates) than wire cables. Fibers are used instead of metal wires because signals travel along them with less loss and are also immune to electromagnetic interference. This is useful for somewhere like CERN where magnets with their highly powerful magnetic fields could pose a problem.

  4. Contact stresses modeling at the Panda-type fiber single-layer winding and evaluation of their impact on the fiber optic properties

    Science.gov (United States)

    Lesnikova, Yu I.; Smetannikov, O. Yu; Trufanov, A. N.; Trufanov, N. A.

    2017-02-01

    The impact of contact transverse forces on the birefringence of the single-mode polarization-maintaining Panda-type fiber is numerically modeled. It has been established that with a single-row power winding on a cylindrical mandrel, the fiber tension at winding is the principal factor that influences birefringence. When coiling the fiber based on the local defect microbending, the birefringence at the microbending point differs from that of the free fiber by 1.3%.

  5. Right bundle branch block

    DEFF Research Database (Denmark)

    Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse

    2013-01-01

    AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included...... in the Copenhagen City Heart Study examined in 1976-2003 free from previous myocardial infarction (MI), chronic heart failure, and left bundle branch block through registry linkage until 2009 for all-cause mortality and cardiovascular outcomes. The prevalence of RBBB/IRBBB was higher in men (1.4%/4.7% in men vs. 0.......5%/2.3% in women, P block was associated with significantly...

  6. Optical modeling of fiber organic photovoltaic structures using a transmission line method.

    Science.gov (United States)

    Moshonas, N; Stathopoulos, N A; O'Connor, B T; Bedeloglu, A Celik; Savaidis, S P; Vasiliadis, S

    2017-12-01

    An optical model has been developed and evaluated for the calculation of the external quantum efficiency of cylindrical fiber photovoltaic structures. The model is based on the transmission line theory and has been applied on single and bulk heterojunction fiber-photovoltaic cells. Using this model, optimum design characteristics have been proposed for both configurations, and comparison with experimental results has been assessed.

  7. Dual permeability FEM models for distributed fiber optic sensors development

    Science.gov (United States)

    Aguilar-López, Juan Pablo; Bogaard, Thom

    2017-04-01

    Fiber optic cables are commonly known for being robust and reliable mediums for transferring information at the speed of light in glass. Billions of kilometers of cable have been installed around the world for internet connection and real time information sharing. Yet, fiber optic cable is not only a mean for information transfer but also a way to sense and measure physical properties of the medium in which is installed. For dike monitoring, it has been used in the past for detecting inner core and foundation temperature changes which allow to estimate water infiltration during high water events. The DOMINO research project, aims to develop a fiber optic based dike monitoring system which allows to directly sense and measure any pore pressure change inside the dike structure. For this purpose, questions like which location, how many sensors, which measuring frequency and which accuracy are required for the sensor development. All these questions may be initially answered with a finite element model which allows to estimate the effects of pore pressure change in different locations along the cross section while having a time dependent estimation of a stability factor. The sensor aims to monitor two main failure mechanisms at the same time; The piping erosion failure mechanism and the macro-stability failure mechanism. Both mechanisms are going to be modeled and assessed in detail with a finite element based dual permeability Darcy-Richards numerical solution. In that manner, it is possible to assess different sensing configurations with different loading scenarios (e.g. High water levels, rainfall events and initial soil moisture and permeability conditions). The results obtained for the different configurations are later evaluated based on an entropy based performance evaluation. The added value of this kind of modelling approach for the sensor development is that it allows to simultaneously model the piping erosion and macro-stability failure mechanisms in a time

  8. 3-D FEM Modeling of fiber/matrix interface debonding in UD composites including surface effects

    International Nuclear Information System (INIS)

    Pupurs, A; Varna, J

    2012-01-01

    Fiber/matrix interface debond growth is one of the main mechanisms of damage evolution in unidirectional (UD) polymer composites. Because for polymer composites the fiber strain to failure is smaller than for the matrix multiple fiber breaks occur at random positions when high mechanical stress is applied to the composite. The energy released due to each fiber break is usually larger than necessary for the creation of a fiber break therefore a partial debonding of fiber/matrix interface is typically observed. Thus the stiffness reduction of UD composite is contributed both from the fiber breaks and from the interface debonds. The aim of this paper is to analyze the debond growth in carbon fiber/epoxy and glass fiber/epoxy UD composites using fracture mechanics principles by calculation of energy release rate G II . A 3-D FEM model is developed for calculation of energy release rate for fiber/matrix interface debonds at different locations in the composite including the composite surface region where the stress state differs from the one in the bulk composite. In the model individual partially debonded fiber is surrounded by matrix region and embedded in a homogenized composite.

  9. Bundling harvester; Nippukorjausharvesteri

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, K. [Eko-Log Oy, Kuopio (Finland)

    1996-12-31

    The staring point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automatizing of the harvester, and automatized loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilization of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilized without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilization of wood-energy

  10. Bundling harvester; Nippukorjausharvesteri

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, K [Eko-Log Oy, Kuopio (Finland)

    1997-12-31

    The staring point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automatizing of the harvester, and automatized loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilization of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilized without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilization of wood-energy

  11. Modeling the dispersion effects of contractile fibers in smooth muscles

    Science.gov (United States)

    Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A.

    2010-12-01

    Micro-structurally based models for smooth muscle contraction are crucial for a better understanding of pathological conditions such as atherosclerosis, incontinence and asthma. It is meaningful that models consider the underlying mechanical structure and the biochemical activation. Hence, a simple mechanochemical model is proposed that includes the dispersion of the orientation of smooth muscle myofilaments and that is capable to capture available experimental data on smooth muscle contraction. This allows a refined study of the effects of myofilament dispersion on the smooth muscle contraction. A classical biochemical model is used to describe the cross-bridge interactions with the thin filament in smooth muscles in which calcium-dependent myosin phosphorylation is the only regulatory mechanism. A novel mechanical model considers the dispersion of the contractile fiber orientations in smooth muscle cells by means of a strain-energy function in terms of one dispersion parameter. All model parameters have a biophysical meaning and may be estimated through comparisons with experimental data. The contraction of the middle layer of a carotid artery is studied numerically. Using a tube the relationships between the internal pressure and the stretches are investigated as functions of the dispersion parameter, which implies a strong influence of the orientation of smooth muscle myofilaments on the contraction response. It is straightforward to implement this model in a finite element code to better analyze more complex boundary-value problems.

  12. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J W; Choi, H; Rhee, B W [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  13. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  14. Hysteretic behavior of prestressed concrete bridge pier with fiber model.

    Science.gov (United States)

    Wang, Hui-li; Feng, Guang-qi; Qin, Si-feng

    2014-01-01

    The hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier were researched. The effects of the prestressed tendon ratio, the longitudinal reinforcement ratio, and the stirrup reinforcement ratio on the hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier have been obtained with the fiber model analysis method. The analysis show some results about the prestressed concrete bridge pier. Firstly, greater prestressed tendon ratio and more longitudinal reinforcement can lead to more obvious pier's hysteresis loop "pinching effect," smaller residual displacement, and lower energy dissipation capacity. Secondly, the greater the stirrup reinforcement ratio is, the greater the hysteresis loop area is. That also means that bridge piers will have better ductility and stronger shear capacity. The results of the research will provide a theoretical basis for the hysteretic behavior analysis of the prestressed concrete pier.

  15. An analytical model for the prediction of fluid-elastic forces in a rod bundle subjected to axial flow: theory, experimental validation and application to PWR fuel assemblies

    International Nuclear Information System (INIS)

    Beaud, F.

    1997-01-01

    A model predicting the fluid-elastic forces in a bundle of circular cylinders subjected to axial flow is presented in this paper. Whereas previously published models were limited to circular flow channel, the present one allows to take a rectangular flow external boundary into account. For that purpose, an original approach is derived from the standard method of images. This model will eventually be used to predict the fluid-structure coupling between the flow of primary coolant and a fuel assemblies in PWR nuclear reactors. It is indeed of major importance since the flow is shown to induce quite high damping and could therefore mitigate the incidence of an external load like a seismic excitation on the dynamics of the assemblies. The proposed model is validated on two cases from the literature but still needs further comparisons with the experiments being currently carried out on the EDF set-up. The flow has been shown to induce an approximate 12% damping on a PWR fuel assembly, at nominal reactor conditions. The possible grid effect on the fluid-structure coupling has been neglected so far but will soon be investigated at EDF. (author)

  16. Propagation velocity profile in a cross-section of a cardiac muscle bundle from PSpice simulation

    Directory of Open Access Journals (Sweden)

    Sperelakis Nicholas

    2006-08-01

    Full Text Available Abstract Background The effect of depth on propagation velocity within a bundle of cardiac muscle fibers is likely to be an important factor in the genesis of some heart arrhythmias. Model and methods The velocity profile of simulated action potentials propagated down a bundle of parallel cardiac muscle fibers was examined in a cross-section of the bundle using a PSpice model. The model (20 × 10 consisted of 20 chains in parallel, each chain being 10 cells in length. All 20 chains were stimulated simultaneously at the left end of the bundle using rectangular current pulses (0.25 nA, 0.25 ms duration applied intracellularly. The simulated bundle was symmetrical at the top and bottom (including two grounds, and voltage markers were placed intracellularly only in cells 1, 5 and 10 of each chain to limit the total number of traces to 60. All electrical parameters were standard values; the variables were (1 the number of longitudinal gap-junction (G-j channels (0, 1, 10, 100, (2 the longitudinal resistance between the parallel chains (Rol2 (reflecting the closeness of the packing of the chains, and (3 the bundle termination resistance at the two ends of the bundle (RBT. The standard values for Rol2 and RBT were 200 KΩ. Results The velocity profile was bell-shaped when there was 0 or only 1 gj-channel. With standard Rol2 and RBT values, the velocity at the surface of the bundle (θ1 and θ20 was more than double (2.15 × that at the core of the bundle (θ10, θ11. This surface:core ratio of velocities was dependent on the values of Rol2 and RBT. When Rol2 was lowered 10-fold, θ1 increased slightly and θ2decreased slightly. When there were 100 gj-channels, the velocity profile was flat, i.e. the velocity at the core was about the same as that at the surface. Both velocities were more than 10-fold higher than in the absence of gj-channels. Varying Rol2 and RBT had almost no effect. When there were 10 gj-channels, the cross-sectional velocity profile

  17. Numerical Modelling of a Bidirectional Long Ring Raman Fiber Laser Dynamics

    Science.gov (United States)

    Sukhanov, S. V.; Melnikov, L. A.; Mazhirina, Yu A.

    2017-11-01

    The numerical model for the simulation of the dynamics of a bidirectional long ring Raman fiber laser is proposed. The model is based on the transport equations and Courant-Isaacson-Rees method. Different regimes of a bidirectional long ring Raman fiber laser and long time-domain realizations are investigated.

  18. Computational modeling of ring textures in mesophase carbon fibers

    Directory of Open Access Journals (Sweden)

    de Andrade Lima Luiz Rogério Pinho

    2003-01-01

    Full Text Available Carbon fibers are widely used in many industrial applications due the fact of their excellent properties. Carbonaceous mesophases are liquid crystalline precursor materials that can be spun into high performance carbon fibers using the melt spinning process, which is a flow cascade consisting of pressure driven flow-converging die flow-free surface extensional spinline flow that modifies the precursor molecular orientation structure. Carbon fiber property optimization requires a better understanding of the principles that control the structure development during the fiber formation processes and the rheological processing properties. This paper presents the elastic and continuum theory of liquid crystalsand computer simulations of structure formation for pressure-driven flow of carbonaceous liquid crystalline precursors used in the industrial carbon fiber spinning process. The simulations results capture the formation of characteristic fiber macro-textures and provide new knowledge on the role of viscous and elastic effects in the spinning process.

  19. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  20. From Process Modeling to Elastic Property Prediction for Long-Fiber Injection-Molded Thermoplastics

    International Nuclear Information System (INIS)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Frame, Barbara J.; Phelps, Jay; Tucker III, Charles L.; Bapanapalli, Satish K.; Holbery, James D.; Smith, Mark T.

    2007-01-01

    This paper presents an experimental-modeling approach to predict the elastic properties of long-fiber injection-molded thermoplastics (LFTs). The approach accounts for fiber length and orientation distributions in LFTs. LFT samples were injection-molded for the study, and fiber length and orientation distributions were measured at different locations for use in the computation of the composite properties. The current fiber orientation model was assessed to determine its capability to predict fiber orientation in LFTs. Predicted fiber orientations for the studied LFT samples were also used in the calculation of the elastic properties of these samples, and the predicted overall moduli were then compared with the experimental results. The elastic property prediction was based on the Eshelby-Mori-Tanaka method combined with the orientation averaging technique. The predictions reasonably agree with the experimental LFT data

  1. Cohesive zone model of carbon nanotube-coated carbon fiber/polyester composites

    International Nuclear Information System (INIS)

    Agnihotri, Prabhat Kamal; Kar, Kamal K; Basu, Sumit

    2012-01-01

    It has been previously reported that the average properties of carbon nanotube-coated carbon fiber/polyester multiscale composites critically depend on the length and density of nanotubes on the fiber surface. In this paper the effect of nanotube length and density on the interfacial properties of the carbon nanotube-coated carbon fiber–polymer interface has been studied using shear lag and a cohesive zone model. The latter model incorporates frictional sliding after complete debonding between the fiber and matrix and has been developed to quantify the effect of nanotube coating on various interfacial characterizing parameters. Our numerical results indicate that fibers with an optimal coverage and length of nanotubes significantly increase the interfacial strength and friction between the fiber and polymer. However, they also embrittle the interface compared with bare fibers. (paper)

  2. Bundling of elastic filaments induced by hydrodynamic interactions

    Science.gov (United States)

    Man, Yi; Page, William; Poole, Robert J.; Lauga, Eric

    2017-12-01

    Peritrichous bacteria swim in viscous fluids by rotating multiple helical flagellar filaments. As the bacterium swims forward, all its flagella rotate in synchrony behind the cell in a tight helical bundle. When the bacterium changes its direction, the flagellar filaments unbundle and randomly reorient the cell for a short period of time before returning to their bundled state and resuming swimming. This rapid bundling and unbundling is, at its heart, a mechanical process whereby hydrodynamic interactions balance with elasticity to determine the time-varying deformation of the filaments. Inspired by this biophysical problem, we present in this paper what is perhaps the simplest model of bundling whereby two or more straight elastic filaments immersed in a viscous fluid rotate about their centerline, inducing rotational flows which tend to bend the filaments around each other. We derive an integrodifferential equation governing the shape of the filaments resulting from mechanical balance in a viscous fluid at low Reynolds number. We show that such equation may be evaluated asymptotically analytically in the long-wavelength limit, leading to a local partial differential equation governed by a single dimensionless bundling number. A numerical study of the dynamics predicted by the model reveals the presence of two configuration instabilities with increasing bundling numbers: first to a crossing state where filaments touch at one point and then to a bundled state where filaments wrap along each other in a helical fashion. We also consider the case of multiple filaments and the unbundling dynamics. We next provide an intuitive physical model for the crossing instability and show that it may be used to predict analytically its threshold and adapted to address the transition to a bundling state. We then use a macroscale experimental implementation of the two-filament configuration in order to validate our theoretical predictions and obtain excellent agreement. This long

  3. The effect of the advanced drift-flux model of ASSERT-PV on critical heat flux, flow and void distributions in CANDU bundle subchannels

    International Nuclear Information System (INIS)

    Hammouda, N.; Rao, Y.F.

    2017-01-01

    Highlights: • Presentation of the “advanced” drift-flux model of the subchannel code ASSERT-PV. • Study the effect of the drift-flux model of ASSERT on CHF and flow distribution. • Quantify model component effects with flow, quality and dryout power measurements. - Abstract: This paper studies the effect of the drift flux model of the subchannel code ASSERT-PV on critical heat flux (CHF), void fraction and flow distribution across fuel bundles. Numerical experiments and comparison against measurements were performed to examine the trends and relative behaviour of the different components of the model under various flow conditions. The drift flux model of ASSERT-PV is composed of three components: (a) the lateral component or diversion cross-flow, caused by pressure difference between connected subchannels, (b) the turbulent diffusion component or the turbulent mixing through gaps of subchannels, caused by instantaneous turbulent fluctuations or flow oscillations, and (c) the void drift component that occurs due to the two-phase tendency toward a preferred distribution. This study shows that the drift flux model has a significant impact on CHF, void fraction and flow distribution predictions. The lateral component of the drift flux model has a stronger effect on CHF predictions than the axial component, especially for horizontal flow. Predictions of CHF, void fraction and flow distributions are most sensitive to the turbulent diffusion component of the model, followed by the void drift component. Buoyancy drift can be significant, but it does not have as much influence on CHF and flow distribution as the turbulent diffusion and void drift.

  4. Managing bundled payments.

    Science.gov (United States)

    Draper, Andrew

    2011-04-01

    Results of Medicare's ACE demonstration project and Geisinger Health System's ProvenCare initiative provide insight into the challenges hospitals will face as bundled payment proliferates. An early analysis of these results suggests that hospitals would benefit from bringing full automation using clinical IT tools to bear in their efforts to meet these challenges. Other important factors contributing to success include board and physician leadership, organizational structure, pricing methodology for bidding, evidence-based medical practice guidelines, supply cost management, process efficiency management, proactive and aggressive case management, business development and marketing strategy, and the financial management system.

  5. Phase fluctuations in two coaxial quasi-one-dimensional superconducting cylindrical surfaces serving as a model system for superconducting nanowire bundles

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.H., E-mail: ch.kh.vong@urfu.ru [Institute of Physics and Technology, Ural Federal University, Clear Water Bay, Kowloon (Russian Federation); Wu, R.P.H., E-mail: pak-hong-raymond.wu@connect.polyu.hk [Department of Applied Physics, The Hong Kong Polytechnic University (Hong Kong); Lortz, R., E-mail: lortz@ust.hk [Department of Physics, Hong Kong University of Science and Technology (Hong Kong)

    2017-03-15

    The dimensional crossover from a 1D fluctuating state at high temperatures to a 3D phase coherent state in the low temperature regime in two coaxial weakly-coupled cylindrical surfaces formed by two-dimensional arrays of parallel nanowires is studied via an 8-state 3D-XY model. This system serves as a model for quasi-one-dimensional superconductors in the form of bundles of weakly-coupled superconducting nanowires. A periodic variation of the dimensional crossover temperature T{sub DC} is observed when the inner superconducting cylindrical surface is rotated in the angular plane. T{sub DC} reaches a maximum when the relative angle between the cylinders is 2.81°, which corresponds to the maximum separation of nanowires between the two cylindrical surfaces. We demonstrate that the relative strength of phase fluctuations in this system is controllable by the rotational angle between the two surfaces with a strong suppression of the fluctuation strength at 2.81°. The phase fluctuations are suppressed gradually upon cooling, before they abruptly vanish below T{sub DC}. Our model thus allows us to study how phase fluctuations can be suppressed in quasi-one-dimensional superconductors in order to achieve a global phase coherent state throughout the nanowire array with zero electric resistance.

  6. Muon bundles from the Universe

    Directory of Open Access Journals (Sweden)

    Kankiewicz P.

    2018-01-01

    Full Text Available Recently the CERN ALICE experiment, in its dedicated cosmic ray run, observed muon bundles of very high multiplicities, thereby confirming similar findings from the LEP era at CERN (in the CosmoLEP project. Significant evidence for anisotropy of arrival directions of the observed high multiplicity muonic bundles is found. Estimated directionality suggests their possible extragalactic provenance. We argue that muonic bundles of highest multiplicity are produced by strangelets, hypothetical stable lumps of strange quark matter infiltrating our Universe.

  7. Infinitesimal bundles and projective relativity

    International Nuclear Information System (INIS)

    Evans, G.T.

    1973-01-01

    An intrinsic and global presentation of five-dimensional relativity theory is developed, in which special coordinate conditions are replaced by conditions of Lie invariance. The notion of an infinitesimal bundle is introduced, and the theory of connexions on principal bundles is extended to infinitesimal bundles. Global aspects of projective relativity are studied: it is shown that projective relativity can describe almost any space-time. In particular, it is not necessary to assume that the electromagnetic field have a global potential. (author)

  8. A thermodynamical model for stress-fiber organization in contractile cells

    OpenAIRE

    Foucard, Louis; Vernerey, Franck J.

    2012-01-01

    Cell mechanical adaptivity to external stimuli is vital to many of its biological functions. A critical question is therefore to understand the formation and organization of the stress fibers from which emerge the cell’s mechanical properties. By accounting for the mechanical aspects and the viscoelastic behavior of stress fibers, we here propose a thermodynamic model to predict the formation and orientation of stress fibers in contractile cells subjected to constant or cyclic stretch and dif...

  9. Automated determination of fibrillar structures by simultaneous model building and fiber diffraction refinement.

    Science.gov (United States)

    Potrzebowski, Wojciech; André, Ingemar

    2015-07-01

    For highly oriented fibrillar molecules, three-dimensional structures can often be determined from X-ray fiber diffraction data. However, because of limited information content, structure determination and validation can be challenging. We demonstrate that automated structure determination of protein fibers can be achieved by guiding the building of macromolecular models with fiber diffraction data. We illustrate the power of our approach by determining the structures of six bacteriophage viruses de novo using fiber diffraction data alone and together with solid-state NMR data. Furthermore, we demonstrate the feasibility of molecular replacement from monomeric and fibrillar templates by solving the structure of a plant virus using homology modeling and protein-protein docking. The generated models explain the experimental data to the same degree as deposited reference structures but with improved structural quality. We also developed a cross-validation method for model selection. The results highlight the power of fiber diffraction data as structural constraints.

  10. REBEKA bundle experiments

    International Nuclear Information System (INIS)

    Wiehr, K.

    1988-05-01

    This report is a summary of experimental investigations describing the fuel rod behavior in the refilling and reflooding phase of a loss-of-coolant accident of a PWR. The experiments were performed with 5x5 and 7x7 rod bundles, using indirectly electrically heated fuel rod simulators of full length with original PWR-KWU-geometry, original grid spacers and Zircaloy-4-claddings (Type Biblis B). The fuel rod simulators showed a cosine shaped axial power profile in 7 steps and continuous, respectively. The results describe the influence of the different parameters such as bundle size on the maximum coolant channel blockage, that of the cooling on the size of the circumferential strain of the cladding (azimuthal temperature distribution) a cold control rod guide thimble and the flow direction (axial temperature distribution) on the resulting coolant channel blockage. The rewetting behavior of different fuel rod simulators including ballooned and burst Zircaloy claddings is discussed as well as the influence of thermocouples on the cladding temperature history and the rewetting behavior. All results prove the coolability of a PWR in the case of a LOCA. Therefore, it can be concluded that the ECC-criteria established by licensing authorities can be fulfilled. (orig./HP) [de

  11. Nefness of adjoint bundles for ample vector bundles

    Directory of Open Access Journals (Sweden)

    Hidetoshi Maeda

    1995-11-01

    Full Text Available Let E be an ample vector bundle of rank >1 on a smooth complex projective variety X of dimension n. This paper gives a classification of pairs (X,E whose adjoint bundles K_X+det E are not nef in the case when  r=n-2.

  12. A thermodynamical model for stress-fiber organization in contractile cells.

    Science.gov (United States)

    Foucard, Louis; Vernerey, Franck J

    2012-01-02

    Cell mechanical adaptivity to external stimuli is vital to many of its biological functions. A critical question is therefore to understand the formation and organization of the stress fibers from which emerge the cell's mechanical properties. By accounting for the mechanical aspects and the viscoelastic behavior of stress fibers, we here propose a thermodynamic model to predict the formation and orientation of stress fibers in contractile cells subjected to constant or cyclic stretch and different substrate stiffness. Our results demonstrate that the stress fibers viscoelastic behavior plays a crucial role in their formation and organization and shows good consistency with various experiments.

  13. Modeling thermo-optic effect in large mode area double cladding photonic crystal fibers

    Science.gov (United States)

    Coscelli, Enrico; Cucinotta, Annamaria

    2014-02-01

    The impact of thermally-induced refractive index changes on the single-mode (SM) properties of large mode area (LMA) photonic crystal fibers are thoroughly investigated by means of a full-vector modal solver with integrated thermal model. Three photonic crystal fiber designs are taken into account, namely the 19-cell core fiber, the large-pitch fiber (LPF) and the distributed modal filtering (DMF) fiber, to assess the effects of the interplay between thermal effects and the high-order mode (HOM) suppression mechanisms exploited in order to obtain effectively SM guiding. The results have shown significant differences in the way the SM regime is changed by the increase of heat load, providing useful hints for the design of LMA fibers for high power lasers.

  14. Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry

    Directory of Open Access Journals (Sweden)

    Just Agbodjan Prince

    2016-09-01

    Full Text Available This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment’s shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object.

  15. Fiber-optical sensor with intensity compensation model in college teaching of physics experiment

    Science.gov (United States)

    Su, Liping; Zhang, Yang; Li, Kun; Zhang, Yu

    2017-08-01

    Optical fiber sensor technology is one of the main contents of modern information technology, which has a very important position in modern science and technology. Fiber optic sensor experiment can improve students' enthusiasm and broaden their horizons in college physics experiment. In this paper the main structure and working principle of fiberoptical sensor with intensity compensation model are introduced. And thus fiber-optical sensor with intensity compensation model is applied to measure micro displacement of Young's modulus measurement experiment and metal linear expansion coefficient measurement experiment in the college physics experiment. Results indicate that the measurement accuracy of micro displacement is higher than that of the traditional methods using fiber-optical sensor with intensity compensation model. Meanwhile this measurement method makes the students understand on the optical fiber, sensor and nature of micro displacement measurement method and makes each experiment strengthen relationship and compatibility, which provides a new idea for the reform of experimental teaching.

  16. Computerized mathematical model for prediction of resin/fiber composite properties

    International Nuclear Information System (INIS)

    Lowe, K.A.

    1985-01-01

    A mathematical model has been developed for the design and optimization of resin formulations. The behavior of a fiber-reinforced cured resin matrix can be predicted from constituent properties of the formulation and fiber when component interaction is taken into account. A computer implementation of the mathematical model has been coded to simulate resin/fiber response and generate expected values for any definable properties of the composite. The algorithm is based on multistage regression techniques and the manipulation of n-order matrices. Excellent correlation between actual test values and predicted values has been observed for physical, mechanical, and qualitative properties of resin/fiber composites. Both experimental and commercial resin systems with various fiber reinforcements have been successfully characterized by the model. 6 references, 3 figures, 2 tables

  17. An anisotropic elasto-viscoplastic model for short-fiber reinforced polymers

    NARCIS (Netherlands)

    Amiri Rad, A.; Govaert, L.E.; van Dommelen, J.A.W.

    2017-01-01

    The influence of flow on the fiber orientation in injection molding of short-fiber composites leads to both anisotropy and inhomogeneity of the mechanical response. An anisotropic elasto-viscoplastic constitutive model is developed to capture the anisotropic and time-dependent behavior and

  18. An Anisotropic Elasto-Viscoplastic Model for Short-Fiber Reinforced Polymers

    NARCIS (Netherlands)

    Amiri Rad, A.; Govaert, L.E.; van Dommelen, J.A.W.

    2018-01-01

    The influence of flow on the fiber orientation in injection molding of short-fiber composites leads to both anisotropy and inhomogeneity of the mechanical response. An anisotropic elasto-viscoplastic constitutive model is developed to capture the anisotropic and time-dependent behavior and

  19. Study of fuel bundle geometry on inter subchannel flow in a 19 pin wire wrapped bundle

    International Nuclear Information System (INIS)

    Naveen Raj, M.; Velusamy, D.K.

    2015-01-01

    In typical sodium cooled fast reactor (SFR) fuel pin bundle, gap between the pins is maintained by helically wound wire wrap around each pin. The presence of wire induces large inter-subchannel transverse flow, eventually promoting mixing and heat transfer. The magnitude of the transverse flow is highly dependent on the various pin-bundle dimensions. Appropriate modeling of these transverse flows in subchannel codes is necessary to predict realistic temperature distribution in pin bundle. Hence, detailed parametric study of transverse flow on pin-bundle geometric parameters has been conducted. The parameters taken for the present study are pin diameter, wire diameter, helical wire pitch and edge gap. Towards this 3-D computational fluid dynamic analysis on a structured mesh of 19 pin bundle is carried out using k-epsilon turbulence model. Periodic oscillations along the primacy flow direction were found in subchannel transverse flow and peripheral pin clad temperatures with periodicity over one pitch length. Based on parametric studies, correlations for transverse flow in central subchannels are proposed. (author)

  20. Bundle Security Protocol for ION

    Science.gov (United States)

    Burleigh, Scott C.; Birrane, Edward J.; Krupiarz, Christopher

    2011-01-01

    This software implements bundle authentication, conforming to the Delay-Tolerant Networking (DTN) Internet Draft on Bundle Security Protocol (BSP), for the Interplanetary Overlay Network (ION) implementation of DTN. This is the only implementation of BSP that is integrated with ION.

  1. CANFLEX fuel bundle impact test

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Chung, C. H.; Park, J. S.; Hong, S. D.; Kim, B. D.

    1997-08-01

    This document outlines the test results for the impact test of the CANFLEX fuel bundle. Impact test is performed to determine and verify the amount of general bundle shape distortion and defect of the pressure tube that may occur during refuelling. The test specification requires that the fuel bundles and the pressure tube retain their integrities after the impact test under the conservative conditions (10 stationary bundles with 31kg/s flow rate) considering the pressure tube creep. The refuelling simulator operating with pneumatic force and simulated shield plug were fabricated and the velocity/displacement transducer and the high speed camera were also used in this test. The characteristics of the moving bundle (velocity, displacement, impacting force) were measured and analyzed with the impact sensor and the high speed camera system. The important test procedures and measurement results were discussed as follows. 1) Test bundle measurements and the pressure tube inspections 2) Simulated shield plug, outlet flange installation and bundle loading 3) refuelling simulator, inlet flange installation and sensors, high speed camera installation 4) Perform the impact test with operating the refuelling simulator and measure the dynamic characteristics 5) Inspections of the fuel bundles and the pressure tube. (author). 8 refs., 23 tabs., 13 figs

  2. Connections on discrete fibre bundles

    International Nuclear Information System (INIS)

    Manton, N.S.; Cambridge Univ.

    1987-01-01

    A new approach to gauge fields on a discrete space-time is proposed, in which the fundamental object is a discrete version of a principal fibre bundle. If the bundle is twisted, the gauge fields are topologically non-trivial automatically. (orig.)

  3. Sasakian and Parabolic Higgs Bundles

    Science.gov (United States)

    Biswas, Indranil; Mj, Mahan

    2018-03-01

    Let M be a quasi-regular compact connected Sasakian manifold, and let N = M/ S 1 be the base projective variety. We establish an equivalence between the class of Sasakian G-Higgs bundles over M and the class of parabolic (or equivalently, ramified) G-Higgs bundles over the base N.

  4. Twisted Vector Bundles on Pointed Nodal Curves

    Indian Academy of Sciences (India)

    Abstract. Motivated by the quest for a good compactification of the moduli space of -bundles on a nodal curve we establish a striking relationship between Abramovich's and Vistoli's twisted bundles and Gieseker vector bundles.

  5. Textor bundle divertor

    International Nuclear Information System (INIS)

    Yang, T.F.; Wan, A.; Gierszewski, P.; Rapperport, E.; Montgomery, D.B.

    1982-01-01

    This report presents a preliminary bundle divertor conceptual design for installation on the TEXTOR tokamak. An advanced cascade T-shaped coil configuration is used. This divertor design has the following important characteristics: (1) the current density in the conductor is less than 6 kAmp/cm 2 , and the maximum field is less than 6 Tesla; (2) the divertor can be operated at steady-state either for copper or superconducting conductors; (3) the power consumption is about 7 MW for a normal conductor; (4) the divertor can be inserted into the existing geometry of TEXTOR; (5) the ripple on axis is only 0.3% and the mirror ratio is 2 to 4; (6) the stagnation axis is concave toward the plasma, therefore q/sub D/ is smaller, the acceptance angle is larger, and the efficiency may be better than the conventional circular coil design

  6. TEXTOR bundle divertor

    International Nuclear Information System (INIS)

    Yang, T.F.; Wan, A.; Gierszewski, P.; Rapperport, E.; Montgomery, D.B.

    1982-01-01

    This report presents a preliminary bundle divertor conceptual design for installation on the TEXTOR tokamak. An advanced cascade T-shaped coil configuration is used. This divertor design has the following important characteristics: (1) the current density in the conductor is less than 6 kAmp/cm 2 , and the maximum field is less than 6 Tesla; (2) the divertor can be operated at steady-state either for copper or superconducting conductors; (3) the power consumption is about 7 MW for a normal conductor; (4) the divertor can be inserted into the existing geometry of TEXTOR; (5) the ripple on axis is only 0.3% and the mirror ratio is 2 to 4; (6) the stagnation axis is concave toward the plasma, therefore q/sub D/ is smaller, the acceptance angle is larger, and the efficiency may be better than the conventional circular coil design

  7. A phenomenological model of thermal-hydraulics of convective boiling during the quenching of hot rod bundles

    International Nuclear Information System (INIS)

    Unal, C.; Nelson, R.

    1991-01-01

    After completion of the thermal-hydraulic model developed in a companion paper, the authors performed developmental assessment calculation of the model using steady-state and transient post-critical heat flux (CHF) data. This paper discusses the results of those calculations. The overall interfacial drag model predicted reasonable drag coefficients for both the nucleate boiling and the inverted annular flow (IAF) regimes. The predicted pressure drops agreed reasonably well with the measured data of two transient experiments, CCTF Run 14 and a Lehigh reflood test. The thermal-hydraulic model for post-CHF convective heat transfer predicted the rewetting velocities reasonably well for both experiments. The predicted average slope of the wall temperature traces for these tests showed reasonable agreement with the measured data, indicating that the transient-calculated precursory cooling rates agreed with measured data. The hot-patch model, in conjunction with the other thermal-hydraulic models, was capable of modeling the Winfrith post-CHF hot-patch experiments. The hot-patch model kept the wall temperatures at the specified levels in the hot-patch regions and did not allow any quench-front propagation from either the bottom or the top of the test section. The interfacial heat-transfer model tended to slightly underpredict the vapor temperatures. The maximum difference between calculated and measured vapor temperatures was 20%, with a 10% difference for the remainder of the runs considered. The wall-to-fluid heat transfer was predicted reasonably well, and the predicted wall temperatures were in reasonable agreement with measured data with a maximum relative error of less than 13%

  8. Probabilistic model of ligaments and tendons: Quasistatic linear stretching

    Science.gov (United States)

    Bontempi, M.

    2009-03-01

    Ligaments and tendons have a significant role in the musculoskeletal system and are frequently subjected to injury. This study presents a model of collagen fibers, based on the study of a statistical distribution of fibers when they are subjected to quasistatic linear stretching. With respect to other methodologies, this model is able to describe the behavior of the bundle using less ad hoc hypotheses and is able to describe all the quasistatic stretch-load responses of the bundle, including the yield and failure regions described in the literature. It has two other important results: the first is that it is able to correlate the mechanical behavior of the bundle with its internal structure, and it suggests a methodology to deduce the fibers population distribution directly from the tensile-test data. The second is that it can follow fibers’ structure evolution during the stretching and it is possible to study the internal adaptation of fibers in physiological and pathological conditions.

  9. Joint Multi-Fiber NODDI Parameter Estimation and Tractography using the Unscented Information Filter

    Directory of Open Access Journals (Sweden)

    Yogesh eRathi

    2016-04-01

    Full Text Available Tracing white matter fiber bundles is an integral part of analyzing brain connectivity. An accurate estimate of the underlying tissue parameters is also paramount in several neuroscience applications. In this work, we propose to use a joint fiber model estimation and tractography algorithm that uses the NODDI (neurite orientation dispersion diffusion imaging model to estimate fiber orientation dispersion consistently and smoothly along the fiber tracts along with estimating the intracellular and extracellular volume fractions from the diffusion signal. While the NODDI model has been used in earlier works to estimate the microstructural parameters at each voxel independently, for the first time, we propose to integrate it into a tractography framework. We extend this framework to estimate the NODDI parameters for two crossing fibers, which is imperative to trace fiber bundles through crossings as well as to estimate the microstructural parameters for each fiber bundle separately. We propose to use the unscented information filter (UIF to accurately estimate the model parameters and perform tractography. The proposed approach has significant computational performance improvements as well as numerical robustness over the unscented Kalman filter (UKF. Our method not only estimates the confidence in the estimated parameters via the covariance matrix, but also provides the Fisher-information matrix of the state variables (model parameters, which can be quite useful to measure model complexity. Results from in-vivo human brain data sets demonstrate the ability of our algorithm to trace through crossing fiber regions, while estimating orientation dispersion and other biophysical model parameters in a consistent manner along the tracts.

  10. A phenomenological model of the thermal hydraulics of convective boiling during the quenching of hot rod bundles

    International Nuclear Information System (INIS)

    Nelson, R.A.; Unal, C.

    1991-01-01

    In this paper, a phenomenological model of the thermal hydraulics of convective boiling in the post-critical-heat-flux (post-CHF) regime is developed and discussed. The model was implemented in the TRAC-PF1/MOD2 computer code (an advanced best-estimate computer program written for the analysis of pressurized water reactor systems). The model was built around the determination of flow regimes downstream of the quench front. The regimes were determined from the flow-regime map suggested by Ishii and his coworkers. Heat transfer in the transition boiling region was formulated as a position-dependent model. The propagation of the CHF point was strongly dependent on the length of the transition boiling region. Wall-to-fluid film boiling heat transfer was considered to consist of two components: first, a wall-to-vapor convective heat-transfer portion and, second, a wall-to-liquid heat transfer representing near-wall effects. Each contribution was considered separately in each of the inverted annular flow (IAF) regimes. The interfacial heat transfer was also formulated as flow-regime dependent. The interfacial drag coefficient model upstream of the CHF point was considered to be similar to flow through a roughened pipe. A free-stream contribution was calculated using Ishii's bubbly flow model for either fully developed subcooled or saturated nucleate boiling. For the drag in the smooth IAF region, a simple smooth-tube correlation for the interfacial friction factor was used. The drag coefficient for the rough-wavy IAF was formulated in the same way as for the smooth IAF model except that the roughness parameter was assumed to be proportional to liquid droplet diameter entrained from the wavy interface. The drag coefficient in the highly dispersed flow regime considered the combined effects of the liquid droplets within the channel and a liquid film on wet unheated walls. 431 refs., 6 figs., 4 tabs

  11. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    Chiba, Akio; Suzuki, Yasutaka; Goto, Sumitaka; Saito, Yukio; Jinbo, Ryutaro; Ogiwara, Norio; Saido, Masahiro.

    1996-01-01

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  12. Modeling fibrous biological tissues with a general invariant that excludes compressed fibers

    Science.gov (United States)

    Li, Kewei; Ogden, Ray W.; Holzapfel, Gerhard A.

    2018-01-01

    Dispersed collagen fibers in fibrous soft biological tissues have a significant effect on the overall mechanical behavior of the tissues. Constitutive modeling of the detailed structure obtained by using advanced imaging modalities has been investigated extensively in the last decade. In particular, our group has previously proposed a fiber dispersion model based on a generalized structure tensor. However, the fiber tension-compression switch described in that study is unable to exclude compressed fibers within a dispersion and the model requires modification so as to avoid some unphysical effects. In a recent paper we have proposed a method which avoids such problems, but in this present study we introduce an alternative approach by using a new general invariant that only depends on the fibers under tension so that compressed fibers within a dispersion do not contribute to the strain-energy function. We then provide expressions for the associated Cauchy stress and elasticity tensors in a decoupled form. We have also implemented the proposed model in a finite element analysis program and illustrated the implementation with three representative examples: simple tension and compression, simple shear, and unconfined compression on articular cartilage. We have obtained very good agreement with the analytical solutions that are available for the first two examples. The third example shows the efficacy of the fibrous tissue model in a larger scale simulation. For comparison we also provide results for the three examples with the compressed fibers included, and the results are completely different. If the distribution of collagen fibers is such that it is appropriate to exclude compressed fibers then such a model should be adopted.

  13. ADM1-based modeling of anaerobic digestion of swine manure fibers pretreated with aqueous ammonia soaking

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Gavala, Hariklia N.; Skiadas, Ioannis

    2012-01-01

    fibers. In the present study, mesophilic anaerobic digestion of AAS pretreated manure fibers was tested in CSTR-type digesters fed with swine manure and/or a mixture of swine manure and AAS pretreated manure fibers. The Anaerobic Digestion Model No.1 (ADM1) was used for the prediction of the effect......Anaerobic digestion of manure fibers present challenges due to their low biodegradability. Aqueous ammonia soaking (AAS) and subsequent ammonia removal has been tested as a simple and cheap method to disrupt the lignocellulose and increase the methane potential and the biogas productivity of manure...... that the AAS had on the efficiency of the anaerobic digestion of manure. Kinetic parameters were estimated by fitting of the model to data from manure fed digesters. The model was able to satisfactorily simulate the behaviour of digesters fed with manure. However, the model predictions were poorer...

  14. Multi-scale modeling and analysis of convective boiling: towards the prediction of CHF in rod bundles

    International Nuclear Information System (INIS)

    Niceno, B.; Sato, Y.; Badillo, A.; Andreani, M.

    2010-01-01

    In this paper we describe current activities on the project Multi-Scale Modeling and Analysis of convective boiling (MSMA), conducted jointly by the Paul Scherrer Institute (PSI) and the Swiss Nuclear Utilities (Swissnuclear). The long-term aim of the MSMA project is to formulate improved closure laws for Computational Fluid Dynamics (CFD) simulations for prediction of convective boiling and eventually of the Critical Heat Flux (CHF). As boiling is controlled by the competition of numerous phenomena at various length and time scales, a multi-scale approach is employed to tackle the problem at different scales. In the MSMA project, the scales on which we focus range from the CFD scale (macro-scale), bubble size scale (meso-scale), liquid micro-layer and triple interline scale (micro-scale), and molecular scale (nano-scale). The current focus of the project is on micro- and meso- scales modeling. The numerical framework comprises a highly efficient, parallel DNS solver, the PSI-BOIL code. The code has incorporated an Immersed Boundary Method (IBM) to tackle complex geometries. For simulation of meso-scales (bubbles), we use the Constrained Interpolation Profile method: Conservative Semi-Lagrangian 2nd order (CIP-CSL2). The phase change is described either by applying conventional jump conditions at the interface, or by using the Phase Field (PF) approach. In this work, we present selected results for flows in complex geometry using the IBM, selected bubbly flow simulations using the CIP-CSL2 method and results for phase change using the PF approach. In the subsequent stage of the project, the importance of effects of nano-scale processes on the global boiling heat transfer will be evaluated. To validate the models, more experimental information will be needed in the future, so it is expected that the MSMA project will become the seed for a long-term, combined theoretical and experimental program

  15. Evaluating big deal journal bundles.

    Science.gov (United States)

    Bergstrom, Theodore C; Courant, Paul N; McAfee, R Preston; Williams, Michael A

    2014-07-01

    Large commercial publishers sell bundled online subscriptions to their entire list of academic journals at prices significantly lower than the sum of their á la carte prices. Bundle prices differ drastically between institutions, but they are not publicly posted. The data that we have collected enable us to compare the bundle prices charged by commercial publishers with those of nonprofit societies and to examine the types of price discrimination practiced by commercial and nonprofit journal publishers. This information is of interest to economists who study monopolist pricing, librarians interested in making efficient use of library budgets, and scholars who are interested in the availability of the work that they publish.

  16. Tractography segmentation using a hierarchical Dirichlet processes mixture model.

    Science.gov (United States)

    Wang, Xiaogang; Grimson, W Eric L; Westin, Carl-Fredrik

    2011-01-01

    In this paper, we propose a new nonparametric Bayesian framework to cluster white matter fiber tracts into bundles using a hierarchical Dirichlet processes mixture (HDPM) model. The number of clusters is automatically learned driven by data with a Dirichlet process (DP) prior instead of being manually specified. After the models of bundles have been learned from training data without supervision, they can be used as priors to cluster/classify fibers of new subjects for comparison across subjects. When clustering fibers of new subjects, new clusters can be created for structures not observed in the training data. Our approach does not require computing pairwise distances between fibers and can cluster a huge set of fibers across multiple subjects. We present results on several data sets, the largest of which has more than 120,000 fibers. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Nucleate boiling heat transfer on horizontal tubes in bundles

    International Nuclear Information System (INIS)

    Fujital, Y.; Ohta, H.; Hidaka, S.; Nishikawa, K.

    1986-01-01

    In order to clarify the heat transfer mechanisms of the flooded type horizontal tube bundle evaporator, heat transfer characteristics of tube bundles of experimental scale which consist both of smooth and enhanced tubes were investigated in detail. The experiments of saturated nucleate boiling were performed by using Freon 113 under pressures 0.1 to 1 MPa, and the effects of various parameters, for example, bundle arrangement, heat flux, pressure on the characteristics of an individual tube are clarified. Experimental data is reproduced well by a proposed heat transfer model in which convective heat transfer coefficients due to rising bubbles are estimated as a function of their volumetric flow rate

  18. Cost-effectiveness of a central venous catheter care bundle.

    Directory of Open Access Journals (Sweden)

    Kate A Halton

    Full Text Available BACKGROUND: A bundled approach to central venous catheter care is currently being promoted as an effective way of preventing catheter-related bloodstream infection (CR-BSI. Consumables used in the bundled approach are relatively inexpensive which may lead to the conclusion that the bundle is cost-effective. However, this fails to consider the nontrivial costs of the monitoring and education activities required to implement the bundle, or that alternative strategies are available to prevent CR-BSI. We evaluated the cost-effectiveness of a bundle to prevent CR-BSI in Australian intensive care patients. METHODS AND FINDINGS: A Markov decision model was used to evaluate the cost-effectiveness of the bundle relative to remaining with current practice (a non-bundled approach to catheter care and uncoated catheters, or use of antimicrobial catheters. We assumed the bundle reduced relative risk of CR-BSI to 0.34. Given uncertainty about the cost of the bundle, threshold analyses were used to determine the maximum cost at which the bundle remained cost-effective relative to the other approaches to infection control. Sensitivity analyses explored how this threshold alters under different assumptions about the economic value placed on bed-days and health benefits gained by preventing infection. If clinicians are prepared to use antimicrobial catheters, the bundle is cost-effective if national 18-month implementation costs are below $1.1 million. If antimicrobial catheters are not an option the bundle must cost less than $4.3 million. If decision makers are only interested in obtaining cash-savings for the unit, and place no economic value on either the bed-days or the health benefits gained through preventing infection, these cost thresholds are reduced by two-thirds. CONCLUSIONS: A catheter care bundle has the potential to be cost-effective in the Australian intensive care setting. Rather than anticipating cash-savings from this intervention, decision

  19. A model for acoustic absorbent materials derived from coconut fiber

    Directory of Open Access Journals (Sweden)

    Ramis, J.

    2014-03-01

    Full Text Available In the present paper, a methodology is proposed for obtaining empirical equations describing the sound absorption characteristics of an absorbing material obtained from natural fibers, specifically from coconut. The method, which was previously applied to other materials, requires performing measurements of air-flow resistivity and of acoustic impedance for samples of the material under study. The equations that govern the acoustic behavior of the material are then derived by means of a least-squares fit of the acoustic impedance and of the propagation constant. These results can be useful since they allow the empirically obtained analytical equations to be easily incorporated in prediction and simulation models of acoustic systems for noise control that incorporate the studied materials.En este trabajo se describe el proceso seguido para obtener ecuaciones empíricas del comportamiento acústico de un material absorbente obtenido a partir de fibras naturales, concretamente el coco. El procedimiento, que ha sido ensayado con éxito en otros materiales, implica la realización de medidas de impedancia y resistencia al flujo de muestras del material bajo estudio. Las ecuaciones que gobiernan el comportamiento desde el punto de vista acústico del material se obtienen a partir del ajuste de ecuaciones de comportamiento de la impedancia acústica y la constante de propagación del material. Los resultados son útiles ya que, al disponer de ecuaciones analíticas obtenidas empíricamente, facilitan la incorporación de estos materiales en predicciones mediante métodos numéricos del comportamiento cuando son instalados formando parte de dispositivos para el control del ruido.

  20. Validity of plant fiber length measurement : a review of fiber length measurement based on kenaf as a model

    Science.gov (United States)

    James S. Han; Theodore. Mianowski; Yi-yu. Lin

    1999-01-01

    The efficacy of fiber length measurement techniques such as digitizing, the Kajaani procedure, and NIH Image are compared in order to determine the optimal tool. Kenaf bast fibers, aspen, and red pine fibers were collected from different anatomical parts, and the fiber lengths were compared using various analytical tools. A statistical analysis on the validity of the...

  1. The turbulent flow in rod bundles

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1989-01-01

    Experimental studies have shown that the axial and azimuthal turbulence intensities in the gap regions of rod bundles increase strongly with decreasing rod spacing; the fluctuating velocities in the axial and azimuthal directions have a quasi-periodic behaviour. To determine the origin of this phenomenon, an its characteristics as a function of the geometry and the Reynolds number, an experimental investigation was performed on the turbulent in several rod bundles with different aspect ratios (P/D, W/D). Hot-wires and microsphones were used for the measurements of velocity and wall pressure fluctuations. The data were evaluated to obtain spectra as well as auto and cross correlations. Based on the results, a phenomenological model is presented to explain this phenomenon. By means of the model, the mass exchange between neighbouring subchannels is explained [pt

  2. Development of multi-dimensional thermal-hydraulic modeling using mixing factors for wire wrapped fuel pin bundles in fast reactors. Validation through a sodium experiment of 169-pin fuel subassembly

    International Nuclear Information System (INIS)

    Nishimura, M.; Kamide, H.; Miyake, Y.

    1997-04-01

    Temperature distributions in fuel subassemblies of fast reactors interactively affect heat transfer from center to outer region of the core (inter-subassembly heat transfer) and cooling capability of an inter-wrapper flow, as well as maximum cladding temperature. The prediction of temperature distribution in the subassembly is, therefore one of the important issues for the reactor safety assessment. Mixing factors were applied to multi-dimensional thermal-hydraulic code AQUA to enhance the predictive capability of simulating maximum cladding temperature in the fuel subassemblies. In the previous studies, this analytical method had been validated through the calculations of the sodium experiments using driver subassembly test rig PLANDTL-DHX with 37-pin bundle and blanket subassembly test rig CCTL-CFR with 61-pin bundle. The error of the analyses were comparable to the error of instrumentation's. Thus the modeling was capable of predicting thermal-hydraulic field in the middle scale subassemblies. Before the application to large scale real subassemblies with more than 217 pins, accuracy of the analytical method have to be inspected through calculations of sodium tests in a large scale pin bundle. Therefore, computations were performed on sodium experiments in the relatively large 169-pin subassembly which had heater pins sparsely within the bundle. The analysis succeeded to predict the experimental temperature distributions. The errors of temperature rise from inlet to maximum values were reduced to half magnitudes by using mixing factors, compared to those of analyses without mixing factors. Thus the modeling is capable of predicting the large scale real subassemblies. (author)

  3. Left bundle-branch block

    DEFF Research Database (Denmark)

    Risum, Niels; Strauss, David; Sogaard, Peter

    2013-01-01

    The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...

  4. MAVEN SEP Calibrated Data Bundle

    Data.gov (United States)

    National Aeronautics and Space Administration — The maven.sep.calibrated Level 2 Science Data Bundle contains fully calibrated SEP data, as well as the raw count data from which they are derived, and ancillary...

  5. Bundling ecosystem services in Denmark

    DEFF Research Database (Denmark)

    Turner, Katrine Grace; Odgaard, Mette Vestergaard; Bøcher, Peder Klith

    2014-01-01

    We made a spatial analysis of 11 ecosystem services at a 10 km × 10 km grid scale covering most of Denmark. Our objective was to describe their spatial distribution and interactions and also to analyze whether they formed specific bundle types on a regional scale in the Danish cultural landscape....... We found clustered distribution patterns of ecosystem services across the country. There was a significant tendency for trade-offs between on the one hand cultural and regulating services and on the other provisioning services, and we also found the potential of regulating and cultural services...... to form synergies. We identified six distinct ecosystem service bundle types, indicating multiple interactions at a landscape level. The bundle types showed specialized areas of agricultural production, high provision of cultural services at the coasts, multifunctional mixed-use bundle types around urban...

  6. Line bundles and flat connections

    Indian Academy of Sciences (India)

    1School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, .... sequence for complex analytic bundles, Appendix to Topological Methods ... Society of Japan 15 (1987) (Iwanami Shoten Publishers and Princeton ...

  7. Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging

    International Nuclear Information System (INIS)

    Dubois, J.; Perrin, M.; Mangin, J.F.; Cointepas, Y.; Duchesnay, E.; Le Bihan, D.; Hertz-Pannier, L.; Dehaene-Lambertz, G.; Dubois, J.; Dehaene-Lambertz, G.; Perrin, M.; Mangin, J.F.; Cointepas, Y.; Duchesnay, E.; Le Bihan, D.; Hertz-Pannier, L.

    2008-01-01

    Normal cognitive development in infants follows a well-known temporal sequence, which is assumed to be correlated with the structural maturation of underlying functional networks. Postmortem studies and, more recently, structural MR imaging studies have described qualitatively the heterogeneous spatio-temporal progression of white matter myelination. However, in vivo quantification of the maturation phases of fiber bundles is still lacking. We used noninvasive diffusion tensor MR imaging and tractography in twenty-three 1-4-month-old healthy infants to quantify the early maturation of the main cerebral fascicles. A specific maturation model, based on the respective roles of different maturational processes on the diffusion phenomena, was designed to highlight asynchronous maturation across bundles by evaluating the time-course of mean diffusivity and anisotropy changes over the considered developmental period. Using an original approach, a progression of maturation in four relative stages was determined in each tract by estimating the maturation state and speed, from the diffusion indices over the infants group compared with an adults group on one hand, and in each tract compared with the average over bundles on the other hand. Results were coherent with, and extended previous findings in 8 of 11 bundles, showing the anterior limb of the internal capsule and cingulum as the most immature, followed by the optic radiations, arcuate and inferior longitudinal fascicles, then the spino-thalamic tract and fornix, and finally the cortico-spinal tract as the most mature bundle. Thus, this approach provides new quantitative landmarks for further noninvasive research on brain-behavior relationships during normal and abnormal development. (authors)

  8. Evaluation and modeling of methyl green adsorption from aqueous solutions using loofah fibers

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaonan; Li, Yueyun; Chen, Runhai; Min, Fanlian; Yang, Juanjuan; Dong, Yunhui [Shandong University of Technology, Zibo (China)

    2015-01-15

    Loofah fiber, an economical adsorbent material, was first developed for the methyl green (MG) removal from aqueous solutions. The loofah fibers were characterized by SEM, FTIR, N{sub 2}-BET and the potentiometric titration. The pH, contact time and temperature were examined extensively. The adsorption of MG on loofah fiber increased very quickly in the pH range 3.0 to 7.0, remaining a high level at pH>7.0. The kinetics of adsorption of MG on the loofah fiber was proved to coincide with pseudo-second-order kinetic models (r{sup 2}>0.99) very well. Langmuir isotherm was demonstrated to fit the experimental data better than Freundlich isotherm model. Monolayer adsorption capacity increased with the increase of temperature. Thermodynamic constants were evaluated, and the results indicated that MG adsorption onto loofah fiber was feasible, spontaneous and endothermic. The high removal efficiency of MG on loofah fiber suggested that the loofah fiber was suitable material in MG pollution cleanup.

  9. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.

    Science.gov (United States)

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei

    2017-10-26

    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.

  10. Analytic models of spectral responses of fiber-grating-based interferometers on FMC theory.

    Science.gov (United States)

    Zeng, Xiangkai; Wei, Lai; Pan, Yingjun; Liu, Shengping; Shi, Xiaohui

    2012-02-13

    In this paper the analytic models (AMs) of the spectral responses of fiber-grating-based interferometers are derived from the Fourier mode coupling (FMC) theory proposed recently. The interferometers include Fabry-Perot cavity, Mach-Zehnder and Michelson interferometers, which are constructed by uniform fiber Bragg gratings and long-period fiber gratings, and also by Gaussian-apodized ones. The calculated spectra based on the analytic models are achieved, and compared with the measured cases and those on the transfer matrix (TM) method. The calculations and comparisons have confirmed that the AM-based spectrum is in excellent agreement with the TM-based one and the measured case, of which the efficiency is improved up to ~2990 times that of the TM method for non-uniform-grating-based in-fiber interferometers.

  11. Tube bundle vibrations in transversal flow

    International Nuclear Information System (INIS)

    Gibert, R.J.; Sagner, M.

    1978-01-01

    This study gives important information concerning characteristic parameters about lock-in and whirling instability phenomena, in the case of tube arrays. The work is mainly an experimental one though models are also developed: 1) an equilateral pitch bundle (p=1,5 D with D=tube diameter) is tested. Tube damping (epsilon) and first eigenfrequency (f), flow velocity are explored in a large domain. Vibratory level of the tubes are measured and critical points are ploted on the fluidelastic parameters diagram. Several bundles with various usual pitches and arrangements (in line or staggered) are tested. Critical velocities are measured and the whirling instability characteristic coefficient is tabulated. A complementary experiment is made on tube rows with various pitches. This gives valuable informations concerning the look-in domain in VR and A'R diagram. Furthermore this puts in evidence the important effect of a frequency difference between two adjacent tubes on the whirling critical velocity

  12. Uniform Fiber Bragg Grating modeling and simulation used matrix transfer method

    OpenAIRE

    IKHLEF, Abdallah; HEDARA, Rachida; CHIKH-BLED, Mohamed

    2012-01-01

    This paper presents the modeling and simulation of an optical fiber Bragg grating for maximum reflectivity, minimum side lobe. Gating length represents as one of the critical parameters in contributing to a high performance fiber Bragg grating. The reflection spectra and side lobes strength were analyzed with different lengths .The side lobes have been suppressed using raised cosine apodization while maintaining the peak reflectivity. Such simulations are based on ...

  13. Modeling of hydrodynamics in hollow fiber membrane bioreactor for mammalian cells cultivation

    Directory of Open Access Journals (Sweden)

    N. V. Menshutina

    2016-01-01

    Full Text Available The mathematical modelling in CFD-packages are powerfull instrument for design and calculation of any engineering tasks. CFD-package contains the set of programs that allow to model the different objects behavior based on the mathematical lows. ANSYS Fluent are widely used for modelling of biotechnological and chemical-technological processes. This package is convenient to describe their hydrodynamics. As cell cultivation is one of the actual scientific direction in modern biotechnology ANSYS Fluent was used to create the model of hollow fiber membrane bioreactor. The fibers are hollow cylindrical membrane to be used for cell cultivation. The criterion of process effectiveness for cell growth is full filling of the membrane surface by cells in the bioreactor. While the cell growth the fiber permeability is decreased which effects to feed flow through membrane pores. The specific feature of this process is to ensure such feed flow to deliver the optimal nutrition for the cells on the external membrane surface. The velocity distribution inside the fiber and in all bioreactor as a whole has been calculated based on mass an impulse conservation equations taking into account the mathematical model assumptions. The hydrodynamics analysis in hollow fiber membrane bioreactor is described by the three-dimensional model created in ANSYS Fluent. The specific features of one membrane model are considered and for whole bioreactor too.

  14. Damage Modeling Of Injection-Molded Short- And Long-Fiber Thermoplastics

    International Nuclear Information System (INIS)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.; Phelps, Jay; Tucker, Charles L. III

    2009-01-01

    This article applies the recent anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has been implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.

  15. Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring

    Science.gov (United States)

    Zelepouga, Serguei A [Hoffman Estates, IL; Rue, David M [Chicago, IL; Saveliev, Alexei V [Chicago, IL

    2011-03-15

    A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

  16. MODULAR BUNDLE ADJUSTMENT FOR PHOTOGRAMMETRIC COMPUTATIONS

    Directory of Open Access Journals (Sweden)

    N. Börlin

    2018-05-01

    Full Text Available In this paper we investigate how the residuals in bundle adjustment can be split into a composition of simple functions. According to the chain rule, the Jacobian (linearisation of the residual can be formed as a product of the Jacobians of the individual steps. When implemented, this enables a modularisation of the computation of the bundle adjustment residuals and Jacobians where each component has limited responsibility. This enables simple replacement of components to e.g. implement different projection or rotation models by exchanging a module. The technique has previously been used to implement bundle adjustment in the open-source package DBAT (Börlin and Grussenmeyer, 2013 based on the Photogrammetric and Computer Vision interpretations of Brown (1971 lens distortion model. In this paper, we applied the technique to investigate how affine distortions can be used to model the projection of a tilt-shift lens. Two extended distortion models were implemented to test the hypothesis that the ordering of the affine and lens distortion steps can be changed to reduce the size of the residuals of a tilt-shift lens calibration. Results on synthetic data confirm that the ordering of the affine and lens distortion steps matter and is detectable by DBAT. However, when applied to a real camera calibration data set of a tilt-shift lens, no difference between the extended models was seen. This suggests that the tested hypothesis is false and that other effects need to be modelled to better explain the projection. The relatively low implementation effort that was needed to generate the models suggest that the technique can be used to investigate other novel projection models in photogrammetry, including modelling changes in the 3D geometry to better understand the tilt-shift lens.

  17. Modular Bundle Adjustment for Photogrammetric Computations

    Science.gov (United States)

    Börlin, N.; Murtiyoso, A.; Grussenmeyer, P.; Menna, F.; Nocerino, E.

    2018-05-01

    In this paper we investigate how the residuals in bundle adjustment can be split into a composition of simple functions. According to the chain rule, the Jacobian (linearisation) of the residual can be formed as a product of the Jacobians of the individual steps. When implemented, this enables a modularisation of the computation of the bundle adjustment residuals and Jacobians where each component has limited responsibility. This enables simple replacement of components to e.g. implement different projection or rotation models by exchanging a module. The technique has previously been used to implement bundle adjustment in the open-source package DBAT (Börlin and Grussenmeyer, 2013) based on the Photogrammetric and Computer Vision interpretations of Brown (1971) lens distortion model. In this paper, we applied the technique to investigate how affine distortions can be used to model the projection of a tilt-shift lens. Two extended distortion models were implemented to test the hypothesis that the ordering of the affine and lens distortion steps can be changed to reduce the size of the residuals of a tilt-shift lens calibration. Results on synthetic data confirm that the ordering of the affine and lens distortion steps matter and is detectable by DBAT. However, when applied to a real camera calibration data set of a tilt-shift lens, no difference between the extended models was seen. This suggests that the tested hypothesis is false and that other effects need to be modelled to better explain the projection. The relatively low implementation effort that was needed to generate the models suggest that the technique can be used to investigate other novel projection models in photogrammetry, including modelling changes in the 3D geometry to better understand the tilt-shift lens.

  18. Numerical simulation, statistical and hybrid turbulence modelling in a tube bundle under crossflow at high Reynolds number in the context of fluid-structure interaction

    International Nuclear Information System (INIS)

    Marcel, T.

    2011-01-01

    The prediction of fluid-elastic instabilities that develop in a tube bundle is of major importance for the design of modern heat exchangers in nuclear reactors, to prevent accidents associated with such instabilities. The fluid-elastic instabilities, or flutter, cause material fatigue, shocks between beams and damage to the solid walls. These issues are very complex for scientific applications involving the nuclear industry. This work is a collaboration between EDF, CEA and IMFT. It aims to improve the numerical simulation of the fluid-structure interaction in the tube bundle, in particular in the range of critical parameters contribute to the onset of damping negative system and the fluid-elastic instability. (author) [fr

  19. CFD thermal-hydraulic analysis of a CANDU fuel channel with SEU43 type fuel bundle

    International Nuclear Information System (INIS)

    Catana, A.; Prisecaru, Ilie; Dupleac, D.; Danila, Nicolae

    2009-01-01

    This paper presents the numerical investigation of a CANDU fuel channel using CFD (Computational Fluid Dynamics) methodology approach, when SEU43 fuel bundles are used. Comparisons with STD37 fuel bundles are done in order to evaluate the influence of geometrical differences of the fuel bundle types on fluid flow properties. We adopted a strategy to analyze only the significant segments of fuel channel, namely : - the fuel bundle junctions with adjacent segments; - the fuel bundle spacer planes with adjacent segments; - the fuel bundle segments with turbulence enhancement buttons; - and the regular segments of fuel bundles. The computer code used is an academic version of FLUENT code, available from UPB. The complex flow domain of fuel bundles contained in pressure tube and operating conditions determine a high turbulence flow and in some parts of fuel channel also a multi-phase flow. Numerical simulation of the flow in the fuel channel has been achieved by solving the equations for conservation of mass, momentum and energy. For turbulence model the standard k-model is employed although other turbulence models can be used. In this paper we do not consider heat generation and heat transfer capabilities of CFD methods. Boundary conditions for CFD analysis are provided by system and sub-channel analysis. In this paper the discussion is focused on some flow parameters behaviour at the bundle junction, spacer's plane configuration, etc. of a SEU43 fuel bundle in conditions of a typical CANDU 6 fuel channel starting from some experience gained in a previous work. (authors)

  20. Multiscale Shannon's Entropy Modeling of Orientation and Distance in Steel Fiber Micro-Tomography Data.

    Science.gov (United States)

    Chiverton, John P; Ige, Olubisi; Barnett, Stephanie J; Parry, Tony

    2017-11-01

    This paper is concerned with the modeling and analysis of the orientation and distance between steel fibers in X-ray micro-tomography data. The advantage of combining both orientation and separation in a model is that it helps provide a detailed understanding of how the steel fibers are arranged, which is easy to compare. The developed models are designed to summarize the randomness of the orientation distribution of the steel fibers both locally and across an entire volume based on multiscale entropy. Theoretical modeling, simulation, and application to real imaging data are shown here. The theoretical modeling of multiscale entropy for orientation includes a proof showing the final form of the multiscale taken over a linear range of scales. A series of image processing operations are also included to overcome interslice connectivity issues to help derive the statistical descriptions of the orientation distributions of the steel fibers. The results demonstrate that multiscale entropy provides unique insights into both simulated and real imaging data of steel fiber reinforced concrete.

  1. Covariant Renormalizable Modified and Massive Gravity Theories on (Non) Commutative Tangent Lorentz Bundles

    CERN Document Server

    Vacaru, Sergiu I

    2014-01-01

    The fundamental field equations in modified gravity (including general relativity; massive and bimetric theories; Ho\\vrava-Lifshits, HL; Einstein--Finsler gravity extensions etc) posses an important decoupling property with respect to nonholonomic frames with 2 (or 3) +2+2+... spacetime decompositions. This allows us to construct exact solutions with generic off--diagonal metrics depending on all spacetime coordinates via generating and integration functions containing (un-) broken symmetry parameters. Such nonholonomic configurations/ models have a nice ultraviolet behavior and seem to be ghost free and (super) renormalizable in a sense of covariant and/or massive modifications of HL gravity. The apparent noncommutativity and breaking of Lorentz invariance by quantum effects can be encoded into fibers of noncommutative tangent Lorentz bundles for corresponding "partner" anisotropically induced theories. We show how the constructions can be extended to include conjectured covariant reonormalizable models with...

  2. GPU Parallel Bundle Block Adjustment

    Directory of Open Access Journals (Sweden)

    ZHENG Maoteng

    2017-09-01

    Full Text Available To deal with massive data in photogrammetry, we introduce the GPU parallel computing technology. The preconditioned conjugate gradient and inexact Newton method are also applied to decrease the iteration times while solving the normal equation. A brand new workflow of bundle adjustment is developed to utilize GPU parallel computing technology. Our method can avoid the storage and inversion of the big normal matrix, and compute the normal matrix in real time. The proposed method can not only largely decrease the memory requirement of normal matrix, but also largely improve the efficiency of bundle adjustment. It also achieves the same accuracy as the conventional method. Preliminary experiment results show that the bundle adjustment of a dataset with about 4500 images and 9 million image points can be done in only 1.5 minutes while achieving sub-pixel accuracy.

  3. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage

    Science.gov (United States)

    Zhu, Hong-Hu; Shi, Bin; Yan, Jun-Fan; Zhang, Jie; Zhang, Cheng-Cheng; Wang, Bao-Jun

    2014-09-01

    In the past few years, fiber optic sensing technologies have played an increasingly important role in the health monitoring of civil infrastructures. These innovative sensing technologies have recently been successfully applied to the performance monitoring of a series of geotechnical structures. Fiber optic sensors have shown many unique advantages in comparison with conventional sensors, including immunity to electrical noise, higher precision and improved durability and embedding capabilities; fiber optic sensors are also smaller in size and lighter in weight. In order to explore the mechanism of seepage-induced slope instability, a small-scale 1 g model test of the soil slope has been performed in the laboratory. During the model’s construction, specially fabricated sensing fibers containing nine fiber Bragg grating (FBG) strain sensors connected in a series were horizontally and vertically embedded into the soil mass. The surcharge load was applied on the slope crest, and the groundwater level inside of the slope was subsequently varied using two water chambers installed besides the slope model. The fiber optic sensing data of the vertical and horizontal strains within the slope model were automatically recorded by an FBG interrogator and a computer during the test. The test results are presented and interpreted in detail. It is found that the gradually accumulated deformation of the slope model subjected to seepage can be accurately captured by the quasi-distributed FBG strain sensors. The test results also demonstrate that the slope stability is significantly affected by ground water seepage, which fits well with the results that were calculated using finite element and limit equilibrium methods. The relationship between the strain measurements and the safety factors is further analyzed, together with a discussion on the residual strains. The performance evaluation of a soil slope using fiber optic strain sensors is proved to be a potentially effective

  4. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage

    International Nuclear Information System (INIS)

    Zhu, Hong-Hu; Shi, Bin; Yan, Jun-Fan; Zhang, Cheng-Cheng; Wang, Bao-Jun; Zhang, Jie

    2014-01-01

    In the past few years, fiber optic sensing technologies have played an increasingly important role in the health monitoring of civil infrastructures. These innovative sensing technologies have recently been successfully applied to the performance monitoring of a series of geotechnical structures. Fiber optic sensors have shown many unique advantages in comparison with conventional sensors, including immunity to electrical noise, higher precision and improved durability and embedding capabilities; fiber optic sensors are also smaller in size and lighter in weight. In order to explore the mechanism of seepage-induced slope instability, a small-scale 1 g model test of the soil slope has been performed in the laboratory. During the model’s construction, specially fabricated sensing fibers containing nine fiber Bragg grating (FBG) strain sensors connected in a series were horizontally and vertically embedded into the soil mass. The surcharge load was applied on the slope crest, and the groundwater level inside of the slope was subsequently varied using two water chambers installed besides the slope model. The fiber optic sensing data of the vertical and horizontal strains within the slope model were automatically recorded by an FBG interrogator and a computer during the test. The test results are presented and interpreted in detail. It is found that the gradually accumulated deformation of the slope model subjected to seepage can be accurately captured by the quasi-distributed FBG strain sensors. The test results also demonstrate that the slope stability is significantly affected by ground water seepage, which fits well with the results that were calculated using finite element and limit equilibrium methods. The relationship between the strain measurements and the safety factors is further analyzed, together with a discussion on the residual strains. The performance evaluation of a soil slope using fiber optic strain sensors is proved to be a potentially effective

  5. Big things come in bundled packages: implications of bundled payment systems in health care reimbursement reform.

    Science.gov (United States)

    Delisle, Dennis R

    2013-01-01

    With passage of the Affordable Care Act, the ever-evolving landscape of health care braces for another shift in the reimbursement paradigm. As health care costs continue to rise, providers are pressed to deliver efficient, high-quality care at flat to minimally increasing rates. Inherent systemwide inefficiencies between payers and providers at various clinical settings pose a daunting task for enhancing collaboration and care coordination. A change from Medicare's fee-for-service reimbursement model to bundled payments offers one avenue for resolution. Pilots using such payment models have realized varying degrees of success, leading to the development and upcoming implementation of a bundled payment initiative led by the Center for Medicare and Medicaid Innovation. Delivery integration is critical to ensure high-quality care at affordable costs across the system. Providers and payers able to adapt to the newly proposed models of payment will benefit from achieving cost reductions and improved patient outcomes and realize a competitive advantage.

  6. Principal bundles the classical case

    CERN Document Server

    Sontz, Stephen Bruce

    2015-01-01

    This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles.  While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.

  7. Development and evaluation of spatial point process models for epidermal nerve fibers.

    Science.gov (United States)

    Olsbo, Viktor; Myllymäki, Mari; Waller, Lance A; Särkkä, Aila

    2013-06-01

    We propose two spatial point process models for the spatial structure of epidermal nerve fibers (ENFs) across human skin. The models derive from two point processes, Φb and Φe, describing the locations of the base and end points of the fibers. Each point of Φe (the end point process) is connected to a unique point in Φb (the base point process). In the first model, both Φe and Φb are Poisson processes, yielding a null model of uniform coverage of the skin by end points and general baseline results and reference values for moments of key physiologic indicators. The second model provides a mechanistic model to generate end points for each base, and we model the branching structure more directly by defining Φe as a cluster process conditioned on the realization of Φb as its parent points. In both cases, we derive distributional properties for observable quantities of direct interest to neurologists such as the number of fibers per base, and the direction and range of fibers on the skin. We contrast both models by fitting them to data from skin blister biopsy images of ENFs and provide inference regarding physiological properties of ENFs. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. A meso-scale model to study the compressive strength of woven carbon fiber reinforced plastics

    NARCIS (Netherlands)

    Schormans, J.M.J.; Remmers, J.J.C.; Wilson, W.; Deshpande, V.S.

    2016-01-01

    Modeling kink-band formation in woven composites using a detailed micro-model is numerically expensive. In order to reduce the computational resources, a method to homogenize fiber-tows is proposed which uses a rules of mixture approach. The method is tested by comparing the stiffness and

  9. Design of homogeneous trench-assisted multi-core fibers based on analytical model

    DEFF Research Database (Denmark)

    Ye, Feihong; Tu, Jiajing; Saitoh, Kunimasa

    2016-01-01

    We present a design method of homogeneous trench-assisted multicore fibers (TA-MCFs) based on an analytical model utilizing an analytical expression for the mode coupling coefficient between two adjacent cores. The analytical model can also be used for crosstalk (XT) properties analysis, such as ...

  10. Simulating watercolor by modeling diffusion, pigment, and paper fibers

    Science.gov (United States)

    Small, David

    1991-08-01

    This paper explores a parallel approach to the problem of predicting the actions of pigment and water when applied to paper fibers. This work was done on the Connection Machine II, whose parallel architecture allows one to cast the problem as that of a complex cellular automata. One defines simple rules for the behavior of each cell based on the state of that cell and its immediate neighbors. By repeating the computation for each cell in the paper over many time steps, elaborate and realistic behaviors can be achieved. The simulation takes into account diffusion, surface tension, gravity, humidity, paper absorbency and the molecular weight of each pigment. At each time step a processor associated with each fiber in the paper computes water and pigment gradients, surface tension and gravitational forces, and decides if there should be any movement of material. Pigment and water can be applied and removed (blotting) with masks created from type or scanned images. Use of a parallel processor simplifies the creation and testing of software, and variables can be stored and manipulated at highprecision. The resulting simulation runs at approximately one-tenth real time.

  11. Model and prediction of stress relaxation of polyurethane fiber

    Science.gov (United States)

    You, Gexin; Wang, Chunyan; Mei, Shuqin; Yang, Bo; Zhou, Xiuwen

    2018-03-01

    In this study, the effect of small strain (less than 10%) on hydrogen bond (H-bond) and crystallinity of dry-spun polyurethane fiber was investigated with fourier transform infrared spectroscopy and x-ray diffractometer, respectively. The results showed that the H-bond of hard segments hardly broke and its degree of crystallinity scarcely varied below strain of 10%. The fiber stress relaxation behavior at 25 °C under small strain was researched using dynamic mechanical analyzer. The stress relaxation modulus constitutive equation was obtained by transforming the non-linear relationship between stress and time into the linear relationship between stress and strain. The stress relaxation modulus master curve at 25 °C was established in terms of short-term stress relaxation tests at elevated temperatures (35 °C, 45 °C, 65 °C and 75 °C) according to time-temperature superposition principle (TTS) to predict long-term behavior within 353 year.

  12. Modeling borehole microseismic and strain signals measured by a distributed fiber optic sensor

    Science.gov (United States)

    Mellors, R. J.; Sherman, C. S.; Ryerson, F. J.; Morris, J.; Allen, G. S.; Messerly, M. J.; Carr, T.; Kavousi, P.

    2017-12-01

    The advent of distributed fiber optic sensors installed in boreholes provides a new and data-rich perspective on the subsurface environment. This includes the long-term capability for vertical seismic profiles, monitoring of active borehole processes such as well stimulation, and measuring of microseismic signals. The distributed fiber sensor, which measures strain (or strain-rate), is an active sensor with highest sensitivity parallel to the fiber and subject to varying types of noise, both external and internal. We take a systems approach and include the response of the electronics, fiber/cable, and subsurface to improve interpretation of the signals. This aids in understanding noise sources, assessing error bounds on amplitudes, and developing appropriate algorithms for improving the image. Ultimately, a robust understanding will allow identification of areas for future improvement and possible optimization in fiber and cable design. The subsurface signals are simulated in two ways: 1) a massively parallel multi-physics code that is capable of modeling hydraulic stimulation of heterogeneous reservoir with a pre-existing discrete fracture network, and 2) a parallelized 3D finite difference code for high-frequency seismic signals. Geometry and parameters for the simulations are derived from fiber deployments, including the Marcellus Shale Energy and Environment Laboratory (MSEEL) project in West Virginia. The combination mimics both the low-frequency strain signals generated during the fracture process and high-frequency signals from microseismic and perforation shots. Results are compared with available fiber data and demonstrate that quantitative interpretation of the fiber data provides valuable constraints on the fracture geometry and microseismic activity. These constraints appear difficult, if not impossible, to obtain otherwise.

  13. Two-Phase Flow Patterns in a Four by Four Rod Bundle

    International Nuclear Information System (INIS)

    Yoshitaka Mizutani; Shigeo Hosokawa; Akio Tomiyama

    2006-01-01

    Air-water two-phase flow patterns in a four by four square lattice rod bundle consisting of an acrylic channel box of 68 mm in width and transparent rods of 12 mm in diameter were observed by utilizing a high speed video camera, FEP (fluorinated ethylene propylene) tubes for rods, and a fiber-scope inserted in a rod. The FEP possesses the same refractive index as water, and thereby, whole flow patterns in the bundle and local flow patterns in subchannels were successfully visualized with little optical distortion. The ranges of liquid and gas volume fluxes, G > and L >, in the present experiments were 0.1 L > G > G > - L > flow pattern diagram is so narrow that it can be regarded as a boundary between bubbly and churn flows, (2) the boundary between bubbly and churn flows is close to the boundary between bubbly and slug flows of the Mishima and Ishii's flow pattern transition model, and (3) the boundary between churn and annular flows is well predicted by the Mishima and Ishii's model. (authors)

  14. A Theoretical Model for Estimation of Yield Strength of Fiber Metal Laminate

    Science.gov (United States)

    Bhat, Sunil; Nagesh, Suresh; Umesh, C. K.; Narayanan, S.

    2017-08-01

    The paper presents a theoretical model for estimation of yield strength of fiber metal laminate. Principles of elasticity and formulation of residual stress are employed to determine the stress state in metal layer of the laminate that is found to be higher than the stress applied over the laminate resulting in reduced yield strength of the laminate in comparison with that of the metal layer. The model is tested over 4A-3/2 Glare laminate comprising three thin aerospace 2014-T6 aluminum alloy layers alternately bonded adhesively with two prepregs, each prepreg built up of three uni-directional glass fiber layers laid in longitudinal and transverse directions. Laminates with prepregs of E-Glass and S-Glass fibers are investigated separately under uni-axial tension. Yield strengths of both the Glare variants are found to be less than that of aluminum alloy with use of S-Glass fiber resulting in higher laminate yield strength than with the use of E-Glass fiber. Results from finite element analysis and tensile tests conducted over the laminates substantiate the theoretical model.

  15. Macro-mechanical material model for fiber reinforced metal matrix composites

    CERN Document Server

    Banks-Sills, L

    1999-01-01

    The stress-strain behavior of a metal matrix composite reinforced with unidirectional, continuous and periodic fibers is investigated. Three-dimensional micro-mechanical analyses of a unit cell by means of the finite element method $9 and homogenization-localization are carried out. These calculations allow the determination of material behavior of the in-plane, as well as the fiber directions. The fibers are assumed to be elastic and the matrix elasto-plastic. $9 The matrix material is governed by a von Mises yield surface, isotropic hardening and an associated flow rule. With the aid of these analyses, the foundation to a macro-mechanical material model is presented which is employed to $9 consider an elementary problem. The model includes an anisotropic yield surface with isotropic hardening and an associated flow rule. A beam in bending containing square fibers under plane strain conditions is analyzed by means of $9 the model. Two cases are considered: one in which the fibers are symmetric with respect t...

  16. Mechanics of Unidirectional Fiber-Reinforced Composites: Buckling Modes and Failure Under Compression Along Fibers

    Science.gov (United States)

    Paimushin, V. N.; Kholmogorov, S. A.; Gazizullin, R. K.

    2018-01-01

    One-dimensional linearized problems on the possible buckling modes of an internal or peripheral layer of unidirectional multilayer composites with rectilinear fibers under compression in the fiber direction are considered. The investigations are carried out using the known Kirchhoff-Love and Timoshenko models for the layers. The binder, modeled as an elastic foundation, is described by the equations of elasticity theory, which are simplified in accordance to the model of a transversely soft layer and are integrated along the transverse coordinate considering the kinematic coupling relations for a layer and foundation layers. Exact analytical solutions of the problems formulated are found, which are used to calculate a composite made of an HSE 180 REM prepreg based on a unidirectional carbon fiber tape. The possible buckling modes of its internal and peripheral layers are identified. Calculation results are compared with experimental data obtained earlier. It is concluded that, for the composite studied, the flexural buckling of layers in the uniform axial compression of specimens along fibers is impossible — the failure mechanism is delamination with buckling of a fiber bundle according to the pure shear mode. It is realized (due to the low average transverse shear modulus) at the value of the ultimate compression stress equal to the average shear modulus. It is shown that such a shear buckling mode can be identified only on the basis of equations constructed using the Timoshenko shear model to describe the deformation process of layers.

  17. Modeling transmission parameters of polymer microstructured fibers for applications in FTTH networks

    Science.gov (United States)

    Gdula, P.; Welikow, K.; Szczepański, P.; Buczyński, R.; Piramidowicz, R.

    2011-10-01

    This paper is focused on selected aspects of designing and modeling of transmission parameters of plastic optical fibers (POFs), considered in the context of their potential applications in optical access networks and, specifically, in Fiber-To- The-Home (FTTH) systems. The survey of state-of-the-art solutions is presented and possibility of improving transmission properties of POFs by microstructurization is discussed on the basis of the first results of numerical modeling. In particular, the microstructured POF was designed supporting propagation of limited number of modes while keeping relatively large mode area and, simultaneously, significantly lowered bending losses.

  18. Fast and accurate modeling of nonlinear pulse propagation in graded-index multimode fibers.

    Science.gov (United States)

    Conforti, Matteo; Mas Arabi, Carlos; Mussot, Arnaud; Kudlinski, Alexandre

    2017-10-01

    We develop a model for the description of nonlinear pulse propagation in multimode optical fibers with a parabolic refractive index profile. It consists of a 1+1D generalized nonlinear Schrödinger equation with a periodic nonlinear coefficient, which can be solved in an extremely fast and efficient way. The model is able to quantitatively reproduce recently observed phenomena like geometric parametric instability and broadband dispersive wave emission. We envisage that our equation will represent a valuable tool for the study of spatiotemporal nonlinear dynamics in the growing field of multimode fiber optics.

  19. Light Path Model of Fiber Optic Liquid Level Sensor Considering Residual Liquid Film on the Wall

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2015-01-01

    Full Text Available The working principle of the refractive-type fiber optic liquid level sensor is analyzed in detail based on the light refraction principle. The optic path models are developed in consideration of common simplification and the residual liquid film on the glass tube wall. The calculating formulae for the model are derived, constraint conditions are obtained, influencing factors are discussed, and the scopes and skills of application are analyzed through instance simulations. The research results are useful in directing the correct usage of the fiber optic liquid level sensor, especially in special cases, such as those involving viscous liquid in the glass tube monitoring.

  20. PDS4 Bundle Creation Governance Using BPMN

    Science.gov (United States)

    Radulescu, C.; Levoe, S. R.; Algermissen, S. S.; Rye, E. D.; Hardman, S. H.

    2015-06-01

    The AMMOS-PDS Pipeline Service (APPS) provides a Bundle Builder tool, which governs the process of creating, and ultimately generates, PDS4 bundles incrementally, as science products are being generated.

  1. Exploring Bundling Theory with Geometry

    Science.gov (United States)

    Eckalbar, John C.

    2006-01-01

    The author shows how instructors might successfully introduce students in principles and intermediate microeconomic theory classes to the topic of bundling (i.e., the selling of two or more goods as a package, rather than separately). It is surprising how much students can learn using only the tools of high school geometry. To be specific, one can…

  2. Short cellulosic fiber/starch acetate composites — micromechanical modeling of Young’s modulus

    DEFF Research Database (Denmark)

    Madsen, Bo; Joffe, Roberts; Peltola, Heidi

    2011-01-01

    This study is presented to predict the Young’s modulus of injection-molded short cellulosic fiber/plasticized starch acetate composites with variable fiber and plasticizer content. A modified rule of mixtures model is applied where the effect of porosity is included, and where the fiber weight...... (density and Young’s modulus). The measured Young’s modulus of the composites varies in the range 1.1—8.3 GPa, and this is well predicted by the model calculations. A property diagram is presented to be used for the tailor-making of composites with Young’s modulus in the range 0.2—10 GPa....

  3. Hydrodynamic behavior of a bare rod bundle

    International Nuclear Information System (INIS)

    Bartzis, J.G.; Todreas, N.E.

    1977-06-01

    The temperature distribution within the rod bundle of a nuclear reactor is of major importance in nuclear reactor design. However temperature information presupposes knowledge of the hydrodynamic behavior of the coolant which is the most difficult part of the problem due to complexity of the turbulence phenomena. In the present work a 2-equation turbulence model--a strong candidate for analyzing actual three dimensional turbulent flows--has been used to predict fully developed flow of infinite bare rod bundle of various aspect ratios (P/D). The model has been modified to take into account anisotropic effects of eddy viscosity. Secondary flow calculations have been also performed although the model seems to be too rough to predict the secondary flow correctly. Heat transfer calculations have been performed to confirm the importance of anisotropic viscosity in temperature predictions. All numerical calculations for flow and heat have been performed by two computer codes based on the TEACH code. Experimental measurements of the distribution of axial velocity, turbulent axial velocity, turbulent kinetic energy and radial Reynolds stresses were performed in the developing and fully developed regions. A 2-channel Laser Doppler Anemometer working on the Reference mode with forward scattering was used to perform the measurements in a simulated interior subchannel of a triangular rod array with P/D = 1.124. Comparisons between the analytical results and the results of this experiment as well as other experimental data in rod bundle array available in literature are presented. The predictions are in good agreement with the results for the high Reynolds numbers

  4. Deformation quantization of principal fibre bundles

    International Nuclear Information System (INIS)

    Weiss, S.

    2007-01-01

    Deformation quantization is an algebraic but still geometrical way to define noncommutative spacetimes. In order to investigate corresponding gauge theories on such spaces, the geometrical formulation in terms of principal fibre bundles yields the appropriate framework. In this talk I will explain what should be understood by a deformation quantization of principal fibre bundles and how associated vector bundles arise in this context. (author)

  5. Output commitment through product bundling : Experimental evidence

    NARCIS (Netherlands)

    Hinloopen, Jeroen; Mueller, Wieland; Normann, Hans-Theo

    We analyze the impact of product bundling in experimental markets. One firm has monopoly power in a first market but competes with another firm la Cournot in a second market. We compare treatments where the multi-product firm (i) always bundles, (ii) never bundles, and (iii) chooses whether to

  6. Full-scale model development of the WWER-440 reactor fuel rod bundle for core temperature regime study under reflooding conditions

    International Nuclear Information System (INIS)

    Bezrukov, Yu.A.; Logvinov, S.A.; Levchuk, S.V.; Nakladnov, V.D.; Onshin, V.P.; Sokolov, A.S.

    1982-01-01

    Consideration is given to the issues of a full scale WWER-440 fuel rod bundle imitation. An imitator contains a molybdenum heating rod inclosed in stainless steel shell. The shell diameter is 9 mm, the heated length is 2500 mm, the total len.o.th is 2855 mm. 125 fuel rod imitators are set in the bundle mock-up. The experiments were run on a test facility imitating the WWER-440 reactor primary loop, providing the conditions of the loop breaking. The mock-up thermal hydraulics has been studied during the refloodino. stage. The mock-up was heated up to predetermined initial temperature at a low power level with saturated steam cooling. Then the steam input was stopped, the power level rarapidly rised up to a given value and the cooling water injected. Simultaneously with water injection all the measured parameters monitoring was started. Both at the top spraying and combined cooling temperature oscillations in the upper and middle parts of the mock-up were observed. At the bottom reflooding the mock-up cooling down took more time, thereat temperature inthe upper part first slowly rised during reflooding then decreased and then dropped abruptly at thefront coming up [ru

  7. Productivity of the supply system based on whole-tree bundling

    Energy Technology Data Exchange (ETDEWEB)

    Laitila, J. (Finnish Forest Research Inst., Joensuu (Finland)), Email: juha.laitila@metla.fi; Jylhae, P. (Finnish Forest Research Inst., Kannus (Finland)), Email: paula.jylha@metla.fi; Kaerhae, K. (Metsaeteho Oy, Helsinki (Finland)), Email: kalle.karha@metsateho.fi

    2009-07-01

    In the present study, time consumption models for bundle harvesting and forwarding were created by applying regression analyses. The time studies related to on-road transportation were created by applying regression analyses. The time studies related to on-road transportation were focused on comparing the terminal times spent on handling of whole-tree bundles and conventional 5-m pulpwood. The number of whole-tree bundles per truck load and the weights of the payloads were also recorded. The forwarding productivity of whole-tree bundles was about double compared to conventional pulpwood and whole-trees. In on-road transportation, the mean loading and unloading time of whole-tree bundles per truck load was 46 % higher compared to that of conventional 5-m pulpwood. The second prototype of the bundle harvester is under construction, and the time studies are to be continued after accomplishing the machine in the autumn 2009. (orig.)

  8. Out-of-pile bundle temperature escalation under severe fuel damage conditions

    International Nuclear Information System (INIS)

    Hagen, S.; Peck, S.O.

    1983-08-01

    This report provides an overview of the test conduct, results, and posttest appearance of bundle test ESBU-1. The purpose of the test was to investigate fuel rod temperature escalation due to the exothermal zircaloy/steam reaction in a bundle geometry. The 3x3 bundle was surrounded by a zircaloy shroud and 6 mm of fiber ceramic insulation. The center rod escalated to a maximum of 2,250 0 C. Runoff of the melt apparently limited the escalation. Posttest visual examination of the bundle showed that cladding from every rod had melted, liquefied some fuel, flowed down the rod, and frozen in a solid mass that substantially blocked all flow channels. A large amount of powdery rubble, probably fuel that fractured during cooldown, was found on top of the blockage. Metallographic, EMP, and SEM examinations showed that the melt had dissolved both fuel and oxidized cladding, and had itself been oxidized by steam. (orig.) [de

  9. Photoacoustic imaging of hidden dental caries by using a fiber-based probing system

    Science.gov (United States)

    Koyama, Takuya; Kakino, Satoko; Matsuura, Yuji

    2017-04-01

    Photoacoustic method to detect hidden dental caries is proposed. It was found that high frequency ultrasonic waves are generated from hidden carious part when radiating laser light to occlusal surface of model tooth. By making a map of intensity of these high frequency components, photoacoustic images of hidden caries were successfully obtained. A photoacoustic imaging system using a bundle of hollow optical fiber was fabricated for using clinical application, and clear photoacoustic image of hidden caries was also obtained by this system.

  10. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  11. Statistical aspects of carbon fiber risk assessment modeling. [fire accidents involving aircraft

    Science.gov (United States)

    Gross, D.; Miller, D. R.; Soland, R. M.

    1980-01-01

    The probabilistic and statistical aspects of the carbon fiber risk assessment modeling of fire accidents involving commercial aircraft are examined. Three major sources of uncertainty in the modeling effort are identified. These are: (1) imprecise knowledge in establishing the model; (2) parameter estimation; and (3)Monte Carlo sampling error. All three sources of uncertainty are treated and statistical procedures are utilized and/or developed to control them wherever possible.

  12. Perturbative modeling of Bragg-grating-based biosensors in photonic-crystal fibers

    DEFF Research Database (Denmark)

    Burani, Nicola; Lægsgaard, Jesper

    2005-01-01

    We present a modeling study carried out to support the design of a novel, to our knowledge, kind of photonic-crystal fiber (PCF)-based sensor. This device, based on a PCF Bragg grating, detects the presence of selected single-stranded DNA molecules, hybridized to a biofilm in the air holes of the...

  13. Higher order jet prolongations type gauge natural bundles over vector bundles

    Directory of Open Access Journals (Sweden)

    Jan Kurek

    2004-05-01

    Full Text Available Let $rgeq 3$ and $mgeq 2$ be natural numbers and $E$ be a vector bundle with $m$-dimensional basis. We find all gauge natural bundles ``similar" to the $r$-jet prolongation bundle $J^rE$ of $E$. We also find all gauge natural bundles ``similar" to the vector $r$-tangent bundle $(J^r_{fl}(E,R_0^*$ of $E$.

  14. A construction of observables for AKSZ sigma models

    OpenAIRE

    Mnev, Pavel

    2012-01-01

    A construction of gauge-invariant observables is suggested for a class of topological field theories, the AKSZ sigma-models. The observables are associated to extensions of the target Q-manifold of the sigma model to a Q-bundle over it with additional Hamiltonian structure in fibers.

  15. Verification of a three-dimensional FEM model for FBGs in PANDA fibers by transversal load experiments

    Science.gov (United States)

    Fischer, Bennet; Hopf, Barbara; Lindner, Markus; Koch, Alexander W.; Roths, Johannes

    2017-04-01

    A 3D FEM model of an FBG in a PANDA fiber with an extended fiber length of 25.4 mm is presented. Simulating long fiber lengths with limited computer power is achieved by using an iterative solver and by optimizing the FEM mesh. For verification purposes, the model is adapted to a configuration with transversal loads on the fiber. The 3D FEM model results correspond with experimental data and with the results of an additional 2D FEM plain strain model. In further studies, this 3D model shall be applied to more sophisticated situations, for example to study the temperature dependence of surface-glued or embedded FBGs in PANDA fibers that are used for strain-temperature decoupling.

  16. Highly optimized tunable Er3+-doped single longitudinal mode fiber ring laser, experiment and model

    DEFF Research Database (Denmark)

    Poulsen, Christian; Sejka, Milan

    1993-01-01

    A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing...... with a linewidth of 6 kHz has been measured. A fast model of erbium-doped fiber laser was developed and used to optimize output parameters of the laser...

  17. Program description of FIBRAM: a radiation attenuation model for optical fibers

    International Nuclear Information System (INIS)

    Ingram, W.J.

    1987-06-01

    The report describes a fiber optics system model and its computer implementation. This implementation can calculate the bit error ratio (BER) versus time for optical fibers that have been exposed to gamma radiation. The program is designed so that the user may arbitrarily change any or all of the system input variables and produce separate output calculations. The primary output of the program is a table of the BER as a function of time. This table may be stored on magnetic media and later incorporated into computer graphics programs

  18. Continuous Modeling Technique of Fiber Pullout from a Cement Matrix with Different Interface Mechanical Properties Using Finite Element Program

    Directory of Open Access Journals (Sweden)

    Leandro Ferreira Friedrich

    Full Text Available Abstract Fiber-matrix interface performance has a great influence on the mechanical properties of fiber reinforced composite. This influence is mainly presented during fiber pullout from the matrix. As fiber pullout process consists of fiber debonding stage and pullout stage which involve complex contact problem, numerical modeling is a best way to investigate the interface influence. Although many numerical research works have been conducted, practical and effective technique suitable for continuous modeling of fiber pullout process is still scarce. The reason is in that numerical divergence frequently happens, leading to the modeling interruption. By interacting the popular finite element program ANSYS with the MATLAB, we proposed continuous modeling technique and realized modeling of fiber pullout from cement matrix with desired interface mechanical performance. For debonding process, we used interface elements with cohesive surface traction and exponential failure behavior. For pullout process, we switched interface elements to spring elements with variable stiffness, which is related to the interface shear stress as a function of the interface slip displacement. For both processes, the results obtained are very good in comparison with other numerical or analytical models and experimental tests. We suggest using the present technique to model toughening achieved by randomly distributed fibers.

  19. A transmission line model for propagation in elliptical core optical fibers

    Science.gov (United States)

    Georgantzos, E.; Papageorgiou, C.; Boucouvalas, A. C.

    2015-12-01

    The calculation of mode propagation constants of elliptical core fibers has been the purpose of extended research leading to many notable methods, with the classic step index solution based on Mathieu functions. This paper seeks to derive a new innovative method for the determination of mode propagation constants in single mode fibers with elliptic core by modeling the elliptical fiber as a series of connected coupled transmission line elements. We develop a matrix formulation of the transmission line and the resonance of the circuits is used to calculate the mode propagation constants. The technique, used with success in the case of cylindrical fibers, is now being extended for the case of fibers with elliptical cross section. The advantage of this approach is that it is very well suited to be able to calculate the mode dispersion of arbitrary refractive index profile elliptical waveguides. The analysis begins with the deployment Maxwell's equations adjusted for elliptical coordinates. Further algebraic analysis leads to a set of equations where we are faced with the appearance of harmonics. Taking into consideration predefined fixed number of harmonics simplifies the problem and enables the use of the resonant circuits approach. According to each case, programs have been created in Matlab, providing with a series of results (mode propagation constants) that are further compared with corresponding results from the ready known Mathieu functions method.

  20. A transmission line model for propagation in elliptical core optical fibers

    International Nuclear Information System (INIS)

    Georgantzos, E.; Boucouvalas, A. C.; Papageorgiou, C.

    2015-01-01

    The calculation of mode propagation constants of elliptical core fibers has been the purpose of extended research leading to many notable methods, with the classic step index solution based on Mathieu functions. This paper seeks to derive a new innovative method for the determination of mode propagation constants in single mode fibers with elliptic core by modeling the elliptical fiber as a series of connected coupled transmission line elements. We develop a matrix formulation of the transmission line and the resonance of the circuits is used to calculate the mode propagation constants. The technique, used with success in the case of cylindrical fibers, is now being extended for the case of fibers with elliptical cross section. The advantage of this approach is that it is very well suited to be able to calculate the mode dispersion of arbitrary refractive index profile elliptical waveguides. The analysis begins with the deployment Maxwell’s equations adjusted for elliptical coordinates. Further algebraic analysis leads to a set of equations where we are faced with the appearance of harmonics. Taking into consideration predefined fixed number of harmonics simplifies the problem and enables the use of the resonant circuits approach. According to each case, programs have been created in Matlab, providing with a series of results (mode propagation constants) that are further compared with corresponding results from the ready known Mathieu functions method

  1. Co-Higgs bundles on P^1

    OpenAIRE

    Rayan, Steven

    2010-01-01

    Co-Higgs bundles are Higgs bundles in the sense of Simpson, but with Higgs fields that take values in the tangent bundle instead of the cotangent bundle. Given a vector bundle on P^1, we find necessary and sufficient conditions on its Grothendieck splitting for it to admit a stable Higgs field. We characterize the rank-2, odd-degree moduli space as a universal elliptic curve with a globally-defined equation. For ranks r=2,3,4, we explicitly verify the conjectural Betti numbers emerging from t...

  2. 76 FR 61365 - Bundled Payments for Care Improvement Initiative

    Science.gov (United States)

    2011-10-04

    ...] Bundled Payments for Care Improvement Initiative AGENCY: Centers for Medicare & Medicaid Services (CMS...: Letter of Intent Submission Deadline: For Model 1 of this initiative, interested organizations must...-improvement.html . Application Submission Deadline: For Model 1 of this initiative, applications must be...

  3. Boiling heat transfer on horizontal tube bundles

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Nucleate boiling heat transfer characteristics for a tube in a bundle differ from that for a single tube in a pool and this difference is known as 'tube bundle effect.' There exist two bundle effects, positive and negative. The positive bundle effect enhances heat transfer due to convective flow induced by rising bubbles generated from the lower tubes, while the negative bundle effect deteriorates heat transfer due to vapor blanketing caused by accumulation of bubbles. Staggered tube bundles tested and found that the upper tubes in bundles have higher heat transfer coefficients than the lower tubes. The effects of various parameters such as pressure, tube geometry and oil contamination on heat transfer have been examined. Some workers attempted to clarify the mechanism of occurrence of 'bundle effect' by testing tube arrangements of small scale. All reported only enhancement in heat transfer but results showed the symptom of heat transfer deterioration at higher heat fluxes. As mentioned above, it has not been clarified so far even whether the 'tube bundle effect' should serve as enhancement or deterioration of heat transfer in nucleate boiling. In this study, experiments are performed in detail by using bundles of small scale, and effects of heat flux distribution, pressure and tube location are clarified. Furthermore, some consideration on the mechanisms of occurrence of 'tube bundle effect' is made and a method for prediction of heat transfer rate is proposed

  4. Reliable Dual Tensor Model Estimation in Single and Crossing Fibers Based on Jeffreys Prior

    Science.gov (United States)

    Yang, Jianfei; Poot, Dirk H. J.; Caan, Matthan W. A.; Su, Tanja; Majoie, Charles B. L. M.; van Vliet, Lucas J.; Vos, Frans M.

    2016-01-01

    Purpose This paper presents and studies a framework for reliable modeling of diffusion MRI using a data-acquisition adaptive prior. Methods Automated relevance determination estimates the mean of the posterior distribution of a rank-2 dual tensor model exploiting Jeffreys prior (JARD). This data-acquisition prior is based on the Fisher information matrix and enables the assessment whether two tensors are mandatory to describe the data. The method is compared to Maximum Likelihood Estimation (MLE) of the dual tensor model and to FSL’s ball-and-stick approach. Results Monte Carlo experiments demonstrated that JARD’s volume fractions correlated well with the ground truth for single and crossing fiber configurations. In single fiber configurations JARD automatically reduced the volume fraction of one compartment to (almost) zero. The variance in fractional anisotropy (FA) of the main tensor component was thereby reduced compared to MLE. JARD and MLE gave a comparable outcome in data simulating crossing fibers. On brain data, JARD yielded a smaller spread in FA along the corpus callosum compared to MLE. Tract-based spatial statistics demonstrated a higher sensitivity in detecting age-related white matter atrophy using JARD compared to both MLE and the ball-and-stick approach. Conclusions The proposed framework offers accurate and precise estimation of diffusion properties in single and dual fiber regions. PMID:27760166

  5. Development of CANFLEX fuel bundle

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Hwang, Woan; Jeong, Young Hwan

    1991-12-01

    This research project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle(so-called CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactors for 1996 and 1997, and consequently will be used in the existing and future reactors in Korea. The research activities during this year include the basic design of CANFLEX fuel with slightly enriched uranium(CANFLEX-SEU), with emphasis on the extension of fuel operation limit. Based on this basic design, CANFLEX fuel was mocked up. Out-of-pile hydraulic scoping tests were conducted with the fuel. (Author)

  6. Global properties of systems quantized via bundles

    International Nuclear Information System (INIS)

    Doebner, H.D.; Werth, J.E.

    1978-03-01

    Take a smooth manifold M and a Lie algebra action (g-ation) theta on M as the geometrical arena of a physical system moving on M with momenta given by theta. It is proposed to quantize the system with a Mackey-like method via the associated vector bundle xisub(rho) of a principal bundle xi=(P,π,M,H) with model dependent structure group H and with g-action phi on P lifted from theta on M. This (quantization) bundle xisub(rho) gives the Hilbert space equal to L 2 (xisub(rho),ω) of the system as the linear space of sections in xisub(rho) being square integrable with respect to a volume form ω on M; the usual position operators are obtained; phi leads to a vector field representation D(phisub(rho),theta) of g in an hence Hilbert space to momentum operators. So Hilbert space carries the quantum kinematics. In this quantuzation the physically important connection between geometrical properties of the system, e.g. quasi-completeness of theta and G-maximality of phisub(rho), and global properties of its quantized kinematics, e.g. skew-adjointness of the momenta and integrability of D(phisub(rho), theta) can easily be studied. The relation to Nelson's construction of a skew-adjoint non-integrable Lie algebra representation and to Palais' local G-action is discussed. Finally the results are applied to actions induced by coverings as examples of non-maximal phisub(rho) on Esub(rho) lifted from maximal theta on M which lead to direct consequences for the corresponding quantum kinematics

  7. Modeling of Multicomponent Mixture Separation Processes Using Hollow fiber Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sin-Ah; Kim, Jin-Kuk; Lee, Young Moo; Yeo, Yeong-Koo [Hanyang University, Seoul (Korea, Republic of)

    2015-02-15

    So far, most of research activities on modeling of membrane separation processes have been focused on binary feed mixture. But, in actual separation operations, binary feed is hard to find and most separation processes involve multicomponent feed mixture. In this work models for membrane separation processes treating multicomponent feed mixture are developed. Various model types are investigated and validity of proposed models are analysed based on experimental data obtained using hollowfiber membranes. The proposed separation models show quick convergence and exhibit good tracking performance.

  8. An assessment of thermal behavior of the DUPIC fuel bundle by subchannel analysis

    International Nuclear Information System (INIS)

    Park, Jee Won.

    1997-12-01

    Thermal behavior of the standard DUPIC fuel has been assessed. The DUPIC fuel bundle has been modeled for a subchannel analysis using the ASSERT-IV code which was developed by AECL. From the calculated mixture enthalpy, equilibrium quality and void fraction distributions of the DUPIC fuel bundle, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. Based upon the subchannel modeling used in this study, the location of minimum CHFR in the DUPIC fuel bundle has been found to be very similar to that of the standard fuel. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction was found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. Since the transverse interchange model between subchannels is important for the behavior of these variables, it is needed to put more effort in validating the transverse interchange model. For the purpose of investigating influence of thermal-hydraulic parameter variations of the DUPIC fuel bundle, four different values of the channel flow rates were used in the subchannel analysis. The effect of the channel flow reduction on thermal-hydraulic parameters have been presented. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundles in CANDU reactors. (author). 12 refs., 3 tabs., 17 figs

  9. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  10. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  11. Photonic Beamformer Model Based on Analog Fiber-Optic Links’ Components

    International Nuclear Information System (INIS)

    Volkov, V A; Gordeev, D A; Ivanov, S I; Lavrov, A P; Saenko, I I

    2016-01-01

    The model of photonic beamformer for wideband microwave phased array antenna is investigated. The main features of the photonic beamformer model based on true-time-delay technique, DWDM technology and fiber chromatic dispersion are briefly analyzed. The performance characteristics of the key components of photonic beamformer for phased array antenna in the receive mode are examined. The beamformer model composed of the components available on the market of fiber-optic analog communication links is designed and tentatively investigated. Experimental demonstration of the designed model beamforming features includes actual measurement of 5-element microwave linear array antenna far-field patterns in 6-16 GHz frequency range for antenna pattern steering up to 40°. The results of experimental testing show good accordance with the calculation estimates. (paper)

  12. Variable recruitment in bundles of miniature pneumatic artificial muscles.

    Science.gov (United States)

    DeLaHunt, Sylvie A; Pillsbury, Thomas E; Wereley, Norman M

    2016-09-13

    The natural compliance and force generation properties of pneumatic artificial muscles (PAMs) allow them to operate like human muscles in anthropomorphic robotic manipulators. Traditionally, manipulators use a single PAM or multiple PAMs actuated in unison in place of a human muscle. However, these standard manipulators can experience significant efficiency losses when operated outside their target performance ranges at low actuation pressures. This study considers the application of a variable recruitment control strategy to a parallel bundle of miniature PAMs as an attempt to mimic the selective recruitment of motor units in a human muscle. Bundles of miniature PAMs are experimentally characterized, their actuation behavior is modeled, and the efficiency gains and losses associated with the application of a variable recruitment control strategy are assessed. This bio-inspired control strategy allows muscle bundles to operate the fewest miniature PAMs necessary to achieve a desired performance objective, improving the muscle bundle's operating efficiency over larger ranges of force generation and displacement. The study also highlights the need for improved PAM fabrication techniques to facilitate the production of identical miniature PAMs for inclusion in muscle bundles.

  13. Revascularization of diaphyseal bone segments by vascular bundle implantation.

    Science.gov (United States)

    Nagi, O N

    2005-11-01

    Vascularized bone transfer is an effective, established treatment for avascular necrosis and atrophic or infected nonunions. However, limited donor sites and technical difficulty limit its application. Vascular bundle transplantation may provide an alternative. However, even if vascular ingrowth is presumed to occur in such situations, its extent in aiding revascularization for ultimate graft incorporation is not well understood. A rabbit tibia model was used to study and compare vascularized, segmental, diaphyseal, nonvascularized conventional, and vascular bundle-implanted grafts with a combination of angiographic, radiographic, histopathologic, and bone scanning techniques. Complete graft incorporation in conventional grafts was observed at 6 months, whereas it was 8 to 12 weeks with either of the vascularized grafts. The pattern of radionuclide uptake and the duration of graft incorporation between vascular segmental bone grafts (with intact endosteal blood supply) and vascular bundle-implanted segmental grafts were similar. A vascular bundle implanted in the recipient bone was found to anastomose extensively with the intraosseous circulation at 6 weeks. Effective revascularization of bone could be seen when a simple vascular bundle was introduced into a segment of bone deprived of its normal blood supply. This simple technique offers promise for improvement of bone graft survival in clinical circumstances.

  14. Fluid-mechanic model for fabrication of nanoporous fibers by electrospinning

    Directory of Open Access Journals (Sweden)

    Fan Chengxu

    2017-01-01

    Full Text Available A charged jet in the electrospinning process for fabrication of nanoporous fibers is studied theoretically. A fluid-mechanic model considering solvent evaporation is established to research the effect of solvent evaporation on nanopore structure formation. The model gives a powerful tool to offering in-depth physical under-standing and controlling over electrospinning parameters such as voltage, flow rate, and solvent evaporation rate.

  15. Fluid-mechanic model for fabrication of nanoporous fibers by electrospinning

    OpenAIRE

    Fan Chengxu; Sun Zhaoyang; Xu Lan

    2017-01-01

    A charged jet in the electrospinning process for fabrication of nanoporous fibers is studied theoretically. A fluid-mechanic model considering solvent evaporation is established to research the effect of solvent evaporation on nanopore structure formation. The model gives a powerful tool to offering in-depth physical under-standing and controlling over electrospinning parameters such as voltage, flow rate, and solvent evaporation rate.

  16. A model for evaluating beef cattle rations considering effects of ruminal fiber mass

    OpenAIRE

    Henrique,Douglas Sampaio; Lana,Rogério de Paula; Vieira,Ricardo Augusto Mendonça; Fontes,Carlos Augusto de Alencar; Botelho,Mosar Faria

    2011-01-01

    A mathematical model based on Cornell Net Carbohydrate and Protein System (CNCPS) was developed and adapted in order to evaluate beef cattle rations at tropical climate conditions. The presented system differs from CNCPS in the modeling of insoluble particles' digestion and passage kinetics, which enabled the estimation of fiber mass in rumen and its effects on animal performance. The equations used to estimate metabolizable protein and net energy requirements for gain, net energy requirement...

  17. A human model of small fiber neuropathy to study wound healing.

    Directory of Open Access Journals (Sweden)

    Ben M W Illigens

    Full Text Available The aim of this study was to develop a human model of acute wound healing that isolated the effects of small fiber neuropathy on the healing process. Twenty-five healthy subjects had the transient receptor vanilloid 1 agonist capsaicin and placebo creams topically applied to contralateral areas on the skin of the thigh for 48 hours. Subjects had shallow (1.2 millimeter and deep (>3 millimeter punch skin biopsies from each thigh on days 1 and 14. Biopsy wound healing was monitored photographically until closure. Intra-epidermal and sweat-gland nerve fiber densities were measured for each biopsy. Shallow wounds in capsaicin-treated sites healed more slowly than in placebo treated skin with biopsies taken on day 1 (P<0.001 and day 14 (P<0.001. Deep biopsies in the capsaicin and placebo areas healed at similar rates at both time points. Nerve fiber densities were reduced only in capsaicin treated regions (P<0.01. In conclusion, topical application of capsaicin causes a small fiber neuropathy and is associated with a delay in healing of shallow, but not deep wounds. This novel human model may prove valuable in the study of wound healing in patients with neuropathy.

  18. Extracting Optical Fiber Background from Surface-Enhanced Raman Spectroscopy Spectra Based on Bi-Objective Optimization Modeling.

    Science.gov (United States)

    Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan

    2017-08-01

    We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.

  19. Aerosol retention in the flooded steam generator bundle during SGTR

    International Nuclear Information System (INIS)

    Lind, Terttaliisa; Dehbi, Abdel; Guentay, Salih

    2011-01-01

    Research highlights: → High retention of aerosol particles in a steam generator bundle flooded with water. → Increasing particle inertia, i.e., particle size and velocity, increases retention. → Much higher retention of aerosol particles in the steam generator bundle flooded with water than in a dry bundle. → Much higher retention of aerosol particles in the steam generator bundle than in a bare pool. → Bare pool models have to be adapted to be applicable for flooded bundles. - Abstract: A steam generator tube rupture in a pressurized water reactor may cause accidental release of radioactive particles into the environment. Its specific significance is in its potential to bypass the containment thereby providing a direct pathway of the radioactivity from the primary circuit to the environment. Under certain severe accident scenarios, the steam generator bundle may be flooded with water. In addition, some severe accident management procedures are designed to minimize the release of radioactivity into the environment by flooding the defective steam generator secondary side with water when the steam generator has dried out. To extend our understanding of the particle retention phenomena in the flooded steam generator bundle, tests were conducted in the ARTIST and ARTIST II programs to determine the effect of different parameters on particle retention. The effects of particle type (spherical or agglomerate), particle size, gas mass flow rate, and the break submergence on particle retention were investigated. Results can be summarized as follows: increasing particle inertia was found to increase retention in the flooded bundle. Particle shape, i.e., agglomerate or spherical structure, did not affect retention significantly. Even with a very low submergence, 0.3 m above the tube break, significant aerosol retention took place underlining the importance of the jet-bundle interactions close to the tube break. Droplets were entrained from the water surface with

  20. Preliminary Analysis of the Bundle-Duct Interaction for the fuel of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byoung Oon; Cheon, Jin Sik; Hahn, Do Hee; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    BDI (Bundle-Duct Interaction) occurs in the fuel of SFR (Sodium-cooled Fast Reactor) due to the radial expansion and bowing of a fuel pin bundle. Under the BDI condition, excess cladding strain and hot spots would occur. Therefore, BDI, which is the dominant deformation mechanisms in a fuel pin bundle, should be considered to evaluate the FBR fuel integrity. The analysis codes such as ETOILE and BMBOO, have been developed to evaluate the BDI behavior. The bundle duct interaction model is also being developed for SFR in Korea. This model is based on ANSYS. In this paper, the fuel pin configuration model for the BDI calculation was established. The preliminary analysis of the bundle-duct interaction was performed to evaluate the fuel design concept.

  1. A study on the thermal hydraulics in rod bundles

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Yang, Sun Kyu

    1989-03-01

    In order to improve the thermal hydraulic characteristics of the nuclear reactor core, it is necessary to obtain better understanding of the coolant flow and the enthalpy distribution in complex rod bundle geometries. The purpose of this report is to obtain a comprehensive survey on the thermal hydraulic in rod bundles from both experimental and numerical point of view. From references on experimental study, measurement methods and results of the flow velocity and the pressure drop in the subchannels of rod bundles are expressed. The microscopic flow characteristics of the subchannels and spacer grid effect on the flow structure are described. Physical phenomena and measurement methods of the secondary flow are also described. From references on the numerical study, general numerical methods are expressed. Numerical studies on the laminar flow and turbulent flow such as 1-equation and 2-equation model are reviewed.(Author)

  2. Polarization Raman spectroscopy of GaN nanorod bundles

    International Nuclear Information System (INIS)

    Tite, T.; Lee, C. J.; Chang, Y.-M.

    2010-01-01

    We performed polarization Raman spectroscopy on single wurtzite GaN nanorod bundles grown by plasma-assisted molecular beam epitaxy. The obtained Raman spectra were compared with those of GaN epilayer. The spectral difference between the GaN nanorod bundles and epilayer reveals the relaxation of Raman selection rules in these GaN nanorod bundles. The deviation of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules is attributed to both the orientation of the crystal axis with respect to the polarization vectors of incident and scattered light and the structural defects in the merging boundary of GaN nanorods. The presence of high defect density induced by local strain at the merging boundary was further confirmed by transmission electron microscopy. The averaged defect interspacing was estimated to be around 3 nm based on the spatial correlation model.

  3. ASSERT and COBRA predictions of flow distribution in vertical bundles

    International Nuclear Information System (INIS)

    Tahir, A.; Carver, M.B.

    1983-01-01

    COBRA and ASSERT are subchannel codes which compute flow and enthalpy distributions in rod bundles. COBRA is a well known code, ASSERT is under development at CRNL. This paper gives a comparison of the two codes with boiling experiments in vertical seven rod bundles. ASSERT predictions of the void distribution are shown to be in good agreement with reported experimental results, while COBRA predictions are unsatisfactory. The mixing models in both COBRA and ASSERT are briefly discussed. The reasons for the failure of COBRA-IV and the success of ASSERT in simulating the experiments are highlighted

  4. A Critique of a Phenomenological Fiber Breakage Model for Stress Rupture of Composite Materials

    Science.gov (United States)

    Reeder, James R.

    2010-01-01

    Stress rupture is not a critical failure mode for most composite structures, but there are a few applications where it can be critical. One application where stress rupture can be a critical design issue is in Composite Overwrapped Pressure Vessels (COPV's), where the composite material is highly and uniformly loaded for long periods of time and where very high reliability is required. COPV's are normally required to be proof loaded before being put into service to insure strength, but it is feared that the proof load may cause damage that reduces the stress rupture reliability. Recently, a fiber breakage model was proposed specifically to estimate a reduced reliability due to proof loading. The fiber breakage model attempts to model physics believed to occur at the microscopic scale, but validation of the model has not occurred. In this paper, the fiber breakage model is re-derived while highlighting assumptions that were made during the derivation. Some of the assumptions are examined to assess their effect on the final predicted reliability.

  5. Confinement-Dependent Friction in Peptide Bundles

    Science.gov (United States)

    Erbaş, Aykut; Netz, Roland R.

    2013-01-01

    Friction within globular proteins or between adhering macromolecules crucially determines the kinetics of protein folding, the formation, and the relaxation of self-assembled molecular systems. One fundamental question is how these friction effects depend on the local environment and in particular on the presence of water. In this model study, we use fully atomistic MD simulations with explicit water to obtain friction forces as a single polyglycine peptide chain is pulled out of a bundle of k adhering parallel polyglycine peptide chains. The whole system is periodically replicated along the peptide axes, so a stationary state at prescribed mean sliding velocity V is achieved. The aggregation number is varied between k = 2 (two peptide chains adhering to each other with plenty of water present at the adhesion sites) and k = 7 (one peptide chain pulled out from a close-packed cylindrical array of six neighboring peptide chains with no water inside the bundle). The friction coefficient per hydrogen bond, extrapolated to the viscous limit of vanishing pulling velocity V → 0, exhibits an increase by five orders of magnitude when going from k = 2 to k = 7. This dramatic confinement-induced friction enhancement we argue to be due to a combination of water depletion and increased hydrogen-bond cooperativity. PMID:23528088

  6. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Erik A. [Los Alamos National Laboratory

    2012-06-07

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offering robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity

  7. An optical channel modeling of a single mode fiber

    Science.gov (United States)

    Nabavi, Neda; Liu, Peng; Hall, Trevor James

    2018-05-01

    The evaluation of the optical channel model that accurately describes the single mode fibre as a coherent transmission medium is reviewed through analytical, numerical and experimental analysis. We used the numerical modelling of the optical transmission medium and experimental measurements to determine the polarization drift as a function of time for a fixed length of fibre. The probability distribution of the birefringence vector was derived, which is associated to the 'Poole' equation. The theory and experimental evidence that has been disclosed in the literature in the context of polarization mode dispersion - Stokes & Jones formulations and solutions for key statistics by integration of stochastic differential equations has been investigated. Besides in-depth definition of the single-mode fibre-optic channel, the modelling which concerns an ensemble of fibres each with a different instance of environmental perturbation has been analysed.

  8. A Study on the Response Characteristics of a Fiber-Optic Radiation Sensor Model Based on Cerenkov Principle

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hwa Jeong; Kim, Beom Kyu; Park, Byung Gi [Soonchunhyang Univ., Asan (Korea, Republic of)

    2016-10-15

    In recent year, various fiber-optic radiation sensors using Cerenkov principle have been developed without employing any scintillators for measuring high-energy photon, electron, etc. The main advantages of the optical fibers are the remote transmission of the light signal and immunity to pressure and electromagnetic waves. Therefore, the sensors utilizing the optical fibers can be used in hazardous radiation environments, such as the high-level radiation areas of a nuclear facility. The study to be simulated a fiber-optic radiation sensor based on Cerenkov principle and to be analyzed the response characteristics of the sensor. For the aforementioned study, the GEANT simulation toolkit was used. It is able to take into all the optical properties of fibers and is found to be appropriate to realistically describe the response of fiber-optic radiation sensor. In the recently, the fiber-optic radiation sensor have been developed in nuclear industry. Because sensor can detect gamma ray in harsh nuclear environments. In this study, we analyzed response characteristics of the fiber-optic radiation sensor. We have simulated the Monte Carlo model, for detecting the Cerenkov radiation using the fiber-optic radiation sensor. And the y-axis distribution of Cerenkov photons was obtained using output file. Simulation is performed with reference to the method of the previous research, and then the simulation results exhibited a good agreement with the previous research.

  9. A Study on the Response Characteristics of a Fiber-Optic Radiation Sensor Model Based on Cerenkov Principle

    International Nuclear Information System (INIS)

    Han, Hwa Jeong; Kim, Beom Kyu; Park, Byung Gi

    2016-01-01

    In recent year, various fiber-optic radiation sensors using Cerenkov principle have been developed without employing any scintillators for measuring high-energy photon, electron, etc. The main advantages of the optical fibers are the remote transmission of the light signal and immunity to pressure and electromagnetic waves. Therefore, the sensors utilizing the optical fibers can be used in hazardous radiation environments, such as the high-level radiation areas of a nuclear facility. The study to be simulated a fiber-optic radiation sensor based on Cerenkov principle and to be analyzed the response characteristics of the sensor. For the aforementioned study, the GEANT simulation toolkit was used. It is able to take into all the optical properties of fibers and is found to be appropriate to realistically describe the response of fiber-optic radiation sensor. In the recently, the fiber-optic radiation sensor have been developed in nuclear industry. Because sensor can detect gamma ray in harsh nuclear environments. In this study, we analyzed response characteristics of the fiber-optic radiation sensor. We have simulated the Monte Carlo model, for detecting the Cerenkov radiation using the fiber-optic radiation sensor. And the y-axis distribution of Cerenkov photons was obtained using output file. Simulation is performed with reference to the method of the previous research, and then the simulation results exhibited a good agreement with the previous research

  10. Seeing More by Showing Less: Orientation-Dependent Transparency Rendering for Fiber Tractography Visualization.

    Directory of Open Access Journals (Sweden)

    Chantal M W Tax

    Full Text Available Fiber tractography plays an important role in exploring the architectural organization of fiber trajectories, both in fundamental neuroscience and in clinical applications. With the advent of diffusion MRI (dMRI approaches that can also model "crossing fibers", the complexity of the fiber network as reconstructed with tractography has increased tremendously. Many pathways interdigitate and overlap, which hampers an unequivocal 3D visualization of the network and impedes an efficient study of its organization. We propose a novel fiber tractography visualization approach that interactively and selectively adapts the transparency rendering of fiber trajectories as a function of their orientation to enhance the visibility of the spatial context. More specifically, pathways that are oriented (locally or globally along a user-specified opacity axis can be made more transparent or opaque. This substantially improves the 3D visualization of the fiber network and the exploration of tissue configurations that would otherwise be largely covered by other pathways. We present examples of fiber bundle extraction and neurosurgical planning cases where the added benefit of our new visualization scheme is demonstrated over conventional fiber visualization approaches.

  11. Characteristics of liquid and boiling sodium flows in heating pin bundles

    International Nuclear Information System (INIS)

    Menant, Bernard

    1976-01-01

    This study is related to cooling accidents which could occur in sodium cooled fast reactors. Thermo-hydraulic aspects of boiling experiments in pin bundles with helical wire-wrap spacer systems, in the case of undamaged geometries, are analyzed. Differences and analogies in the behavior of multi-rod bundle flows and one-dimensional channel flows are studied. A boiling model is developed for bundle geometries, and predictions obtained with the FLICA code using this models are presented. These predictions are compared with experimental results obtained in a water 19-rod bundle. Then, results of sodium boiling experiments through a 19-rod bundle are interpreted. Both cases of high power and reduced power are envisaged. (author) [fr

  12. Empirical multichannel power consumption model for erbium-doped fiber amplifiers

    DEFF Research Database (Denmark)

    Saldaña Cercos, Silvia; de Paiva, Getulio E. R.; Argentato, Marcio Colazza

    2015-01-01

    In this paper we report on the first experimental power consumption analysis and model of single and multi-stage booster erbium-doped fiber amplifiers (EDFAs) with automatic gain control (AGC), accounting for channel number dependency. Results show that the amount of channels being amplified simu......-users, it is relevant to study channel number dependent power consumption for devising EDFA power efficient control and design.......In this paper we report on the first experimental power consumption analysis and model of single and multi-stage booster erbium-doped fiber amplifiers (EDFAs) with automatic gain control (AGC), accounting for channel number dependency. Results show that the amount of channels being amplified...... simultaneously contributes significantly, up to 48%, to the total power consumption due to the circuitry used for controlling the EDFA. As the number of simultaneous amplified WDM channels in high capacity long and medium reach transmission links reflects closely traffic patterns generated by end...

  13. A Comparative study of two RVE modelling methods for chopped carbon fiber SMC

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhangxing; Li, Yi; Shao, Yimin; Huang, Tianyu; Xu, Hongyi; Li, Yang; Chen, Wei; Zeng, Danielle; Avery, Katherine; Kang, HongTae; Su, Xuming

    2017-04-06

    To achieve vehicle light-weighting, the chopped carbon fiber sheet molding compound (SMC) is identified as a promising material to replace metals. However, there are no effective tools and methods to predict the mechanical property of the chopped carbon fiber SMC due to the high complexity in microstructure features and the anisotropic properties. In this paper, the Representative Volume Element (RVE) approach is used to model the SMC microstructure. Two modeling methods, the Voronoi diagram-based method and the chip packing method, are developed for material RVE property prediction. The two methods are compared in terms of the predicted elastic modulus and the predicted results are validated using the Digital Image Correlation (DIC) tensile test results. Furthermore, the advantages and shortcomings of these two methods are discussed in terms of the required input information and the convenience of use in the integrated processing-microstructure-property analysis.

  14. Optical fiber Bragg gratings. Part II. Modeling of finite-length gratings and grating arrays.

    Science.gov (United States)

    Passaro, Vittorio M N; Diana, Roberto; Armenise, Mario N

    2002-09-01

    A model of both uniform finite-length optical fiber Bragg gratings and grating arrays is presented. The model is based on the Floquet-Bloch formalism and allows rigorous investigation of all the physical aspects in either single- or multiple-periodic structures realized on the core of a monomodal fiber. Analytical expressions of reflectivity and transmittivity for both single gratings and grating arrays are derived. The influence of the grating length and the index modulation amplitude on the reflected and transmitted optical power for both sinusoidal and rectangular profiles is evaluated. Good agreement between our method and the well-known coupled-mode theory (CMT) approach has been observed for both single gratings and grating arrays only in the case of weak index perturbation. Significant discrepancies exist there in cases of strong index contrast because of the increasing approximation of the CMT approach. The effects of intragrating phase shift are also shown and discussed.

  15. Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures.

    Science.gov (United States)

    Zhan, Yijian; Meschke, Günther

    2017-07-08

    The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense.

  16. Job Management and Task Bundling

    Science.gov (United States)

    Berkowitz, Evan; Jansen, Gustav R.; McElvain, Kenneth; Walker-Loud, André

    2018-03-01

    High Performance Computing is often performed on scarce and shared computing resources. To ensure computers are used to their full capacity, administrators often incentivize large workloads that are not possible on smaller systems. Measurements in Lattice QCD frequently do not scale to machine-size workloads. By bundling tasks together we can create large jobs suitable for gigantic partitions. We discuss METAQ and mpi_jm, software developed to dynamically group computational tasks together, that can intelligently backfill to consume idle time without substantial changes to users' current workflows or executables.

  17. Job Management and Task Bundling

    Directory of Open Access Journals (Sweden)

    Berkowitz Evan

    2018-01-01

    Full Text Available High Performance Computing is often performed on scarce and shared computing resources. To ensure computers are used to their full capacity, administrators often incentivize large workloads that are not possible on smaller systems. Measurements in Lattice QCD frequently do not scale to machine-size workloads. By bundling tasks together we can create large jobs suitable for gigantic partitions. We discuss METAQ and mpi_jm, software developed to dynamically group computational tasks together, that can intelligently backfill to consume idle time without substantial changes to users’ current workflows or executables.

  18. Fuel bundle for nuclear reactor

    International Nuclear Information System (INIS)

    Long, J.W.; Flora, B.S.; Ford, K.L.

    1977-01-01

    The invention concerns a new, simple and inexpensive system for assembling and dismantling a nuclear reactor fuel bundle. Several fuel rods are fitted in parallel rows between two retaining plates which secure the fuel rods in position and which are maintained in an assembled position by means of several stays fixed to the two end plates. The invention particularly refers to an improved apparatus for fixing the stays to the upper plate by using locking fittings secured to rotating sleeves which are applied against this plate [fr

  19. Reduction of symplectic principal R-bundles

    International Nuclear Information System (INIS)

    Lacirasella, Ignazio; Marrero, Juan Carlos; Padrón, Edith

    2012-01-01

    We describe a reduction process for symplectic principal R-bundles in the presence of a momentum map. These types of structures play an important role in the geometric formulation of non-autonomous Hamiltonian systems. We apply this procedure to the standard symplectic principal R-bundle associated with a fibration π:M→R. Moreover, we show a reduction process for non-autonomous Hamiltonian systems on symplectic principal R-bundles. We apply these reduction processes to several examples. (paper)

  20. ACM Bundles on Del Pezzo surfaces

    Directory of Open Access Journals (Sweden)

    Joan Pons-Llopis

    2009-11-01

    Full Text Available ACM rank 1 bundles on del Pezzo surfaces are classified in terms of the rational normal curves that they contain. A complete list of ACM line bundles is provided. Moreover, for any del Pezzo surface X of degree less or equal than six and for any n ≥ 2 we construct a family of dimension ≥ n − 1 of non-isomorphic simple ACM bundles of rank n on X.

  1. Bundling and mergers in energy markets

    International Nuclear Information System (INIS)

    Granier, Laurent; Podesta, Marion

    2010-01-01

    Does bundling trigger mergers in energy industries? We observe mergers between firms belonging to various energy markets, for instance between gas and electricity providers. These mergers enable firms to bundle. We consider two horizontally differentiated markets. In this framework, we show that bundling strategies in energy markets create incentives to form multi-market firms in order to supply bi-energy packages. Moreover, we find that this type of merger is detrimental to social welfare. (author)

  2. The Analysis of SBWR Critical Power Bundle Using Cobrag Code

    Directory of Open Access Journals (Sweden)

    Yohannes Sardjono

    2013-03-01

    Full Text Available The coolant mechanism of SBWR is similar with the Dodewaard Nuclear Power Plant (NPP in the Netherlands that first went critical in 1968. The similarity of both NPP is cooled by natural convection system. These coolant concept is very related with same parameters on fuel bundle design especially fuel bundle length, core pressure drop and core flow rate as well as critical power bundle. The analysis was carried out by using COBRAG computer code. COBRAG computer code is GE Company proprietary. Basically COBRAG computer code is a tool to solve compressible three-dimensional, two fluid, three field equations for two phase flow. The three fields are the vapor field, the continuous liquid field, and the liquid drop field. This code has been applied to analyses model flow and heat transfer within the reactor core. This volume describes the finitevolume equations and the numerical solution methods used to solve these equations. This analysis of same parameters has been done i.e.; inlet sub cooling 20 BTU/lbm and 40 BTU/lbm, 1000 psi pressure and R-factor is 1.038, mass flux are 0.5 Mlb/hr.ft2, 0.75 Mlb/hr.ft2, 1.00 Mlb/hr.ft2 and 1.25 Mlb/hr.ft2. Those conditions based on history operation of some type of the cell fuel bundle line at GE Nuclear Energy. According to the results, it can be concluded that SBWR critical power bundle is 10.5 % less than current BWR critical power bundle with length reduction of 12 ft to 9 ft.

  3. Molecular Dynamics Modeling of PPTA Crystals in Aramid Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, Brian Scott [Univ. of California, Berkeley, CA (United States)

    2016-05-19

    In this work, molecular dynamics modeling is used to study the mechanical properties of PPTA crystallites, which are the fundamental microstructural building blocks of polymer aramid bers such as Kevlar. Particular focus is given to constant strain rate axial loading simulations of PPTA crystallites, which is motivated by the rate-dependent mechanical properties observed in some experiments with aramid bers. In order to accommodate the covalent bond rupture that occurs in loading a crystallite to failure, the reactive bond order force eld ReaxFF is employed to conduct the simulations. Two major topics are addressed: The rst is the general behavior of PPTA crystallites under strain rate loading. Constant strain rate loading simulations of crystalline PPTA reveal that the crystal failure strain increases with increasing strain rate, while the modulus is not a ected by the strain rate. Increasing temperature lowers both the modulus and the failure strain. The simulations also identify the C N bond connecting the aromatic rings as weakest primary bond along the backbone of the PPTA chain. The e ect of chain-end defects on PPTA micromechanics is explored, and it is found that the presence of a chain-end defect transfers load to the adjacent chains in the hydrogen-bonded sheet in which the defect resides, but does not in uence the behavior of any other chains in the crystal. Chain-end defects are found to lower the strength of the crystal when clustered together, inducing bond failure via stress concentrations arising from the load transfer to bonds in adjacent chains near the defect site. The second topic addressed is the nature of primary and secondary bond failure in crystalline PPTA. Failure of both types of bonds is found to be stochastic in nature and driven by thermal uctuations of the bonds within the crystal. A model is proposed which uses reliability theory to model bonds under constant strain rate loading as components with time-dependent failure rate

  4. Entropy for frame bundle systems and Grassmann bundle systems induced by a diffeomorphism

    Institute of Scientific and Technical Information of China (English)

    SUN; Weniang(孙文祥)

    2002-01-01

    ALiao hyperbolic diffeomorphism has equal measure entropy and topological entropy to that ofits induced systems on frame bundles and Grassmann bundles. This solves a problem Liao posed in 1996 forLiao hyperbolic diffeomorphisms.

  5. Hydraulic characteristics of HANARO fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.; Chung, H. J.; Chun, S. Y.; Yang, S. K.; Chung, M. K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)

  6. Hydraulic characteristics of HANARO fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S; Chung, H J; Chun, S Y; Yang, S K; Chung, M K [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)

  7. Cotangent bundle approach to noninertial frames

    International Nuclear Information System (INIS)

    DeFacio, B.; Retzloff, D.

    1980-01-01

    The most general possible noninertial acceleration in special relativity is formulated with differential forms in the cotangent bundle. We show that the Lie derivative plays the same role in the cotangent bundle that the covariant derivative plays in the tangent bundle. We also show that a cotangent bundle analog of Fermi--Walker transport can be based upon the, ''cotangent-geodesic'' equation, L/sub u/ω=0. This gives a generalization of the work by Kiehn on classical Hamiltonian mechanics to special relativity

  8. Vector bundles over configuration spaces of nonidentical particles: Topological potentials and internal degrees of freedom

    International Nuclear Information System (INIS)

    Doebner, H.; Mann, H.

    1997-01-01

    We consider configuration spaces of nonidentical pointlike particles. The physically motivated assumption that any two particles cannot be located at the same point in space endash time leads to nontrivial topological structure of the configuration space. For a quantum mechanical description of such a system, we classify complex vector bundles over the configuration space and obtain potentials of topological origin, similar to those that occur in the fiber bundle approach to Dirac close-quote s magnetic monopole or in Yang endash Mills theory. copyright 1997 American Institute of Physics

  9. A simulation model for transient response of a gas separation module using a hollow fiber membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takahiko, E-mail: t-sugiyama@nucl.nagoya-u.ac.jp [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Miyahara, Naoya [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Tanaka, Masahiro [National Institute for Fusion Science, Oroshi-cho 322-6, Toki 509-5292 (Japan); Munakata, Kenzo [Akita University, Tegata Gakuen-cho 1-1, Akita-shi, Akita 010-8502 (Japan); Yamamoto, Ichiro [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2011-10-15

    A simulation model has been developed for transient response of a gas separation module using a hollow fiber membrane for the removal of tritium from the atmosphere of the confinement space. The mass transfer process such as sorption and desorption of gases at the surface of the dense layer and the porous support layer, diffusive transfer in the both layers are treated in the model. Sorption isotherm, mass transfer rate and permeance are estimated through step-wise transient response experiments. The present model represents well not only separation factors and recovery ratio at the steady state but also responses to the multi-step wise change in the sweep gas rate.

  10. Fiber density estimation from single q-shell diffusion imaging by tensor divergence.

    Science.gov (United States)

    Reisert, Marco; Mader, Irina; Umarova, Roza; Maier, Simon; Tebartz van Elst, Ludger; Kiselev, Valerij G

    2013-08-15

    Diffusion-weighted magnetic resonance imaging provides information about the nerve fiber bundle geometry of the human brain. While the inference of the underlying fiber bundle orientation only requires single q-shell measurements, the absolute determination of their volume fractions is much more challenging with respect to measurement techniques and analysis. Unfortunately, the usually employed multi-compartment models cannot be applied to single q-shell measurements, because the compartment's diffusivities cannot be resolved. This work proposes an equation for fiber orientation densities that can infer the absolute fraction up to a global factor. This equation, which is inspired by the classical mass preservation law in fluid dynamics, expresses the fiber conservation associated with the assumption that fibers do not terminate in white matter. Simulations on synthetic phantoms show that the approach is able to derive the densities correctly for various configurations. Experiments with a pseudo ground truth phantom show that even for complex, brain-like geometries the method is able to infer the densities correctly. In-vivo results with 81 healthy volunteers are plausible and consistent. A group analysis with respect to age and gender show significant differences, such that the proposed maps can be used as a quantitative measure for group and longitudinal analysis. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Is a high-fiber diet able to influence ovalbumin-induced allergic airway inflammation in a mouse model?

    Science.gov (United States)

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Wang, Xiaoting; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    More recently, a large amount of experimental and clinical discovered that dietary- fiber intake would decrease the susceptibility to allergic airway disease (AAD) and respiratory inflammation. To investigate whether a fiber-intake supplement is able to influence the induction of AAD and to elucidate the interactive relationship. AAD model mice and control mice were raised on a fundamental diet with standard 4% fiber content, whereas other mice were fed a 10% fiber-content diet in the high fiber-content group, along with a 25% fiber-content diet instead in very-high fiber-content group. All experimental mice were sensitized and challenged with ovalbumin to induce allergic inflammation in both the upper and lower airways. Hallmarks of AAD were examined in terms of eosinophil infiltration and goblet cell metaplasia in subepithelial mucosa, T-helper type 1 (Th1) to Th2 skewing of the immune response. Furthermore, to elucidate the interrelations, we generated 16S ribosomal DNA from fecal samples and further validated the variation of colony composition in each group. The excessive high-fiber supplement induced a promoting effect rather than a suppressive effect, including a rise in nasal rubbing and sneezing, an increase in eosinophil inflammation and goblet cell metaplasia in subepithelial mucosa, and promoted Th2 skewing of the immune response as well as the production of serum levels of ovalbumin-specific immunoglobulin E. Moreover, overconsumption of dietary fiber greatly altered the construction of bacterial flora in the intestinal tract, including an increased proportion of Firmicutes, Actinobacteria, and Proteobacteria, and a decreased proportion of Bacteroidetes. Our work indicated that, instead of a protecting impact, excessive fiber intake preformed a negative influence on the induction of AAD. Therefore, we suspected that an excessive supplement of dietary fiber might not be an advisable method for the prevention and treatment of AADs.

  12. Cryopreservation of sperm bundles (spermatozeugmata) from endangered livebearing goodeids.

    Science.gov (United States)

    Liu, Yue; Torres, Leticia; Tiersch, Terrence R

    2018-04-14

    More than half of fishes in the family Goodeidae are considered to be endangered, threatened, or vulnerable. Sperm cryopreservation is an effective tool for conserving genetic resources of imperiled populations, but development of protocols with livebearing fishes faces numerous challenges including the natural packaging of sperm into bundles. In this study the cryopreservation of sperm bundles (spermatozeugmata) of three goodeids species was evaluated. Sperm quality was evaluated by activation with NaCl-NaOH solution (at 300 mOsmol/kg and pH 11.8), and analysis of dissociable bundles and dissociation duration. Using Redtail Splitfin (Xenotoca eiseni) as a model, the effects of cryoprotectants (dimethyl sulfoxide, methanol, and glycerol) with different concentrations (5-15% v/v %), equilibration exposure times (1-60 min), cooling rates (5-40 °C/min), concentrations (4 × 10 4 -4 × 10 6 bundles/ml), buffers (HBSS, PBS and NaCl), and buffer osmolalities (200-400 mOsmol/kg) were investigated. After cooling and thawing, sperm bundles maintained their packed form. A specific protocol was developed (10% dimethyl sulfoxide, 20-min equilibration, 10 °C/min cooling rate, 4 × 10 6 bundles/ml, and 300 mOsmol/kg HBSS). This protocol yielded 89 ± 5% of post-thaw dissociable bundles with 209 ± 10 s of dissociation duration for X. eiseni, 96 ± 9% with 814 ± 14 s for Blackfin Goodea (Goodea atripinni), and 66 ± 2% with 726 ± 25 s for Striped Goodeid (Ataeniobius toweri). This is the first study of cryopreservation of sperm within bundles for livebearing fishes and provides a basis for establishment of germplasm repositories for goodeids and other livebearers. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Modeling loss and backscattering in a photonic-bandgap fiber using strong perturbation

    Science.gov (United States)

    Zamani Aghaie, Kiarash; Digonnet, Michel J. F.; Fan, Shanhui

    2013-02-01

    We use coupled-mode theory with strong perturbation to model the loss and backscattering coefficients of a commercial hollow-core fiber (NKT Photonics' HC-1550-02 fiber) induced by the frozen-in longitudinal perturbations of the fiber cross section. Strong perturbation is used, for the first time to the best of our knowledge, because the large difference between the refractive indices of the two fiber materials (silica and air) makes conventional weak-perturbation less accurate. We first study the loss and backscattering using the mathematical description of conventional surface-capillary waves (SCWs). This model implicitly assumes that the mechanical waves on the core wall of a PBF have the same power spectral density (PSD) as the waves that develop on an infinitely thick cylindrical tube with the same diameter as the PBF core. The loss and backscattering coefficients predicted with this thick-wall SCW roughness are 0.5 dB/km and 1.1×10-10 mm-1, respectively. These values are more than one order of magnitude smaller than the measured values (20-30 dB/km and ~1.5×10-9 mm-1, respectively). This result suggests that the thick-wall SCW PSD is not representative of the roughness of our fiber. We found that this discrepancy occurs at least in part because the effect of the finite thickness of the silica membranes (only ~120 nm) is neglected. We present a new expression for the PSD that takes into account this finite thickness and demonstrates that the finite thickness substantially increases the roughness. The predicted loss and backscattering coefficients predicted with this thin-film SCW PSD are 30 dB/km and 1.3×10-9 mm-1, which are both close to the measured values. We also show that the thin-film SCW PSD accurately predicts the roughness PSD measured by others in a solid-core photonic-crystal fiber.

  14. Evaluation and assessment of reflooding models in RELAP5/Mod2.5 and RELAP5/Mod3 codes using Lehigh University and PSI-Neptun bundle experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Sencar, M.; Aksan, N. [Paul Scherrer Institute, Villigen (Switzerland)

    1995-09-01

    An extensive analysis and assessment work on reflooding models of RELAP5/Mod2.5 and, RELAP5/Mod3/v5m5 and RELAP/Mod3/v7j have been performed. Experimental data from LehighUniversityv. and PSI-NEPTUN bundle reflooding experiments have been used for the assessment, since both of these tests cover a broad range of initial conditions. Within the range of these initial conditions, it was tried to identify their separate impacts on the calculated results. A total of six Lehigh University reflooding bundle tests and two PSI-NEPTUN tests with bounding initial conditions are selected for the analysis. Detailed nodalisation studies both for hydraulic and conduction heat transfer were done. On the basis of the results obtained from these cases, a base nodalisation scheme was established. All the other analysis work was performed by using this base nodalisation. RELAP5/Mod2.5 results do not change with renodalisation but RELAP5/Mod3 results are more sensitive to renodalisation. The results of RELAP5/Mod2.5 versions show very large deviations from the used experimental data. These results indicate that some of the phenomenology of the events occurring during the reflooding could not be identified. In the paper, detailed discussions on the main reasons of the deviations from the experimental data will be presented. Since, the results and findings of this study are meant to be a developmental aid, some recommendations have been drawn and some of these have already been implemented at PSI with promising results.

  15. Accuracy of Shack-Hartmann wavefront sensor using a coherent wound fibre image bundle

    Science.gov (United States)

    Zheng, Jessica R.; Goodwin, Michael; Lawrence, Jon

    2018-03-01

    Shack-Hartmannwavefront sensors using wound fibre image bundles are desired for multi-object adaptive optical systems to provide large multiplex positioned by Starbugs. The use of a large-sized wound fibre image bundle provides the flexibility to use more sub-apertures wavefront sensor for ELTs. These compact wavefront sensors take advantage of large focal surfaces such as the Giant Magellan Telescope. The focus of this paper is to study the wound fibre image bundle structure defects effect on the centroid measurement accuracy of a Shack-Hartmann wavefront sensor. We use the first moment centroid method to estimate the centroid of a focused Gaussian beam sampled by a simulated bundle. Spot estimation accuracy with wound fibre image bundle and its structure impact on wavefront measurement accuracy statistics are addressed. Our results show that when the measurement signal-to-noise ratio is high, the centroid measurement accuracy is dominated by the wound fibre image bundle structure, e.g. tile angle and gap spacing. For the measurement with low signal-to-noise ratio, its accuracy is influenced by the read noise of the detector instead of the wound fibre image bundle structure defects. We demonstrate this both with simulation and experimentally. We provide a statistical model of the centroid and wavefront error of a wound fibre image bundle found through experiment.

  16. A human model of small fiber neuropathy to study wound healing.

    Science.gov (United States)

    Illigens, Ben M W; Gibbons, Christopher H

    2013-01-01

    The aim of this study was to develop a human model of acute wound healing that isolated the effects of small fiber neuropathy on the healing process. Twenty-five healthy subjects had the transient receptor vanilloid 1 agonist capsaicin and placebo creams topically applied to contralateral areas on the skin of the thigh for 48 hours. Subjects had shallow (1.2 millimeter) and deep (>3 millimeter) punch skin biopsies from each thigh on days 1 and 14. Biopsy wound healing was monitored photographically until closure. Intra-epidermal and sweat-gland nerve fiber densities were measured for each biopsy. Shallow wounds in capsaicin-treated sites healed more slowly than in placebo treated skin with biopsies taken on day 1 (PDeep biopsies in the capsaicin and placebo areas healed at similar rates at both time points. Nerve fiber densities were reduced only in capsaicin treated regions (Pshallow, but not deep wounds. This novel human model may prove valuable in the study of wound healing in patients with neuropathy.

  17. Antiplasticization and plasticization of Matrimid® asymmetric hollow fiber membranes. Part B. Modeling

    KAUST Repository

    Lee, Jong Suk; Madden, William; Koros, William J.

    2010-01-01

    A previous paper characterized effects of exposure of Matrimid® asymmetric fibers to either toluene or n-heptane or a combination of both contaminants during permeation. In all cases, reductions in the carbon dioxide permeance and the carbon dioxide/methane selectivity were observed for both annealed and non-annealed samples. In this paper, the respective potential impacts of competitive sorption, fiber compaction, and antiplasticization/plasticization on membrane performance during contaminant exposure are quantified and analyzed. The combined impact of competitive sorption and antiplasticization/plasticization are shown to account for the loss in membrane performance observed during exposure to highly sorbing feed stream contaminants. The dual mode transport model for penetrant mixtures was used to explain reduction in CO2 permeance due to competitive sorption effects, while free volume-based modeling explained decrease in CO2 permeance due to antiplasticization. Finally, the impact on CO2 permeance during exposure of the annealed Matrimid® fibers to contaminants is analyzed. The analysis is based on reduction in segmental mobility expected due to reduction of residual unrelaxed volume as compared to unanealed sample. © 2010.

  18. Antiplasticization and plasticization of Matrimid® asymmetric hollow fiber membranes. Part B. Modeling

    KAUST Repository

    Lee, Jong Suk

    2010-03-15

    A previous paper characterized effects of exposure of Matrimid® asymmetric fibers to either toluene or n-heptane or a combination of both contaminants during permeation. In all cases, reductions in the carbon dioxide permeance and the carbon dioxide/methane selectivity were observed for both annealed and non-annealed samples. In this paper, the respective potential impacts of competitive sorption, fiber compaction, and antiplasticization/plasticization on membrane performance during contaminant exposure are quantified and analyzed. The combined impact of competitive sorption and antiplasticization/plasticization are shown to account for the loss in membrane performance observed during exposure to highly sorbing feed stream contaminants. The dual mode transport model for penetrant mixtures was used to explain reduction in CO2 permeance due to competitive sorption effects, while free volume-based modeling explained decrease in CO2 permeance due to antiplasticization. Finally, the impact on CO2 permeance during exposure of the annealed Matrimid® fibers to contaminants is analyzed. The analysis is based on reduction in segmental mobility expected due to reduction of residual unrelaxed volume as compared to unanealed sample. © 2010.

  19. Signal Integrity Analysis in Single and Bundled Carbon Nanotube Interconnects

    International Nuclear Information System (INIS)

    Majumder, M.K.; Pandya, N.D.; Kaushik, B.K.; Manhas, S.K.

    2013-01-01

    Carbon nanotube (CN T) can be considered as an emerging interconnect material in current nano scale regime. They are more promising than other interconnect materials such as Al or Cu because of their robustness to electromigration. This research paper aims to address the crosstalk-related issues (signal integrity) in interconnect lines. Different analytical models of single- (SWCNT), double- (DWCNT), and multiwalled CNTs (MWCNT) are studied to analyze the crosstalk delay at global interconnect lengths. A capacitively coupled three-line bus architecture employing CMOS driver is used for accurate estimation of crosstalk delay. Each line in bus architecture is represented with the equivalent RLC models of single and bundled SWCNT, DWCNT, and MWCNT interconnects. Crosstalk delay is observed at middle line (victim) when it switches in opposite direction with respect to the other two lines (aggressors). Using the data predicted by ITRS 2012, a comparative analysis on the basis of crosstalk delay is performed for bundled SWCNT/DWCNT and single MWCNT interconnects. It is observed that the overall crosstalk delay is improved by 40.92% and 21.37% for single MWCNT in comparison to bundled SWCNT and bundled DWCNT interconnects, respectively.

  20. Coherent beam combination of fiber lasers with a strongly confined waveguide: numerical model.

    Science.gov (United States)

    Tao, Rumao; Si, Lei; Ma, Yanxing; Zhou, Pu; Liu, Zejin

    2012-08-20

    Self-imaging properties of fiber lasers in a strongly confined waveguide (SCW) and their application in coherent beam combination (CBC) are studied theoretically. Analytical formulas are derived for the positions, amplitudes, and phases of the N images at the end of an SCW, which is important for quantitative analysis of waveguide CBC. The formulas are verified with experimental results and numerical simulation of a finite difference beam propagation method (BPM). The error of our analytical formulas is less than 6%, which can be reduced to less than 1.5% with Goos-Hahnchen penetration depth considered. Based on the theoretical model and BPM, we studied the combination of two laser beams based on an SCW. The effects of the waveguide refractive index and Gaussian beam waist are studied. We also simulated the CBC of nine and 16 fiber lasers, and a single beam without side lobes was achieved.

  1. One-dimensional chain of quantum molecule motors as a mathematical physics model for muscle fibers

    International Nuclear Information System (INIS)

    Si Tie-Yan

    2015-01-01

    A quantum chain model of multiple molecule motors is proposed as a mathematical physics theory for the microscopic modeling of classical force-velocity relation and tension transients in muscle fibers. The proposed model was a quantum many-particle Hamiltonian to predict the force-velocity relation for the slow release of muscle fibers, which has not yet been empirically defined and was much more complicated than the hyperbolic relationships. Using the same Hamiltonian model, a mathematical force-velocity relationship was proposed to explain the tension observed when the muscle was stimulated with an alternative electric current. The discrepancy between input electric frequency and the muscle oscillation frequency could be explained physically by the Doppler effect in this quantum chain model. Further more, quantum physics phenomena were applied to explore the tension time course of cardiac muscle and insect flight muscle. Most of the experimental tension transient curves were found to correspond to the theoretical output of quantum two- and three-level models. Mathematical modeling electric stimulus as photons exciting a quantum three-level particle reproduced most of the tension transient curves of water bug Lethocerus maximus. (special topic)

  2. A direct approach to fiber and membrane reinforced bodies. Part I. Stress concentrated on curves for modelling fiber reinforced materials

    Czech Academy of Sciences Publication Activity Database

    Lucchesi, M.; Šilhavý, Miroslav; Zani, N.

    2013-01-01

    Roč. 25, 2-4 (2013), s. 537-558 ISSN 0935-1175 Institutional support: RVO:67985840 Keywords : fiber in the bulk matter * equilibrium of forces Subject RIV: BA - General Mathematics Impact factor: 1.431, year: 2013 http://link.springer.com/article/10.1007%2Fs00161-012-0285-2

  3. Testing and performance analysis of a hollow fiber-based core for evaporative cooling and liquid desiccant dehumidification

    DEFF Research Database (Denmark)

    Jradi, Muhyiddine; Riffat, Saffa

    2016-01-01

    In this study, an innovative heat and mass transfer core is proposed to provide thermal comfort and humidity control using a hollow fiber contactor with multiple bundles of micro-porous hollow fibers. The hollow fiberbased core utilizes 12 bundles aligned vertically, each with 1,000 packed...

  4. The emergence of sarcomeric, graded-polarity and spindle-like patterns in bundles of short cytoskeletal polymers and two opposite molecular motors

    International Nuclear Information System (INIS)

    Craig, E M; Dey, S; Mogilner, A

    2011-01-01

    We use linear stability analysis and numerical solutions of partial differential equations to investigate pattern formation in the one-dimensional system of short dynamic polymers and one (plus-end directed) or two (one is plus-end, another minus-end directed) molecular motors. If polymer sliding and motor gliding rates are slow and/or the polymer turnover rate is fast, then the polymer-motor bundle has mixed polarity and homogeneous motor distribution. However, if motor gliding is fast, a sarcomeric pattern with periodic bands of alternating polymer polarity separated by motor aggregates evolves. On the other hand, if polymer sliding is fast, a graded-polarity bundle with motors at the center emerges. In the presence of the second, minus-end directed motor, the sarcomeric pattern is more ubiquitous, while the graded-polarity pattern is destabilized. However, if the minus-end motor is weaker than the plus-end directed one, and/or polymer nucleation is autocatalytic, and/or long polymers are present in the bundle, then a spindle-like architecture with a sorted-out polarity emerges with the plus-end motors at the center and minus-end motors at the edges. We discuss modeling implications for actin-myosin fibers and in vitro and meiotic spindles.

  5. Linear and nonlinear modeling of light propagation in hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, John; Lægsgaard, Jesper

    2009-01-01

    Hollow core photonic crystal fibers (HC-PCFs) find applications which include quantum and non-linear optics, gas detection and short high-intensity laser pulse delivery. Central to most applications is an understanding of the linear and nonlinear optical properties. These require careful modeling....... The intricacies of modeling various forms of HC-PCF are reviewed. An example of linear dispersion engineering, aimed at reducing and flattening the group velocity dispersion, is then presented. Finally, a study of short high intensity pulse delivery using HC-PCF in both dispersive and nonlinear (solitonic...

  6. CANFLEX fuel bundle junction pressure drop

    International Nuclear Information System (INIS)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs

  7. Anatomic Double-bundle ACL Reconstruction

    NARCIS (Netherlands)

    Schreiber, Verena M.; van Eck, Carola F.; Fu, Freddie H.

    2010-01-01

    Rupture of the anterior cruciate ligament (ACL) is one of the most frequent forms of knee trauma. The traditional surgical treatment for ACL rupture is single-bundle reconstruction. However, during the past few years there has been a shift in interest toward double-bundle reconstruction to closely

  8. CANFLEX fuel bundle strength tests (test report)

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Chung, C. H.; Kim, B. D.

    1997-08-01

    This document outlines the test results for the strength tests of the CANFLEX fuel bundle. Strength tests are performed to determine and verify the amount of the bundle shape distortion which is against the side-stops when the bundles are refuelling. There are two cases of strength test; one is the double side-stop test which simulates the normal bundle refuelling and the other is the single side-stop test which simulates the abnormal refuelling. the strength test specification requires that the fuel bundle against the side-stop(s) simulators for this test were fabricated and the flow rates were controlled to provide the required conservative hydraulic forces. The test rig conditions of 120 deg C, 11.2 MPa were retained for 15 minutes after the flow rate was controlled during the test in two cases, respectively. The bundle loading angles of number 13- number 15 among the 15 bundles were 67.5 deg CCW and others were loaded randomly. After the tests, the bundle shapes against the side-stops were measured and inspected carefully. The important test procedures and measurements were discussed as follows. (author). 5 refs., 22 tabs., 5 figs

  9. CANFLEX fuel bundle junction pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs.

  10. Output commitment through product bundling: experimental evidence

    NARCIS (Netherlands)

    Hinloopen, J.; Mueller, W.; Normann, H.T.

    2011-01-01

    We analyze the impact of product bundling in experimental markets. A firm has monopoly power in one market but faces competition by a second firm in another market. We compare treatments where the monopolist can bundle its two products to treatments where it cannot, and we contrast simultaneous and

  11. Quasi-homogeneous partial coherent source modeling of multimode optical fiber output using the elementary source method

    Science.gov (United States)

    Fathy, Alaa; Sabry, Yasser M.; Khalil, Diaa A.

    2017-10-01

    Multimode fibers (MMF) have many applications in illumination, spectroscopy, sensing and even in optical communication systems. In this work, we present a model for the MMF output field assuming the fiber end as a quasi-homogenous source. The fiber end is modeled by a group of partially coherent elementary sources, spatially shifted and uncorrelated with each other. The elementary source distribution is derived from the far field intensity measurement, while the weighting function of the sources is derived from the fiber end intensity measurement. The model is compared with practical measurements for fibers with different core/cladding diameters at different propagation distances and for different input excitations: laser, white light and LED. The obtained results show normalized root mean square error less than 8% in the intensity profile in most cases, even when the fiber end surface is not perfectly cleaved. Also, the comparison with the Gaussian-Schell model results shows a better agreement with the measurement. In addition, the complex degree of coherence, derived from the model results, is compared with the theoretical predictions of the modified Van Zernike equation showing very good agreement, which strongly supports the assumption that the large core MMF could be considered as a quasi-homogenous source.

  12. Lagrangian formulation for a gauge theory of strong and electromagnetic interactions defined on a Cartan bundle

    International Nuclear Information System (INIS)

    Drechsler, W.

    1977-01-01

    A Lagrangian formalism invariant under the gauge group U 1 xUSpsub(2.2) is set up in terms of spinor fields defined on a fiber bundle with Cartan connexion. The fiber of the Cartan bundle over space-time associated with strong interactions is characterized by an elementary length parameter R related to the range of the strong forces, and the structural group USpsub(2.2) of the bundle (being the covering group of the SOsub(4.1) de Sitter group) implies a gauge description of strong interactions based on the noncompact gauge group USpsub(2.2). The U 1 factor in the total gauge group corresponds to the usual gauge formulation for the electromagnetic interactions. The positivity of the energy associated with stable extended one-particle states in this dualistic description of charged hadronic matter immersed in the fiber geometry (this dualism is called strong fiber dynamics (SFD)) requires hadrons to be assigned to representations of the compact subgroup SU 2 xSU 2 of the strong-interaction gauge group USpsub(2.2). A brief discussion of the point-particle limit R→O is given by linking the presented SFD formalism for extended hadrons to an idealized description in terms of operators in a local quantum field theory

  13. The Influence of Motion and Stress on Optical Fibers

    OpenAIRE

    Murphy, Jeremy D.; Hill, Gary J.; MacQueen, Phillip J.; Taylor, Trey; Soukup, Ian; Moreira, Walter; Cornell, Mark E.; Good, John; Anderson, Seth; Fuller, Lindsay; Lee, Hanshin; Kelz, Andreas; Rafal, Marc; Rafferty, Tom; Tuttle, Sarah

    2013-01-01

    We report on extensive testing carried out on the optical fibers for the VIRUS instrument. The primary result of this work explores how 10+ years of simulated wear on a VIRUS fiber bundle affects both transmission and focal ratio degradation (FRD) of the optical fibers. During the accelerated lifetime tests we continuously monitored the fibers for signs of FRD. We find that transient FRD events were common during the portions of the tests when motion was at telescope slew rates, but dropped t...

  14. Micromechanical modeling of short glass-fiber reinforced thermoplastics-Isotropic damage of pseudograins

    International Nuclear Information System (INIS)

    Kammoun, S.; Brassart, L.; Doghri, I.; Delannay, L.; Robert, G.

    2011-01-01

    A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individually according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.

  15. Expansion and Polarity Sorting in Microtubule-Dynein Bundles(WHAT IS LIFE? THE NEXT 100 YEARS OF YUKAWA'S DREAM)

    OpenAIRE

    Assaf, ZEMEL; Alex, MOGILNER; Department of Neurobiology, Physiology and Behavior, University of California; Department of Neurobiology, Physiology and Behavior, University of California

    2008-01-01

    Interactions of multiple molecular motors with dynamic polymers, such as actin and microtubules, form the basis for many processes in the cell cytoskeleton. One example is the active 'sorting' of microtubule bundles by dynein molecular motors into aster-like arrays of microtubules; in these bundles dynein motors cross-link and slide neighboring microtubules apart. A number of models have been suggested to quantify the active dynamics of cross-linked bundles of polar filaments. In the case of ...

  16. Quantifying anisotropy and fiber orientation in human brain histological sections

    Directory of Open Access Journals (Sweden)

    Matthew D Budde

    2013-02-01

    Full Text Available Diffusion weighted imaging (DWI has provided unparalleled insight into the microscopic structure and organization of the central nervous system. Diffusion tensor imaging (DTI and other models of the diffusion MRI signal extract microstructural properties of tissues with relevance to the normal and injured brain. Despite the prevalence of such techniques and applications, accurate and large-scale validation has proven difficult, particularly in the human brain. In this report, human brain sections obtained from a digital public brain bank were employed to quantify anisotropy and fiber orientation using structure tensor analysis. The derived maps depict the intricate complexity of white matter fibers at a resolution not attainable with current DWI experiments. Moreover, the effects of multiple fiber bundles (i.e. crossing fibers and intravoxel fiber dispersion were demonstrated. Examination of the cortex and hippocampal regions validated specific features of previous in vivo and ex vivo DTI studies of the human brain. Despite the limitation to two dimensions, the resulting images provide a unique depiction of white matter organization at resolutions currently unattainable with DWI. The method of analysis may be used to validate tissue properties derived from DTI and alternative models of the diffusion signal.

  17. Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model.

    Science.gov (United States)

    Sygnecka, Katja; Heider, Andreas; Scherf, Nico; Alt, Rüdiger; Franke, Heike; Heine, Claudia

    2015-04-01

    Mesenchymal stem cells (MSCs) have been identified as promising candidates for neuroregenerative cell therapies. However, the impact of different isolation procedures on the functional and regenerative characteristics of MSC populations has not been studied thoroughly. To quantify these differences, we directly compared classically isolated bulk bone marrow-derived MSCs (bulk BM-MSCs) to the subpopulation Sca-1(+)Lin(-)CD45(-)-derived MSCs(-) (SL45-MSCs), isolated by fluorescence-activated cell sorting from bulk BM-cell suspensions. Both populations were analyzed with respect to functional readouts, that are, frequency of fibroblast colony forming units (CFU-f), general morphology, and expression of stem cell markers. The SL45-MSC population is characterized by greater morphological homogeneity, higher CFU-f frequency, and significantly increased nestin expression compared with bulk BM-MSCs. We further quantified the potential of both cell populations to enhance neuronal fiber growth, using an ex vivo model of organotypic brain slice co-cultures of the mesocortical dopaminergic projection system. The MSC populations were cultivated underneath the slice co-cultures without direct contact using a transwell system. After cultivation, the fiber density in the border region between the two brain slices was quantified. While both populations significantly enhanced fiber outgrowth as compared with controls, purified SL45-MSCs stimulated fiber growth to a larger degree. Subsequently, we analyzed the expression of different growth factors in both cell populations. The results show a significantly higher expression of brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor in the SL45-MSCs population. Altogether, we conclude that MSC preparations enriched for primary MSCs promote neuronal regeneration and axonal regrowth, more effectively than bulk BM-MSCs, an effect that may be mediated by a higher BDNF secretion.

  18. Preliminary Analysis of the Fuel Bundle Stiffness by ANSYS for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byoung Oon; Cheon, Jin Sik; Hahn, Do Hee; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    In SFR (Sodium-cooled Fast Reactor) the temperature of the fuel pin is higher than that of the hexagonal duct, so the thermal expansion rate of the fuel bundle is higher than that of the duct. The neutron fluence and the fuel pin pressure are also increased according to the burnup. So the radial expansion and bowing of a fuel pin bundle would occur, and then fuel bundle would interact with a duct. This phenomenon is called bundle-to-duct interaction (BDI). Under the BDI condition, excess cladding strain and hot spots would occur. Therefore BDI as well as the core mechanics should be considered to evaluate the FBR fuel integrity. The analysis codes such as ETOILE, SHADOW, and MARSE, have been developed to evaluate the BDI behavior. The ANSYS based model is also being developed to analysis the bundle duct interaction for SFR in Korea. In this paper, the fuel pin/bundle model for analyzing the bending deflection and oval deformation was described. The preliminary analysis of the fuel bundle stiffness was performed by the developed model.

  19. Bundling in Place: Translating the NGSS into Place-Based Earth-System Science Curricula

    Science.gov (United States)

    Semken, S. C.

    2016-12-01

    Bundling is the process of grouping Performance Expectations (PEs) from the Next Generation Science Standards (NGSS) into coherent units based on a defined topic, idea, question, or phenomenon. Bundling sorts the PEs for a given grade or grade band into a teachable narrative: a key stage in building curriculum, instruction, and assessment from the NGSS. To encourage and facilitate this, bundling guidelines have recently been released on the NGSS website (nextgenscience.org/glossary/bundlesbundling), and example bundles for different grade bands and disciplines are also being developed and posted there. According to these guidelines the iterative process of bundling begins with organization of PEs according to natural connections among them, and alignment of the three NGSS dimensions (Disciplinary Core Ideas, Cross-Cutting Concepts, and Science and Engineering Practices) that underpin each PE. Bundles are grouped by coherence and increasing complexity into courses, and courses into course sets that should encompass all PEs for a grade band. Bundling offers a natural way to translate the NGSS into highly contextualized curricula such as place-based (PB) teaching, which is situated in specific places or regions and focused on natural and cultural features, processes, phenomena, history, and challenges to sustainability therein. Attributes of place and our individual and collective connections to place (sense of place) directly inform PB curriculum, pedagogy, and assessment. PEs can be bundled by their relevance to these themes. Following the NGSS guidelines, I model the process for PB instruction by bundling PEs around the themes of Paleozoic geology and carbonate deposition and their relationships to mining and calcining of limestone in Anthropocene cement production for developing communities. The bundles integrate aspects of Earth history, the carbon cycle, mineral resources, climate change, and sustainability using specific local examples and narratives. They are

  20. Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers

    International Nuclear Information System (INIS)

    Tian Bo; Gao Yitian

    2005-01-01

    A realistic, inhomogeneous fiber in the optical communication systems can be described by the perturbed nonlinear Schrodinger model (also named as the normalized nonlinear Schrodinger model with periodically varying coefficients, dispersion managed nonlinear Schrodinger model or nonlinear Schrodinger model with variable coefficients). Hereby, we extend to this model a direct method, perform symbolic computation and obtain two families of the exact, analytic bright-solitonic solutions, with or without the chirp respectively. The parameters addressed include the shape of the bright soliton, soliton amplitude, inverse width of the soliton, chirp, frequency, center of the soliton and center of the phase of the soliton. Of optical and physical interests, we discuss some previously-published special cases of our solutions. Those solutions could help the future studies on the optical communication systems. ms

  1. New model for assessing dose and dose rate sensitivity of Gamma ray radiation loss in polarization maintaining optical fibers

    International Nuclear Information System (INIS)

    Zhang Hongchen; Liu Hai; Qiao Wenqiang; Xue Huijie; He Shiyu

    2012-01-01

    Highlights: ► Building a new phenomenological theory model to investigate the relation about the irradiation induced loss with irradiation dose and dose rate. ► The Gamma ray irradiation induced loss of the “Capsule” type and “Panda” type polarization maintaining optical fibers at 1310 nm wavelength are investigated. ► The anti irradiation performance of the “Panda” type polarization maintaining optical fiber is better than that of the “Capsule” type polarization maintaining optical fiber, the reason is that the stress region doped by GeO 2 . - Abstract: The Gamma ray irradiation induced loss of the “Capsule” type and “Panda” type polarization maintaining optical fibers at 1310 nm wavelength are investigated. A phenomenological theory model is introduced and the influence of irradiation dose and dose rate on the irradiation induced loss is discussed. The phenomenological theoretical results are consistent with the experimental results of the irradiation induced loss for the two types of polarization maintaining optical fibers. The anti irradiation performance of the “Panda” type polarization maintaining optical fiber is better than that of the “Capsule” type polarization maintaining optical fiber, the reason is that the stress region dope with GeO 2 . Meanwhile, both of the polarization maintaining optical fiber irradiation induced loss increase with increasing the irradiation dose. In the case of same dose, the high dose rate Gamma ray irradiation induced optical fiber losses are higher than that of the low dose rate.

  2. Constructing co-Higgs bundles on CP^2

    OpenAIRE

    Rayan, Steven

    2013-01-01

    On a complex manifold, a co-Higgs bundle is a holomorphic vector bundle with an endomorphism twisted by the tangent bundle. The notion of generalized holomorphic bundle in Hitchin's generalized geometry coincides with that of co-Higgs bundle when the generalized complex manifold is ordinary complex. Schwarzenberger's rank-2 vector bundle on the projective plane, constructed from a line bundle on the double cover CP^1 \\times CP^1 \\to CP^2, is naturally a co-Higgs bundle, with the twisted endom...

  3. Clustering of Whole-Brain White Matter Short Association Bundles Using HARDI Data

    Directory of Open Access Journals (Sweden)

    Claudio Román

    2017-12-01

    Full Text Available Human brain connectivity is extremely complex and variable across subjects. While long association and projection bundles are stable and have been deeply studied, short association bundles present higher intersubject variability, and few studies have been carried out to adequately describe the structure, shape, and reproducibility of these bundles. However, their analysis is crucial to understand brain function and better characterize the human connectome. In this study, we propose an automatic method to identify reproducible short association bundles of the superficial white matter, based on intersubject hierarchical clustering. The method is applied to the whole brain and finds representative clusters of similar fibers belonging to a group of subjects, according to a distance metric between fibers. We experimented with both affine and non-linear registrations and, due to better reproducibility, chose the results obtained from non-linear registration. Once the clusters are calculated, our method performs automatic labeling of the most stable connections based on individual cortical parcellations. We compare results between two independent groups of subjects from a HARDI database to generate reproducible connections for the creation of an atlas. To perform a better validation of the results, we used a bagging strategy that uses pairs of groups of 27 subjects from a database of 74 subjects. The result is an atlas with 44 bundles in the left hemisphere and 49 in the right hemisphere, of which 33 bundles are found in both hemispheres. Finally, we use the atlas to automatically segment 78 new subjects from a different HARDI database and to analyze stability and lateralization results.

  4. Real-time fiber selection using the Wii remote

    Science.gov (United States)

    Klein, Jan; Scholl, Mike; Köhn, Alexander; Hahn, Horst K.

    2010-02-01

    In the last few years, fiber tracking tools have become popular in clinical contexts, e.g., for pre- and intraoperative neurosurgical planning. The efficient, intuitive, and reproducible selection of fiber bundles still constitutes one of the main issues. In this paper, we present a framework for a real-time selection of axonal fiber bundles using a Wii remote control, a wireless controller for Nintendo's gaming console. It enables the user to select fiber bundles without any other input devices. To achieve a smooth interaction, we propose a novel spacepartitioning data structure for efficient 3D range queries in a data set consisting of precomputed fibers. The data structure which is adapted to the special geometry of fiber tracts allows for queries that are many times faster compared with previous state-of-the-art approaches. In order to extract reliably fibers for further processing, e.g., for quantification purposes or comparisons with preoperatively tracked fibers, we developed an expectationmaximization clustering algorithm that can refine the range queries. Our initial experiments have shown that white matter fiber bundles can be reliably selected within a few seconds by the Wii, which has been placed in a sterile plastic bag to simulate usage under surgical conditions.

  5. Metric Structures on Fibered Manifolds Through Partitions of Unity

    Directory of Open Access Journals (Sweden)

    Hulya Kadioglu

    2016-05-01

    Full Text Available The notion of partitions of unity is extremely useful as it allows one to extend local constructions on Euclidean patches to global ones. It is widely used in many fields in mathematics. Therefore, prolongation of this useful tool to another manifold may help constructing many geometric structures. In this paper, we construct a partition of unity on a fiber bundle by using a given partition of unity on the base manifold. On the other hand we show that the converse is also possible if it is a vector bundle. As an application, we define a Riemannian metric on the fiber bundle by using induced partition of unity on the fiber bundle.

  6. A new Theory for frequencies computation of overhead lines with bundle conductors.

    OpenAIRE

    dubois, Hervé; Dal Maso, Filipo; Lilien, Jean-Louis

    1991-01-01

    Vertical, horizontal and torsional mechanical frequencies are studies for both single and bundle conductor lines. Models and tests are presented. These data are of particular impact on galloping phenomenon. Peer reviewed

  7. Finite Element Modeling of Compressive and Splitting Tensile Behavior of Plain Concrete and Steel Fiber Reinforced Concrete Cylinder Specimens

    OpenAIRE

    Chowdhury, Md. Arman; Islam, Md. Mashfiqul; Ibna Zahid, Zubayer

    2016-01-01

    Plain concrete and steel fiber reinforced concrete (SFRC) cylinder specimens are modeled in the finite element (FE) platform of ANSYS 10.0 and validated with the experimental results and failure patterns. Experimental investigations are conducted to study the increase in compressive and tensile capacity of cylindrical specimens made of stone and brick concrete and SFRC. Satisfactory compressive and tensile capacity improvement is observed by adding steel fibers of 1.5% volumetric ratio. A tot...

  8. Influence of structure improvement of guide tubes and bundles in pressurized water reactor (PWR) on drop of control rods

    International Nuclear Information System (INIS)

    Shen Xiuzhong; Yu Pingan; Yang Guanyue

    1996-01-01

    In order to alleviate the cross hydraulic load on control rod guide tubes and bundles, some protective sleeves are added to those near the upper plenum outlet nozzles (4 symmetric bundles: 02-26, 03-25, 11-29, 12-28). In a 1/4 scale transparent model of the PWR upper plenum of Qinshan Nuclear Power Station, water was chosen as the fluid and hydraulic experiments with improved control rod guide tubes and bundles were carried out. The results were carefully compared with those of the experiments with unimproved control rod guide tubes and bundles. It is concluded that adding protective sleeves to the control rod guide tubes and bundles near the outlet nozzles will help to lighten the hydraulic load on them and make certain of the free movement and rapid dropping of control rods in the tubes and bundles in emergency by order

  9. Multiscale Modeling of Carbon Fiber Reinforced Polymer (CFRP) for Integrated Computational Materials Engineering Process

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jiaying; Liang, Biao; Zhang, Weizhao; Liu, Zeliang; Cheng, Puikei; Bostanabad, Ramin; Cao, Jian; Chen, Wei; Liu, Wing Kam; Su, Xuming; Zeng, Danielle; Zhao, John

    2017-10-23

    In this work, a multiscale modeling framework for CFRP is introduced to study hierarchical structure of CFRP. Four distinct scales are defined: nanoscale, microscale, mesoscale, and macroscale. Information at lower scales can be passed to higher scale, which is beneficial for studying effect of constituents on macroscale part’s mechanical property. This bottom-up modeling approach enables better understanding of CFRP from finest details. Current study focuses on microscale and mesoscale. Representative volume element is used at microscale and mesoscale to model material’s properties. At microscale, unidirection CFRP (UD) RVE is used to study properties of UD. The UD RVE can be modeled with different volumetric fraction to encounter non-uniform fiber distribution in CFRP part. Such consideration is important in modeling uncertainties at microscale level. Currently, we identified volumetric fraction as the only uncertainty parameters in UD RVE. To measure effective material properties of UD RVE, periodic boundary conditions (PBC) are applied to UD RVE to ensure convergence of obtained properties. Properties of UD is directly used at mesoscale woven RVE modeling, where each yarn is assumed to have same properties as UD. Within woven RVE, there can be many potential uncertainties parameters to consider for a physical modeling of CFRP. Currently, we will consider fiber misalignment within yarn and angle between wrap and weft yarns. PBC is applied to woven RVE to calculate its effective material properties. The effect of uncertainties are investigated quantitatively by Gaussian process. Preliminary results of UD and Woven study are analyzed for efficacy of the RVE modeling. This work is considered as the foundation for future multiscale modeling framework development for ICME project.

  10. Multiscale modeling of interwoven Kevlar fibers based on random walk to predict yarn structural response

    Science.gov (United States)

    Recchia, Stephen

    Kevlar is the most common high-end plastic filament yarn used in body armor, tire reinforcement, and wear resistant applications. Kevlar is a trade name for an aramid fiber. These are fibers in which the chain molecules are highly oriented along the fiber axis, so the strength of the chemical bond can be exploited. The bulk material is extruded into filaments that are bound together into yarn, which may be chorded with other materials as in car tires, woven into a fabric, or layered in an epoxy to make composite panels. The high tensile strength to low weight ratio makes this material ideal for designs that decrease weight and inertia, such as automobile tires, body panels, and body armor. For designs that use Kevlar, increasing the strength, or tenacity, to weight ratio would improve performance or reduce cost of all products that are based on this material. This thesis computationally and experimentally investigates the tenacity and stiffness of Kevlar yarns with varying twist ratios. The test boundary conditions were replicated with a geometrically accurate finite element model, resulting in a customized code that can reproduce tortuous filaments in a yarn was developed. The solid model geometry capturing filament tortuosity was implemented through a random walk method of axial geometry creation. A finite element analysis successfully recreated the yarn strength and stiffness dependency observed during the tests. The physics applied in the finite element model was reproduced in an analytical equation that was able to predict the failure strength and strain dependency of twist ratio. The analytical solution can be employed to optimize yarn design for high strength applications.

  11. Investigation of Swirling Flow in Rod Bundle Subchannels Using Computational Fluid Dynamics

    International Nuclear Information System (INIS)

    Holloway, Mary V.; Beasley, Donald E.; Conner, Michael E.

    2006-01-01

    The fluid dynamics for turbulent flow through rod bundles representative of those used in pressurized water reactors is examined using computational fluid dynamics (CFD). The rod bundles of the pressurized water reactor examined in this study consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids are often used to create swirling flow in the rod bundle in an effort to improve the heat transfer characteristics for the rod bundle during both normal operating conditions and in accident condition scenarios. Computational fluid dynamics simulations for a two subchannel portion of the rod bundle were used to model the flow downstream of a split-vane pair support grid. A high quality computational mesh was used to investigate the choice of turbulence model appropriate for the complex swirling flow in the rod bundle subchannels. Results document a central swirling flow structure in each of the subchannels downstream of the split-vane pairs. Strong lateral flows along the surface of the rods, as well as impingement regions of lateral flow on the rods are documented. In addition, regions of lateral flow separation and low axial velocity are documented next to the rods. Results of the CFD are compared to experimental particle image velocimetry (PIV) measurements documenting the lateral flow structures downstream of the split-vane pairs. Good agreement is found between the computational simulation and experimental measurements for locations close to the support grid. (authors)

  12. Preliminary report: NIF laser bundle review

    International Nuclear Information System (INIS)

    Tietbohl, G.L.; Larson, D.W.; Erlandson, A.C.

    1995-01-01

    As requested in the guidance memo 1 , this committe determined whether there are compelling reasons to recommend a change from the NIF CDR baseline laser. The baseline bundle design based on a tradeoff between cost and technical risk, which is replicated four times to create the required 192 beams. The baseline amplifier design uses bottom loading 1x4 slab and flashlamp cassettes for amplifier maintenance and large vacuum enclosures (2.5m high x 7m wide in cross-section for each of the two spatial filters in each of the four bundles. The laser beams are arranged in two laser bays configured in a u-shape around the target area. The entire bundle review effort was performed in a very short time (six weeks) and with limited resources (15 personnel part-time). This should be compared to the effort that produced the CDR design (12 months, 50 to 100 personnel). This committee considered three alternate bundle configurations (2x2, 4x2, and 4x4 bundles), and evaluated each bundle against the baseline design using the seven requested issues in the guidance memo: Cost; schedule; performance risk; maintainability/operability; hardware failure cost exposure; activation; and design flexibility. The issues were reviewed to identify differences between each alternate bundle configuration and the baseline

  13. Multi-component fiber track modelling of diffusion-weighted magnetic resonance imaging data

    Directory of Open Access Journals (Sweden)

    Yasser M. Kadah

    2010-01-01

    Full Text Available In conventional diffusion tensor imaging (DTI based on magnetic resonance data, each voxel is assumed to contain a single component having diffusion properties that can be fully represented by a single tensor. Even though this assumption can be valid in some cases, the general case involves the mixing of components, resulting in significant deviation from the single tensor model. Hence, a strategy that allows the decomposition of data based on a mixture model has the potential of enhancing the diagnostic value of DTI. This project aims to work towards the development and experimental verification of a robust method for solving the problem of multi-component modelling of diffusion tensor imaging data. The new method demonstrates significant error reduction from the single-component model while maintaining practicality for clinical applications, obtaining more accurate Fiber tracking results.

  14. A model for evaluating beef cattle rations considering effects of ruminal fiber mass

    Directory of Open Access Journals (Sweden)

    Douglas Sampaio Henrique

    2011-11-01

    Full Text Available A mathematical model based on Cornell Net Carbohydrate and Protein System (CNCPS was developed and adapted in order to evaluate beef cattle rations at tropical climate conditions. The presented system differs from CNCPS in the modeling of insoluble particles' digestion and passage kinetics, which enabled the estimation of fiber mass in rumen and its effects on animal performance. The equations used to estimate metabolizable protein and net energy requirements for gain, net energy requirement for maintenance and total efficiency of metabolizable energy utilization were obtained from scientific articles published in Brazil. The parameters of the regression equations in these papers were estimated using data from Bos indicus purebred and crossbred animals reared under tropical conditions. The model was evaluated by using a 368-piece of information database originally published on 11 Doctoral theses, 14 Master's dissertations and four scientific articles. Outputs of the model can be considered adequate.

  15. Microtomography and creep modeling of a short fiber reinforced aluminum piston alloy

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Esteban; Requena, Guillermo; Degischer, Hans-Peter [Institute of Materials Science and Technology, Vienna University of Technology Karlsplatz 13/E308, A-1040 Vienna (Austria); Boller, Elodie [European Synchrotron Radiation Facility, Grenoble (France)

    2011-03-15

    Interconnectivity between eutectic silicon and short fibers in an AlSi12CuNiMg/Al2O3/15s composite increases with long-term creep exposure time due to diffusion. It is also observed that the stationary creep rate decreases significantly compared to the initial stationary creep rate. Interconnectivity between rigid phases is analyzed and three-dimensional statistical functions are applied to deduce the representative volume elements of the composite in different conditions. Unit cell geometrical models are generated to simulate the stationary creep behavior using the finite element method. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Orthogonal model and experimental data for analyzing wood-fiber-based tri-axial ribbed structural panels in bending

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2017-01-01

    This paper presents an analysis of 3-dimensional engineered structural panels (3DESP) made from wood-fiber-based laminated paper composites. Since the existing models for calculating the mechanical behavior of core configurations within sandwich panels are very complex, a new simplified orthogonal model (SOM) using an equivalent element has been developed. This model...

  17. Application of fiber tractography for neurosurgery

    International Nuclear Information System (INIS)

    Hashimoto, Naoya; Yoshimine, Toshiki

    2007-01-01

    This review describes about the fiber tractography (FT) for its basic principle, method, and application to neurosurgery involving usefulness, pitfall, validation needed and future perspective. MR diffusion weighted image exhibits the diffusion (Brownian movement) of water molecules and its multiple images taken by different angles of magnetic field can also give information of their diffusion anisotropy, whereby diffusion tensor image is yielded as FT owing to their high anisotropy, with use of appropriate softwares assuming an ellipsoid of anisotropic water (single tensor model). FT thus presents an image of a specific and functional neurofiber bundle. Recently, FT in neurosurgery has been recognized to have pitfalls in tracing the bundle at its crossing and branch, e.g., suggested avoidance of surgery of eloquent area navigated with FT alone. For this, developed and considered are the multi-tensor models based on multiple ellipsoids and on probabilistic one on probability, and combination of electrophysiological mapping is thought necessary as well. Application of FT is also actively in progress to understand neurological diseases like cerebral vascular lesion, hemiplegia, epilepsy, injury and many others. FT navigation without other validation is thus limited in neurosurgery, but FT is surely one of means to improve patients' prognosis and quality of life (QOL). (R.T.)

  18. Mesoscale Characterization of Fracture Properties of Steel Fiber-Reinforced Concrete Using a Lattice–Particle Model

    Directory of Open Access Journals (Sweden)

    Francisco Montero-Chacón

    2017-02-01

    Full Text Available This work presents a lattice–particle model for the analysis of steel fiber-reinforced concrete (SFRC. In this approach, fibers are explicitly modeled and connected to the concrete matrix lattice via interface elements. The interface behavior was calibrated by means of pullout tests and a range for the bond properties is proposed. The model was validated with analytical and experimental results under uniaxial tension and compression, demonstrating the ability of the model to correctly describe the effect of fiber volume fraction and distribution on fracture properties of SFRC. The lattice–particle model was integrated into a hierarchical homogenization-based scheme in which macroscopic material parameters are obtained from mesoscale simulations. Moreover, a representative volume element (RVE analysis was carried out and the results shows that such an RVE does exist in the post-peak regime and until localization takes place. Finally, the multiscale upscaling strategy was successfully validated with three-point bending tests.

  19. Mesoscale Characterization of Fracture Properties of Steel Fiber-Reinforced Concrete Using a Lattice-Particle Model.

    Science.gov (United States)

    Montero-Chacón, Francisco; Cifuentes, Héctor; Medina, Fernando

    2017-02-21

    This work presents a lattice-particle model for the analysis of steel fiber-reinforced concrete (SFRC). In this approach, fibers are explicitly modeled and connected to the concrete matrix lattice via interface elements. The interface behavior was calibrated by means of pullout tests and a range for the bond properties is proposed. The model was validated with analytical and experimental results under uniaxial tension and compression, demonstrating the ability of the model to correctly describe the effect of fiber volume fraction and distribution on fracture properties of SFRC. The lattice-particle model was integrated into a hierarchical homogenization-based scheme in which macroscopic material parameters are obtained from mesoscale simulations. Moreover, a representative volume element (RVE) analysis was carried out and the results shows that such an RVE does exist in the post-peak regime and until localization takes place. Finally, the multiscale upscaling strategy was successfully validated with three-point bending tests.

  20. Mesoscale Characterization of Fracture Properties of Steel Fiber-Reinforced Concrete Using a Lattice–Particle Model

    Science.gov (United States)

    Montero-Chacón, Francisco; Cifuentes, Héctor; Medina, Fernando

    2017-01-01

    This work presents a lattice–particle model for the analysis of steel fiber-reinforced concrete (SFRC). In this approach, fibers are explicitly modeled and connected to the concrete matrix lattice via interface elements. The interface behavior was calibrated by means of pullout tests and a range for the bond properties is proposed. The model was validated with analytical and experimental results under uniaxial tension and compression, demonstrating the ability of the model to correctly describe the effect of fiber volume fraction and distribution on fracture properties of SFRC. The lattice–particle model was integrated into a hierarchical homogenization-based scheme in which macroscopic material parameters are obtained from mesoscale simulations. Moreover, a representative volume element (RVE) analysis was carried out and the results shows that such an RVE does exist in the post-peak regime and until localization takes place. Finally, the multiscale upscaling strategy was successfully validated with three-point bending tests. PMID:28772568