WorldWideScience

Sample records for fiber bundle model

  1. The avalanche process of the fiber bundle model with defect

    Science.gov (United States)

    Hao, Da-Peng; Tang, Gang; Xia, Hui; Xun, Zhi-Peng; Han, Kui

    2017-04-01

    In order to explore the impacts of defect on the tensile fracture process of materials, the fiber bundle model with defect is constructed based on the classical fiber bundle model. In the fiber bundle model with defect, the two key parameters are the mean size and the density of defects. In both uniform and Weibull threshold distributions, the mean size and density all bring impacts on the threshold distribution of fibers. By means of analytical approximation and numerical simulation, we show that the two key parameters of the model have substantial effects on the failure process of the bundle. From macroscopic view, the defect described by the altering of threshold distribution of fibers will has a significant impact on the mechanical properties of the bundle. While in microscopic scale, the statistical properties of the model are still harmonious with the classical fiber bundle model.

  2. Fiber bundle model under fluid pressure

    Science.gov (United States)

    Amitrano, David; Girard, Lucas

    2016-03-01

    Internal fluid pressure often plays an important role in the rupture of brittle materials. This is a major concern for many engineering applications and for natural hazards. More specifically, the mechanisms through which fluid pressure, applied at a microscale, can enhance the failure at a macroscale and accelerate damage dynamics leading to failure remains unclear. Here we revisit the fiber bundle model by accounting for the effect of fluid under pressure that contributes to the global load supported by the fiber bundle. Fluid pressure is applied on the broken fibers, following Biot's theory. The statistical properties of damage avalanches and their evolution toward macrofailure are analyzed for a wide range of fluid pressures. The macroscopic strength of the new model appears to be strongly controlled by the action of the fluid, particularly when the fluid pressure becomes comparable with the fiber strength. The behavior remains consistent with continuous transition, i.e., second order, including for large pressure. The main change concerns the damage acceleration toward the failure that is well modeled by the concept of sweeping of an instability. When pressure is increased, the exponent β characterizing the power-law distribution avalanche sizes significantly decreases and the exponent γ characterizing the cutoff divergence when failure is approached significantly increases. This proves that fluid pressure plays a key role in failure process acting as destabilization factor. This indicates that macrofailure occurs more readily under fluid pressure, with a behavior that becomes progressively unstable as fluid pressure increases. This may have considerable consequences on our ability to forecast failure when fluid pressure is acting.

  3. An analytical fiber bundle model for pullout mechanics of root bundles

    Science.gov (United States)

    Cohen, D.; Schwarz, M.; Or, D.

    2011-09-01

    Roots in soil contribute to the mechanical stability of slopes. Estimation of root reinforcement is challenging because roots form complex biological networks whose geometrical and mechanical characteristics are difficult to characterize. Here we describe an analytical model that builds on simple root descriptors to estimate root reinforcement. Root bundles are modeled as bundles of heterogeneous fibers pulled along their long axes neglecting root-soil friction. Analytical expressions for the pullout force as a function of displacement are derived. The maximum pullout force and corresponding critical displacement are either derived analytically or computed numerically. Key model inputs are a root diameter distribution (uniform, Weibull, or lognormal) and three empirical power law relations describing tensile strength, elastic modulus, and length of roots as functions of root diameter. When a root bundle with root tips anchored in the soil matrix is pulled by a rigid plate, a unique parameter, ?, that depends only on the exponents of the power law relations, dictates the order in which roots of different diameters break. If ? 1, large roots break first. When ? = 1, all fibers break simultaneously, and the maximum tensile force is simply the roots' mean force times the number of roots in the bundle. Based on measurements of root geometry and mechanical properties, the value of ? is less than 1, usually ranging between 0 and 0.7. Thus, small roots always fail first. The model shows how geometrical and mechanical characteristics of roots and root diameter distribution affect the pullout force, its maximum and corresponding displacement. Comparing bundles of roots that have similar mean diameters, a bundle with a narrow variance in root diameter will result in a larger maximum force and a smaller displacement at maximum force than a bundle with a wide diameter distribution. Increasing the mean root diameter of a bundle without changing the distribution's shape increases

  4. Statistical model with two order parameters for ductile and soft fiber bundles in nanoscience and biomaterials.

    Science.gov (United States)

    Rinaldi, Antonio

    2011-04-01

    Traditional fiber bundles models (FBMs) have been an effective tool to understand brittle heterogeneous systems. However, fiber bundles in modern nano- and bioapplications demand a new generation of FBM capturing more complex deformation processes in addition to damage. In the context of loose bundle systems and with reference to time-independent plasticity and soft biomaterials, we formulate a generalized statistical model for ductile fracture and nonlinear elastic problems capable of handling more simultaneous deformation mechanisms by means of two order parameters (as opposed to one). As the first rational FBM for coupled damage problems, it may be the cornerstone for advanced statistical models of heterogeneous systems in nanoscience and materials design, especially to explore hierarchical and bio-inspired concepts in the arena of nanobiotechnology. Applicative examples are provided for illustrative purposes at last, discussing issues in inverse analysis (i.e., nonlinear elastic polymer fiber and ductile Cu submicron bars arrays) and direct design (i.e., strength prediction).

  5. Creep rupture of fiber bundles

    DEFF Research Database (Denmark)

    Linga, G.; Ballone, P.; Hansen, Alex

    2015-01-01

    The creep deformation and eventual breaking of polymeric samples under a constant tensile load F is investigated by molecular dynamics based on a particle representation of the fiber bundle model. The results of the virtual testing of fibrous samples consisting of 40000 particles arranged on Nc=4...

  6. Liquid Flow in Shaped Fiber Bundle

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; WANG Hua-ping; CHEN Yue-hua

    2006-01-01

    By computation and comparison of the critical spreading coefficient parameter, it was found that shaped fiber bundle is better for wetting. Liquid-air interface tension of liquid arising the shaped fiber bundle body is considered as one critical factor besides liquid viscosity, inertia force and liquid-fiber interface tension. Experimental result simulation demonstrated that the liquid-air interface tension is correlated with the geometric size of the liquid arising in body, φ0 (x) and which is affected by the cross sectional shape of fiber and the radius of single fiber. The shaped fiber bundle model is introduced to investigate liquid flow in fiber assembly. The model is generated based on a random function for stochastic forming of fibers in bundle and it is necessary to combine this fundamental model with physical explanation for investigation of liquid flow in fiber assembly.

  7. Fiber bundle phase conjugate mirror

    Science.gov (United States)

    Ward, Benjamin G.

    2012-05-01

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  8. Statistical Constitutive Equation of Aramid Fiber Bundles

    Institute of Scientific and Technical Information of China (English)

    熊杰; 顾伯洪; 王善元

    2003-01-01

    Tensile impact tests of aramid (Twaron) fiber bundles were carried om under high strain rates with a wide range of 0. 01/s~1000/s by using MTS and bar-bar tensile impact apparatus. Based on the statistical constitutive model of fiber bundles, statistical constitutive equations of aramid fiber bundles are derived from statistical analysis of test data at different strain rates. Comparison between the theoretical predictions and experimental data indicates statistical constitutive equations fit well with the experimental data, and statistical constitutive equations of fiber bundles at different strain rates are valid.

  9. Using a validated transmission model for the optimization of bundled fiber optic displacement sensors.

    Science.gov (United States)

    Moro, Erik A; Todd, Michael D; Puckett, Anthony D

    2011-12-10

    A variety of intensity-modulated optical displacement sensor architectures have been proposed for use in noncontacting sensing applications, with one of the most widely implemented architectures being the bundled displacement sensor. To the best of the authors' knowledge, the arrangement of measurement fibers in previously reported bundled displacement sensors has not been configured with the use of a validated optical transmission model. Such a model has utility in accurately describing the sensor's performance a priori and thereby guides the arrangement of the fibers within the bundle to meet application-specific performance needs. In this paper, a recently validated transmission model is used for these purposes, and an optimization approach that employs a genetic algorithm efficiently explores the design space of the proposed bundle sensor architecture. From the converged output of the optimization routine, a bundled displacement sensor configuration is designed and experimentally tested, offering linear performance with a sensitivity of -0.066 μm(-1) and displacement measurement error of 223 μm over the axial displacement range of 6-8 mm. It is shown that this optimization approach may be generalized to determine optimized bundle configurations that offer high-sensitivity performance, with an acceptable error level, over a variety of axial displacement ranges. This document has been approved by Los Alamos National Laboratory for unlimited public release (LA-UR 11-03413). © 2011 Optical Society of America

  10. A fiber-bundle model for the continuum deformation of brittle material

    CERN Document Server

    Nanjo, K Z

    2016-01-01

    The deformation of brittle material is primarily accompanied by micro-cracking and faulting. However, it has often been found that continuum fluid models, usually based on a non-Newtonian viscosity, are applicable. To explain this rheology, we use a fiber-bundle model, which is a model of damage mechanics. In our analyses, yield stress was introduced. Above this stress, we hypothesize that the fibers begin to fail and a failed fiber is replaced by a new fiber. This replacement is analogous to a micro-crack or an earthquake and its iteration is analogous to stick-slip motion. Below the yield stress, we assume that no fiber failure occurs, and the material behaves elastically. We show that deformation above yield stress under a constant strain rate for a sufficient amount of time can be modeled as an equation similar to that used for non-Newtonian viscous flow. We expand our rheological model to treat viscoelasticity and consider a stress relaxation problem. The solution can be used to understand aftershock tem...

  11. Fiber bundle models for stress release and energy bursts during granular shearing

    Science.gov (United States)

    Michlmayr, Gernot; Or, Dani; Cohen, Denis

    2012-12-01

    Fiber bundle models (FBMs) offer a versatile framework for representing transitions from progressive to abrupt failure in disordered material. We report a FBM-based description of mechanical interactions and associated energy bursts during shear deformation of granular materials. For strain-controlled shearing, where elements fail in a sequential order, we present analytical expressions for strain energy release and failure statistics. Results suggest that frequency-magnitude characteristics of fiber failure vary considerably throughout progressive shearing. Predicted failure distributions were in good agreement with experimentally observed shear stress fluctuations and associated bursts of acoustic emissions. Experiments also confirm a delayed release of acoustic emission energy relative to shear stress buildup, as anticipated by the model. Combined with data-rich acoustic emission measurements, the modified FBM offers highly resolved contact-scale insights into granular media dynamics of shearing processes.

  12. Photonic bandgap fiber bundle spectrometer

    CERN Document Server

    Hang, Qu; Syed, Imran; Guo, Ning; Skorobogatiy, Maksim

    2010-01-01

    We experimentally demonstrate an all-fiber spectrometer consisting of a photonic bandgap fiber bundle and a black and white CCD camera. Photonic crystal fibers used in this work are the large solid core all-plastic Bragg fibers designed for operation in the visible spectral range and featuring bandgaps of 60nm - 180nm-wide. 100 Bragg fibers were chosen to have complimentary and partially overlapping bandgaps covering a 400nm-840nm spectral range. The fiber bundle used in our work is equivalent in its function to a set of 100 optical filters densely packed in the area of ~1cm2. Black and white CCD camera is then used to capture spectrally "binned" image of the incoming light at the output facet of a fiber bundle. To reconstruct the test spectrum from a single CCD image we developed an algorithm based on pseudo-inversion of the spectrometer transmission matrix. We then study resolution limit of this spectroscopic system by testing its performance using spectrally narrow test peaks (FWHM 5nm-25nm) centered at va...

  13. Computational imaging through a fiber-optic bundle

    Science.gov (United States)

    Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.

    2017-05-01

    Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.

  14. Robustness of power systems under a democratic fiber bundle-like model

    CERN Document Server

    Yağan, Osman

    2015-01-01

    We consider a power system with $N$ transmission lines whose initial loads (i.e., power flows) $L_1, \\ldots, L_N$ are independent and identically distributed with $P_L(x)$. The capacity $C_i$ defines the maximum flow allowed on line $i$, and is assumed to be given by $C_i=(1+\\alpha)L_i$, with $\\alpha>0$. We study the robustness of this power system against random attacks (or, failures) that target a $p$-{\\em fraction} of the lines, under a democratic fiber bundle-like model. Namely, when a line fails, the load it was carrying is redistributed equally among the remaining lines. Our contributions are as follows: i) we show analytically that the final breakdown of the system always takes place through a first-order transition at the critical attack size $p^{\\star}=1-\\frac{E[L]}{\\max\\{P(L>x)(\\alpha x + E[L ~|~ L>x])\\}}~~~$; ii) we derive conditions on the distribution $P_L(x)$ for which the first order break down of the system occurs abruptly without any preceding diverging rate of failure; iii) we provide a deta...

  15. Simulation of spatial and temporal properties of aftershocks by means of the fiber bundle model

    Science.gov (United States)

    Monterrubio-Velasco, Marisol; Zúñiga, F. R.; Márquez-Ramírez, Victor Hugo; Figueroa-Soto, Angel

    2017-09-01

    The rupture processes of any heterogeneous material constitute a complex physical problem. Earthquake aftershocks show temporal and spatial behaviors which are consequence of the heterogeneous stress distribution and multiple rupturing following the main shock. This process is difficult to model deterministically due to the number of parameters and physical conditions, which are largely unknown. In order to shed light on the minimum requirements for the generation of aftershock clusters, in this study, we perform a simulation of the main features of such a complex process by means of a fiber bundle (FB) type model. The FB model has been widely used to analyze the fracture process in heterogeneous materials. It is a simple but powerful tool that allows modeling the main characteristics of a medium such as the brittle shallow crust of the earth. In this work, we incorporate spatial properties, such as the Coulomb stress change pattern, which help simulate observed characteristics of aftershock sequences. In particular, we introduce a parameter (P) that controls the probability of spatial distribution of initial loads. Also, we use a "conservation" parameter (π), which accounts for the load dissipation of the system, and demonstrate its influence on the simulated spatio-temporal patterns. Based on numerical results, we find that P has to be in the range 0.06 < P < 0.30, whilst π needs to be limited by a very narrow range (0.60 < π < 0.66) in order to reproduce aftershocks pattern characteristics which resemble those of observed sequences. This means that the system requires a small difference in the spatial distribution of initial stress, and a very particular fraction of load transfer in order to generate realistic aftershocks.

  16. Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level

    Directory of Open Access Journals (Sweden)

    Kang Guan

    2016-12-01

    Full Text Available The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites’ thermal conductivity is matrix cracking’s density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites.

  17. Robustness of power systems under a democratic-fiber-bundle-like model

    Science.gov (United States)

    Yaǧan, Osman

    2015-06-01

    We consider a power system with N transmission lines whose initial loads (i.e., power flows) L1,...,LN are independent and identically distributed with PL(x ) =P [L ≤x ] . The capacity Ci defines the maximum flow allowed on line i and is assumed to be given by Ci=(1 +α ) Li , with α >0 . We study the robustness of this power system against random attacks (or failures) that target a p fraction of the lines, under a democratic fiber-bundle-like model. Namely, when a line fails, the load it was carrying is redistributed equally among the remaining lines. Our contributions are as follows. (i) We show analytically that the final breakdown of the system always takes place through a first-order transition at the critical attack size p=1 -E/[L ] maxx(P [L >x ](α x +E [L |L >x ]) ) , where E [.] is the expectation operator; (ii) we derive conditions on the distribution PL(x ) for which the first-order breakdown of the system occurs abruptly without any preceding diverging rate of failure; (iii) we provide a detailed analysis of the robustness of the system under three specific load distributions—uniform, Pareto, and Weibull—showing that with the minimum load Lmin and mean load E [L ] fixed, Pareto distribution is the worst (in terms of robustness) among the three, whereas Weibull distribution is the best with shape parameter selected relatively large; (iv) we provide numerical results that confirm our mean-field analysis; and (v) we show that p is maximized when the load distribution is a Dirac delta function centered at E [L ] , i.e., when all lines carry the same load. This last finding is particularly surprising given that heterogeneity is known to lead to high robustness against random failures in many other systems.

  18. Change in the Pathologic Supraspinatus: A Three-Dimensional Model of Fiber Bundle Architecture within Anterior and Posterior Regions

    Directory of Open Access Journals (Sweden)

    Soo Y. Kim

    2015-01-01

    Full Text Available Supraspinatus tendon tears are common and lead to changes in the muscle architecture. To date, these changes have not been investigated for the distinct regions and parts of the pathologic supraspinatus. The purpose of this study was to create a novel three-dimensional (3D model of the muscle architecture throughout the supraspinatus and to compare the architecture between muscle regions and parts in relation to tear severity. Twelve cadaveric specimens with varying degrees of tendon tears were used. Three-dimensional coordinates of fiber bundles were collected in situ using serial dissection and digitization. Data were reconstructed and modeled in 3D using Maya. Fiber bundle length (FBL and pennation angle (PA were computed and analyzed. FBL was significantly shorter in specimens with large retracted tears compared to smaller tears, with the deeper fibers being significantly shorter than other parts in the anterior region. PA was significantly greater in specimens with large retracted tears, with the superficial fibers often demonstrating the largest PA. The posterior region was absent in two specimens with extensive tears. Architectural changes associated with tendon tears affect the regions and varying depths of supraspinatus differently. The results provide important insights on residual function of the pathologic muscle, and the 3D model includes detailed data that can be used in future modeling studies.

  19. Soft-clamp fiber bundle model and interfacial crack propagation: comparison using a non-linear imposed displacement

    Science.gov (United States)

    Stormo, Arne; Lengliné, Olivier; Schmittbuhl, Jean; Hansen, Alex

    2016-05-01

    We compare experimental observations of a slow interfacial crack propagation along an heterogeneous interface to numerical simulations using a soft-clamped fiber bundle model. The model consists of a planar set of brittle fibers between a deformable elastic half-space and a rigid plate with a square root shape that imposes a non linear displacement around the process zone. The non-linear square-root rigid shape combined with the long range elastic interactions is shown to provide more realistic displacement and stress fields around the crack tip in the process zone and thereby significantly improving the predictions of the model. Experiments and model are shown to share a similar self-affine roughening of the crack front both at small and large scales and a similar distribution of the local crack front velocity. Numerical predictions of the Family-Viscek scaling for both regimes are discussed together with the local velocity distribution of the fracture front.

  20. DTI Image Registration under Probabilistic Fiber Bundles Tractography Learning

    Science.gov (United States)

    Lei, Tao; Fan, Yangyu; Zhang, Xiuwei

    2016-01-01

    Diffusion Tensor Imaging (DTI) image registration is an essential step for diffusion tensor image analysis. Most of the fiber bundle based registration algorithms use deterministic fiber tracking technique to get the white matter fiber bundles, which will be affected by the noise and volume. In order to overcome the above problem, we proposed a Diffusion Tensor Imaging image registration method under probabilistic fiber bundles tractography learning. Probabilistic tractography technique can more reasonably trace to the structure of the nerve fibers. The residual error estimation step in active sample selection learning is improved by modifying the residual error model using finite sample set. The calculated deformation field is then registered on the DTI images. The results of our proposed registration method are compared with 6 state-of-the-art DTI image registration methods under visualization and 3 quantitative evaluation standards. The experimental results show that our proposed method has a good comprehensive performance.

  1. Cellulosic Fibers: Effect of Processing on Fiber Bundle Strength

    DEFF Research Database (Denmark)

    Thygesen, Anders; Madsen, Bo; Thomsen, Anne Belinda;

    2011-01-01

    A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding, and cotto......A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding...

  2. Dynamic response of fiber bundle under transverse impact.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang; Song, Bo

    2010-03-01

    There has been a very high demand in developing efficient soft body armors to protect the military and law enforcement personnel from ballistic or explosive attack. As a basic component in the soft body armor, fibers or fiber bundles play a key role in the performance against ballistic impact. In order to study the ballistic-resistant mechanism of the soft body armor, it is desirable to understand the dynamic response of the fiber bundle under transverse impact. Transverse wave speed is one important parameter because a faster transverse wave speed can make the impact energy dissipate more quickly. In this study, we employed split Hopkinson pressure bar (SHPB) to generate constant high-speed impact on a Kevlar fiber bundle in the transverse direction. The deformation of the fiber bundle was photographed with high-speed digital cameras. The transverse wave speeds were experimentally measured at various transverse impact velocities. The experimental results can also be used to quantitatively verify the current analytical models or to develop new models to describe the dynamic response of fiber bundle under transverse impact.

  3. Cracks in random brittle solids:. From fiber bundles to continuum mechanics

    Science.gov (United States)

    Patinet, S.; Vandembroucq, D.; Hansen, A.; Roux, S.

    2014-10-01

    Statistical models are essential to get a better understanding of the role of disorder in brittle disordered solids. Fiber bundle models play a special role as a paradigm, with a very good balance of simplicity and non-trivial effects. We introduce here a variant of the fiber bundle model where the load is transferred among the fibers through a very compliant membrane. This Soft Membrane fiber bundle mode reduces to the classical Local Load Sharing fiber bundle model in 1D. Highlighting the continuum limit of the model allows to compute an equivalent toughness for the fiber bundle and hence discuss nucleation of a critical defect. The computation of the toughness allows for drawing a simple connection with crack front propagation (depinning) models.

  4. Numerical Investigation of Characteristic of Anisotropic Thermal Conductivity of Natural Fiber Bundle with Numbered Lumens

    Directory of Open Access Journals (Sweden)

    Guan-Yu Zheng

    2014-01-01

    Full Text Available Natural fiber bundle like hemp fiber bundle usually includes many small lumens embedded in solid region; thus, it can present lower thermal conduction than that of conventional fibers. In the paper, characteristic of anisotropic transverse thermal conductivity of unidirectional natural hemp fiber bundle was numerically studied to determine the dependence of overall thermal property of the fiber bundle on that of the solid region phase. In order to efficiently predict its thermal property, the fiber bundle was embedded into an imaginary matrix to form a unit composite cell consisting of the matrix and the fiber bundle. Equally, another unit composite cell including an equivalent solid fiber was established to present the homogenization of the fiber bundle. Next, finite element thermal analysis implemented by ABAQUS was conducted in the two established composite cells by applying proper thermal boundary conditions along the boundary of unit cell, and influences of the solid region phase and the equivalent solid fiber on the composites were investigated, respectively. Subsequently, an optional relationship of thermal conductivities of the natural fiber bundle and the solid region was obtained by curve fitting technique. Finally, numerical results from the obtained fitted curves were compared with the analytic Hasselman-Johnson’s results and others to verify the present numerical model.

  5. Catastrophic Failure and Critical Scaling Laws of Fiber Bundle Material

    Directory of Open Access Journals (Sweden)

    Shengwang Hao

    2017-05-01

    Full Text Available This paper presents a spring-fiber bundle model used to describe the failure process induced by energy release in heterogeneous materials. The conditions that induce catastrophic failure are determined by geometric conditions and energy equilibrium. It is revealed that the relative rates of deformation of, and damage to the fiber bundle with respect to the boundary controlling displacement ε0 exhibit universal power law behavior near the catastrophic point, with a critical exponent of −1/2. The proportion of the rate of response with respect to acceleration exhibits a linear relationship with increasing displacement in the vicinity of the catastrophic point. This allows for the prediction of catastrophic failure immediately prior to failure by extrapolating the trajectory of this relationship as it asymptotes to zero. Monte Carlo simulations are completed and these two critical scaling laws are confirmed.

  6. The histology of retinal nerve fiber layer bundles and bundle defects.

    Science.gov (United States)

    Radius, R L; Anderson, D R

    1979-05-01

    The fiber bundle striations recognized clinically in normal monkey eyes appear to be bundles of axons compartmentalized within glial tunnels formed by Müller's-cell processes, when viewed histologically. The dark boundaries that separate individual bundles are the broadened foot endings of these cells near the inner surface of the retina. Within one week after focal retinal photocoagulation, characteristic fundus changes could be seen in experimental eyes. In histologic sections of the involved retina, there was marked cystic degeneration of the retinal nerve fiber layer. Within one month, atrophy of distal axon segments was complete. With the drop-out of damaged axons and thinning of individual fiber bundles, retinal striations became less prominent. The resulting fundus picture in these experimental eyes is similar to fiber bundle defects that can be seen clinically in various neuro-ophthalmic disorders.

  7. Fracture process of a fiber bundle with strong disorder

    Science.gov (United States)

    Danku, Zsuzsa; Kun, Ferenc

    2016-07-01

    We investigate the effect of the amount of disorder on the fracture process of heterogeneous materials in the framework of a fiber bundle model. The limit of high disorder is realized by introducing a power law distribution of fiber strength over an infinite range. We show that on decreasing the amount of disorder by controlling the exponent of the power law the system undergoes a transition from the quasi-brittle phase where fracture proceeds in bursts to the phase of perfectly brittle failure where the first fiber breaking triggers a catastrophic collapse. For equal load sharing in the quasi-brittle phase the fat tailed disorder distribution gives rise to a homogeneous fracture process where the sequence of breaking bursts does not show any acceleration as the load increases quasi-statically. The size of bursts is power law distributed with an exponent smaller than the usual mean field exponent of fiber bundles. We demonstrate by means of analytical and numerical calculations that the quasi-brittle to brittle transition is analogous to continuous phase transitions and determine the corresponding critical exponents. When the load sharing is localized to nearest neighbor intact fibers the overall characteristics of the failure process prove to be the same, however, with different critical exponents. We show that in the limit of the highest disorder considered the spatial structure of damage is identical with site percolation—however, approaching the critical point of perfect brittleness spatial correlations play an increasing role, which results in a different cluster structure of failed elements.

  8. All-optical photoacoustic imaging system using fiber ultrasound probe and hollow optical fiber bundle.

    Science.gov (United States)

    Miida, Yusuke; Matsuura, Yuji

    2013-09-23

    An all-optical 3D photoacoustic imaging probe that consists of an optical fiber probe for ultrasound detection and a bundle of hollow optical fibers for excitation of photoacoustic waves was developed. The fiber probe for ultrasound is based on a single-mode optical fiber with a thin polymer film attached to the output end surface that works as a Fabry Perot etalon. The input end of the hollow fiber bundle is aligned so that each fiber in the bundle is sequentially excited. A thin and flexible probe can be obtained because the probe system does not have a scanning mechanism at the distal end.

  9. Average modulation transfer function of line-array fiber-optic image bundles

    Institute of Scientific and Technical Information of China (English)

    Hui Wang(王慧); Yang Xiang(向阳); Bingxi Yu(禹秉熙)

    2004-01-01

    The image quality evaluation in fiber-optic image bundles was addressed by the modulation transfer function(MTF).With the definition of the contrast transfer function(CTF),the MTF model of line-array fiber-optic image bundles was established and analyzed numerically.The average MTF was carefully evaluated by considering the influence of phase match on the MTF between input pattern and fiber-optic image bundles.In this paper,the average MTF is mean arithmetical value on the MTFs of eight different phases.The results show that,for certain fiber diameter and spatial frequency,the relationship between the core diameter and the average MTF is inverse proportion; for certain fiber cladding thickness,the relationship between the core diameter and the average MTF is also inverse proportion.And at Nyquist frequency,the MTF value is near 0.5.

  10. Artificial ciliary bundles with nano fiber tip links

    CERN Document Server

    Asadnia, Mohsen; Miao, Jianmin; Triantafyllou, Michael

    2015-01-01

    Mechanosensory ciliary bundles in fishes are the inspiration for carefully engineered artificial flow sensors. We report the development of a new class of ultrasensitive MEMS flow sensors that mimic the intricate morphology of the ciliary bundles, including the stereocilia, tip links, and the cupula, and thereby achieve threshold detection limits that match the biological example. An artificial ciliary bundle is achieved by fabricating closely-spaced arrays of polymer micro-pillars with gradiating heights. Tip links that form the fundamental sensing elements are realized through electrospinning aligned PVDF piezoelectric nano-fibers that link the distal tips of the polymer cilia. An optimized synthesis of hyaluronic acid-methacrylic anhydride hydrogel that results in properties close to the biological cupula, together with drop-casting method are used to form the artificial cupula that encapsulates the ciliary bundle. In testing, fluid drag force causes the ciliary bundle to slide, stretching the flexible nan...

  11. Capillary Micro-flow Through a Fiber Bundle(Part 2)

    Institute of Scientific and Technical Information of China (English)

    ZHU Yingdan; WANG Jihui; TAN Hua; GAO Guoqiang

    2005-01-01

    A numerical model was proposed to simulate the capillary micro-flow through a fiber bundle.The capillary pressure was predicted by the Young-Laplace equation and the corresponding optimal values of permeability were found by a trial-and-error method. The empirical Kozeny constants which are dependent on fiber volume fraction were recommended for the prediction of permeability.

  12. Capillary Micro-Flow Through a Fiber Bundle(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying-dan; WANG Ji-hui; TAN Hua; GAO Guo-qiang

    2004-01-01

    The present work considered the capillary micro-flow through a fiber bundle. The resin heights in the fiber bundle as a function of time were used to determine the experimental values of capillary pressure and the permeability by the nonlinear regression fitting method. The fitting curves showed a good agreement with experiments. However, these values of capillary pressure from short- time experiments were much lower than the theoretical results from the Yang-Laplace Equation. More accurate capillary pressure was predicted from the presented long-run experiment.

  13. Stochastic mechanical degradation of multi-cracked fiber bundles with elastic and viscous interactions.

    Science.gov (United States)

    Manca, Fabio; Giordano, Stefano; Palla, Pier Luca; Cleri, Fabrizio

    2015-05-01

    The mechanics of fiber bundles has been largely investigated in order to understand their complex failure modes. Under a mechanical load, the fibers fail progressively while the load is redistributed among the unbroken fibers. The classical fiber bundle model captures the most important features of this rupture process. On the other hand, the homogenization techniques are able to evaluate the stiffness degradation of bulk solids with a given population of cracks. However, these approaches are inadequate to determine the effective response of a degraded bundle where breaks are induced by non-mechanical actions. Here, we propose a method to analyze the behavior of a fiber bundle, undergoing a random distribution of breaks, by considering the intrinsic response of the fibers and the visco-elastic interactions among them. We obtain analytical solutions for simple configurations, while the most general cases are studied by Monte Carlo simulations. We find that the degradation of the effective bundle stiffness can be described by two scaling regimes: a first exponential regime for a low density of breaks, followed by a power-law regime at increasingly higher break density. For both regimes, we find analytical effective expressions described by specific scaling exponents.

  14. High Power Fiber Bundle Array Coupled LDA Module

    Institute of Scientific and Technical Information of China (English)

    QU Zhou; LIU Yang; ZHAO Chong-guang; WANG Ji; YIN Hong-he; WANG Li-jun

    2006-01-01

    An optical fiber bundle array coupling module with high output power is presented in this paper. The device integrated the coupling technique of the high power laser diode array (LDA) and the micro-ball lenses fiber array. This module can efficiently couple the output laser of the LDA into 19 fibers array with micro-ball lens endsurface. The difference of the couple efficiency between the flat-end fiber and micro-ball-end fiber is discussed.The micro-ball lenses fiber array made of 19 fibers have the same fiber core diameter of 200 μm, and then the endsurfaces of 19 fibers are fused to 19 micro-ball lenses. The micro-ball lenses fiber array are fixed precisely in the neighborhood on the V-grooves, and the fiber array has the same arrange period with the semiconductor laser units of LDA. This configuration of micro-ball lens fiber array can greatly reduce the divergence of the laser beam from all directions, and a very efficient laser beam homogenizer and shaper are obtained. Finally, high output power of 30.1 W of the fiber coupled LDA is achieved, and the maximal coupling efficiency is >83% with the numeral aperture (NA) of 0.16.

  15. Image processing for cameras with fiber bundle image relay.

    Science.gov (United States)

    Olivas, Stephen J; Arianpour, Ashkan; Stamenov, Igor; Morrison, Rick; Stack, Ron A; Johnson, Adam R; Agurok, Ilya P; Ford, Joseph E

    2015-02-10

    Some high-performance imaging systems generate a curved focal surface and so are incompatible with focal plane arrays fabricated by conventional silicon processing. One example is a monocentric lens, which forms a wide field-of-view high-resolution spherical image with a radius equal to the focal length. Optical fiber bundles have been used to couple between this focal surface and planar image sensors. However, such fiber-coupled imaging systems suffer from artifacts due to image sampling and incoherent light transfer by the fiber bundle as well as resampling by the focal plane, resulting in a fixed obscuration pattern. Here, we describe digital image processing techniques to improve image quality in a compact 126° field-of-view, 30 megapixel panoramic imager, where a 12 mm focal length F/1.35 lens made of concentric glass surfaces forms a spherical image surface, which is fiber-coupled to six discrete CMOS focal planes. We characterize the locally space-variant system impulse response at various stages: monocentric lens image formation onto the 2.5 μm pitch fiber bundle, image transfer by the fiber bundle, and sensing by a 1.75 μm pitch backside illuminated color focal plane. We demonstrate methods to mitigate moiré artifacts and local obscuration, correct for sphere to plane mapping distortion and vignetting, and stitch together the image data from discrete sensors into a single panorama. We compare processed images from the prototype to those taken with a 10× larger commercial camera with comparable field-of-view and light collection.

  16. Mathematical modelling for nanotube bundle oscillators

    Science.gov (United States)

    Thamwattana, Ngamta; Cox, Barry J.; Hill, James M.

    2009-07-01

    This paper investigates the mechanics of a gigahertz oscillator comprising a nanotube oscillating within the centre of a uniform concentric ring or bundle of nanotubes. The study is also extended to the oscillation of a fullerene inside a nanotube bundle. In particular, certain fullerene-nanotube bundle oscillators are studied, namely C60-carbon nanotube bundle, C60-boron nitride nanotube bundle, B36N36-carbon nanotube bundle and B36N36-boron nitride nanotube bundle. Using the Lennard-Jones potential and the continuum approach, we obtain a relation between the bundle radius and the radii of the nanotubes forming the bundle, as well as the optimum bundle size which gives rise to the maximum oscillatory frequency for both the fullerene and the nanotube bundle oscillators. While previous studies in this area have been undertaken through molecular dynamics simulations, this paper emphasizes the use of applied mathematical modelling techniques which provides considerable insight into the underlying mechanisms. The paper presents a synopsis of the major results derived in detail by the present authors in [1, 2].

  17. Use of a coherent fiber bundle for multi-diameter single fiber reflectance spectroscopy

    OpenAIRE

    Hoy, C.L.; Gamm, U. A.; Sterenborg, H. J. C. M.; Robinson, D. J.; Amelink, A.

    2012-01-01

    Multi-diameter single fiber reflectance (MDSFR) spectroscopy enables quantitative measurement of tissue optical properties, including the reduced scattering coefficient and the phase function parameter γ. However, the accuracy and speed of the procedure are currently limited by the need for co-localized measurements using multiple fiber optic probes with different fiber diameters. This study demonstrates the use of a coherent fiber bundle acting as a single fiber with a variable diameter for ...

  18. Darcy permeability of hollow fiber membrane bundles made from Membrana® Polymethylpentene (PMP) fibers used in respiratory assist devices

    Science.gov (United States)

    Madhani, Shalv. P.; D’Aloiso, Brandon. D.; Frankowski, Brian.; Federspiel, William. J.

    2016-01-01

    Hollow fiber membranes (HFMs) are used in blood oxygenators for cardiopulmonary bypass or in next generation artificial lungs. Flow analyses of these devices is typically done using computational fluid dynamics (CFD) modeling HFM bundles as porous media, using a Darcy permeability coefficient estimated from the Blake – Kozeny (BK) equation to account for viscous drag from fibers. We recently published how well this approach can predict Darcy permeability for fiber bundles made from polypropylene HFMs, showing the prediction can be significantly improved using an experimentally derived correlation between the BK constant (A) and bundle porosity (ε). In this study, we assessed how well our correlation for A worked for predicting the Darcy permeability of fiber bundles made from Membrana® polymethylpentene (PMP) HFMs, which are increasingly being used clinically. Swatches in the porosity range of 0.4 to 0.8 were assessed in which sheets of fiber were stacked in parallel, perpendicular and angled configurations. Our previously published correlation predicted Darcy within ±8%. A new correlation based on current and past measured permeability was determined: A=497ε-103; using this correlation measured Darcy permeability was within ±6%. This correlation varied from 8% to −3.5% of our prior correlation over the tested porosity range. PMID:26809086

  19. Darcy Permeability of Hollow Fiber Membrane Bundles Made from Membrana Polymethylpentene Fibers Used in Respiratory Assist Devices.

    Science.gov (United States)

    Madhani, Shalv P; D'Aloiso, Brandon D; Frankowski, Brian; Federspiel, William J

    2016-01-01

    Hollow fiber membranes (HFMs) are used in blood oxygenators for cardiopulmonary bypass or in next generation artificial lungs. Flow analyses of these devices is typically done using computational fluid dynamics (CFD) modeling HFM bundles as porous media, using a Darcy permeability coefficient estimated from the Blake-Kozeny (BK) equation to account for viscous drag from fibers. We recently published how well this approach can predict Darcy permeability for fiber bundles made from polypropylene HFMs, showing the prediction can be significantly improved using an experimentally derived correlation between the BK constant (A) and bundle porosity (ε). In this study, we assessed how well our correlation for A worked for predicting the Darcy permeability of fiber bundles made from Membrana polymethylpentene (PMP) HFMs, which are increasingly being used clinically. Swatches in the porosity range of 0.4 to 0.8 were assessed in which sheets of fiber were stacked in parallel, perpendicular, and angled configurations. Our previously published correlation predicted Darcy within ±8%. A new correlation based on current and past measured permeability was determined: A = 497ε - 103; using this correlation measured Darcy permeability was within ±6%. This correlation varied from 8% to -3.5% of our prior correlation over the tested porosity range.

  20. The Shape of a Ponytail and the Statistical Physics of Hair Fiber Bundles

    Science.gov (United States)

    Goldstein, Raymond E.; Warren, Patrick B.; Ball, Robin C.

    2012-02-01

    From Leonardo to the Brothers Grimm our fascination with hair has endured in art and science. Yet, a quantitative understanding of the shapes of a hair bundles has been lacking. Here we combine experiment and theory to propose an answer to the most basic question: What is the shape of a ponytail? A model for the shape of hair bundles is developed from the perspective of statistical physics, treating individual fibers as elastic filaments with random intrinsic curvatures. The combined effects of bending elasticity, gravity, and bundle compressibility are recast as a differential equation for the envelope of a bundle, in which the compressibility enters through an ``equation of state.'' From this, we identify the balance of forces in various regions of the ponytail, extract the equation of state from analysis of ponytail shapes, and relate the observed pressure to the measured random curvatures of individual hairs.

  1. Parallel Information Processing (Image Transmission Via Fiber Bundle and Multimode Fiber

    Science.gov (United States)

    Kukhtarev, Nicholai

    2003-01-01

    Growing demand for visual, user-friendly representation of information inspires search for the new methods of image transmission. Currently used in-series (sequential) methods of information processing are inherently slow and are designed mainly for transmission of one or two dimensional arrays of data. Conventional transmission of data by fibers requires many fibers with array of laser diodes and photodetectors. In practice, fiber bundles are also used for transmission of images. Image is formed on the fiber-optic bundle entrance surface and each fiber transmits the incident image to the exit surface. Since the fibers do not preserve phase, only 2D intensity distribution can be transmitted in this way. Each single mode fiber transmit only one pixel of an image. Multimode fibers may be also used, so that each mode represent different pixel element. Direct transmission of image through multimode fiber is hindered by the mode scrambling and phase randomization. To overcome these obstacles wavelength and time-division multiplexing have been used, with each pixel transmitted on a separate wavelength or time interval. Phase-conjugate techniques also was tested in, but only in the unpractical scheme when reconstructed image return back to the fiber input end. Another method of three-dimensional imaging over single mode fibers was demonstrated in, using laser light of reduced spatial coherence. Coherence encoding, needed for a transmission of images by this methods, was realized with grating interferometer or with the help of an acousto-optic deflector. We suggest simple practical holographic method of image transmission over single multimode fiber or over fiber bundle with coherent light using filtering by holographic optical elements. Originally this method was successfully tested for the single multimode fiber. In this research we have modified holographic method for transmission of laser illuminated images over commercially available fiber bundle (fiber endoscope, or

  2. Curved Space-Times by Crystallization of Liquid Fiber Bundles

    Science.gov (United States)

    Hélein, Frédéric; Vey, Dimitri

    2017-01-01

    Motivated by the search for a Hamiltonian formulation of Einstein equations of gravity which depends in a minimal way on choices of coordinates, nor on a choice of gauge, we develop a multisymplectic formulation on the total space of the principal bundle of orthonormal frames on the 4-dimensional space-time. This leads quite naturally to a new theory which takes place on 10-dimensional manifolds. The fields are pairs of ((α ,ω ),π), where (α ,ω ) is a 1-form with coefficients in the Lie algebra of the Poincaré group and π is an 8-form with coefficients in the dual of this Lie algebra. The dynamical equations derive from a simple variational principle and imply that the 10-dimensional manifold looks locally like the total space of a fiber bundle over a 4-dimensional base manifold. Moreover this base manifold inherits a metric and a connection which are solutions of a system of Einstein-Cartan equations.

  3. An elastic model for bioinspired design of carbon nanotube bundles

    Science.gov (United States)

    Sun, Xiaoyu; Zhang, Zuoqi; Xu, Yuanjie; Zhang, Yongwei

    2015-04-01

    Collagen fibers provide a good example of making strong micro- or mesoscale fibers from nanoscale tropocollagen molecules through a staggered and cross-linked organization in a bottom-up manner. Mimicking the architectural features of collagen fibers has been shown to be a promising approach to develop carbon nanotube (CNT) fibers of high performance. In the present work, an elastic model is developed to describe the load transfer and failure propagation within the bioinspired CNT bundles, and to establish the relations of the mechanical properties of the bundles with a number of geometrical and physical parameters such as the CNT aspect ratio and longitudinal gap, interface cross-link density, and the functionalization-induced degradation in CNTs, etc. With the model, the stress distributions along the CNT-CNT interface as well as in every individual CNT are well captured, and the failure propagation along the interface and its effects on the mechanical properties of the CNT bundles are predicted. The work may provide useful guidelines for the design of novel CNT fibers in practice.

  4. Fiber optic direct Raman imaging system based on a hollow-core fiber bundle

    Science.gov (United States)

    Inoue, S.; Katagiri, T.; Matsuura, Y.

    2015-03-01

    A Raman imaging system which combined a hollow fiber bundle and a direct imaging technique was constructed for high-speed endoscopic Raman imaging. The hollow fiber bundle is fabricated by depositing a silver thin film on the inner surface of pre-drawn glass capillary bundle. It performs as a fiber optic probe which transmits a Raman image with high signal-to-noise ratio because the propagating light is confined into the air core inducing little light scattering. The field of view on the sample is uniformly irradiated by the excitation laser light via the probe. The back-scattered image is collected by the probe and captured directly by an image sensor. A pair of thin film tunable filters is used to select target Raman band. This imaging system enables flexible and high-speed Raman imaging of biological tissues.

  5. Gauge Theories and Fiber Bundles: Definitions, Pictures, and Results

    CERN Document Server

    Marsh, Adam

    2016-01-01

    A pedagogical but concise overview of fiber bundles and their connections is provided, in the context of gauge theories in physics. The emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions, alternative notations and jargon, and relevant facts and theorems. Special attention is given to detailed figures and geometric viewpoints, some of which would seem to be novel to the literature. Topics are avoided which are well covered in textbooks, such as historical motivations, proofs and derivations, and tools for practical calculations. The present paper is best read in conjunction with the similar paper on Riemannian geometry cited herein.

  6. Mesoscale simulation of semiflexible chains. II. Evolution dynamics and stability of fiber bundle networks

    Science.gov (United States)

    Groot, Robert D.

    2013-06-01

    Network formation of associative semiflexible fibers and mixtures of fibers and colloidal particles is simulated for the Johnson-Kendall-Roberts model of elastic contacts, and a phase diagram in terms of particle elasticity and surface energy is presented. When fibers self-assemble, they form a network for sufficiently large fiber-solvent surface energy. If the surface energy is above the value where single particles crystallize, the adhesion forces drive diffusion-limited aggregation. Two mechanisms contribute to coarsening: non-associated chains joining existing bundles, and fiber bundles merging. Coarsening stops when the length of the network connections is roughly the persistence length, independent of surface energy. If the surface energy is below the value where single particles crystallize, a network can still be formed but at a much slower (reaction limited) rate. Loose (liquid-like) assemblies between chains form when they happen to run more-or-less parallel. These assemblies grow by diffusion and aggregation and form a loose network, which sets in micro-phase separation, i.e., syneresis. Only when the clusters crystallize, the coarsening process stops. In this case, the length of the network connections is larger than the persistence length of a single chain, and depends on the value of the surface energy. All networks of semiflexible homopolymers in this study show syneresis. Mixtures of fibers and colloid particles also form fiber bundle networks, but by choosing the colloid volume fraction sufficiently low, swelling gels are obtained. Applications of this model are in biological systems where fibers self-assemble into cell walls and bone tissue.

  7. A retracting wire knife for cutting fiber bundles and making sheet lesions of brain tissue.

    Science.gov (United States)

    Shibata, M; Russell, I S

    1979-07-01

    A retracting knife which has two cutting wires for the transection of fiber bundles is described. The knife holds the fiber bundles of the stria terminalis between the two cutting wires and transects them by a shearing movement as the wires close. In addition, the feasability of such a knife producing a sheet lesion around the n. caudatus is also described.

  8. Experimental Approach to Visualize Flow in a Stacked Hollow Fiber Bundle of an Artificial Lung With Particle Image Velocimetry.

    Science.gov (United States)

    Kaesler, Andreas; Schlanstein, Peter C; Hesselmann, Felix; Büsen, Martin; Klaas, Michael; Roggenkamp, Dorothee; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Arens, Jutta

    2016-12-07

    Flow distribution is key in artificial lungs, as it directly influences gas exchange performance as well as clot forming and blood damaging potential. The current state of computational fluid dynamics (CFD) in artificial lungs can only give insight on a macroscopic level due to model simplification applied to the fiber bundle. Based on our recent work on wound fiber bundles, we applied particle image velocimetry (PIV) to the model of an artificial lung prototype intended for neonatal use to visualize flow distribution in a stacked fiber bundle configuration to (i) evaluate the feasibility of PIV for artificial lungs, (ii) validate CFD in the fiber bundle of artificial lungs, and (iii) give a suggestion how to incorporate microscopic aspects into mainly macroscopic CFD studies. To this end, we built a fully transparent model of an artificial lung prototype. To increase spatial resolution, we scaled up the model by a factor of 5.8 compared with the original size. Similitude theory was applied to ensure comparability of the flow distribution between the device of original size and the scaled-up model. We focused our flow investigation on an area (20 × 70 × 43 mm) in a corner of the model with a Stereo-PIV setup. PIV data was compared to CFD data of the original sized artificial lung. From experimental PIV data, we were able to show local flow acceleration and declaration in the fiber bundle and meandering flow around individual fibers, which is not possible using state-of-the-art macroscopic CFD simulations. Our findings are applicable to clinically used artificial lungs with a similar stacked fiber arrangement (e.g., Novalung iLa and Maquet QUADROX-I). With respect to some limitations, we found PIV to be a feasible experimental flow visualization technique to investigate blood-sided flow in the stacked fiber arrangement of artificial lungs.

  9. Atomic Force Microscopy Determination of Young’s Modulus of Bovine Extra-ocular Tendon Fiber Bundles

    Science.gov (United States)

    Yoo, Lawrence; Reed, Jason; Shin, Andrew; Demer, Joseph L.

    2014-01-01

    Extra-ocular tendons (EOTs) transmit the oculorotary force of the muscles to the eyeball to generate dynamic eye movements and align the eyes, yet the mechanical properties of the EOTs remain undefined. The EOTs are known to be composed of parallel bundles of small fibers whose mechanical properties must be determined in order to characterize the overall behavior of EOTs. The current study aimed to investigate the transverse Young’s modulus of EOT fiber bundles using atomic force microscopy (AFM). Fresh bovine EOT fiber bundle specimens were maintained under temperature and humidity control, and indented 100 nm by the inverted pyramid tip of an AFM (Veeco Digital Instruments, NY). Ten indentations were conducted for each of 3 different locations of 10 different specimens from each of 6 EOTs, comprising a total of 1,800 indentations. Young’s modulus for each EOT was determined using a Hertzian contact model. Young’s moduli for fiber bundles from all six EOTs were determined. Mean Young’s moduli for fiber bundles were similar for the six anatomical EOTs: lateral rectus 60.12 ± 2.69 (±SD) MPa, inferior rectus 59.69 ± 5.34 MPa, medial rectus 56.92 ±1.91 MPa, superior rectus 59.66 ±2.64 MPa, inferior oblique 57.7± 1.36 MPa, and superior oblique 59.15± 2.03. Variation in Young’s moduli among the six EOTs was not significant (P > 0.25). The Young’s modulus of bovine EOT fibers is highly uniform among the six extraocular muscles, suggesting that each EOT is assembled from fiber bundles representing the same biomechanical elements. This uniformity will simplify overall modeling. PMID:24767704

  10. Fabrication of bundle-structured tube-leaky optical fibers for infrared thermal imaging

    Science.gov (United States)

    Kobayashi, T.; Katagiri, T.; Matsuura, Y.

    2017-02-01

    Bundled glass tubular fibers were fabricated by glass drawing technique for endoscopic infrared-thermal imaging. The bundle fibers were made of borosilicate glass and have a structure like a photonic crystal fiber having multiple hollow cores. Fabricated fibers have a length of 90 cm and each pixel sizes are less than 80 μm. By setting the thickness of glass wall to a quarter-wavelength optical thickness, light is confined in the air core as a leaky mode with a low loss owing to the interference effect of the thin glass wall and this type of hollow-core fibers is known as tube leaky fibers. The transmission losses of bundled fibers were firstly measured and it was found that bundled tube-leaky fibers have reasonably low transmission losses in spite of the small pixel size. Then thermal images were delivered by the bundled fibers combining with an InSb infrared camera. Considering applications with rigid endoscopes, an imaging system composed of a 30-cm long fiber bundle and a half-ball lens with a diameter of 2 mm was fabricated. By using this imaging system, a metal wire with a thickness of 200 μm was successfully observed and another test showed that the minimum detected temperature was 32.0 °C and the temperature resolution of the system was around 0.7 °C.

  11. Diffusion of moisture in drying of sugar cane fibers and bundles

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Ramirez, J.; Quintana-Hernandez, P.A.; Mendez-Lagunas, L.; Martinez-Gonzalez, G.; Gonzalez-Alatorre, G.

    2000-05-01

    Sugar cane fibers and arrangements of fibers in cylindrical bundles were dried in a thermoanalyzer and their diffusive coefficients were calculated using the slope method. The effect of temperature, moisture content as well as structural changes were analyzed. Diffusion coefficients changed nonlinearly with moisture content and followed an Arrhenius-like functionality with temperature. The analysis of these effects suggested a liquid diffusion transport mechanism of moisture transfer inside sugar cane fibers and bundles.

  12. Two-dimensional evaluation of 3D needled Cf/SiC composite fiber bundle surface

    Science.gov (United States)

    Wei, Jinhua; Lin, Bin; Cao, Xiaoyan; Zhang, Xiaofeng; Fang, Sheng

    2015-11-01

    The variations of fiber bundle surface microstructure have direct influence on the material performance, especially the friction and wear properties. Therefore, fiber bundle is the smallest evaluation unit of Cf/SiC composite surface. However, due to the anisotropy and inhomogeneity of Cf/SiC composite, it is difficult to evaluate the surface characteristics. Researchers think that two-dimensional evaluation is not suitable for the composites surface assessment any more because of its complex composition and varied surface structure. In this paper, a novel method is introduced for the evaluation of 3D needled Cf/SiC composite fiber bundle surface. On the level of Cf/SiC composite fiber bundle surface, two-dimensional evaluation method is adopted, with which the fiber bundle surface quality can be quantitatively evaluated by the two-dimensional surface roughness Ra. As long as the extracted surface profiles averagely distributed on Cf/SiC composite fiber bundle surface, with appropriate sampling length and sampling number, the mean value of Ra can estimate the whole surface roughness, thus reflecting the roughness degree of surface accurately. This study not only benefits the detection of 3D needled Cf/SiC composite fiber bundle surface quality, and lays a foundation on the evaluation of material functional features in further. And it corresponds to the convenient application in engineering practice.

  13. Design of the fiber optic support system and fiber bundle accelerated life test for VIRUS

    Science.gov (United States)

    Soukup, Ian M.; Beno, Joseph H.; Hayes, Richard J.; Heisler, James T.; Mock, Jason R.; Mollison, Nicholas T.; Good, John M.; Hill, Gary J.; Vattiat, Brian L.; Murphy, Jeremy D.; Anderson, Seth C.; Bauer, Svend M.; Kelz, Andreas; Roth, Martin M.; Fahrenthold, Eric P.

    2010-07-01

    The quantity and length of optical fibers required for the Hobby-Eberly Telescope* Dark Energy eXperiment (HETDEX) create unique fiber handling challenges. For HETDEX‡, at least 33,600 fibers will transmit light from the focal surface of the telescope to an array of spectrographs making up the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). Up to 96 Integral Field Unit (IFU) bundles, each containing 448 fibers, hang suspended from the telescope's moving tracker located more than 15 meters above the VIRUS instruments. A specialized mechanical system is being developed to support fiber optic assemblies onboard the telescope. The discrete behavior of 448 fibers within a conduit is also of primary concern. A life cycle test must be conducted to study fiber behavior and measure Focal Ratio Degradation (FRD) as a function of time. This paper focuses on the technical requirements and design of the HETDEX fiber optic support system, the electro-mechanical test apparatus for accelerated life testing of optical fiber assemblies. Results generated from the test will be of great interest to designers of robotic fiber handling systems for major telescopes. There is concern that friction, localized contact, entanglement, and excessive tension will be present within each IFU conduit and contribute to FRD. The test apparatus design utilizes six linear actuators to replicate the movement of the telescope over 65,000 accelerated cycles, simulating five years of actual operation.

  14. 3D interferometric shape measurement technique using coherent fiber bundles

    Science.gov (United States)

    Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen

    2017-06-01

    In-situ 3-D shape measurements with submicron shape uncertainty of fast rotating objects in a cutting lathe are expected, which can be achieved by simultaneous distance and velocity measurements. Conventional tactile methods, coordinate measurement machines, only support ex-situ measurements. Optical measurement techniques such as triangulation and conoscopic holography offer only the distance, so that the absolute diameter cannot be retrieved directly. In comparison, laser Doppler distance sensors (P-LDD sensor) enable simultaneous and in-situ distance and velocity measurements for monitoring the cutting process in a lathe. In order to achieve shape measurement uncertainties below 1 μm, a P-LDD sensor with a dual camera based scattered light detection has been investigated. Coherent fiber bundles (CFB) are employed to forward the scattered light towards cameras. This enables a compact and passive sensor head in the future. Compared with a photo detector based sensor, the dual camera based sensor allows to decrease the measurement uncertainty by the order of one magnitude. As a result, the total shape uncertainty of absolute 3-D shape measurements can be reduced to about 100 nm.

  15. Estimation of Diffusion Properties in Crossing Fiber Bundles

    NARCIS (Netherlands)

    Caan, M.W.A.; Ganesh Khedoe, H.; Poot, D.H.J.; Den Dekker, A.J.; Olabarriaga, S.D.; Grimbergen, K.A.; Van Vliet, L.J.; Vos, F.M.

    2010-01-01

    There is an ongoing debate on how to model diffusivity in fiber crossings. We propose an optimization framework for the selection of a dual tensor model and the set of diffusion weighting parameters b, such that both the diffusion shape and orientation parameters can be precisely as well as accurate

  16. Determining physiological cross-sectional area of extensor carpi radialis longus and brevis as a whole and by regions using 3D computer muscle models created from digitized fiber bundle data.

    Science.gov (United States)

    Ravichandiran, Kajeandra; Ravichandiran, Mayoorendra; Oliver, Michele L; Singh, Karan S; McKee, Nancy H; Agur, Anne M R

    2009-09-01

    Architectural parameters and physiological cross-sectional area (PCSA) are important determinants of muscle function. Extensor carpi radialis longus (ECRL) and brevis (ECRB) are used in muscle transfers; however, their regional architectural differences have not been investigated. The aim of this study is to develop computational algorithms to quantify and compare architectural parameters (fiber bundle length, pennation angle, and volume) and PCSA of ECRL and ECRB. Fiber bundles distributed throughout the volume of ECRL (75+/-20) and ECRB (110+/-30) were digitized in eight formalin embalmed cadaveric specimens. The digitized data was reconstructed in Autodesk Maya with computational algorithms implemented in Python. The mean PCSA and fiber bundle length were significantly different between ECRL and ECRB (p < or = 0.05). Superficial ECRL had significantly longer fiber bundle length than the deep region, whereas the PCSA of superficial ECRB was significantly larger than the deep region. The regional quantification of architectural parameters and PCSA provides a framework for the exploration of partial tendon transfers of ECRL and ECRB.

  17. Conductive polymer combined silk fiber bundle for bioelectrical signal recording.

    Directory of Open Access Journals (Sweden)

    Shingo Tsukada

    Full Text Available Electrode materials for recording biomedical signals, such as electrocardiography (ECG, electroencephalography (EEG and evoked potentials data, are expected to be soft, hydrophilic and electroconductive to minimize the stress imposed on living tissue, especially during long-term monitoring. We have developed and characterized string-shaped electrodes made from conductive polymer with silk fiber bundles (thread, which offer a new biocompatible stress free interface with living tissue in both wet and dry conditions.An electroconductive polyelectrolyte, poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate (PEDOT-PSS was electrochemically combined with silk thread made from natural Bombyx mori. The polymer composite 280 µm thread exhibited a conductivity of 0.00117 S/cm (which corresponds to a DC resistance of 2.62 Mohm/cm. The addition of glycerol to the PEDOT-PSS silk thread improved the conductivity to 0.102 S/cm (20.6 kohm/cm. The wettability of PEDOT-PSS was controlled with glycerol, which improved its durability in water and washing cycles. The glycerol treated PEDOT-PSS silk thread showed a tensile strength of 1000 cN in both wet and dry states. Without using any electrolytes, pastes or solutions, the thread directly collects electrical signals from living tissue and transmits them through metal cables. ECG, EEG, and sensory evoked potential (SEP signals were recorded from experimental animals by using this thread placed on the skin. PEDOT-PSS silk glycerol composite thread offers a new class of biocompatible electrodes in the field of biomedical and health promotion that does not induce stress in the subjects.

  18. Atlas-based fiber bundle segmentation using principal diffusion directions and spherical harmonic coefficients.

    Science.gov (United States)

    Nazem-Zadeh, Mohammad-Reza; Davoodi-Bojd, Esmaeil; Soltanian-Zadeh, Hamid

    2011-01-01

    To develop an automatic atlas-based method for segmentation of fiber bundles using High Angular Resolution Diffusion Imaging (HARDI) data. Quantitative evaluation of diffusion characteristics inside specific fiber bundles provides new insights into disease developments, evolutions, therapy effects, and surgical interventions. Most of previous segmentation methods use similarity measures and strategies that do not lead to accurate segmentation results. They also suffer from subjectivity of initial seeds and regions of interest (ROI) defined by operator. We propose a novel method that uses Spherical Harmonic Coefficients (SHC) of HARDI diffusion signals to compute Orientation Distribution Function (ODF) and to extract Principal Diffusion Directions (PDDs). The proposed method selects most collinear PDD of neighbors of each voxel. Then, based on SHC and selected PDD, a similarity measure is proposed and used as a speed function in the level set framework that segments fiber bundles. To automate the process, an atlas-based method is used to select initial seeds for fiber bundles. To generate data for evaluation of the proposed method, an artificial pattern consisting of three crossing bundles intersected by a circular bundle is created. Also, two normal controls are imaged by two different HARDI protocols. Segmentation results for different fiber bundles in simulated data and normal control data are presented. Influence of threshold selection on the proposed segmentation method is evaluated using Dice coefficient. Also, effect of increasing the number of gradient directions on accuracy of extracted PDDs is evaluated. The proposed segmentation method has advantages over previous methods especially those that use similarity measures based on diffusion tensor imaging (DTI) data. These advantages are achieved by proper propagation of a hyper-surface in fiber crossing areas without making assumptions about diffusivity profile and selection of initial seeds or ROI. Copyright

  19. Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle.

    Science.gov (United States)

    Andresen, Esben Ravn; Bouwmans, Géraud; Monneret, Serge; Rigneault, Hervé

    2013-03-01

    We report a step toward scanning endomicroscopy without distal optics. The focusing of the beam at the distal end of a fiber bundle is achieved by imposing a parabolic phase profile across the exit face with the aid of a spatial light modulator. We achieve video-rate images by galvanometric scanning of the phase tilt at the proximal end. The approach is made possible by the bundle, designed to have very low coupling between cores.

  20. Sub-pixel processing for super-resolution scanning imaging system with fiber bundle coupling

    Institute of Scientific and Technical Information of China (English)

    Bowen An; Bingbin Xue; Shengda Pan; Guilin Chen

    2011-01-01

    A multilayer fiber bundle is used to couple the image in a remote sensing imaging system. The object image passes through all layers of the fiber bundle in micro-scanning mode. The malposition of adjacent layers arranged in a hexagonal pattern is at sub-pixel scale. Therefore, sub-pixel processing can be applied to improve the spatial resolution. The images coupled by the adjacent layer fibers are separated, and subsequently, the intermediate image is obtained by histogram matching based on one of the separated image called base image. Finally, the intermediate and base images are processed in the frequency domain. The malposition of the adjacent layer fiber is converted to the phase difference in Fourier transform. Considering the limited sensitivity of the experimental instruments and human sight, the image is set as a band-limited signal and the interpolation function of image fusion is found. The results indicate that a super-resolution image with ultra-high spatial resolution is obtained.%@@ A multilayer fiber bundle is used to couple the image in a remote sensing imaging system.The object image passes through all layers of the fiber bundle in micro-scanning mode.The malposition of adjacent layers arranged in a hexagonal pattern is at sub-pixel scale.

  1. Ray-Based and Graph-Based Methods for Fiber Bundle Boundary Estimation

    CERN Document Server

    Bauer, Miriam H A; Kuhnt, Daniela; Barbieri, Sebastiano; Klein, Jan; Hahn, Horst K; Freisleben, Bernd; Nimsky, Christopher

    2011-01-01

    Diffusion Tensor Imaging (DTI) provides the possibility of estimating the location and course of eloquent structures in the human brain. Knowledge about this is of high importance for preoperative planning of neurosurgical interventions and for intraoperative guidance by neuronavigation in order to minimize postoperative neurological deficits. Therefore, the segmentation of these structures as closed, three-dimensional object is necessary. In this contribution, two methods for fiber bundle segmentation between two defined regions are compared using software phantoms (abstract model and anatomical phantom modeling the right corticospinal tract). One method uses evaluation points from sampled rays as candidates for boundary points, the other method sets up a directed and weighted (depending on a scalar measure) graph and performs a min-cut for optimal segmentation results. Comparison is done by using the Dice Similarity Coefficient (DSC), a measure for spatial overlap of different segmentation results.

  2. ʗm-smoothness of invariant fiber bundles for dynamic equations on measure chains

    Directory of Open Access Journals (Sweden)

    Siegmund Stefan

    2004-01-01

    Full Text Available We present a new self-contained and rigorous proof of the smoothness of invariant fiber bundles for dynamic equations on measure chains or time scales. Here, an invariant fiber bundle is the generalization of an invariant manifold to the nonautonomous case. Our main result generalizes the “Hadamard-Perron theorem” to the time-dependent, infinite-dimensional, noninvertible, and parameter-dependent case, where the linear part is not necessarily hyperbolic with variable growth rates. As a key feature, our proof works without using complicated technical tools.

  3. Population analysis of the cingulum bundle using the tubular surface model for schizophrenia detection

    Science.gov (United States)

    Mohan, Vandana; Sundaramoorthi, Ganesh; Kubicki, Marek; Terry, Douglas; Tannenbaum, Allen

    2010-03-01

    We propose a novel framework for population analysis of DW-MRI data using the Tubular Surface Model. We focus on the Cingulum Bundle (CB) - a major tract for the Limbic System and the main connection of the Cingulate Gyrus, which has been associated with several aspects of Schizophrenia symptomatology. The Tubular Surface Model represents a tubular surface as a center-line with an associated radius function. It provides a natural way to sample statistics along the length of the fiber bundle and reduces the registration of fiber bundle surfaces to that of 4D curves. We apply our framework to a population of 20 subjects (10 normal, 10 schizophrenic) and obtain excellent results with neural network based classification (90% sensitivity, 95% specificity) as well as unsupervised clustering (k-means). Further, we apply statistical analysis to the feature data and characterize the discrimination ability of local regions of the CB, as a step towards localizing CB regions most relevant to Schizophrenia.

  4. Fiber bundle based probe with polarization for coherent anti-Stokes Raman scattering microendoscopy imaging

    Science.gov (United States)

    Liu, Zhengfan; Wang, Zhiyong; Wang, Xi; Xu, Xiaoyun; Chen, Xu; Cheng, Jie; Li, Xiaoyan; Chen, Shufen; Xin, Jianguo; Wong, Stephen T. C.

    2013-02-01

    The ability to visualize cellular structures and tissue molecular signatures in a live body could revolutionize the practice of surgery. Specifically, such technology is promising for replacing tissue extraction biopsy and offering new strategies for a broad range of intraoperative or surgical applications, including early cancer detection, tumor margin identification, nerve damage avoidance, and surgical outcomes enhancement. Coherent anti-Stokes Raman scattering (CARS) microendoscopy offers a way to achieve this with label-free imaging capability and sub-cellular resolution. However, efficient collection of epi-CARS signals and reduction of nonlinear effects in fibers are two major challenges encountered in the development of fiber-based CARS microendoscopy. To circumvent this problem, we designed and developed a fiber bundle for a CARS microendoscopy prototype. The excitation lasers were delivered by a single multimode fiber at the center of the bundle while the epi-CARS signals were collected by multiple MMFs surrounding the central fiber. A polarization scheme was employed to suppress the four-wave mixing (FWM) effect in the excitation fiber. Our experimental results suggest that, with this fiber bundle and the polarization FWM-suppressing scheme, the signal-to-noise ratio of the CARS images was greatly enhanced through a combination of high collection efficiency of epi-CARS signals, isolation of excitation lasers, and suppression of FWM. Tissue imaging capability of the microendoscopy prototype was demonstrated by ex vivo imaging on mouse skin and lung tissues. This fiber bundle-based CARS microendoscopy prototype, with the polarization FWM-suppressing scheme, offers a promising platform for constructing efficient fiber-based CARS microendoscopes for label free intraoperative imaging applications.

  5. Size Scaling and Bursting Activity in Thermally Activated Breakdown of Fiber Bundles

    KAUST Repository

    Yoshioka, Naoki

    2008-10-03

    We study subcritical fracture driven by thermally activated damage accumulation in the framework of fiber bundle models. We show that in the presence of stress inhomogeneities, thermally activated cracking results in an anomalous size effect; i.e., the average lifetime tf decreases as a power law of the system size tf ∼L-z, where the exponent z depends on the external load σ and on the temperature T in the form z∼f(σ/T3/2). We propose a modified form of the Arrhenius law which provides a comprehensive description of thermally activated breakdown. Thermal fluctuations trigger bursts of breakings which have a power law size distribution. © 2008 The American Physical Society.

  6. PORE STRUCTURE CHARACTERISTICS OF DEPOSITS FORMED DURING FIBER BUNDLE MEDIA FILTRATION

    Institute of Scientific and Technical Information of China (English)

    Deying Wang; Ziqiu Shen

    2004-01-01

    Scanning electronic microscope was adopted to investigate the pore structure of deposits formed during polypropylene fiber bundle filtration. The effects of flocculants, cationic polyacrylamide and polyaluminumchloride, on the pore structure and filtration process were examined. It is found from experimental results that the filter deposit has a self-similarity pore structure, which can be described in fractal dimensions.

  7. Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT

    Science.gov (United States)

    Sugita, Mitsuro; Pircher, Michael; Zotter, Stefan; Baumann, Bernhard; Roberts, Philipp; Makihira, Tomoyuki; Tomatsu, Nobuhiro; Sato, Makoto; Vass, Clemens; Hitzenberger, Christoph K.

    2015-01-01

    We present a new semi-automatic processing method for retinal nerve fiber bundle tracing based on polarization sensitive optical coherence tomography (PS-OCT) data sets. The method for tracing is based on a nerve fiber orientation map that covers the fovea and optic nerve head (ONH) regions. In order to generate the orientation map, two types of information are used: optic axis orientation based on polarization data, and complementary information obtained from nerve fiber layer (NFL) local thickness variation to reveal fiber bundle structures around the fovea. The corresponding two orientation maps are fused into a combined fiber orientation map. En face maps of NFL retardation, thickness, and unit-depth-retardation (UDR, equivalent to birefringence) are transformed into “along-trace” maps by using the obtained traces of the nerve fiber bundles. The method is demonstrated in the eyes of healthy volunteers, and as an example of further analyses utilizing this method, maps illustrating the gradients of NFL retardation, thickness, and UDR are demonstrated. PMID:25798324

  8. Modelling packing interactions in parallel helix bundles: pentameric bundles of nicotinic receptor M2 helices.

    Science.gov (United States)

    Sankararamakrishnan, R; Sansom, M S

    1995-11-01

    The transbilayer pore of the nicotinic acetylcholine receptor (nAChR) is formed by a pentameric bundle of M2 helices. Models of pentameric bundles of M2 helices have been generated using simulated annealing via restrained molecular dynamics. The influence of: (a) the initial C alpha template; and (b) screening of sidechain electrostatic interactions on the geometry of the resultant M2 helix bundles is explored. Parallel M2 helices, in the absence of sidechain electrostatic interactions, pack in accordance with simple ridges-in-grooves considerations. This results in a helix crossing angle of ca. +12 degrees, corresponding to a left-handed coiled coil structure for the bundle as a whole. Tilting of M2 helices away from the central pore axis at their C-termini and/or inclusion of sidechain electrostatic interactions may perturb such ridges-in-grooves packing. In the most extreme cases right-handed coiled coils are formed. An interplay between inter-helix H-bonding and helix bundle geometry is revealed. The effects of changes in electrostatic screening on the dimensions of the pore mouth are described and the significance of these changes in the context of models for the nAChR pore domain is discussed.

  9. Coupled mode analysis of a periodic one-dimensional multimodal fiber bundle

    Science.gov (United States)

    Shlivinski, Amir

    2016-10-01

    This contribution is a mathematical analysis of the coupled mode equations of a one dimensional infinite periodic lattice of multimodal adjacent fibers that are fused together (a "fiber bundle"). As such, it provides a systematic and detailed derivation of the coupled mode equations and their eigen (modal) solutions within a matrix-based framework and using Z -transform spectral-based formulation. The resulting solution is general in the sense that it is not restricted to a particular dielectric profile of the fibers. Moreover, under a weak coupling assumption, the modal solution clearly identifies the physical building blocks of the solution.

  10. Shape of a Ponytail and the Statistical Physics of Hair Fiber Bundles

    Science.gov (United States)

    Goldstein, Raymond E.; Warren, Patrick B.; Ball, Robin C.

    2012-02-01

    A general continuum theory for the distribution of hairs in a bundle is developed, treating individual fibers as elastic filaments with random intrinsic curvatures. Applying this formalism to the iconic problem of the ponytail, the combined effects of bending elasticity, gravity, and orientational disorder are recast as a differential equation for the envelope of the bundle, in which the compressibility enters through an “equation of state.” From this, we identify the balance of forces in various regions of the ponytail, extract a remarkably simple equation of state from laboratory measurements of human ponytails, and relate the pressure to the measured random curvatures of individual hairs.

  11. Mechanical Models of Microtubule Bundle Collapse in Alzheimer's Disease

    Science.gov (United States)

    Sendek, Austin; Singh, Rajiv; Cox, Daniel

    2013-03-01

    Amyloid-beta aggregates initiate Alzheimer's disease, and downstream trigger degradation of tau proteins that act as microtubule bundle stabilizers and mechanical spacers. Currently it is unclear which of tau cutting by proteases, tau phosphorylation, or tau aggregation are responsible for cytoskeleton degradation., We construct a percolation simulation of the microtubule bundle using a molecular spring model for the taus and including depletion force attraction between microtubules and membrane/actin cytoskeletal surface tension. The simulation uses a fictive molecular dynamics to model the motion of the individual microtubules within the bundle as a result of random tau removal, and calculates the elastic modulus of the bundle as the tau concentration falls. We link the tau removal steps to kinetic tau steps in various models of tau degradation. Supported by US NSF Grant DMR 1207624

  12. SiPM-PET with a short optical fiber bundle for simultaneous PET-MR imaging.

    Science.gov (United States)

    Hong, Seong Jong; Kang, Han Gyoo; Ko, Guen Bae; Song, In Chan; Rhee, June-Tak; Lee, Jae Sung

    2012-06-21

    For positron emission tomography (PET) inserts to magnetic resonance imaging (MRI) applications, optical fibers have been used for some time to transfer scintillation photons to photomultiplier tubes positioned outside the fringe magnetic field. We previously proposed a novel utilization of an optical fiber for good radio frequency (RF) transmission from body coils to an imaging object. Optical fiber bundles between silicon photomultipliers (SiPM) and scintillation crystals provide an increased spacing between RF-shielded electronics boxes, facilitating RF passage from the body RF coils to imaging objects. In this paper, we present test results of a SiPM-PET system with a short optical fiber bundle for simultaneous PET-MR imaging. We built the SiPM-PET system which consisted of 12 SiPM-PET modules; each module was assembled with a lutetium yttrium oxyorthosilicatecrystal block, a 31 mm optical fiber bundle, a Hamamatsu multi-pixel photon counter S11064-050P and a signal processing box shielded with copper. The SiPM-PET system, with a face-to-face distance of 71 mm, was placed inside a 3 T MRI. A small surface coil placed inside the SiPM-PET system was used to receive the signal from phantoms while the body RF coil transmitted the RF pulses. The SiPM-PET system showed little performance degradation during the simultaneous PET-MR imaging and it caused no significant degradation of MR images with turbo spin echo (TSE), gradient echo or 3D spoiled gradient recalled sequences. Echo planar imaging MR images with and without the SiPM-PET inside the MR scanner were significantly worse than the images obtained with the TSE sequence.

  13. Prevalence of Split Nerve Fiber Layer Bundles in Healthy People Imaged with Spectral Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Sirel Gür Güngör

    2016-12-01

    Full Text Available Objectives: The presence of retinal nerve fiber layer (RNFL split bundles was recently described in normal eyes scanned using scanning laser polarimetry and by histologic studies. Split bundles may resemble RNFL loss in healthy eyes. The aim of our study was to determine the prevalence of nerve fiber layer split bundles in healthy people. Materials and Methods: We imaged 718 eyes of 359 healthy persons with the spectral domain optical coherence tomography in this cross-sectional study. All eyes had intraocular pressure of 21 mmHg or less, normal appearance of the optic nerve head, and normal visual fields (Humphrey Field Analyzer 24-2 full threshold program. In our study, a bundle was defined as ‘split’ when there is localized defect not resembling a wedge defect in the RNFL deviation map with a symmetrically divided RNFL appearance on the RNFL thickness map. The classification was performed by two independent observers who used an identical set of reference examples to standardize the classification. Results: Inter-observer consensus was reached in all cases. Bilateral superior split bundles were seen in 19 cases (5.29% and unilateral superior split was observed in 15 cases (4.16%. In 325 cases (90.52% there was no split bundle. Conclusion: Split nerve fiber layer bundles, in contrast to single nerve fiber layer bundles, are not common findings in healthy eyes. In eyes with normal optic disc appearance, especially when a superior RNFL defect is observed in RNFL deviation map, the RNLF thickness map and graphs should also be examined for split nerve fiber layer bundles.

  14. Fiber bundle description of number scaling in gauge theory and geometry

    CERN Document Server

    Benioff, Paul

    2014-01-01

    This work uses fiber bundles as a framework to describe effects of number scaling on gauge theory and geometry. A brief description of number scaling and fiber bundles over a space time manifold, $M$, is followed by a description of gauge theory. A fiber at point $x$ of $M$ contains a vector space, $V_{x},$ and a set, $C_{x},$ of complex scalars and scaled structures, $C_{c,x},V_{c,x}$ for each complex number, $c.$ Number scaling induces connections, $c_{x,y}\\times c_{x,y}$ between fibers at $x$ and $y$. Connections are given as exponentials of a complex vector field, $\\vec{A}(x)+i\\vec{B}(x).$ The choice of the gauge group as $GL(1,C)$ for $V_{x}$ and $C_{x}$ gives the result that $\\vec{B}$ is massless, and no mass restrictions for $\\vec{A}.$ In the Mexican hat Higgs mechanism $\\vec{B}$ combines with a Goldstone boson to create massive vector bosons, the photon field, and the Higgs field. The very speculative possibility that $\\vec{A}$ might be the gradient of the Higgs field is noted. The association of $\\ve...

  15. Restriction of Preferences to the Set of Consumption Bundles, In a Model with Production and Consumption Bundles

    NARCIS (Netherlands)

    Schalk, S.

    1999-01-01

    In contrast to the neo-classical theory of Arrow and Debreu, a model of a private ownership economy is presented, in which production and consumption bundles are treated separately. Each of the two types of bundles is assumed to establish a con- vex cone. Production technologies can convert producti

  16. Restriction of Preferences to the Set of Consumption Bundles, In a Model with Production and Consumption Bundles

    NARCIS (Netherlands)

    Schalk, S.

    1999-01-01

    In contrast to the neo-classical theory of Arrow and Debreu, a model of a private ownership economy is presented, in which production and consumption bundles are treated separately. Each of the two types of bundles is assumed to establish a con- vex cone. Production technologies can convert

  17. Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI

    Energy Technology Data Exchange (ETDEWEB)

    Magro, Elsa [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); Moreau, Tristan; Gibaud, Bernard [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); Seizeur, Romuald [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); INSERM UMR 1101 LaTIM, Brest (France); Morandi, Xavier [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Pontchaillou, Service de Neurochirurgie, Rennes (France)

    2012-11-15

    Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. These results raise questions about the functional role of these MRI tracks and their relation with laterality. (orig.)

  18. Multiple Iterations of Bundle Adjustment for the Position Measurement of Fiber Tips on LAMOST

    Directory of Open Access Journals (Sweden)

    Feng Mingchi

    2014-08-01

    Full Text Available In the astronomical observation process of multi-object fiber spectroscopic telescope, the position measurement of fiber tips on the focal plane is difficult and critical, and is directly related to subsequent observation and ultimate data quality. The fibers should precisely align with the celestial target. Hence, the precise coordinates of the fiber tips are obligatory for tracking the celestial target. The accurate movement trajectories of the fiber tips on the focal surface of the telescope are the critical problem for the control of the fiber positioning mechanism. According to the special structure of the LAMOST telescope and the composition of the initial position error, this paper aims at developing a high precision and robust measurement method based on multiple iterations of bundle adjustment with a few control points. The measurement theory of the proposed methodology has been analyzed, and the measurement accuracy has been evaluated. The experimental results indicate that the new method is more accurate and more reliable than the polynomial fitting method. The maximum position error of the novel measurement algorithm of fiber tips with simulated and real data is 65.3 μm, and most of the position errors conform to the accuracy requirement (40 μm.

  19. Improvements to Wire Bundle Thermal Modeling for Ampacity Determination

    Science.gov (United States)

    Rickman, Steve L.; Iannello, Christopher J.; Shariff, Khadijah

    2017-01-01

    Determining current carrying capacity (ampacity) of wire bundles in aerospace vehicles is critical not only to safety but also to efficient design. Published standards provide guidance on determining wire bundle ampacity but offer little flexibility for configurations where wire bundles of mixed gauges and currents are employed with varying external insulation jacket surface properties. Thermal modeling has been employed in an attempt to develop techniques to assist in ampacity determination for these complex configurations. Previous developments allowed analysis of wire bundle configurations but was constrained to configurations comprised of less than 50 elements. Additionally, for vacuum analyses, configurations with very low emittance external jackets suffered from numerical instability in the solution. A new thermal modeler is presented allowing for larger configurations and is not constrained for low bundle infrared emissivity calculations. Formulation of key internal radiation and interface conductance parameters is discussed including the effects of temperature and air pressure on wire to wire thermal conductance. Test cases comparing model-predicted ampacity and that calculated from standards documents are presented.

  20. The Family Problem: Hints from Heterotic Line Bundle Models

    CERN Document Server

    Constantin, Andrei; Mishra, Challenger

    2015-01-01

    Within the class of heterotic line bundle models, we argue that N=1 vacua which lead to a small number of low-energy chiral families are preferred. By imposing an upper limit on the volume of the internal manifold, as required in order to obtain finite values of the four-dimensional gauge couplings, and validity of the supergravity approximation we show that, for a given manifold, only a finite number of line bundle sums are consistent with supersymmetry. By explicitly scanning over this finite set of line bundle models on certain manifolds we show that, for a sufficiently small volume of the internal manifold, the family number distribution peaks at small values, consistent with three chiral families. The relation between the maximal number of families and the gauge coupling is discussed, which hints towards a possible explanation of the family problem.

  1. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    Science.gov (United States)

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.

  2. Morphology and fractal characteristic of deposits formed during fiber bundle media filtration

    Institute of Scientific and Technical Information of China (English)

    WANG De-ying; SHEN Zi-qiu

    2005-01-01

    The scanning electronic microscope and automated image analyzer are adopted to investigate the morphology of deposits formed during fiber bundle media filtration, which results in the discovery of the self-similarity of the deposits. Then in this paper it is proposed that the deposits are a fractal structure. Moreover, the fractal dimension value is related to the filter performance. The.higher the fractal dimension value, the higher the filtration efficiency, and the longer filtration cycle, but the development of the head loss is also faster.

  3. Confocal microscopy using variable-focal-length microlenses and an optical fiber bundle

    OpenAIRE

    Yang, Lisong; Mac Raighne, Aaron; McCabe, Eithne M.; Dunbar, L. Andrea; Scharf, Toralf

    2008-01-01

    The use of variable-focal-length (VFL) microlenses can provide a way to axially scan the foci across a sample by electronic control. We demonstrate an approach to coupling VFL microlenses individually to a fiber bundle as a way to create a high-throughput aperture array with a controllable aperture pattern. It would potentially be applied in real-time confocal imaging in vivo for biological specimens. The VFL microlenses that we used consist of a liquid-crystal film sandwiched between a pair ...

  4. Spatial control of in vivo optogenetic light stimulation and recording via an imaging fiber bundle (Conference Presentation)

    Science.gov (United States)

    Suárez, Javier I.; Sengupta, Parijat; Guo-Han Mun, Jonathan; Rhodes, Justin; Boppart, Stephen A.

    2017-02-01

    Light delivery in in vivo optogenetic applications are typically accomplished via a single multimode fiber that diffuses light over a large area of the brain, and relies heavily on the spatial distribution of transfected light-sensitive neurons for targeted control. In our investigations, an imaging fiber bundle (Schott, 1534702) containing 4,500 individual fibers, each with a diameter of 7.5 µm, and an overall outer bundle diameter of 530 µm, was used as the conduit for light delivery and optical recording/imaging in neuron cultures and in in vivo mouse brain. We demonstrated that the use of this fiber bundle, in contrast to a single multimode fiber, allowed for individually-addressable fibers, spatial selectivity at the stimulus site, precise control of light delivery, and full field-of-view imaging and/or optical recordings of neurons. An objective coupled the two continuous wave diode laser sources (561 nm/488 nm) for stimulation and imaging into the proximal end of the fiber bundle while a set of galvanometer-scanning mirrors was used to couple the light stimulus to distinct fibers. A micro lens aided in focusing the light at the neurons. In vivo studies utilized C1V1(E122T/E162T)-TS-p2A-mCherry (Karl Deisseroth, Stanford) and GCaMP6s transgenic mice (Jackson Labs) for this all-optical approach. Our results demonstrate that imaging fiber bundles provide superior control of spatial selectivity of light delivery to specific neurons, and function as a conduit for optical imaging and recording at the in vivo site of stimulation, in contrast to the use of single multimode fibers that diffusely illuminate tissue and lack in vivo imaging capabilities.

  5. A new study on diffusion tensor imaging of the whole visual pathway fiber bundle and clinical application

    Institute of Scientific and Technical Information of China (English)

    TAO Xiao-feng; WANG Zhong-qiu; GONG Wan-qing; JIANG Qing-jun; SHI Zeng-ru

    2009-01-01

    Background With conventional imaging methods only the morphous of the visual nerve fiber bundles can be demonstrated, while the earlier period functional changes can not be demonstrated. We hypothesized that diffusion tensor imaging (DTI) would demonstrated the whole optic never fiber bundle and visual pathway and the earlier period functional changes. The purpose of the present study was to evaluate the application of DTI technique in the demonstration of the whole optic never fiber bundle and visual pathway, and the influence of orbital tumors on them. Methods GE 1.5T signa HD MR System, and the software package DTV2 were adopted. The total 45 subjects were enrolled, including 15 volunteers and 30 patients. All patients had ocular proptosis from minor to major. Seven patients had visual acuity decrescence. Results The nerve fiber bundles, e.g. optic chiasma, optic tract and optic radiation in posterior visual pathway were well demonstrated in all cases. Wherein, the intact whole visual pathway fiber bundles were clearly revealed in 10 volunteers and 17 patients, and optic nerve was not wholly revealed in the rest of the subjects. Shift of optic nerve caused by compression and partial deformation were seen in 7 patients with orbital tumor. In 6 of 7 patients, DTI displayed significant abscise and deformation of visual nerve. Chi-square test indicated significant correlation between visual acuity decrescence and DTI visual nerve non-display. Conclusions Visual nerve fiber bundles and the whole visual pathway were visualized in most of patients with DTI. It might be an effective method of providing imaging evidence for visual nerve fiber earlier period functional changes, and laid a foundation for the study in other cranial nerves.

  6. An Optical Fiber Bundle Sensor for Tip Clearance and Tip Timing Measurements in a Turbine Rig

    Directory of Open Access Journals (Sweden)

    María Asunción Illarramendi

    2013-06-01

    Full Text Available When it comes to measuring blade-tip clearance or blade-tip timing in turbines, reflective intensity-modulated optical fiber sensors overcome several traditional limitations of capacitive, inductive or discharging probe sensors. This paper presents the signals and results corresponding to the third stage of a multistage turbine rig, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on the turbine casing. To eliminate the influence of light source intensity variations and blade surface reflectivity, the sensing principle is based on the quotient of the voltages obtained from the two receiving bundle legs. A discrepancy lower than 3% with respect to a commercial sensor was observed in tip clearance measurements. Regarding tip timing measurements, the travel wave spectrum was obtained, which provides the average vibration amplitude for all blades at a particular nodal diameter. With this approach, both blade-tip timing and tip clearance measurements can be carried out simultaneously. The results obtained on the test turbine rig demonstrate the suitability and reliability of the type of sensor used, and suggest the possibility of performing these measurements in real turbines under real working conditions.

  7. An optical fiber bundle sensor for tip clearance and tip timing measurements in a turbine rig.

    Science.gov (United States)

    García, Iker; Beloki, Josu; Zubia, Joseba; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Jiménez, Felipe

    2013-06-05

    When it comes to measuring blade-tip clearance or blade-tip timing in turbines, reflective intensity-modulated optical fiber sensors overcome several traditional limitations of capacitive, inductive or discharging probe sensors. This paper presents the signals and results corresponding to the third stage of a multistage turbine rig, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on the turbine casing. To eliminate the influence of light source intensity variations and blade surface reflectivity, the sensing principle is based on the quotient of the voltages obtained from the two receiving bundle legs. A discrepancy lower than 3% with respect to a commercial sensor was observed in tip clearance measurements. Regarding tip timing measurements, the travel wave spectrum was obtained, which provides the average vibration amplitude for all blades at a particular nodal diameter. With this approach, both blade-tip timing and tip clearance measurements can be carried out simultaneously. The results obtained on the test turbine rig demonstrate the suitability and reliability of the type of sensor used, and suggest the possibility of performing these measurements in real turbines under real working conditions.

  8. A Modeling Approach to Fiber Fracture in Melt Impregnation

    Science.gov (United States)

    Ren, Feng; Zhang, Cong; Yu, Yang; Xin, Chunling; Tang, Ke; He, Yadong

    2017-02-01

    The effect of process variables such as roving pulling speed, melt temperature and number of pins on the fiber fracture during the processing of thermoplastic based composites was investigated in this study. The melt impregnation was used in this process of continuous glass fiber reinforced thermoplastic composites. Previous investigators have suggested a variety of models for melt impregnation, while comparatively little effort has been spent on modeling the fiber fracture caused by the viscous resin. Herein, a mathematical model was developed for impregnation process to predict the fiber fracture rate and describe the experimental results with the Weibull intensity distribution function. The optimal parameters of this process were obtained by orthogonal experiment. The results suggest that the fiber fracture is caused by viscous shear stress on fiber bundle in melt impregnation mold when pulling the fiber bundle.

  9. In vivo bioluminescence and reflectance imaging of multiple organs in bioluminescence reporter mice by bundled-fiber-coupled microscopy.

    Science.gov (United States)

    Ando, Yoriko; Sakurai, Takashi; Koida, Kowa; Tei, Hajime; Hida, Akiko; Nakao, Kazuki; Natsume, Mistuo; Numano, Rika

    2016-03-01

    Bioluminescence imaging (BLI) is used in biomedical research to monitor biological processes within living organisms. Recently, fiber bundles with high transmittance and density have been developed to detect low light with high resolution. Therefore, we have developed a bundled-fiber-coupled microscope with a highly sensitive cooled-CCD camera that enables the BLI of organs within the mouse body. This is the first report of in vivo BLI of the brain and multiple organs in luciferase-reporter mice using bundled-fiber optics. With reflectance imaging, the structures of blood vessels and organs can be seen clearly with light illumination, and it allowed identification of the structural details of bioluminescence images. This technique can also be applied to clinical diagnostics in a low invasive manner.

  10. In vivo bioluminescence and reflectance imaging of multiple organs in bioluminescence reporter mice by bundled-fiber-coupled microscopy

    Science.gov (United States)

    Ando, Yoriko; Sakurai, Takashi; Koida, Kowa; Tei, Hajime; Hida, Akiko; Nakao, Kazuki; Natsume, Mistuo; Numano, Rika

    2016-01-01

    Bioluminescence imaging (BLI) is used in biomedical research to monitor biological processes within living organisms. Recently, fiber bundles with high transmittance and density have been developed to detect low light with high resolution. Therefore, we have developed a bundled-fiber-coupled microscope with a highly sensitive cooled-CCD camera that enables the BLI of organs within the mouse body. This is the first report of in vivo BLI of the brain and multiple organs in luciferase-reporter mice using bundled-fiber optics. With reflectance imaging, the structures of blood vessels and organs can be seen clearly with light illumination, and it allowed identification of the structural details of bioluminescence images. This technique can also be applied to clinical diagnostics in a low invasive manner. PMID:27231601

  11. Bundled hollow optical fibers for transmission of high-peak-power Q-switched Nd:YAG laser pulses.

    Science.gov (United States)

    Yilmaz, Ozgur; Miyagi, Mitsunobu; Matsuura, Yuji

    2006-09-20

    A hollow-fiber bundle was designed and used to deliver high-peak-power pulses from a Q-switched Nd:YAG laser. An 80 cm long bundle with a total diameter of 5.5 mm was composed of 37 glass capillaries with bore diameters of 0.7 mm. Beam-resizing optics with two lenses were used to couple the laser beam into the bundle. The measured coupling loss due to the limited aperture ratio of the bundle was 2.3 dB, and the transmission loss at wavelengths of 1064 and 532 nm was 0.3 dB. When an inert gas flowed through the bores of the capillaries, the maximum output pulse energy was 200 mJ, which was the limit of the laser used in the experiment. Hollow-fiber bundles withstand irradiation better than single hollow fibers and silica-glass optical fibers do. They are suitable for many dermatological applications because they can be used to irradiate a large area.

  12. Input modelling for subchannel analysis of CANFLEX fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    This report describs the input modelling for subchannel analysis of CANFLEX fuel bundle using CASS(Candu thermalhydraulic Analysis by Subchannel approacheS) code which has been developed for subchannel analysis of CANDU fuel channel. CASS code can give the different calculation results according to users' input modelling. Hence, the objective of this report provide the background information of input modelling, the accuracy of input data and gives the confidence of calculation results. (author). 11 refs., 3 figs., 4 tabs.

  13. 78 FR 29139 - Medicare Program; Bundled Payments for Care Improvement Model 1 Open Period

    Science.gov (United States)

    2013-05-17

    ... participation in Model 1 of the Bundled Payments for Care Improvement initiative. DATES: Model 1 of the Bundled Payments for Care Improvement Deadline: Interested organizations must submit a Model 1 Open Period... regarding Model 1 of the Bundled Payments for Care Improvement initiative. For additional information...

  14. Fiber modeling and clustering based on neuroanatomical features.

    Science.gov (United States)

    Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang

    2011-01-01

    DTI tractography allows unprecedented understanding of brain neural connectivity in-vivo by capturing water diffusion patterns in brain white-matter microstructures. However, tractography algorithms often output hundreds of thousands of fibers, rendering the computation needed for subsequent data analysis intractable. A remedy is to group the fibers into bundles using fiber clustering techniques. Most existing fiber clustering methods, however, rely on fiber geometrical information only by viewing fibers as curves in the 3D Euclidean space. The important neuroanatomical aspect of the fibers is mostly ignored. In this paper, neuroanatomical information is encapsulated in a feature vector called the associativity vector, which functions as the "fingerprint" for each fiber and depicts the connectivity of the fiber with respect to individual anatomies. Using the associativity vectors of fibers, we model the fibers as observations sampled from multivariate Gaussian mixtures in the feature space. An expectation-maximization clustering approach is then employed to group the fibers into 16 major bundles. Experimental results indicate that the proposed method groups the fibers into anatomically meaningful bundles, which are highly consistent across subjects.

  15. Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle

    NARCIS (Netherlands)

    Amelink, A.; Hoy, C.L.; Gamm, U.A.; Sterenborg, H.J.C.M.; Robinson, D.J.

    2014-01-01

    We have recently demonstrated a means for quantifying the absorption and scattering properties of biological tissue through multidiameter single-fiber reflectance (MDSFR) spectroscopy. These measurements can be used to correct single-fiber fluorescence (SFF) spectra for the influence of optical prop

  16. Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle

    NARCIS (Netherlands)

    Amelink, A.; Hoy, C.L.; Gamm, U.A.; Sterenborg, H.J.C.M.; Robinson, D.J.

    2014-01-01

    We have recently demonstrated a means for quantifying the absorption and scattering properties of biological tissue through multidiameter single-fiber reflectance (MDSFR) spectroscopy. These measurements can be used to correct single-fiber fluorescence (SFF) spectra for the influence of optical

  17. Representing Practice: Practice Models, Patterns, Bundles

    Science.gov (United States)

    Falconer, Isobel; Finlay, Janet; Fincher, Sally

    2011-01-01

    This article critiques learning design as a representation for sharing and developing practice, based on synthesis of three projects. Starting with the findings of the Mod4L Models of Practice project, it argues that the technical origins of learning design, and the consequent focus on structure and sequence, limit its usefulness for sharing…

  18. A Semi-Automatic Graph-Based Approach for Determining the Boundary of Eloquent Fiber Bundles in the Human Brain

    CERN Document Server

    Bauer, Miriam H A; Kuhnt, Daniela; Barbieri, Sebastiano; Klein, Jan; Hahn, Horst K; Freisleben, Bernd; Nimsky, Christopher

    2011-01-01

    Diffusion Tensor Imaging (DTI) allows estimating the position, orientation and dimension of bundles of nerve pathways. This non-invasive imaging technique takes advantage of the diffusion of water molecules and determines the diffusion coefficients for every voxel of the data set. The identification of the diffusion coefficients and the derivation of information about fiber bundles is of major interest for planning and performing neurosurgical interventions. To minimize the risk of neural deficits during brain surgery as tumor resection (e.g. glioma), the segmentation and integration of the results in the operating room is of prime importance. In this contribution, a robust and efficient graph-based approach for segmentating tubular fiber bundles in the human brain is presented. To define a cost function, the fractional anisotropy (FA) is used, derived from the DTI data, but this value may differ from patient to patient. Besides manually definining seed regions describing the structure of interest, additional...

  19. Simulation of propagation in a bundle of skeletal muscle fibers: Modulation effects of passive fibers

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; F.A., Roberge

    1997-01-01

    source current (I-ma) enters the passive tissue as a radial load current (I-ep) while the rest flows longitudinally in the cleft between the active and adjacent passive fibers. The conduction velocity of 1.32 m/s was about 30% lower than on an isolated fiber in a Ringer bath, in close agreement...... rate of rise of the action potential upstroke (V-max) from 512 to 503 V/s. Increasing the phase angle of the passive fiber membrane impedence (Z(m)) increases the phase delay between I-ma and I-ep, thereby increasing phi(epp) which in turn slows down propagation and increases V-max....

  20. Experimental study on the push-broom infrared imaging system based on line-plane-switching fiber bundle

    Science.gov (United States)

    Yan, Xingtao; Li, Fu; Ma, Xiaolong; Lv, Juan; He, Yinghong; Zhao, Yiyi; Bu, Fan

    2016-10-01

    The use of line-plane-switching infrared fiber bundle to achieve wide field of view push-broom infrared imaging has been studied with experiment. In this technology, the linear array end of the imaging fiber bundle is used as a long-linear array infrared detector, and the plane array end of the bundle is coupled by a mature small scale Infrared Focal Plane Array (IRFPA). It can evade the difficulty of getting the long-linear array infrared detector directly, and has a signally significance to the development of internal infrared imaging technology. Based on the introduction of the composition, working principle of this novel infrared optical system, the system principle-demonstrating experiment has been accomplished. The line-plane-switching fiber bundle used in this experiment is 64×9 format plane array and 192×3 format linear array. It is made from chalcogenide glass fibers, possessing core (As40S59.5Se0.5) of 45 μm, cladding (As40S60) of 5 μm, and error of 1% in diameter. Perfect imaging results prove that this novel technology is feasibility and superiority. The analysis of the experiment makes a foundation for the subsequent further verification experiments.

  1. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics.

    Science.gov (United States)

    Kocaoglu, Omer P; Cense, Barry; Jonnal, Ravi S; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T

    2011-08-15

    Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3μm(3) resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29-62years). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a 7month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30-50μm, thickness: 10-15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30-45μm, thickness: 20-40μm). Width and thickness RNFB measurements taken 7months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were -0.1±4.0μm (width) and 0.3±1.5μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye.

  2. Arrangement of fiber tracts forming Probst bundle in complete callosal agenesis: report of two cases with an evaluation by diffusion tensor tractography.

    Science.gov (United States)

    Utsunomiya, H; Yamashita, S; Takano, K; Okazaki, M

    2006-12-01

    We report two patients with complete callosal agenesis in whom Probst bundles in both hemispheres could be depicted by diffusion tensor tractography (DTT). While one patient had no associated telencephalic anomaly other than callosal agenesis, the other had cortical dysplasia in the right frontal lobe. Although Probst bundles in the three normal hemispheres were well developed, that in the hemisphere which was affected by cortical dysplasia was small and poorly developed. DTT also showed that the fibers from the frontal pole ran more on the inner side of the Probst bundle than those from a more caudal region of the frontal lobe. Furthermore, fibers from the orbital gyri ran along the outermost side of Probst bundle. The arrangement of these fiber tracts in Probst bundle may reflect the developmental process of callosal fibers in their normal formation.

  3. Influence of fiber design on light-guidance in step-index fibers for bundle applications in the UV-VIS-region

    Science.gov (United States)

    Ohlmeyer, H.; Tobisch, T.; Voncken, M. M. A. J.; Prechtel, L.; Belz, M.; Klein, K.-F.

    2014-05-01

    Silica-based multimode fibers with a step-index refractive-index profile are commonly used for light transportation from 185 nm (DUV) up to 2300nm (NIR). Core diameters of such mono fibers range from 100 to 600 μm and their clad-tocore- ratios (CCR) typically are 1.1 and larger. If bundles are required for applications in the UV- and VIS-region, fibers with smaller core diameter and thinner cladding thicknesses are desired to reduce coupling losses, as their light acceptance surface area is then relatively larger. However, using these bundles at higher wavelengths, e.g. in the NIR-region, change of light-guiding properties can be observed. In fiber-optic light delivery systems, the transmission including light acceptance and guidance can be described by the concept of pupil apodization. However in fiber characterization, the numerical aperture (NA) of specialty fibers is an useful key parameter, which will be determined using the inverse far-field method at two separate laser wavelengths with focused light excitation. With parallel light, skew rays/modes must be taken into account. In addition, the spectral fiber attenuation with Uniform Mode Distribution (UMD) illumination and mode-selective illumination will be discussed and compared with experimental NA results. As expected, the ratio of cladding thickness and wavelength is the most important parameter on the light-guiding properties in short-length applications with increasing wavelength.

  4. Compact multiple laser beam scanning module for high-resolution pico-projector applications using a fiber bundle combiner

    Science.gov (United States)

    Ide, Masafumi; Fukaya, Shinpei; Yoda, Kaoru; Suzuki, Masaya

    2014-02-01

    We present a novel multiple laser beam scanning projection module using compact red-green-blue (RGB) fiber pigtailed laser modules for use in a high resolution pico-projector display system using a fiber bundle combiner in combination with a single MEMS mirror. This system can be used to create accurate multiple-projection images on a screen without overlaps or spaces among the projection images. The system uses very simple projection optics and has the potential to become a light engine unit for use in multiple projection systems, particularly those for light field displays. As such, light field display applications are also discussed.

  5. Heat Transfer Modeling of Staggered Bundle with Round Tubes Screened by Mesh

    Directory of Open Access Journals (Sweden)

    Dymo B.V.

    2016-04-01

    Full Text Available The article presents the results of CFD modeling of heat transfer and aerodynamic drag for the first three rows of cross-flowed staggered bundle consisting of round tubes screened by wire mesh. Geometric model of this bundle was developed. Selection of optimal parameters of the bundle finite element model realizes on the base of transition shear stress transport model. Two separate geometric models for even and odd rows of bundle have been elaborated for the scope of computational resources optimization. The results of numerical modeling of heat transfer for the first three rows of the bundle were approximated with the criteria dependences. It has been established that heat transfer stabilization occurs from the second row of the bundle. Stabilized heat transfer is 15 % higher than that for the first row of the bundle and 1.2 … 1.7 times as large in comparison with equivalent bare-tube bundle in a range of Reynolds number from 5000 to 35000. Aerodynamic drag data for the first three rows of the bundle have been obtained.

  6. Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    An overview of methods of the mathematical modeling of deformation, damage and fracture in fiber reinforced composites is presented. The models are classified into five main groups: shear lag-based, analytical models, fiber bundle model and its generalizations, fracture mechanics based and contin...

  7. Numerical model for thermal and mechanical behaviour of a CANDU 37-element bundle

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L.; MacKay, K. [Martec Limited, Halifax, Nova Scotia (Canada); Gibb, R. [Canadian Nuclear Safety Commission (CNSC), Ottawa, Ontario (Canada)

    2010-07-01

    Prediction of transient fuel bundle deformations is important for assessing the integrity of fuel and the surrounding structural components under different operating conditions including accidents. For numerical simulation of the interactions between fuel bundle and pressure tube, a reliable numerical bundle model is required to predict thermal and mechanical behaviour of the fuel bundle assembly under different thermal loading conditions. To ensure realistic representations of the bundle behaviour, this model must include all of the important thermal and mechanical features of the fuel bundle, such as temperature-dependent material properties, thermal viscoplastic deformation in sheath, fuel-to-sheath interactions, endplate constraints and contacts between fuel elements. In this paper, we present a finite element based numerical model for predicting macroscopic transient thermal-mechanical behaviour of a complete 37-element CANDU nuclear fuel bundle under accident conditions and demonstrate its potential for being used to investigate fuel bundle to pressure tube interaction in future nuclear safety analyses. This bundle model has been validated against available experimental and numerical solutions and applied to various simulations involving steady-state and transient loading conditions. (author)

  8. BEAM 1.7: development for modelling fuel element and bundle buckling strength

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, G.; Xu, S.; Xu, Z.; Paul, U.K. [Atomic Energy of Canada, Mississauga, Ontario (Canada)

    2010-07-01

    This paper describes BEAM, an AECL developed computer program, used to assess mechanical integrity of CANDU fuel bundles. The BEAM code has been developed to satisfy the need for buckling strength analysis of fuel bundles. Buckling refers to the phenomenon where a compressive axial load is large enough that a small lateral load can cause large lateral deflections. The buckling strength refers to the critical compressive axial load at which lateral instability is reached. The buckling strength analysis has practical significance for the design of fuel bundles, where the buckling strength of a fuel element/bundle is assessed so that the conditions leading to bundle jamming in the pressure tube are excluded. This paper presents the development and qualification of the BEAM code, with emphasis on the theoretical background and code implementation of the newly developed fuel element/bundle buckling strength model. (author)

  9. Coherent hollow-core waveguide bundles for thermal imaging.

    Science.gov (United States)

    Gal, Udi; Harrington, James; Ben-David, Moshe; Bledt, Carlos; Syzonenko, Nicholas; Gannot, Israel

    2010-09-01

    There has been very little work done in the past to extend the wavelength range of fiber image bundles to the IR range. This is due, in part, to the lack of IR transmissive fibers with optical and mechanical properties analogous to the oxide glass fibers currently employed in the visible fiber bundles. Our research is aimed at developing high-resolution hollow-core coherent IR fiber bundles for transendoscopic infrared imaging. We employ the hollow glass waveguide (HGW) technology that was used successfully to make single-HGWs with Ag/AgI thin film coatings to form coherent bundles for IR imaging. We examine the possibility of developing endoscopic systems to capture thermal images using hollow waveguide fiber bundles adjusted to the 8-10?mum spectral range and investigate the applicability of such systems. We carried out a series of measurements in order to characterize the optical properties of the fiber bundles. These included the attenuation, resolution, and temperature response. We developed theoretical models and simulation tools that calculate the light propagation through HGW bundles, and which can be used to calculate the optical properties of the fiber bundles. Finally, the HGW fiber bundles were used to transmit thermal images of various heated objects; the results were compared with simulation results. The experimental results are encouraging, show an improvement in the resolution and thermal response of the HGW fiber bundles, and are consistent with the theoretical results. Nonetheless, additional improvements in the attenuation of the bundles are required in order to be able to use this technology for medical applications.

  10. Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics.

    OpenAIRE

    Kerr, I. D.; Sankararamakrishnan, R; Smart, O.S.; Sansom, M S

    1994-01-01

    A parallel bundle of transmembrane (TM) alpha-helices surrounding a central pore is present in several classes of ion channel, including the nicotinic acetylcholine receptor (nAChR). We have modeled bundles of hydrophobic and of amphipathic helices using simulated annealing via restrained molecular dynamics. Bundles of Ala20 helices, with N = 4, 5, or 6 helices/bundle were generated. For all three N values the helices formed left-handed coiled coils, with pitches ranging from 160 A (N = 4) to...

  11. A global verification study of a quasi-static knee model with multi-bundle ligaments

    NARCIS (Netherlands)

    Mommersteeg, TJA; Blankevoort, L; Kooloos, JGM; Kauer, JMG; Maathuis, PGM

    1996-01-01

    The ligaments of the knee consist of fiber bundles with variable orientations, lengths and mechanical properties. In concept, however, these structures were too often seen as homogeneous structures, which are either stretched or slack during knee motions. In previous studies, we proposed a new struc

  12. Simplified modeling of EM field coupling to complex cable bundles

    OpenAIRE

    Schetelig, B.; J. Keghie; Kanyou Nana, R.; Fichte, L.-O.; S. Potthast; Dickmann, S.

    2010-01-01

    In this contribution, the procedure "Equivalent Cable Bundle Method" is used for the simplification of large cable bundles, and it is extended to the application on differential signal lines. The main focus is on the reduction of twisted-pair cables. Furthermore, the process presented here allows to take into account cables with wires that are situated quite close to each other. The procedure is based on a new approach to calculate the geometry of the simplified cable and us...

  13. Multimodal Imaging and Spectroscopy Fiber-bundle Microendoscopy Platform for Non-invasive, In Vivo Tissue Analysis.

    Science.gov (United States)

    Greening, Gage J; Rajaram, Narasimhan; Muldoon, Timothy J

    2016-10-17

    Recent fiber-bundle microendoscopy techniques enable non-invasive analysis of in vivo tissue using either imaging techniques or a combination of spectroscopy techniques. Combining imaging and spectroscopy techniques into a single optical probe may provide a more complete analysis of tissue health. In this article, two dissimilar modalities are combined, high-resolution fluorescence microendoscopy imaging and diffuse reflectance spectroscopy, into a single optical probe. High-resolution fluorescence microendoscopy imaging is a technique used to visualize apical tissue micro-architecture and, although mostly a qualitative technique, has demonstrated effective real-time differentiation between neoplastic and non-neoplastic tissue. Diffuse reflectance spectroscopy is a technique which can extract tissue physiological parameters including local hemoglobin concentration, melanin concentration, and oxygen saturation. This article describes the specifications required to construct the fiber-optic probe, how to build the instrumentation, and then demonstrates the technique on in vivo human skin. This work revealed that tissue micro-architecture, specifically apical skin keratinocytes, can be co-registered with its associated physiological parameters. The instrumentation and fiber-bundle probe presented here can be optimized as either a handheld or endoscopically-compatible device for use in a variety of organ systems. Additional clinical research is needed to test the viability of this technique for different epithelial disease states.

  14. Calculation of relative permeability in reservoir engineering using an interacting triangular tube bundle model

    Institute of Scientific and Technical Information of China (English)

    Jinxun Wang; Mingzhe Dong; Jun Yao

    2012-01-01

    Analytical expressions of relative permeability are derived for an interacting cylindrical tube bundle model.Equations for determining relative permeability curves from both the interacting uniform and interacting serial types of triangular tube bundle models are presented.Model parameters affecting the trend of relative permeability curves are discussed.Interacting triangular tube bundle models are used to history-match laboratory displacement experiments to determine the relative permeability curves of actual core samples.By adjusting model parameters to match the history of oil production and pressure drop,the estimated relative permeability curves provide a connection between the macroscopic flow behavior and the pore-scale characteristics of core samples.

  15. Alternative Reimbursement Models: Bundled Payment and Beyond: AOA Critical Issues.

    Science.gov (United States)

    Greenwald, A Seth; Bassano, Amy; Wiggins, Stephen; Froimson, Mark I

    2016-06-01

    The Bundled Payments for Care Improvement (BPCI) initiative was begun in January 2013 by the U.S. Centers for Medicare & Medicaid Services (CMS) through its Innovation Center authority, which was created by the U.S. Patient Protection and Affordable Care Act (PPACA). The BPCI program seeks to improve health-care delivery and to ultimately reduce costs by allowing providers to enter into prenegotiated payment arrangements that include financial and performance accountability for a clinical episode in which a risk-and-reward calculus must be determined. BPCI is a contemporary 3-year experiment designed to test the applicability of episode-based payment models as a viable strategy to transform the CMS payment methodology while improving health outcomes. A summary of the 4 models being evaluated in the BPCI initiative is presented in addition to the awardee types and the number of awardees in each model. Data from one of the BPCI-designated pilot sites demonstrate that strategies do exist for successful implementation of an alternative payment model by keeping patients first while simultaneously improving coordination, alignment of care, and quality and reducing cost. Providers will need to embrace change and their areas of opportunity to gain a competitive advantage. Health-care providers, including orthopaedic surgeons, health-care professionals at post-acute care institutions, and product suppliers, all have a role in determining the strategies for success. Open dialogue between CMS and awardees should be encouraged to arrive at a solution that provides opportunity for gainsharing, as this program continues to gain traction and to evolve.

  16. Single-shot T1 mapping of the corpus callosum: A rapid characterization of fiber bundle anatomy

    Directory of Open Access Journals (Sweden)

    Sabine eHofer

    2015-05-01

    Full Text Available Using diffusion-tensor MRI and fiber tractography the topographic organization of the corpus callosum (CC has been described to comprise 5 segments with fibers projecting into prefrontal (I, premotor and supplementary motor (II, primary motor (III, and primary sensory areas (IV, as well as into parietal, temporal, and occipital cortical areas (V. In order to more rapidly characterize the underlying anatomy of these segments, this study used a novel single-shot T1 mapping method to quantitatively determine T1 relaxation times in the human CC. A region-of-interest analysis revealed a tendency for the lowest T1 relaxation times in the genu and the highest T1 relaxation times in the somatomotor region of the CC. This observation separates regions dominated by myelinated fibers with large diameters (somatomotor area from densely packed smaller axonal bundles (genu with less myelin. The results indicate that characteristic T1 relaxation times in callosal profiles provide an additional means to monitor differences in fiber anatomy, fiber density, and gray matter in respective neocortical areas. In conclusion, rapid T1 mapping allows for a characterization of the axonal architecture in an individual CC in less than 10 s. The approach emerges as a valuable means for studying neocortical brain anatomy with possible implications for the diagnosis of neurodegenerative processes.

  17. Single-shot T1 mapping of the corpus callosum: a rapid characterization of fiber bundle anatomy.

    Science.gov (United States)

    Hofer, Sabine; Wang, Xiaoqing; Roeloffs, Volkert; Frahm, Jens

    2015-01-01

    Using diffusion-tensor magnetic resonance imaging and fiber tractography the topographic organization of the human corpus callosum (CC) has been described to comprise five segments with fibers projecting into prefrontal (I), premotor and supplementary motor (II), primary motor (III), and primary sensory areas (IV), as well as into parietal, temporal, and occipital cortical areas (V). In order to more rapidly characterize the underlying anatomy of these segments, this study used a novel single-shot T1 mapping method to quantitatively determine T1 relaxation times in the human CC. A region-of-interest analysis revealed a tendency for the lowest T1 relaxation times in the genu and the highest T1 relaxation times in the somatomotor region of the CC. This observation separates regions dominated by myelinated fibers with large diameters (somatomotor area) from densely packed smaller axonal bundles (genu) with less myelin. The results indicate that characteristic T1 relaxation times in callosal profiles provide an additional means to monitor differences in fiber anatomy, fiber density, and gray matter in respective neocortical areas. In conclusion, rapid T1 mapping allows for a characterization of the axonal architecture in an individual CC in less than 10 s. The approach emerges as a valuable means for studying neocortical brain anatomy with possible implications for the diagnosis of neurodegenerative processes.

  18. Study on a novel core module based on optical fiber bundles for urine dry-chemistry analysis

    Science.gov (United States)

    Liu, Gaiqin; Ma, Zengwei; Li, Rui; Hu, Nan; Chen, Ping; Wang, Fei; Zhang, Ruiying; Chen, Longcong

    2017-09-01

    A core module with a novel optical structure is presented to analyze urine by the dry-chemistry method in this paper. It consists of a 32-bit microprocessor, optical fiber bundles, a high precision color sensor and a temperature sensor. The optical fiber bundles are adopted to control the spread path of light and reduce the influence of ambient light and the distance between the strip and sensor effectively. And the temperature sensor is applied to detect the environmental temperature to calibrate the measurement results. Therefore, all these can bring a lot of benefits to the core module, such as improving its test accuracy, reducing its volume and cost, and simplifying its assembly. Additionally, some parameters, including the calculation coefficient about reflectivity of each item, semi-quantitative intervals, the number of test items, may be modified by corresponding instructions in order to enhance its applicability. Meanwhile, its outputs can be chosen among the original data, normalized color values, reflectivity, and the semi-quantitative level of each test item by available instructions. Our results show that the module has high measurement accuracy of more than 95%, good stability, reliability, and consistency and can be easily used in various types of urine analyzers.

  19. High Performance Spatial Filter Array Based on Single Mode Fiber Bundle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I project, by leveraging on Agiltron's experience in optical fiber components and our unique fabrication procedure of fiber array, we successfully designed...

  20. High Performance Spatial Filter Array Based on Signal Mode Fiber Bundle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Loveraging on Agiltron's experience in optical fiber components, Agiltron proposed a coherent single-mode fiber (SMF) spatial filter array (SFA) with a gradient...

  1. Subchannel thermal-hydraulic modeling of an APT tungsten target rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.; Shadday, M.A. Jr.

    1997-09-01

    The planned target for the Accelerator Production of Tritium (APT) neutron source consists of an array of tungsten rod bundles through which D{sub 2}O coolant flows axially. Here, a scoping analysis of flow through an APT target rod bundle was conducted to demonstrate that lateral cross-flows are important, and therefore subchannel modeling is necessary to accurately predict thermal-hydraulic behavior under boiling conditions. A local reactor assembly code, FLOWTRAN, was modified to model axial flow along the rod bundle as flow through three concentric heated annular passages.

  2. 𝒞m-smoothness of invariant fiber bundles for dynamic equations on measure chains

    Directory of Open Access Journals (Sweden)

    Stefan Siegmund

    2004-05-01

    Full Text Available We present a new self-contained and rigorous proof of the smoothness of invariant fiber bundles for dynamic equations on measure chains or time scales. Here, an invariant fiber bundle is the generalization of an invariant manifold to the nonautonomous case. Our main result generalizes the “Hadamard-Perron theorem” to the time-dependent, infinite-dimensional, noninvertible, and parameter-dependent case, where the linear part is not necessarily hyperbolic with variable growth rates. As a key feature, our proof works without using complicated technical tools.

  3. Automatic estimation of retinal nerve fiber bundle orientation in SD-OCT images using a structure-oriented smoothing filter

    Science.gov (United States)

    Ghafaryasl, Babak; Baart, Robert; de Boer, Johannes F.; Vermeer, Koenraad A.; van Vliet, Lucas J.

    2017-02-01

    Optical coherence tomography (OCT) yields high-resolution, three-dimensional images of the retina. A better understanding of retinal nerve fiber bundle (RNFB) trajectories in combination with visual field data may be used for future diagnosis and monitoring of glaucoma. However, manual tracing of these bundles is a tedious task. In this work, we present an automatic technique to estimate the orientation of RNFBs from volumetric OCT scans. Our method consists of several steps, starting from automatic segmentation of the RNFL. Then, a stack of en face images around the posterior nerve fiber layer interface was extracted. The image showing the best visibility of RNFB trajectories was selected for further processing. After denoising the selected en face image, a semblance structure-oriented filter was applied to probe the strength of local linear structure in a discrete set of orientations creating an orientation space. Gaussian filtering along the orientation axis in this space is used to find the dominant orientation. Next, a confidence map was created to supplement the estimated orientation. This confidence map was used as pixel weight in normalized convolution to regularize the semblance filter response after which a new orientation estimate can be obtained. Finally, after several iterations an orientation field corresponding to the strongest local orientation was obtained. The RNFB orientations of six macular scans from three subjects were estimated. For all scans, visual inspection shows a good agreement between the estimated orientation fields and the RNFB trajectories in the en face images. Additionally, a good correlation between the orientation fields of two scans of the same subject was observed. Our method was also applied to a larger field of view around the macula. Manual tracing of the RNFB trajectories shows a good agreement with the automatically obtained streamlines obtained by fiber tracking.

  4. Dual CARS and SHG image acquisition scheme that combines single central fiber and multimode fiber bundle to collect and differentiate backward and forward generated photons.

    Science.gov (United States)

    Weng, Sheng; Chen, Xu; Xu, Xiaoyun; Wong, Kelvin K; Wong, Stephen T C

    2016-06-01

    In coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) imaging, backward and forward generated photons exhibit different image patterns and thus capture salient intrinsic information of tissues from different perspectives. However, they are often mixed in collection using traditional image acquisition methods and thus are hard to interpret. We developed a multimodal scheme using a single central fiber and multimode fiber bundle to simultaneously collect and differentiate images formed by these two types of photons and evaluated the scheme in an endomicroscopy prototype. The ratio of these photons collected was calculated for the characterization of tissue regions with strong or weak epi-photon generation while different image patterns of these photons at different tissue depths were revealed. This scheme provides a new approach to extract and integrate information captured by backward and forward generated photons in dual CARS/SHG imaging synergistically for biomedical applications.

  5. Atomistic simulations, mesoscopic modeling, and theoretical analysis of thermal conductivity of bundles composed of carbon nanotubes

    Science.gov (United States)

    Volkov, Alexey N.; Salaway, Richard N.; Zhigilei, Leonid V.

    2013-09-01

    The propensity of carbon nanotubes (CNTs) to self-organize into continuous networks of bundles has direct implications for thermal transport properties of CNT network materials and defines the importance of clear understanding of the mechanisms and scaling laws governing the heat transfer within the primary building blocks of the network structures—close-packed bundles of CNTs. A comprehensive study of the thermal conductivity of CNT bundles is performed with a combination of non-equilibrium molecular dynamics (MD) simulations of heat transfer between adjacent CNTs and the intrinsic conductivity of CNTs in a bundle with a theoretical analysis that reveals the connections between the structure and thermal transport properties of CNT bundles. The results of MD simulations of heat transfer in CNT bundles consisting of up to 7 CNTs suggest that, contrary to the widespread notion of strongly reduced conductivity of CNTs in bundles, van der Waals interactions between defect-free well-aligned CNTs in a bundle have negligible effect on the intrinsic conductivity of the CNTs. The simulations of inter-tube heat conduction performed for partially overlapping parallel CNTs indicate that the conductance through the overlap region is proportional to the length of the overlap for CNTs and CNT-CNT overlaps longer than several tens of nm. Based on the predictions of the MD simulations, a mesoscopic-level model is developed and applied for theoretical analysis and numerical modeling of heat transfer in bundles consisting of CNTs with infinitely large and finite intrinsic thermal conductivities. The general scaling laws predicting the quadratic dependence of the bundle conductivity on the length of individual CNTs in the case when the thermal transport is controlled by the inter-tube conductance and the independence of the CNT length in another limiting case when the intrinsic conductivity of CNTs plays the dominant role are derived. An application of the scaling laws to bundles of

  6. The Moduli Space of Heterotic Line Bundle Models: a Case Study for the Tetra-Quadric

    CERN Document Server

    Buchbinder, Evgeny I; Lukas, Andre

    2014-01-01

    It has recently been realised that polystable, holomorphic sums of line bundles over smooth Calabi-Yau three-folds provide a fertile ground for heterotic model building. Large numbers of phenomenologically promising such models have been constructed for various classes of Calabi-Yau manifolds. In this paper we focus on a case study for the tetra-quadric - a Calabi-Yau hypersurface embedded in a product of four CP1 spaces. We address the question of finiteness of the class of consistent and physically viable line bundle models constructed on this manifold. Further, for a specific semi-realistic example, we explore the embedding of the line bundle sum into the larger moduli space of non-Abelian bundles, both by means of constructing specific polystable non-Abelian bundles and by turning on VEVs in the associated low-energy theory. In this context, we explore the fate of the Higgs doublets as we move in bundle moduli space. The non-Abelian compactifications thus constructed lead to SU(5) GUT models with an addit...

  7. Segmentation of the Cingulum Bundle in the Human Brain: A New Perspective Based on DSI Tractography and Fiber Dissection Study.

    Science.gov (United States)

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao; Ou, Shaowu

    2016-01-01

    The cingulum bundle (CB) is a critical white matter fiber tract in the brain, which forms connections between the frontal lobe, parietal lobe and temporal lobe. In non-human primates, the CB is actually divided into distinct subcomponents on the basis of corticocortical connections. However, at present, no study has verified similar distinct subdivisions in the human brain. In this study, we reconstructed these distinct subdivisions in the human brain, and determined their exact cortical connections using high definition fiber tracking (HDFT) technique on 10 healthy adults and a 488-subject template from the Human Connectome Project (HCP-488). Fiber dissections were performed to verify tractography results. Five CB segments were identified. CB-I ran from the subrostral areas to the precuneus and splenium, encircling the corpus callosum (CC). CB-II arched around the splenium and extended anteriorly above the CC to the medial aspect of the superior frontal gyrus (SFG). CB-III connected the superior parietal lobule (SPL) and precuneus with the medial aspect of the SFG. CB-IV was a relatively minor subcomponent from the SPL and precuneus to the frontal region. CB-V, the para-hippocampal cingulum, stemmed from the medial temporal lobe and fanned out to the occipital lobes. Our findings not only provide a more accurate and detailed description on the associated architecture of the subcomponents within the CB, but also offer new insights into the functional role of the CB in the human brain.

  8. Segmentation of the cingulum bundle in the human brain: a new perspective based on DSI tractography and fiber dissection study

    Directory of Open Access Journals (Sweden)

    Yupeng Wu

    2016-09-01

    Full Text Available The cingulum bundle (CB is a critical white matter fiber tract in the brain, which forms connections between the frontal lobe, parietal lobe, and temporal lobe. In non-human primates, the CB is actually divided into distinct subcomponents on the basis of corticocortical connections. However, at present, no study has verified similar distinct subdivisions in the human brain. In this study, we reconstructed these distinct subdivisions in the human brain, and determined their exact cortical connections using high definition fiber tracking (HDFT technique on 10 healthy adults and a 488-subject template from the Human Connectome Project (HCP-488. Fiber dissections were performed to verify tractography results. Five CB segments were identified. CB-I ran from the subrostral areas to the precuneus and splenium, encircling the corpus callosum. CB-II arched around the splenium and extended anteriorly above the corpus callosum to the medial aspect of the superior frontal gyrus. CB-III connected the superior parietal lobule and precuneus with the medial aspect of the superior frontal gyrus. CB-IV was a relatively minor subcomponent from the superior parietal lobule and precuneus to the frontal region. CB-V, the para-hippocampal cingulum, stemmed from the medial temporal lobe and fanned out to the occipital lobes. Our findings not only provide a more accurate and detailed description on the associated architecture of the subcomponents within the CB, but also offer new insights into the functional role of the CB in the human brain.

  9. Investigation of BCF-12 Plastic Scintillating Coherent Fiber Bundle Timing Properties

    Science.gov (United States)

    2012-03-22

    30 15. Hot knife used to cleave ends of the fibers used during this investigation. The blade is adapted to attach to the end...Hot knife used to cleave ends of the fibers used during this investigation. The blade is adapted to attach to the end of a standard electronics...properties of the fluorescence fast component from plas - tic scintillators”. Nuclear Instruments and Methods, 179:277–281, January 1981. [14] Morris, C., J

  10. General Equilibrium Model with a Convex Cone as the Set of Commodity Bundles

    NARCIS (Netherlands)

    Schalk, S.

    1996-01-01

    In this paper, we present a model for an exchange economy which is an extension of the classical model as introduced by Arrow and Debreu.In the classical model, there is a nite number of commodi- ties and a nite number of consumers.The commodities are treated separately, and so a commodity bundle is

  11. Bundles of Banach algebras

    Directory of Open Access Journals (Sweden)

    J. W. Kitchen

    1994-01-01

    Full Text Available We study bundles of Banach algebras π:A→X, where each fiber Ax=π−1({x} is a Banach algebra and X is a compact Hausdorff space. In the case where all fibers are commutative, we investigate how the Gelfand representation of the section space algebra Γ(π relates to the Gelfand representation of the fibers. In the general case, we investigate how adjoining an identity to the bundle π:A→X relates to the standard adjunction of identities to the fibers.

  12. Deformation quantization of principal bundles

    CERN Document Server

    Aschieri, Paolo

    2016-01-01

    We outline how Drinfeld twist deformation techniques can be applied to the deformation quantization of principal bundles into noncommutative principal bundles, and more in general to the deformation of Hopf-Galois extensions. First we twist deform the structure group in a quantum group, and this leads to a deformation of the fibers of the principal bundle. Next we twist deform a subgroup of the group of authomorphisms of the principal bundle, and this leads to a noncommutative base space. Considering both deformations we obtain noncommutative principal bundles with noncommutative fiber and base space as well.

  13. Sigma models for bundles on Calabi-Yau: a proposal for matrix string compactifications

    NARCIS (Netherlands)

    Hofman, C.; Park, J.-S.

    2001-01-01

    W e describe a class of supersymmetric gauged linear sigma-model, whose target space is the infinite dimensional space of bundles on a Calabi-Y au 3- or 2-fold. This target space can be considered the configuration space of D-branes wrapped around the Calabi-Yau. We propose that this model can be us

  14. Motor-mediated bidirectional transport along an antipolar microtubule bundle: a mathematical model.

    Science.gov (United States)

    Lin, Congping; Ashwin, Peter; Steinberg, Gero

    2013-05-01

    Long-distance bidirectional transport of organelles depends on the coordinated motion of various motor proteins on the cytoskeleton. Recent quantitative live cell imaging in the elongated hyphal cells of Ustilago maydis has demonstrated that long-range motility of motors and their endosomal cargo occurs on unipolar microtubules (MTs) near the extremities of the cell. These MTs are bundled into antipolar bundles within the central part of the cell. Dynein and kinesin-3 motors coordinate their activity to move early endosomes (EEs) in a bidirectional fashion where dynein drives motility towards MT minus ends and kinesin towards MT plus ends. Although this means that one can easily assign the drivers of bidirectional motion in the unipolar section, the bipolar orientations in the bundle mean that it is possible for either motor to drive motion in either direction. In this paper we use a multilane asymmetric simple exclusion process modeling approach to simulate and investigate phases of bidirectional motility in a minimal model of an antipolar MT bundle. In our model, EE cargos (particles) change direction on each MT with a turning rate Ω and there is switching between MTs in the bundle at the minus ends. At these ends, particles can hop between MTs with rate q(1) on passing from a unipolar to a bipolar section (the obstacle-induced switching rate) or q(2) on passing in the other direction (the end-induced switching rate). By a combination of numerical simulations and mean-field approximations, we investigate the distribution of particles along the MTs for different values of these parameters and of Θ, the overall density of particles within this closed system. We find that even if Θ is low, the system can exhibit a variety of phases with shocks in the density profiles near plus and minus ends caused by queuing of particles. We discuss how the parameters influence the type of particle that dominates active transport in the bundle.

  15. Motor-mediated bidirectional transport along an antipolar microtubule bundle: A mathematical model

    Science.gov (United States)

    Lin, Congping; Ashwin, Peter; Steinberg, Gero

    2013-05-01

    Long-distance bidirectional transport of organelles depends on the coordinated motion of various motor proteins on the cytoskeleton. Recent quantitative live cell imaging in the elongated hyphal cells of Ustilago maydis has demonstrated that long-range motility of motors and their endosomal cargo occurs on unipolar microtubules (MTs) near the extremities of the cell. These MTs are bundled into antipolar bundles within the central part of the cell. Dynein and kinesin-3 motors coordinate their activity to move early endosomes (EEs) in a bidirectional fashion where dynein drives motility towards MT minus ends and kinesin towards MT plus ends. Although this means that one can easily assign the drivers of bidirectional motion in the unipolar section, the bipolar orientations in the bundle mean that it is possible for either motor to drive motion in either direction. In this paper we use a multilane asymmetric simple exclusion process modeling approach to simulate and investigate phases of bidirectional motility in a minimal model of an antipolar MT bundle. In our model, EE cargos (particles) change direction on each MT with a turning rate Ω and there is switching between MTs in the bundle at the minus ends. At these ends, particles can hop between MTs with rate q1 on passing from a unipolar to a bipolar section (the obstacle-induced switching rate) or q2 on passing in the other direction (the end-induced switching rate). By a combination of numerical simulations and mean-field approximations, we investigate the distribution of particles along the MTs for different values of these parameters and of Θ, the overall density of particles within this closed system. We find that even if Θ is low, the system can exhibit a variety of phases with shocks in the density profiles near plus and minus ends caused by queuing of particles. We discuss how the parameters influence the type of particle that dominates active transport in the bundle.

  16. Mechanical analysis of congestive heart failure caused by bundle branch block based on an electromechanical canine heart model

    Energy Technology Data Exchange (ETDEWEB)

    Dou Jianhong; Xia Ling; Zhang Yu; Shou Guofa [Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027 (China); Wei Qing; Liu Feng; Crozier, Stuart [School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Brisbane, Queensland 4072 (Australia)], E-mail: xialing@zju.edu.cn

    2009-01-21

    Asynchronous electrical activation, induced by bundle branch block (BBB), can cause reduced ventricular function. However, the effects of BBB on the mechanical function of heart are difficult to assess experimentally. Many heart models have been developed to investigate cardiac properties during BBB but have mainly focused on the electrophysiological properties. To date, the mechanical function of BBB has not been well investigated. Based on a three-dimensional electromechanical canine heart model, the mechanical properties of complete left and right bundle branch block (LBBB and RBBB) were simulated. The anatomical model as well as the fiber orientations of a dog heart was reconstructed from magnetic resonance imaging (MRI) and diffusion tensor MRI (DT-MRI). Using the solutions of reaction-diffusion equations and with a strategy of parallel computation, the asynchronous excitation propagation and intraventricular conduction in BBB was simulated. The mechanics of myocardial tissues were computed with time-, sarcomere length-dependent uniaxial active stress initiated at the time of depolarization. The quantification of mechanical intra- and interventricular asynchrony of BBB was then investigated using the finite-element method with an eight-node isoparametric element. The simulation results show that (1) there exists inter- and intraventricular systolic dyssynchrony during BBB; (2) RBBB may have more mechanical synchrony and better systolic function of the left ventricle (LV) than LBBB; (3) the ventricles always move toward the early-activated ventricle; and (4) the septum experiences higher stress than left and right ventricular free walls in BBB. The simulation results validate clinical and experimental recordings of heart deformation and provide regional quantitative estimates of ventricular wall strain and stress. The present work suggests that an electromechanical heart model, incorporating real geometry and fiber orientations, may be helpful for better

  17. Mechanical analysis of congestive heart failure caused by bundle branch block based on an electromechanical canine heart model

    Science.gov (United States)

    Dou, Jianhong; Xia, Ling; Zhang, Yu; Shou, Guofa; Wei, Qing; Liu, Feng; Crozier, Stuart

    2009-01-01

    Asynchronous electrical activation, induced by bundle branch block (BBB), can cause reduced ventricular function. However, the effects of BBB on the mechanical function of heart are difficult to assess experimentally. Many heart models have been developed to investigate cardiac properties during BBB but have mainly focused on the electrophysiological properties. To date, the mechanical function of BBB has not been well investigated. Based on a three-dimensional electromechanical canine heart model, the mechanical properties of complete left and right bundle branch block (LBBB and RBBB) were simulated. The anatomical model as well as the fiber orientations of a dog heart was reconstructed from magnetic resonance imaging (MRI) and diffusion tensor MRI (DT-MRI). Using the solutions of reaction-diffusion equations and with a strategy of parallel computation, the asynchronous excitation propagation and intraventricular conduction in BBB was simulated. The mechanics of myocardial tissues were computed with time-, sarcomere length-dependent uniaxial active stress initiated at the time of depolarization. The quantification of mechanical intra- and interventricular asynchrony of BBB was then investigated using the finite-element method with an eight-node isoparametric element. The simulation results show that (1) there exists inter- and intraventricular systolic dyssynchrony during BBB; (2) RBBB may have more mechanical synchrony and better systolic function of the left ventricle (LV) than LBBB; (3) the ventricles always move toward the early-activated ventricle; and (4) the septum experiences higher stress than left and right ventricular free walls in BBB. The simulation results validate clinical and experimental recordings of heart deformation and provide regional quantitative estimates of ventricular wall strain and stress. The present work suggests that an electromechanical heart model, incorporating real geometry and fiber orientations, may be helpful for better

  18. The Optical Fiber Array Bundle Assemblies for the NASA Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Ott, Melanie N.; Switzer, Rob; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; MacMurphy, Shawn

    2008-01-01

    The United States, National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware assemblies for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufactured at NASA GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and lidar. These assemblies were developed in coordination with Diamond Switzerland, and the NASA GSFC Mechanical Systems Division. The assemblies represent a strategic enhancement for NASA's Laser Ranging and Laser Radar (LIDAR) instrument hardware by allowing light to be moved to alternative locations that were not feasible in past space flight implementations. An account will be described of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO. The LRO is scheduled to launch end of 2008.

  19. Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation.

    Science.gov (United States)

    Wang, Xiong; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2014-03-10

    We demonstrate the nanosecond-level pulses in Tm-doped fiber laser generated by passively harmonic mode-locking. Nonlinear polarization rotation performed by two polarization controllers (PCs) is employed to induce the self-starting harmonic mode-locking. The fundamental repetition rate of the laser is 448.8 kHz, decided by the length of the cavity. Bundles of pulses with up to 17 uniform subpulses are generated due to the split of pulse when the pump power increases and the PCs are adjusted. Continuous harmonic mode-locked pulse trains are obtained with 1st to 6th and even more than 15th order when the positions of the PCs are properly fixed and the pump power is scaled up. The widths of all the uniform individual pulses are mostly 3-5 ns, and pulse with width of 304 ns at fundamental repetition rate can also be generated by adjusting the PCs. Hysteresis phenomenon of the passively harmonic mode-locked pulses' repetition frequency versus pump power is observed. The rather wide 3dB spectral bandwidth of the pulse train (25 nm) indicates that they may resemble noise-like pulses.

  20. The PROMETHEUS bundled payment experiment: slow start shows problems in implementing new payment models.

    Science.gov (United States)

    Hussey, Peter S; Ridgely, M Susan; Rosenthal, Meredith B

    2011-11-01

    Fee-for-service payment is blamed for many of the problems observed in the US health care system. One of the leading alternative payment models proposed in the Affordable Care Act of 2010 is bundled payment, which provides payment for all of the care a patient needs over the course of a defined clinical episode, instead of paying for each discrete service. We evaluated the initial "road test" of PROMETHEUS Payment, one of several bundled payment pilot projects. The project has faced substantial implementation challenges, and none of the three pilot sites had executed contracts or made bundled payments as of May 2011. The pilots have taken longer to set up than expected, primarily because of the complexity of the payment model and the fact that it builds on the existing fee-for-service payment system and other complexities of health care. Participants continue to see promise and value in the bundled payment model, but the pilot results suggest that the desired benefits of this and other payment reforms may take time and considerable effort to materialize.

  1. Improving prediction of hydraulic conductivity by constraining capillary bundle models to a maximum pore size

    Science.gov (United States)

    Iden, Sascha C.; Peters, Andre; Durner, Wolfgang

    2015-11-01

    The prediction of unsaturated hydraulic conductivity from the soil water retention curve by pore-bundle models is a cost-effective and widely applied technique. One problem for conductivity predictions from retention functions with continuous derivatives, i.e. continuous water capacity functions, is that the hydraulic conductivity curve exhibits a sharp drop close to water saturation if the pore-size distribution is wide. So far this artifact has been ignored or removed by introducing an explicit air-entry value into the capillary saturation function. However, this correction leads to a retention function which is not continuously differentiable. We present a new parameterization of the hydraulic properties which uses the original saturation function (e.g. of van Genuchten) and introduces a maximum pore radius only in the pore-bundle model. In contrast to models using an explicit air entry, the resulting conductivity function is smooth and increases monotonically close to saturation. The model concept can easily be applied to any combination of retention curve and pore-bundle model. We derive closed-form expressions for the unimodal and multimodal van Genuchten-Mualem models and apply the model concept to curve fitting and inverse modeling of a transient outflow experiment. Since the new model retains the smoothness and continuous differentiability of the retention model and eliminates the sharp drop in conductivity close to saturation, the resulting hydraulic functions are physically more reasonable and ideal for numerical simulations with the Richards equation or multiphase flow models.

  2. Multi-scale strain-stiffening of semiflexible bundle networks

    CERN Document Server

    Piechocka, I K; Broedersz, C P; Kurniawan, N A; MacKintosh, F C; Koenderink, G H

    2015-01-01

    Bundles of polymer filaments are responsible for the rich and unique mechanical behaviors of many biomaterials, including cells and extracellular matrices. In fibrin biopolymers, whose nonlinear elastic properties are crucial for normal blood clotting, protofibrils self-assemble and bundle to form networks of semiflexible fibers. Here we show that the extraordinary strain-stiffening response of fibrin networks is a direct reflection of the hierarchical architecture of the fibrin fibers. We measure the rheology of networks of unbundled protofibrils and find excellent agreement with an affine model of extensible wormlike polymers. By direct comparison with these data, we show that physiological fibrin networks composed of thick fibers can be modeled as networks of tight protofibril bundles. We demonstrate that the tightness of coupling between protofibrils in the fibers can be tuned by the degree of enzymatic intermolecular crosslinking by the coagulation Factor XIII. Furthermore, at high stress, the protofibri...

  3. Total radiated power, infrared output, and heat generation by cold light sources at the distal end of endoscopes and fiber optic bundle of light cables.

    Science.gov (United States)

    Hensman, C; Hanna, G B; Drew, T; Moseley, H; Cuschieri, A

    1998-04-01

    Skin burns and ignition of drapes have been reported with the use of cold light sources. The aim of the study was to document the temperature generated by cold light sources and to correlate this with the total radiated power and infrared output. The temperature, total radiated power, and infrared output were measured as a function of time at the end of the endoscope (which is inserted into the operative field) and the end of the fiber optic bundle of the light cable (which connects the cable to the light port of the endoscope) using halogen and xenon light sources. The highest temperature recorded at the end of the endoscope was 95 degrees C. The temperature measured at the optical fiber location of the endoscope was higher than at its lens surface (p cables, the temperature reached 225 degrees C within 15 s. The temperature recorded at the optical fiber location of all endoscopes and light cables studied rose significantly over a period of 10 min to reach its maximum (p power. High temperatures are reached by 10 min at the end of fiber optic bundle of light cables and endoscopes with both halogen and xenon light sources. This heat generation is largely due to the radiated power in the visible light spectrum.

  4. Influence on rewetting temperature and wetting delay during rewetting rod bundle by various radial jet models

    Energy Technology Data Exchange (ETDEWEB)

    Debbarma, Ajoy; Pandey, Krishna Murari [National Institute of Technology, Assam (India). Dept. of Mechanical Engineering

    2016-03-15

    Numerical investigation of the rewetting of single sector fuel assembly of Advanced Heavy Water Reactor (AHWR) has been carried out to exhibit the effect of coolant jet diameters (2, 3 and 4 mm) and jet directions (Model: M, X and X2). The rewetting phenomena with various jet models are compared on the basis of rewetting temperature and wetting delay. Temperature-time curve have been evaluated from rods surfaces at different circumference, radial and axial locations of rod bundle. The cooling curve indicated the presence of vapor in respected location, where it prevents the contact between the firm and fluid phases. The peak wall temperature represents as rewetting temperature. The time period observed between initial to rewetting temperature point is wetting delay. It was noted that as improved in various jet models, rewetting temperature and wetting delay reduced, which referred the coolant stipulation in the rod bundle dominant vapor formation.

  5. Subtleties Concerning Conformal Tractor Bundles

    CERN Document Server

    Graham, C Robin

    2012-01-01

    The realization of tractor bundles as associated bundles in conformal geometry is studied. It is shown that different natural choices of principal bundle with normal Cartan connection corresponding to a given conformal manifold can give rise to topologically distinct associated tractor bundles for the same inducing representation. Consequences for homogeneous models and conformal holonomy are described. A careful presentation is made of background material concerning standard tractor bundles and equivalence between parabolic geometries and underlying structures.

  6. Simulations and measurements of adiabatic annular flows in triangular, tight lattice nuclear fuel bundle model

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Abhishek, E-mail: asaxena@lke.mavt.ethz.ch [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Zboray, Robert [Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Prasser, Horst-Michael [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2016-04-01

    High conversion light water reactors (HCLWR) having triangular, tight-lattice fuels bundles could enable improved fuel utilization compared to present day LWRs. However, the efficient cooling of a tight lattice bundle has to be still proven. Major concern is the avoidance of high-quality boiling crisis (film dry-out) by the use of efficient functional spacers. For this reason, we have carried out experiments on adiabatic, air-water annular two-phase flows in a tight-lattice, triangular fuel bundle model using generic spacers. A high-spatial-resolution, non-intrusive measurement technology, cold neutron tomography, has been utilized to resolve the distribution of the liquid film thickness on the virtual fuel pin surfaces. Unsteady CFD simulations have also been performed to replicate and compare with the experiments using the commercial code STAR-CCM+. Large eddies have been resolved on the grid level to capture the dominant unsteady flow features expected to drive the liquid film thickness distribution downstream of a spacer while the subgrid scales have been modeled using the Wall Adapting Local Eddy (WALE) subgrid model. A Volume of Fluid (VOF) method, which directly tracks the interface and does away with closure relationship models for interfacial exchange terms, has also been employed. The present paper shows first comparison of the measurement with the simulation results.

  7. A model for the anisotropic response of fibrous soft tissues using six discrete fibre bundles

    KAUST Repository

    Flynn, Cormac

    2011-06-30

    The development of constitutive models of fibrous soft-tissues is a challenging problem. Many consider the tissue to be a collection of fibres with a continuous distribution function representing their orientations. A discrete fibre model is presented consisting of six weighted fibre-bundles. Each bundle is oriented such that it passes through opposing vertices of a regular icosahedron. A novel aspect is the use of simple analytical distribution functions to simulate undulated collagen fibres. This approach yields closed-form analytical expressions for the strain energy of the collagen fibre-bundle that avoids the sometimes costly numerical integration of some statistical distribution functions. The elastin fibres are characterized by a modified neo-Hookean type strain energy function which does not allow for fibre compression. The model accurately simulates biaxial stretching of rabbit-skin (error-of-fit 8.7), uniaxial stretching of pig-skin (error-of-fit 7.6), equibiaxial loading of aortic valve cusp (error-of-fit 0.8), and simple shear of rat septal myocardium (error-of-fit 8.9). It compares favourably with previous soft-tissue models and alternative methods of representing undulated collagen fibres. Predicted collagen fibre stiffnesses range from 8.0thinspaceMPa to 930MPa. Elastin fibre stiffnesses range from 2.0 kPa to 154.4 kPa. © 2011 John Wiley & Sons, Ltd.

  8. Software-aided Service Bundling : Intelligent Methods and Tools for Graphical Service Modeling

    OpenAIRE

    Baida, Z.S.

    2006-01-01

    Services, such as insurances, transport, medical treatments and more, have been subject to extensive research business science for decennia. When services are offered, bought or consumed online, we refer to them as e-services. This PhD thesis focuses on an ontological foundation for service description and configuration. Such a conceptual modeling approach facilitates complex e-service scenarios, in which a customer can define a bundle of services, possibly supplied by multiple suppliers, bas...

  9. A novel model for product bundling and direct marketing in e-commerce based on market segmentation

    Directory of Open Access Journals (Sweden)

    Arash Beheshtian-Ardakani

    2018-01-01

    Full Text Available Nowadays, companies offer product bundles with special discounts in order to sell more products. However, it is important to note that customers show different levels of loyalties to companies, and each segment of the market has unique features, which influences the customers’ buying patterns. The primary purpose of this paper is to propose a novel model for product bundling in e-commerce websites by using market segmentation variables and customer loyalty analysis. RFM model is employed to calculate customer loyalty. Subsequently, the customers are grouped based on their loyalty levels. Each group is then divided into different segments based on market segmentation variables. The product bundles are determined for each market segment via clustering algorithms. Apriori algorithm is also used to determine the association rules for each product bundle. Classification models are applied in order to determine which product bundle should be recommended to each customer. The results demonstrate that the silhouette coefficient, support, confidence, and accuracy values are higher when both customer loyalty level and market segmentation variables are used in product bundling. Accordingly, the proposed model increases the chance of success in direct marketing and recommending product bundles to customers.

  10. Pullout tests of root analogs and natural root bundles in soil: Experiments and modeling

    Science.gov (United States)

    Schwarz, M.; Cohen, D.; Or, D.

    2011-06-01

    Root-soil mechanical interactions are key to soil stability on steep hillslopes. Motivated by new advances and applications of the Root Bundle Model (RBM), we conducted a series of experiments in the laboratory and in the field to study the mechanical response of pulled roots. We systematically quantified the influence of different factors such as root geometry and configuration, soil type, and soil water content considering individual roots and root bundles. We developed a novel pullout apparatus for strain-controlled field and laboratory tests of up to 13 parallel roots measured individually and as a bundle. Results highlight the importance of root tortuosity and root branching points for prediction of individual root pullout behavior. Results also confirm the critical role of root diameter distribution for realistic prediction of global pullout behavior of a root bundle. Friction between root and soil matrix varied with soil type and water content and affected the force-displacement behavior. Friction in sand varied from 1 to 17 kPa, with low values obtained in wet sand at a confining pressure of 2 kPa and high values obtained in dry sand with 4.5 kPa confining pressure. In a silty soil matrix, friction ranged between 3 kPa under wet and low confining pressure (2 kPa) and 6 kPa in dry and higher confining pressure (4.5 kPa). Displacement at maximum pullout force increased with increasing root diameter and with tortuosity. Laboratory experiments were used to calibrate the RBM that was later validated using six field measurements with natural root bundles of Norway spruce (Picea abies L.). These tests demonstrate the progressive nature of root bundle failure under strain-controlled pullout force and provide new insights regarding force-displacement behavior of root reinforcement, highlighting the importance of considering displacement in slope stability models. Results show that the magnitude of maximum root pullout forces (1-5 kPa) are important for slope

  11. Mutational Analyses of HAMP Helices Suggest a Dynamic Bundle Model of Input-Output Signaling in Chemoreceptors

    Science.gov (United States)

    Zhou, Qin; Ames, Peter; Parkinson, John S.

    2009-01-01

    SUMMARY To test the gearbox model of HAMP signaling in the E. coli serine receptor, Tsr, we generated a series of amino acid replacements at each residue of the AS1 and AS2 helices. The residues most critical for Tsr function defined hydrophobic packing faces consistent with a 4-helix bundle. Suppression patterns of helix lesions conformed to the the predicted packing layers in the bundle. Although the properties and patterns of most AS1 and AS2 lesions were consistent with both proposed gearbox structures, some mutational features specifically indicate the functional importance of an x-da bundle over an alternative a-d bundle. These genetic data suggest that HAMP signaling could simply involve changes in the stability of its x-da bundle. We propose that Tsr HAMP controls output signals by modulating destabilizing phase clashes between the AS2 helices and the adjoining kinase control helices. Our model further proposes that chemoeffectors regulate HAMP bundle stability through a control cable connection between the transmembrane segments and AS1 helices. Attractant stimuli, which cause inward piston displacements in chemoreceptors, should reduce cable tension, thereby stabilizing the HAMP bundle. This study shows how transmembrane signaling and HAMP input-output control could occur without the helix rotations central to the gearbox model. PMID:19656294

  12. Vector bundle constraint for particle swarm optimization and its application to active contour modeling

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Active contour modeling (ACM) has been shown to be a powerful method in object boundary extraction. In this paper,a new ACM based on vector bundle constraint for particle swarm optimization (VBCPSO-ACM) is proposed. Different from the traditional.particle swarm optimization (PSO), in the process of velocity update, a vector bundle is predefined for each particle and velocity update of the particle is restricted to its bundle. Applying this idea to ACM, control points on the contour are treated as particles in PSO and the evolution of the contour is driven by the particles. Meanwhile, global searching is shifted to local searching in ACM by decreasing the number of neighbors and inertia. In addition, the addition and deletion of particles on the active contour make this new model possible for representing the real boundaries more precisely. The proposed VBCPSO-ACM can avoid self-intersection during contour evolving and also extract inhomogeneous boundaries. The simulation results proved its great performance in performing contour extraction.

  13. Subchannel and Computational Fluid Dynamic Analyses of a Model Pin Bundle

    Energy Technology Data Exchange (ETDEWEB)

    Gairola, A.; Arif, M.; Suh, K. Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    The current study showed that the simplistic approach of subchannel analysis code MATRA was not good in capturing the physical behavior of the coolant inside the rod bundle. With the incorporation of more detailed geometry of the grid spacer in the CFX code it was possible to approach the experimental values. However, it is vital to incorporate more advanced turbulence mixing models to more realistically simulate behavior of the liquid metal coolant inside the model pin bundle in parallel with the incorporation of the bottom and top grid structures. In the framework of the 11{sup th} international meeting of International Association for Hydraulic Research and Engineering (IAHR) working group on the advanced reactor thermal hydraulics a standard problem was conducted. The quintessence of the problem was to check on the hydraulics and heat transfer in a novel pin bundle with different pitch to rod diameter ratio and heat flux cooled by liquid metal. The standard problem stems from the field of nuclear safety research with the idea of validating and checking the performances of computer codes against the experimental results. Comprehensive checks between the two will succor in improving the dependability and exactness of the codes used for accident simulations.

  14. A validated CFD model to predict O₂ and CO₂ transfer within hollow fiber membrane oxygenators.

    Science.gov (United States)

    Hormes, Marcus; Borchardt, Ralf; Mager, Ilona; Rode, Thomas Schmitz; Behr, Marek; Steinseifer, Ulrich

    2011-03-01

    Hollow fiber oxygenators provide gas exchange to and from the blood during heart surgery or lung recovery. Minimal fiber surface area and optimal gas exchange rate may be achieved by optimization of hollow fiber shape and orientation (1). In this study, a modified CFD model is developed and validated with a specially developed micro membrane oxygenator (MicroMox). The MicroMox was designed in such a way that fiber arrangement and bundle geometry are highly reproducible and potential flow channeling is avoided, which is important for the validation. Its small size (V(Fluid)=0.04 mL) allows the simulation of the entire bundle of 120 fibers. A non-Newtonian blood model was used as simulation fluid. Physical solubility and chemical bond of O₂ and CO₂ in blood was represented by the numerical model. Constant oxygen partial pressure at the pores of the fibers and a steady state flow field was used to calculate the mass transport. In order to resolve the entire MicroMox fiber bundle, the mass transport was simulated for symmetric geometry sections in flow direction. In vitro validation was achieved by measurements of the gas transfer rates of the MicroMox. All measurements were performed according to DIN EN 12022 (2) using porcine blood. The numerical simulation of the mass transfer showed good agreement with the experimental data for different mass flows and constant inlet partial pressures. Good agreement could be achieved for two different fiber configurations. Thus, it was possible to establish a validated model for the prediction of gas exchange in hollow fiber oxygenators.

  15. Resolutions of C^n/Z_n Orbifolds, their U(1) Bundles, and Applications to String Model Building

    CERN Document Server

    Nibbelink, S G; Walter, M

    2007-01-01

    We describe blowups of C^n/Z_n orbifolds as complex line bundles over CP^{n-1}. We construct some gauge bundles on these resolutions. Apart from the standard embedding, we describe U(1) bundles and an SU(n-1) bundle. Both blowups and their gauge bundles are given explicitly. We investigate ten dimensional SO(32) super Yang-Mills theory coupled to supergravity on these backgrounds. The integrated Bianchi identity implies that there are only a finite number of U(1) bundle models. We describe how the orbifold gauge shift vector can be read off from the gauge background. In this way we can assert that in the blow down limit these models correspond to heterotic C^2/Z_2 and C^3/Z_3 orbifold models. (Only the Z_3 model with unbroken gauge group SO(32) cannot be reconstructed in blowup without torsion.) This is confirmed by computing the charged chiral spectra on the resolutions. The construction of these blowup models implies that the mismatch between type-I and heterotic models on T^6/Z_3 does not signal a complica...

  16. Model simulation of the SPOC wave in a bundle of striated myofibrils.

    Science.gov (United States)

    Nakagome, Koutaro; Sato, Katsuhiko; Shintani, Seine A; Ishiwata, Shin'ichi

    2016-01-01

    SPOC (spontaneous oscillatory contraction) is a phenomenon observed in striated muscle under intermediate activation conditions. Recently, we constructed a theoretical model of SPOC for a sarcomere, a unit sarcomere model, which explains the behavior of SPOC at each sarcomere level. We also constructed a single myofibril model, which visco-elastically connects the unit model in series, and explains the behaviors of SPOC at the myofibril level. In the present study, to understand the SPOC properties in a bundle of myofibrils, we extended the single myofibril model to a two-dimensional (2D) model and a three-dimensional (3D) model, in which myofibrils were elastically connected side-by-side through cross-linkers between the Z-lines and M-lines. These 2D and 3D myofibril models could reproduce various patterns of SPOC waves experimentally observed in a 2D sheet and a 3D bundle of myofibrils only by choosing different values of elastic constants of the cross-linkers and the external spring. The results of these 2D and 3D myofibril models provide insight into the SPOC properties of the higher-ordered assembly of myofibrils.

  17. Fluid-Structure Interaction Effects Modeling for the Modal Analysis of a Steam Generator Tube Bundle

    Energy Technology Data Exchange (ETDEWEB)

    Sigrist, J.F. [DCNS Prop, Serv Tech et Sci, F-44620 La Montagne, (France); Broc, D. [CEA Saclay, Serv Etud Mecan et Sism, F-91191 Gif Sur Yvette, (France)

    2009-07-01

    Seismic analysis of steam generator is of paramount importance in the safety assessment of nuclear installations. These analyses require, in particular, the calculation of frequency, mode shape, and effective modal mass of the system Eigenmodes. As fluid-structure interaction effects can significantly affect the dynamic behavior of immersed structures, the numerical modeling of the steam generator has to take into account FSI. A complete modeling of heat exchangers (including pressure vessel, tubes, and fluid) is not accessible to the engineer for industrial design studies. In the past decades, homogenization methods have been studied and developed in order to model tubes and fluid through an equivalent continuous media, thus avoiding the tedious task to mesh all structure and fluid sub-domains within the tube bundle. Few of these methods have nonetheless been implemented in industrial finite element codes. In a previous paper (Sigrist, 2007, 'Fluid-Structure Interaction Effects Modeling for the Modal Analysis of a Nuclear Pressure Vessel', J. Pressure Vessel Technol., 123, p. 1-6), a homogenization method has been applied to an industrial case for the modal analysis of a nuclear rector with internal structures and coupling effects modeling. The present paper aims at investigating the extension of the proposed method for the dynamic analysis of tube bundles with fluid-structure interaction modeling. The homogenization method is compared with the classical coupled method in terms of eigenfrequencies, Eigenmodes, and effective modal masses. (authors)

  18. A novel carbon fiber bundle microelectrode and modified brain slice chamber for recording long-term multiunit activity from brain slices.

    Science.gov (United States)

    Tcheng, T K; Gillette, M U

    1996-11-01

    The fabrication and characteristics of a novel multiunit recording electrode and modified brain slice chamber suitable for long-term recording from brain slices are described. The electrode consisted of an electrolyte-filled glass micropipette with a 20-50 microns thick wax-coated bundle of 5-micron diameter carbon fibers extending 2.5 cm from the tapered end and an AgCl-coated silver wire inserted into the open end and connected to a preamplifier. Both ends of the electrode were sealed with wax to prevent evaporation of the electrolyte. The brain slice was maintained over this extended period in an interface-type brain slice chamber modified to completely surround the slice with medium. Using this electrode, regular 24-h oscillations of spontaneous multiunit activity were recorded for 3 days from a single location in a 500 microns thick rat suprachiasmatic nucleus brain slice. Preliminary data suggest that this novel carbon fiber bundle electrode will be a favorable alternative to traditional metal electrodes for long-term recording of multiunit activity from brain slices.

  19. Empirical models for liquid metal heat transfer in the entrance region of tubes and rod bundles

    Science.gov (United States)

    Jaeger, Wadim

    2016-10-01

    Experiments focusing on liquid metals heat transfer in pipes and rod bundles with thermally and hydraulically developing flow are reviewed. Empirical heat transfer correlations are developed for engineering applications. In the developing regions the heat transfer is in-stationary. The heat transfer at the entrance is around 100 % higher due to the developing process including the lateral exchange of energy and momentum than for developed flow. Developing flow is not physically considered in the framework of system codes, which are used for thermal-hydraulic analysis of power and process plants with a multitude of components like pipes, tanks, valves and heat exchangers. Therefore, the application to liquid metal flows is limited to developed flow, which is independent of the distance from the flow entrance. The heat transfer enhancement in developing flows is important for the optimization of components like heat exchangers and helps to reduce unnecessary conservatism. In this work, empirical models are developed to account for developing flows in pipes and rod bundles. A literature review is performed to collect available experimental data for developing flow in liquid metal heat transfer. The evaluation shows that the length for pure thermally developing pipe flow is much larger (20-30 hydraulic diameters) than for combined thermally and hydraulically developing flow (10-15 hydraulic diameters). In rod bundles, fully combined developed flow is established after 30-40 hydraulic diameters downstream of the entrance. The derived empirical models for the heat transfer enhancement in the developing regions are implemented into a best estimate system code. The validation of these models by means of post-test analyses of 16 experiments shows that they are very well able to represent the heat transfer in developing regions.

  20. Empirical models for liquid metal heat transfer in the entrance region of tubes and rod bundles

    Science.gov (United States)

    Jaeger, Wadim

    2017-05-01

    Experiments focusing on liquid metals heat transfer in pipes and rod bundles with thermally and hydraulically developing flow are reviewed. Empirical heat transfer correlations are developed for engineering applications. In the developing regions the heat transfer is in-stationary. The heat transfer at the entrance is around 100 % higher due to the developing process including the lateral exchange of energy and momentum than for developed flow. Developing flow is not physically considered in the framework of system codes, which are used for thermal-hydraulic analysis of power and process plants with a multitude of components like pipes, tanks, valves and heat exchangers. Therefore, the application to liquid metal flows is limited to developed flow, which is independent of the distance from the flow entrance. The heat transfer enhancement in developing flows is important for the optimization of components like heat exchangers and helps to reduce unnecessary conservatism. In this work, empirical models are developed to account for developing flows in pipes and rod bundles. A literature review is performed to collect available experimental data for developing flow in liquid metal heat transfer. The evaluation shows that the length for pure thermally developing pipe flow is much larger (20-30 hydraulic diameters) than for combined thermally and hydraulically developing flow (10-15 hydraulic diameters). In rod bundles, fully combined developed flow is established after 30-40 hydraulic diameters downstream of the entrance. The derived empirical models for the heat transfer enhancement in the developing regions are implemented into a best estimate system code. The validation of these models by means of post-test analyses of 16 experiments shows that they are very well able to represent the heat transfer in developing regions.

  1. THE ROLE OF POROUS MEDIA IN MODELING FLUID FLOW WITHIN HOLLOW FIBER MEMBRANES OF THE TOTAL ARTIFICIAL LUNG

    OpenAIRE

    2010-01-01

    A numerical study was conducted to analyze fluid flow within hollow fiber membranes of the artificial lungs. The hollow fiber bundle was approximated using a porous media model. In addition, the transport equations were solved using the finite-element formulation based on the Galerkin method of weighted residuals. Comparisons with previously published work on the basis of special cases were performed and found to be in excellent agreement. A Newtonian viscous fluid model for the blood was use...

  2. Utility assessment of published microsatellite markers for fiber length and bundle strength QTL in a cotton breeding program

    Science.gov (United States)

    Marker-assisted selection (MAS) may help mitigate some of the current challenges regarding the genetic improvement of cotton fiber quality, such as low genetic diversity and the negative association between fiber quality and lint yield. A multitude of quantitative trait loci (QTL) for fiber length a...

  3. Improving prediction of hydraulic conductivity by constraining capillary bundle models to a maximum pore size

    Science.gov (United States)

    Iden, Sascha; Peters, Andre; Durner, Wolfgang

    2017-04-01

    Soil hydraulic properties are required to solve the Richards equation, the most widely applied model for variably-saturated flow. While the experimental determination of the water retention curve does not pose significant challenges, the measurement of unsaturated hydraulic conductivity is time consuming and costly. The prediction of the unsaturated hydraulic conductivity curve from the soil water retention curve by pore-bundle models is a cost-effective and widely applied technique. A well-known problem of conductivity prediction for retention functions with wide pore-size distributions is the sharp drop in conductivity close to water saturation. This problematic behavior is well known for the van Genuchten model if the shape parameter n assumes values smaller than about 1.3. So far, the workaround for this artefact has been to introduce an explicit air-entry value into the capillary saturation function. However, this correction leads to a retention function which is not continuously differentiable and thus a discontinuous water capacity function. We present an improved parametrization of the hydraulic properties which uses the original capillary saturation function and introduces a maximum pore radius only in the pore-bundle model. Closed-form equations for the hydraulic conductivity function were derived for the unimodal and multimodal retention functions of van Genuchten and have been tested by sensitivity analysis and applied in curve fitting and inverse modeling of multistep outflow experiments. The resulting hydraulic conductivity function is smooth, increases monotonically close to saturation, and eliminates the sharp drop in conductivity close to saturation. Furthermore, the new model retains the smoothness and continuous differentiability of the water retention curve. We conclude that the resulting soil hydraulic functions are physically more reasonable than the ones predicted by previous approaches, and are thus ideally suited for numerical simulations

  4. A Sensitive and Automatic White Matter Fiber Tracts Model for Longitudinal Analysis of Diffusion Tensor Images in Multiple Sclerosis

    Science.gov (United States)

    Stamile, Claudio; Kocevar, Gabriel; Cotton, François; Durand-Dubief, Françoise; Hannoun, Salem; Frindel, Carole; Guttmann, Charles R. G.; Rousseau, David; Sappey-Marinier, Dominique

    2016-01-01

    Diffusion tensor imaging (DTI) is a sensitive tool for the assessment of microstructural alterations in brain white matter (WM). We propose a new processing technique to detect, local and global longitudinal changes of diffusivity metrics, in homologous regions along WM fiber-bundles. To this end, a reliable and automatic processing pipeline was developed in three steps: 1) co-registration and diffusion metrics computation, 2) tractography, bundle extraction and processing, and 3) longitudinal fiber-bundle analysis. The last step was based on an original Gaussian mixture model providing a fine analysis of fiber-bundle cross-sections, and allowing a sensitive detection of longitudinal changes along fibers. This method was tested on simulated and clinical data. High levels of F-Measure were obtained on simulated data. Experiments on cortico-spinal tract and inferior fronto-occipital fasciculi of five patients with Multiple Sclerosis (MS) included in a weekly follow-up protocol highlighted the greater sensitivity of this fiber scale approach to detect small longitudinal alterations. PMID:27224308

  5. Folding and stability of helical bundle proteins from coarse-grained models.

    Science.gov (United States)

    Kapoor, Abhijeet; Travesset, Alex

    2013-07-01

    We develop a coarse-grained model where solvent is considered implicitly, electrostatics are included as short-range interactions, and side-chains are coarse-grained to a single bead. The model depends on three main parameters: hydrophobic, electrostatic, and side-chain hydrogen bond strength. The parameters are determined by considering three level of approximations and characterizing the folding for three selected proteins (training set). Nine additional proteins (containing up to 126 residues) as well as mutated versions (test set) are folded with the given parameters. In all folding simulations, the initial state is a random coil configuration. Besides the native state, some proteins fold into an additional state differing in the topology (structure of the helical bundle). We discuss the stability of the native states, and compare the dynamics of our model to all atom molecular dynamics simulations as well as some general properties on the interactions governing folding dynamics.

  6. Multiscale modeling of microscale fiber reinforced composites with nano-engineered interphases

    CERN Document Server

    Kundalwalal, S I; Wardle, B L

    2015-01-01

    This study is focused on the mechanical properties and stress transfer behavior of multiscale composite containing nano- and micro-scale fillers. A novel concept has been proposed to exploit the remarkable mechanical properties of carbon nanotubes (CNTs) to improve the stress transfer through the interphases, enabling their additional functionalities not available otherwise at the microscale. The distinctive feature of construction of this composite is such that CNTs are dispersed around the microscale fiber to modify fiber-matrix interfacial adhesion. Accordingly, models are developed for hybrid composites. First, molecular dynamics simulations in conjunction with the Mori-Tanaka method are used to determine the effective elastic properties of nano-engineered interphase layer comprised of CNT bundles and epoxy. Subsequently, a micromechanical pull-out model is developed for the resulting multiscale composite and its stress transfer behavior is studied for different orientations of CNT bundles. The current pu...

  7. Tensile forces and failure characteristics of individual and bundles of roots embedded in soil - experiments and modeling

    Science.gov (United States)

    Schwarz, Massimiliano; Cohen, Dedis; Or, Dani

    2010-05-01

    The quantification of soil root reinforcement is relevant for many aspects of hillslope stability and forest management. The abundance and distribution of roots in upper soil layers determines slope stability and is considered a mitigating factor reducing shallow landslide hazard. Motivated by advances in modeling approaches that account for soil-root mechanical interactions at single root and bundle of roots of different geometries (the root bundle model - RBM), we set up a series of root pull out experiments in the laboratory and in the field to study the mechanical behavior of pulled roots. We focused on the role of displacement and root failure mechanisms in determining global tensile strength and failure dynamics in a root bundle. Strain controlled pull out tests of up to 13 roots in parallel each with its own force measurements provided insights into the detailed soil-root and bundle interactions . The results enabled systematic evaluation of factors such as root tortuosity and branching patterns for the prediction of single root pull out behavior, and demonstrated the importance of root diameter distribution for realistic prediction of global pullout behavior of a root bundle. Analyses of root-soil interface friction shows that force-displacement behavior varies for different combinations of soil types and water content. The maximal pull out interfacial friction ranges between 1 for wet sand (under 2 kPa confining pressure) and 17 kPa for dry sand (under 4.5 kPa confining pressure). These experiments were instrumental for calibration of the RBM which was later validated with six field experiments on natural root bundles of spruce (Picea abies L.). The tests demonstrated the progressive nature of failure of a bundle of roots under strain controlled conditions (such as formation of tension crack on a vegetated hillslope), and provide important insights regarding stress-strain behavior of natural root reinforcement.

  8. Identification of cotton fiber quality quantitative trait loci using intraspecific crosses derived from two near-isogenic lines differing in fiber bundle strength.

    Science.gov (United States)

    Cotton fiber properties are very important to the yarn quality. Modern high-speed textile operations around the world require long, strong and fine cotton fibers. The objective of this research was to identify stable fiber quantitative trait loci (QTL) that could be used in cotton breeding through m...

  9. Invariant Theory for Dispersed Transverse Isotropy: An Efficient Means for Modeling Fiber Splay

    Science.gov (United States)

    Freed, alan D.; Einstein, Daniel R.; Vesely, Ivan

    2004-01-01

    Most soft tissues possess an oriented architecture of collagen fiber bundles, conferring both anisotropy and nonlinearity to their elastic behavior. Transverse isotropy has often been assumed for a subset of these tissues that have a single macroscopically-identifiable preferred fiber direction. Micro-structural studies, however, suggest that, in some tissues, collagen fibers are approximately normally distributed about a mean preferred fiber direction. Structural constitutive equations that account for this dispersion of fibers have been shown to capture the mechanical complexity of these tissues quite well. Such descriptions, however, are computationally cumbersome for two-dimensional (2D) fiber distributions, let alone for fully three-dimensional (3D) fiber populations. In this paper, we develop a new constitutive law for such tissues, based on a novel invariant theory for dispersed transverse isotropy. The invariant theory is based on a novel closed-form splay invariant that can easily handle 3D fiber populations, and that only requires a single parameter in the 2D case. The model is polyconvex and fits biaxial data for aortic valve tissue as accurately as the standard structural model. Modification of the fiber stress-strain law requires no re-formulation of the constitutive tangent matrix, making the model flexible for different types of soft tissues. Most importantly, the model is computationally expedient in a finite-element analysis.

  10. Development of manufacturing process for large-diameter composite monofilaments by pyrolysis of resin-impregnated carbon-fiber bundles

    Science.gov (United States)

    Bradshaw, W. G.; Pinoli, P. C.; Vidoz, A. E.

    1972-01-01

    Large diameter, carbon-carbon composite, monofilaments were produced from the pyrolysis of organic precursor resins reinforced with high-strenght carbon fibers. The mechanical properties were measured before and after pyrolysis and the results were correlated with the properties of the constituents. The composite resulting from the combination of Thornel 75 and GW-173 resin precursor produced the highest tensile strength. The importance of matching strain-to-failure of fibers and matrix to obtain all the potential reinforcement of fibers is discussed. Methods are described to reduce, within the carbonaceous matrix, pyrolysis flaws which tend to reduce the composite strength. Preliminary studies are described which demonstrated the feasibility of fiber-matrix copyrolysis to alleviate matrix cracking and provide an improved matrix-fiber interfacial bonding.

  11. Integrated Planar Solid Oxide Fuel Cell: Steady-State Model of a Bundle and Validation through Single Tube Experimental Data

    Directory of Open Access Journals (Sweden)

    Paola Costamagna

    2015-11-01

    Full Text Available This work focuses on a steady-state model developed for an integrated planar solid oxide fuel cell (IP-SOFC bundle. In this geometry, several single IP-SOFCs are deposited on a tube and electrically connected in series through interconnections. Then, several tubes are coupled to one another to form a full-sized bundle. A previously-developed and validated electrochemical model is the basis for the development of the tube model, taking into account in detail the presence of active cells, interconnections and dead areas. Mass and energy balance equations are written for the IP-SOFC tube, in the classical form adopted for chemical reactors. Based on the single tube model, a bundle model is developed. Model validation is presented based on single tube current-voltage (I-V experimental data obtained in a wide range of experimental conditions, i.e., at different temperatures and for different H2/CO/CO2/CH4/H2O/N2 mixtures as the fuel feedstock. The error of the simulation results versus I-V experimental data is less than 1% in most cases, and it grows to a value of 8% only in one case, which is discussed in detail. Finally, we report model predictions of the current density distribution and temperature distribution in a bundle, the latter being a key aspect in view of the mechanical integrity of the IP-SOFC structure.

  12. Fiber-bundle microendoscopy with sub-diffuse reflectance spectroscopy and intensity mapping for multimodal optical biopsy of stratified epithelium.

    Science.gov (United States)

    Greening, Gage J; James, Haley M; Powless, Amy J; Hutcheson, Joshua A; Dierks, Mary K; Rajaram, Narasimhan; Muldoon, Timothy J

    2015-12-01

    Early detection of structural or functional changes in dysplastic epithelia may be crucial for improving long-term patient care. Recent work has explored myriad non-invasive or minimally invasive "optical biopsy" techniques for diagnosing early dysplasia, such as high-resolution microendoscopy, a method to resolve sub-cellular features of apical epithelia, as well as broadband sub-diffuse reflectance spectroscopy, a method that evaluates bulk health of a small volume of tissue. We present a multimodal fiber-based microendoscopy technique that combines high-resolution microendoscopy, broadband (450-750 nm) sub-diffuse reflectance spectroscopy (sDRS) at two discrete source-detector separations (374 and 730 μm), and sub-diffuse reflectance intensity mapping (sDRIM) using a 635 nm laser. Spatial resolution, magnification, field-of-view, and sampling frequency were determined. Additionally, the ability of the sDRS modality to extract optical properties over a range of depths is reported. Following this, proof-of-concept experiments were performed on tissue-simulating phantoms made with poly(dimethysiloxane) as a substrate material with cultured MDA-MB-468 cells. Then, all modalities were demonstrated on a human melanocytic nevus from a healthy volunteer and on resected colonic tissue from a murine model. Qualitative in vivo image data is correlated with reduced scattering and absorption coefficients.

  13. Asphaltene Formation Damage Stimulation by Ultrasound: An Analytical Approach Using Bundle of Tubes Modeling

    Directory of Open Access Journals (Sweden)

    Arash Rabbani

    2015-01-01

    Full Text Available This study presents a novel approach for bundle of tubes modeling of permeability impairment due to asphaltene-induced formation damage attenuated by ultrasound which has been rarely attended in the available literature. Model uses the changes of asphaltene particle size distribution (APSD as a function of time due to ultrasound radiation, while considering surface deposition and pore throat plugging mechanisms. The proposed model predicts the experimental data of permeability reduction during coinjection of solvent and asphaltenic oil into core with reasonable agreement. Viscosity variation due to sonication of crude oil is used to determine the fluid mobility applied in the model. The results of modeling indicate that the fluid samples exposed to ultrasound may cause much less asphaltene-induced damage inside the porous medium. Sensitivity analysis of the model parameters showed that there is an optimum time period during which the best stimulation efficiency is observed. The results of this work can be helpful to better understand the role of ultrasound prohibition in dynamic behavior of asphaltene deposition in porous media. Furthermore, the present model could be potentially utilized for modeling of other time-dependent particle induced damages.

  14. A Validation of Subchannel Based CHF Prediction Model for Rod Bundles

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae-Hyun; Kim, Seong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A large number of CHF data base were procured from various sources which included square and non-square lattice test bundles. CHF prediction accuracy was evaluated for various models including CHF lookup table method, empirical correlations, and phenomenological DNB models. The parametric effect of the mass velocity and unheated wall has been investigated from the experimental result, and incorporated into the development of local parameter CHF correlation applicable to APWR conditions. According to the CHF design criterion, the CHF should not occur at the hottest rod in the reactor core during normal operation and anticipated operational occurrences with at least a 95% probability at a 95% confidence level. This is accomplished by assuring that the minimum DNBR (Departure from Nucleate Boiling Ratio) in the reactor core is greater than the limit DNBR which accounts for the accuracy of CHF prediction model. The limit DNBR can be determined from the inverse of the lower tolerance limit of M/P that is evaluated from the measured-to-predicted CHF ratios for the relevant CHF data base. It is important to evaluate an adequacy of the CHF prediction model for application to the actual reactor core conditions. Validation of CHF prediction model provides the degree of accuracy inferred from the comparison of solution and data. To achieve a required accuracy for the CHF prediction model, it may be necessary to calibrate the model parameters by employing the validation results. If the accuracy of the model is acceptable, then it is applied to the real complex system with the inferred accuracy of the model. In a conventional approach, the accuracy of CHF prediction model was evaluated from the M/P statistics for relevant CHF data base, which was evaluated by comparing the nominal values of the predicted and measured CHFs. The experimental uncertainty for the CHF data was not considered in this approach to determine the limit DNBR. When a subchannel based CHF prediction model

  15. The Atiyah Bundle and Connections on a Principal Bundle

    Indian Academy of Sciences (India)

    Indranil Biswas

    2010-06-01

    Let be a ∞ manifold and a Lie a group. Let $E_G$ be a ∞ principal -bundle over . There is a fiber bundle $\\mathcal{C}(E_G)$ over whose smooth sections correspond to the connections on $E_G$. The pull back of $E_G$ to $\\mathcal{C}(E_G)$ has a tautological connection. We investigate the curvature of this tautological connection.

  16. TU-CD-BRB-05: Radiation Damage Signature of White Matter Fiber Bundles Using Diffusion Tensor Imaging (DTI)

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, T; Chapman, C; Lawrence, T; Cao, Y [University of Michigan, Ann Arbor, MI (United States); Tsien, C [Washington University at St. Louis, St. Louis, MO (United States)

    2015-06-15

    Purpose: To develop an automated and scalable approach and identify temporal, spatial and dosimetric patterns of radiation damage of white matter (WM) fibers following partial brain irradiation. Methods: An automated and scalable approach was developed to extract DTI features of 22 major WM fibers from 33 patients with low-grade/benign tumors treated by radiation therapy (RT). DTI scans of the patients were performed pre-RT, 3- and 6-week during RT, and 1, 6 and 18 months after RT. The automated tractography analysis was applied to 198 datasets as: (1) intra-subject registration of longitudinal DTI, (2) spatial normalization of individual-patient DTI to the Johns Hopkins WM Atlas, (3) automatic fiber tracking regulated by the WM Atlas, and (4) segmentation of WM into 22 major tract profiles. Longitudinal percentage changes in fractional anisotropy (FA), and mean, axial and radial diffusivity (MD/AD/RD) of each tract from pre-RT were quantified and correlated to 95%, 90% and 80% percentiles of doses and mean doses received by the tract. Heatmaps were used to identify clusters of significant correlation and reveal temporal, spatial and dosimetric signatures of WM damage. A multivariate linear regression was further carried out to determine influence of clinical factors. Results: Of 22 tracts, AD/MD changes in 12 tracts had significant correlation with doses, especially at 6 and 18 months post-RT, indicating progressive radiation damage after RT. Most interestingly, the DTI-index changes in the elongated tracts were associated with received maximum doses, suggesting a serial-structure behavior; while short association fibers were affected by mean doses, indicating a parallel-structure response. Conclusion: Using an automated DTI-tractography analysis of whole brain WM fibers, we reveal complex radiation damage patterns of WM fibers. Damage in WM fibers that play an important role in the neural network could be associated with late neurocognitive function declines

  17. Temperature-Dependent Modeling and Crosstalk Analysis in Mixed Carbon Nanotube Bundle Interconnects

    Science.gov (United States)

    Rai, Mayank Kumar; Garg, Harsh; Kaushik, B. K.

    2017-08-01

    The temperature-dependent circuit modeling and performance analysis in terms of crosstalk in capacitively coupled mixed carbon nanotube bundle (MCB) interconnects, at the far end of the victim line, have been analyzed with four different structures of MCBs (MCB-1, MCB-2, MCB-3 and MCB-4) constituted under case 1 and case 2 at the 22-nm technology node. The impact of tunneling and intershell coupling between adjacent shells on temperature-dependent equivalent circuit parameters of a multi-walled carbon nanotube bundle are also critically analyzed and employed for different MCB structures under case 1. A similar analysis is performed for copper interconnects and comparisons are made between results obtained through these analyses over temperatures ranging from 300 K to 500 K. The simulation program with integrated circuit emphasis simulation results reveals that, compared with all MCB structures under case 1 and case 2, with rise in temperature from 300 K to 500 K, crosstalk-induced noise voltage levels at the far end of the victim line are found to be significantly large in copper. It is also observed that due to the dominance of larger temperature-dependent resistance and ground capacitance in case 1, the MCB-2 is of lower crosstalk-induced noise voltage levels than other structures of MCBs. On the other hand, the MCB-1 has smaller time duration of victim output. Results further reveal that, compared with case 2 of MCB, with rise in temperatures, the victim line gets less prone to crosstalk-induced noise in MCB interconnects constituted under case 1, due to tunneling effects and intershell coupling between adjacent shells. Based on these comparative results, a promising MCB structure (MCB-2) has been proposed among other structures under the consideration of tunneling effects and intershell coupling (case 1).

  18. Adult hippocampal neurogenesis and plasticity in the infrapyramidal bundle of the mossy fiber projection: I. Co-regulation by activity

    Directory of Open Access Journals (Sweden)

    Benedikt eRömer

    2011-09-01

    Full Text Available Besides the massive plasticity at the level of synapses, we find in the hippocampus of adult mice and rats two systems with very strong macroscopic structural plasticity: adult neurogenesis, that is the lifelong generation of new granule cells, and dynamic changes in the mossy fibers linking the dentate gyrus to area CA3. In particular the anatomy of the infrapyramidal mossy fiber tract (IMF changes in response to a variety of extrinsic and intrinsic stimuli. Because mossy fibers are the axons of granule cells, the question arises whether these two types of plasticity are linked. Using immunohistochemistry for markers associated with axonal growth and POMC-GFP mice to visualize the postmitotic maturation phase of adult hippocampal neurogenesis, we found that newly generated mossy fibers preferentially but not exclusively contribute to the IMF. The neurogenic stimulus of an enriched environment increased the volume of the IMF. In addition, the IMF grew with a time course consistent with axonal outgrowth from the newborn neurons after the induction of neurogenic seizures using kainate,.These results indicate that two aspects of plasticity in the adult hippocampus, mossy fiber size and neurogenesis, are related and may share underlying mechanisms. In a second, related study (Krebs et al., Frontiers in Neurogenesis ##reference## we have addressed the question of whether there is a shared genetics underlying both traits.

  19. Infrared imaging of cotton fiber bundles using a focal plane array detector and a single reflectance accessory

    Science.gov (United States)

    Infrared imaging is gaining attention as a technique used in the examination of cotton fibers. This type of imaging combines spectral analysis with spatial resolution to create visual images that examine sample composition and distribution. Herein, we report the use of an infrared instrument equippe...

  20. Problem solving, working memory, and motor correlates of association and commissural fiber bundles in normal aging: a quantitative fiber tracking study.

    Science.gov (United States)

    Zahr, Natalie M; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V

    2009-02-01

    Normal aging is accompanied by decline in selective cognitive and motor functions. A concurrent decline in regional white matter integrity, detectable with diffusion tensor imaging (DTI), potentially contributes to waning function. DTI analysis of white matter loci indicates an anterior-to-posterior gradient distribution of declining fractional anisotropy (FA) and increasing diffusivity with age. Quantitative fiber tracking can be used to determine regional patterns of normal aging of fiber systems and test the functional ramifications of the DTI metrics. Here, we used quantitative fiber tracking to examine age effects on commissural (genu and splenium), bilateral association (cingulate, inferior longitudinal fasciculus and uncinate), and fornix fibers in 12 young and 12 elderly healthy men and women and tested functional correlates with concurrent assessment of a wide range of neuropsychological abilities. Principal component analysis of cognitive and motor tests on which the elderly achieved significantly lower scores than the young group was used for data reduction and yielded three factors: Problem Solving, Working Memory, and Motor. Age effects--lower FA or higher diffusivity--in the elderly were prominent in anterior tracts, specifically, genu, fornix, and uncinate fibers. Differential correlations between FA or diffusivity in fiber tracts and scores on Problem Solving, Working Memory, or Motor factors provide convergent validity to the biological meaningfulness of the integrity of the fibers tracked. The observed pattern of relations supports the possibility that regional degradation of white matter fiber integrity is a biological source of age-related functional compromise and may have the potential to limit accessibility to alternative neural systems to compensate for compromised function.

  1. De Novo Design of Helical Bundles as Models for Understanding Protein Folding and Function

    OpenAIRE

    Hill, R. Blake; Raleigh, Daniel P.; Lombardi, Angela; DeGrado, William F.

    2000-01-01

    De novo protein design has proven to be a powerful tool for understanding protein folding, structure, and function. In this Account, we highlight aspects of our research on the design of dimeric, four-helix bundles. Dimeric, four-helix bundles are found throughout nature, and the history of their design in our laboratory illustrates our hierarchic approach to protein design. This approach has been successfully applied to create a completely native-like protein. Structural and mutational analy...

  2. Cadherin-23 may be dynamic in hair bundles of the model sea anemone Nematostella vectensis.

    Directory of Open Access Journals (Sweden)

    Pei-Ciao Tang

    Full Text Available Cadherin 23 (CDH23, a component of tip links in hair cells of vertebrate animals, is essential to mechanotransduction by hair cells in the inner ear. A homolog of CDH23 occurs in hair bundles of sea anemones. Anemone hair bundles are located on the tentacles where they detect the swimming movements of nearby prey. The anemone CDH23 is predicted to be a large polypeptide featuring a short exoplasmic C-terminal domain that is unique to sea anemones. Experimentally masking this domain with antibodies or mimicking this domain with free peptide rapidly disrupts mechanotransduction and morphology of anemone hair bundles. The loss of normal morphology is accompanied, or followed by a decrease in F-actin in stereocilia of the hair bundles. These effects were observed at very low concentrations of the reagents, 0.1-10 nM, and within minutes of exposure. The results presented herein suggest that: (1 the interaction between CDH23 and molecular partners on stereocilia of hair bundles is dynamic and; (2 the interaction is crucial for normal mechanotransduction and morphology of hair bundles.

  3. Fiber pull-out test and single fiber fragmentation test - analysis and modelling

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Lilholt, Hans

    2016-01-01

    for fiber/matrix debonding and a frictional sliding shear stress. Results for the debond length and fiber debond displacement are compared with results from similar models for single fiber pull-out experiments where the specimen is gripped at the end opposite to the end where the fiber is pulling......-out and with results for a single fiber fragmentation test....

  4. Model-based traction force microscopy reveals differential tension in cellular actin bundles.

    Science.gov (United States)

    Soiné, Jérôme R D; Brand, Christoph A; Stricker, Jonathan; Oakes, Patrick W; Gardel, Margaret L; Schwarz, Ulrich S

    2015-03-01

    Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs.

  5. Model-based traction force microscopy reveals differential tension in cellular actin bundles.

    Directory of Open Access Journals (Sweden)

    Jérôme R D Soiné

    2015-03-01

    Full Text Available Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs.

  6. Permeability estimation of porous media by using an improved capillary bundle model based on micro-CT derived pore geometries

    Science.gov (United States)

    Jiang, Lanlan; Liu, Yu; Teng, Ying; Zhao, Jiafei; Zhang, Yi; Yang, Mingjun; Song, Yongchen

    2017-01-01

    The purpose of this work is to develop a permeability estimation method for porous media. This method is based on an improved capillary bundle model by introducing some pore geometries. We firstly carried out micro-CT scans to extract the 3D digital model of porous media. Then we applied a maximum ball extraction method to the digital model to obtain the topological and geometrical pore parameters such as the pore radius, the throat radius and length and the average coordination number. We also applied a random walker method to calculate the tortuosity factors of porous media. We improved the capillary bundle model by introducing the pore geometries and tortuosity factors. Finally, we calculated the absolute permeabilities of four kinds of porous media formed of glass beads and compared the results with experiments and several other models to verify the improved model. We found that the calculated permeabilities using this improved capillary bundle model show better agreement with the measured permeabilities than the other methods.

  7. A theoretical model of film condensation in a bundle of horizontal low finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Honda, H.; Nozu, S.; Takeda, Y. (Okayama Univ. (Japan))

    1989-05-01

    The previous theoretical model of film condensation on a single horizontal low finned tube is extended to include the effect of condensate inundation. Based on the flow characteristics of condensate on a vertical column of horizontal low finned tubes, two major flow modes, the column mode and the sheet mode, are considered. In the column mode, the surface of the lower tubes is divided into the portion under the condensate column where the condensate flow is affected by the impinging condensate from the upper tubes, and the portion between the condensate columns where the condensate flow is not affected by the impinging condensate. In the sheet mode, the whole tube surface is assumed to be affected by the impinging condensate. Sample calculations for practical conditions show that the effects of the fin spacing and the number of vertical tube rows on the heat transfer performance is significant for R-12, while the effects are small for steam. The predicted value of the heat transfer coefficient for each tube row compares well with available experimental data, including four fluids and five tube bundles.

  8. Bundled Payment in Total Joint Care: Survey of AAHKS Membership Attitudes and Experience with Alternative Payment Models.

    Science.gov (United States)

    Kamath, Atul F; Courtney, Paul M; Bozic, Kevin J; Mehta, Samir; Parsley, Brian S; Froimson, Mark I

    2015-12-01

    The goal of alternative payment models (APMs), particularly bundling of payments in total joint arthroplasty (TJA), is to incentivize physicians, hospitals, and payers to deliver quality care at lower cost. To study the effect of APMs on the field of adult reconstruction, we conducted a survey of AAHKS members using an electronic questionnaire format. Of the respondents, 61% are planning to or participate in an APM. 45% of respondents feel that a bundled payment system will be the most effective model to improve quality and to reduce costs. Common concerns were disincentives to operate on high-risk patients (94%) and uncertainty about revenue sharing (79%). While many members feel that APMs may improve value in TJA, surgeons continue to have reservations about implementation.

  9. Modeling of fluidelastic instability in tube bundle subjected to two-phase cross-flow

    Energy Technology Data Exchange (ETDEWEB)

    Sawadogo, T.P.; Mureithi, N.W.; Azizian, R.; Pettigrew, M.J. [Ecole Polytechnique, Dept. of Mechanical Engineering, BWC/AECL/NSERC Chair of Fluid-Structure Interaction, Montreal, Quebec (Canada)

    2009-07-01

    Tube arrays in steam generators and heat exchangers operating in two-phase cross-flow are subjected sometimes to strong vibration due mainly to turbulence buffeting and fluidelastic forces. This can lead to tube damage by fatigue or fretting wear. A computer implementation of a fluidelastic instability model is proposed to determine with improved accuracy the fluidelastic forces and hence the critical instability flow velocity. Usually the fluidelastic instability is 'predicted', using the Connors relation with K=3. While the value of K can be determined experimentally to get an accurate prediction of the instability, the Connors relation does not allow good estimation of the fluid forces. Consequently the RMS value of the magnitude of vibration of the tube bundle, necessary to evaluate the work rate and the tube wear is only poorly estimated. The fluidelastic instability analysis presented here is based on the quasi-steady model, originally developed for single phase flow. The fluid forces are expressed in terms of the quasi-static drag and lift force coefficients and their derivatives which are determined experimentally. The forces also depend on the tube displacement and velocity. In the computer code ABAQUS, the fluid forces are provided in the user subroutines VDLOAD or VUEL. A typical simulation of the vibration of a single flexible tube within an array in two phase cross-flow is done in ABAQUS and the results are compared with the experimental measurements for a tube with similar physical properties. For a cantilever tube, in two phase cross-flow of void fraction 60%, the numerical critical flow velocity was 2.0 m/s compared to 1.8 m/s obtained experimentally. The relative error was 5% compared to 26.6% for the Connors relation with K=3. The simulation of the vibration of a typical tube in a steam generator is also presented. The numerical results show good agreement with experimental measurements. (author)

  10. Dynamic Model and Motion Mechanism of Magnetotactic Bacteria with Two Lateral Flagellar Bundles

    Institute of Scientific and Technical Information of China (English)

    Cenyu Yang; Chuanfang Chen; Qiufeng Ma; Longfei Wu; Tao Song

    2012-01-01

    Magnetotactic Bacteria (MTB) propel themselves by rotating their flagella and swim along the magnetic field lines.To analyze the motion of MTB,MTB magneto-ovoid strain MO-1 cells,each with two bundles of flagella,were taken as research object.The six-degrees-of-freedom (6-DoF) dynamic model of MO-1 was established based on the Newton-Euler dynamic equations.In particular,the interaction between the flagellum and fluid was considered by the resistive force theory.The simulated motion trajectory of MTB was found to consist of two kinds of helices:small helices resulting from the imbalance of force due to flagellar rotation,and large helices arising from the different directions of the rotation axis of the cell body and the propulsion axis of the flagellum.The motion behaviours of MTB in various magnetic fields were studied,and the simulation results agree well with the experiment results.In addition,the rotation frequency of the flagella was estimated at 1100 Hz,which is consistent with the average rotation rate for Na+-driven flagellar motors.The included angle of the magnetosome chain was predicted at 40° that is located within 20° to 60° range of the observed results.The results indicate the correctness of the dynamic model,which may aid research on the operation and control of MTB-propelled micro-actuators.Meanwhile,the motion behaviours of MTB may inspire the development of micro-robots with new driving mechanisms.

  11. Perspective: adopting an asset bundles model to support and advance minority students' careers in academic medicine and the scientific pipeline.

    Science.gov (United States)

    Johnson, Japera; Bozeman, Barry

    2012-11-01

    The authors contend that increasing diversity in academic medicine, science, technology, engineering, and mathematics requires the adoption of a systematic approach to retain minority high school and college students as they navigate the scientific pipeline. Such an approach should focus on the interrelated and multilayered challenges that these students face. The authors fuse an alternative conceptualization of the scientific and technical human capital theoretical framework and the theory of social identity contingencies to offer a conceptual model for targeting the critical areas in which minority students may need additional support to continue toward careers in science. Their proposed asset bundles model is grounded in the central premise that making greater progress in recruiting and retaining minorities likely requires institutions to respond simultaneously to various social cues that signal devaluation of certain identities (e.g., gender, race, socioeconomic status). The authors define "asset bundles" as the specific sets of abilities and resources individuals develop that help them succeed in educational and professional tasks, including but not limited to science and research. The model consists of five asset bundles, each of which is supported in the research literature as a factor relevant to educational achievement and, the authors contend, may lead to improved and sustained diversity: educational endowments, science socialization, network development, family expectations, and material resources. Using this framework, they suggest possible ways of thinking about the task of achieving diversity as well as guideposts for next steps. Finally, they discuss the feasibility of implementing such an approach.

  12. Modeling creep behavior of fiber composites

    Science.gov (United States)

    Chen, J. L.; Sun, C. T.

    1988-01-01

    A micromechanical model for the creep behavior of fiber composites is developed based on a typical cell consisting of a fiber and the surrounding matrix. The fiber is assumed to be linearly elastic and the matrix nonlinearly viscous. The creep strain rate in the matrix is assumed to be a function of stress. The nominal stress-strain relations are derived in the form of differential equations which are solved numerically for off-axis specimens under uniaxial loading. A potential function and the associated effective stress and effective creep strain rates are introduced to simplify the orthotropic relations.

  13. CFD modelling of supercritical water flow and heat transfer in a 2 × 2 fuel rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Podila, Krishna, E-mail: krishna.podila@cnl.ca; Rao, Yanfei, E-mail: yanfei.rao@cnl.ca

    2016-05-15

    Highlights: • Bare and wire wrapped 2 × 2 fuel rod bundles were modelled with CFD. • Sensitivity of predictions to SST k–ω, v{sup 2}–f and turbulent Prandtl number was tested. • CFD predictions were assessed with experimentally reported fuel wall temperatures. - Abstract: In the present assessment of the CFD code, two heat transfer experiments using water at supercritical pressures were selected: a 2 × 2 rod bare bundle; and a 2 × 2 rod wire-wrapped bundle. A systematic 3D CFD study of the fluid flow and heat transfer at supercritical pressures for the rod bundle geometries was performed with the key parameter being the fuel rod wall temperature. The sensitivity of the prediction to the steady RANS turbulence models of SST k–ω, v{sup 2}–f and turbulent Prandtl number (Pr{sub t}) was tested to ensure the reliability of the predicted wall temperature obtained for the current analysis. Using the appropriate turbulence model based on the sensitivity analysis, the mesh refinement, or the grid convergence, was performed for the two geometries. Following the above sensitivity analyses and mesh refinements, the recommended CFD model was then assessed against the measurements from the two experiments. It was found that the CFD model adopted in the current work was able to qualitatively capture the trends reported by the experiments but the degree of temperature rise along the heated length was underpredicted. Moreover, the applicability of turbulence models varied case-by-case and the performance evaluation of the turbulence models was primarily based on its ability to predict the experimentally reported fuel wall temperatures. Of the two turbulence models tested, the SST k–ω was found to be better at capturing the measurements at pseudo-critical and supercritical test conditions, whereas the v{sup 2}–f performed better at sub-critical test conditions. Along with the appropriate turbulence model, CFD results were found to be particularly sensitive to

  14. Development of Bundle Position-Wise Linear Model for Predicting the Pressure Tube Diametral Creep in CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Yong [Korea Electric Power Corporation Research Institute, Daejeon (Korea, Republic of); Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)

    2011-08-15

    Diametral creep of the pressure tube (PT) is one of the principal aging mechanisms governing the heat transfer and hydraulic degradation of a heat transport system. PT diametral creep leads to diametral expansion that affects the thermal hydraulic characteristics of the coolant channels and the critical heat flux. Therefore, it is essential to predict the PT diametral creep in CANDU reactors, which is caused mainly by fast neutron irradiation, reactor coolant temperature and so forth. The currently used PT diametral creep prediction model considers the complex interactions between the effects of temperature and fast neutron flux on the deformation of PT zirconium alloys. The model assumes that long-term steady-state deformation consists of separable, additive components from thermal creep, irradiation creep and irradiation growth. This is a mechanistic model based on measured data. However, this model has high prediction uncertainty. Recently, a statistical error modeling method was developed using plant inspection data from the Bruce B CANDU reactor. The aim of this study was to develop a bundle position-wise linear model (BPLM) to predict PT diametral creep employing previously measured PT diameters and HTS operating conditions. There are twelve bundles in a fuel channel and for each bundle, a linear model was developed by using the dependent variables, such as the fast neutron fluxes and the bundle temperatures. The training data set was selected using the subtractive clustering method. The data of 39 channels that consist of 80 percent of a total of 49 measured channels from Units 2, 3 and 4 were used to develop the BPLM models. The remaining 10 channels' data were used to test the developed BPLM models. The BPLM was optimized by the maximum likelihood estimation method. The developed BPLM to predict PT diametral creep was verified using the operating data gathered from the Units 2,3 and 4 in Korea. Two error components for the BPLM, which are the

  15. Turbulet flow in a model nuclear fuel rod bundle containing partial flow blockages

    Energy Technology Data Exchange (ETDEWEB)

    Creer, J.M.; Rowe, D.S.; Bates, J.M.; Sutey, A.M.

    1977-03-01

    Local velocity and turbulence intensity measurements were obtained with a laser Doppler anemometer near flow blockages in an unheated 7 x 7 rod bundle. Sleeve blockages were positioned on the center nine rods to create area reductions of 70 and 90 percent in the center four subchannels of the bundle. Experimental results indicated that severe flow disturbances existed downstream from the blockage clusters and showed that only minor disturbances can be expected upstream from the blockages. Recirculation zones for both 70 and 90 percent blockages were detected downstream from the blockage clusters and persisted for approximately three to five subchannel hydraulic diameters depending on blockage severity. The experimental velocity results obtained with blockage clusters located midway between grid spacers were successfully predicted using the COBRA computer program.

  16. Strategic and welfare implications of bundling

    DEFF Research Database (Denmark)

    Martin, Stephen

    1999-01-01

    A standard oligopoly model of bundling shows that bundling by a firm with a monopoly over one product has a strategic effect because it changes the substitution relationships between the goods among which consumers choose. Bundling in appropriate proportions is privately profitable, reduces rival......' profits and overall welfare, and may drive rivals from the market...

  17. Effect of ageing in fibre bundle models on the evolution of acoustic and silent damage in time-dependent failure

    Science.gov (United States)

    Lennartz, S.; Main, I. G.; Zaiser, M.; Kun, F.

    2012-04-01

    The spatio-temporal evolution of damage in brittle materials is often modelled by fibre bundle models. In real fibre bundles (such as suspension bridge ropes), and in other composite materials such as rocks and ceramics, the evolution of damage as a function of stress and time can be recorded using acoustic emissions (AE), and used to asses the integrity of the sample and its lifetime. Such monitoring however tells only part of the story, since time-dependent, effectively 'silent' damage also occurs without AE, and small AE events may not be recorded below some recording threshold set by the background noise. The proportion of seismic to aseismic deformation is important for a number of applications, for example providing a strong constraint on plate boundary dynamics and estimates of earthquake hazard. Accordingly we have modified the usual fibre bundle model by introducing some additional ageing, which results in silent damage below a nominal threshold for more dynamic deformation. This enables us to model the effect of the model parameters on the ratio of acoustic to total damage, and how it evolves in time under a given stress history. We found that the silent damage dominates the process and that for a constant applied stress the ratio between acoustic and silent emissions is approximately constant over a wide range of time. The proportionality factor depends strongly on the applied stress and only weakly on the ageing parameter, while it is the other way around for the failure time which depends more on the ageing parameter than on the applied stress.

  18. A fiber-bridging model with stress gradient effects

    Science.gov (United States)

    Yi, Sun; Tao, Li

    2000-05-01

    A fiber-bridging model with stress gradient effects is proposed for unidirectional fiber-reinforced composites. The stress gradient terms are introduced by solving a micromechanical model under a non-uniform stress loading. It is shown that the stress gradient effect is significant on both the fiber-bridging stress distribution and the value of the critical load of fiber failure.

  19. SIZE EFFECTS IN THE TENSILE STRENGTH OF UNIDIRECTIONAL FIBER COMPOSITES

    Energy Technology Data Exchange (ETDEWEB)

    M. SIVASAMBU; ET AL

    1999-08-01

    Monte Carlo simulation and theoretical modeling are used to study the statistical failure modes in unidirectional composites consisting of elastic fibers in an elastic matrix. Both linear and hexagonal fiber arrays are considered, forming 2D and 3D composites, respectively. Failure is idealized using the chain-of-bundles model in terms of {delta}-bundles of length {delta}, which is the length-scale of fiber load transfer. Within each {delta}-bundle, fiber load redistribution is determined by local load-sharing models that approximate the in-plane fiber load redistribution from planar break clusters as predicted from 2D and 3D shear-lag models. As a result these models are 1D and 2D, respectively. Fiber elements have random strengths following either the Weibull or the power-law distribution with shape and scale parameters {rho} and {sigma}{sub {delta}}, respectively. Simulations of {delta}-bundle failure, reveal two regimes. When fiber strength variability is low (roughly {rho} > 2) the dominant failure mode is by growing clusters of fiber breaks up to instability. When this variability is high (roughly 0 < {rho} < 1) cluster formation is suppressed by a dispersed fiber failure mode. For these two cases, closed-form approximations to the strength distribution of a {delta}-bundle are developed under the local load-sharing model and an equal load-sharing model of Daniels, respectively. The results compare favorably with simulations on {delta}-bundles with up to 1500 fibers. The location of the transition in terms of {rho} is affected by the upper tail properties of the fiber strength distributions as well as the number of fibers.

  20. A Gauss-Kronrod-Trapezoidal integration scheme for modeling biological tissues with continuous fiber distributions.

    Science.gov (United States)

    Hou, Chieh; Ateshian, Gerard A

    2016-01-01

    Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element (FE) analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation.

  1. Functional bundles of the medial patellofemoral ligament.

    Science.gov (United States)

    Kang, Hui Jun; Wang, Fei; Chen, Bai Cheng; Su, Yan Ling; Zhang, Zhan Chi; Yan, Chang Bao

    2010-11-01

    The purpose of this study was to explore the anatomy and evaluate the function of the medial patellofemoral ligament (MPFL). Anatomical dissection was performed on 12 fresh-frozen knee specimens. The MPFL is a condensation of capsular fibers, which originates at the medial femoral condyle. It runs transversely and inserts to the medial edge of the patella. With the landmark of the medial femur epicondyle (MFE), the femoral origination was located: just 8.90 ± 3.27 mm proximally and 13.47 ± 3.68 mm posteriorly to the MFE. The most interesting finding in present study was functional bundles of its patellar insertion. Approximately from the femoral origination point, fibers of the MPFL form two relatively concentrated fiber bundles: the inferior-straight bundle and the superior-oblique bundle. The whole length of each was 71.78 ± 5.51 and 73.67 ± 5.40 mm, respectively. The included angle between bundles was 15.1° ± 2.1°. Although the superior-oblique bundle and the inferior-straight bundle run on the patellar MPFL inferiorly and superiorly, respectively, as their name indicates, the two bundles are not entirely separated, which make MPFL one intact structure. The inferior-straight bundle is the main static soft tissue restraints where the superior-oblique bundle associated with vastus medialis obliquus (VMO) is to serve as the main dynamic soft tissue restraints. So this finding may provide the theoretical foundation for the anatomical reconstruction of the MPFL and shed lights on the future researchers.

  2. Ephaptic coupling of myelinated nerve fibers

    DEFF Research Database (Denmark)

    Binczak, S.; Eilbeck, J. C.; Scott, Alwyn C.

    2001-01-01

    Numerical predictions of a simple myelinated nerve fiber model are compared with theoretical results in the continuum and discrete limits, clarifying the nature of the conduction process on an isolated nerve axon. Since myelinated nerve fibers are often arranged in bundles, this model is used...... to study ephaptic (nonsynaptic) interactions between impulses on parallel fibers, which may play a functional role in neural processing. (C) 2001 Published by Elsevier Science B.V....

  3. Reconnection of superfluid vortex bundles.

    Science.gov (United States)

    Alamri, Sultan Z; Youd, Anthony J; Barenghi, Carlo F

    2008-11-21

    Using the vortex filament model and the Gross-Pitaevskii nonlinear Schroedinger equation, we show that bundles of quantized vortex lines in He II are structurally robust and can reconnect with each other maintaining their identity. We discuss vortex stretching in superfluid turbulence and show that, during the bundle reconnection process, kelvin waves of large amplitude are generated, in agreement with the finding that helicity is produced by nearly singular vortex interactions in classical Euler flows.

  4. On Double Vector Bundles

    Institute of Scientific and Technical Information of China (English)

    Zhuo CHEN; Zhang Ju LIU; Yun He SHENG

    2014-01-01

    In this paper, we construct a category of short exact sequences of vector bundles and prove that it is equivalent to the category of double vector bundles. Moreover, operations on double vector bundles can be transferred to operations on the corresponding short exact sequences. In particular, we study the duality theory of double vector bundles in term of the corresponding short exact sequences. Examples including the jet bundle and the Atiyah algebroid are discussed.

  5. On Double Vector Bundles

    OpenAIRE

    Chen, Zhuo; Liu, Zhangju; Sheng, Yunhe

    2011-01-01

    In this paper, we construct a category of short exact sequences of vector bundles and prove that it is equivalent to the category of double vector bundles. Moreover, operations on double vector bundles can be transferred to operations on the corresponding short exact sequences. In particular, we study the duality theory of double vector bundles in term of the corresponding short exact sequences. Examples including the jet bundle and the Atiyah algebroid are discussed.

  6. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services.

    Science.gov (United States)

    Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien

    2014-09-23

    Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers' adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs.

  7. Noncommutative principal bundles through twist deformation

    CERN Document Server

    Aschieri, Paolo; Pagani, Chiara; Schenkel, Alexander

    2016-01-01

    We construct noncommutative principal bundles deforming principal bundles with a Drinfeld twist (2-cocycle). If the twist is associated with the structure group then we have a deformation of the fibers. If the twist is associated with the automorphism group of the principal bundle, then we obtain noncommutative deformations of the base space as well. Combining the two twist deformations we obtain noncommutative principal bundles with both noncommutative fibers and base space. More in general, the natural isomorphisms proving the equivalence of a closed monoidal category of modules and its twist related one are used to obtain new Hopf-Galois extensions as twists of Hopf-Galois extensions. A sheaf approach is also considered, and examples presented.

  8. Principal noncommutative torus bundles

    DEFF Research Database (Denmark)

    Echterhoff, Siegfried; Nest, Ryszard; Oyono-Oyono, Herve

    2008-01-01

    In this paper we study continuous bundles of C*-algebras which are non-commutative analogues of principal torus bundles. We show that all such bundles, although in general being very far away from being locally trivial bundles, are at least locally trivial with respect to a suitable bundle version...... of bivariant K-theory (denoted RKK-theory) due to Kasparov. Using earlier results of Echterhoff and Williams, we shall give a complete classification of principal non-commutative torus bundles up to equivariant Morita equivalence. We then study these bundles as topological fibrations (forgetting the group...... action) and give necessary and sufficient conditions for any non-commutative principal torus bundle being RKK-equivalent to a commutative one. As an application of our methods we shall also give a K-theoretic characterization of those principal torus-bundles with H-flux, as studied by Mathai...

  9. A FIBER-BRIDGING MODEL WITH STRESS GRADIENT EFFECTS

    Institute of Scientific and Technical Information of China (English)

    孙毅; 李涛

    2000-01-01

    Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China)ABSTRACT: A fiber-bridging model with stress gradient effects is proposed for unidirectional fiber-reinforced composites. The stress gradient terms are introduced by solving a micromechanical model under a non-uniform stress loading. It is shown that the stress gradient effect is significant on both the fiber-bridging stress distribution and the value of the critical load of fiber failure.

  10. Photonic crystal fiber modelling and applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Libori, Stig E. Barkou

    2001-01-01

    Photonic crystal fibers having a microstructured air-silica cross section offer new optical properties compared to conventional fibers for telecommunication, sensor, and other applications. Recent advances within research and development of these fibers are presented.......Photonic crystal fibers having a microstructured air-silica cross section offer new optical properties compared to conventional fibers for telecommunication, sensor, and other applications. Recent advances within research and development of these fibers are presented....

  11. THE ROLE OF POROUS MEDIA IN MODELING FLUID FLOW WITHIN HOLLOW FIBER MEMBRANES OF THE TOTAL ARTIFICIAL LUNG.

    Science.gov (United States)

    Khanafer, Khalil; Cook, Keith; Marafie, Alia

    2012-01-01

    A numerical study was conducted to analyze fluid flow within hollow fiber membranes of the artificial lungs. The hollow fiber bundle was approximated using a porous media model. In addition, the transport equations were solved using the finite-element formulation based on the Galerkin method of weighted residuals. Comparisons with previously published work on the basis of special cases were performed and found to be in excellent agreement. A Newtonian viscous fluid model for the blood was used. Different flow models for porous media, such as the Brinkman-extended Darcy model, Darcy's law model, and the generalized flow model, were considered. Results were obtained in terms of streamlines, velocity vectors, and pressure distribution for various Reynolds numbers and Darcy numbers. The results from this investigation showed that the pressure drop across the artificial lung device increased with an increase in the Reynolds number. In addition, the pressure drop was found to increase significantly for small Darcy numbers.

  12. Modeling the Effect of Helical Fiber Structure on Wood Fiber Composite Elastic Properties

    Science.gov (United States)

    Marklund, Erik; Varna, Janis

    2009-08-01

    The effect of the helical wood fiber structure on in-plane composite properties has been analyzed. The used analytical concentric cylinder model is valid for an arbitrary number of phases with monoclinic material properties in a global coordinate system. The wood fiber was modeled as a three concentric cylinder assembly with lumen in the middle followed by the S3, S2 and S1 layers. Due to its helical structure the fiber tends to rotate upon loading in axial direction. In most studies on the mechanical behavior of wood fiber composites this extension-twist coupling is overlooked since it is assumed that the fiber will be restricted from rotation within the composite. Therefore, two extreme cases, first modeling fiber then modeling composite were examined: (i) free rotation and (ii) no rotation of the cylinder assembly. It was found that longitudinal fiber modulus depending on the microfibril angle in S2 layer is very sensitive with respect to restrictions for fiber rotation. In-plane Poisson’s ratio was also shown to be greatly influenced. The results were compared to a model representing the fiber by its cell wall and using classical laminate theory to model the fiber. It was found that longitudinal fiber modulus correlates quite well with results obtained with the concentric cylinder model, whereas Poisson’s ratio gave unsatisfactory matching. Finally using typical thermoset resin properties the longitudinal modulus and Poisson’s ratio of an aligned softwood fiber composite with varying fiber content were calculated for various microfibril angles in the S2 layer.

  13. Two-tensor streamline tractography through white matter intra-voxel fiber crossings

    DEFF Research Database (Denmark)

    Qazi, Arish Asif; Kindlmann, G; O'Donnell, L;

    2008-01-01

    An inherent drawback of the traditional diffusion tensor model is its limited ability to provide detailed information about multidirectional fiber architecture within a voxel. This leads to erroneous fiber tractography results in locations where fiber bundles cross each other. In this paper, we...

  14. Predicting functional cortical ROIs via DTI-derived fiber shape models.

    Science.gov (United States)

    Zhang, Tuo; Guo, Lei; Li, Kaiming; Jing, Changfeng; Yin, Yan; Zhu, Dajiang; Cui, Guangbin; Li, Lingjiang; Liu, Tianming

    2012-04-01

    Studying structural and functional connectivities of human cerebral cortex has drawn significant interest and effort recently. A fundamental and challenging problem arises when attempting to measure the structural and/or functional connectivities of specific cortical networks: how to identify and localize the best possible regions of interests (ROIs) on the cortex? In our view, the major challenges come from uncertainties in ROI boundary definition, the remarkable structural and functional variability across individuals and high nonlinearities within and around ROIs. In this paper, we present a novel ROI prediction framework that localizes ROIs in individual brains based on their learned fiber shape models from multimodal task-based functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data. In the training stage, shape models of white matter fibers are learnt from those emanating from the functional ROIs, which are activated brain regions detected from task-based fMRI data. In the prediction stage, functional ROIs are predicted in individual brains based only on DTI data. Our experiment results show that the average ROI prediction error is around 3.94 mm, in comparison with benchmark data provided by working memory and visual task-based fMRI. Our work demonstrated that fiber bundle shape models derived from DTI data are good predictors of functional cortical ROIs.

  15. 天然肠衣优化搭配的数学模型%The Mathematical Model on Natural Casing Bundling Problem

    Institute of Scientific and Technical Information of China (English)

    黄开情

    2012-01-01

    天然肠衣搭配问题是一个多目标组合优化问题,既要求最终成品捆数越大越好,又要求最短长度最长的成品越多越好。本文以成品捆数最大为首要目标,采用分组多级优化的方法,首先对原料进行适当地分组后分别优化,然后以剩余原料作为下一级赋值再分组优化,逐级优化,建立起完整的数学模型,最后对给出的实际数据进行求解,最终求得共188捆,并给出搭配方案。%Natural Casing Bundling Problem is a multi-objective combinatorial optimization problem that requires not only the largest number of bundles but also the largest number of the bundles in the largest minimum length.In this paper,for the primary goal of achieving the maximum number of finished bundles,we adopt the grouped-multilevel optimization.Firstly we optimize the material segments respectively after grouping them properly.And then we optimize the surplus material by the same way again and again.At last,we establish a complete mathematical model.As an application,the bundling scheme is given out according to the actual data,and the final answer of 188 bundles is obtained.

  16. Research on Operation Strategy for Bundled Wind-thermal Generation Power Systems Based on Two-Stage Optimization Model

    Science.gov (United States)

    Sun, Congcong; Wang, Zhijie; Liu, Sanming; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu

    2017-05-01

    Wind power has the advantages of being clean and non-polluting and the development of bundled wind-thermal generation power systems (BWTGSs) is one of the important means to improve wind power accommodation rate and implement “clean alternative” on generation side. A two-stage optimization strategy for BWTGSs considering wind speed forecasting results and load characteristics is proposed. By taking short-term wind speed forecasting results of generation side and load characteristics of demand side into account, a two-stage optimization model for BWTGSs is formulated. By using the environmental benefit index of BWTGSs as the objective function, supply-demand balance and generator operation as the constraints, the first-stage optimization model is developed with the chance-constrained programming theory. By using the operation cost for BWTGSs as the objective function, the second-stage optimization model is developed with the greedy algorithm. The improved PSO algorithm is employed to solve the model and numerical test verifies the effectiveness of the proposed strategy.

  17. Distinguishing Differential Testlet Functioning from Differential Bundle Functioning Using the Multilevel Measurement Model

    Science.gov (United States)

    Beretvas, S. Natasha; Walker, Cindy M.

    2012-01-01

    This study extends the multilevel measurement model to handle testlet-based dependencies. A flexible two-level testlet response model (the MMMT-2 model) for dichotomous items is introduced that permits assessment of differential testlet functioning (DTLF). A distinction is made between this study's conceptualization of DTLF and that of…

  18. Carbon fiber dispersion models used for risk analysis calculations

    Science.gov (United States)

    1979-01-01

    For evaluating the downwind, ground level exposure contours from carbon fiber dispersion, two fiber release scenarios were chosen. The first is the fire and explosion release in which all of the fibers are released instantaneously. This model applies to accident scenarios where an explosion follows a short-duration fire in the aftermath of the accident. The second is the plume release scenario in which the total mass of fibers is released into the fire plume. This model applies to aircraft accidents where only a fire results. These models are described in detail.

  19. Retention modeling of refractory ceramic fibers (RCF) in humans.

    Science.gov (United States)

    Yu, C P; Ding, Y J; Zhang, L; Oberdörster, G; Mast, R W; Maxim, L D; Utell, M J

    1997-02-01

    A mathematical retention model has been developed to predict the lung burden and size distribution of kaolin refractory ceramic fibers (RCF) in the pulmonary region of the human lung during exposure. Fiber dissolution, breakage, and differential clearance are considered in this model; rates for these processes are obtained by extrapolation from available data on laboratory rats. The lung burden predicted by this model is in general agreement with fiber counts from three factory workers. An important prediction from this study is that clearance of RCF is not significantly impaired at a fiber concentration beneath 10 f/cm3 during occupational exposure.

  20. Requirements for disordered actomyosin bundle contractility

    CERN Document Server

    Lenz, Martin

    2011-01-01

    Actomyosin contractility is essential for biological force generation, and is well understood in highly ordered structures such as striated muscle. In vitro experiments have shown that non-sarcomeric bundles comprised only of F-actin and myosin thick filaments can also display contractile behavior, which cannot be described by standard muscle models. Here we investigate the microscopic symmetries underlying this process in large non-sarcomeric bundles with long actin filaments. We prove that contractile behavior requires non-identical motors that generate large enough forces to probe the nonlinear elastic behavior of F-actin. A simple disordered bundle model demonstrates a contraction mechanism based on these assumptions and predicts realistic bundle deformations. Recent experimental observations of F-actin buckling in in vitro contractile bundles support our model.

  1. A theoretical model for evaluation of the design of a hollow-fiber membrane oxygenator.

    Science.gov (United States)

    Tabesh, Hadi; Amoabediny, Ghassem; Poorkhalil, Ali; Khachab, Ali; Kashefi, Ali; Mottaghy, Khosrow

    2012-12-01

    Geometric data are fundamental to the design of a contactor. The efficiency of a membrane contactor is mainly defined by its mass-transfer coefficient. However, design modifications also have significant effects on the performance of membrane contactors. In a hollow-fiber membrane oxygenator (HFMO), properties such as priming volume and effective membrane surface area (referred to as design specifications) can be determined. In this study, an extensive theoretical model for calculation of geometric data and configuration properties, and, consequently, optimization of the design of an HFMO, is presented. Calculations were performed for Oxyphan(®) hollow-fiber micro-porous membranes, which are frequently used in current HFMOs because of their high gas exchange performance. The results reveal how to regulate both the transverse and longitudinal pitches of fiber bundles to obtain a lower rand width and a greater number of windings. Such modifications assist optimization of module design and, consequently, substantially increase the efficiency of an HFMO. On the basis of these considerations, three values, called efficiency factors, are proposed for evaluation of the design specifications of an HFMO with regard with its performance characteristics (i.e. oxygen-transfer rate and blood pressure drop). Moreover, the performance characteristics of six different commercial HFMOs were measured experimentally, in vitro, under the same standard conditions. Comparison of calculated efficiency factors reveals Quadrox(®) is the oxygenator with the most efficient design with regard with its performance among the oxygenators tested.

  2. Bundling Revisited: Substitute Products and Inter-Firm Discounts

    OpenAIRE

    Armstrong, Mark

    2011-01-01

    This paper extends the standard model of bundling to allow products to be substitutes and for products to be supplied by separate sellers. Whether integrated or separate, firms have an incentive to introduce bundling discounts when demand for the bundle is elastic relative to demand for stand-alone products. When products are partial substitutes, this typically gives an integrated firm a greater incentive to offer a bundle discount (relative to the standard model with additive preferences), w...

  3. Mathematical modeling of steel fiber concrete under dynamic impact

    Science.gov (United States)

    Belov, N. N.; Yugov, N. T.; Kopanitsa, D. G.; Kopanitsa, G. D.; Yugov, A. A.; Shashkov, V. V.

    2015-01-01

    This paper introduces a continuum mechanics mathematical model that describes the processes of deformation and destruction of steel-fiber-concrete under a shock wave impact. A computer modeling method was applied to study the processes of shock wave impact of a steel cylindrical rod and concrete and steel fiber concrete plates. The impact speeds were within 100-500 m/s.

  4. Micromechanical model of the single fiber fragmentation test

    DEFF Research Database (Denmark)

    Sørensen, Bent F.

    2017-01-01

    A shear-lag model is developed for the analysis of single fiber fragmentation tests for the characterization of the mechanical properties of the fiber/matrix interface in composite materials. The model utilizes the relation for the loss in potential energy of Budiansky, Hutchinson and Evans...

  5. Bundling into the future - Structural conditions for business model design in new ICT services

    DEFF Research Database (Denmark)

    Henten, Anders; Godø, Helge

    of services in terms of structural conditions market-wise and in regulatory terms. As the two service categories are relatively new on the market, dominating business model designs have not yet settled and the strategic choices of companies are still open. Being on the market, the discussion on the business......Based on a case study of multi-play and mobile voice over IP (MVoIP) in primarily Denmark and Norway, the paper presents an analysis of the structural conditions for the design of business models regarding new information and communication services. Multi-play and MVoIP represent different kinds...... model design, however, transcends the purely speculative stage....

  6. Modeling of nonlinear propagation in fiber tapers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2012-01-01

    A full-vectorial nonlinear propagation equation for short pulses in tapered optical fibers is developed. Specific emphasis is placed on the importance of the field normalization convention for the structure of the equations, and the interpretation of the resulting field amplitudes. Different...... numerical schemes for interpolation of fiber parameters along the taper are discussed and tested in numerical simulations on soliton propagation and generation of continuum radiation in short photonic-crystal fiber tapers....

  7. Parabolic k-ample bundles

    CERN Document Server

    Biswas, Indranil

    2011-01-01

    We construct projectivization of a parabolic vector bundle and a tautological line bundle over it. It is shown that a parabolic vector bundle is ample if and only if the tautological line bundle is ample. This allows us to generalize the notion of a k-ample bundle, introduced by Sommese, to the context of parabolic bundles. A parabolic vector bundle $E_*$ is defined to be k-ample if the tautological line bundle ${\\mathcal O}_{{\\mathbb P}(E_*)}(1)$ is $k$--ample. We establish some properties of parabolic k-ample bundles.

  8. Experimental study and modelling of heat transfer during condensation of pure fluid and binary mixture on a bundle of horizontal finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Belghazi, M.; Marvillet, C. [Commissariat a l' Energie Atomique, Grenoble (France). Groupement pour la Recherche sur les Echangeurs thermiques; Bontemps, A. [Universite Joseph Fourier, Grenoble (France). LEGI/GRETh

    2003-03-01

    An experimental investigation was conducted to measure the local heat transfer coefficient for each row in a trapezoidal finned horizontal tube bundle during condensation of both pure fluid (HFC 134a) and several compositions of the non-azeotropic binary mixture HFC 23/HFC 134a. The test section is a 13x3 (rows x columns) tube bundle and the heat transfer coefficient is measured using the modified Wilson plot method. The inlet vapour temperature is fixed at 40{sup o}C and the water flow rate in each active row ranges from 170 to 600 l/h. The test series cover five different finned tubes all commercially available, K11 (11 fins/inch), K19 (19 fins/inch), K26 (26 fins/inch), K32 (32 fins/inch), K40 (40 fins/inch) and their performances were compared. The experimental results were checked against available models predicting the heat transfer coefficient during condensation of pure fluids on banks of finned tubes. Modelling of heat exchange during condensation of binary mixtures on bundles of finned tubes based on the curve condensation model is presented. (author)

  9. Photo darkening in Ytterbium doped fibers: phenomenological model and experiment

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    2011-01-01

    Photo darkening (PD) of ytterbium co-doped silica fibers are experimentally investigated and a numeric model for PD is proposed. The spectral response of PD is discussed based on a chemical bond formation model.......Photo darkening (PD) of ytterbium co-doped silica fibers are experimentally investigated and a numeric model for PD is proposed. The spectral response of PD is discussed based on a chemical bond formation model....

  10. Model of a thin film optical fiber fluorosensor

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1991-03-01

    The efficiency of core-light injection from sources in the cladding of an optical fiber is modeled analytically by means of the exact field solution of a step-profile fiber. The analysis is based on the techniques by Marcuse (1988) in which the sources are treated as infinitesimal electric currents with random phase and orientation that excite radiation fields and bound modes. Expressions are developed based on an infinite cladding approximation which yield the power efficiency for a fiber coated with fluorescent sources in the core/cladding interface. Marcuse's results are confirmed for the case of a weakly guiding cylindrical fiber with fluorescent sources uniformly distributed in the cladding, and the power efficiency is shown to be practically constant for variable wavelengths and core radii. The most efficient fibers have the thin film located at the core/cladding boundary, and fibers with larger differences in the indices of refraction are shown to be the most efficient.

  11. Line bundle embeddings for heterotic theories

    Energy Technology Data Exchange (ETDEWEB)

    Groot Nibbelink, Stefan [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Ruehle, Fabian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-03-15

    In heterotic string theories consistency requires the introduction of a non-trivial vector bundle. This bundle breaks the original ten-dimensional gauge groups E{sub 8} x E{sub 8} or SO(32) for the supersymmetric heterotic string theories and SO(16) x SO(16) for the non-supersymmetric tachyon-free theory to smaller subgroups. A vast number of MSSM-like models have been constructed up to now, most of which describe the vector bundle as a sum of line bundles. However, there are several different ways of describing these line bundles and their embedding in the ten-dimensional gauge group. We recall and extend these different descriptions and explain how they can be translated into each other.

  12. Line bundle embeddings for heterotic theories

    CERN Document Server

    Nibbelink, Stefan Groot

    2016-01-01

    In heterotic theories consistency requires the introduction of a non-trivial vector bundle. This bundle breaks the original ten-dimensional gauge groups E_8 x E_8 or SO(32) for the supersymmetric heterotic theories and SO(16) x SO(16) for the non-supersymmetric tachyon-free theory to smaller subgroups. A vast number of MSSM-like models have been constructed up to now, most of which describe the vector bundle as a sum of line bundles. However, there are several different ways of describing these line bundles and their embedding in the ten-dimensional gauge group. We recall and extend these different descriptions and explain how they can be translated into each other.

  13. Line bundle embeddings for heterotic theories

    Science.gov (United States)

    Nibbelin, Stefan Groot; Ruehle, Fabian

    2016-04-01

    In heterotic string theories consistency requires the introduction of a non-trivial vector bundle. This bundle breaks the original ten-dimensional gauge groups E8 × E8 or SO(32) for the supersymmetric heterotic string theories and SO(16) × SO(16) for the non-supersymmetric tachyon-free theory to smaller subgroups. A vast number of MSSM-like models have been constructed up to now, most of which describe the vector bundle as a sum of line bundles. However, there are several different ways of describing these line bundles and their embedding in the ten-dimensional gauge group. We recall and extend these different descriptions and explain how they can be translated into each other.

  14. Pulmonary deposition modeling with airborne fiber exposure data: a study of workers manufacturing refractory ceramic fibers.

    Science.gov (United States)

    Lentz, Thomas J; Rice, Carol H; Succop, Paul A; Lockey, James E; Dement, John M; LeMasters, Grace K

    2003-04-01

    Increasing production of refractory ceramic fiber (RCF), a synthetic vitreous material with industrial applications (e.g., kiln insulation), has created interest in potential respiratory effects of exposure to airborne fibers during manufacturing. An ongoing study of RCF manufacturing workers in the United States has indicated an association between cumulative fiber exposure and pleural plaques. Fiber sizing data, obtained from electron microscopy analyses of 118 air samples collected in three independent studies over a 20-year period (1976-1995), were used with a computer deposition model to estimate pulmonary dose of fibers of specified dimensions for 652 former and current RCF production workers. Separate dose correction factors reflecting differences in fiber dimensions in six uniform job title groups were used with data on airborne fiber concentration and employment duration to calculate cumulative dose estimates for each worker. From review of the literature, critical dimensions (diameter <0.4 microm, length <10 microm) were defined for fibers that may translocate to the parietal pleura. Each of three continuous exposure/dose metrics analyzed in separate logistic regression models was significantly related to plaques, even after adjusting for possible past asbestos exposure: cumulative fiber exposure, chi(2) = 15.2 (p < 0.01); cumulative pulmonary dose (all fibers), chi(2) = 14.6 (p < 0.01); cumulative pulmonary dose (critical dimension fibers), chi(2) = 12.4 (p < 0.01). Odds ratios (ORs) were calculated for levels of each metric. Increasing ORs were statistically significant for the two highest dose levels of critical dimension fibers (level three, OR = 11, 95%CI = [1.4, 98]; level four, OR = 25, 95%CI = [3.2, 190]). Similar associations existed for all metrics after adjustment for possible asbestos exposure. It was concluded that development of pleural plaques follows exposure- and dose-response patterns, and that airborne fibers in RCF manufacturing

  15. Simplified method for numerical modeling of fiber lasers.

    Science.gov (United States)

    Shtyrina, O V; Yarutkina, I A; Fedoruk, M P

    2014-12-29

    A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.

  16. Micromechanical modeling of strength and damage of fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Mishnaevsky, L. Jr.; Broendsted, P.

    2007-03-15

    The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenological analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials. (au)

  17. Modeling oxidation damage of continuous fiber reinforced ceramic matrix composites

    Institute of Scientific and Technical Information of China (English)

    Cheng-Peng Yang; Gui-Qiong Jiao; Bo Wang

    2011-01-01

    For fiber reinforced ceramic matrix composites (CMCs), oxidation of the constituents is a very important damage type for high temperature applications. During the oxidizing process, the pyrolytic carbon interphase gradually recesses from the crack site in the axial direction of the fiber into the interior of the material. Carbon fiber usually presents notch-like or local neck-shrink oxidation phenomenon, causing strength degradation. But, the reason for SiC fiber degradation is the flaw growth mechanism on its surface. A micromechanical model based on the above mechanisms was established to simulate the mechanical properties of CMCs after high temperature oxidation. The statistic and shearlag theory were applied and the calculation expressions for retained tensile modulus and strength were deduced, respectively. Meanwhile, the interphase recession and fiber strength degradation were considered. And then, the model was validated by application to a C/SiC composite.

  18. Fiber diffraction without fibers.

    Science.gov (United States)

    Poon, H-C; Schwander, P; Uddin, M; Saldin, D K

    2013-06-28

    Postprocessing of diffraction patterns of completely randomly oriented helical particles, as measured, for example, in so-called "diffract-and-destroy" experiments with an x-ray free electron laser can yield "fiber diffraction" patterns expected of fibrous bundles of the particles. This will allow "single-axis alignment" to be performed computationally, thus obviating the need to do this by experimental means such as forming fibers and laser or flow alignment. The structure of such particles may then be found by either iterative phasing methods or standard methods of fiber diffraction.

  19. Creep and stress relaxation modeling of polycrystalline ceramic fibers

    Science.gov (United States)

    Dicarlo, James A.; Morscher, Gregory N.

    1994-01-01

    A variety of high performance polycrystalline ceramic fibers are currently being considered as reinforcement for high temperature ceramic matrix composites. However, under mechanical loading about 800 C, these fibers display creep related instabilities which can result in detrimental changes in composite dimensions, strength, and internal stress distributions. As a first step toward understanding these effects, this study examines the validity of a mechanism-based empirical model which describes primary stage tensile creep and stress relaxation of polycrystalline ceramic fibers as independent functions of time, temperature, and applied stress or strain. To verify these functional dependencies, a simple bend test is used to measure stress relaxation for four types of commercial ceramic fibers for which direct tensile creep data are available. These fibers include both nonoxide (SCS-6, Nicalon) and oxide (PRD-166, FP) compositions. The results of the Bend Stress Relaxation (BSR) test not only confirm the stress, time, and temperature dependencies predicted by the model, but also allow measurement of model empirical parameters for the four fiber types. In addition, comparison of model tensile creep predictions based on the BSR test results with the literature data show good agreement, supporting both the predictive capability of the model and the use of the BSR text as a simple method for parameter determination for other fibers.

  20. Turbulence Model Evaluation Study for a Secondary Flow and a Flow Pulsation in the Sub-Channels of an 18-Finned Rod Bundle by Using Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Hark; Chae, Hee Taek; Park, Cheol; Kim, Heon Il

    2008-09-15

    Since the heat flux of the rod type fuel used in the HANARO, a research reactor being operated in the KAERI, is substantially higher than the heat flux of power reactors, the HANARO fuel has 8 longitudinal fins for enhancing the heat release from the fuel rod surface. This unique shape of a nuclear fuel led us to study the flows and thermal hydraulic characteristics of it. Especially because the flows through the narrow channels built up by these finned rod fuels would be different from the flow characteristics in the coolant channels formed by bare rod fuels, some experimental studies to investigate the flow behaviors and structures in a finned rod bundle were done by other researchers. But because of the very complex geometries of the flow channels in the finned rod bundle only allowed us to obtain limited information about the flow characteristics, a numerical study by a computational fluid dynamics technique has been adopted to elucidate more about such a complicated flow in a finned rod bundle. In this study, for the development of an adequate computational model to simulate such a complex geometry, a mesh sensitivity study and the effects of various turbulence models were examined. The CFD analysis results were compared with the experimental results. Some of them have a good agreement with the experimental results. All linear eddy viscosity turbulence models could hardly predict the secondary flows near the fuel surfaces and in the sub-channel, but the RSM (Reynolds Stress Model) revealed very different results from the eddy viscosity turbulence models. In the transient analysis all turbulence model predicted flow pulsation at the center of a subchannel as well as at the gap between rods in spite of large P/D. The flow pulsation showed different results with turbulence models and the location in the sub-channels.

  1. The ABCDEF Implementation Bundle

    Directory of Open Access Journals (Sweden)

    Annachiara Marra

    2016-08-01

    Full Text Available Long-term morbidity, long-term cognitive impairment and hospitalization-associated disability are common occurrence in the survivors of critical illness, with significant consequences for patients and for the caregivers. The ABCDEF bundle represents an evidence-based guide for clinicians to approach the organizational changes needed for optimizing ICU patient recovery and outcomes. The ABCDEF bundle includes: Assess, Prevent, and Manage Pain, Both Spontaneous Awakening Trials (SAT and Spontaneous Breathing Trials (SBT, Choice of analgesia and sedation, Delirium: Assess, Prevent, and Manage, Early mobility and Exercise, and Family engagement. The purpose of this review is to describe the core features of the ABCDEF bundle.

  2. Assessment of left ventricular mechanical dyssynchrony in left bundle branch block canine model: Comparison between cine and tagged MRI.

    Science.gov (United States)

    Saporito, Salvatore; van Assen, Hans C; Houthuizen, Patrick; Aben, Jean-Paul M M; Strik, Marc; van Middendorp, Lars B; Prinzen, Frits W; Mischi, Massimo

    2016-10-01

    To compare cine and tagged magnetic resonance imaging (MRI) for left ventricular dyssynchrony assessment in left bundle branch block (LBBB), using the time-to-peak contraction timing, and a novel approach based on cross-correlation. We evaluated a canine model dataset (n = 10) before (pre-LBBB) and after induction of isolated LBBB (post-LBBB). Multislice short-axis tagged and cine MRI images were acquired using a 1.5 T scanner. We computed contraction time maps by cross-correlation, based on the timing of radial wall motion and of circumferential strain. Finally, we estimated dyssynchrony as the standard deviation of the contraction time over the different regions of the myocardium. Induction of LBBB resulted in a significant increase in dyssynchrony (cine: 13.0 ± 3.9 msec for pre-LBBB, and 26.4 ± 5.0 msec for post-LBBB, P = 0.005; tagged: 17.1 ± 5.0 msec at for pre-LBBB, and 27.9 ± 9.8 msec for post-LBBB, P = 0.007). Dyssynchrony assessed by cine and tagged MRI were in agreement (r = 0.73, P = 0.0003); differences were in the order of time difference between successive frames of 20 msec (bias: -2.9 msec; limit of agreement: 10.1 msec). Contraction time maps were derived; agreement was found in the contraction patterns derived from cine and tagged MRI (mean difference in contraction time per segment: 3.6 ± 13.7 msec). This study shows that the proposed method is able to quantify dyssynchrony after induced LBBB in an animal model. Cine-assessed dyssynchrony agreed with tagged-derived dyssynchrony, in terms of magnitude and spatial direction. J. MAGN. RESON. IMAGING 2016;44:956-963. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Computational Model Of Fiber Optic, Arc Fusion Splicing; Experimental Comparison

    Science.gov (United States)

    Ruffin, Paul; Frost, Walter; Long, Wayne

    1989-02-01

    Acknowledgement: The assistance and support of the MICOM Army Missile Command is gratefully appreciated. An analytical tool to investigate the arc fusion splicing of optical fibers is developed. The physical model incorporates heat transfer and thermal, visco elastic strain. The heat transfer equations governing radiation, conduction and convection during arc heating are formulated. The radiation heat flux impinging on the fiber optics is modeled based on reported experimental analysis of a generic type arc discharge. The fusion process considers deformation of the fiber due to thermal, viscous and elastic strain. A Maxwell stress-strain relationship is assumed. The model assumes an initial gap at the beginning of the arc which is closed by a press-stroke during the heating cycle. All physical properties of the fused silica glass fibers are considered as functions of temperature based on available experimental data. A computer algorithm has been developed to solve the system of governing equations and parametric studies carried out. An experiment using a FSM-20 arc fusion splicer manufactured by Fujikura Ltd. was carried out to provide experimental verification of the analytical model. In the experiment a continuous fiber was positioned in the arc and cyclic heating and cooling was carried out. One end of the fiber was clamped and the other was free to move. The fiber was heated for 6 seconds and cooled for 3 minutes for several cycles. At the end of each cooling process, photographs of the deformation of the fiber were taken. The results showed that the fiber necked down on the free end and buldged up on the fixed end. With repeated heating and cooling cycles, the optical fiber eventually necked down to the point that it melted in two. The analytical model was run for the conditions of the experiment. Comparisons of the predicted deformation of the optical fiber with those measured is given. The analytical model displays all of the physical phenomenon of fiber

  4. Application of the porous medium heat transfer model of ICARE/CATHARE code against debris bed and 'bundle' experiments

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, G. [CEA Cadarache, Institut de Radioprotection et de Surete Nucleaire, DPAM, 13 - Saint-Paul-lez-Durance (France); Ederli, St. [Ente per le Nuove Technologie, l' Energia e l' Ambiente (ENEA) (Italy)

    2007-07-01

    ICARE/CATHARE code is developed by the 'Institut de Radioprotection et de Surete Nucleaire' to simulate Nuclear Reactor behaviour during the course of a Loss of Cooling accident up to the core melting. The assessment of the heat transfer model in porous medium has been performed against experiments performed in ACRR (SNL-USA) and in Phebus reactors (at Cadarache - France). Calculation versus experiment results indicate a good agreement for the thermal behaviour. The heat transfers inside solid debris bed can be well predicted using the Imura-Yagi correlation to calculate the debris bed equivalent thermal conductivity in a wide range of particles size. In the case of 'Rod like geometry' calculations, the fuel rod assembly was modelled assuming several rings of fuel rods, with heat transfer including radiative phenomena using view factors between rods. An alternative modelling has been used considering the fuel rods as a porous medium with with pure UO{sub 2} spherical particles of 1 cm diameter and a total porosity representative of the fuel bundle inside a cylindrical shroud. With this approach (heat exchanges accounted for with the Imura-Yagi correlation), the radial gradient calculated in a small bundle was significantly increased, from a few degrees (with the previous modelling) to about 150/200 K at 2273 K. This modelling has been recently improved, to account for the heat transfer inside a fuel rod bundle, by a specific model based on an electrical analogy, considering the porous medium as a cluster of true cylinders. (authors)

  5. Application of Combined Process of Vortex Clarifier and Fiber Bundle Filter in Reclaimed Water Treatment Plant%涡流澄清池/纤维束滤池组合工艺在中水处理厂的应用

    Institute of Scientific and Technical Information of China (English)

    倪宁; 李如祥; 彭长刚

    2012-01-01

    徐州某污水厂采用涡流澄清池/纤维束滤池组合工艺对污水厂二级出水进行深度处理,当进水COD为60 mg/L、浊度为15 NTU时,出水COD和浊度分别约为30 mg/L和2 NTU,出水水质达到设计要求.实践表明,该组合工艺具有混凝效率高、过滤效果好、出水水质优、适应能力强等优点,具有一定的推广价值.%The combined process of vortex clarifier and fiber bundle filter was used to treat the secondary effluent from a wastewater treatment plant in Xuzhou City. When the influent COD and turbidity were 60 mg/L and 15 NTU, the corresponding effluent values were 30 mg/L and 2 NTU, meeting the design standard. The practice showed that the combined process had advantages of high coagulation efficiency , fine filtration effect, good effluent quality and strong adaptability, and it had some promotion value.

  6. Fluid-structure interaction model of aortic valve with porcine-specific collagen fiber alignment in the cusps.

    Science.gov (United States)

    Marom, Gil; Peleg, Mor; Halevi, Rotem; Rosenfeld, Moshe; Raanani, Ehud; Hamdan, Ashraf; Haj-Ali, Rami

    2013-10-01

    Native aortic valve cusps are composed of collagen fibers embedded in their layers. Each valve cusp has its own distinctive fiber alignment with varying orientations and sizes of its fiber bundles. However, prior mechanical behavior models have not been able to account for the valve-specific collagen fiber networks (CFN) or for their differences between the cusps. This study investigates the influence of this asymmetry on the hemodynamics by employing two fully coupled fluid-structure interaction (FSI) models, one with asymmetric-mapped CFN from measurements of porcine valve and the other with simplified-symmetric CFN. The FSI models are based on coupled structural and fluid dynamic solvers. The partitioned solver has nonconformal meshes and the flow is modeled by employing the Eulerian approach. The collagen in the CFNs, the surrounding elastin matrix, and the aortic sinus tissues have hyperelastic mechanical behavior. The coaptation is modeled with a master-slave contact algorithm. A full cardiac cycle is simulated by imposing the same physiological blood pressure at the upstream and downstream boundaries for both models. The mapped case showed highly asymmetric valve kinematics and hemodynamics even though there were only small differences between the opening areas and cardiac outputs of the two cases. The regions with a less dense fiber network are more prone to damage since they are subjected to higher principal stress in the tissues and a higher level of flow shear stress. This asymmetric flow leeward of the valve might damage not only the valve itself but also the ascending aorta.

  7. Accurate modelling of fabricated hollow-core photonic bandgap fibers.

    Science.gov (United States)

    Fokoua, Eric Numkam; Sandoghchi, Seyed Reza; Chen, Yong; Jasion, Gregory T; Wheeler, Natalie V; Baddela, Naveen K; Hayes, John R; Petrovich, Marco N; Richardson, David J; Poletti, Francesco

    2015-09-07

    We report a novel approach to reconstruct the cross-sectional profile of fabricated hollow-core photonic bandgap fibers from scanning electron microscope images. Finite element simulations on the reconstructed geometries achieve a remarkable match with the measured transmission window, surface mode position and attenuation. The agreement between estimated scattering loss from surface roughness and measured loss values indicates that structural distortions, in particular the uneven distribution of glass across the thin silica struts on the core boundary, have a strong impact on the loss. This provides insight into the differences between idealized models and fabricated fibers, which could be key to further fiber loss reduction.

  8. Micro-Mechanical Modeling of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Stang, Henrik

    1999-01-01

    of Fiber Reinforced Concrete (FRC) on the micro- the meso- as well as the macro-level, i.e. modeling aspects of fiber-matrix interaction, overall constitutive modeling and structural modeling. Emphasis is placed on the micro- and meso-aspects, however, some basic results on the macro-level are also......The paper is a contribution to the course Cement-Based Composites for the Building Industry, organized by POA Foundation for Postgraduate Studies in Civil Engineering in cooperation with Priority Programme Material Research (PPM) in the Netherlands. The text deals with mechanical modeling aspects...

  9. Digestion modeling in the small intestine: impact of dietary fiber.

    Science.gov (United States)

    Taghipoor, M; Barles, G; Georgelin, C; Licois, J R; Lescoat, P

    2014-12-01

    In this work, the modeling of the digestion in the small intestine is developed by investigating specifically the effects of dietary fiber. As our previous model, this new version takes into account the three main phenomena of digestion: transit of the bolus, degradation of feedstuffs and absorption through the intestinal wall. However the two main physiochemical characteristics of dietary fiber, namely viscosity and water holding capacity, lead us to substantially modify our initial model by emphasizing the role of water and its intricated dynamics with dry matter in the bolus. Various numerical simulations given by this new model are qualitatively in agreement with the positive effect of insoluble dietary fiber on the velocity of bolus and on its degradation all along the small intestine. These simulations reproduce the negative effect of soluble dietary fiber on digestion as it has been experimentally observed. Although, this model is generic and contains a large number of parameters but, to the best of our knowledge, it is among the first qualitative dynamical models of fiber influence on intestinal digestion.

  10. Fiber Bragg Grating-Based Performance Monitoring of Piles Fiber in a Geotechnical Centrifugal Model Test

    Directory of Open Access Journals (Sweden)

    Xiaolin Weng

    2014-01-01

    Full Text Available In centrifugal tests, conventional sensors can hardly capture the performance of reinforcement in small-scale models. However, recent advances in fiber optic sensing technologies enable the accurate and reliable monitoring of strain and temperature in laboratory geotechnical tests. This paper outlines a centrifugal model test, performed using a 60 g ton geocentrifuge, to investigate the performance of pipe piles used to reinforce the loess foundation below a widened embankment. Prior to the test, quasidistributed fiber Bragg grating (FBG strain sensors were attached to the surface of the pipe piles to measure the lateral friction resistance in real time. Via the centrifuge actuator, the driving of pipe piles was simulated. During testing, the variations of skin friction distribution along the pipe piles were measured automatically using an optical fiber interrogator. This paper represents the presentation and detailed analysis of monitoring results. Herein, we verify the reliability of the fiber optic sensors in monitoring the model piles without affecting the integrity of the centrifugal model. This paper, furthermore, shows that lateral friction resistance developed in stages with the pipe piles being pressed in and that this sometimes may become negative.

  11. Dynamic bi-product bundle pricing problem

    Directory of Open Access Journals (Sweden)

    Rafiei Hamed

    2014-01-01

    Full Text Available This paper addresses bundle pricing problem of two products in a stochastic environment so as to maximize net profit of a retailer. In the considered problem, it is assumed that customers are received upon a Poisson distribution and their demands follow a bi-variant distribution function. Also, it is assumed that products are sold individually or in the form of a bundle, which are offered from an initial stock of the products. To tackle the problem, a stochastic dynamic program is developed in which optimum values of the initial stock and order quantities of every planning period are determined. Moreover, prices of the individual products and their bundle are optimized. Also, the proposed dynamic program tackles bundling/ unbundling decisions taken in every planning period. A numerical example of a two planning period horizon is considered to validate the proposed model.

  12. Micromechanical Modeling of Fiber-Reinforced Composites with Statistically Equivalent Random Fiber Distribution

    Directory of Open Access Journals (Sweden)

    Wenzhi Wang

    2016-07-01

    Full Text Available Modeling the random fiber distribution of a fiber-reinforced composite is of great importance for studying the progressive failure behavior of the material on the micro scale. In this paper, we develop a new algorithm for generating random representative volume elements (RVEs with statistical equivalent fiber distribution against the actual material microstructure. The realistic statistical data is utilized as inputs of the new method, which is archived through implementation of the probability equations. Extensive statistical analysis is conducted to examine the capability of the proposed method and to compare it with existing methods. It is found that the proposed method presents a good match with experimental results in all aspects including the nearest neighbor distance, nearest neighbor orientation, Ripley’s K function, and the radial distribution function. Finite element analysis is presented to predict the effective elastic properties of a carbon/epoxy composite, to validate the generated random representative volume elements, and to provide insights of the effect of fiber distribution on the elastic properties. The present algorithm is shown to be highly accurate and can be used to generate statistically equivalent RVEs for not only fiber-reinforced composites but also other materials such as foam materials and particle-reinforced composites.

  13. Parametric Modeling of the Mouse Left Ventricular Myocardial Fiber Structure.

    Science.gov (United States)

    Merchant, Samer S; Gomez, Arnold David; Morgan, James L; Hsu, Edward W

    2016-09-01

    Magnetic resonance diffusion tensor imaging (DTI) has greatly facilitated detailed quantifications of myocardial structures. However, structural patterns, such as the distinctive transmural rotation of the fibers, remain incompletely described. To investigate the validity and practicality of pattern-based analysis, 3D DTI was performed on 13 fixed mouse hearts and fiber angles in the left ventricle were transformed and fitted to parametric expressions constructed from elementary functions of the prolate spheroidal spatial variables. It was found that, on average, the myocardial fiber helix angle could be represented to 6.5° accuracy by the equivalence of a product of 10th-order polynomials of the radial and longitudinal variables, and 17th-order Fourier series of the circumferential variable. Similarly, the fiber imbrication angle could be described by 10th-order polynomials and 24th-order Fourier series, to 5.6° accuracy. The representations, while relatively concise, did not adversely affect the information commonly derived from DTI datasets including the whole-ventricle mean fiber helix angle transmural span and atlases constructed for the group. The unique ability of parametric models for predicting the 3D myocardial fiber structure from finite number of 2D slices was also demonstrated. These findings strongly support the principle of parametric modeling for characterizing myocardial structures in the mouse and beyond.

  14. Fiber optic displacement measurement model based on finite reflective surface

    Science.gov (United States)

    Li, Yuhe; Guan, Kaisen; Hu, Zhaohui

    2016-10-01

    We present a fiber optic displacement measurement model based on finite reflective plate. The theoretical model was derived, and simulation analysis of light intensity distribution, reflective plate width, and the distance between fiber probe and reflective plate were conducted in details. The three dimensional received light intensity distribution and the characteristic curve of light intensity were studied as functions of displacement of finite reflective plate. Experiments were carried out to verify the established model. The physical fundamentals and the effect of operating parameters on measuring system performance were revealed in the end.

  15. Modeling and simulation of continuous fiber-reinforced ceramic composites

    Science.gov (United States)

    Bheemreddy, Venkata

    Finite element modeling framework based on cohesive damage modeling, constitutive material behavior using user-material subroutines, and extended finite element method (XFEM), are developed for studying the failure behavior of continuous fiber-reinforced ceramic matrix composites (CFCCs) by the example of a silicon carbide matrix reinforced with silicon carbide fiber (SiC/SiCf) composite. This work deals with developing comprehensive numerical models for three problems: (1) fiber/matrix interface debonding and fiber pull-out, (2) mechanical behavior of a CFCC using a representative volume element (RVE) approach, and (3) microstructure image-based modeling of a CFCC using object oriented finite element analysis (OOF). Load versus displacement behavior during a fiber pull-out event was investigated using a cohesive damage model and an artificial neural network model. Mechanical behavior of a CFCC was investigated using a statistically equivalent RVE. A three-step procedure was developed for generating a randomized fiber distribution. Elastic properties and damage behavior of a CFCC were analyzed using the developed RVE models. Scattering of strength distribution in CFCCs was taken into account using a Weibull probability law. A multi-scale modeling framework was developed for evaluating the fracture behavior of a CFCC as a function of microstructural attributes. A finite element mesh of the microstructure was generated using an OOF tool. XFEM was used to study crack propagation in the microstructure and the fracture behavior was analyzed. The work performed provides a valuable procedure for developing a multi-scale framework for comprehensive damage study of CFCCs.

  16. Right bundle branch block

    DEFF Research Database (Denmark)

    Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse

    2013-01-01

    AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included.......5%/2.3% in women, P Right bundle branch block was associated with significantly...... increased all-cause and cardiovascular mortality in both genders with age-adjusted hazard ratios (HR) of 1.31 [95% confidence interval (CI), 1.11-1.54] and 1.87 (95% CI, 1.48-2.36) in the gender pooled analysis with little attenuation after multiple adjustment. Right bundle branch block was associated...

  17. A dose-response model for refractory ceramic fibers.

    Science.gov (United States)

    Turim, J; Brown, R C

    2003-09-15

    Refractory ceramic fibers (RCFs) are man-made vitreous fibers commonly used in insulation applications above 1000 degrees C. Although they have been subjected to considerable toxicologic evaluation, only the pooled results from two rat inhalation studies provide data that may be suitable for performing a numerical risk assessment. Even in these inhalation studies, good evidence exists that the maximum tolerated dose (MTD) was exceeded and that pulmonary overload occurred, a condition that will cause tumors whatever the dust responsible. Indeed, a significant yield of tumors was only obtained at the highest dose tested. If these results are omitted, there is no statistically significant evidence of carcinogenicity within the RCF results. Although there is little evidence that overload-related tumors are relevant to human risk, we adopted a conservative approach to obtain the estimates of risk regardless of overload, using a biologically based model, the two-stage clonal expansion model, as well as various statistical models, including the benchmark dose model. We argue that the data favor the use of a biologically based model, which gives the best fit when the highest dose RCF exposures are omitted. Continuing with this model, we show that available data from the RCF experiment, less outliers, coupled with results from other experiments with man-made mineral fibers (MMVFs), demonstrate that all MMVFs are potentially carcinogenic, with any risk mediated by the fibers' biopersistence. Application of this "all MMVF data set" model yields a maximum likely estimate for RCF excess unit risk of 4.6 x 10(-5) (95% upper confidence limit = 9.2 x 10(-5) per fiber/ml). This implies that the risk from occupational exposure to RCFs at 1 fiber/ml for a typical working lifetime would not exceed 10(-4).

  18. Principal -bundles on Nodal Curves

    Indian Academy of Sciences (India)

    Usha N Bhosle

    2001-08-01

    Let be a connected semisimple affine algebraic group defined over . We study the relation between stable, semistable -bundles on a nodal curve and representations of the fundamental group of . This study is done by extending the notion of (generalized) parabolic vector bundles to principal -bundles on the desingularization of and using the correspondence between them and principal -bundles on . We give an isomorphism of the stack of generalized parabolic bundles on with a quotient stack associated to loop groups. We show that if is simple and simply connected then the Picard group of the stack of principal -bundles on is isomorphic to ⊕ , being the number of components of .

  19. Multi-fiber strains measured by micro-Raman spectroscopy: Principles and experiments

    Science.gov (United States)

    Lei, Zhenkun; Wang, Yunfeng; Qin, Fuyong; Qiu, Wei; Bai, Ruixiang; Chen, Xiaogang

    2016-02-01

    Based on widely used axial strain measurement method of Kevlar single fiber, an original theoretical model and measurement principle of application of micro-Raman spectroscopy to multi-fiber strains in a fiber bundle were established. The relationship between the nominal Raman shift of fiber bundle and the multi-fiber strains was deduced. The proposed principle for multi-fiber strains measurement is consistent with two special cases: single fiber deformation and multi-fiber deformation under equal strain. It is found experimentally that the distribution of Raman scattering intensity of a Kevlar 49 fiber as a function of distance between a fiber and the laser spot center follows a Gaussian function. Combining the Raman-shift/strain relationship of the Kevlar 49 single fiber and the uniaxial tension measured by micro-Raman spectroscopy, the Raman shift as a function of strain was obtained. Then the Raman peak at 1610 cm-1 for the Kevlar 49 fiber was fitted to a Lorentzian function and the FWHM showed a quadratic increase with the fiber strain. Finally, a dual-fiber tensile experiment was performed to verify the adequacy of the Raman technique for the measurement of multi-fiber strains.

  20. On projective space bundle with nef normalized tautological line bundle

    CERN Document Server

    Yasutake, Kazunori

    2011-01-01

    In this paper, we study the structure of projective space bundles whose relative anti-canonical line bundle is nef. As an application, we get a characterization of abelian varieties up to finite etale covering.

  1. Artificial Neural Network Model for Optical Fiber Direction Coupler Design

    Institute of Scientific and Technical Information of China (English)

    李九生; 鲍振武

    2004-01-01

    A new approach to the design of the optical fiber direction coupler by using neural network is proposed. To train the artificial neural network,the coupling length is defined as the input sample, and the coupling ratio is defined as the output sample. Compared with the numerical value calculation of the theoretical formula, the error of the neural network model output is 1% less.Then, through the model, to design a broadband or a single wavelength optical fiber direction coupler becomes easy. The method is proved to be reliable, accurate and time-saving. So it is promising in the field of both investigation and application.

  2. Multiscale modeling of PVDF matrix carbon fiber composites

    Science.gov (United States)

    Greminger, Michael; Haghiashtiani, Ghazaleh

    2017-06-01

    Self-sensing carbon fiber reinforced composites have the potential to enable structural health monitoring that is inherent to the composite material rather than requiring external or embedded sensors. It has been demonstrated that a self-sensing carbon fiber reinforced polymer composite can be created by using the piezoelectric polymer polyvinylidene difluoride (PVDF) as the matrix material and using a Kevlar layer to separate two carbon fiber layers. In this configuration, the electrically conductive carbon fiber layers act as electrodes and the Kevlar layer acts as a dielectric to prevent the electrical shorting of the carbon fiber layers. This composite material has been characterized experimentally for its effective d 33 and d 31 piezoelectric coefficients. However, for design purposes, it is desirable to obtain a predictive model of the effective piezoelectric coefficients for the final smart composite material. Also, the inverse problem can be solved to determine the degree of polarization obtained in the PVDF material during polarization by comparing the effective d 33 and d 31 values obtained in experiment to those predicted by the finite element model. In this study, a multiscale micromechanics and coupled piezoelectric-mechanical finite element modeling approach is introduced to predict the mechanical and piezoelectric performance of a plain weave carbon fiber reinforced PVDF composite. The modeling results show good agreement with the experimental results for the mechanical and electrical properties of the composite. In addition, the degree of polarization of the PVDF component of the composite is predicted using this multiscale modeling approach and shows that there is opportunity to drastically improve the smart composite’s performance by improving the polarization procedure.

  3. Development of multi-dimensional thermal hydraulic modeling using mixing factors for wire wrapped fuel pin bundles with inter-subassembly heat transfer in fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, M.; Kamide, H.; Ohshima, H. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1996-10-01

    Temperature distributions in fuel subassemblies of fast reactors interactively affect heat transfer from center to outer region of the core (inter-subassembly heat transfer) and cooling capability of an inter-wrapper flow, as well as maximum cladding temperature. The prediction of temperature distribution in the sub-assembly is, therefore one of the important issues for the reactor safety assessment. To treat the complex phenomena in the core, a multi-dimensional thermal hydraulic analysis is the most promising method. From the studies on the multi-dimensional thermal hydraulic modeling for the fuel sub-assemblies, the modeling have been recommended through the analysis of sodium experiments using driver subassembly test rig PLANDTL-DHX and blanket subassembly test rig CCTL-CFR. Computations of steady states experiments in the test rigs using the above modeling showed quite good agreement to the experimental data. In the present study, the use of this modeling was extended to transient analyses, and its applicability was examined. Firstly, non-dimensional parameters used to determine the mixing factors were modified from the ones based on bundle-averaged values to the ones by local values. Secondly, a new threshold function was derived and introduced to cut off the mixing factor of thermal plumes under inertia force dominant conditions. In the results of this validation, the accuracy was comparable between the modeling and the experimental instrumentation. Thus the present modeling is capable of predicting the thermal hydraulic fields of the wire wrapped fuel pin bundles with inter-subassembly heat transfer under the conditions from rated steady operations to transitions toward natural circulation decay heat removal modes. (J.P.N.)

  4. Kernel bundle EPDiff

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Lauze, Francois Bernard; Nielsen, Mads

    2011-01-01

    In the LDDMM framework, optimal warps for image registration are found as end-points of critical paths for an energy functional, and the EPDiff equations describe the evolution along such paths. The Large Deformation Diffeomorphic Kernel Bundle Mapping (LDDKBM) extension of LDDMM allows scale space...

  5. Universal Lagrangian bundles

    NARCIS (Netherlands)

    Sepe, D.

    2013-01-01

    The obstruction to construct a Lagrangian bundle over a fixed integral affine manifold was constructed by Dazord and Delzant (J Differ Geom 26:223–251, 1987) and shown to be given by ‘twisted’ cup products in Sepe (Differ GeomAppl 29(6): 787–800, 2011). This paper uses the topology of universal Lagr

  6. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  7. Compactifications of the Heterotic string with unitary bundles

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, T.

    2006-05-23

    In this thesis we investigate a large new class of four-dimensional supersymmetric string vacua defined as compactifications of the E{sub 8} x E{sub 8} and the SO(32) heterotic string on smooth Calabi-Yau threefolds with unitary gauge bundles and heterotic five-branes. The first part of the thesis discusses the implementation of this idea into the E{sub 8} x E{sub 8} heterotic string. After specifying a large class of group theoretic embeddings featuring unitary bundles, we analyse the effective four-dimensional N=1 supergravity upon compactification. From the gauge invariant Kaehler potential for the moduli fields we derive a modification of the Fayet-Iliopoulos D-terms arising at one-loop in string perturbation theory. From this we conjecture a one-loop deformation of the Hermitian Yang-Mills equation and introduce the idea of {lambda}-stability as the perturbatively correct stability concept generalising the notion of Mumford stability valid at tree-level. We then proceed to a definition of SO(32) heterotic vacua with unitary gauge bundles in the presence of heterotic five-branes and find agreement of the resulting spectrum with the S-dual framework of Type I/Type IIB orientifolds. A similar analysis of the effective four-dimensional supergravity is performed. Further evidence for the proposed one-loop correction to the stability condition is found by identifying the heterotic corrections as the S-dual of the perturbative part of {pi}-stability as the correct stability concept in Type IIB theory. After reviewing the construction of holomorphic stable vector bundles on elliptically fibered Calabi-Yau manifolds via spectral covers, we provide semi-realistic examples for SO(32) heterotic vacua with Pati-Salam and MSSM-like gauge sectors. We finally discuss the construction of realistic vacua with flipped SU(5) GUT and MSSM gauge group within the E{sub 8} x E{sub 8} framework, based on the embedding of line bundles into both E{sub 8} factors. Some of the appealing

  8. 腈纶装置水洗 /过滤单元废水纤维束过滤器过滤参数研究%Research on Filter Parameters of Fiber Bundle Filter in Polyacrylonitrile Fiber Installation and Filter Unit

    Institute of Scientific and Technical Information of China (English)

    李平; 朱显梅; 刘建华

    2015-01-01

    In the chemical fiber industry , the emission of polymerization mother solution caused by polymerization workshop acrylic washing/filtration unit makes the end discharge's poor biodegradability , which results in the sub-standard sewage treatment;this article uses the fiber bundle filter to conduct a test and optimizes the operating condi-tions,which aim to realize the intercepting high polymer in acrylic washing /filter unit,reducing production cost ,relea-sing the pressure of sewage treatment and solving the problems encountered in practical work .%指出了化纤行业中聚合车间腈纶水洗/过滤单元废水聚合母液排放,致使末端排放可生化性差,污水处理难以达标. 采用纤维束过滤过滤方式进行了过滤试验,以优化操作条件,实现腈纶水洗/过滤单元废水高聚物截留,降低生产成本,减轻污水处理压力,以期为解决实际工作中遇到的难题提供参考.

  9. Three-dimensional FEM model of FBGs in PANDA fibers with experimentally determined model parameters

    Science.gov (United States)

    Lindner, Markus; Hopf, Barbara; Koch, Alexander W.; Roths, Johannes

    2017-04-01

    A 3D-FEM model has been developed to improve the understanding of multi-parameter sensing with Bragg gratings in attached or embedded polarization maintaining fibers. The material properties of the fiber, especially Young's modulus and Poisson's ratio of the fiber's stress applying parts, are crucial for accurate simulations, but are usually not provided by the manufacturers. A methodology is presented to determine the unknown parameters by using experimental characterizations of the fiber and iterative FEM simulations. The resulting 3D-Model is capable of describing the change in birefringence of the free fiber when exposed to longitudinal strain. In future studies the 3D-FEM model will be employed to study the interaction of PANDA fibers with the surrounding materials in which they are embedded.

  10. An improved fiber tracking algorithm based on fiber assignment using the continuous tracking algorithm and two-tensor model

    Institute of Scientific and Technical Information of China (English)

    Liuhong Zhu; Gang Guo

    2012-01-01

    This study tested an improved fiber tracking algorithm, which was based on fiber assignment using a continuous tracking algorithm and a two-tensor model. Different models and tracking decisions were used by judging the type of estimation of each voxel. This method should solve the cross-track problem. This study included eight healthy subjects, two axonal injury patients and seven demyelinating disease patients. This new algorithm clearly exhibited a difference in nerve fiber direction between axonal injury and demyelinating disease patients and healthy control subjects. Compared with fiber assignment with a continuous tracking algorithm, our novel method can track more and longer nerve fibers, and also can solve the fiber crossing problem.

  11. Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles

    Science.gov (United States)

    Rickman, S. L.; Iamello, C. J.

    2016-01-01

    Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.

  12. Liquid Crystal Photonic bandgap Fibers: Modeling and Devices

    DEFF Research Database (Denmark)

    Weirich, Johannes

    In this PhD thesis an experimental and numerical investigation of liquid crystal infiltrated photonic bandgap fibers (LCPBGs) is presented. A simulation scheme for modeling LCPBG devices including electrical tunability is presented. New experimental techniques, boundary coating and the applicatio...

  13. Unidirectional high fiber content composites: Automatic 3D FE model generation and damage simulation

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    A new method and a software code for the automatic generation of 3D micromechanical FE models of unidirectional long-fiber-reinforced composite (LFRC) with high fiber volume fraction with random fiber arrangement are presented. The fiber arrangement in the cross-section is generated through random...

  14. Silkworm cocoons inspire models for random fiber and particulate composites

    Science.gov (United States)

    Chen, Fujia; Porter, David; Vollrath, Fritz

    2010-10-01

    The bioengineering design principles evolved in silkworm cocoons make them ideal natural prototypes and models for structural composites. Cocoons depend for their stiffness and strength on the connectivity of bonding between their constituent materials of silk fibers and sericin binder. Strain-activated mechanisms for loss of bonding connectivity in cocoons can be translated directly into a surprisingly simple yet universal set of physically realistic as well as predictive quantitative structure-property relations for a wide range of technologically important fiber and particulate composite materials.

  15. Modeling Transverse Behavior of Kevlar® KM2 Single Fibers with Deformation-induced Damage

    OpenAIRE

    Cheng, Ming; Chen, Weinong

    2006-01-01

    Abstract A phenomenological continuum model is adapted to describe the transverse mechanical behavior of Kevlar? KM2 single fibers in compression. This model could be used for numerical simulations of the mechanical behaviors of fabrics made of Kevlar? KM2 fibers. An equivalent fiber model is used to form the phenomenological model in terms of nominal stress and nominal stretch ratio. Thi...

  16. A simple numerical model for membrane oxygenation of an artificial lung machine

    Science.gov (United States)

    Subraveti, Sai Nikhil; Sai, P. S. T.; Viswanathan Pillai, Vinod Kumar; Patnaik, B. S. V.

    2015-11-01

    Optimal design of membrane oxygenators will have far reaching ramification in the development of artificial heart-lung systems. In the present CFD study, we simulate the gas exchange between the venous blood and air that passes through the hollow fiber membranes on a benchmark device. The gas exchange between the tube side fluid and the shell side venous liquid is modeled by solving mass, momentum conservation equations. The fiber bundle was modelled as a porous block with a bundle porosity of 0.6. The resistance offered by the fiber bundle was estimated by the standard Ergun correlation. The present numerical simulations are validated against available benchmark data. The effect of bundle porosity, bundle size, Reynolds number, non-Newtonian constitutive relation, upstream velocity distribution etc. on the pressure drop, oxygen saturation levels etc. are investigated. To emulate the features of gas transfer past the alveoli, the effect of pulsatility on the membrane oxygenation is also investigated.

  17. Polarization Maintaining Coherent Fiber Bundle Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA flight missions are considering passive wavefront and amplitude control in astronomical applications such as the search for exo-planets. NASA's Discovery...

  18. Helices and vector bundles

    CERN Document Server

    Rudakov, A N

    1990-01-01

    This volume is devoted to the use of helices as a method for studying exceptional vector bundles, an important and natural concept in algebraic geometry. The work arises out of a series of seminars organised in Moscow by A. N. Rudakov. The first article sets up the general machinery, and later ones explore its use in various contexts. As to be expected, the approach is concrete; the theory is considered for quadrics, ruled surfaces, K3 surfaces and P3(C).

  19. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1(I4895T/wt) mouse model of core myopathy.

    Science.gov (United States)

    Zvaritch, Elena; MacLennan, David H

    2015-04-24

    Muscle spindles from the hind limb muscles of adult Ryr1(I4895T/wt) (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies.

  20. Bundling harvester; Nippukorjausharvesteri

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, K. [Eko-Log Oy, Kuopio (Finland)

    1996-12-31

    The staring point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automatizing of the harvester, and automatized loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilization of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilized without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilization of wood-energy

  1. Optical Fibre Bundle

    CERN Multimedia

    These are sample fibre optic cables which are used for networking. Optical fibers are widely used in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data rates) than wire cables. Fibers are used instead of metal wires because signals travel along them with less loss and are also immune to electromagnetic interference. This is useful for somewhere like CERN where magnets with their highly powerful magnetic fields could pose a problem.

  2. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  3. Characterization and application of optical fibers: 1. Application of optical fibers in gas concentration and radiation dose measurements. 2. Polarization effects in fiber communication systems

    Science.gov (United States)

    Lu, Ping

    The thesis consists of two research directions: Optical fiber applications in gas concentration and radiation dose measurements; and polarization effects in fiber optic communication systems. Part I of the thesis presents two optical fiber applications. (1) An infrared (IR) fiber bundle has been designed and fabricated to measure gas concentrations in a chemical vapor deposition (CVD) chamber using Fourier transform infrared spectroscopy. This fiber bundle covers the IR range from 0.5 to 20 mum and reduces the light beam divergence in the CVD chamber, which makes it possible to measure gas concentrations in a region near the substrate surface. Semi-ellipsoid mirrors have been designed and used to increase the collection efficiency of infrared radiation and to compensate the loss introduced by the fiber bundle. (2) A fiber optic radiation sensor based on radiation-induced fiber loss is reported. The gamma radiation-induced loss spectra in various fibers have been studied. Among all the fibers tested, 5% P-doped fiber shows the highest sensitivity to gamma radiation. The wavelength and dose rate dependence of radiation-induced loss in 5% P-doped fiber are investigated and the possibility of using this fiber as a radiation sensor for radiation therapy is discussed. Part II of the thesis examines two polarization effects, polarization mode dispersion (PMD) and polarization dependent loss (PDL), in fiber optic communication systems based on the waveplate models. A new waveplate model, capable of generating any PMD and PDL values, is proposed to overcome the limitations of the conventional waveplate model. Using both models the statistical distributions of PDL and differential group delay (DGD) have been studied considering the presence of biased elliptical birefringence. The principal state of polarization (PSP) of an optical pulse is proposed for a fiber having both PMD and PDL. PMD and PDL of a pulse for a fiber consisting of two polarization maintaining fiber

  4. Modeling of Nonlinear Signal Distortion in Fiber-Optical Networks

    CERN Document Server

    Johannisson, Pontus

    2013-01-01

    A low-complexity model for signal quality prediction in a nonlinear fiber-optical network is developed. The model, which builds on the Gaussian noise model, takes into account the signal degradation caused by a combination of chromatic dispersion, nonlinear signal distortion, and amplifier noise. The center frequencies, bandwidths, and transmit powers can be chosen independently for each channel, which makes the model suitable for analysis and optimization of resource allocation, routing, and scheduling in large-scale optical networks applying flexible-grid wavelength-division multiplexing.

  5. Dynamic fiber debonding and push-out in model composites

    Science.gov (United States)

    Bi, Xiaopeng

    2003-10-01

    When a crack propagates in a fiber-reinforced composite material, a substantial part of energy is dissipated in the debonding and sliding of the bridging fibers located behind the advancing crack front. Because of the important effect they have on the fracture toughness of a composite, these processes have been the subject of extensive experimental, analytical and numerical work. However, the vast majority of existing work on this topic has been limited to quasi-static loading situations. The few investigations performed on various composite systems involving higher loading rates seem to indicate that the fiber sliding process presents some unusual and sometimes contradictory rate-dependent characteristics. To enhance the current understanding of dynamic fiber debonding and push-out in model fiber-reinforced composites, a combined experimental and numerical investigation was carried out. A modified split Hopkinson pressure bar was used to perform high-rate fiber push-out experiments on an aluminum/epoxy model composite system. An axisymmetric cohesive/volumetric finite element scheme was developed to simulate the push-out process. Effects of several important parameters such as interfacial strength, interfacial fracture toughness and fiber/matrix friction coefficient were investigated. Interface cohesive properties were extracted by comparison between experimental and numerical results. The comparison between numerics and experiments was made as close as possible by (a) simulating the entire experimental apparatus; (b) using loading directly measured in the experiments as input to the finite element analysis (FEA) code; (c) using measured material properties in the FEA simulations; and (d) accounting for effects such as large deformations, residual stresses (through a quasi-static pre-loading scheme), spontaneous crack formation (through a cohesive failure formulation) and dynamic frictional sliding. Details of the physical process were discussed by numerically

  6. Steel fiber reinforced concrete behavior, modelling and design

    CERN Document Server

    Singh, Harvinder

    2017-01-01

    This book discusses design aspects of steel fiber-reinforced concrete (SFRC) members, including the behavior of the SFRC and its modeling. It also examines the effect of various parameters governing the response of SFRC members in detail. Unlike other publications available in the form of guidelines, which mainly describe design methods based on experimental results, it describes the basic concepts and principles of designing structural members using SFRC as a structural material, predominantly subjected to flexure and shear. Although applications to special structures, such as bridges, retaining walls, tanks and silos are not specifically covered, the fundamental design concepts remain the same and can easily be extended to these elements. It introduces the principles and related theories for predicting the role of steel fibers in reinforcing concrete members concisely and logically, and presents various material models to predict the response of SFRC members in detail. These are then gradually extended to d...

  7. Managing bundled payments.

    Science.gov (United States)

    Draper, Andrew

    2011-04-01

    Results of Medicare's ACE demonstration project and Geisinger Health System's ProvenCare initiative provide insight into the challenges hospitals will face as bundled payment proliferates. An early analysis of these results suggests that hospitals would benefit from bringing full automation using clinical IT tools to bear in their efforts to meet these challenges. Other important factors contributing to success include board and physician leadership, organizational structure, pricing methodology for bidding, evidence-based medical practice guidelines, supply cost management, process efficiency management, proactive and aggressive case management, business development and marketing strategy, and the financial management system.

  8. Design of homogeneous trench-assisted multi-core fibers based on analytical model

    DEFF Research Database (Denmark)

    Ye, Feihong; Tu, Jiajing; Saitoh, Kunimasa

    2016-01-01

    is the quasi-optimum core layout starting from an one-ring structured 12-core fiber. Based on the analytical model, a square-lattice structured 24-core fiber and a 32-core fiber are designed both for propagation-direction interleaving (PDI) and non-PDI transmission schemes. The proposed model provides...

  9. A numerical algorithm for stress integration of a fiber-fiber kinetics model with Coulomb friction for connective tissue

    Science.gov (United States)

    Kojic, M.; Mijailovic, S.; Zdravkovic, N.

    Complex behaviour of connective tissue can be modeled by a fiber-fiber kinetics material model introduced in Mijailovic (1991), Mijailovic et al. (1993). The model is based on the hypothesis of sliding of elastic fibers with Coulomb and viscous friction. The main characteristics of the model were verified experimentally in Mijailovic (1991), and a numerical procedure for one-dimensional tension was developed considering sliding as a contact problem between bodies. In this paper we propose a new and general numerical procedure for calculation of the stress-strain law of the fiber-fiber kinetics model in case of Coulomb friction. Instead of using a contact algorithm (Mijailovic 1991), which is numerically inefficient and never enough reliable, here the history of sliding along the sliding length is traced numerically through a number of segments along the fiber. The algorithm is simple, efficient and reliable and provides solutions for arbitrary cyclic loading, including tension, shear, and tension and shear simultaneously, giving hysteresis loops typical for soft tissue response. The model is built in the finite element technique, providing the possibility of its application to general and real problems. Solved examples illustrate the main characteristics of the model and of the developed numerical method, as well as its applicability to practical problems. Accuracy of some results, for the simple case of uniaxial loading, is verified by comparison with analytical solutions.

  10. CFD simulations in heavy liquid metal flows for square lattice bare rod bundle geometries with a four parameter heat transfer turbulence model

    Energy Technology Data Exchange (ETDEWEB)

    Manservisi, Sandro, E-mail: sandro.manservisi@unibo.it; Menghini, Filippo, E-mail: filippo.menghini3@unibo.it

    2015-12-15

    Highlights: • Turbulent heat transfer with a κ–ϵ–κ{sub θ}–ϵ{sub θ} turbulence model is investigated. • Numerical simulations with different pitch-to-diameter ratios are performed. • The results are compared with SED model and a few available experimental correlations. - Abstract: The study of heat transfer in heavy liquid metals has gained more attention in the last several years due to their applications in new advanced nuclear reactors. These fluids are characterized by low Prandtl numbers and a peculiar heat transfer that cannot be accurately reproduced with standard turbulence approximations, such as the Simple Eddy Diffusivity model (SED), commonly used in commercial codes. In this paper we report the results obtained for the SED and a more advanced κ–ϵ–κ{sub θ}–ϵ{sub θ} four parameter turbulence model for simulations in square lattice bare rod bundle geometries with different pitch-to-diameter ratios. We compare these numerical results with the available experimental data and correlations for the prediction of the Nusselt number.

  11. Numerical modeling of mode-locked fiber lasers with a fiber-based saturable-absorber

    Science.gov (United States)

    Wang, Long; Chong, Andy; Haus, Joseph W.

    2017-01-01

    We report fiber laser simulations with a fiber compatible, self-focusing, saturable absorber (SA) device. The SA device consists of two tapered fiber ends separated by a bulk, nonlinear medium. An optical beam transmitted from one tapered fiber end, propagate through the nonlinear medium (chalcogenide glass As40 S e60) and couples back into the other tapered fiber end. Pulse propagation in the fiber laser cavity is performed using the Split Step Method. Stable pulses are generated with energies around 0.3 nJ and a transform limited pulse width around 200 fs.

  12. Trimming Behavior of H_2-Loaded Silica Fiber Modeled by Rate Equations

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Photosensitivity behavior of H2-loaded silica fiber was modeled by rate equations for activated particles. The theoretical deductions give a close explanation to experimental phenomena on post-exposure growth in fiber gratings.

  13. Differential calculi on noncommutative bundles

    OpenAIRE

    Pflaum, Markus J.; Schauenburg, Peter

    1996-01-01

    We introduce a category of noncommutative bundles. To establish geometry in this category we construct suitable noncommutative differential calculi on these bundles and study their basic properties. Furthermore we define the notion of a connection with respect to a differential calculus and consider questions of existence and uniqueness. At the end these constructions are applied to basic examples of noncommutative bundles over a coquasitriangular Hopf algebra.

  14. Electromagnetic modeling of periodically-structured fiber-reinforced single-layer laminate with multiple fibers missing

    Science.gov (United States)

    Liu, Z.-C.; Li, C.-Y.; Lesselier, D.; Zhong, Y.

    2016-12-01

    Modeling of periodically-structured, fiber-reinforced laminates with fibers missing is investigated, this applying as well to similarly disorganized photonic crystals at optical frequencies. Parallel cylindrical fibers are periodically embedded within a layer sandwiched between two half-spaces. Absent fibers destroy the periodicity. The supercell concept involving an auxiliary periodic structure provides subsidiary solutions, wherein plane-wave illumination can be analyzed with the help of the Floquet theorem, while the field response due to a line source can be calculated from the pertinent plane-wave expansion. Accuracy, computational efficacy and versatility of the above approaches are illustrated by comprehensive numerical simulations with in particular comparisons to results provided by a finite-element code, all-purpose but computationally demanding, this work seen as the first step to the localization of missing fibers in a damaged laminate and imaging thereof.

  15. Phase fluctuations in two coaxial quasi-one-dimensional superconducting cylindrical surfaces serving as a model system for superconducting nanowire bundles

    Science.gov (United States)

    Wong, C. H.; Wu, R. P. H.; Lortz, R.

    2017-03-01

    The dimensional crossover from a 1D fluctuating state at high temperatures to a 3D phase coherent state in the low temperature regime in two coaxial weakly-coupled cylindrical surfaces formed by two-dimensional arrays of parallel nanowires is studied via an 8-state 3D-XY model. This system serves as a model for quasi-one-dimensional superconductors in the form of bundles of weakly-coupled superconducting nanowires. A periodic variation of the dimensional crossover temperature TDC is observed when the inner superconducting cylindrical surface is rotated in the angular plane. TDC reaches a maximum when the relative angle between the cylinders is 2.81°, which corresponds to the maximum separation of nanowires between the two cylindrical surfaces. We demonstrate that the relative strength of phase fluctuations in this system is controllable by the rotational angle between the two surfaces with a strong suppression of the fluctuation strength at 2.81°. The phase fluctuations are suppressed gradually upon cooling, before they abruptly vanish below TDC. Our model thus allows us to study how phase fluctuations can be suppressed in quasi-one-dimensional superconductors in order to achieve a global phase coherent state throughout the nanowire array with zero electric resistance.

  16. Phase fluctuations in two coaxial quasi-one-dimensional superconducting cylindrical surfaces serving as a model system for superconducting nanowire bundles

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.H., E-mail: ch.kh.vong@urfu.ru [Institute of Physics and Technology, Ural Federal University, Clear Water Bay, Kowloon (Russian Federation); Wu, R.P.H., E-mail: pak-hong-raymond.wu@connect.polyu.hk [Department of Applied Physics, The Hong Kong Polytechnic University (Hong Kong); Lortz, R., E-mail: lortz@ust.hk [Department of Physics, Hong Kong University of Science and Technology (Hong Kong)

    2017-03-15

    The dimensional crossover from a 1D fluctuating state at high temperatures to a 3D phase coherent state in the low temperature regime in two coaxial weakly-coupled cylindrical surfaces formed by two-dimensional arrays of parallel nanowires is studied via an 8-state 3D-XY model. This system serves as a model for quasi-one-dimensional superconductors in the form of bundles of weakly-coupled superconducting nanowires. A periodic variation of the dimensional crossover temperature T{sub DC} is observed when the inner superconducting cylindrical surface is rotated in the angular plane. T{sub DC} reaches a maximum when the relative angle between the cylinders is 2.81°, which corresponds to the maximum separation of nanowires between the two cylindrical surfaces. We demonstrate that the relative strength of phase fluctuations in this system is controllable by the rotational angle between the two surfaces with a strong suppression of the fluctuation strength at 2.81°. The phase fluctuations are suppressed gradually upon cooling, before they abruptly vanish below T{sub DC}. Our model thus allows us to study how phase fluctuations can be suppressed in quasi-one-dimensional superconductors in order to achieve a global phase coherent state throughout the nanowire array with zero electric resistance.

  17. Propagation velocity profile in a cross-section of a cardiac muscle bundle from PSpice simulation

    Directory of Open Access Journals (Sweden)

    Sperelakis Nicholas

    2006-08-01

    Full Text Available Abstract Background The effect of depth on propagation velocity within a bundle of cardiac muscle fibers is likely to be an important factor in the genesis of some heart arrhythmias. Model and methods The velocity profile of simulated action potentials propagated down a bundle of parallel cardiac muscle fibers was examined in a cross-section of the bundle using a PSpice model. The model (20 × 10 consisted of 20 chains in parallel, each chain being 10 cells in length. All 20 chains were stimulated simultaneously at the left end of the bundle using rectangular current pulses (0.25 nA, 0.25 ms duration applied intracellularly. The simulated bundle was symmetrical at the top and bottom (including two grounds, and voltage markers were placed intracellularly only in cells 1, 5 and 10 of each chain to limit the total number of traces to 60. All electrical parameters were standard values; the variables were (1 the number of longitudinal gap-junction (G-j channels (0, 1, 10, 100, (2 the longitudinal resistance between the parallel chains (Rol2 (reflecting the closeness of the packing of the chains, and (3 the bundle termination resistance at the two ends of the bundle (RBT. The standard values for Rol2 and RBT were 200 KΩ. Results The velocity profile was bell-shaped when there was 0 or only 1 gj-channel. With standard Rol2 and RBT values, the velocity at the surface of the bundle (θ1 and θ20 was more than double (2.15 × that at the core of the bundle (θ10, θ11. This surface:core ratio of velocities was dependent on the values of Rol2 and RBT. When Rol2 was lowered 10-fold, θ1 increased slightly and θ2decreased slightly. When there were 100 gj-channels, the velocity profile was flat, i.e. the velocity at the core was about the same as that at the surface. Both velocities were more than 10-fold higher than in the absence of gj-channels. Varying Rol2 and RBT had almost no effect. When there were 10 gj-channels, the cross-sectional velocity profile

  18. Nefness of adjoint bundles for ample vector bundles

    Directory of Open Access Journals (Sweden)

    Hidetoshi Maeda

    1995-11-01

    Full Text Available Let E be an ample vector bundle of rank >1 on a smooth complex projective variety X of dimension n. This paper gives a classification of pairs (X,E whose adjoint bundles K_X+det E are not nef in the case when  r=n-2.

  19. Anatomy of the retinal nerve fiber layer.

    Science.gov (United States)

    Radius, R L; de Bruin, J

    1981-11-01

    Anatomy of the retinal nerve fiber layer in rabbit eyes is studied by light microscopy, transmission electron microscopy, and scanning electron microscopy. It is demonstrated that retinal striations noted ophthalmoscopically in these eyes represent individual fiber bundles, Axon bundles are compartmentalized within tissue tunnels comprised of elongated processes of glial cell origin.

  20. Chern-Simons functional under gauge transformations on flat bundles

    Science.gov (United States)

    Byun, Yanghyun; Kim, Joohee

    2017-01-01

    We describe the effect of a gauge transformation on the Chern-Simons functional in a thorough and unifying manner. We use the assumptions that the structure group is compact and connected and, in particular, that the principal bundle is flat. The Chern-Simons functional we consider is the one defined by choosing a flat reference connection. The most critical step in arriving at the main result is to show both the existence and the uniqueness of a cohomology class on the adjoint bundle such that it is the class of the so-called Maurer-Cartan 3-form when restricted to each fiber.

  1. Bundle Security Protocol for ION

    Science.gov (United States)

    Burleigh, Scott C.; Birrane, Edward J.; Krupiarz, Christopher

    2011-01-01

    This software implements bundle authentication, conforming to the Delay-Tolerant Networking (DTN) Internet Draft on Bundle Security Protocol (BSP), for the Interplanetary Overlay Network (ION) implementation of DTN. This is the only implementation of BSP that is integrated with ION.

  2. Vector Bundles And F Theory

    CERN Document Server

    Friedman, R; Witten, Edward

    1997-01-01

    To understand in detail duality between heterotic string and F theory compactifications, it is important to understand the construction of holomorphic G bundles over elliptic Calabi-Yau manifolds, for various groups G. In this paper, we develop techniques to describe these bundles, and make several detailed comparisons between the heterotic string and F theory.

  3. Vector Bundles And F Theory

    OpenAIRE

    Friedman, Robert; Morgan, John; Witten, Edward

    1997-01-01

    To understand in detail duality between heterotic string and F theory compactifications, it is important to understand the construction of holomorphic G bundles over elliptic Calabi-Yau manifolds, for various groups G. In this paper, we develop techniques to describe the bundles, and make several detailed comparisons between the heterotic string and F theory.

  4. Bundle Formation in Biomimetic Hydrogels

    NARCIS (Netherlands)

    Jaspers, Maarten; Pape, A C H; Voets, Ilja K; Rowan, Alan E; Portale, Giuseppe; Kouwer, Paul H J

    2016-01-01

    Bundling of single polymer chains is a crucial process in the formation of biopolymer network gels that make up the extracellular matrix and the cytoskeleton. This bundled architecture leads to gels with distinctive properties, including a large-pore-size gel formation at very low concentrations and

  5. Modeling of a Single Multimode Fiber Imaging System

    CERN Document Server

    Liu, Chen; Liu, Deming; Su, Lei

    2016-01-01

    We present a detailed theoretical analysis on image transmission via a single multimode fiber (MMF). A single MMF imaging model is developed to study the light wave propagation from the light source to the camera, by using free-space Fourier optics theory and mode-coupling theory. A mathematical expression is obtained for the complete single MMF imaging system, which is further validated by image-transmission simulations. Our model is believed to be the first theoretical model to describe the complete MMF imaging system based on the transmission of individual modes. Therefore, this model is robust and capable of analyzing MMF image transmission under specific mode-coupling conditions. We use our model to study bending-induced image blur in single-MMF image transmission, and the result has found a good agreement with that of existing experimental studies. These should provide important insights into future MMF imaging system developments.

  6. Modeling and Simulation of Fiber Orientation in Injection Molding of Polymer Composites

    Directory of Open Access Journals (Sweden)

    Jang Min Park

    2011-01-01

    Full Text Available We review the fundamental modeling and numerical simulation for a prediction of fiber orientation during injection molding process of polymer composite. In general, the simulation of fiber orientation involves coupled analysis of flow, temperature, moving free surface, and fiber kinematics. For the governing equation of the flow, Hele-Shaw flow model along with the generalized Newtonian constitutive model has been widely used. The kinematics of a group of fibers is described in terms of the second-order fiber orientation tensor. Folgar-Tucker model and recent fiber kinematics models such as a slow orientation model are discussed. Also various closure approximations are reviewed. Therefore, the coupled numerical methods are needed due to the above complex problems. We review several well-established methods such as a finite-element/finite-different hybrid scheme for Hele-Shaw flow model and a finite element method for a general three-dimensional flow model.

  7. A mathematical model for the formation of beaded fibers in electrospinning

    Directory of Open Access Journals (Sweden)

    Liu Zhi

    2015-01-01

    Full Text Available Beaded fibers are often observed in electrospinning. However, its formation mechanism is not well understood. A mathematical model for pulsation of the charged jets during spinning is proposed to reveal the phenomenon of beaded fibers, and the main factors for beaded fibers are elucidated.

  8. Twisted Vector Bundles on Pointed Nodal Curves

    Indian Academy of Sciences (India)

    Ivan Kausz

    2005-05-01

    Motivated by the quest for a good compactification of the moduli space of -bundles on a nodal curve we establish a striking relationship between Abramovich’s and Vistoli’s twisted bundles and Gieseker vector bundles.

  9. Impregnation of thermoplastic resin in jute fiber mat

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Impregnation rate of thermoplastic resin (polypropylene) in jute fiber mat and influence of relative factors on impregnation were studied,aiming to develop the continuous melt impregnation technique and to investigate the effect of impregnation rate and temperature on processing conditions and mechanical properties of natural fiber mat-reinforced thermoplastics.Influence of pressure on porosity of fiber mat and effect of melt viscosity on impregnation rate were also investigated.The modified capillary rheometer was used as apparatus and experimental data were analyzed based on the one-dimension Darcy's law.Results showed that at a given pressure,the impregnation rate is inversely proportional to melt viscosity and jute fiber mat has higher porosity than glass fiber mat.The architecture,compressibility,permeability and fiber diameter of jute fiber mat were compared with those of glass fiber mat and their effects on impregnation were discussed further.It could be seen that the average diameter of jute fiber is much bigger;the porosity of jute fiber mat is significantly higher and inner bundle impregnation does not exist in jute fiber mat.Therefore,it is not difficult to understand why the impregnation rate in jute fiber mat is 3.5 times higher and permeability is 14 times greater.Kozeny constants of jute and glass fiber mats calculated based on the capillary model are 2950 and 442,respectively.

  10. Predicting functional brain ROIs via fiber shape models.

    Science.gov (United States)

    Zhang, Tuo; Guo, Lei; Li, Kaiming; Zhu, Dajing; Cui, Guangbin; Liu, Tianming

    2011-01-01

    Study of structural and functional connectivities of the human brain has received significant interest and effort recently. A fundamental question arises when attempting to measure the structural and/or functional connectivities of specific brain networks: how to best identify possible Regions of Interests (ROIs)? In this paper, we present a novel ROI prediction framework that localizes ROIs in individual brains based on learned fiber shape models from multimodal task-based fMRI and diffusion tensor imaging (DTI) data. In the training stage, ROIs are identified as activation peaks in task-based fMRI data. Then, shape models of white matter fibers emanating from these functional ROIs are learned. In addition, ROIs' location distribution model is learned to be used as an anatomical constraint. In the prediction stage, functional ROIs are predicted in individual brains based on DTI data. The ROI prediction is formulated and solved as an energy minimization problem, in which the two learned models are used as energy terms. Our experiment results show that the average ROI prediction error is 3.45 mm, in comparison with the benchmark data provided by working memory task-based fMRI. Promising results were also obtained on the ADNI-2 longitudinal DTI dataset.

  11. The 6-OHDA mouse model of Parkinson's disease - Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions.

    Science.gov (United States)

    Bagga, V; Dunnett, S B; Fricker, R A

    2015-07-15

    Unilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal pathway produce side-biased motor impairments that reflect the motor deficits seen in Parkinson's disease (PD). This toxin-induced model in the rat has been used widely, to evaluate possible therapeutic strategies, but has not been well established in mice. With the advancements in mouse stem cell research we believe the requirement for a mouse model is essential for the therapeutic potential of these and other mouse-derived cells to be efficiently assessed. This aim of this study focused on developing a mouse model of PD using the 129 P2/OLA Hsd mouse strain as this is widely used in the generation of mouse embryonic stem cells. Both unilateral 6-OHDA medial forebrain bundle (MFB) and striatal lesion protocols were compared, with mice analysed for appropriate drug-induced rotational bias. Results demonstrated that lesioned mice responded to d-amphetamine with peak rotation dose at 5mg/kg and 10mg/kg for MFB and striatal lesions respectively. Apomorphine stimulation produced no significant rotational responses, at any dose, in either the MFB or striatal 6-OHDA lesioned mice. Analysis of dopamine neuron loss revealed that the MFB lesion was unreliable with little correlation between dopamine neuron loss and rotational asymmetry. Striatal lesions however were more reliable, with a strong correlation between dopamine neuron loss and rotational asymmetry. Functional recovery of d-amphetamine-induced rotational bias was shown following transplantation of E13 mouse VM tissue into the lesioned striatum; confirming the validity of this mouse model.

  12. Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    A statistical computational model of strength and damage of unidirectional carbon fiber reinforced composites under compressive and cyclic compressive loading is presented in this paper. The model is developed on the basis of the Budiansky–Fleck fiber kinking condition, continuum damage mechanics...... concept and the Monte-Carlo method. The effects of fiber misalignment variability, fiber clustering, load sharing rules on the damage in composite are studied numerically. It is demonstrated that the clustering of fibers has a negative effect of the damage resistance of a composite. Further, the static...

  13. Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; W. Gutmann, Ingomar; Koch, Thomas

    2016-01-01

    The aim of this paper is the understanding of the fiber orientation by investigations in respect to the inner configuration of a polylactic acid matrix reinforced with short carbon fibers after a fused deposition modeling extrusion process. The final parts were analyzed by X-ray, tomography, and ......, and magnetic resonance imaging allowing a resolved orientation of the fibers and distribution within the part. The research contributes to the understanding of the fiber orientation and fiber reinforcement of fused deposition modeling parts in additive manufacturing....

  14. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1{sup I4895T/wt} mouse model of core myopathy

    Energy Technology Data Exchange (ETDEWEB)

    Zvaritch, Elena; MacLennan, David H., E-mail: david.maclennan@utoronto.ca

    2015-04-24

    Muscle spindles from the hind limb muscles of adult Ryr1{sup I4895T/wt} (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed.

  15. Development and validation of advanced CFD models for detailed predictions of void distribution in a BWR bundle

    Science.gov (United States)

    Neykov, Boyan

    In recent years, a commonly adopted approach is to use Computational Fluid Dynamics (CFD) codes as computational tools for simulation of different aspects of the nuclear reactor thermal-hydraulic performance where high-resolution and high-fidelity modeling is needed. Within the framework of this PhD work, the CFD code STAR-CD [1] is used for investigations of two phase flow in air-water systems as well as boiling phenomena in simple pipe geometry and in a Boiling Water Reactor (BWR) fuel assembly. Based on the two-fluid Eulerian solver, improvements of the STAR-CD code in the treatment of the drag, lift and wall lubrication forces in a dispersed two phase flow at high vapor (gas) phase fractions are investigated and introduced. These improvements constitute a new two phase modeling framework for STAR-CD, which has been shown to be superior as compared to the default models in STAR-CD. The conservation equations are discretized using the finite-volume method and solved using a solution procedure is based on Pressure Implicit with Splitting of Operators (PISO) algorithm, adapted to the solution of the two-fluid model. The improvements in the drag force modeling include investigation and integration of models with dependence on both void fraction and bubble diameter. The set of the models incorporated into STAR-CD is selected based on an extensive literature review focused on two phase systems with high vapor fractions. The research related to the modeling of wall lubrication force is focused on the validation of the already existing model in STAR-CD. The major contribution of this research is the development and implementation of an improved correlation for the lift coefficient used in the lift force formula. While a variety of correlations for the lift coefficient can be found in the open literature, most of those were derived from experiments conducted at low vapor (gas) phase fractions and are not applicable to the flow conditions existing in the BWRs. Therefore

  16. Systematic evaluation of bundled SPC water for biomolecular simulations.

    Science.gov (United States)

    Gopal, Srinivasa M; Kuhn, Alexander B; Schäfer, Lars V

    2015-04-07

    In bundled SPC water models, the relative motion of groups of four water molecules is restrained by distance-dependent potentials. Bundled SPC models have been used in hybrid all-atom/coarse-grained (AA/CG) multiscale simulations, since they enable to couple atomistic SPC water with supra-molecular CG water models that effectively represent more than a single water molecule. In the present work, we systematically validated and critically tested bundled SPC water models as solvent for biomolecular simulations. To that aim, we investigated both thermodynamic and structural properties of various biomolecular systems through molecular dynamics (MD) simulations. Potentials of mean force of dimerization of pairs of amino acid side chains as well as hydration free energies of single side chains obtained with bundled SPC and standard (unrestrained) SPC water agree closely with each other and with experimental data. Decomposition of the hydration free energies into enthalpic and entropic contributions reveals that in bundled SPC, this favorable agreement of the free energies is due to a larger degree of error compensation between hydration enthalpy and entropy. The Ramachandran maps of Ala3, Ala5, and Ala7 peptides are similar in bundled and unrestrained SPC, whereas for the (GS)2 peptide, bundled water leads to a slight overpopulation of extended conformations. Analysis of the end-to-end distance autocorrelation times of the Ala5 and (GS)2 peptides shows that sampling in more viscous bundled SPC water is about two times slower. Pronounced differences between the water models were found for the structure of a coiled-coil dimer, which is instable in bundled SPC but not in standard SPC. In addition, the hydration of the active site of the serine protease α-chymotrypsin depends on the water model. Bundled SPC leads to an increased hydration of the active site region, more hydrogen bonds between water and catalytic triad residues, and a significantly slower exchange of water

  17. Coating of carbon fibers -- The strength of the fibers

    Energy Technology Data Exchange (ETDEWEB)

    Helmer, T. [Alusingen GmbH, Singen (Germany); Peterlik, H.; Kromp, K. [Univ. Wien, Vienna (Austria). Inst. fuer Festkoerperphysik

    1995-01-01

    The 6k carbon fiber Torayca T800H was coated with pyrolytic carbon by a CVD process. Fiber bundles were tested and evaluated. By this procedure, the whole distribution of the failure probability with respect to the fiber strength is obtained in a single experiment. The 50% strength of the fiber bundle, i.e., the strength at which 50% of the fibers in the bundle are broken, is inversely proportional to the square root of the thickness of the coating. By relating the strength to the defect size according to linear-elastic fracture mechanics (LEFM), the probability density function of the defects was derived. It is Weibull-shaped for the uncoated fiber and shows an increasing bimodal shape for the increasing coating thicknesses.

  18. Semiflexible Biopolymers in Bundled Arrangements

    Directory of Open Access Journals (Sweden)

    Jörg Schnauß

    2016-07-01

    Full Text Available Bundles and networks of semiflexible biopolymers are key elements in cells, lending them mechanical integrity while also enabling dynamic functions. Networks have been the subject of many studies, revealing a variety of fundamental characteristics often determined via bulk measurements. Although bundles are equally important in biological systems, they have garnered much less scientific attention since they have to be probed on the mesoscopic scale. Here, we review theoretical as well as experimental approaches, which mainly employ the naturally occurring biopolymer actin, to highlight the principles behind these structures on the single bundle level.

  19. Evaluating big deal journal bundles.

    Science.gov (United States)

    Bergstrom, Theodore C; Courant, Paul N; McAfee, R Preston; Williams, Michael A

    2014-07-01

    Large commercial publishers sell bundled online subscriptions to their entire list of academic journals at prices significantly lower than the sum of their á la carte prices. Bundle prices differ drastically between institutions, but they are not publicly posted. The data that we have collected enable us to compare the bundle prices charged by commercial publishers with those of nonprofit societies and to examine the types of price discrimination practiced by commercial and nonprofit journal publishers. This information is of interest to economists who study monopolist pricing, librarians interested in making efficient use of library budgets, and scholars who are interested in the availability of the work that they publish.

  20. Stable extensions by line bundles

    CERN Document Server

    Teixidor-i-Bigas, M

    1997-01-01

    Let C be an algebraic curve of genus g. Consider extensions E of a vector bundle F'' of rank n'' by a vector bundle F' of rank n'. The following statement was conjectured by Lange: If 0bundle. Our method uses a degeneration argument to a reducible curve.

  1. Compressive nonlinearity in the hair bundle's active response to mechanical stimulation.

    Science.gov (United States)

    Martin, P; Hudspeth, A J

    2001-12-04

    The auditory system's ability to interpret sounds over a wide range of amplitudes rests on the nonlinear responsiveness of the ear. Whether measured by basilar-membrane vibration, nerve-fiber activity, or perceived loudness, the ear is most sensitive to small signals and grows progressively less responsive as stimulation becomes stronger. Seeking a correlate of this behavior at the level of mechanoelectrical transduction, we examined the responses of hair bundles to direct mechanical stimulation. As reported by the motion of an attached glass fiber, an active hair bundle from the bullfrog's sacculus oscillates spontaneously. Sinusoidal movement of the fiber's base by as little as +/-1 nm, corresponding to the application at the bundle's top of a force of +/-0.3 pN, causes detectable phase-locking of the bundle's oscillations to the stimulus. Although entrainment increases as the stimulus grows, the amplitude of the hair-bundle movement does not rise until phase-locking is nearly complete. A bundle is most sensitive to stimulation at its frequency of spontaneous oscillation. Far from that frequency, the sensitivity of an active hair bundle resembles that of a passive bundle. Over most of its range, an active hair bundle's response grows as the one-third power of the stimulus amplitude; the bundle's sensitivity declines accordingly in proportion to the negative two-thirds power of the excitation. This scaling behavior, also found in the response of the mammalian basilar membrane to sound, signals the operation of an amplificatory process at the brink of an oscillatory instability, a Hopf bifurcation.

  2. A theoretical model of turbulent fiber suspension and its application to the channel flow

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A theoretical model of turbulent fiber suspension is developed by deriving the equations of Reynolds averaged Navier-Stokes,turbulence kinetic energy and turbulence dissipation rate with the additional term of fibers.In order to close the above equations,the equation of probability distribution function for mean fiber orientation is also derived.The theoretical model is applied to the turbulent channel flow and the corresponding equations are solved numerically.The numerical results are verified by comparisons with the experimental ones.The effects of Reynolds number,fiber concentration and fiber aspect-ratio on the velocity profile,turbulent kinetic energy and turbulent dissipation rate are analyzed.Based on the numerical data,the expression for the velocity profile in the turbulent fiber suspension channel flow,which includes the effect of Reynolds number,fiber concentration and aspect-ratio,is proposed.

  3. The effect of hair bundle shape on hair bundle hydrodynamics of inner ear hair cells at low and high frequencies.

    Science.gov (United States)

    Shatz, L F

    2000-03-01

    The relationship between size and shape of the hair bundle of a hair cell in the inner ear and its sensitivity at asymptotically high and low frequencies was determined, thereby extending the results of an analysis of hair bundle hydrodynamics in two dimensions (Freeman and Weiss, 1990. Hydrodynamic analysis of a two-dimensional model for micromechanical resonance of free-standing hair bundles. Hear. Res. 48, 37-68) to three dimensions. A hemispheroid was used to represent the hair bundle. The hemispheroid had a number of advantages: it could represent shapes that range from thin, pencil-like shapes, to wide, flat, disk-like shapes. Also analytic methods could be used in the high frequency range to obtain an exact solution to the equations of motion. In the low frequency range, where an approximate solution was found using boundary element methods, the sensitivity of the responses of hair cells was mainly proportional to the cube of the heights of their hair bundles, and at high frequencies, the sensitivity of the hair cells was mainly proportional to the inverse of their heights. An excellent match was obtained between measurements of sensitivity curves in the basillar papilla of the alligator and bobtail lizards and the model's predictions. These results also suggest why hair bundles of hair cells in vestibular organs which are sensitive to low frequencies have ranges of heights that are an order of magnitude larger than the range of heights of hair bundles of hair cells found in auditory organs.

  4. Micro-mechanical Analysis of Fiber Reinforced Cementitious Composites using Cohesive Crack Modeling

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2006-01-01

    This paper discusses the mechanism appearing during fiber debonding in fiber reinforced cementitious composite. The investigation is performed on the micro scale by use of a Finite Element Model. The model is 3 dimensional and the fictitious crack model and a mixed mode stress formulation...

  5. 3D Viscoelastic Finite Element Modelling of Polymer Flow in the Fiber Drawing Process for Microstructured Polymer Optical Fiber Fabrication

    DEFF Research Database (Denmark)

    Fasano, Andrea; Rasmussen, Henrik K.; Marín, J. M. R.

    2015-01-01

    The process of drawing an optical fiber from a polymer preform is still not completely understood,although it represents one of the most critical steps in the process chain for the fabrication of microstructuredpolymer optical fibers (mPOFs). Here we present a new approach for the numerical...... the numerical modelling of mPOF drawing has mainly beenbased on principles, such as generalized Newtonian fluid dynamics, which are not able to cope with the elasticcomponent in polymer flow. In the present work, we employ the K-BKZ constitutive equation, a non-linearsingle-integral model that combines both...

  6. Left bundle-branch block

    DEFF Research Database (Denmark)

    Risum, Niels; Strauss, David; Sogaard, Peter

    2013-01-01

    The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...

  7. Bundling ecosystem services in Denmark

    DEFF Research Database (Denmark)

    Turner, Katrine Grace; Odgaard, Mette Vestergaard; Bøcher, Peder Klith;

    2014-01-01

    We made a spatial analysis of 11 ecosystem services at a 10 km × 10 km grid scale covering most of Denmark. Our objective was to describe their spatial distribution and interactions and also to analyze whether they formed specific bundle types on a regional scale in the Danish cultural landscape....... We found clustered distribution patterns of ecosystem services across the country. There was a significant tendency for trade-offs between on the one hand cultural and regulating services and on the other provisioning services, and we also found the potential of regulating and cultural services...... to form synergies. We identified six distinct ecosystem service bundle types, indicating multiple interactions at a landscape level. The bundle types showed specialized areas of agricultural production, high provision of cultural services at the coasts, multifunctional mixed-use bundle types around urban...

  8. Left bundle-branch block

    DEFF Research Database (Denmark)

    Risum, Niels; Strauss, David; Sogaard, Peter;

    2013-01-01

    The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...

  9. Vector bundles on toric varieties

    CERN Document Server

    Gharib, Saman

    2011-01-01

    Following Sam Payne's work, we study the existence problem of nontrivial vector bundles on toric varieties. The first result we prove is that every complete fan admits a nontrivial conewise linear multivalued function. Such functions could potentially be the Chern classes of toric vector bundles. Then we use the results of Corti\\~nas, Haesemeyer, Walker and Weibel to show that the (non-equivariant) Grothendieck group of the toric 3-fold studied by Payne is large, so the variety has a nontrivial vector bundle. Using the same computation, we show that every toric 3-fold X either has a nontrivial line bundle, or there is a finite surjective toric morphism from Y to X, such that Y has a large Grothendieck group.

  10. Fabrication of electrospun nanofibers bundles

    Science.gov (United States)

    Ye, Junjun; Sun, Daoheng

    2007-12-01

    Aligned nanofibers, filament bundle composed of large number of nanofibers have potential applications such as bio-material, composite material etc. A series of electrospinning experiments have been conducted to investigate the electrospinning process,in which some parameters such as polymer solution concentration, bias voltage, distance between spinneret and collector, solution flow rate etc have been setup to do the experiment of nanofibers bundles construction. This work firstly reports electrospun nanofiber bundle through non-uniform electrical field, and nanofibers distributed in different density on electrodes from that between them. Thinner nanofibers bundle with a few numbers of nanofiber is collected for 3 seconds; therefore it's also possible that the addressable single nanofiber could be collected to bridge two electrodes.

  11. Contact stresses modeling at the Panda-type fiber single-layer winding and evaluation of their impact on the fiber optic properties

    Science.gov (United States)

    Lesnikova, Yu I.; Smetannikov, O. Yu; Trufanov, A. N.; Trufanov, N. A.

    2017-02-01

    The impact of contact transverse forces on the birefringence of the single-mode polarization-maintaining Panda-type fiber is numerically modeled. It has been established that with a single-row power winding on a cylindrical mandrel, the fiber tension at winding is the principal factor that influences birefringence. When coiling the fiber based on the local defect microbending, the birefringence at the microbending point differs from that of the free fiber by 1.3%.

  12. Dual permeability FEM models for distributed fiber optic sensors development

    Science.gov (United States)

    Aguilar-López, Juan Pablo; Bogaard, Thom

    2017-04-01

    Fiber optic cables are commonly known for being robust and reliable mediums for transferring information at the speed of light in glass. Billions of kilometers of cable have been installed around the world for internet connection and real time information sharing. Yet, fiber optic cable is not only a mean for information transfer but also a way to sense and measure physical properties of the medium in which is installed. For dike monitoring, it has been used in the past for detecting inner core and foundation temperature changes which allow to estimate water infiltration during high water events. The DOMINO research project, aims to develop a fiber optic based dike monitoring system which allows to directly sense and measure any pore pressure change inside the dike structure. For this purpose, questions like which location, how many sensors, which measuring frequency and which accuracy are required for the sensor development. All these questions may be initially answered with a finite element model which allows to estimate the effects of pore pressure change in different locations along the cross section while having a time dependent estimation of a stability factor. The sensor aims to monitor two main failure mechanisms at the same time; The piping erosion failure mechanism and the macro-stability failure mechanism. Both mechanisms are going to be modeled and assessed in detail with a finite element based dual permeability Darcy-Richards numerical solution. In that manner, it is possible to assess different sensing configurations with different loading scenarios (e.g. High water levels, rainfall events and initial soil moisture and permeability conditions). The results obtained for the different configurations are later evaluated based on an entropy based performance evaluation. The added value of this kind of modelling approach for the sensor development is that it allows to simultaneously model the piping erosion and macro-stability failure mechanisms in a time

  13. A single flexible tube in a rigid array as a model for fluidelastic instability in tube bundles

    Science.gov (United States)

    Khalifa, Ahmed; Weaver, David; Ziada, Samir

    2012-10-01

    Fluidelastic instability is considered the most critical flow induced vibration mechanism in tube and shell heat exchangers, and as such has received the most attention. The present study examines the concept of using a single flexible tube in a rigid array for predicting fluidelastic instability. The experimental work published in the open literature involving the use of a single flexible tube in a rigid array is critically reviewed. Based on this, an experiment is designed to facilitate precise control of the system parameters and to study tube response at different locations in the array. Experiments were conducted using a fully flexible array as well as a single flexible tube in the same rigid array. It is found that a single flexible tube located in the third row of a rigid parallel triangular array becomes fluidelastically unstable at essentially the same threshold as for the fully flexible array. However, when the single flexible tube is located in the first, second, fourth, or fifth rows, no instability behavior is detected. Thus, tube location inside the array significantly affects its fluidelastic stability behavior when tested as a single flexible tube in a rigid array. It is concluded that, in general, fluidelastic instability in tube arrays is caused by a combination of the damping and stiffness mechanisms. In certain cases, a single flexible tube in a rigid array will become fluidelastically unstable and provide a useful model for fundamental research and developing physical insights. However, it must be cautioned that this behavior is a special case and not generally useful for determining the stability limit of tube arrays.

  14. Design and modeling of a prototype fiber scanning CARS endoscope

    Science.gov (United States)

    Veilleux, Isra"l.; Doucet, Michel; Coté, Patrice; Verreault, Sonia; Fortin, Michel; Paradis, Patrick; Leclair, Sébastien; Da Costa, Ralph S.; Wilson, Brian C.; Seibel, Eric; Mermut, Ozzy; Cormier, Jean-François

    2010-02-01

    An endoscope capable of Coherent Anti-Stokes Raman scattering (CARS) imaging would be of significant clinical value for improving early detection of endoluminal cancers. However, developing this technology is challenging for many reasons. First, nonlinear imaging techniques such as CARS are single point measurements thus requiring fast scanning in a small footprint if video rate is to be achieved. Moreover, the intrinsic nonlinearity of this modality imposes several technical constraints and limitations, mainly related to pulse and beam distortions that occur within the optical fiber and the focusing objective. Here, we describe the design and report modeling results of a new CARS endoscope. The miniature microscope objective design and its anticipated performance are presented, along with its compatibility with a new spiral scanningfiber imaging technology developed at the University of Washington. This technology has ideal attributes for clinical use, with its small footprint, adjustable field-of-view and high spatial-resolution. This compact hybrid fiber-based endoscopic CARS imaging design is anticipated to have a wide clinical applicability.

  15. Modeling and simulation on temperature performance in fiber optic gyroscope fiber coil of shipborne strapdown inertial navigation system

    Science.gov (United States)

    Wang, Yueze; Ma, Lin; Yu, Hao; Gao, Hongyu; Yuan, Yujie

    2016-10-01

    Compared with the traditional gyros, Fiber optic gyroscope (FOG) based on sagnac effect has the significant features, such as, long life, low cost, wide dynamic range, etc. These features have developed new applications of the gyroscope not only in industrial application area but also in aerospace application area. Now, the FOG has played a very important role in shipborne Strapdown Inertial Navigation System (SINS). The fiber coil, as one of the most critical components in FOG, is extremely sensitive to changes in temperature. Here, by study the environment temperature in shipborne SINS, the temperature performance of the FOG was analyzed. Firstly, on the base of the research about the theory of Shupe non-reciprocal errors caused by temperature, the discrete mathematics formula of the temperature error in FOG of SINS was built .Then the element model of the fiber coil in SINS was built based on the discrete model of the fiber coil in temperature error in FOG. A turn-by-turn quantization temperature bias error model is establish. Finally, based on the temperature models mentioned above, the temperature performance of FOG in shipborne SINS was analyzed. With finite element analysis, numerical simulations were carried out to quantitatively analyze the angular error induced by temperature excitation in SINS. The model was validated by comparing numerical and experimental results.

  16. Codimension-Three Bundle Singularities in F-Theory

    CERN Document Server

    Candelas, Philip; Florea, B; Morrison, Douglas Robert Ogston; Rajesh, G; Candelas, Philip; Diaconescu, Duiliu-Emanuel; Florea, Bogdan; Morrison, David R.; Rajesh, Govindan

    2002-01-01

    We study new nonperturbative phenomena in N=1 heterotic string vacua corresponding to pointlike bundle singularities in codimension three. These degenerations result in new four-dimensional infrared physics characterized by light solitonic states whose origin is explained in the dual F-theory model. We also show that such phenomena appear generically in $E_7 \\to E_6$ Higgsing and describe in detail the corresponding bundle transition.

  17. Client Provider Collaboration for Service Bundling

    Directory of Open Access Journals (Sweden)

    LETIA, I. A.

    2008-04-01

    Full Text Available The key requirement for a service industry organization to reach competitive advantages through product diversification is the existence of a well defined method for building service bundles. Based on the idea that the quality of a service or its value is given by the difference between expectations and perceptions, we draw the main components of a frame that aims to support the client and the provider agent in an active collaboration meant to co-create service bundles. Following e3-value model, we structure the supporting knowledge around the relation between needs and satisfying services. We deal with different perspectives about quality through an ontological extension of Value Based Argumentation. The dialog between the client and the provider takes the form of a persuasion whose dynamic object is the current best configuration. Our approach for building service packages is a demand driven approach, allowing progressive disclosure of private knowledge.

  18. Hysteretic behavior of prestressed concrete bridge pier with fiber model.

    Science.gov (United States)

    Wang, Hui-li; Feng, Guang-qi; Qin, Si-feng

    2014-01-01

    The hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier were researched. The effects of the prestressed tendon ratio, the longitudinal reinforcement ratio, and the stirrup reinforcement ratio on the hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier have been obtained with the fiber model analysis method. The analysis show some results about the prestressed concrete bridge pier. Firstly, greater prestressed tendon ratio and more longitudinal reinforcement can lead to more obvious pier's hysteresis loop "pinching effect," smaller residual displacement, and lower energy dissipation capacity. Secondly, the greater the stirrup reinforcement ratio is, the greater the hysteresis loop area is. That also means that bridge piers will have better ductility and stronger shear capacity. The results of the research will provide a theoretical basis for the hysteretic behavior analysis of the prestressed concrete pier.

  19. Developing engineering model Cobra fiber positioners for the Subaru Telescope's prime focus spectrometer

    Science.gov (United States)

    Fisher, Charles; Morantz, Chaz; Braun, David; Seiffert, Michael; Aghazarian, Hrand; Partos, Eamon; King, Matthew; Hovland, Larry E.; Schwochert, Mark; Kaluzny, Joel; Capocasale, Christopher; Houck, Andrew; Gross, Johannes; Reiley, Daniel; Mao, Peter; Riddle, Reed; Bui, Khanh; Henderson, David; Haran, Todd; Culhane, Robert; Piazza, Daniele; Walkama, Eric

    2014-07-01

    The Cobra fiber positioner is being developed by the California Institute of Technology (CIT) and the Jet Propulsion Laboratory (JPL) for the Prime Focus Spectrograph (PFS) instrument that will be installed at the Subaru Telescope on Mauna Kea, Hawaii. PFS is a fiber fed multi-object spectrometer that uses an array of Cobra fiber positioners to rapidly reconfigure 2394 optical fibers at the prime focus of the Subaru Telescope that are capable of positioning a fiber to within 5μm of a specified target location. A single Cobra fiber positioner measures 7.7mm in diameter and is 115mm tall. The Cobra fiber positioner uses two piezo-electric rotary motors to move a fiber optic anywhere in a 9.5mm diameter patrol area. In preparation for full-scale production of 2550 Cobra positioners an Engineering Model (EM) version was developed, built and tested to validate the design, reduce manufacturing costs, and improve system reliability. The EM leveraged the previously developed prototype versions of the Cobra fiber positioner. The requirements, design, assembly techniques, development testing, design qualification and performance evaluation of EM Cobra fiber positioners are described here. Also discussed is the use of the EM build and test campaign to validate the plans for full-scale production of 2550 Cobra fiber positioners scheduled to begin in late-2014.

  20. Design of a helix-bundle cross-link: NMR and UV-visible spectroscopic analyses and molecular modeling of ring-oxidized retinals.

    Science.gov (United States)

    Williams, T C; Mani, V

    1991-03-19

    In order to generate potential chemical cross-links for studying the chromophore binding site of bacteriorhodopsin and related helix-bundle proteins, MnO2 was used to oxidize all-trans-retinal's ring moiety. The structures and solution conformations of three ring-oxidized retinal analogues have been determined by using UV-visible absorption and 1H and 13C NMR spectroscopies, primarily with regard to (i) the introduction of a functional group at the ring end of the chromophore, (ii) the retention of the all-trans geometry of the polyenal side chain, and (iii) the torsional angle of the ring-polyenal bond. Analyses of their UV-visible absorption spectral parameters (lambda max, epsilon max, and vibrational fine structure) and NMR spectral parameters (1H-1H coupling constants, 1H and 13C NMR chemical shifts, and 1H homonuclear Overhauser effects) indicated the 4-oxo and the 2,3-dehydro-4-oxo derivatives both possess the twisted 6-s-cis conformation adopted by most six-membered ring analogues of retinal in solution or crystal. However, the alpha-dioxocyclopentenyl analogue exists in solution predominantly (70-80%) as the planar 6-s-trans conformer, similar to violerythrine chromophore analogues. In order to identify the minor solution forms, molecular modeling and geometry optimizations using the semiempirical molecular orbital method AM1 defined two additional symmetry-related minima at +/- 30-40 degrees in its C6-C7 torsional energy profile. Because the chromophores of bacterio- and halorhodopsins and sensory rhodopsins are bound as the 6-s-trans conformer [Harbison, G.S., Smith, S.O., Pardoen, J.A., Courtin, J.M.L., Lugtenburg, J., Herzfeld, J., Mathies, R.A., & Griffin, R.G. (1985) Biochemistry 24, 6955-6962; Baselt, D.R., Fodor, S.P.A., van der Steen, R., Lugtenburg, J., Bogomolni, R.A., & Mathies, R.A. (1989) Biophys. J. 55, 193-196], we suggest that the cyclopentenyl analogue's alpha-diketo function may be favorably positioned within the binding pocket and

  1. Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, J.; Perrin, M.; Mangin, J.F.; Cointepas, Y.; Duchesnay, E.; Le Bihan, D.; Hertz-Pannier, L. [CEA, Serv Hosp Frederic Joliot, UNAF, F-91406 Orsay (France); Dehaene-Lambertz, G. [INSERM, U562, Orsay (France); Dubois, J.; Dehaene-Lambertz, G.; Perrin, M.; Mangin, J.F.; Cointepas, Y.; Duchesnay, E.; Le Bihan, D.; Hertz-Pannier, L. [IFR49, Paris (France)

    2008-07-01

    Normal cognitive development in infants follows a well-known temporal sequence, which is assumed to be correlated with the structural maturation of underlying functional networks. Postmortem studies and, more recently, structural MR imaging studies have described qualitatively the heterogeneous spatio-temporal progression of white matter myelination. However, in vivo quantification of the maturation phases of fiber bundles is still lacking. We used noninvasive diffusion tensor MR imaging and tractography in twenty-three 1-4-month-old healthy infants to quantify the early maturation of the main cerebral fascicles. A specific maturation model, based on the respective roles of different maturational processes on the diffusion phenomena, was designed to highlight asynchronous maturation across bundles by evaluating the time-course of mean diffusivity and anisotropy changes over the considered developmental period. Using an original approach, a progression of maturation in four relative stages was determined in each tract by estimating the maturation state and speed, from the diffusion indices over the infants group compared with an adults group on one hand, and in each tract compared with the average over bundles on the other hand. Results were coherent with, and extended previous findings in 8 of 11 bundles, showing the anterior limb of the internal capsule and cingulum as the most immature, followed by the optic radiations, arcuate and inferior longitudinal fascicles, then the spino-thalamic tract and fornix, and finally the cortico-spinal tract as the most mature bundle. Thus, this approach provides new quantitative landmarks for further noninvasive research on brain-behavior relationships during normal and abnormal development. (authors)

  2. Thermoplastic coating of carbon fibers

    Science.gov (United States)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Gantt, B. W.

    1989-01-01

    A process is being developed which evenly coats individual carbon fibers with thermoplastic polymers. In this novel, continuous coating process, the fiber tow bundle is first spread cover a series of convex rollers and then evenly coated with a fine powder of thermoplastic matrix polymer. Next, the fiber is heated internally by passing direct current through the powder coated fiber. The direct current is controlled to allow the carbon fiber temperature to slightly exceed the flow temperature of the matrix polymer. Analysis of the thermoplastic coated carbon fiber tows produced using this continuous process indicates that 30 to 70 vol pct fiber prepregs can be obtained.

  3. Thermoplastic coating of carbon fibers

    Science.gov (United States)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Gantt, B. W.

    1989-01-01

    A process is being developed which evenly coats individual carbon fibers with thermoplastic polymers. In this novel, continuous coating process, the fiber tow bundle is first spread cover a series of convex rollers and then evenly coated with a fine powder of thermoplastic matrix polymer. Next, the fiber is heated internally by passing direct current through the powder coated fiber. The direct current is controlled to allow the carbon fiber temperature to slightly exceed the flow temperature of the matrix polymer. Analysis of the thermoplastic coated carbon fiber tows produced using this continuous process indicates that 30 to 70 vol pct fiber prepregs can be obtained.

  4. Computational modeling of ring textures in mesophase carbon fibers

    Directory of Open Access Journals (Sweden)

    de Andrade Lima Luiz Rogério Pinho

    2003-01-01

    Full Text Available Carbon fibers are widely used in many industrial applications due the fact of their excellent properties. Carbonaceous mesophases are liquid crystalline precursor materials that can be spun into high performance carbon fibers using the melt spinning process, which is a flow cascade consisting of pressure driven flow-converging die flow-free surface extensional spinline flow that modifies the precursor molecular orientation structure. Carbon fiber property optimization requires a better understanding of the principles that control the structure development during the fiber formation processes and the rheological processing properties. This paper presents the elastic and continuum theory of liquid crystalsand computer simulations of structure formation for pressure-driven flow of carbonaceous liquid crystalline precursors used in the industrial carbon fiber spinning process. The simulations results capture the formation of characteristic fiber macro-textures and provide new knowledge on the role of viscous and elastic effects in the spinning process.

  5. Vertical, Bubbly, Cross-Flow Characteristics over Tube Bundles

    Science.gov (United States)

    Iwaki, C.; Cheong, K. H.; Monji, H.; Matsui, G.

    2005-12-01

    Two-phase flow over tube bundles is commonly observed in shell and tube-type heat exchangers. However, only limited amount of data concerning flow pattern and void fraction exists due to the flow complexity and the difficulties in measurement. The detailed flow structure in tube bundles needs to be understood for reliable and effective design. Therefore, the objective of this study was to clarify the two-phase structure of cross-flow in tube bundles by PIV. Experiments were conducted using two types of models, namely in-line and staggered arrays with a pitch-to-diameter ratio of 1.5. Each test section contains 20 rows of five 15 mm O.D. tubes in each row. The experiment’s data were obtained under very low void fraction (αtube bundles were described in terms of the velocity vector field, turbulence intensity and void fraction.

  6. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development.

    Science.gov (United States)

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-08-15

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated.

  7. Research on the melt impregnation of continuous carbon fiber reinforced nylon 66 composites

    Science.gov (United States)

    Jia, M. Y.; Li, C. X.; Xue, P.; Chen, K.; Chen, T. H.

    2016-07-01

    Impregnation mold of continuous carbon fiber reinforced thermoplastic composites was designed and built in the article. Based on the theory of fluid mechanics and Darcy's law, a model of the melt impregnation was also established. The influences of fiber bundle width and impregnation pins’ diameter on the impregnation degree were studied by numerical simulation. Continuous carbon fiber reinforced nylon 66 composites were prepared. The effects of coated angle and impregnation mold temperature on the mechanical properties of the composites were also described.The agreement between the experimental data and prediction by the model was found to be satisfactory.

  8. Dynamic Model and Simulation of Lifiing Log Bundle Deflection Systems for Cranes in Forestry%林用起重机起吊木捆偏摆系统的动力学模型与仿真

    Institute of Scientific and Technical Information of China (English)

    薛伟; 郭永娟

    2011-01-01

    A study was conducted to establish a dynamic model of log bundle deflection system for gantry crane in forestry. Relationships between swing angle of log bundle in the vertical direction and trolley' s acceleration, rope length and lifting speed of log bundle are obtained by linear simplification, while the horizontal swing angle is related with the torsion coefficient of wire rope and its inertia. Load shimmy differential equations of uniform descent of log bundle after the trolley brake are set up. Moreover, vibration differential equations are simulated by Simulink. Results show that rope length, rate of decline and material length have major impacts on the lifting log bundle deflection system. The simulation results further improve the previous achievements in theoretical research, which make the model more consistent with the actual system by considering the system damping%建立了林用起重机木捆偏摆系统的动力学模型,并经过线性简化得出木捆在垂直方向的摆角主要与其同向的小车加(减)速度和绳长,以及木捆升降速度有关,而水平摆角与自身的转动惯量和钢丝绳的扭转系数有关.建立了小车制动后木捆匀速下降过程的二自由度木捆摆振微分方程,最后采用Simulink对振动微分方程进行仿真,结果表明绳索长度、木捆下降速度以及木捆材长对木捆偏摆系统动力响应有重要影响.所得仿真结果进一步完善了先前理论分析研究成果,理论上考虑了系统阻尼,从而使模型更加与实际系统一致.

  9. Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues.

    Science.gov (United States)

    Sacks, Michael S

    2003-04-01

    Structural constitutive models integrate information on tissue composition and structure, avoiding ambiguities in material characterization. However, critical structural information (such as fiber orientation) must be modeled using assumed statistical distributions, with the distribution parameters estimated from fits to the mechanical test data. Thus, full realization of structural approaches continues to be limited without direct quantitative structural information for direct implementation or to validate model predictions. In the present study, fiber orientation information obtained using small angle light scattering (SALS) was directly incorporated into a structural constitutive model based on work by Lanir (J. Biomech., v. 16, pp. 1-12, 1983). Demonstration of the model was performed using existing biaxial mechanical and fiber orientation data for native bovine pericardium (Sacks and Chuong, ABME, v.26, pp. 892-902, 1998). The structural constitutive model accurately predicted the complete measured biaxial mechanical response. An important aspect of this approach is that only a single equibiaxial test to determine the effective fiber stress-strain response and the SALS-derived fiber orientation distribution were required to determine the complete planar biaxial mechanical response. Changes in collagen fiber crimp under equibiaxial strain suggest that, at the meso-scale, fiber deformations follow the global tissue strains. This result supports the assumption of affine strain to estimate the fiber strains. However, future evaluations will have to be performed for tissue subjected to a wider range of strain to more fully validate the current approach.

  10. HF fiber stuffing in building 186 at CERN

    CERN Multimedia

    Tiziano Camporesi

    2003-01-01

    Each of the 36 HF wedges comprise ca 12000 quartz fibers which are the active element of the calorimeter. The fibers are produced by Polymicro (USA), cleaved and bundled at KFKI, Budapest, Hungary and inserted at CERN.

  11. Bundle Formation in Biomimetic Hydrogels.

    Science.gov (United States)

    Jaspers, Maarten; Pape, A C H; Voets, Ilja K; Rowan, Alan E; Portale, Giuseppe; Kouwer, Paul H J

    2016-08-08

    Bundling of single polymer chains is a crucial process in the formation of biopolymer network gels that make up the extracellular matrix and the cytoskeleton. This bundled architecture leads to gels with distinctive properties, including a large-pore-size gel formation at very low concentrations and mechanical responsiveness through nonlinear mechanics, properties that are rarely observed in synthetic hydrogels. Using small-angle X-ray scattering (SAXS), we study the bundle formation and hydrogelation process of polyisocyanide gels, a synthetic material that uniquely mimics the structure and mechanics of biogels. We show how the structure of the material changes at the (thermally induced) gelation point and how factors such as concentration and polymer length determine the architecture, and with that, the mechanical properties. The correlation of the gel mechanics and the structural parameters obtained from SAXS experiments is essential in the design of future (synthetic) mimics of biopolymer networks.

  12. Joint Multi-Fiber NODDI Parameter Estimation and Tractography using the Unscented Information Filter

    Directory of Open Access Journals (Sweden)

    Yogesh eRathi

    2016-04-01

    Full Text Available Tracing white matter fiber bundles is an integral part of analyzing brain connectivity. An accurate estimate of the underlying tissue parameters is also paramount in several neuroscience applications. In this work, we propose to use a joint fiber model estimation and tractography algorithm that uses the NODDI (neurite orientation dispersion diffusion imaging model to estimate fiber orientation dispersion consistently and smoothly along the fiber tracts along with estimating the intracellular and extracellular volume fractions from the diffusion signal. While the NODDI model has been used in earlier works to estimate the microstructural parameters at each voxel independently, for the first time, we propose to integrate it into a tractography framework. We extend this framework to estimate the NODDI parameters for two crossing fibers, which is imperative to trace fiber bundles through crossings as well as to estimate the microstructural parameters for each fiber bundle separately. We propose to use the unscented information filter (UIF to accurately estimate the model parameters and perform tractography. The proposed approach has significant computational performance improvements as well as numerical robustness over the unscented Kalman filter (UKF. Our method not only estimates the confidence in the estimated parameters via the covariance matrix, but also provides the Fisher-information matrix of the state variables (model parameters, which can be quite useful to measure model complexity. Results from in-vivo human brain data sets demonstrate the ability of our algorithm to trace through crossing fiber regions, while estimating orientation dispersion and other biophysical model parameters in a consistent manner along the tracts.

  13. Analysis of the Microstructure and Permeability of the Laminates with Different Fiber Volume Fraction

    Institute of Scientific and Technical Information of China (English)

    MA Yue; LI Wei; LIANG Zi-qing

    2008-01-01

    Microstmctures of laminates produced by epoxy/ carbon fibers with different fiber volume fraction were studied by analyzing the composite cross-sections. The main result of the compaction of reinforcement is the flatting of bundle shape, the reducing of gap and the embedment of bundles among each layer. The void content outside the bundle decreased sharply during the compoction until it is less than that inside the bundle when the fiber volume fraction is over 60%. The resin flow velocity in the fiber tow is 102-104 times greater than the flow velocity out the fiber tow no matter the capillary pressure is taken into account or not.

  14. Modeling of properties of fiber reinforced cement composites

    Directory of Open Access Journals (Sweden)

    Jevtić Dragica

    2008-01-01

    Full Text Available This paper presents the results of authors' laboratory testing of the influence of steel fibers as fiber reinforcement on the change of properties of cement composite mortar and concrete type materials. Mixtures adopted - compositions of mortars had identical amounts of components: cement, sand and silica fume. The second type of mortar contained 60 kg/m3 of fiber reinforcement, as well as the addition of the latest generation of superplasticizer. Physical and mechanical properties of fiber reinforced mortars and etalon mixtures (density, flexural strength, compressive strength were compared. Tests on concrete type cement composites included: density, mechanical strengths and the deformation properties. The tests showed an improvement in the properties of fiber reinforced composites.

  15. F-theory and linear sigma models

    CERN Document Server

    Bershadsky, M; Greene, Brian R; Johansen, A; Lazaroiu, C I

    1998-01-01

    We present an explicit method for translating between the linear sigma model and the spectral cover description of SU(r) stable bundles over an elliptically fibered Calabi-Yau manifold. We use this to investigate the 4-dimensional duality between (0,2) heterotic and F-theory compactifications. We indirectly find that much interesting heterotic information must be contained in the `spectral bundle' and in its dual description as a gauge theory on multiple F-theory 7-branes. A by-product of these efforts is a method for analyzing semistability and the splitting type of vector bundles over an elliptic curve given as the sheaf cohomology of a monad.

  16. Creep of Refractory Fibers and Modeling of Metal and Ceramic Matrix Composite Creep Behavior

    Science.gov (United States)

    Tewari, S.N.

    1995-01-01

    Our concentration during this research was on the following subprograms. (1) Ultra high vacuum creep tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires, temperature range from 1100 K to 1500 K, creep time of 1 to 500 hours. (2) High temperature vacuum tensile tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires. (3) Air and vacuum tensile creep tests on polycrystalline and single crystal alumina fibers, such as alumina-mullite Nextel fiber, yttrium aluminum ganet (YAG) and Saphikon, temperature range from 1150 K to 1470 K, creep time of 2 to 200 hours. (4) Microstructural evaluation of crept fibers, TEM study on the crept metal wires, SEM study on the fracture surface of ceramic fibers. (5) Metal Matrix Composite creep models, based on the fiber creep properties and fiber-matrix interface zone formation.

  17. Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry

    Directory of Open Access Journals (Sweden)

    Just Agbodjan Prince

    2016-09-01

    Full Text Available This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment’s shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object.

  18. Principal bundles the classical case

    CERN Document Server

    Sontz, Stephen Bruce

    2015-01-01

    This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles.  While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.

  19. Modeling of visible-extended supercontinuum generation from a tapered Ytterbium-doped fiber amplifier

    Science.gov (United States)

    Song, Rui; Lei, Chengmin; Han, Kai; Chen, Zilun; Pu, Dongsheng; Hou, Jing

    2017-05-01

    Supercontinuum generation directly from a nonlinear fiber amplifier, especially from a nonlinear ytterbium-doped fiber amplifier, attracts more and more attention due to its all-fiber structure, high optical to optical conversion efficiency, and high power output potential. However, the modeling of supercontinuum generation from a nonlinear fiber amplifier has been rarely reported. In this paper, the modeling of a tapered Ytterbium-doped fiber amplifier for visible extended to infrared supercontinuum generation is proposed based on the combination of the laser rate equations and the generalized nonlinear Schrödinger equation. Ytterbium-doped fiber amplifier generally can not generate visible extended supercontinuum due to its pumping wavelength and zero-dispersion wavelength. However, appropriate tapering and four-wave mixing makes the visible extended supercontinuum generation from an ytterbium-doped fiber amplifier possible. Tapering makes the zero-dispersion wavelength of the ytterbium-doped fiber shift to the short wavelength and minimizes the dispersion matching. Four-wave mixing plays an important role in the visible spectrum generation. The influence of pulse width and pump power on the supercontinuum generation is calculated and analyzed. The simulation results imply that it is promising and possible to fabricate a visible-to-infrared supercontinuum with low pump power and flat spectrum by using the tapered ytterbium-doped fiber amplifier scheme as long as the related parameters are well-selected.

  20. Modeling of the mechanical behavior of fiber-reinforced ceramic composites using finite element method (FEM

    Directory of Open Access Journals (Sweden)

    Dimitrijević M.M.

    2014-01-01

    Full Text Available Modeling of the mechanical behavior of fiber-reinforced ceramic matrix composites (CMC is presented by the example of Al2O3 fibers in an alumina based matrix. The starting point of the modeling is a substructure (elementary cell which includes on a micromechanical scale the statistical properties of the fiber, matrix and fiber-matrix interface and their interactions. The numerical evaluation of the model is accomplished by means of the finite element method. The numerical results of calculating the elastic modulus of the composite dependance on the quantity of the fibers added and porosity was compared to experimental values of specimens having the same composition. [Projekat Ministarstva nauke Republike Srbije, br. ON174004 i TVH to project III45012

  1. Short cellulosic fiber/starch acetate composites — micromechanical modeling of Young’s modulus

    DEFF Research Database (Denmark)

    Madsen, Bo; Joffe, Roberts; Peltola, Heidi;

    2011-01-01

    This study is presented to predict the Young’s modulus of injection-molded short cellulosic fiber/plasticized starch acetate composites with variable fiber and plasticizer content. A modified rule of mixtures model is applied where the effect of porosity is included, and where the fiber weight...... fraction is used as the basic independent variable. The values of the input model parameters are derived from experimental studies of the configuration of the composites (volumetric composition, dimensions, and orientation of fibers), as well as the properties of the constituent fiber and matrix phases...... (density and Young’s modulus). The measured Young’s modulus of the composites varies in the range 1.1—8.3 GPa, and this is well predicted by the model calculations. A property diagram is presented to be used for the tailor-making of composites with Young’s modulus in the range 0.2—10 GPa....

  2. BiSet: Semantic Edge Bundling with Biclusters for Sensemaking.

    Science.gov (United States)

    Sun, Maoyuan; Mi, Peng; North, Chris; Ramakrishnan, Naren

    2016-01-01

    Identifying coordinated relationships is an important task in data analytics. For example, an intelligence analyst might want to discover three suspicious people who all visited the same four cities. Existing techniques that display individual relationships, such as between lists of entities, require repetitious manual selection and significant mental aggregation in cluttered visualizations to find coordinated relationships. In this paper, we present BiSet, a visual analytics technique to support interactive exploration of coordinated relationships. In BiSet, we model coordinated relationships as biclusters and algorithmically mine them from a dataset. Then, we visualize the biclusters in context as bundled edges between sets of related entities. Thus, bundles enable analysts to infer task-oriented semantic insights about potentially coordinated activities. We make bundles as first class objects and add a new layer, "in-between", to contain these bundle objects. Based on this, bundles serve to organize entities represented in lists and visually reveal their membership. Users can interact with edge bundles to organize related entities, and vice versa, for sensemaking purposes. With a usage scenario, we demonstrate how BiSet supports the exploration of coordinated relationships in text analytics.

  3. Oscillation of carbon molecules inside carbon nanotube bundles

    Science.gov (United States)

    Thamwattana, Ngamta; Cox, Barry J.; Hill, James M.

    2009-04-01

    In this paper, we investigate the mechanics of a nanoscaled gigahertz oscillator comprising a carbon molecule oscillating within the centre of a uniform concentric ring or bundle of carbon nanotubes. Two kinds of oscillating molecules are considered, which are a carbon nanotube and a C60 fullerene. Using the Lennard-Jones potential and the continuum approach, we obtain a relation between the bundle radius and the radii of the nanotubes forming the bundle, as well as the optimum bundle size which gives rise to the maximum oscillatory frequency for both the nanotube-bundle and the C60-bundle oscillators. While previous studies in this area have been undertaken through molecular dynamics simulations, this paper emphasizes the use of applied mathematical modelling techniques, which provides considerable insight into the underlying mechanisms of the nanoscaled oscillators. The paper presents a synopsis of the major results derived in detail by the present authors (Cox et al 2007 Proc. R. Soc. A 464 691-710 and Cox et al 2007 J. Phys. A: Math. Theor. 40 13197-208).

  4. Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; W. Gutmann, Ingomar; Koch, Thomas

    2016-01-01

    The aim of this paper is the understanding of the fiber orientation by investigations in respect to the inner configuration of a polylactic acid matrix reinforced with short carbon fibers after a fused deposition modeling extrusion process. The final parts were analyzed by X-ray, tomography, and ...

  5. 基于分布参数模型的水平管式降膜蒸发器模拟%Prediction of the Performance of Falling Film Evaporator with Horizontal Tube Bundle Based on a Distributed Parameter Model

    Institute of Scientific and Technical Information of China (English)

    翟玉燕; 黄兴华

    2009-01-01

    A distributed parameter model is developed for predicting the performance of a horizontal-tube falling-film evaporator. In this model, the variation of heat transfer performance along the tube length and array, as well as the effect of the dry patch on the performance are considered. The model is applied to predicting the performance of a commercial falling film evaporator, and the influences of bundle layout, pass layout, refrigerant mass flow rate and the flooded level of refrigerant on the evaporator performances are studied. The results show that the simulation result agrees well with the experimental data, and it is possible to decrease or avoid the dry patch area on the tube bundle and therefore improve the evaporator performance by rationallly designing the layout of the tube bundle and the flooded level of the refrigerant.%建立水平管式降膜蒸发器蒸发换热的分布参数模型,考虑换热性能沿管子轴向、管排方向的变化,以及传热管发生干斑现象时对降膜蒸发的影响.对一降膜蒸发器的性能进行模拟分析,并考察管束布置、制冷剂液膜质量流量、管程布置以及满液位置对降膜蒸发器性能的影响.结果表明,计算结果和试验结果吻合良好,通过合理的设计管排方式和满液位置,可以减少或避免干斑现象的发生,提高降膜蒸发器性能.

  6. Line bundles and flat connections

    Indian Academy of Sciences (India)

    INDRANIL BISWAS; GEORG SCHUMACHER

    2017-06-01

    We prove that there are cocompact lattices $\\Gamma$ in $\\rm SL(2,\\mathbb C)$ with the property that there are holomorphic line bundles $L$ on $\\rm SL(2,\\mathbb C)/ \\Gamma$ with $c_{1}(L) = 0$ such that $L$ does not admit any unitary flat connection.

  7. Vector Bundles over Elliptic Fibrations

    CERN Document Server

    Friedman, R; Witten, Edward; Friedman, Robert; Morgan, John W.; Witten, Edward

    1997-01-01

    This paper gives various methods for constructing vector bundles over elliptic curves and more generally over families of elliptic curves. We construct universal families over generalized elliptic curves via spectral cover methods and also by extensions, and then give a relative version of the construction in families. We give various examples and make Chern class computations.

  8. Investigation on Reinforced Mechanism of Fiber Reinforced Asphalt Concrete Based on Micromechanical Modeling

    Directory of Open Access Journals (Sweden)

    Ying Gao

    2017-01-01

    Full Text Available Short fibers have been widely used to prepare the fiber reinforced asphalt concrete (FRAC. However, internal interactions between fiber and other phases of asphalt concrete are unclear although experimental methods have been used to design the FRAC successfully. In this paper, numerical method was used to investigate the reinforced mechanism of FRAC from microperspective. 2D micromechanical model of FRAC was established based on Monte Carlo theory. Effects of fiber length and content on stress state of asphalt mortar, effective modulus, and viscoelastic deformation of asphalt concrete were investigated. Indirect tensile stiffness modulus (ITSM test and uniaxial creep test were carried out to verify the numerical results. Results show that maximum stress of asphalt mortar is lower compared to the control concrete when the fiber length is longer than 12 mm. Fiber reduces the stress level of asphalt mortar significantly. Fiber length has no significant influence on the effective modulus of asphalt concrete. Fiber length and content both have notable impacts on the viscoelastic performance of FRAC. Fiber length should be given more attention in the future design of FRAC except the content.

  9. Developing Engineering Model Cobra fiber positioners for the Subaru Telescope Prime Focus Spectrometer

    CERN Document Server

    Fisher, Charles; Braun, David; Seiffert, Michael; Aghazarian, Hrand; Partos, Eamon; King, Matthew; Hovland, Larry; Schwochert, Mark; Kaluzny, Joel; Capocasale, Christopher; Houck, Andrew; Gross, Johannes; Reiley, Dan; Mao, Peter; Riddle, Reed; Bui, Khanh; Henderson, David; Haran, Todd; Culhane, Rob; Piazza, Daniele; Walkama, Eric

    2014-01-01

    The Cobra fiber positioner is being developed by the California Institute of Technology (CIT) and the Jet Propulsion Laboratory (JPL) for the Prime Focus Spectrograph (PFS) instrument that will be installed at the Subaru Telescope on Mauna Kea, Hawaii. PFS is a fiber fed multi-object spectrometer that uses an array of Cobra fiber positioners to rapidly reconfigure 2394 optical fibers at the prime focus of the Subaru Telescope that are capable of positioning a fiber to within 5um of a specified target location. A single Cobra fiber positioner measures 7.7mm in diameter and is 115mm tall. The Cobra fiber positioner uses two piezo-electric rotary motors to move a fiber optic anywhere in a 9.5mm diameter patrol area. In preparation for full-scale production of 2550 Cobra positioners an Engineering Model (EM) version was developed, built and tested to validate the design, reduce manufacturing costs, and improve system reliability. The EM leveraged the previously developed prototype versions of the Cobra fiber posi...

  10. A new solid particle erosion model for oriented fiber composite materials

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2014-03-01

    Full Text Available The work describes a new model of erosion estimation equation which factors in both the impingement angle α and the fiber orientation angle β. Two examples of particular erosion equations are presented, for carbon fiber as well as for glass fiber in epoxidic matrix. Our methods are semi-empirical meaning that the general shape of the erosion equation is maintained while specific material coefficients must be determined for each of the matrix-fiber combination. As showed in the paper, the proposed model correlates well with the experimental data available in the literature. The work is significant since it provides a generalized method for estimating erosion rates for oriented fiber composites which can be further implemented in simulation software in a simple manner.

  11. Pressure Loss across Tube Bundles in Two-phase Flow

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Woo Gun; Banzragch, Dagdan [Hannam Univ., Daejon (Korea, Republic of)

    2016-03-15

    An analytical model was developed by Sim to estimate the two-phase damping ratio for upward two-phase flow perpendicular to horizontal tube bundles. The parameters of two-phase flow, such as void fraction and pressure loss evaluated in the model, were calculated based on existing experimental formulations. However, it is necessary to implement a few improvements in the formulations for the case of tube bundles. For the purpose of the improved formulation, we need more information about the two-phase parameters, which can be found through experimental test. An experiment is performed with a typical normal square array of cylinders subjected to the two-phase flow of air-water in the tube bundles, to calculate the two-phase Euler number and the two-phase friction multiplier. The pitch-to-diameter ratio is 1.35 and the diameter of cylinder is 18mm. Pressure loss along the flow direction in the tube bundles is measured with a pressure transducer and data acquisition system to calculate the two-phase Euler number and the two-phase friction multiplier. The void fraction model by Feenstra et al. is used to estimate the void fraction of the two-phase flow in tube bundles. The experimental results of the two phase friction multiplier and two-phase Euler number for homogeneous and non-homogeneous two-phase flows are compared and evaluated against the analytical results given by Sim's model.

  12. Rigorous modeling of cladding modes in photonic crystal fibers

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Bang, Ole

    We study the cladding modes of a photonic crystal fiber (PCF) with a finite size cladding using a finite element method. The cladding consists of seven rings of air holes with bulk silica outside.......We study the cladding modes of a photonic crystal fiber (PCF) with a finite size cladding using a finite element method. The cladding consists of seven rings of air holes with bulk silica outside....

  13. Increased dermal collagen bundle alignment in systemic sclerosis is associated with a cell migration signature and role of Arhgdib in directed fibroblast migration on aligned ECMs.

    Science.gov (United States)

    Cao, Lizhi; Lafyatis, Robert; Burkly, Linda C

    2017-01-01

    Systemic sclerosis (SSc) is a devastating disease affecting the skin and internal organs. Dermal fibrosis manifests early and Modified Rodnan Skin Scores (MRSS) correlate with disease progression. Transcriptomics of SSc skin biopsies suggest the role of the in vivo microenvironment in maintaining the pathological myofibroblasts. Therefore, defining the structural changes in dermal collagen in SSc patients could inform our understanding of fibrosis pathogenesis. Here, we report a method for quantitative whole-slide image analysis of dermal collagen from SSc patients, and our findings of more aligned dermal collagen bundles in diffuse cutaneous SSc (dcSSc) patients. Using the bleomycin-induced mouse model of SSc, we identified a distinct high dermal collagen bundle alignment gene signature, characterized by a concerted upregulation in cell migration, adhesion, and guidance pathways, and downregulation of spindle, replication, and cytokinesis pathways. Furthermore, increased bundle alignment induced a cell migration gene signature in fibroblasts in vitro, and these cells demonstrated increased directed migration on aligned ECM fibers that is dependent on expression of Arhgdib (Rho GDP-dissociation inhibitor 2). Our results indicate that increased cell migration is a cellular response to the increased collagen bundle alignment featured in fibrotic skin. Moreover, many of the cell migration genes identified in our study are shared with human SSc skin and may be new targets for therapeutic intervention.

  14. Quantum principal bundles and corresponding gauge theories

    CERN Document Server

    Durdevic, M

    1995-01-01

    A generalization of classical gauge theory is presented, in the framework of a noncommutative-geometric formalism of quantum principal bundles over smooth manifolds. Quantum counterparts of classical gauge bundles, and classical gauge transformations, are introduced and investigated. A natural differential calculus on quantum gauge bundles is constructed and analyzed. Kinematical and dynamical properties of corresponding gauge theories are discussed.

  15. A Modeling of Photonic Crystal Fiber with a Boundary Integral Equations

    Science.gov (United States)

    Cho, Min Hyung; Cai, Wei; Her, Tsing-Hua; Lee, Youngpak

    2007-03-01

    A boundary integral equation (BIE) for the photonic crystal fiber is formulated using the free space Green's function and Huygen's principle. The BIE reduces the number of unknowns significantly and is flexible to handle the geometry of the fiber owing to its nature of the formulation. The real and imaginary parts of the propagating constant, which is related to the dispersion and the confinement loss of the fiber, are calculated as a function of wavelength for both the air-silica fiber and the photonic bandgap fiber by the root searching method. The numerical simulations show that the air-silica fiber guides the light according to the total internal reflection and that the photonic bandgap fiber guides the light based on the scattering from the Fabry-Perot-like high-index inclusion. As a consequence, the spectrum of photonic bandgap fiber shows the discontinuities, and the locations of discontinuities obtained with BIE are compared with the simple analytical model based on the AntiResonant Reflecting Optical Waveguide (ARROW) model suggested by Natalie et al.

  16. Analytic Models for Radiation Induced Loss in Optical Fibers II. A Physical Model,

    Science.gov (United States)

    1984-06-01

    and identify by Mock number) PIEL GRUP UB.GR. Optical fibers Analytical models Radiation effects 19. ABSTRACT (ConinueII. anl mwr,f fneciua,, and...conditions specified in the derivation of the equations existed during the irradiations. This is because the functional form of the equations is not...tion is not necessarily incorrect. If one assumes a relatively simple form of re- covery as a function of time, such as an exponential recovery, it can

  17. Fiber-Level Modeling of Dynamic Strength of Kevlar® KM2 Ballistic Fabric

    Science.gov (United States)

    Grujicic, M.; Hariharan, A.; Pandurangan, B.; Yen, C.-F.; Cheeseman, B. A.; Wang, Y.; Miao, Y.; Zheng, J. Q.

    2012-07-01

    In recent years, modeling of the high-performance ballistic fabric has gradually shifted from the continuum and yarn length scales to the sub-yarn length scale which enabled establishment of the relationships between the fabric penetration resistance and various fiber-level phenomena such as fiber-fiber friction, fiber twist, transverse properties of the fibers, and the stochastic nature of fiber strength. In general, these sub-yarn modeling schemes involve special numerical techniques (e.g., digital-element method) and customized computational codes. This status of the sub-yarn fabric-modeling methods and tools makes them not readily available to wider academic and industrial research communities. In the present work, an attempt is made to use conventional finite-element methods and tools in order to carry out sub-yarn numerical analysis of the penetration resistance of Kevlar® KM2 ballistic fabric. The goal was to demonstrate that results could be obtained which are comparable to their digital-element method = based counterparts. Specifically, a series of transient nonlinear dynamics finite-element analyses was carried out in order to investigate the role of the following two important sub-yarn phenomena on the penetration resistance of Kevlar® KM2 fabric: (a) fiber transverse properties including nonlinear elastic and plastic response and (b) fiber-fiber friction within the context of stochastically distributed fiber axial strength. It is generally found that the results obtained are consistent with their digital-element method-based counterparts.

  18. Study on Dispersion Properties of Photonic Crystal Fiber by Effective-Index Model

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The group-velocity-dispersion properties of photonic crystal fiber (PCF) were investigated by effective-index model. The relationship between waveguide dispersion and structure parameters: the pitch A and the relative hole size/was studied.

  19. Study on Dispersion Properties of Photonic Crystal Fiber by Effective-Index Model

    Institute of Scientific and Technical Information of China (English)

    Ren Guobin; Wang Zhi; Lou Shuqin; Jian Shuisheng

    2003-01-01

    The group-velocity-dispersion properties of photonic crystal fiber (PCF) were investigated by effective-index model. The relationship between waveguide dispersion and structure parameters: the pitch and the relative hole size f was studied.

  20. Improved analytical model for the field of index-guiding microstructured optical fibers

    Science.gov (United States)

    Sharma, Dinesh Kumar; Sharma, Anurag

    2016-05-01

    We present an improved version of our earlier developed analytical field model for the fundamental mode of index-guiding microstructured optical fibers (MOFs), to obtain better accuracy in the simulated results. Using this improved field model, we have studied the splice losses between an MOF and a traditional step-index single-mode fiber (SMF). Comparisons with available experimental and numerical simulation results have also been included.

  1. Mathematical Model of Fiber Optic Temperature Sensor Based on Optic Absorption and Experiment Testing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On the basis of analysis on the temperature monitoring methods for high voltage devices, a new type of fiber optic sensor structure with reference channel is given. And the operation principle of fiber optic sensor is analysed at large based on the absorption of semiconductor chip. The mathematical model of both devices and the whole system are also given. It is proved by the experiment that this mathematical model is reliable.

  2. Higher order jet prolongations type gauge natural bundles over vector bundles

    Directory of Open Access Journals (Sweden)

    Jan Kurek

    2004-05-01

    Full Text Available Let $rgeq 3$ and $mgeq 2$ be natural numbers and $E$ be a vector bundle with $m$-dimensional basis. We find all gauge natural bundles ``similar" to the $r$-jet prolongation bundle $J^rE$ of $E$. We also find all gauge natural bundles ``similar" to the vector $r$-tangent bundle $(J^r_{fl}(E,R_0^*$ of $E$.

  3. Mathematical model of fiber orientation in anisotropic fascia layers at large displacements.

    Science.gov (United States)

    Chaudhry, Hans; Max, Roman; Antonio, Stecco; Findley, Thomas

    2012-04-01

    A mathematical model is developed to determine the relationship between stretch and the orientation of fibers in the fascia. The transversely isotropic stress- strain relation for large displacements valid for the human fascia reinforced by the collagen fibers is employed. The relation between the orientation of fibers in the un-deformed and deformed state depending upon the stretch is plotted. It is observed that for greater fiber angle orientation, the fibers are more resistant to reorientation as the fascia is stretched longitudinally. It is also concluded that the reinforced fascia will always be in tension as the stretch is applied. However, we suggest future research to resolve the tension and compression issues in fascia.

  4. In-vivo investigation of the human cingulum bundle using the optimization of MR diffusion spectrum imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nezamzadeh, Marzieh, E-mail: marzieh.nezamzadeh@ucsf.ed [Center for Imaging of Neurodegenerative Diseases, CIND, Veterans Affairs Medical Center, San Francisco, CA (United States); Radiology, University of California San Francisco, San Francisco (United States); Wedeen, Van J.; Wang Ruopeng [Radiology, Massachusetts Harvard General Hospital, Boston (United States); Zhang Yu; Zhan Wang; Young, Karl; Meyerhoff, Dieter J.; Weiner, Michael W.; Schuff, Norbert [Center for Imaging of Neurodegenerative Diseases, CIND, Veterans Affairs Medical Center, San Francisco, CA (United States); Radiology, University of California San Francisco, San Francisco (United States)

    2010-07-15

    Diffusion spectrum imaging (DSI) is a generalization of diffusion tensor imaging to map fibrous structure of white matter and potentially very sensitive to alterations of the cingulum bundles in dementia. In this in-vivo 4T study, DSI parameters especially spatial resolution and diffusion encoding bandwidth were optimized on humans to segment the cingulum bundles for tract level measurements of diffusion. The careful tailoring of the DSI acquisitions in conjunction with fiber tracking provided an optimal DSI setting for a reliable quantification of the cingulum bundle tracts. The optimization of tracking the cingulum bundle was verified using fiber tract quantifications, including coefficients of variability of DSI measurements along the fibers between and within healthy subjects in back-to-back studies and variogram analysis of spatial correlations between diffusion orientation distribution functions (ODF) along the cingulum bundle tracts. The results demonstrate that the identification of the cingulum bundle in human brain is reproducible using an optimized DSI parameter for maximum b-value and high spatial resolution of the DSI acquisition with a feasible acquisition time of whole brain in clinical practice. This optimized DSI setting should be useful for detecting alterations along the cingulum bundle in Alzheimer disease and related neurodegenerative disorders.

  5. A model for acoustic absorbent materials derived from coconut fiber

    Directory of Open Access Journals (Sweden)

    Ramis, J.

    2014-03-01

    Full Text Available In the present paper, a methodology is proposed for obtaining empirical equations describing the sound absorption characteristics of an absorbing material obtained from natural fibers, specifically from coconut. The method, which was previously applied to other materials, requires performing measurements of air-flow resistivity and of acoustic impedance for samples of the material under study. The equations that govern the acoustic behavior of the material are then derived by means of a least-squares fit of the acoustic impedance and of the propagation constant. These results can be useful since they allow the empirically obtained analytical equations to be easily incorporated in prediction and simulation models of acoustic systems for noise control that incorporate the studied materials.En este trabajo se describe el proceso seguido para obtener ecuaciones empíricas del comportamiento acústico de un material absorbente obtenido a partir de fibras naturales, concretamente el coco. El procedimiento, que ha sido ensayado con éxito en otros materiales, implica la realización de medidas de impedancia y resistencia al flujo de muestras del material bajo estudio. Las ecuaciones que gobiernan el comportamiento desde el punto de vista acústico del material se obtienen a partir del ajuste de ecuaciones de comportamiento de la impedancia acústica y la constante de propagación del material. Los resultados son útiles ya que, al disponer de ecuaciones analíticas obtenidas empíricamente, facilitan la incorporación de estos materiales en predicciones mediante métodos numéricos del comportamiento cuando son instalados formando parte de dispositivos para el control del ruido.

  6. Multipath packet switch using packet bundling

    DEFF Research Database (Denmark)

    Berger, Michael Stubert

    2002-01-01

    The basic concept of packet bundling is to group smaller packets into larger packets based on, e.g., quality of service or destination within the packet switch. This paper presents novel applications of bundling in packet switching. The larger packets created by bundling are utilized to extend...... switching capacity by use of parallel switch planes. During the bundling operation, packets will experience a delay that depends on the actual implementation of the bundling and scheduling scheme. Analytical results for delay bounds and buffer size requirements are presented for a specific scheduling...

  7. Cerebrocerebellar system and Arnold's bundle: A tractographic study: preliminary results

    Directory of Open Access Journals (Sweden)

    Eliasz Engelhardt

    Full Text Available Abstract The cerebellum, traditionally considered a structure involved in balance and movement control, was more recently recognized as important in cognitive, emotional and behavioral functions. These functions appear to be related to the more recent parts of the cerebellum that belong to the cerebrocerebellar system. One of the key segments of this system is the (prefronto-[penduncule]-pontine projection that represents the Arnold's bundle. Diffusion tensor imaging and tractography (DTI-TR has permitted in vivo virtual dissection of white matter tracts, including those of the cerebellar. Objective: To study the fronto-[peduncule]-pontine projection (Arnold's bundle, with DTI-TR. Methods: Ten normal subjects were included (mean age 30 years. Standard acquisitions in three planes were obtained with a 1.5T GE Signa Horizon scanner, complemented with DTI acquisitions. Post-processing and analysis was performed using an ADW 4.3 workstation running Functool 4.5.3 (GE Medical Systems. A single ROI was placed on the medial third of the cerebral peduncle base, considered the site of convergence of the fibers of Arnold's bundle, bilaterally. Results: Twenty tractograms were obtained. All were constituted by a significant number of fibers in correspondence to the frontal lobe, and part of them anterior to the coronal plane at the anterior commissure, which characterizes them as associated to the prefrontal region. Conclusions: For the first time, frontal lobe related projections were systematically revealed with DTI-TR seeded from cerebral peduncle base ROIs. They showed anatomic coherence with Arnold's bundle, which includes the prefrontopontine segment of the cortico-ponto-cerebellar path, one of the components of the cerebrocerebellar system, acknowledged as fundamental for non-motor functions such as cognition, emotion and behavior.

  8. Theoretical model of optical fiber secure communication system with chaotic multiple-quantum-well lasers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chaotic synchronization of injected multiple-quantum-well lasers of optical fiber system and a theoretical model of optical fiber chaotic secure communication system are presented by coupling a chaotic multiple-quantum-well laser synchronization system and a fiber channel. A new chaotic encoding method of chaos phase shift keying On/Off is proposed for optical fiber secure communications. Chaotic synchronization is achieved numerically in long-haul fiber system at wavelength 1.55μm. The effect of the nonlinear-phase of fiber is analyzed on chaotic signal and synchronization. A sinusoidal signal of 0.2 GHz frequency is simulated numerically with chaos masking in long-haul fiber analog communication at wavelength 1.55μm while a digital signal of 0.5 Gbit/s bit rate is simulated numerically with c1 haos masking and a rate of 0.05 Gbit/s are also simulated numerically with chaos shift keying and chaos phase shift keying On/Off in long-haul fiber digital communications at wavelength 1.55μm

  9. Designing variable height carbon nanotube bundle for enhanced electron field emission

    Science.gov (United States)

    Khaneja, Mamta; Ghosh, Santanu; Chaudhury, P. K.; Vankar, V. D.; Kumar, Vikram

    2015-05-01

    A variable height model has been implemented in order to improve the emission performance from a nanotube bundle. A Gaussian distribution of nanotube heights has been considered. This resulted in a nearly uniform electric field distribution across all the nanotubes and consequently an enhanced emission current in comparison to a nanotube bundle with all the nanotubes having the same height. Simulation results from linear as well as area nanotube bundles are reported. The analysis helped in providing a better understanding of the previously reported experimental results on enhanced field emission from plasma treated nanotube bundles having CNTs of variable heights.

  10. BUNDLE ADJUSTMENTS CCD CAMERA CALIBRATION BASED ON COLLINEARITY EQUATION

    Institute of Scientific and Technical Information of China (English)

    Liu Changying; Yu Zhijing; Che Rensheng; Ye Dong; Huang Qingcheng; Yang Dingning

    2004-01-01

    The solid template CCD camera calibration method of bundle adjustments based on collinearity equation is presented considering the characteristics of space large-dimension on-line measurement. In the method, a more comprehensive camera model is adopted which is based on the pinhole model extended with distortions corrections. In the process of calibration, calibration precision is improved by imaging at different locations in the whole measurement space, multi-imaging at the same location and bundle adjustments optimization. The calibration experiment proves that the calibration method is able to fulfill calibration requirement of CCD camera applied to vision measurement.

  11. Dimensional Measurements of Fresh CANDU Fuel Bundle

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Ji Su; Jo, Chang Keun; Jung, Jong Yeob; Koo, Dae Seo; Cho, Moon Sung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    This paper intends to provide the dimensional measurements of fresh CANDU fuel (37-element) bundle for the estimation of deformation of post-irradiated (PI) bundle. It is expensive and difficult to measure the fretting wear of bearing pad, the element bowing and the waviness of endplate at the two-phase high flow condition (above 24 kg/s) of out-of-reactor test. So, it is recommended to compare the geometry of fresh bundle with that of PI bundle to estimate the integrity of fuel bundle in the CANDU-6 fuel channel with two-phase flow condition. The measurement system has been developed to provide the visual inspection and the dimensional measurements within the accuracy of 10 {mu}m. It is applicable in-air and underwater to the CANDU bundle as well as the CANFLEX bundle. The in-air measurements of the 36 fresh CANDU bundles (S/N: B400892 {approx} B400927) are done by this system from February 2004 to March 2004 in the PHWR fresh fuel storage building of KNFC. These bundles are produced by KNFC manufacturing procedure and are waiting for the delivery to the Wolsong-3 plant, and are planned to load into the proposed test channels. The detail measurements contain the outer rod profile (including the bearing pad), the diameter of bundle, the bowing of bundle, the rod length and the surface profile of end plate (waviness)

  12. Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring

    Science.gov (United States)

    Zelepouga, Serguei A.; Rue, David M.; Saveliev, Alexei V.

    2011-03-15

    A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

  13. Simulation of bundle test Quench-12 with integral code MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Duspiva, J. [Nuclear Research Inst., Rez plc (Czech Republic)

    2011-07-01

    The past NRI analyses cover the Quench-01, Quench-03 and Quench-06 with version MELCOR 1.8.5 (including reflood model), and Quench-01 and Quench-11 tests with the latest version MELCOR 1.8.6. The Quench-12 test is specific, because it has different bundle configuration related to the VVER bundle configuration with hexagonal grid of pins and also used E110 cladding material. Specificity of Quench-12 test is also in the used material of fuel rod cladding - E110. The test specificities are a reason for the highest concern, because the VVER reactors are operated in the Czech Republic. The new input model was developed with the taking into account all experience from previous simulations of the Quench bundle tests. The recent version MELCOR 1.8.6 YU{sub 2}911 was used for the simulation with slightly modified ELHEAT package. Sensitivity studies on input parameters and oxidation kinetics were performed. (author)

  14. Gradient Bundle Analysis: A Full Topological Approach to Chemical Bonding

    CERN Document Server

    Morgenstern, Amanda

    2016-01-01

    The "chemical bond" is a central concept in molecular sciences, but there is no consensus as to what a bond actually is. Therefore, a variety of bonding models have been developed, each defining the structure of molecules in a different manner with the goal of explaining and predicting chemical properties. This thesis describes the initial development of gradient bundle analysis (GBA), a chemical bonding model that creates a high resolution picture of chemical interactions within the charge density framework. GBA is based on concepts from the quantum theory of atoms in molecules (QTAIM), but uses a more complete picture of the topology and geometry of the electron charge density to understand and predict bonding interactions. Gradient bundles are defined as volumes bounded by zero-flux surfaces (ZFSs) in the gradient of the charge density with well-defined energies. The structure of gradient bundles provides an avenue for detecting the locations of valence electrons, which correspond to reactive regions in a ...

  15. Validity of plant fiber length measurement : a review of fiber length measurement based on kenaf as a model

    Science.gov (United States)

    James S. Han; Theodore. Mianowski; Yi-yu. Lin

    1999-01-01

    The efficacy of fiber length measurement techniques such as digitizing, the Kajaani procedure, and NIH Image are compared in order to determine the optimal tool. Kenaf bast fibers, aspen, and red pine fibers were collected from different anatomical parts, and the fiber lengths were compared using various analytical tools. A statistical analysis on the validity of the...

  16. Numerical modeling of mid-infrared fiber optical parametric oscillator based on the degenerated FWM of tellurite photonic crystal fiber.

    Science.gov (United States)

    Cheng, Huihui; Luo, Zhengqian; Ye, Chenchun; Huang, Yizhong; Liu, Chun; Cai, Zhiping

    2013-01-20

    Mid-infrared fiber optical parametric oscillators (MIR FOPOs) based on the degenerate four-wave mixing (DFWM) of tellurite photonic crystal fibers (PCFs) are proposed and modeled for the first time. Using the DFWM coupled-wave equations, numerical simulations are performed to analyze the effects of tellurite PCFs, single-resonant cavity, and pump source on the MIR FOPO performances. The numerical results show that: (1) although a longer tellurite PCF can decrease the pump threshold of MIR FOPOs to a few watts only, the high conversion-efficiency of MIR idler usually requires a short-length optimum PCF with low loss; (2) compared with the single-pass DFWM configurations of the MIR fiber sources published previously, the stable oscillation of signal light in single-resonant cavity can significantly promote the MIR idler output efficiency. With a suggested tellurite PCF as parametric gain medium, the theoretical prediction indicates that such a MIR FOPO could obtain a wide MIR-tunable range and a high conversion efficiency of more than 10%.

  17. Residence time distribution for electrokinetic flow through a microchannel comprising a bundle of cylinders.

    Science.gov (United States)

    Hsu, Jyh-Ping; Ting, Chung-Chieh; Lee, Duu-Jong; Tseng, Shiojenn; Chen, Chur-Jen; Su, Ay

    2007-03-01

    The electrokinetic flow of an electrolyte solution through a microchannel that comprises a bundle of cylinders is investigated for the case of constant surface potential. The system under consideration is simulated by a unit cell model, and analytical expressions for the flow field and the corresponding residence time distribution under various conditions are derived. These results are readily applicable to the assessment of the performance of a microreactor such as that which comprises a bundle of optical fibers. Numerical simulations are conducted to investigate the influences of the key parameters, including the thickness of the double layer, the strength of the applied electric field, the magnitude of the applied pressure gradient, and the characteristic sizes of a microchannel, on the residence time distribution. We show that the following could result in a shorter residence time: thin double layer, strong applied electric field, large applied pressure gradient, and small number of cylinders. Based on the thickness of the double layer, criteria are proposed for whether the flow field can be treated as a laminar flow or as a plug flow, two basic limiting cases in reactor design.

  18. Modeling and mesoscopic damage constitutive relation of brittle short-fiber-reinforced composites

    Institute of Scientific and Technical Information of China (English)

    刘洪秋; 梁乃刚; 夏蒙棼

    1999-01-01

    Aimed at brittle composites reinforced by randomly distributed short-fibers with a relatively large aspect ratio, stiffness modulus and strength, a mesoscopic material model was proposed. Based on the statistical description,damage mechanisms, damage-induced anisotropy, damage rate effect and stress redistribution, the constitutive relation were derived. By taking glass fiber reinforced polypropylene polymers as an example, the effect of initial orientation distribution of fibers, damage-induced anisotropy, and damage-rate effect on macro-behaviors of composites were quantitatively analyzed. The theoretical predictions compared favorably with the experimental results.

  19. Variable recruitment in bundles of miniature pneumatic artificial muscles.

    Science.gov (United States)

    DeLaHunt, Sylvie A; Pillsbury, Thomas E; Wereley, Norman M

    2016-09-13

    The natural compliance and force generation properties of pneumatic artificial muscles (PAMs) allow them to operate like human muscles in anthropomorphic robotic manipulators. Traditionally, manipulators use a single PAM or multiple PAMs actuated in unison in place of a human muscle. However, these standard manipulators can experience significant efficiency losses when operated outside their target performance ranges at low actuation pressures. This study considers the application of a variable recruitment control strategy to a parallel bundle of miniature PAMs as an attempt to mimic the selective recruitment of motor units in a human muscle. Bundles of miniature PAMs are experimentally characterized, their actuation behavior is modeled, and the efficiency gains and losses associated with the application of a variable recruitment control strategy are assessed. This bio-inspired control strategy allows muscle bundles to operate the fewest miniature PAMs necessary to achieve a desired performance objective, improving the muscle bundle's operating efficiency over larger ranges of force generation and displacement. The study also highlights the need for improved PAM fabrication techniques to facilitate the production of identical miniature PAMs for inclusion in muscle bundles.

  20. Circuit models for Salisbury screens made from unidirectional carbon fiber composite sandwich structures

    Science.gov (United States)

    Riley, Elliot J.; Lenzing, Erik H.; Narayanan, Ram M.

    2016-05-01

    Carbon fiber composite materials have many useful structural material properties. The electromagnetic perfor- mance of these materials is of great interest for future applications. The work presented in this paper deals with the construction of Salisbury screen microwave absorbers made from unidirectional carbon fiber composite sand- wich structures. Specifically, absorbers centered at 7.25 GHz and 12.56 GHz are investigated. Circuit models are created to match the measured performance of the carbon fiber Salisbury screens using a genetic algorithm to extract lumped element circuit values. The screens presented in this paper utilize unidirectional carbon fiber sheets in place of the resistive sheet utilized in the classic Salisbury screen. The theory, models, prototypes, and measurements of these absorbers are discussed.

  1. Comparative fiber property and transcriptome analyses reveal key genes potentially related to high fiber strength in cotton (Gossypium hirsutum L.) line MD52ne

    Science.gov (United States)

    Background: Individual fiber strength is an important quality attribute that greatly influences the strength of the yarn spun from cotton fibers. Fiber strength is usually measured from bundles of fibers due to the difficulty of reliably measuring strength from individual cotton fibers. However, bun...

  2. Film condensation of R-113 on staggered bundles of horizontal finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Honda, H. (Kyushu Univ., Fukuoka (Japan)); Uchima, B. (Kagawa Technical Coll., Marugame (Japan)); Nozu, S.; Torigoe, E.; Imai, S. (Okayama Univ., Tsushima (Japan))

    1992-05-01

    Film condensation of R-113 on staggered bundles of horizontal finned tubes with vertical vapor downflow was experimentally investigated. Two tubes with flat-sided annular fins and four tubes with three-dimensional fins were tested. The condensate flow and heat transfer characteristics were compared with the previous results for in-line bundles of the same test tubes and a staggered bundle of smooth tubes. The decrease in heat transfer characteristics were compared with the previous results for in-line bundles of the same test tubes and a staggered bundle of smooth tubes. The decrease in heat transfer due to condensate inundation was most significant for the in-line bundles of the three-dimensional fin tubes, whereas the decrease was very slow for both the staggered and in-line bundles of the flat-sided fin tubes. The predictions of the previous theoretical model for a bundle of flat-sided fin tubes agreed fairly well with the measured data at a low vapor velocity. The highest heat transfer performance was provided by the staggered bundle of flat-sided fin tubes with fin dimensions close to the theoretically determined optimum values.

  3. DAMAGE MODELING OF INJECTION-MOLDED SHORT- AND LONG-FIBER THERMOPLASTICS

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.; Phelps, Jay; Tucker III, Charles L.

    2009-10-30

    This article applies the recent anisotropic rotary diffusion – reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has been implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.

  4. Modeling of hydrodynamics in hollow fiber membrane bioreactor for mammalian cells cultivation

    Directory of Open Access Journals (Sweden)

    N. V. Menshutina

    2016-01-01

    Full Text Available The mathematical modelling in CFD-packages are powerfull instrument for design and calculation of any engineering tasks. CFD-package contains the set of programs that allow to model the different objects behavior based on the mathematical lows. ANSYS Fluent are widely used for modelling of biotechnological and chemical-technological processes. This package is convenient to describe their hydrodynamics. As cell cultivation is one of the actual scientific direction in modern biotechnology ANSYS Fluent was used to create the model of hollow fiber membrane bioreactor. The fibers are hollow cylindrical membrane to be used for cell cultivation. The criterion of process effectiveness for cell growth is full filling of the membrane surface by cells in the bioreactor. While the cell growth the fiber permeability is decreased which effects to feed flow through membrane pores. The specific feature of this process is to ensure such feed flow to deliver the optimal nutrition for the cells on the external membrane surface. The velocity distribution inside the fiber and in all bioreactor as a whole has been calculated based on mass an impulse conservation equations taking into account the mathematical model assumptions. The hydrodynamics analysis in hollow fiber membrane bioreactor is described by the three-dimensional model created in ANSYS Fluent. The specific features of one membrane model are considered and for whole bioreactor too.

  5. Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles.

    Science.gov (United States)

    Maier, Alexander M; Weig, Cornelius; Oswald, Peter; Frey, Erwin; Fischer, Peer; Liedl, Tim

    2016-02-10

    We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials.

  6. Type Ii/heterotic Duality And Mirror Symmetry (bundle Deformation, String Duality)

    CERN Document Server

    Perevalov, E V

    1998-01-01

    Toric geometry is used to systematically construct Type II compactifications dual to Heterotic models in six dimensions involving singular K3 surfaces as well as vector bundles. Reflexive polyhedra are shown to encode the spectra of the resulting low-energy theories. Finally, the connection between mirror symmetry and deformation of bundles on K3 surfaces is exhibited via string duality.

  7. Coupling and elastic loading affect the active response by the inner ear hair cell bundles.

    Directory of Open Access Journals (Sweden)

    Clark Elliott Strimbu

    Full Text Available Active hair bundle motility has been proposed to underlie the amplification mechanism in the auditory endorgans of non-mammals and in the vestibular systems of all vertebrates, and to constitute a crucial component of cochlear amplification in mammals. We used semi-intact in vitro preparations of the bullfrog sacculus to study the effects of elastic mechanical loading on both natively coupled and freely oscillating hair bundles. For the latter, we attached glass fibers of different stiffness to the stereocilia and observed the induced changes in the spontaneous bundle movement. When driven with sinusoidal deflections, hair bundles displayed phase-locked response indicative of an Arnold Tongue, with the frequency selectivity highest at low amplitudes and decreasing under stronger stimulation. A striking broadening of the mode-locked response was seen with increasing stiffness of the load, until approximate impedance matching, where the phase-locked response remained flat over the physiological range of frequencies. When the otolithic membrane was left intact atop the preparation, the natural loading of the bundles likewise decreased their frequency selectivity with respect to that observed in freely oscillating bundles. To probe for signatures of the active process under natural loading and coupling conditions, we applied transient mechanical stimuli to the otolithic membrane. Following the pulses, the underlying bundles displayed active movement in the opposite direction, analogous to the twitches observed in individual cells. Tracking features in the otolithic membrane indicated that it moved in phase with the bundles. Hence, synchronous active motility evoked in the system of coupled hair bundles by external input is sufficient to displace large overlying structures.

  8. Two-phase flow modeling in the rod bundle subchannel analysis; Modelisation d'ecoulement a deux phases dans l'analyse du sous-canal de grappe d'assemblages

    Energy Technology Data Exchange (ETDEWEB)

    Hisashi, Ninokata [Tokyo Inst. of Tech. (Japan)

    2006-07-01

    In order to practice a design-by-analysis of thermohydraulics design of BWR fuel rod bundles, the subchannel analysis would play a major role. There, the immediate concern is improvement in its predictive capability of CHF due in particular to the film dryout (boiling transition phenomena: BT) on the fuel rod surface. Constitutive equations in the subchannel analysis formulation are responsible for the quality of calculated results. The constitutive equations are a result of integration of the local and instantaneous description of two-phase flows over the subchannel control volume. In general, they are expressed in terms of subchannel-control-volume- as well as area-averaged two-phase flow state variables. In principle the information on local and instantaneous physical phenomena taking place inside subchannels must be counted for in the algebraic form of the equations on the basis of a more mechanistic modeling approach. They should include also influences of the multi-dimensional subchannel geometry and fluid material properties. Thermohydraulics phenomena of interests in this deed are: 1) vapor-liquid re-distribution by inter-subchannel exchanges due to the diversion cross flow, turbulent mixing and void drift, 2) liquid film behaviors, 3) transition of two-phase flow regimes, 4) droplet entrainment and deposition and 5) spacer-droplet interactions. These are considered to be five key factors in understanding the BT in BWR fuel rod bundles. In Japan, a university-industry consortium has been formed under the sponsorship of the Ministry of Economics, Trade and Industry. This paper describes an outline of the on-going project and, first, an outline of the current efforts is presented in developing a new two-fluid three field subchannel code NASCA being aimed at predicting onset of BT, and post BT phenomena in advanced BWR fuel rod bundles including those of the tight lattice configuration for a higher conversion. Then the current methodology adopted to improve

  9. solar magnetic fiber and space solar telescope in engineering model

    Science.gov (United States)

    Ai, G.

    The solar magnetic fiber and the magnetic element are the most important factor in the solar activity and solar atmosphere. Because the space resolution of measurement of solar magnetic field is much lower than that of the size of the nature solar magnetic fiber and element from the earth atmospheric turbulence. The estimate of the magnetic element nature from various indirect researches shows great difference with several orders. The research results about magnetic elements have been reviewed in the paper.Because the size of the magnetic element has been estimated for 0.1T-0.2T, the space solar magnetic field telescope with big diameter is the most basic choice. For the exploration of solar magnetic fiber and element, a Space Solar Telescope is under development in the phase C and D, there are five payloads which are: 1) MOT, 1 diameter telescope with 8 channels real time 2-D spectrograph and 8 sets CCD with 2K`2K; 2) EUV, 4 tubes of soft X-ray Telescope with 0.252 space resolution; 3) WBS, the wide Band Spectrometer with 256 channel from soft X-ray to Gamma-ray. 4) HAT, Ha and white light telescope; 5) SIRA, Solar and interplanetary Radio Spectrometer, with 100 KHZ-60 MHZ. The assembly and test will be introduced.

  10. Regularized thin-fiber model for nanofiber formation by centrifugal spinning

    Science.gov (United States)

    Taghavi, S. M.; Larson, R. G.

    2014-02-01

    We propose a regularized thin-fiber (string) model that overcomes past numerical limitations and allows determination of the steady fiber velocity and diameter of a semi-infinite Newtonian viscous fiber emerging from a nozzle rotating about an axis in the presence of centrifugal, inertial, and viscous forces of arbitrary magnitudes. The results are controlled by two dimensionless groups, namely, the Rossby number Rb expressing the ratio of inertial to centrifugal forces and the Reynolds number Re, the ratio of inertial to viscous forces. We find that for Rb 0.5, regularization is not required, the curvature in fiber trajectory is increased by viscosity, and the solution at large distances along the spin line does not converge to the inviscid result. Regimes of behavior in the plane formed by Re and Rb are mapped out and example behavior is given for each regime.

  11. Clearance of refractory ceramic fibers (RCF) from the rat lung: development of a model.

    Science.gov (United States)

    Yu, C P; Zhang, L; Oberdörster, G; Mast, R W; Glass, L R; Utell, M J

    1994-05-01

    Chronic exposure and postexposure experiments have been recently performed in rats to evaluate the biological responses of inhaled refractory ceramic fibers (RCF) at different concentration levels. The lung burden data in the accessory lobe of the rat lung were collected during and after different exposure and postexposure periods. The size distribution of retained fibers in the lung at different time points was also measured. We used these data to develop a mathematical model of fiber clearance from the rat lung. It was found that the clearance rate did not depend significantly upon fiber size but there was a clear dependence on lung burden. As lung burden increased, the clearance rate was found to decrease. An empirical equation was derived for the clearance rate as a function of lung burden. At low burdens, rats had a retention half-time of about 126 days for RCF compared to a typical half-time of about 60 days for insoluble nonfibrous particles.

  12. Experimental verification of a model describing the intensity distribution from a single mode optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Erik A [Los Alamos National Laboratory; Puckett, Anthony D [Los Alamos National Laboratory; Todd, Michael D [UCSD

    2011-01-24

    The intensity distribution of a transmission from a single mode optical fiber is often approximated using a Gaussian-shaped curve. While this approximation is useful for some applications such as fiber alignment, it does not accurately describe transmission behavior off the axis of propagation. In this paper, another model is presented, which describes the intensity distribution of the transmission from a single mode optical fiber. A simple experimental setup is used to verify the model's accuracy, and agreement between model and experiment is established both on and off the axis of propagation. Displacement sensor designs based on the extrinsic optical lever architecture are presented. The behavior of the transmission off the axis of propagation dictates the performance of sensor architectures where large lateral offsets (25-1500 {micro}m) exist between transmitting and receiving fibers. The practical implications of modeling accuracy over this lateral offset region are discussed as they relate to the development of high-performance intensity modulated optical displacement sensors. In particular, the sensitivity, linearity, resolution, and displacement range of a sensor are functions of the relative positioning of the sensor's transmitting and receiving fibers. Sensor architectures with high combinations of sensitivity and displacement range are discussed. It is concluded that the utility of the accurate model is in its predicative capability and that this research could lead to an improved methodology for high-performance sensor design.

  13. Fiber-coupling efficiency of Gaussian Schell model for optical communication through atmospheric turbulence.

    Science.gov (United States)

    Tan, Liying; Li, Mengnan; Yang, Qingbo; Ma, Jing

    2015-03-20

    In practice, due to the laser device and the inevitable error of the processing technique, the laser source emitted from the communication terminal is partially coherent, and is represented as a Gaussian Schell model (GSM). The cross-spectral density function based on the Gaussian model in previous research is replaced by the GSM. Thus the fiber-coupling efficiency equation of the GSM laser source through atmospheric turbulence is deduced. The GSM equation presents the effect of the source coherent parameter ζ on the fiber-coupling efficiency, which was not included previously. The effects of the source coherent parameter ζ on the spatial coherent radius and the fiber-coupling efficiency through atmospheric turbulence are numerically simulated and analyzed. The result manifests that the fiber-coupling efficiency invariably degrades with increasing ζ. The work in this paper is aimed to improve the redundancy design of fiber-coupling receiver systems by analyzing the fiber-coupling efficiency with the source coherent parameters.

  14. General frame structures on quantum principal bundles

    CERN Document Server

    Durdevic, M

    1996-01-01

    A noncommutative-geometric generalization of the classical formalism of frame bundles is developed, incorporating into the theory of quantum principal bundles the concept of the Levi-Civita connection. The construction of a natural differential calculus on quantum principal frame bundles is presented, including the construction of the associated differential calculus on the structure group. General torsion operators are defined and analyzed. Illustrative examples are presented.

  15. ACM Bundles on Del Pezzo surfaces

    Directory of Open Access Journals (Sweden)

    Joan Pons-Llopis

    2009-11-01

    Full Text Available ACM rank 1 bundles on del Pezzo surfaces are classified in terms of the rational normal curves that they contain. A complete list of ACM line bundles is provided. Moreover, for any del Pezzo surface X of degree less or equal than six and for any n ≥ 2 we construct a family of dimension ≥ n − 1 of non-isomorphic simple ACM bundles of rank n on X.

  16. Oxygen Transfer Model for a Flow-Through Hollow-Fiber Membrane Biofilm Reactor

    DEFF Research Database (Denmark)

    Gilmore, K. R.; Little, J. C.; Smets, Barth F.

    2009-01-01

    A mechanistic oxygen transfer model was developed and applied to a flow-through hollow-fiber membrane-aerated biofilm reactor. Model results are compared to conventional clean water test results as well as performance data obtained when an actively nitrifying biofilm was present on the fibers....... With the biofilm present, oxygen transfer efficiencies between 30 and 55% were calculated from the measured data including the outlet gas oxygen concentration, ammonia consumption stoichiometry, and oxidized nitrogen production stoichiometry, all of which were in reasonable agreement. The mechanistic model...

  17. A mechanistic model of ion-exchange chromatography on polymer fiber stationary phases.

    Science.gov (United States)

    Winderl, Johannes; Hahn, Tobias; Hubbuch, Jürgen

    2016-12-02

    Fibers are prominent among novel stationary phase supports for preparative chromatography. Several recent studies have highlighted the potential of fiber-based adsorbents for high productivity downstream processing in both batch and continuous mode, but so far the development of these materials and of processes employing these materials has solely been based on experimental data. In this study we assessed whether mechanistic modeling can be performed on fiber-based adsorbents. With a column randomly filled with short cut hydrogel grafted anion exchange fibers, we tested whether tracer, linear gradient elution, and breakthrough data could be reproduced by mechanistic models. Successful modeling was achieved for all of the considered experiments, for both non-retained and retained molecules. For the fibers used in this study the best results were obtained with a transport-dispersive model in combination with a steric mass action isotherm. This approach accurately accounted for the convection and dispersion of non-retained tracers, and the breakthrough and elution behaviors of three different proteins with sizes ranging from 6 to 160kDa were accurately modeled, with simulation results closely resembling the experimental data. The estimated model parameters were plausible both from their physical meaning, and from an analysis of the underlying model assumptions. Parameters were determined within good confidence levels; the average confidence estimate was below 7% for confidence levels of 95%. This shows that fiber-based adsorbents can be modeled mechanistically, which will be valuable for the future design and evaluation of these novel materials and for the development of processes employing such materials.

  18. Entropy for frame bundle systems and Grassmann bundle systems induced by a diffeomorphism

    Institute of Scientific and Technical Information of China (English)

    SUN; Weniang(孙文祥)

    2002-01-01

    ALiao hyperbolic diffeomorphism has equal measure entropy and topological entropy to that ofits induced systems on frame bundles and Grassmann bundles. This solves a problem Liao posed in 1996 forLiao hyperbolic diffeomorphisms.

  19. Hydraulic characteristics of HANARO fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.; Chung, H. J.; Chun, S. Y.; Yang, S. K.; Chung, M. K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)

  20. Thermal Hydraulic Performance of Tight Lattice Bundle

    Science.gov (United States)

    Yamamoto, Yasushi; Akiba, Miyuki; Morooka, Shinichi; Shirakawa, Kenetsu; Abe, Nobuaki

    Recently, the reduced moderation spectrum BWR has been studied. The fast neutron spectrum is obtained through triangular tight lattice fuel. However, there are few thermal hydraulic test data and thermal hydraulic correlation applicable to critical power prediction in such a tight lattice bundle. This study aims to enhance the database of the thermal hydraulic performance of the tight lattice bundle whose rod gap is about 1mm. Therefore, thermal hydraulic performance measurement tests of tight lattice bundles for the critical power, the pressure drop and the counter current flow limiting were performed. Moreover, the correlations to evaluate the thermal-hydraulic performance of the tight lattice bundle were developed.

  1. Principal $G$-bundles over elliptic curves

    CERN Document Server

    Friedman, R; Witten, Edward; Friedman, Robert; Morgan, John W.; Witten, Edward

    1997-01-01

    Let $G$ be a simple and simply connected complex Lie group. We discuss the moduli space of holomorphic semistable principal $G$-bundles over an elliptic curve $E$. In particular, we give a new proof of a theorem of Looijenga and Bernshtein-Shvartsman, that the moduli space is a weighted projective space. The method of proof is to study the deformations of certain unstable bundles coming from special maximal parabolic subgroups of $G$. We also discuss the associated automorphism sheaves and universal bundles, as well as the relation between various universal bundles and spectral covers.

  2. The Analysis of SBWR Critical Power Bundle Using Cobrag Code

    Directory of Open Access Journals (Sweden)

    Yohannes Sardjono

    2013-03-01

    Full Text Available The coolant mechanism of SBWR is similar with the Dodewaard Nuclear Power Plant (NPP in the Netherlands that first went critical in 1968. The similarity of both NPP is cooled by natural convection system. These coolant concept is very related with same parameters on fuel bundle design especially fuel bundle length, core pressure drop and core flow rate as well as critical power bundle. The analysis was carried out by using COBRAG computer code. COBRAG computer code is GE Company proprietary. Basically COBRAG computer code is a tool to solve compressible three-dimensional, two fluid, three field equations for two phase flow. The three fields are the vapor field, the continuous liquid field, and the liquid drop field. This code has been applied to analyses model flow and heat transfer within the reactor core. This volume describes the finitevolume equations and the numerical solution methods used to solve these equations. This analysis of same parameters has been done i.e.; inlet sub cooling 20 BTU/lbm and 40 BTU/lbm, 1000 psi pressure and R-factor is 1.038, mass flux are 0.5 Mlb/hr.ft2, 0.75 Mlb/hr.ft2, 1.00 Mlb/hr.ft2 and 1.25 Mlb/hr.ft2. Those conditions based on history operation of some type of the cell fuel bundle line at GE Nuclear Energy. According to the results, it can be concluded that SBWR critical power bundle is 10.5 % less than current BWR critical power bundle with length reduction of 12 ft to 9 ft.

  3. A Multiscale Progressive Failure Modeling Methodology for Composites that Includes Fiber Strength Stochastics

    Science.gov (United States)

    Ricks, Trenton M.; Lacy, Thomas E., Jr.; Bednarcyk, Brett A.; Arnold, Steven M.; Hutchins, John W.

    2014-01-01

    A multiscale modeling methodology was developed for continuous fiber composites that incorporates a statistical distribution of fiber strengths into coupled multiscale micromechanics/finite element (FE) analyses. A modified two-parameter Weibull cumulative distribution function, which accounts for the effect of fiber length on the probability of failure, was used to characterize the statistical distribution of fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local composite failure within a repeating unit cell (RUC) and subsequent global failure. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a unidirectional SCS-6/TIMETAL 21S metal matrix composite tensile dogbone specimen at 650 degC. Multiscale progressive failure analyses were performed to quantify the effect of spatially varying fiber strengths on the RUC-averaged and global stress-strain responses and failure. The ultimate composite strengths and distribution of failure locations (predominately within the gage section) reasonably matched the experimentally observed failure behavior. The predicted composite failure behavior suggests that use of macroscale models that exploit global geometric symmetries are inappropriate for cases where the actual distribution of local fiber strengths displays no such symmetries. This issue has not received much attention in the literature. Moreover, the model discretization at a specific length scale can have a profound effect on the computational costs associated with multiscale simulations.models that yield accurate yet tractable results.

  4. Jacobi Structures on Affine Bundles

    Institute of Scientific and Technical Information of China (English)

    J. GRABOWSKI; D. IGLESIAS; J. C. MARRERO; E. PADR(O)N; P. URBA(N)SKI

    2007-01-01

    We study affine Jacobi structures (brackets) on an affine bundle π: A→M, i.e. Jacobi brackets that close on affine functions. We prove that if the rank of A is non-zero, there is a one-to- one correspondence between affine Jacobi structures on A and Lie algebroid structures on the vector bundle A+=∪p∈M Aff(Ap, R) of affine functionals. In the case rank A = 0, it is shown that there is a one-to-one correspondence between affins Jacobi structures on A and local Lie algebras on A+. Some examples and applications, also for the linear case, are discussed. For a special type of affine Jacobi structures which are canonically exhibited (strongly-affine or affine-homogeneous Jacobi structures) over a real vector space of finite dimension, we describe the leaves of its characteristic foliation as the orbits of an affine representation. These afline Jacobi structures can be viewed as an analog of the Kostant-Arnold-LiouviUe linear Poisson structure on the dual space of a real finite-dimensional Lie algebra.

  5. Development and evaluation of spatial point process models for epidermal nerve fibers.

    Science.gov (United States)

    Olsbo, Viktor; Myllymäki, Mari; Waller, Lance A; Särkkä, Aila

    2013-06-01

    We propose two spatial point process models for the spatial structure of epidermal nerve fibers (ENFs) across human skin. The models derive from two point processes, Φb and Φe, describing the locations of the base and end points of the fibers. Each point of Φe (the end point process) is connected to a unique point in Φb (the base point process). In the first model, both Φe and Φb are Poisson processes, yielding a null model of uniform coverage of the skin by end points and general baseline results and reference values for moments of key physiologic indicators. The second model provides a mechanistic model to generate end points for each base, and we model the branching structure more directly by defining Φe as a cluster process conditioned on the realization of Φb as its parent points. In both cases, we derive distributional properties for observable quantities of direct interest to neurologists such as the number of fibers per base, and the direction and range of fibers on the skin. We contrast both models by fitting them to data from skin blister biopsy images of ENFs and provide inference regarding physiological properties of ENFs.

  6. Photoacoustic imaging of hidden dental caries by using a fiber-based probing system

    Science.gov (United States)

    Koyama, Takuya; Kakino, Satoko; Matsuura, Yuji

    2017-04-01

    Photoacoustic method to detect hidden dental caries is proposed. It was found that high frequency ultrasonic waves are generated from hidden carious part when radiating laser light to occlusal surface of model tooth. By making a map of intensity of these high frequency components, photoacoustic images of hidden caries were successfully obtained. A photoacoustic imaging system using a bundle of hollow optical fiber was fabricated for using clinical application, and clear photoacoustic image of hidden caries was also obtained by this system.

  7. Statistical Tensile Strength for High Strain Rate of Aramid and UHMWPE Fibers

    Institute of Scientific and Technical Information of China (English)

    YANG Bin; XIONG Tao; XIONG Jie

    2006-01-01

    Dynamic tensile impact properties of aramid (Technora(R)) and UHMWPE (DC851) fiber bundles were studied at two high strain rates by means of reflecting type Split Hopkinson Bar, and stress-strain curves of fiber yarns at different strain rates were obtained. Experimental results show that the initial elastic modulus, failure strength and unstable strain of aramid fiber yarns are strain rate insensitive, whereas the initial elastic modulus and unstable strain of UHMWPE fiber yarns are strain rate sensitive. A fiber-bundle statistical constitutive equation was used to describe the tensile behavior of aramid and UHMWPE fiber bundles at high strain rates. The good consistency between the simulated results and experimental data indicates that the modified double Weibull function can represent the tensile strength distribution of aramid and UHMWPE fibers and the method of extracting Weibull parameters from fiber bundles stress-strain data is valid.

  8. Property of Regenerating Serotonin Fibers in the Hippocampus of Human Migration Disorders Model

    Science.gov (United States)

    Ueda, Shuichi; Ehara, Ayuka; Ohmomo, Hideki

    Individual mood and mental conditions exert a great influence on one's own kansei. Abnormality or dysfunction of the 5-HT neuron system in the developing and/or adult brain is closely associated with their conditions. Thus, the 5-HT neuron system may play an important role in the neuronal mechanisms underlying kansei. Interestingly, previous studies have shown that heterotopic clusters in the hippocampus (hippocampal heterotopia), deriving from neocortical neurons, after prenatally treated with methylazoxymethanol acetate in rat (MAM rat), exhibit abundant 5-HT innervation. After neonatal intracisternal 5, 7-dihydroxytryptamine (DHT) injection, these 5-HT fibers degenerate and disappear throughout the forebrain, and then regenerating 5-HT fibers densely innervate in the hippocampal heterotopia. The 5-HT fiber system in the hippocampal heterotopia of MAM rat provides useful experimental models for study the plasticity of human migration disorder. In the present study, to evaluate the properties of regenerating 5-HT fibers in the hippocampal heterotopia of MAM rats, we examined the origin of these projections by combined retrograde transport and immunohistochemical methods. Prenatal exposure to MAM resulted in the formation of hippocampal heterotopia in the dorsal hippocampus. Regenerating 5-HT fibers formed a dense innervation within the hippocampal heterotopia after neonatal DHT injection. These projections appeared to arise mainly from 5-HT neurons in the median raphe nucleus, with a small portion from 5-HT neurons in the dorsal raphe nucleus. These findings suggest a specific profile of regenerating 5-HT fibers, providing the new insights for serotonergic plasticity.

  9. Macro-mechanical material model for fiber reinforced metal matrix composites

    CERN Document Server

    Banks-Sills, L

    1999-01-01

    The stress-strain behavior of a metal matrix composite reinforced with unidirectional, continuous and periodic fibers is investigated. Three-dimensional micro-mechanical analyses of a unit cell by means of the finite element method $9 and homogenization-localization are carried out. These calculations allow the determination of material behavior of the in-plane, as well as the fiber directions. The fibers are assumed to be elastic and the matrix elasto-plastic. $9 The matrix material is governed by a von Mises yield surface, isotropic hardening and an associated flow rule. With the aid of these analyses, the foundation to a macro-mechanical material model is presented which is employed to $9 consider an elementary problem. The model includes an anisotropic yield surface with isotropic hardening and an associated flow rule. A beam in bending containing square fibers under plane strain conditions is analyzed by means of $9 the model. Two cases are considered: one in which the fibers are symmetric with respect t...

  10. Mesh structure-independent modeling of patient-specific atrial fiber orientation

    Directory of Open Access Journals (Sweden)

    Wachter Andreas

    2015-09-01

    Full Text Available The fiber orientation in the atria has a significant contribution to the electrophysiologic behavior of the heart and to the genesis of arrhythmia. Atrial fiber orientation has a direct effect on excitation propagation, activation patterns and the P-wave. We present a rule-based algorithm that works robustly on different volumetric meshes composed of either isotropic hexahedra or arbitrary tetrahedra as well as on 3-dimensional triangular surface meshes in patient-specific geometric models. This method fosters the understanding of general proarrhythmic mechanisms and enhances patient-specific modeling approaches.

  11. Modeling transmission parameters of polymer microstructured fibers for applications in FTTH networks

    Science.gov (United States)

    Gdula, P.; Welikow, K.; Szczepański, P.; Buczyński, R.; Piramidowicz, R.

    2011-10-01

    This paper is focused on selected aspects of designing and modeling of transmission parameters of plastic optical fibers (POFs), considered in the context of their potential applications in optical access networks and, specifically, in Fiber-To- The-Home (FTTH) systems. The survey of state-of-the-art solutions is presented and possibility of improving transmission properties of POFs by microstructurization is discussed on the basis of the first results of numerical modeling. In particular, the microstructured POF was designed supporting propagation of limited number of modes while keeping relatively large mode area and, simultaneously, significantly lowered bending losses.

  12. Light Path Model of Fiber Optic Liquid Level Sensor Considering Residual Liquid Film on the Wall

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2015-01-01

    Full Text Available The working principle of the refractive-type fiber optic liquid level sensor is analyzed in detail based on the light refraction principle. The optic path models are developed in consideration of common simplification and the residual liquid film on the glass tube wall. The calculating formulae for the model are derived, constraint conditions are obtained, influencing factors are discussed, and the scopes and skills of application are analyzed through instance simulations. The research results are useful in directing the correct usage of the fiber optic liquid level sensor, especially in special cases, such as those involving viscous liquid in the glass tube monitoring.

  13. Evaluation and assessment of reflooding models in RELAP5/Mod2.5 and RELAP5/Mod3 codes using Lehigh University and PSI-Neptun bundle experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Sencar, M.; Aksan, N. [Paul Scherrer Institute, Villigen (Switzerland)

    1995-09-01

    An extensive analysis and assessment work on reflooding models of RELAP5/Mod2.5 and, RELAP5/Mod3/v5m5 and RELAP/Mod3/v7j have been performed. Experimental data from LehighUniversityv. and PSI-NEPTUN bundle reflooding experiments have been used for the assessment, since both of these tests cover a broad range of initial conditions. Within the range of these initial conditions, it was tried to identify their separate impacts on the calculated results. A total of six Lehigh University reflooding bundle tests and two PSI-NEPTUN tests with bounding initial conditions are selected for the analysis. Detailed nodalisation studies both for hydraulic and conduction heat transfer were done. On the basis of the results obtained from these cases, a base nodalisation scheme was established. All the other analysis work was performed by using this base nodalisation. RELAP5/Mod2.5 results do not change with renodalisation but RELAP5/Mod3 results are more sensitive to renodalisation. The results of RELAP5/Mod2.5 versions show very large deviations from the used experimental data. These results indicate that some of the phenomenology of the events occurring during the reflooding could not be identified. In the paper, detailed discussions on the main reasons of the deviations from the experimental data will be presented. Since, the results and findings of this study are meant to be a developmental aid, some recommendations have been drawn and some of these have already been implemented at PSI with promising results.

  14. An Empirical Study on Content Bundling in BitTorrent Swarming System

    CERN Document Server

    Han, Jinyoung; Kim, Seungbae; Kim, Hyun-chul; Kwon, Ted "Taekyoung"; Choi, Yanghee

    2010-01-01

    Despite the tremendous success of BitTorrent, its swarming system suffers from a fundamental limitation: lower or no availability of unpopular contents. Recently, Menasche et al. has shown that bundling is a promising solution to mitigate this availability problem; it improves the availability and reduces download times for unpopular contents by combining multiple files into a single swarm. There also have been studies on bundling strategies and performance issues in bundled swarms. In spite of the recent surge of interest in the benefits of and strategies for bundling, there are still little empirical grounding for understanding, describing, and modeling it. This is the first empirical study that measures and analyzes how prevalent contents bundling is in BitTorrent and how peers access the bundled contents, in comparison to the other non-bundled (i.e., single-filed) ones. To our surprise, we found that around 70% of BitTorrent swarms contain multiple files, which indicate that bundling has become widespread...

  15. Liquid-like bundles of crosslinked actin filaments contract without motors

    Science.gov (United States)

    Weirich, Kimberly

    The actin cytoskeleton is a dynamic, structural material that drives cellular-scale deformations during processes such as cell migration and division. Motor proteins are responsible for actively driving many deformations by buckling and translocating actin filaments. However, there is evidence that deformations, such as the constriction of the actin bundle that drives the separation of cells during division, can occur without motors, mediated instead by crosslinker proteins. How might crosslinkers, independent of motors, drive contraction of a bundle? Using a model system of purified proteins, we show that crosslinkers, analogous to molecular cohesion, create an effective surface tension that induces bundle contraction. Crosslinked short actin filaments form micron-sized spindle-shaped bundles. Similar to tactoid granules found at the isotropic-nematic phase transition in liquid crystals, these bundles coarsen and coalesce like liquid droplets. In contrast, crosslinked long filaments coarsen into a steady state of bundles that are frozen in a solid-like network. Near the liquid-solid boundary, filaments of intermediate length initially form bundles that spontaneously contract into tactoid droplets. Our results, that crosslinked actin bundles are liquid-like with an effective surface tension, provide evidence for a mechanism of motor-independent contractility in biological materials.

  16. Principal Bundles on the Projective Line

    Indian Academy of Sciences (India)

    V B Mehta; S Subramanian

    2002-08-01

    We classify principal -bundles on the projective line over an arbitrary field of characteristic ≠ 2 or 3, where is a reductive group. If such a bundle is trivial at a -rational point, then the structure group can be reduced to a maximal torus.

  17. Anatomic Double-bundle ACL Reconstruction

    NARCIS (Netherlands)

    V.M. Schreiber; C.F. van Eck; F.H. Fu

    2010-01-01

    Rupture of the anterior cruciate ligament (ACL) is one of the most frequent forms of knee trauma. The traditional surgical treatment for ACL rupture is single-bundle reconstruction. However, during the past few years there has been a shift in interest toward double-bundle reconstruction to closely r

  18. The Verlinde formula for Higgs bundles

    CERN Document Server

    Andersen, Jørgen Ellegaard; Pei, Du

    2016-01-01

    We propose and prove the Verlinde formula for the quantization of the Higgs bundle moduli spaces and stacks for any simple and simply-connected group. This generalizes the equivariant Verlinde formula for the case of $SU(n)$ proposed previously by the second and third author. We further establish a Verlinde formula for the quantization of parabolic Higgs bundle moduli spaces and stacks.

  19. Adsorption Models and Structural Characterization for Activated Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    CHEN Chuan-juan; WANG Ru-zhu; OLIVEIRA R.G.; HU Jin-qiang

    2009-01-01

    The nitrogen adsorption isotherms at 77.69 K were measured for two samples of activated carbon fibers and their microstructures were investigated. Among established isotherm equations, the Dubinin-Radushkevich equation showed the best agreement with the experimental data, while the Langmuir equation showed a large deviation when employed at low relative pressures. The MP method, t-method and αs-method were used to analyze the pore size distribution. The calculated average pore widths and BET (Brunauer-Emmett-Teller) surface areas for the sample A-13 were 0.86 nm and 1 286.60 m2/g, while for the sample A-16, they were 0.82 nm and 1 490.64 m2/g. The sample with larger pore width was more suitable to be used as additive in chemical heat pumps, while the other one could be used as adsorbent in adsorption refrigeration systems.

  20. Injection-Molded Long-Fiber Thermoplastic Composites: From Process Modeling to Prediction of Mechanical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Jin, Xiaoshi; Tucker III, Charles L.; Costa, Franco

    2013-12-18

    This article illustrates the predictive capabilities for long-fiber thermoplastic (LFT) composites that first simulate the injection molding of LFT structures by Autodesk® Simulation Moldflow® Insight (ASMI) to accurately predict fiber orientation and length distributions in these structures. After validating fiber orientation and length predictions against the experimental data, the predicted results are used by ASMI to compute distributions of elastic properties in the molded structures. In addition, local stress-strain responses and damage accumulation under tensile loading are predicted by an elastic-plastic damage model of EMTA-NLA, a nonlinear analysis tool implemented in ABAQUS® via user-subroutines using an incremental Eshelby-Mori-Tanaka approach. Predicted stress-strain responses up to failure and damage accumulations are compared to the experimental results to validate the model.

  1. Multiscale model of heat dissipation mechanisms during field emission from carbon nanotube fibers

    Science.gov (United States)

    Cahay, M.; Zhu, W.; Fairchild, S.; Murray, P. T.; Back, T. C.; Gruen, G. J.

    2016-01-01

    A multiscale model of field emission (FE) from carbon nanotube fibers (CNFs) is developed, which takes into account Joule heating within the fiber and radiative cooling and the Nottingham effect at the tip of the individual carbon nanotubes (CNTs) in the array located at the fiber tip. The model predicts the fraction of CNTs being destroyed as a function of the applied external electric field and reproduces many experimental features observed in some recently investigated CNFs, such as order of magnitude of the emission current (mA range), low turn on electric field (fraction of V/μm), deviation from pure Fowler-Nordheim behavior at large applied electric field, hysteresis of the FE characteristics, and a spatial variation of the temperature along the CNF axis with a maximum close to its tip of a few hundred °C.

  2. Multiscale model of heat dissipation mechanisms during field emission from carbon nanotube fibers

    Energy Technology Data Exchange (ETDEWEB)

    Cahay, M.; Zhu, W. [Spintronics and Vacuum Nanoelectronics Laboratory, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Fairchild, S. [Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433 (United States); Murray, P. T.; Back, T. C. [Research Institute, University of Dayton, Dayton, Ohio 45469-0170 (United States); Center of Excellence for Thin Film Research and Surface Engineering, University of Dayton, Dayton, Ohio 45469-0170 (United States); Gruen, G. J. [Research Institute, University of Dayton, Dayton, Ohio 45469-0170 (United States)

    2016-01-18

    A multiscale model of field emission (FE) from carbon nanotube fibers (CNFs) is developed, which takes into account Joule heating within the fiber and radiative cooling and the Nottingham effect at the tip of the individual carbon nanotubes (CNTs) in the array located at the fiber tip. The model predicts the fraction of CNTs being destroyed as a function of the applied external electric field and reproduces many experimental features observed in some recently investigated CNFs, such as order of magnitude of the emission current (mA range), low turn on electric field (fraction of V/μm), deviation from pure Fowler-Nordheim behavior at large applied electric field, hysteresis of the FE characteristics, and a spatial variation of the temperature along the CNF axis with a maximum close to its tip of a few hundred  °C.

  3. Composite spinor bundles in gravitation theory

    CERN Document Server

    Sardanashvily, G

    1995-01-01

    In gravitation theory, the realistic fermion matter is described by spinor bundles associated with the cotangent bundle of a world manifold X. In this case, the Dirac operator can be introduced. There is the 1:1 correspondence between these spinor bundles and the tetrad gravitational fields represented by sections of the quotient \\Si of the linear frame bundle over X by the Lorentz group. The key point lies in the fact that different tetrad fields imply nonequivalent representations of cotangent vectors to X by the Dirac's matrices. It follows that a fermion field must be regarded only in a pair with a certain tetrad field. These pairs can be represented by sections of the composite spinor bundle S\\to\\Si\\to X where values of tetrad fields play the role of parameter coordinates, besides the familiar world coordinates.

  4. Double Fell bundles and Spectral triples

    CERN Document Server

    Martins, Rachel A D

    2007-01-01

    As a natural and canonical extension of Kumjian's Fell bundles over groupoids \\cite{fbg}, we give a definition for a double Fell bundle (a double category) over a double groupoid. We show that finite dimensional double category Fell line bundles tensored with their dual with $S^o$-reality satisfy the finite real spectral triples axioms but not necessarily orientability. This means that these product bundles with noncommutative algebras can be regarded as noncommutative compact manifolds more general than real spectral triples as they are not necessarily orientable. By construction, they unify the noncommutative geometry axioms and hence provide an algebraic enveloping structure for finite spectral triples to give the Dirac operator $D$ new algebraic and geometric structures that are otherwise missing in the transition from Fredholm operator to Dirac operator. The Dirac operator in physical applications as a result becomes less ad hoc. The new noncommutative space we present is a complex line bundle over a dou...

  5. On Harder–Narasimhan Reductions for Higgs Principal Bundles

    Indian Academy of Sciences (India)

    Arijit Dey; R Parthasarathi

    2005-05-01

    The existence and uniqueness of – reduction for the Higgs principal bundles over nonsingular projective variety is shown. We also extend the notion of – reduction for (, )-bundles and ramified -bundles over a smooth curve.

  6. Remote laser generation of narrow-band surface waves through optical fibers.

    Science.gov (United States)

    Di Scalea, F L; Berndt, T P; Spicer, J B; Djordjevic, B B

    1999-01-01

    This paper demonstrates the use of a fiberoptic bundle for flexible, compact, remote, and noncontact laser generation of surface ultrasonic waves in materials. The bundle is able to deliver Nd:YAG pulsed light with a 60% delivery efficiency up to an average energy of 55 mJ/pulse for a pulse duration on the order of 10 ns and a pulse repetition rate of 20 Hz without signs of fiber damage. Details of the bundle construction and surface preparation are given, and pulsed light delivery tests performed with single tapered fibers are discussed. The high-power light delivery capabilities of the bundle are demonstrated for the generation of narrow-band surface waves in a Carbon/PEEK composite laminate by a spatial modulation technique that employs a periodic transmission mask. Single laser pulse ultrasonic tonebursts are clearly detectable using a small aperture piezoelectric transducer while ensuring thermoelastic generation conditions. The theory of narrow-band generation of surface acoustic waves is improved by accounting for the strength nonuniformity of the illumination sources. In addition, the effect of the number of illumination sources on the bandwidth of the generated surface wave is assessed experimentally, and excellent agreement is shown with the theoretical results predicted by the improved model.

  7. The Fiber Walk: A Model of Tip-Driven Growth with Lateral Expansion

    CERN Document Server

    Bucksch, Alexander; Weitz, Joshua S

    2013-01-01

    Tip-driven growth processes underlie the development of many complex biological organisms. To date, tip-driven growth processes have been modeled as an elongating path or series of segments without taking into account lateral expansion during elongation. Instead, models of growth often introduce an explicit thickness by expanding the area around the completed elongated path. Modeling expansion in this way can lead to contradictions in the physical plausibility of the resulting surface and to uncertainty about how the object reached certain regions of space. Here, we introduce "fiber walks" as a self-avoiding random walk model for tip-driven growth processes that includes lateral expansion. In 2D, the fiber walk takes place on a square lattice and the space occupied by the fiber is modeled as a lateral contraction of the lattice. This contraction influences the possible follow-up steps of the fiber walk. The boundary of the area consumed by the contraction is derived as the dual of the lattice faces adjacent t...

  8. Get ready: Bundled payments are in your future.

    Science.gov (United States)

    2015-09-01

    The Centers for Medicare & Medicaid Services' (CMS') mandatory bundled payment pilot project makes clear that the agency intends to reform Medicare reimbursement. Hospitals in 75 geographic areas are required to participate in a five-year pilot project that puts them at risk for the cost of hip and knee replacements from the time of surgery until 90 days after discharge. Already, more than 6,500 providers are participating in the Bundled Payments for Care Improvement project, a voluntary program where participants can choose from 48 clinical episodes and four models. Even if they won't be part of a bundled payments arrangement, case managers need to shift their thinking to prepare for the future of reimbursement by developing close working relationships with post-acute providers, knowing the services and quality delivered by post-acute providers, and being aware of the costs for the entire episode of care. Case managers will not be able to handle all the responsibilities necessary in a bundled payment arrangement if they have large caseloads.

  9. Formation and Dissociation of Sperm Bundles in Monotremes.

    Science.gov (United States)

    Nixon, Brett; Ecroyd, Heath; Dacheux, Jean-Louis; Dacheux, Francoise; Labas, Valerie; Johnston, Steve D; Jones, Russell C

    2016-10-01

    Because monotremes are the earliest offshoot of the mammalian lineage, the platypus and short-beaked echidna were studied as model animals to assess the origin and biological significance of adaptations considered unique to therian mammals: epididymal sperm maturation and subsequent capacitation. We show that spermatozoa from both species assemble into bundles of approximately 100 cells during passage through the epididymis and that an epididymal protein-secreted protein, acidic, cysteine-rich (osteonectin; SPARC)-is involved in bundle formation. The bundles persisted during incubation in vitro for at least 1 h under conditions that capacitate therian spermatozoa, and then underwent a time-dependent dissociation to release spermatozoa capable of fertilization. Only after this dissociation could the spermatozoa bind to the perivitelline membrane of a hen's egg, display an altered form of motility reminiscent of hyperactivation, and be induced to undergo an acrosome reaction. It is concluded that the development of sperm bundles in the monotreme epididymis mandates that they require a time-dependent process to be capable of fertilizing an ovum. However, because this functional end point was achieved without overt changes in protein tyrosine phosphorylation (a hallmark of capacitation in therians), it is concluded that the process in monotremes is distinctly different from capacitation in therian mammals. © 2016 by the Society for the Study of Reproduction, Inc.

  10. Verification of a three-dimensional FEM model for FBGs in PANDA fibers by transversal load experiments

    Science.gov (United States)

    Fischer, Bennet; Hopf, Barbara; Lindner, Markus; Koch, Alexander W.; Roths, Johannes

    2017-04-01

    A 3D FEM model of an FBG in a PANDA fiber with an extended fiber length of 25.4 mm is presented. Simulating long fiber lengths with limited computer power is achieved by using an iterative solver and by optimizing the FEM mesh. For verification purposes, the model is adapted to a configuration with transversal loads on the fiber. The 3D FEM model results correspond with experimental data and with the results of an additional 2D FEM plain strain model. In further studies, this 3D model shall be applied to more sophisticated situations, for example to study the temperature dependence of surface-glued or embedded FBGs in PANDA fibers that are used for strain-temperature decoupling.

  11. Modeling of Self-Healing Polymer Composites Reinforced with Nanoporous Glass Fibers

    OpenAIRE

    Privman, Vladimir; Dementsov, Alexander; Sokolov, Igor

    2006-01-01

    We report on our progress towards continuum rate equation modeling, as well as numerical simulations, of self-healing of fatigue in composites reinforced with glue carrying nanoporous fibers. We conclude that with the proper choice of the material parameters, effects of fatigue can be partially overcome and degradation of mechanical properties can be delayed.

  12. Linear and nonlinear modeling of light propagation in hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, John; Lægsgaard, Jesper

    2009-01-01

    Hollow core photonic crystal fibers (HC-PCFs) find applications which include quantum and non-linear optics, gas detection and short high-intensity laser pulse delivery. Central to most applications is an understanding of the linear and nonlinear optical properties. These require careful modeling...

  13. Modeling dietary fiber intakes in US adults: implications for public policy

    Science.gov (United States)

    The goal of this study was to simulate the application of the dietary recommendations to increase dietary fiber (DF)-containing foods. This study used 24-hour dietary recalls from NHANES 2003-2006 to model the impact of different approaches of increasing DF with current dietary patterns of US adults...

  14. Perturbative modeling of Bragg-grating-based biosensors in photonic-crystal fibers

    DEFF Research Database (Denmark)

    Burani, Nicola; Lægsgaard, Jesper

    2005-01-01

    We present a modeling study carried out to support the design of a novel, to our knowledge, kind of photonic-crystal fiber (PCF)-based sensor. This device, based on a PCF Bragg grating, detects the presence of selected single-stranded DNA molecules, hybridized to a biofilm in the air holes of the...

  15. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  16. Fiber Bragg Grating Modeling, Characterization and Optimization with different index profiles

    Directory of Open Access Journals (Sweden)

    SUNITA UGALE

    2010-09-01

    Full Text Available This paper presents the modeling and characterization of an optical fiber grating for maximum reflectivity, minimum side lobe power wastage. Grating length and refractive index profile are the critical parameters in contributing to performance of fiber Bragg grating. The reflection spectra and side lobes strength were analyzed with different lengths and different refractive index profiles. podization techniques are used to get optimized reflection spectra. The simulations are based on solving coupled mode equations by transfer matrix method that describes the interaction of guided modes.

  17. Color Matching for Fiber Blends Based on Stearns-Noechel Model

    Institute of Scientific and Technical Information of China (English)

    LI Rong; SONG Yang; GU Feng

    2006-01-01

    Prediction of the formula for matching a given color standard by blending pre-dyed fibers is of considerable importance to the textile industry. This kind of formulation suffers from a lack of computer-aided tool to assist the colorist attempting to find a good recipe to reproduce a target color. In this article a tristimulus color matching algorithm based on Stearns-Noechel model is proposed. This algorithm was run to predict recipes for 36 viscose blends. The maximum color difference is 0.97 CIELAB units. It is demonstrated that the algorithm can be used in color matching of fiber blends.

  18. Modeling Nonlinear Acoustooptic Coupling in Fiber Optics Based on Refractive Index Variation due to Local Bending

    Directory of Open Access Journals (Sweden)

    Catalina Hurtado Castano

    2016-01-01

    Full Text Available A detailed procedure is presented to compute analytically the acoustooptic coupling coefficient between copropagating core and lowest-order cladding modes in tapered fiber optics. Based on the effect of the local bending, the linear and nonlinear variations in the refractive index are modeled. A set of equations and parameters are presented in order to calculate the influence of acoustooptic effect in nonlinear pulse propagation. We will show that as the tapered fiber diameter decreases more energy can be transferred to the cladding and the nonlinear phenomena can compensate the coupling coefficients effects.

  19. Theoretical model of the modulation transfer function for fiber optic taper

    Science.gov (United States)

    Wang, Yaoxiang; Tian, Weijian; Bin, XiangLi

    2005-02-01

    Fiber optic taper has been used more and more widely as a relay optical component in the integrated taper assembly image intensified sensors for military and medical imaging application. In this paper, the transmission characteristic of energy in the taper is analyzed, and following the generalized definition of the modulation transfer function for sampled imaging system, a spatial averaged impulse response and a corresponding MTF component that are inherent in the sampling process of taper are deduced, and the mathematical model for evaluating the modulation transfer function of fiber optic taper is built. Finally, the dynamic and static modulation transfer function curves simulated by computer have been exhibited.

  20. Bundling in Place: Translating the NGSS into Place-Based Earth-System Science Curricula

    Science.gov (United States)

    Semken, S. C.

    2016-12-01

    Bundling is the process of grouping Performance Expectations (PEs) from the Next Generation Science Standards (NGSS) into coherent units based on a defined topic, idea, question, or phenomenon. Bundling sorts the PEs for a given grade or grade band into a teachable narrative: a key stage in building curriculum, instruction, and assessment from the NGSS. To encourage and facilitate this, bundling guidelines have recently been released on the NGSS website (nextgenscience.org/glossary/bundlesbundling), and example bundles for different grade bands and disciplines are also being developed and posted there. According to these guidelines the iterative process of bundling begins with organization of PEs according to natural connections among them, and alignment of the three NGSS dimensions (Disciplinary Core Ideas, Cross-Cutting Concepts, and Science and Engineering Practices) that underpin each PE. Bundles are grouped by coherence and increasing complexity into courses, and courses into course sets that should encompass all PEs for a grade band. Bundling offers a natural way to translate the NGSS into highly contextualized curricula such as place-based (PB) teaching, which is situated in specific places or regions and focused on natural and cultural features, processes, phenomena, history, and challenges to sustainability therein. Attributes of place and our individual and collective connections to place (sense of place) directly inform PB curriculum, pedagogy, and assessment. PEs can be bundled by their relevance to these themes. Following the NGSS guidelines, I model the process for PB instruction by bundling PEs around the themes of Paleozoic geology and carbonate deposition and their relationships to mining and calcining of limestone in Anthropocene cement production for developing communities. The bundles integrate aspects of Earth history, the carbon cycle, mineral resources, climate change, and sustainability using specific local examples and narratives. They are

  1. Network model for thermal conductivities of unidirectional fiber-reinforced composites

    Science.gov (United States)

    Wang, Yang; Peng, Chaoyi; Zhang, Weihua

    2014-12-01

    An empirical network model has been developed to predict the in-plane thermal conductivities along arbitrary directions for unidirectional fiber-reinforced composites lamina. Measurements of thermal conductivities along different orientations were carried out. Good agreement was observed between values predicted by the network model and the experimental data; compared with the established analytical models, the newly proposed network model could give values with higher precision. Therefore, this network model is helpful to get a wider and more comprehensive understanding of heat transmission characteristics of fiber-reinforced composites and can be utilized as guidance to design and fabricate laminated composites with specific directional or specific locational thermal conductivities for structures that simultaneously perform mechanical and thermal functions, i.e. multifunctional structures (MFS).

  2. Vortex Noise Reductions from a Flexible Fiber Model of Owl Down

    Science.gov (United States)

    Jaworski, Justin; Peake, Nigel

    2013-11-01

    Many species of owl rely on specialized plumage to reduce their self-noise levels and enable hunting in acoustic stealth. In contrast to the leading-edge comb and compliant trailing-edge fringe attributes of owls, the aeroacoustic impact of the fluffy down material on the upper wing surface remains largely speculative as a means to eliminate aerodynamic noise across a broad range of frequencies. The down is presently idealized as a collection of independent and rigid fibers, which emerge perpendicularly from a rigid plane and are allowed to rotate under elastic restraint. Noise generation from an isolated fiber is effected by its interaction with a point vortex, whose motion is induced by the presence of the rigid half-plane and the elastically-restrained fiber. Numerical evaluations of the vortex path and acoustic signature furnish a comparison with known analytical results for stationary fibers, and results from this primitive model seek to address how aerodynamic noise could be mitigated by flexible fibers.

  3. Reliability model for ductile hybrid FRP rebar using randomly dispersed chopped fibers

    Science.gov (United States)

    Behnam, Bashar Ramzi

    Fiber reinforced polymer composites or simply FRP composites have become more attractive to civil engineers in the last two decades due to their unique mechanical properties. However, there are many obstacles such as low elasticity modulus, non-ductile behavior, high cost of the fibers, high manufacturing costs, and absence of rigorous characterization of the uncertainties of the mechanical properties that restrict the use of these composites. However, when FRP composites are used to develop reinforcing rebars in concrete structural members to replace the conventional steel, a huge benefit can be achieved since FRP materials don't corrode. Two FRP rebar models are proposed that make use of multiple types of fibers to achieve ductility, and chopped fibers are used to reduce the manufacturing costs. In order to reach the most optimum fractional volume of each type of fiber, to minimize the cost of the proposed rebars, and to achieve a safe design by considering uncertainties in the materials and geometry of sections, appropriate material resistance factors have been developed, and a Reliability Based Design Optimization (RBDO), has been conducted for the proposed schemes.

  4. A transmission line model for propagation in elliptical core optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Georgantzos, E.; Boucouvalas, A. C. [Department of Telecommunications and Informatics, University of Peloponnese, Karaiskaki 70, 221 00, Tripoli Greece (Greece); Papageorgiou, C. [Department of Electrical Engineering, National technical University of Athens, Iroon Politechniou 9, Kaisariani, 16121, Athens (Greece)

    2015-12-31

    The calculation of mode propagation constants of elliptical core fibers has been the purpose of extended research leading to many notable methods, with the classic step index solution based on Mathieu functions. This paper seeks to derive a new innovative method for the determination of mode propagation constants in single mode fibers with elliptic core by modeling the elliptical fiber as a series of connected coupled transmission line elements. We develop a matrix formulation of the transmission line and the resonance of the circuits is used to calculate the mode propagation constants. The technique, used with success in the case of cylindrical fibers, is now being extended for the case of fibers with elliptical cross section. The advantage of this approach is that it is very well suited to be able to calculate the mode dispersion of arbitrary refractive index profile elliptical waveguides. The analysis begins with the deployment Maxwell’s equations adjusted for elliptical coordinates. Further algebraic analysis leads to a set of equations where we are faced with the appearance of harmonics. Taking into consideration predefined fixed number of harmonics simplifies the problem and enables the use of the resonant circuits approach. According to each case, programs have been created in Matlab, providing with a series of results (mode propagation constants) that are further compared with corresponding results from the ready known Mathieu functions method.

  5. An analytic approach to piezoelectric fiber composites - from micromechanics modeling to beam behavior

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, T.; Lammering, R. [Universitaet der Bundeswehr, Hamburg (Germany). Inst. fuer Mechanik

    2001-07-01

    In the context of adaptive systems, the technology of piezoelectric fiber composites with its capabilities for high-speed actuation and the beneficial effects of tailorable anisotropy is of great interest for structurally integrated vibration suppression and acoustic control. In order to study the interaction between active and load carrying functionalities and to analyze the influence of the diverse parameters, an analytic model containing all major characteristics from the micromechanics to the structural mechanics level is described. The effective electroelastic properties of a lamina with embedded continuous piezoceramic fibers exposed to an electric field in fiber direction are examined in the close-up investigation of a representative volume. With the aid of the classical lamination theory, extended by the internal actuation loads, such plies can be combined for the respective purpose. Finally, the active and passive properties of a single-cell closed cross-section beam with walls made from these laminated composites are derived. (orig.)

  6. Discrete Spring Model for Predicting Delamination Growth in Z-Fiber Reinforced DCB Specimens

    Science.gov (United States)

    Ratcliffe, James G.; OBrien, T. Kevin

    2004-01-01

    Beam theory analysis was applied to predict delamination growth in Double Cantilever Beam (DCB) specimens reinforced in the thickness direction with pultruded pins, known as Z-fibers. The specimen arms were modeled as cantilever beams supported by discrete springs, which were included to represent the pins. A bi-linear, irreversible damage law was used to represent Z-fiber damage, the parameters of which were obtained from previous experiments. Closed-form solutions were developed for specimen compliance and displacements corresponding to Z-fiber row locations. A solution strategy was formulated to predict delamination growth, in which the parent laminate mode I critical strain energy release rate was used as the criterion for delamination growth. The solution procedure was coded into FORTRAN 90, giving a dedicated software tool for performing the delamination prediction. Comparison of analysis results with previous analysis and experiment showed good agreement, yielding an initial verification for the analytical procedure.

  7. Pyrolysis of arylglycol-[beta]-propylphenyl ether lignin model in the presence of borosilicate glass fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Ken-ichi (Institute of Agricultural and Forest Engineering, University of Tsukuba, Ibaraki (Japan))

    1994-12-01

    Two [beta]-aryl ether type model compounds, guaiacylglycol- and veratrylglycol-[beta]-propyl-phenyl ethers, were copyrolyzed with borosilicate glass fibers. The results provided a better understanding of the effect of copyrolysis with the fibers on the yields of lignin-derived products from lignocellulosics.The observed products indicated the following reactions occurring in the models; (1) cleavage of the C[alpha]-aromatic ring bond, (2) cleavage of the [beta]-ether bond, (3) cleavage of the C[alpha]-C[beta] bond, (4) [alpha],[beta]-dehydration, and (5) demethylation, and others. Of these reactions, reactions (1), (2) and (4) were the main pyrolysis reactions and fully explained the increase in the total yield of lignin-derived pyrolysis products from Japanese red pine (Pinus densiflora Sieb. et Zucc.) in the presence of borosilicate glass fibers. Reaction (1) was a particularly characteristic reaction in copyrolysis with the fibers. Important reactions relating to the increase in the total yield of lignin-derived pyrolysis products were reproduced on the models used

  8. A NUMERICAL MODEL OF THE LASER LIGHT INTENSITY TRANSVERSAL DISTRIBUTION INTO UNDEFORMED/DEFORMED OPTICAL FIBERS

    Directory of Open Access Journals (Sweden)

    Paula COPĂESCU

    2009-12-01

    Full Text Available Preliminary results obtained in developing a numerical model of laser light intensity transversedistribution into undeformed/deformed step index optical fiber are presented. The main purpose ofthe presented preliminary numerical modelling results consists in developing a simple method offiber optical sensors interrogation, especially concerning strain and pressure measurements. It is apotential important matter for aeronautical research and industry because of the more extendeduse of fibre optic sensors in aircraft manufacturing. The developed numerical model relies onsolving the equations of electromagnetic waves propagation into optical fibers by using the finiteelement method technique (FEM. The results of numerical simulation obtained by consideringsingle mode or multimode and various laser wavelengtsh are presented. One importantachievement reported in this paper consists in preliminary experimental results concerning themodification of laser intensity transverse distribution observed for multimode optical fiber with andwithout perpendicular mechanical load. The reported preliminary experimental results confirm tosome extent the predictions of numerical simulations regarding laser intensity distribution underlow and medium transverse mechanical load. One important conclusion of this paper consists inthe future development of fiber optic sensor interrogation techniques based on the reportedpreliminary experimental and numerical simulation results.

  9. Effects of accelerated artificial daylight aging on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses.

    Science.gov (United States)

    Hatamleh, Muhanad M; Watts, David C

    2010-07-01

    The purpose of this study was to test the effect of different periods of accelerated artificial daylight aging on bond strength of glass fiber bundles embedded into maxillofacial silicone elastomer and on bending strength of the glass fiber bundles. Forty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer. Specimens were randomly allocated into four groups, and each group was subjected to different periods of accelerated daylight aging as follows (in hours); 0, 200, 400, and 600. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2)) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. Also a three-point bending test was performed to evaluate bending strength of the fiber bundles. One-way ANOVA and Bonferroni post hoc tests were carried out to detect statistical significance (p bending strengths of fiber bundles were in the range of 917.72 MPa to 1124.06 MPa. Bending strength significantly increased after 200 and 400 hours of aging only. After 200 hours of exposure to artificial daylight and moisture conditions, bond strength between glass fibers and heat-cured silicones is optimal, and the bending strength of the glass fiber bundles is enhanced.

  10. A study of bacterial flagellar bundling.

    Science.gov (United States)

    Flores, Heather; Lobaton, Edgar; Méndez-Diez, Stefan; Tlupova, Svetlana; Cortez, Ricardo

    2005-01-01

    Certain bacteria, such as Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), use multiple flagella often concentrated at one end of their bodies to induce locomotion. Each flagellum is formed in a left-handed helix and has a motor at the base that rotates the flagellum in a corkscrew motion. We present a computational model of the flagellar motion and their hydrodynamic interaction. The model is based on the equations of Stokes flow to describe the fluid motion. The elasticity of the flagella is modeled with a network of elastic springs while the motor is represented by a torque at the base of each flagellum. The fluid velocity due to the forces is described by regularized Stokeslets and the velocity due to the torques by the associated regularized rotlets. Their expressions are derived. The model is used to analyze the swimming motion of a single flagellum and of a group of three flagella in close proximity to one another. When all flagellar motors rotate counterclockwise, the hydrodynamic interaction can lead to bundling. We present an analysis of the flow surrounding the flagella. When at least one of the motors changes its direction of rotation, the same initial conditions lead to a tumbling behavior characterized by the separation of the flagella, changes in their orientation, and no net swimming motion. The analysis of the flow provides some intuition for these processes.

  11. Nursing Care Management: Influence on Bundled Payments.

    Science.gov (United States)

    Lentz, Shaynie; Luther, Brenda

    Fragmented and uncoordinated care is the third highest driver of U.S. healthcare costs. Although less than 10% of patients experience uncoordinated care, these patients represent 36% of total healthcare costs; care management interaction makes a significant impact on the utilization of healthcare dollars. A literature search was conducted to construct a model of care coordination for elective surgical procedures by collecting best practices for acute, transitions, and post-acute care periods. A case study was used to demonstrate the model developed. Care management defines care coordination as a model of care to address improving patient and caregiver engagement, communication across settings of care, and ultimately improved patient outcomes of care. Nurse-led care coordination in the presurgical, inpatient, and post-acute care settings requires systems change and administrative support to effectively meet the goals of the Affordable Care Act of reducing redundancy and costs while improving the patient experience. Nursing is the lynchpin of care management processes in all settings of care; thus, this model of care coordination for elective surgical admissions can provide nursing care management leaders a comprehensive view of coordinating care for these patient across settings of care during the predetermined time period of care. As bundled payment structures increasingly affect hospital systems, nursing leaders need to be ready to create or improve their care management processes; care coordination is one such process requiring immediate attention.

  12. Higgs bundles and the real symplectic group

    CERN Document Server

    Gothen, Peter B

    2011-01-01

    We give an overview of the work of Corlette, Donaldson, Hitchin and Simpson leading to the non-abelian Hodge theory correspondence between representations of the fundamental group of a surface and the moduli space of Higgs bundles. We then explain how this can be generalized to a correspondence between character varieties for representations of surface groups in real Lie groups G and the moduli space of G-Higgs bundles. Finally we survey recent joint work with Bradlow, Garc\\'ia-Prada and Mundet i Riera on the moduli space of maximal Sp(2n,R)-Higgs bundles.

  13. GMDH-type neural network modeling and genetic algorithm-based multi-objective optimization of thermal and friction characteristics in heat exchanger tubes with wire-rod bundles

    Science.gov (United States)

    Rahimi, Masoud; Beigzadeh, Reza; Parvizi, Mehdi; Eiamsa-ard, Smith

    2016-08-01

    The group method of data handling (GMDH) technique was used to predict heat transfer and friction characteristics in heat exchanger tubes equipped with wire-rod bundles. Nusselt number and friction factor were determined as functions of wire-rod bundle geometric parameters and Reynolds number. The performance of the developed GMDH-type neural networks was found to be superior in comparison with the proposed empirical correlations. For optimization, the genetic algorithm-based multi-objective optimization was applied.

  14. Linear orthotropic viscoelasticity model for fiber reinforced thermoplastic material based on Prony series

    Science.gov (United States)

    Endo, Vitor Takashi; de Carvalho Pereira, José Carlos

    2017-05-01

    Material properties description and understanding are essential aspects when computational solid mechanics is applied to product development. In order to promote injected fiber reinforced thermoplastic materials for structural applications, it is very relevant to develop material characterization procedures, considering mechanical properties variation in terms of fiber orientation and loading time. Therefore, a methodology considering sample manufacturing, mechanical tests and data treatment is described in this study. The mathematical representation of the material properties was solved by a linear viscoelastic constitutive model described by Prony series, which was properly adapted to orthotropic materials. Due to the large number of proposed constitutive model coefficients, a parameter identification method was employed to define mathematical functions. This procedure promoted good correlation among experimental tests, and analytical and numerical creep models. Such results encourage the use of numerical simulations for the development of structural components with the proposed linear viscoelastic orthotropic constitutive model. A case study was presented to illustrate an industrial application of proposed methodology.

  15. Photonic Beamformer Model Based on Analog Fiber-Optic Links’ Components

    Science.gov (United States)

    Volkov, V. A.; Gordeev, D. A.; Ivanov, S. I.; Lavrov, A. P.; Saenko, I. I.

    2016-08-01

    The model of photonic beamformer for wideband microwave phased array antenna is investigated. The main features of the photonic beamformer model based on true-time-delay technique, DWDM technology and fiber chromatic dispersion are briefly analyzed. The performance characteristics of the key components of photonic beamformer for phased array antenna in the receive mode are examined. The beamformer model composed of the components available on the market of fiber-optic analog communication links is designed and tentatively investigated. Experimental demonstration of the designed model beamforming features includes actual measurement of 5-element microwave linear array antenna far-field patterns in 6-16 GHz frequency range for antenna pattern steering up to 40°. The results of experimental testing show good accordance with the calculation estimates.

  16. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  17. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  18. MODELING AND EXPERIMENTAL STUDY OF A FIBER OPTIC HYDROPHONE SENSING ELEMENT

    Directory of Open Access Journals (Sweden)

    Mikhail E. Efimov

    2014-09-01

    Full Text Available A model of the fiber-optic hydrophone sensor is suggested. Hydrophone construction comprises a malleable core made of a polymeric material with regulated elastic properties to which the optical fiber is wound. The built-in module of Comsol Multiphysics - Acoustic Solid Interaction is used in the simulation; it evaluates the impact of the acoustic field of different frequencies and amplitudes on the value of the sensor surface deformation. The proposed model gives the possibility for simulating the hydrophone in various environments; materials and dimensions of sensor are selected at the design stage to ensure the required performance: frequency response and sensitivity of fiber optic hydrophone. Correctness of the model construction was verified by results comparison of the computer simulation and experimental study in the acoustic pool. The prototype was represented as the phase interferometric fiber-optic hydrophone on the Bragg gratings. The sensing element is formed as a cylindrical core round which the optical fiber is wound. Core characteristics are: the material attenuation (damping – 0.1, Young's modulus of the core - 6 MPa, Poisson’s ratio - 0.49. The prototype was tested in the experimental pool, which design makes it possible to carry out measurements at frequencies above 3 kHz in the absence of reflections of the acoustic signal. The impact assessment of the acoustic field is carried out by means of an approved piezoelectric hydrophone: the amplitude of the acoustic field of a plane wave is 0.5 and 1 Pa, frequencies of the acoustic impact are 3000 - 8000 Hz. According to the findings fabricated prototype sensitivity was equal to 0.1 rad / Pa at the frequency of 3 kHz. Studies have shown that the sensitivity of the simulated fiber optic hydrophone will decrease with increasing frequency of hydroacoustic exposure. At 8 kHz frequency the sensitivity is decreased to 0.01 rad / Pa. Prototype testing results have confirmed the adequacy

  19. Some recent developments in the theory of acoustic transmission in tube bundles

    Science.gov (United States)

    Heckl, Maria A.; Mulholland, L. S.

    1995-01-01

    A comprehensive theoretical model for acoustic transmission in a tube bundle is presented. The tube bundle is considered as a series of diffraction gratings. Each grating consists of periodically spaced cylindrical tubes which obey the equations of motion of a cylindrical shell. Fluid loading is included. The model can be used for numerical simulations to calculate the sound field at any point in a tube bundle. Various phenomena can be predicted which are of interest for the development of acoustic diagnostics in heat exchangers. These include diffraction of a plane incident wave into several directions, the occurrence of passing and stopping bands in the transmission spectrum, features specific to oblique waves and the effect of dissipative losses. Tube bundles with baffle plates are also examined. The validity of the theoretical model is confirmed by comparison with experimental results.

  20. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients

    Science.gov (United States)

    Todreas, N. E.; Cheng, S. K.; Basehore, K.

    1984-08-01

    The thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration was investigated. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions are emphasized. Outlet plenum behavior is also investigated.

  1. Modeling the mechanics of axonal fiber tracts using the embedded finite element method.

    Science.gov (United States)

    Garimella, Harsha T; Kraft, Reuben H

    2016-08-08

    A subject-specific human head finite element model with embedded axonal fiber tractography obtained from diffusion tensor imaging was developed. The axonal fiber tractography finite element model was coupled with the volumetric elements in the head model using the embedded element method. This technique enables the calculation of axonal strains and real-time tracking of the mechanical response of the axonal fiber tracts. The coupled model was then verified using pressure and relative displacement-based (between skull and brain) experimental studies and was employed to analyze a head impact, demonstrating the applicability of this method in studying axonal injury. Following this, a comparison study of different injury criteria was performed. This model was used to determine the influence of impact direction on the extent of the axonal injury. The results suggested that the lateral impact loading is more dangerous compared to loading in the sagittal plane, a finding in agreement with previous studies. Through this analysis, we demonstrated the viability of the embedded element method as an alternative numerical approach for studying axonal injury in patient-specific human head models.

  2. Comparison of different methods for rigorous modeling of photonic crystal fibers.

    Science.gov (United States)

    Szpulak, Marcin; Urbanczyk, Waclaw; Serebryannikov, Evgenii; Zheltikov, Aleksei; Hochman, Amit; Leviatan, Yehuda; Kotynski, Rafal; Panajotov, Krassimir

    2006-06-12

    We present a summary of the simulation exercise carried out within the EC Cost Action P11 on the rigorous modeling of photonic crystal fiber (PCF) with an elliptically deformed core and noncircular air holes with a high fill factor. The aim of the exercise is to calculate using different numerical methods and to compare several fiber characteristics, such as the spectral dependence of the phase and the group effective indices, the birefringence, the group velocity dispersion and the confinement losses. The simulations are performed using four rigorous approaches: the finite element method (FEM), the source model technique (SMT), the plane wave method (PWM), and the localized function method (LFM). Furthermore, we consider a simplified equivalent fiber method (EFM), in which the real structure of the holey fiber is replaced by an equivalent step index waveguide composed of an elliptical glass core surrounded by air cladding. All these methods are shown to converge well and to provide highly consistent estimations of the PCF characteristics. Qualitative arguments based on the general properties of the wave equation are applied to explain the physical mechanisms one can utilize to tailor the propagation characteristics of nonlinear PCFs.

  3. Function of longitudinal vs circular muscle fibers in esophageal peristalsis, deduced with mathematical modeling

    Institute of Scientific and Technical Information of China (English)

    James G Brasseur; Mark A Nicosia; Anupam Pal; Larr S Miller

    2007-01-01

    We summarize from previous works the functions of circular vs. longitudinal muscle in esophageal peristaltic bolus transport using a mix of experimental data, the conservation laws of mechanics and mathematical modeling. Whereas circular muscle tone generates radial closure pressure to create a local peristaltic closure wave, longitudinal muscle tone has two functions, one physiological with mechanical implications, and one purely mechanical. Each of these functions independently reduces the tension of individual circular muscle fibers to maintain closure as a consequence of shortening of longitudinal muscle locally coordinated with increasing circular muscle tone. The physiological function is deduced by combining basic laws of mechanics with concurrent measurements of intraluminal pressure from manometry, and changes in cross sectional muscle area from endoluminal ultrasound from which local longitudinal shortening (LLS) can be accurately obtained. The purely mechanical function of LLS was discovered from mathematical modeling of peristaltic esophageal transport with the axial wall motion generated by LLS. Physiologically, LLS concentrates circular muscle fibers where closure pressure is highest.However, the mechanical function of LLS is to reduce the level of pressure required to maintain closure. The combined physiological and mechanical consequences of LLS are to reduce circular muscle fiber tension and power by as much as 1/10 what would be required for peristalsis without the longitudinal muscle layer, a tremendous benefit that may explain the existence of longitudinal muscle fiber in the gut. We also review what is understood of the role of longitudinal muscle in esophageal emptying, reflux and pathology.

  4. Innovative Mechanism-Based Textile Composite Damage Modeling Basing on a Nonlinear Fiber Model and Enhanced Homogenization Method

    Science.gov (United States)

    2006-08-31

    Orientation Layer Type - Woven/ Nonwoven Layer Type - Woven/ Nonwoven Figure 29. A completed design model for fiber-reinforced composites 0 2 4 6 8 10 12 14...crew survivability of tactical wheeled vehicles subject to mine blast. However, these CPK’s were based on a conventional steel/aluminum construction

  5. Multi-scale Rule-of-Mixtures Model of Carbon Nanotube/Carbon Fiber/Epoxy Lamina

    Science.gov (United States)

    Frankland, Sarah-Jane V.; Roddick, Jaret C.; Gates, Thomas S.

    2005-01-01

    A unidirectional carbon fiber/epoxy lamina in which the carbon fibers are coated with single-walled carbon nanotubes is modeled with a multi-scale method, the atomistically informed rule-of-mixtures. This multi-scale model is designed to include the effect of the carbon nanotubes on the constitutive properties of the lamina. It included concepts from the molecular dynamics/equivalent continuum methods, micromechanics, and the strength of materials. Within the model both the nanotube volume fraction and nanotube distribution were varied. It was found that for a lamina with 60% carbon fiber volume fraction, the Young's modulus in the fiber direction varied with changes in the nanotube distribution, from 138.8 to 140 GPa with nanotube volume fractions ranging from 0.0001 to 0.0125. The presence of nanotube near the surface of the carbon fiber is therefore expected to have a small, but positive, effect on the constitutive properties of the lamina.

  6. Mobility of Taxol in Microtubule Bundles

    Science.gov (United States)

    Ross, J.

    2003-06-01

    Mobility of taxol inside microtubules was investigated using fluorescence recovery after photobleaching (FRAP) on flow-aligned bundles. Bundles were made of microtubules with either GMPCPP or GTP at the exchangeable site on the tubulin dimer. Recovery times were sensitive to bundle thickness and packing, indicating that taxol molecules are able to move laterally through the bundle. The density of open binding sites along a microtubule was varied by controlling the concentration of taxol in solution for GMPCPP samples. With > 63% sites occupied, recovery times were independent of taxol concentration and, therefore, inversely proportional to the microscopic dissociation rate, k_{off}. It was found that 10*k_{off} (GMPCPP) ~ k_{off} (GTP), consistent with, but not fully accounting for, the difference in equilibrium constants for taxol on GMPCPP and GTP microtubules. With taxol along the microtubule interior is hindered by rebinding events when open sites are within ~7 nm of each other.

  7. Design requirements of ACR-1000 fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Gossain, D.; Reid, P. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    2008-07-01

    The design process for ACR-1000 fuel bundle is being undertaken in accordance with the CSA standard N286.2. As an element of the process, the design requirements were established early in the design phase and compiled in the ACR-1000 Fuel Design Requirements (DR) document. The ACR-1000 fuel bundle design is being developed to meet these requirements. This paper discusses the sources for the requirements such as the ACR project requirements, the plant specifications and regulatory requirements. It also discusses considerations of reactor design decisions and operational decisions in establishing functional, performance, safety and other design requirements for the fuel bundle. The design requirements for the ACR-1000 fuel bundle are summarized and the relationship of the requirements to the plant states of Normal Operation, Anticipated Operational Occurrences (AOOs) and Design Basis Accidents (DBAs) are discussed. Structure of the document to capture all the requirements in addition to functional, performance and safety requirements is presented. (author)

  8. Bundled Hybrid Offset Riser Global Strength Analysis

    Institute of Scientific and Technical Information of China (English)

    William C.Webster; Zhuang Kang; Wenzhou Liang; Youwei Kang; Liping Sun

    2011-01-01

    Bundled hybrid offset riser(BHOR)global strength analysis,which is more complex than single line offset riser global strength analysis,was carried out in this paper.At first,the equivalent theory is used to deal with BHOR,and then its global strength in manifold cases was analyzed,along with the use of a three-dimensional nonlinear time domain finite element program.So the max bending stress,max circumferential stress,and max axial stress in the BHOR bundle main section(BMS)were obtained,and the values of these three stresses in each riser were obtained through the "stress distribution method".Finally,the Max Von Mises stress in each riser was given and a check was made whether or not they met the demand.This paper provides a reference for strength analysis of the bundled hybrid offset riser and some other bundled pipelines.

  9. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Erik A. [Los Alamos National Laboratory

    2012-06-07

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offering robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity

  10. Effect of Testing Conditions on Fibre-Bundle Tensile Properties Part Ⅰ: Sample Preparation, Bundle Mass and Fibre Alignment of Wool Bundles

    Institute of Scientific and Technical Information of China (English)

    YU Wei-dong; YAN Hao-jing; Ron Postle; Yang Shouren

    2002-01-01

    Due to the effects of samples and testing conditions on fibre-bundle tensile behaviour, it is necessary to investigate the relationships between experimental factors and tensile properties for the fibre-bumdle tensile tester (TENSOR). The effects of bundle sample preparation, fibre bundle mass and fibre alignment have been tested. The experimental results indicated that (1) the low damage in combing and no free-end fibres in the cut bundle are most important for the sample preparation; (2) the reasonable bundle mass is 400- 700tex, but the tensile properties measured should bemodified with the bundle mass because a small amount of bundle mass causes the scatter results, while the larger is the bundle mass, the more difficult to comb fibres parallel and to clamp fibre evenly; and (3) the fibre irregular arrangement forms a slack bundle resulting in interaction between fibres, which will affect the reproducibility and accuracy of the tensile testing.

  11. Modeling of the fringe shift in multiple beam interference for glass fibers

    Indian Academy of Sciences (India)

    A M Hamed

    2008-04-01

    A quadratic model is suggested to describe the fringe shift occurred due to the phase variations of uncladded glass fiber introduced between the two plates of the liquid wedge interferometer. The fringe shift of the phase object is represented in the harmonic term which appears in the denominator of the Airy distribution formula of Fabry-Perot's interferometer. A computer program is written to plot the computed fringe shifts of the described model. An experiment is conducted using liquid wedge interferometer where the fiber of a nearly quadratic thickness variation is introduced between the two plates of the interferometer. The obtained fringe shift shows a good agreement with the proposed quadratic model. Also, it is compared with the previous theoretical shift based on ray optics of semi-circular shape.

  12. The button effect of CANFLEX bundle on the critical heat flux and critical channel power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jun, Jisu; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E.; Inch, W. [Atomic Energy of Canada Limited, Ontario (Canada)

    1997-12-31

    A CANFLEX (CANdu FLEXible fuelling) 43-element bundle has developed for a CANDU-6 reactor as an alternative of 37-element fuel bundle. The design has two diameter elements (11.5 and 13.5 mm) to reduce maximum element power rating and buttons to enhance the critical heat flux (CHF), compared with the standard 37-element bundle. The freon CHF experiments have performed for two series of CANFLEX bundles with and without buttons with a modelling fluid as refrigerant R-134a and axial uniform heat flux condition. Evaluating the effects of buttons of CANFLEX bundle on CHF and Critical Channel Power (CCP) with the experimental results, it is shown that the buttons enhance CCP as well as CHF. All the CHF`s for both the CANFLEX bundles are occurred at the end of fuel channel with the high dryout quality conditions. The CHF enhancement ratio are increased with increase of dryout quality for all flow conditions and also with increase of mass flux only for high pressure conditions. It indicates that the button is a useful design for CANDU operating condition because most CHF flow conditions for CANDU fuel bundle are ranged to high dryout quality conditions. 5 refs., 11 figs. (Author)

  13. Microtubule anchoring by cortical actin bundles prevents streaming of the oocyte cytoplasm.

    Science.gov (United States)

    Wang, Ying; Riechmann, Veit

    2008-01-01

    The localisation of the determinants of the body axis during Drosophila oogenesis is dependent on the microtubule (MT) cytoskeleton. Mutations in the actin binding proteins Profilin, Cappuccino (Capu) and Spire result in premature streaming of the cytoplasm and a reorganisation of the oocyte MT network. As a consequence, the localisation of axis determinants is abolished in these mutants. It is unclear how actin regulates the organisation of the MTs, or what the spatial relationship between these two cytoskeletal elements is. Here, we report a careful analysis of the oocyte cytoskeleton. We identify thick actin bundles at the oocyte cortex, in which the minus ends of the MTs are embedded. Disruption of these bundles results in cortical release of the MT minus ends, and premature onset of cytoplasmic streaming. Thus, our data indicate that the actin bundles anchor the MTs minus ends at the oocyte cortex, and thereby prevent streaming of the cytoplasm. We further show that actin bundle formation requires Profilin but not Capu and Spire. Thus, our results support a model in which Profilin acts in actin bundle nucleation, while Capu and Spire link the bundles to MTs. Finally, our data indicate how cytoplasmic streaming contributes to the reorganisation of the MT cytoskeleton. We show that the release of the MT minus ends from the cortex occurs independently of streaming, while the formation of MT bundles is streaming dependent.

  14. A Geometric Approach to Noncommutative Principal Bundles

    CERN Document Server

    Wagner, Stefan

    2011-01-01

    From a geometrical point of view it is, so far, not sufficiently well understood what should be a "noncommutative principal bundle". Still, there is a well-developed abstract algebraic approach using the theory of Hopf algebras. An important handicap of this approach is the ignorance of topological and geometrical aspects. The aim of this thesis is to develop a geometrically oriented approach to the noncommutative geometry of principal bundles based on dynamical systems and the representation theory of the corresponding transformation group.

  15. Supporting the Secure Deployment of OSGi Bundles

    OpenAIRE

    Parrend, Pierre; Frénot, Stéphane

    2007-01-01

    International audience; The OSGi platform is a lightweight management layer over a Java virtual machine that makes runtime extensi- bility and multi-application support possible in mobile and constraint environments. This powerfull capability opens a particular attack vector against mobile platforms: the in- stallation of malicious OSGi bundles. The first countermea- sure is the digital signature of the bundles. We developed a tool suite that supports the signature, the publication and the va...

  16. Is It Complete Left Bundle Branch Block? Just Ablate the Right Bundle.

    Science.gov (United States)

    Ali, Hussam; Lupo, Pierpaolo; Foresti, Sara; De Ambroggi, Guido; Epicoco, Gianluca; Fundaliotis, Angelica; Cappato, Riccardo

    2017-03-01

    Complete left bundle branch block (LBBB) is established according to standard electrocardiographic criteria. However, functional LBBB may be rate-dependent or can perpetuate during tachycardia due to repetitive concealed retrograde penetration of impulses through the contralateral bundle "linking phenomenon." In this brief article, we present two patients with basal complete LBBB in whom ablating the right bundle unmasked the actual antegrade conduction capabilities of the left bundle. These cases highlight intriguing overlap between electrophysiological concepts of complete block, linking, extremely slow, and concealed conduction.

  17. Hollow-Fiber Cartridges: Model Systems for Virus Removal from Blood

    Science.gov (United States)

    Jacobitz, Frank; Menon, Jeevan

    2005-11-01

    Aethlon Medical is developing a hollow-fiber hemodialysis device designed to remove viruses and toxins from blood. Possible target viruses include HIV and pox-viruses. The filter could reduce virus and viral toxin concentration in the patient's blood, delaying illness so the patient's immune system can fight off the virus. In order to optimize the design of such a filter, the fluid mechanics of the device is both modeled analytically and investigated experimentally. The flow configuration of the proposed device is that of Starling flow. Polysulfone hollow-fiber dialysis cartridges were used. The cartridges are charged with water as a model fluid for blood and fluorescent latex beads are used in the experiments as a model for viruses. In the experiments, properties of the flow through the cartridge are determined through pressure and volume flow rate measurements of water. The removal of latex beads, which are captured in the porous walls of the fibers, was measured spectrophotometrically. Experimentally derived coefficients derived from these experiments are used in the analytical model of the flow and removal predictions from the model are compared to those obtained from the experiments.

  18. A Critique of a Phenomenological Fiber Breakage Model for Stress Rupture of Composite Materials

    Science.gov (United States)

    Reeder, James R.

    2010-01-01

    Stress rupture is not a critical failure mode for most composite structures, but there are a few applications where it can be critical. One application where stress rupture can be a critical design issue is in Composite Overwrapped Pressure Vessels (COPV's), where the composite material is highly and uniformly loaded for long periods of time and where very high reliability is required. COPV's are normally required to be proof loaded before being put into service to insure strength, but it is feared that the proof load may cause damage that reduces the stress rupture reliability. Recently, a fiber breakage model was proposed specifically to estimate a reduced reliability due to proof loading. The fiber breakage model attempts to model physics believed to occur at the microscopic scale, but validation of the model has not occurred. In this paper, the fiber breakage model is re-derived while highlighting assumptions that were made during the derivation. Some of the assumptions are examined to assess their effect on the final predicted reliability.

  19. A damage-mechanics model for fracture nucleation and propagation

    CERN Document Server

    Yakovlev, G; Turcotte, D L; Rundle, J B; Klein, W; 10.1016/j.tafmec.2010.06.002.

    2010-01-01

    In this paper a composite model for earthquake rupture initiation and propagation is proposed. The model includes aspects of damage mechanics, fiber-bundle models, and slider-block models. An array of elements is introduced in analogy to the fibers of a fiber bundle. Time to failure for each element is specified from a Poisson distribution. The hazard rate is assumed to have a power-law dependence on stress. When an element fails it is removed, the stress on a failed element is redistributed uniformly to a specified number of neighboring elements in a given range of interaction. Damage is defined to be the fraction of elements that have failed. Time to failure and modes of rupture propagation are determined as a function of the hazard-rate exponent and the range of interaction.

  20. Validation of New Process Models for Large Injection-Molded Long-Fiber Thermoplastic Composite Structures

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin; Kunc, Vlastimil; Tucker III, Charles L.

    2012-02-23

    This report describes the work conducted under the CRADA Nr. PNNL/304 between Battelle PNNL and Autodesk whose objective is to validate the new process models developed under the previous CRADA for large injection-molded LFT composite structures. To this end, the ARD-RSC and fiber length attrition models implemented in the 2013 research version of Moldflow was used to simulate the injection molding of 600-mm x 600-mm x 3-mm plaques from 40% glass/polypropylene (Dow Chemical DLGF9411.00) and 40% glass/polyamide 6,6 (DuPont Zytel 75LG40HSL BK031) materials. The injection molding was performed by Injection Technologies, Inc. at Windsor, Ontario (under a subcontract by Oak Ridge National Laboratory, ORNL) using the mold offered by the Automotive Composite Consortium (ACC). Two fill speeds under the same back pressure were used to produce plaques under slow-fill and fast-fill conditions. Also, two gating options were used to achieve the following desired flow patterns: flows in edge-gated plaques and in center-gated plaques. After molding, ORNL performed measurements of fiber orientation and length distributions for process model validations. The structure of this report is as follows. After the Introduction (Section 1), Section 2 provides a summary of the ARD-RSC and fiber length attrition models. A summary of model implementations in the latest research version of Moldflow is given in Section 3. Section 4 provides the key processing conditions and parameters for molding of the ACC plaques. The validations of the ARD-RSC and fiber length attrition models are presented and discussed in Section 5. The conclusions will be drawn in Section 6.