WorldWideScience

Sample records for fiber building boards

  1. Features and performance of PCa board which cuts off the electromagnetic wave. Electromagnetic shield building using the carbon fiber contamination PCa board; Denjiha wo shadansuru PCa ban no tokucho to seino. Tanso sen'i konnyu PCa ban wo mochiita denji shirudobiru

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Katsuo; Kasai, Yasuaki [Obayashi Corp., Osaka (Japan); Okada, Shin' ichiro; Sakamoto, Shin [Osaka Gas Corp., Osaka (Japan)

    1999-03-10

    With the rapid popularization of public radio information communication equipment, portable telephones, wireless LAN, etc., the interception (building shield) of the electromagnetic wave internal and external the building becomes large problem. As process equal to the convention and the method in which the cost is possible, they did do not shield the whole building, and also ensure the comfort as an office, and PCa board which mixed the carbon fiber into the mortar was developed. They described the survey result of the electromagnetic shield performance of the building which constructed by using this in external wall. They explained electromagnetism characteristics of the contamination mortar and application to the PCa board and method. They carried out the measurement in the electromagnetic shield room laboratory, and they obtained next result. 1) There is seldom on the effect both only the concrete and only by the carbon fiber mesh. 2) They considered the effect that carbon fiber chop 1% are mixed into the concrete. 3) The effect became a maximum, when carbon fiber chop and carbon fiber mesh were mixed, and they confirmed being excellent cost-concerned. (NEDO)

  2. Investigation on the Effect of Kenaf Core and Stalk Fiber on the Medium Density Fiber Board Properties Made of Poplar Fibers

    Directory of Open Access Journals (Sweden)

    Fahimeh SH.Alizadeh

    2012-01-01

    Full Text Available In order to optimize the use of material non-forest resources, in this study the possibility of using the kenaf stalk fibers mixed with poplar fibers in producing medium density fiber board was considered. Variable factors such as density at two levels (0.55, 0.75 g/cm3 and the percentage incorporation of fiber (%50 poplar fibers, - %50 kenaf core fiber, %50 poplar fiber, -% 50 kenaf stalk fiber and %100 poplar fibers were considered. Steaming time and temperature (175°C, 10min, press time and temperature (5 min, 175°C, Pressing pressure (30 kg/cm3, fiber cake moisture (%12 and urea-formaldehyde resin with Concentration of %50 of the study factors were fixed. Results show that adding kenaf core fibers to the poplar fibers increases modulus of elasticity and water absorption but thickness swelling reduces. Increased density in board made with kenaf core has caused increase in bending strength, modulus of elasticity and internal bond strength and their water absorption and thickness swelling after 2 and 24 hours were competitive with poplar (MDF. On the other hand Populus fiber– kenaf stalk board mechanical and physical properties were competitive with (MDF board made of %100 poplar fibers. Finally we can say that according to the statistical analysis, the best treatment in this study was using kenaf core fibers, in making poplar (MDF with 0.75 g/cm3 density.

  3. Economics of in-building optical fiber networks

    NARCIS (Netherlands)

    Koonen, A.M.J.; Boom, van den H.P.A.; Ortego Martinez, E.; Guignard, P.

    2010-01-01

    Fiber in-building networks are cost-competitive with Cat-5E networks, when plastic optical fiber and duct sharing with electrical power cabling is applied. Point-to-point topologies are preferred for residential homes; bus or star-bus ones for larger buildings.

  4. Thermoplastic polyolefins as formaldehyde free binders in highly filled lignocellulosic panel boards: using glycerine as a processing aid in kenaf fiber polypropylene boards

    Directory of Open Access Journals (Sweden)

    Anand Ramesh Sanadi

    2008-12-01

    Full Text Available A new technique was developed to make highly loaded (up to 95% formaldehyde free natural fiber boards. The purpose of the paper is to report a broad study on 85% kenaf boards using linear thermoplastic polymers as the binder in preparing the boards to determine if these materials have potential in commercial applications by comparing them to other commercial materials. In these materials, linear thermoplastic polymer chains act as an adhesive and the product resembles a typical wood based panel (e.g., phenol formaldehyde fiber board. The process involved the use of small amount of glycerine in the fiber to enhance processibility in a thermo-kinetic mixer followed by hot pressing. In this paper, we report the properties of 85% by weight kenaf fiber boards using polypropylene as the adhesive. A maleated polypropylene was used to improve the adhesion and stress transfer between the adhesive and kenaf fiber. The addition of 2% by weight of glycerine based on the dry weight of kenaf fiber resulted in the best properties of the boards. Differential scanning calorimetric studies suggested that the glycerine had a little effect on the percent crystallinity of the matrix. Dynamic mechanical tests of the 85% boards showed some differences compared to conventional 60% by weight kenaf-PP composites. The 85% kenaf boards had a flexural strength of 75 MPa and a flexural modulus of 6.8 GPa with a specific gravity of 1.24. These properties are comparable to standard formaldehyde free high density hardboards with flexural strengths of 48.3 MPa and flexural modulus of 5.5 GPa, and a specific gravity of 1.28. This paper gives a broad overview of an initial study of these new materials.

  5. Fiber optical sensing on-board communication satellites

    Science.gov (United States)

    Hurni, A.; Lemke, N. M. K.; Roner, M.; Obermaier, J.; Putzer, P.; Kuhenuri Chami, N.

    2017-11-01

    Striving constantly to reduce mass, AIT effort and overall cost of the classical point-to-point wired temperature sensor harness on-board telecommunication satellites, OHB System (formerly Kayser-Threde) has introduced the Hybrid Sensor Bus (HSB) system. As a future spacecraft platform element, HSB relies on electrical remote sensor units as well as fiber-optical sensors, both of which can serially be connected in a bus architecture. HSB is a modular measurement system with many applications, also thanks to the opportunities posed by the digital I²C bus. The emphasis, however, is on the introduction of fiber optics and especially fiber-Bragg grating (FBG) temperature sensors as disruptive innovation for the company's satellite platforms. The light weight FBG sensors are directly inscribed in mechanically robust and radiation tolerant fibers, reducing the need for optical fiber connectors and splices to a minimum. Wherever an FBG sensor shall be used, the fiber is glued together with a corresponding temperature transducer to the satellites structure or to a subsystem. The transducer is necessary to provide decoupling of mechanical stress, but simultaneously ensure a high thermal conductivity. HSB has been developed in the frame of an ESA-ARTES program with European and German co-funding and will be verified as flight demonstrator on-board the German Heinrich Hertz satellite (H2Sat). In this paper the Engineering Model development of HSB is presented and a Fiber-optical Sensor Multiplexer for a more flexible sensor bus architecture is introduced. The HSB system aims at telecommunication satellite platforms with an operational life time beyond 15 years in geostationary orbit. It claims a high compatibility in terms of performance and interfaces with existing platforms while it was designed with future applications with increased radiation exposure already in mind. In its basic configuration HSB consists of four modules which are the Power Supply Unit, the HSB

  6. Designing in-building optical fiber networks

    NARCIS (Netherlands)

    Koonen, A.M.J.; Boom, van den H.P.A.; Tangdiongga, E.; Jung, H.D.; Guignard, P.

    2010-01-01

    Optical fiber in-building networks carrying wired and wireless services can outperform CAT-5E networks regarding versatility and installation costs. POF-based point-to-point architectures are optimum for small buildings, and (optically routed) SMF-based bus architectures for larger buildings.

  7. Effective thermal conductivity of glass-fiber board and blanket standard reference materials

    International Nuclear Information System (INIS)

    Smith, D.R.; Hust, J.G.

    1983-01-01

    This chapter reports on measurements of effective thermal conductivity performed on a series of specimens of glass-fiber board and glass-fiber blanket. Explains that measurements of thermal conductivity were conducted as a function of temperature from 85 to 360 K, of temperature difference with T=10 to 100 K, of bulk density from 11 to 148 kg/m 3 and for nitrogen, argon, and helium inter-fiber fill gases at pressures from atmospheric to high vacuum. Analyzes and compares results with values from the published literature and National Bureau of Standards (NBS) certification data for similar material. Gives polynomial expressions for the functional relation between conductivity, temperature, and density for board and for blanket

  8. Leading Change: How Boards and Presidents Build Exceptional Academic Institutions

    Science.gov (United States)

    MacTaggart, Terrence

    2011-01-01

    In a time of transformation in higher education, "Leading Change: How Boards and Presidents Build Exceptional Institutions" fills a significant void in leadership literature and focuses on the changing level of board engagement. This book examines 18 institutions, across the spectrum of higher education, at which the board played a…

  9. Temperature measurement distributed on a building by fiber optic BOTDA sensor

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok

    2002-01-01

    We have focused on the development of a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor system in order to measure temperature distributed on large structures. Also, we present a feasibility study of the fiber optic sensor to monitor the distributed temperature on a building construction. A fiber optic BOTDA sensor system, which has a capability of measuring the temperature distribution, attempted over several kilometers of long fiber paths. This simple fiber optic sensor system employs a laser diode and two electro-optic modulators. The optical fiber of the length of 1400 m was installed on the surfaces of the building. The change of the distributed temperature on the building construction was well measured by this fiber optic sensor. The temperature changed normally up to 4 degrees C through one day.

  10. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, K. [Building Science Corporation, Westford, MA (United States)

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board, and is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit processes. The guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations.

  11. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, Ken [Building Science Corporation, Westford, MA (United States)

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board. The Measure Guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations. This Measure Guideline is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit.

  12. Effect of the new carbon fiber board of Elekta Precise linear accelerator on the radiation dose

    International Nuclear Information System (INIS)

    Gan Jiaying; Hu Yinxiang; Luo Yuanqiang; Hong Wei; Wang Zhiyong; Lu Bing; Jin Feng

    2012-01-01

    Objective: To investigate the dosimetric influence of pure carbon fiber treatment tabletop of Elekta Precise new linear accelerator in radiotherapy. Methods: Surface-axis distance (SAD) technology was employed for the measurement. Two groups of fields were set and both of them were SAD opposed portals (one of them went through the tabletop,while the other did not). A PTW electrometer and a 0.6 cm 3 Farmer ionization chamber were utilized for comparison measurement. Then dose attenuation of the main table board, extended body board, the extended board for head, neck and shoulders, and the joints of these boards were calculated. Results: Under the energy of 6 MV,the dose attenuations of the following locations were: 1.4% - 7.2% at the main treatment table board; 2.8% - 38.7%, 1.4% -30.1%, 1.5% -20.8% and 1.4% - 11.2%, respectively at distances of 1, 4, 7 and 8 cm from the joint of the main table board; 0.5% - 5.0% at the extended body board; 4.7% - 15.4% at distance of 1 cm from the joint of the extended body board; 0.5% -3.3% at the neck position of the extended board for head, neck and shoulders; 5.3% - 16.7% at the shoulder positions; and 6.8% -30.4% at the joint between the extended boards and the main table board. Conclusions: The dose attenuations of the new linear accelerator pure carbon fiber treatment tabletop vary at different locations. Considerable higher attenuations are observed at the table board joints than other locations. (authors)

  13. Towards the carbon fibers in the building industry

    Directory of Open Access Journals (Sweden)

    Miravete, A.

    2001-12-01

    Full Text Available There are two mainstreams in the building industry in the area of carbon fibers: rehabilitation and use as building material. The using of carbon fiber as a building material is taking place slower than as rehab system due to the very low cost of traditional building materials, the limitations of composite structure manufacturing processes and the conservative building regulations concerning materials in all the industrialized countries. However, these three issues are being solved in a very efficient way, as we will see along the coming paragraphs of this paper. This paper is split in two parts, first the carbon fiber as a material system, its typologies, manufacturing processes and industrial presentations will be described. Second, rehab and building applications will be analyzed.

    En el área de fibra de carbono en la construcción hay actualmente dos líneas de trabajo: reparaciones e implantación en obra: La implantación en la obra civil está avanzando más despacio que la utilización en reparaciones debido al bajo coste de los materiales tradicionales, a la limitación de procesos de fabricación de estructuras de materiales compuestos y al conservadurismo de las normativas de edificación y obra civil en todos los países industrializados. Sin embargo, los tres asuntos mencionados están siendo abordados con eficiencia, como se explicará más adelante. En el presente artículo, se va a describir, el primer lugar, la fibra de carbono, sus tipos, procesos de fabricación y presentaciones industriales. En segundo lugar se tratarán las aplicaciones en la construcción, haciendo énfasis en las reparaciones y en la implantación en obra civil.

  14. Building a successful board-test strategy

    CERN Document Server

    Scheiber, Stephen

    2001-01-01

    Written in a clear and thoughtful style, Building a Successful Board-Test Strategy, Second Edition offers an integrated approach to the complicated process of developing the test strategies most suited to a company's profile and philosophy. This book also provides comprehensive coverage of the specifics of electronic test equipment as well as those broader issues of management and marketing that shape a manufacturer's ""image of quality.""In this new edition, the author adds still more ""war stories,"" relevant examples from his own experience, which will guide his readers in their dec

  15. Magnesium-oxide boards cause moisture damage inside facades in new Danish buildings

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Bunch-Nielsen, Tommy; Grelk, Bent

    2016-01-01

    building elements seemed to suffer from some sort of disease, which manifested itself by damages such as significant moisture, boards leaking salty water (‘tears’), corrosion of fittings and anchors and mould growth. The damages were caused by the fact that MgO-boards absorb moisture from outside air...... in periods with high outdoor humidity (90-100% RH) and form water drops on the surfaces. The drops contain a high amount of soluble chloride ions and appear on the surfaces of the boards and may often run down the boards and to adjacent structures. Metal fixtures for the MgO-and siding boards may corrode...

  16. Fiber-Reinforced Polymer Nets for Strengthening Lava Stone Masonries in Historical Buildings

    Directory of Open Access Journals (Sweden)

    Santi Maria Cascone

    2016-04-01

    Full Text Available The strengthening of masonries is a crucial step in building restoration works because of its relevance, mostly with regard to the improvement of building seismic behavior. Current building technologies are based on the use of steel nets which are incorporated into cement plasters. The use of steel has a number of contraindications that can be solved by using composite materials such as glass fiber nets, which have high mechanical characteristics and lightness, elasticity, corrosion resistance, and compatibility with lime plaster. Building interventions, that take into account the application of glass fiber nets, are very sustainable from several points of view, e.g., material production, in situ works, economic cost and durability. In Italy, several experiments have been carried out in situ with the aim of testing the mechanical characteristics of masonries which have been treated with fiber-reinforced polymer (FRP nets. This paper deals with a series of in situ tests carried out during the restoration works of an important historical building located in Catania (Sicily, Italy. The results achieved are largely positive.

  17. Magnetic compatibility of standard components for electrical installations: Computation of the background field and consequences on the design of the electrical distribution boards and control boards for the ITER Tokamak building

    International Nuclear Information System (INIS)

    Benfatto, I.; Bettini, P.; Cavinato, M.; Lorenzi, A. De; Hourtoule, J.; Serra, E.

    2005-01-01

    Inside the proposed Tokamak building, the ITER poloidal field magnet system would produce a stray magnetic field up to 70 mT. This is a very unusual environmental condition for electrical installation equipment and limited information is available on the magnetic compatibility of standard components for electrical distribution boards and control boards. Because this information is a necessary input for the design of the electrical installation inside the proposed ITER Tokamak building specific investigations have been carried out by the ITER European Participant Team. The paper reports on the computation of the background magnetic field map inside the ITER Tokamak building and the consequences on the design of the electrical installations of this building. The effects of the steel inside the building structure and the feasibility of magnetic shields for electrical distribution boards and control boards are also reported in the paper. The results of the test campaigns on the magnetic field compatibility of standard components for electrical distribution boards and control boards are reported in companion papers published in these proceedings

  18. Oriented strand board: new material for building construction

    International Nuclear Information System (INIS)

    Paridah Md Tahir; Ong, L.L.

    2001-01-01

    The paper will attempt to show the suitability and competitiveness of oriented strand board (OSB) in building construction. One important factor underlining the success of this product is the availability of the wood raw material. Plantation timbers such as rubberwood, paraserianthes falcataria, acacia crassicarpa, A. auriculiformis and A. mangium have been identified as the major source of this industry. We will focus on the domestic market as well as export market especially on the Asia Pacific region

  19. Parameter design for a phase change material board installed on the inner surface of building exterior envelopes for cooling in China

    International Nuclear Information System (INIS)

    Sun, Xiaoqin; Zhang, Quan; Medina, Mario A.; Lee, Kyoung Ok; Liao, Shuguang

    2016-01-01

    Highlights: • Phase change material (PCM) boards were simulated in building envelopes. • The buildings were located in four cities with different climatic conditions. • Energy and mass efficiency was proposed to evaluate utilization of PCM board. • The optimal melting temperature increased with increasing mean air temperature. - Abstract: Phase change materials (PCMs) can be used for building envelope thermal management and for energy conservation because of their potential to absorb and release large amounts of heat with small wall temperature variations. In this paper, the heat transfer theory of a PCM board used for building envelopes is presented, together with a mathematical model based on the moving heat-source method. It was found that the model accurately predicted the position of the solid–liquid interface in time and space, comparing with the published data. Energy and mass efficiency (EME) was proposed to evaluate the energy efficiency of PCM boards in office buildings located in various climatic regions in China for cooling. The influences on EME of parameters, including melting temperature of PCM, PCM board thickness and the heat transfer coefficient of building envelope, were analyzed. The optimal melting temperatures of PCM board, which resulted in the peak EME, in office building were 24.1 °C in Shenyang, 25.0 °C in Kunming, 25.3 °C in Zhengzhou and 25.5 °C Changsha, respectively. The EME increased with the increasing heat transfer coefficient of building envelope. For the city of Changsha with higher outdoor air temperature, none of the PCM boards modeled contributed effectively.

  20. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    Science.gov (United States)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  1. Fiber reinforced concrete as a material for nuclear reactor containment buildings

    International Nuclear Information System (INIS)

    Mallikarjuna; Banthia, N.; Mindess, S.

    1991-01-01

    The fiber reinforced concrete as a constructional material for nuclear reactor containment buildings calls for an examination of its individual characteristics and potentialities due to its inherent superiority over normal plain and reinforced concrete. In the present investigation, first, to study the static behavior of straight, hooked-end and crimped fibers, recently developed nonlinear three-dimensional interface (contact) element has been used in conjunction with the eight nodded hexahedron and two nodded bar elements for concrete and steel fiber respectively. Then impact tests were carried out on fiber reinforced concrete beams with an instrumented drop weight impact machine. Two different concrete mixes were tested: normal strength and high strength concrete specimens. Fibers in the concrete mix found to significantly increase the ductility and the impact resistance of the composite. Deformed fibers increase peak pull-out load and pull-out distance, and perform better in the steel fiber reinforced concrete (SFRC) structures. (author)

  2. Estimates of the radiation dose from phospho-gypsum plaster-board if used in domestic buildings

    International Nuclear Information System (INIS)

    O'Brien, R.S.; Peggie, J.R.; Leith, I.S.

    1991-02-01

    This report presents the results of a study carried out to estimate the annual effective dose equivalent contribution from phospho-gypsum plaster-board if it were used as an internal lining in buildings. The study considered four sources of radiation exposure that would arise in such use, such as inhalation of 222 Rn and its daughters, inhalation of phospho-gypsum dust and exposure to beta and gamma radiation. Measurements of the 22 6Ra content and 222 Rn exhalation rate were made for a number of samples of phospho-gypsum plaster-board, and the behaviour of 222 Rn and its daughters in a typical building was modelled. The results of the study suggest that, for building ventilation rates greater than approximately 0.5 air changes per hour, the contribution to the total annual effective dose equivalent from inhalation of radon ( 222 Rn) and its daughters ( 218 Po, 214 Pb, 214 Po) exhaled from the phospho-gypsum plaster-board should be well below the recommended limit of 1 milli-Sievert for members of the public. The total annual effective dose equivalent from all these sources should be less than 0.6 milli-Sieverts, provided reasonable work practices are observed during installation of the phospho-gypsum plaster-board and the ventilation rate is kept above approximately 0.5 air changes per hour. 31 refs., 12 tabs., 5 figs

  3. Center of gravity estimation using a reaction board instrumented with fiber Bragg gratings

    Science.gov (United States)

    Oliveira, Rui; Roriz, Paulo; Marques, Manuel B.; Frazão, Orlando

    2018-03-01

    The purpose of the present work is to construct a reaction board based on fiber Bragg gratings (FBGs) that could be used for estimation of the 2D coordinates of the projection of center of gravity (CG) of an object. The apparatus is consisted of a rigid equilateral triangular board mounted on three supports at the vertices, two of which have cantilevers instrumented with FBGs. When an object of known weight is placed on the board, the bending strain of the cantilevers is measured by a proportional wavelength shift of the FBGs. Applying the equilibrium conditions of a rigid body and proper calibration procedures, the wavelength shift is used to estimate the vertical reaction forces and moments of force at the supports and the coordinates of the object's CG projection on the board. This method can be used on a regular basis to estimate the CG of the human body or objects with complex geometry and density distribution. An example is provided for the estimation of the CG projection coordinates of two orthopaedic femur bone models, one intact, and the other with a hip stem implant encased. The clinical implications of changing the normal CG location by means of a prosthesis have been discussed.

  4. Fiber-Optic Communication Links Suitable for On-Board Use in Modern Aircraft

    Science.gov (United States)

    Nguyen, Hung; Ngo, Duc; Alam, Mohammad F.; Atiquzzaman, Mohammed; Sluse, James; Slaveski, Filip

    2004-01-01

    The role of the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Centers has been focused mainly on the improvement of air transportation safety, with particular emphasis on air transportation communication systems in on-board aircraft. The conventional solutions for digital optical communications systems specifically designed for local/metro area networks are, unfortunately, not capable of transporting the microwave and millimeter RF signals used in avionics systems. Optical networks capable of transporting RF signals are substantially different from the standard digital optical communications systems. The objective of this paper is to identify a number of different communication link architectures for RF/fiber optic transmission using a single backbone fiber for carrying VHF and UHF RF signals in the aircraft. To support these architectures, two approaches derived from both hybrid RF-optical and all-optical processing methodologies are discussed with single and multiple antennas for explicitly transporting VHF and UHF signals, while the relative merits and demerits of each architecture are also addressed. Furthermore, the experimental results of wavelength division multiplexing (WDM) link architecture from our test-bed platform, configured for aircraft environment to support simultaneous transmission of multiple RF signals over a single optical fiber, exhibit no appreciable signal degradation at wavelengths of both 1330 and 1550 nm, respectively. Our measurements of signal to noise ratio carried out for the transmission of FM and AM analog modulated signals at these wavelengths indicate that WDM is a fiber optic technology which is potentially suitable for avionics applications.

  5. Combined single-mode/multimode fiber link supporting simplified in-building 60-GHz gigabit wireless access

    DEFF Research Database (Denmark)

    Pham, Tien Thang; Lebedev, Alexander; Beltrán, Marta

    2012-01-01

    In this paper, we propose and experimentally demonstrate a simple, cost-effective hybrid gigabit fiber-wireless system for in-building wireless access. Simplicity and cost-effectiveness are achieved in all parts of the system by utilizing direct laser modulation, optical frequency up-conversion, ......In this paper, we propose and experimentally demonstrate a simple, cost-effective hybrid gigabit fiber-wireless system for in-building wireless access. Simplicity and cost-effectiveness are achieved in all parts of the system by utilizing direct laser modulation, optical frequency up...

  6. Energy conservation according to the building codes of the National Board of Housing, Building and Planning; Energihushaallning enligt Boverkets byggregler

    Energy Technology Data Exchange (ETDEWEB)

    2009-10-15

    To comply with international and national targets for energy use, the National Board has adopted rules setting the levels to be met in order to conserve energy in buildings. The rules for buildings are shown in Boverkets building regulations (BBR). The BBR lists comprehensive requirements in order to ensure that a building must not use more than a certain number of kilowatt hours per square meter and year. There are more detailed requirements for thermal insulation, heating, cooling and air conditioning installations, efficient use of electricity and installation of metering systems for monitoring of building energy. The latest version of the BBR came into force on February 1, 2009 and has more stringent requirements for the buildings heated by electricity or comfort cooling powered by electricity. This handbook presents comments and answers to questions about the new rules for energy conservation. It replaces our previous handbook 'Thermal calculations'

  7. Automated determination of fibrillar structures by simultaneous model building and fiber diffraction refinement.

    Science.gov (United States)

    Potrzebowski, Wojciech; André, Ingemar

    2015-07-01

    For highly oriented fibrillar molecules, three-dimensional structures can often be determined from X-ray fiber diffraction data. However, because of limited information content, structure determination and validation can be challenging. We demonstrate that automated structure determination of protein fibers can be achieved by guiding the building of macromolecular models with fiber diffraction data. We illustrate the power of our approach by determining the structures of six bacteriophage viruses de novo using fiber diffraction data alone and together with solid-state NMR data. Furthermore, we demonstrate the feasibility of molecular replacement from monomeric and fibrillar templates by solving the structure of a plant virus using homology modeling and protein-protein docking. The generated models explain the experimental data to the same degree as deposited reference structures but with improved structural quality. We also developed a cross-validation method for model selection. The results highlight the power of fiber diffraction data as structural constraints.

  8. Energy and economic analysis of a building enclosure outfitted with a phase change material board (PCMB)

    International Nuclear Information System (INIS)

    Sun, Xiaoqin; Zhang, Quan; Medina, Mario A.; Lee, Kyoung Ok

    2014-01-01

    Highlights: • Phase change material boards (PCMBs) were simulated in building enclosures. • Energy and economic savings for these buildings were estimated. • The buildings were located in five cities with different climatic conditions. • The energy savings ratio was 100% when a cold energy source was used. • A mean electricity savings ratio of 13.1% was obtained. - Abstract: This paper presents energy and economic analyses related to the application of phase change materials boards (PCMBs) in building enclosures during the cooling season. A heat transfer model was developed, which was implemented via a computer program. Simulations were carried out using weather data files from five cities located in five different climate regions in China. Energy savings from using a natural cold source (e.g., outdoor air) and electricity savings from a reduction in electricity by air conditioning systems were evaluated. The energy savings ratio (ESR) and simple payback period (SPP) were used to assess the application of PCMBs in building enclosures. The selection of optimum phase transition temperatures for the PCMs for the various climates was made using indoor and outdoor air temperatures, as well as SPP. For space cooling purposes, it was suggested that phase transition temperatures should be at least 3 °C higher than the mean outdoor air temperature. Simple payback period suggested the possibility of the cost effective use of PCMBs in occupied buildings for moderate temperature climates

  9. Native lignin for bonding fiber boards - evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica)

    DEFF Research Database (Denmark)

    Felby, Claus; Thygesen, Lisbeth Garbrecht; Sanadi, Anand

    2004-01-01

    indicate that lignin extractives are precipitated on the fiber surfaces. The improved bonding may be related to several factors, linked to a more lignin rich fiber surface, such as surface molecular entanglements and covalent bonding between fibers through cross-linking of radicals. (C) 2004 Published......The auto-adhesion of beech wood (Fagus sylvatica) fibers can be enhanced by a pretreatment of the fibers with a phenol oxidase enzyme. The mechanism of enzymatic catalyzed bonding is linked to the generation of stable radicals in lignin by oxidation. Fiberboards made from laccase-treated fibers...

  10. Advisory Boards: Gateway to Business Engagement

    Science.gov (United States)

    Meeder, Hans; Pawlowski, Brett

    2012-01-01

    Interest has been growing in how to build or manage an effective business advisory board. Developing an advisory board is crucial to keeping CTE programs relevant and viable by engaging the support of business and industry. This article delves into how to build and manage a board, and how to re-energize boards that already exist but may be lacking.

  11. Fiber optic sensor based on Mach-Zehnder interferometer for securing entrance areas of buildings

    Science.gov (United States)

    Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Mec, Pavel; Novak, Martin; Bednarek, Lukas; Vasinek, Vladimir

    2017-10-01

    Authors of this article focused on the utilization of fiber optic sensors based on interferometric measurements for securing entrance areas of buildings such as windows and doors. We described the implementation of the fiber-optic interferometer (type Mach-Zehnder) into the window frame or door, sensor sensitivity, analysis of the background noise and methods of signal evaluation. The advantage of presented solution is the use of standard telecommunication fiber standard G.652.D, high sensitivity, immunity of sensor to electromagnetic interference (EMI) and passivity of the sensor regarding power supply. Authors implemented the Graphical User Interface (GUI) which offers the possibility of remote monitoring presented sensing solution.

  12. Faculty and Governing Boards: Building Bridges.

    Science.gov (United States)

    Perley, James E.

    1997-01-01

    It is important for governing boards to understand that faculty see themselves less as employees than as officers of the institution, charged with constantly seeking the best for their discipline even if the values they advance seem at odds with those of the administration or board. They cherish collegiality, direct communication, and respect for…

  13. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    Science.gov (United States)

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  14. Health monitoring system for a tall building with Fiber Bragg grating sensors

    Science.gov (United States)

    Li, D. S.; Li, H. N.; Ren, L.; Guo, D. S.; Song, G. B.

    2009-03-01

    Fiber Bragg grating (FBG) sensors demonstrate great potentials for structural health monitoring of civil structures to ensure their structural integrity, durability and reliability. The advantages of applying fiber optic sensors to a tall building include their immunity of electromagnetic interference and multiplexing ability to transfer optical signals over a long distance. In the work, FBG sensors, including strain and temperature sensors, are applied to the construction monitoring of an 18-floor tall building starting from its construction date. The main purposes of the project are: 1) monitoring the temperature evolution history within the concrete during the pouring process; 2) measuring the variations of the main column strains on the underground floor while upper 18 floors were subsequently added on; and 3) monitoring the relative displacements between two foundation blocks. The FBG sensors have been installed and interrogated continuously for more than five months. Monitoring results of temperature and strains during the period are presented in the paper. Furthermore, the lag behavior between the concrete temperature and its surrounding air temperature is investigated.

  15. Evaluation of Shear Resisting Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    International Nuclear Information System (INIS)

    Choun, Youngsun; Park, Junhee

    2014-01-01

    Conventional reinforced concrete (RC) members generally show a rapid deterioration in shear resisting mechanisms under a reversed cyclic load. However, the use of high-performance fiber-reinforced cement composites provides excellent damage tolerance under large displacement reversals compared with regular concrete. Previous experimental studies have indicated that the use of fibers in conventional RC can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. This study evaluates the shear resisting capacity for a PCCB constructed using steel fiber reinforced concrete (SFRC) or polyamide fiber reinforced concrete (PFRC). The effects of steel and polyamide fibers on the shear performance of a PCCB were investigated. It was revealed that steel fibers are more effective to enhance the shear resisting capacity of a PCCB than polyamide fibers. The ductility and energy dissipation increase significantly in fiber reinforced PCCBs

  16. Evaluation of Shear Resisting Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Park, Junhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Conventional reinforced concrete (RC) members generally show a rapid deterioration in shear resisting mechanisms under a reversed cyclic load. However, the use of high-performance fiber-reinforced cement composites provides excellent damage tolerance under large displacement reversals compared with regular concrete. Previous experimental studies have indicated that the use of fibers in conventional RC can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. This study evaluates the shear resisting capacity for a PCCB constructed using steel fiber reinforced concrete (SFRC) or polyamide fiber reinforced concrete (PFRC). The effects of steel and polyamide fibers on the shear performance of a PCCB were investigated. It was revealed that steel fibers are more effective to enhance the shear resisting capacity of a PCCB than polyamide fibers. The ductility and energy dissipation increase significantly in fiber reinforced PCCBs.

  17. Novel Application of Glass Fibers Recovered From Waste Printed Circuit Boards as Sound and Thermal Insulation Material

    Science.gov (United States)

    Sun, Zhixing; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2013-10-01

    The aim of this study is to investigate the feasibility of using glass fibers, a recycled material from waste printed circuit boards (WPCB), as sound absorption and thermal insulation material. Glass fibers were obtained through a fluidized-bed recycling process. Acoustic properties of the recovered glass fibers (RGF) were measured and compared with some commercial sound absorbing materials, such as expanded perlite (EP), expanded vermiculite (EV), and commercial glass fiber. Results show that RGF have good sound absorption ability over the whole tested frequency range (100-6400 Hz). The average sound absorption coefficient of RGF is 0.86, which is prior to those of EP (0.81) and EV (0.73). Noise reduction coefficient analysis indicates that the absorption ability of RGF can meet the requirement of II rating for sound absorbing material according to national standard. The thermal insulation results show that RGF has a fair low thermal conductivity (0.046 W/m K), which is comparable to those of some insulation materials (i.e., EV, EP, and rock wool). Besides, an empirical dependence of thermal conductivity on material temperature was determined for RGF. All the results showed that the reuse of RGF for sound and thermal insulation material provided a promising way for recycling WPCB and obtaining high beneficial products.

  18. Building relationships with Aboriginal Communities and the Energy and Utilities Board

    Energy Technology Data Exchange (ETDEWEB)

    Barber, R.; Handel, J.; Healy, D. [Alberta Energy and Utilities Board, Calgary, AB (Canada)

    2004-07-01

    One of the challenges facing the oil and gas industry in Alberta is building a relationship between industry, government and Aboriginal people. The Alberta Energy and Utilities Board (EUB) is promoting and developing positive relationships with Aboriginal communities in terms of land-use issues and land claim agreements. A study was commissioned in 2000 by the EUB to identify concerns to communities affected by sour gas development. The study identified the need to improve working relations with Aboriginal communities. This paper describes the experience of the Field Surveillance Branch of the EUB over the past few years in building such relationships. Historical information provides insight that helps in establishing effective working relationships with Aboriginal communities. An important ingredient is appreciation of the perspective of these communities, which is achieved through awareness training. The use of local Aboriginal resource people as part of the training is recommended in order to address local issues. 1 ref.

  19. Investigation of Waste Paper Cellulosic Fibers Utilization into Cement Based Building Materials

    Directory of Open Access Journals (Sweden)

    Viola Hospodarova

    2018-03-01

    Full Text Available Recently, the utilization of renewable natural cellulosic materials, such as wood, plants, and waste paper in the preparation of building materials has attracted significant interest. This is due to their advantageous properties, low environmental impact and low cost. The objective of this paper is to investigate the influence of recycled cellulosic fibers (in the amount 0.5 wt % of the filler and binder weight and superplasticizer (in the amount 0.5 wt % of the cement weight on the resulting properties of cement composites (consistency of fresh mixture, density, thermal conductivity, and compressive and flexural strength for hardening times of 1, 3, 7, 28, and 90 days. Plasticizer use improved the workability of fresh cement mixture. In comparison to the reference sample, the results revealed a decrease in density of 6.8% and in the thermal conductivity of composites with cellulosic fibers of 34%. The highest values of compressive (48.4 MPa and flexural (up to 7 MPa strength were achieved for hardened fiber cement specimens with plasticizer due to their significantly better dispersion of cement particles and improved bond strength between fibers and matrix.

  20. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    International Nuclear Information System (INIS)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee

    2013-01-01

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%

  1. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%.

  2. Laccase-Catalyzed Surface Modification of Thermo-Mechanical Pulp (TMP) for the Production of Wood Fiber Insulation Boards Using Industrial Process Water

    Science.gov (United States)

    Schubert, Mark; Ruedin, Pascal; Civardi, Chiara; Richter, Michael; Hach, André; Christen, Herbert

    2015-01-01

    Low-density wood fiber insulation boards are traditionally manufactured in a wet process using a closed water circuit (process water). The water of these industrial processes contains natural phenolic extractives, aside from small amounts of admixtures (e.g., binders and paraffin). The suitability of two fungal laccases and one bacterial laccase was determined by biochemical characterization considering stability and substrate spectra. In a series of laboratory scale experiments, the selected commercial laccase from Myceliophtora thermophila was used to catalyze the surface modification of thermo-mechanical pulp (TMP) using process water. The laccase catalyzed the covalent binding of the phenolic compounds of the process water onto the wood fiber surface and led to change of the surface chemistry directly via crosslinking of lignin moieties. Although a complete substitution of the binder was not accomplished by laccase, the combined use of laccase and latex significantly improved the mechanical strength properties of wood fiber boards. The enzymatically-treated TMP showed better interactions with the synthetic binder, as shown by FTIR-analysis. Moreover, the enzyme is extensively stable in the process water and the approach requires no fresh water as well as no cost-intensive mediator. By applying a second-order polynomial model in combination with the genetic algorithm (GA), the required amount of laccase and synthetic latex could be optimized enabling the reduction of the binder by 40%. PMID:26046652

  3. Composition of heavy metals and airborne fibers in the indoor environment of a building during renovation.

    Science.gov (United States)

    Latif, Mohd Talib; Baharudin, Nor Hafizah; Velayutham, Puvaneswary; Awang, Normah; Hamdan, Harimah; Mohamad, Ruqyyah; Mokhtar, Mazlin B

    2011-10-01

    The renovation of a building will certainly affect the quality of air in the vicinity of where associated activities were undertaken, this includes the quality of air inside the building. Indoor air pollutants such as particulate matter, heavy metals, and fine fibers are likely to be emitted during renovation work. This study was conducted to determine the concentration of heavy metals, asbestos and suspended particulates in the Biology Building, at the Universiti Kebangsaan, Malaysia (UKM). Renovation activities were carried out widely in the laboratories which were located in this building. A low-volume sampler was used to collect suspended particulate matter of a diameter size less than 10 μm (PM₁₀) and an air sampling pump, fitted with a cellulose ester membrane filter, were used for asbestos sampling. Dust was collected using a small brush and scope. The concentration of heavy metals was determined through the use of inductively coupled plasma-mass spectroscopy and the fibers were counted through a phase contrast microscope. The concentrations of PM₁₀ recorded in the building during renovation action (ranging from 166 to 542 μg m⁻³) were higher than the value set by the Department of Safety and Health for respirable dust (150 μg m⁻³). Additionally, they were higher than the value of PM₁₀ recorded in indoor environments from other studies. The composition of heavy metals in PM₁₀ and indoor dust were found to be dominated by Zn and results also showed that the concentration of heavy metals in indoor dust and PM₁₀ in this study was higher than levels recorded in other similar studies. The asbestos concentration was 0.0038 ± 0.0011 fibers/cc. This was lower than the value set by the Malaysian Department of Occupational, Safety and Health (DOSH) regulations of 0.1 fibers/cc, but higher than the background value usually recorded in indoor environments. This study strongly suggests that renovation issues need to be considered seriously

  4. Evaluation of Ultimate Pressure Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Hahm, Daegi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Fiber reinforced concrete (FRC) includes thousands of small fibers that are distributed randomly in the concrete. Fibers resist the growth of cracks in concrete through their bridging at the cracks. Therefore, FRC fails in tension only when the fibers break or are pulled out of the cement matrix. For this reason, the addition of fibers in concrete mixing increases the tensile toughness of concrete and enhances the post-cracking behavior. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity of a prestressed concrete containment building (PCCB). In this study, the effects of steel or polyamide fiber reinforcement on the ultimate pressure capacity of a PCCB are evaluated. When R-SFRC contains hooked steel fibers in a volume fraction of 1.0%, the ultimate pressure capacity of a PCCB can be improved by 17%. When R-PFRC contains polyamide fibers in a volume fraction of 1.5%, the ultimate pressure capacity of a PCCB can be enhanced by 10%. Further studies are needed to determine the strain limits acceptable for PCCBs reinforced with fibers.

  5. Evaluation of Ultimate Pressure Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    International Nuclear Information System (INIS)

    Choun, Youngsun; Hahm, Daegi

    2014-01-01

    Fiber reinforced concrete (FRC) includes thousands of small fibers that are distributed randomly in the concrete. Fibers resist the growth of cracks in concrete through their bridging at the cracks. Therefore, FRC fails in tension only when the fibers break or are pulled out of the cement matrix. For this reason, the addition of fibers in concrete mixing increases the tensile toughness of concrete and enhances the post-cracking behavior. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity of a prestressed concrete containment building (PCCB). In this study, the effects of steel or polyamide fiber reinforcement on the ultimate pressure capacity of a PCCB are evaluated. When R-SFRC contains hooked steel fibers in a volume fraction of 1.0%, the ultimate pressure capacity of a PCCB can be improved by 17%. When R-PFRC contains polyamide fibers in a volume fraction of 1.5%, the ultimate pressure capacity of a PCCB can be enhanced by 10%. Further studies are needed to determine the strain limits acceptable for PCCBs reinforced with fibers

  6. In-Building Wireless Distribution in legacy Multimode Fiber with an improved RoMMF system

    DEFF Research Database (Denmark)

    Visani, Davide; Petersen, Martin Nordal; Sorci, Francesca

    2012-01-01

    A radio over multimode fiber (RoMMF) system for in-building wireless distribution employing a directly modulated Fabry-Perot (FP) transmitter and the central launch technique is presented. The worst-case spurious free dynamic range (SFDR) exceeds 105 dB×Hz2/3 up to 525 m of OM2 multimode fiber (MMF......). Experimental and theoretical results are reported showing that this scheme outperforms a RoMMF system employing a distributed feed-back (DFB) laser diode (LD) and/or a mode scrambler to achieve overfilled launch (OFL). Long Term Evolution (LTE) signal transmission is achieved with high quality in terms...... of Adjacent Channel Leakage Ratio (ACLR) and Error Vector Magnitude (EVM)....

  7. Achievement report in fiscal 2000 on technical development to recycle waste building materials and glasses. Development of waste building material recycling technology (Research and development of wooden board manufacturing technology using demolished building lumbers); 2000 nendo kenchiku glass nado recycle gijutsu kaihatsu seika hokokusho. Kenhciku haizai recycle gijutsu kaihatsu (kenchiku kaitai mokuzai wo mochiita mokushitsu board seizo gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Research and development has been made on a wooden board manufacturing technology re-utilizing demolished building lumbers and waste plastics with an intention of saving resources and reducing wastes. This paper summarizes the achievements in fiscal 2000. In developing the technology to re-use demolished building lumbers, a method for removing metals attached to demolished building lumbers was established by using a magnetic separator and a metal detector, with which it was verified that iron can be removed nearly 100%. With regard to waste plastics, simultaneous use of specific gravity separation utilizing centrifugal force and electrostatic separation provided a prospect that metals and plastics of high melting points can be removed from mixed resins in waste household electric appliances, and that polypropylene (PP), polystyrene (PS), and ABS can be classified at high accuracy. In manufacturing waste wood and waste plastic boards, pilot plants were built to use the 'melt spray method', 'melt blow method', and 'laminating method' as the means to spray molten resin onto wood raw materials, wherein trials were performed on mixing molten resins with wood flakes, and on board forming. (NEDO)

  8. Deposition velocities and impact of physical properties on ozone removal for building materials

    Science.gov (United States)

    Lin, Chi-Chi; Hsu, Shu-Chen

    2015-01-01

    This study aims to estimate the ozone deposition velocities of eight commonly used building materials (BMs) which include calcium silicate board (CSB), green calcium silicate board (GCSB), mineral fiber ceiling (MFC), green mineral fiber ceiling (GMFC), gypsum board (GB), green gypsum board (GGB), wooden flooring (WF) and green wooden flooring (GWF). In addition, the impact of physical properties (specific surface area and total pore volume of BM) on ozone removal ability was also explored and discussed. Studies were conducted in a small-scale environmental stainless steel chamber. CSB and GCSB showed the highest ozone deposition velocities, while WF and GWF showed the lowest ozone deposition velocities among test BMs materials. All reaction probabilities were estimated to fall within the order of magnitude of 10-6. Green BMs showed lower reaction probabilities with ozone comparing with non-green BMs except for GGB. Consistent with the trends for deposition velocity, fleecy and porous materials exhibit higher reaction probabilities than smooth, non-porous surfaces. Specific surface area of BM is more closely related to ozone removal than total pore volume of BM with R2 of 0.93 vs. R2 of 0.84. Discussion of Thiele modulus for all test BMs indicates surface reactions are occurring quickly relative to internal diffusion and ozone removal is internal diffusion-limited.

  9. Needle-Bonded Electromagnetic Shielding Thermally Insulating Nonwoven Composite Boards: Property Evaluations

    Directory of Open Access Journals (Sweden)

    Jia-Horng Lin

    2016-10-01

    Full Text Available Complicated environmental problems inevitably arise when technology advances. One major environmental problem is the presence of electromagnetic radiation. Long-term exposure to electromagnetic radiation can damage people’s health in many ways. Therefore, this study proposes producing composite boards with electromagnetic shielding effectiveness and thermal insulation by utilizing the structures and properties of materials. Different combinations of flame-retardant polyester fiber (FR fiber, recycled far-infrared polyester fiber (FI fiber, and 4D low-melting-point fibers (LM fiber were made into flame-retardant and thermally insulating matrices. The matrices and carbon fiber (CF woven fabric in a sandwich-structure were needle-punched in order to be tightly compact, and then circularly heat dried in order to have a heat set and reinforced structure. The test results indicate that Polyester (PET/CF composite boards are mechanically strong and have thermal insulation and electromagnetic shielding effectiveness at a frequency between 0.6 MHz and 3 GHz.

  10. Design and Analysis of an Optical Coupler for Concentrated Solar Light Using Optical Fibers in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Afshin Aslian

    2016-01-01

    Full Text Available Concentrated sunlight that is transmitted by fiber optics has been used for generating electricity, heat, and daylight. On the other hand, multijunction photovoltaic cells provide high efficiency for generating electricity from highly concentrated sunlight. This study deals with designing and simulating a high-efficiency coupler, employing a mathematical model to connect sunlight with fiber optics for multiple applications. The coupler concentrates and distributes irradiated light from a primary concentrator. In this study, a parabolic dish was used as the primary concentrator, a coupler that contains nine components called a compound truncated pyramid and a cone (CTPC, all of which were mounted on a plate. The material of both the CTPC and the plate was BK7 optical glass. Fiber optics cables and multijunction photovoltaic cells were connected to the cylindrical part of the CTPC. The fibers would transmit the light to the building to provide heat and daylight, whereas multijunction photovoltaic cells generate electricity. Theoretical and simulation results showed high performance of the designed coupler. The efficiency of the coupler was as high as 92%, whereas the rim angle of the dish increased to an optimum angle. Distributed sunlight in the coupler increased the flexibility and simplicity of the design, resulting in a system that provided concentrated electricity, heat, and lighting for residential buildings.

  11. Estimation of Relative Permittivity of Printed Circuit Board with Fiber Glass Epoxy as Dielectric for UHF Applications

    Directory of Open Access Journals (Sweden)

    Ronal D. Montoya-Montoya

    2013-11-01

    Full Text Available This paper presents the results of measuring relative permittivity of fiber glass printed circuit board (PCB’s, using a rectangular resonant cavity. The relative permittivity is presented as function of frequency. To obtain resonant frequencies, the return loss was measured using a network analyzer. Relative permittivity was calculated by finding frequencies of resonant cavity modes. The results are presented in a frequency span of 1 to 3.5GHz. It was clearly shown the nonlinear behavior of the relative permittivity for the dielectric laminate evaluated, even what happens respect to the frequency of the resonant modes below and above to frequency of 2 GHz.

  12. Development of an Adjustable board and a Rotational Board for Scaffold

    Science.gov (United States)

    Jang, Myunghoun

    2017-06-01

    Scaffold is widely used in high work-places inside and outside of a building construction site. It is inexpensive and is installed and dismantled easily. Although standards and ledgers of a steel tube and coupler scaffold are installed in a regular distance, the distances of transoms are not equal in some places. Sometimes a working platform or a board is absent in the corner of scaffold. This may cause safety accidents because a foothold is not stable on the transoms. An adjustable safety board and a rotational safety board are suggested in this paper. The adjustable board consists of two footholds. The small one is inserted into the large one. The rotational board covers not only right angle but also acute or obtuse angles. These safety boards for scaffold help to decrease safety accidents in construction sites.

  13. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...

  14. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  15. The relationship between top management team – outside board conflict and outside board service involvement in high-tech start-ups

    OpenAIRE

    Vandenbrouke, Elien; Knockaert, Mirjam; Ucbasaran, Deniz

    2017-01-01

    Corporate governance research has extensively studied the relationship between outside board characteristics and outside board involvement. We add to this literature by investigating the extent to which interactions between outside board members and the top management team (TMT) affect the functioning of the outside board. Building on conflict theory, our study shows how conflict between TMT and outside board is an important antecedent for outside board service involvement. Specifically, draw...

  16. JOINT ADVISORY APPEALS BOARD

    CERN Multimedia

    Human Resources Division

    2002-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Luc Vos with regard to advancement. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 14 to 28 June 2002. Human Resources Division Tel. 74128

  17. JOINT ADVISORY APPEALS BOARD

    CERN Multimedia

    Human Resources Division

    2001-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Olivier Francis Martin with regard to indefinite contract. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 8 to 25 June 2001.

  18. Joint Advisory Appeals Board

    CERN Multimedia

    2003-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Aloïs Girardoz with regard to classification and advancement. As the appellant has not objected, the Board's report and the Director-General's decision will be brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 15 to 29 August 2003. Human Resources Division Tel. 74128

  19. Joint Advisory Appeals Board

    CERN Multimedia

    2003-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Poul Frandsen concerning his assimilation into the new career structure. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 13 to 24 January 2003. Human Resources Division Tel. 74128

  20. JOINT ADVISORY APPEALS BOARD

    CERN Multimedia

    Personnel Division

    1999-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Joào Bento with regard to residential category. As the appellant has not objected, the recommendations of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article RÊVIÊ1.20 of the Staff Regulations.The relevant documents will therefore be posted on the notice boards of the Administration Building (N¡ 60) from 29 October to 12 November 1999.Personnel DivisionTel. 74128

  1. Joint Advisory Appeals Board

    CERN Multimedia

    HR Department

    2006-01-01

    The Joint Advisory Appeals Board was convened to examine an appeal lodged by a member of the personnel with regard to advancement. The person concerned has requested that the report of the Board and the final decision of the Director-General be brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (No. 60) from 24 March to 10 April 2006. Human Resources Department Tel. 74128

  2. JOINT ADVISORY APPEALS BOARD

    CERN Multimedia

    Human Resources Division

    2002-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Jack Blanchard with regard to 'non recognition of specific functions'. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 12th to 26th April 2002. Human Resources Division Tel. 74128

  3. Joint Advisory Appeals Board

    CERN Multimedia

    2004-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mrs Maria DIMOU with regard to a periodic one-step increase. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 30 April to 14 May 2004. Human Resources Department Tel. 74128

  4. JOINT ADVISORY APPEALS BOARD

    CERN Multimedia

    Human Resources Division

    2001-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Joël Lahaye with regard to non-resident allowance. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 18 May to 1st June 2001.

  5. JOINT ADVISORY APPEALS BOARD

    CERN Multimedia

    Human Resources Division

    2002-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Bertrand Nicquevert with regard to the non-resident allowance. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 29 November to 13 December 2002. Human Resources Division Tel. 74128

  6. JOINT ADVISORY APPEALS BOARD

    CERN Multimedia

    Human Resources Division

    2002-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Antonio Millich with regard to advancement. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 27 September to 11 October 2002. Human Resources Division Tel. 74128

  7. Joint Advisory Appeals Board

    CERN Multimedia

    Human Resources Department

    2005-01-01

    The Joint Advisory Appeals Board was convened to examine an appeal lodged by a member of the personnel with regard to a periodic one-step increase. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 1 to 15 April 2005. Human Resources Department Tel. 74128

  8. JOINT ADVISORY APPEALS BOARD

    CERN Multimedia

    Human Resources Division

    2002-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Gert Jan Bossen with regard to dependent child allowance. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 1st to 15 March 2002. Human Resources Division Tel. 74128

  9. JOINT ADVISORY APPEALS BOARD

    CERN Multimedia

    Human Resources Division

    2002-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Serge Peraire with regard to exceptional advancement. As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 17 to 31 May 2002. Human Resources Division Tel. 74128

  10. Building Better Boards: A Handbook for Board Members in Catholic Education.

    Science.gov (United States)

    Sheehan, Lourdes

    Boards and commissions, an important part of Catholic education since the late 1800s, experienced a significant revival in the decades following the Vatican Council II. Today, approximately 68 percent of the Catholic schools in the United States have some form of educational governance structure. Although the primary focus of this handbook, which…

  11. Indoor Pollution Emissions from Building Materials; Case of Study: Gypsum Boards Indoor Pollution Emissions from Building Materials; Case of Study: Gypsum Boards

    Directory of Open Access Journals (Sweden)

    Silverio Hernández Moreno

    2012-02-01

    Full Text Available Este reporte presenta una evaluación de las emisiones de materiales de construcción, al interior de los edificios que pueden causar daño a la salud de los usuarios durante la ocupación, pues emiten sustancias tóxicas al interior de los edificios. Este reporte presenta un caso de studio que evalúa a los tableros de yeso, frecuentemente usados en la construcción de muros divisorios y falsos plafones. La parte experimental se basa en un espacio tridimensional el cual simula un cuarto de cualquier tipo de edificación; por ejemplo: un salón de clases u oficina. Las condiciones ambientales al interior, tales como: ventilación, temperatura y humedad, afectan directamente las emisiones de sustancias químicas por los materiales de construcción. La metodología se basa en la comparación de materiales convencionales y materiales alternativos con distinta composición y similares características, en donde usamos métodos de prueba, condiciones ambientales, instrumentos y herramientas similares. Este es un estudio muy importante para entender los problemas relacionadoscon la contaminación ambiental, específicamente del aire y sus efectos en el interior de los edificios, y que se relaciona directamente con la salud pública e indirectamente con los sistemas constructivos y la selección de materiales en los edificios. Las pruebas concluyen que los materiales alternativos (de contenido reciclado son mejores que los tradicionales, porque reducen la contaminación del aire al interior de los edificios. This report presents an evaluation of emissions from indoor building materials that may cause health damage to the people who occupy the building, since these materials emit toxic chemicals into the air and indoor surfaces. This report presents a case study which evaluates Gypsum Boards, frequently used in the construction of dividing walls and ceilings. The experimental part of this report is based on a three-dimensional space that simulates a

  12. Building materials. Stichwort Baustoff

    Energy Technology Data Exchange (ETDEWEB)

    Rohwer, W

    1981-01-01

    To handle building materials properly, one must know about their characteristics. This pocket book will be of help: structured like a glossary, it gives brief descriptions of the most common building materials. It is small and handy enough to be a constant companion to resident engineers, foremen, gangers, building tradesmen, and construction workers and an aid in their training. The following groups of building materials are discussed: Natural stone; units for brick walls, floors, and roofs; mortar and concrete (definitions, binders, aggregates, additives, admixtures, mixing water); special types of plaster and rendering; light-weight building boards and wood wool basis; multilayer light-weight building boards; gypsum plasterboards; chimney construction; sewers; thermal insulation and sound section; structural steels; plastics.

  13. Benchmarking Further Single Board Computers for Building a Mini Supercomputer for Simulation of Telecommunication Systems

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2016-01-01

    Full Text Available Parallel Discrete Event Simulation (PDES with the conservative synchronization method can be efficiently used for the performance analysis of telecommunication systems because of their good lookahead properties. For PDES, a cost effective execution platform may be built by using single board computers (SBCs, which offer relatively high computation capacity compared to their price or power consumption and especially to the space they take up. A benchmarking method is proposed and its operation is demonstrated by benchmarking ten different SBCs, namely Banana Pi, Beaglebone Black, Cubieboard2, Odroid-C1+, Odroid-U3+, Odroid-XU3 Lite, Orange Pi Plus, Radxa Rock Lite, Raspberry Pi Model B+, and Raspberry Pi 2 Model B+. Their benchmarking results are compared to find out which one should be used for building a mini supercomputer for parallel discrete-event simulation of telecommunication systems. The SBCs are also used to build a heterogeneous cluster and the performance of the cluster is tested, too.

  14. Joint Advisory Appeals Board

    CERN Multimedia

    HR Department

    2007-01-01

    The Joint Advisory Appeals Board was convened to examine an internal appeal lodged by a member of the personnel with regard to the decision not to grant him an indefinite contract. The person concerned has requested that the report of the Board and the final decision of the Director-General be brought to the notice of the members of the personnel, in accordance with Article R VI 1.18 of the Staff Regulations. The relevant documents will therefore be posted on the notice board of the Main building (Bldg. 60) from 24 September to 7 October 2007. Human Resources Department

  15. Joint Advisory Appeals Board

    CERN Multimedia

    2003-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mrs Judith Igo-Kemenes concerning the application of procedures foreseen by Administrative Circular N§ 26 (Rev. 3). As the appellant has not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 6 to 20 June 2003. Human Resources Division Tel. 74128

  16. Joint Advisory Appeals Board

    CERN Multimedia

    HR Department

    2008-01-01

    The Joint Advisory Appeals Board has examined the internal appeal lodged by a member of the personnel with regard to the decision not to grant him an indefinite contract. The person concerned has not objected to the report of the Board and the final decision of the Director-General being brought to the notice of the members of the personnel. In application of Article R VI 1.18 of the Staff Regulations, these documents will therefore be posted on the notice board of the Main Building (Bldg. 500) from 26 May to 6 June 2008. Human Resources Department (73911)

  17. Joint Advisory Appeals Board

    CERN Multimedia

    HR Department

    2008-01-01

    The Joint Advisory Appeals Board was convened to examine an internal appeal lodged by a member of the personnel with regard to the decision not to grant him an indefinite contract. The person concerned has not objected to the report of the Board and the final decision of the Director-General being brought to the notice of the members of the personnel, in accordance with Article R VI 1.18 of the Staff Regulations. These documents will therefore be posted on the notice board of the Main Building (Bldg. 60) from 21 January to 3 February 2008. Human Resources Department (73911)

  18. Vibrational analysis of coconut fiber-PP composites

    OpenAIRE

    Gelfuso, Maria Virginia; Thomazini, Daniel; Souza, Júlio César Silva de; Lima Junior, José Juliano de

    2013-01-01

    Many researchers have been studying coconut fibers due to its being a natural and renewable source. Moreover, coconut waste is discarded in landfills, bringing environmental problems because this material, although natural, takes time to be degraded. The use of natural fibers such as coconut fibers has become industrially attractive because of its low cost, high availability and desired mechanical properties for some applications, such as panels, ceilings, and partition boards and automotive ...

  19. Joint Advisory Appeals Board

    CERN Multimedia

    HR Department

    2008-01-01

    The Joint Advisory Appeals Board has examined the internal appeal lodged by a member of the personnel against the decision to grant him only a periodic one-step advancement for the 2006 reference year. The person concerned has not objected to the report of the Board and the final decision of the Director-General being brought to the attention of the members of the personnel. In application of Article R VI 1.18 of the Staff Regulations, these documents will therefore be posted on the notice board of the Main building (bldg. 500) from 1 September to 14 September 2008. Human Resources Department (73911)

  20. Joint Advisory Appeals Board

    CERN Multimedia

    HR Department

    2008-01-01

    The Joint Advisory Appeals Board has examined the internal appeal lodged by a member of the personnel with regard to the decision not to award him a periodic one-step advancement for the 2006 reference year. The person concerned has not objected to the report of the Board and the final decision of the Director-General being brought to the notice of the members of the personnel. In application of Article R VI 1.18 of the Staff Regulations, these documents will therefore be posted on the notice board of the Main building (Bldg. 500) from 17 March to 30 March 2008. Human Resources Department Tel. 73911

  1. Joint Advisory Appeals Board

    CERN Multimedia

    HR Department

    2008-01-01

    The Joint Advisory Appeals Board has examined the internal appeal lodged by a member of the personnel against the decision to grant him only a periodic one-step advancement for the 2006 reference year. The person concerned has not objected to the report of the Board and the final decision of the Director-General being brought to the attention of the members of the personnel. In application of Article R VI 1.18 of the Staff Regulations, these documents will therefore be posted on the notice board of the Main Building (Bldg. 500) from 1 September to 14 September 2008. Human Resources Department (73911)

  2. Mechanical properties of gypsum board at elevated temperatures

    Science.gov (United States)

    S.M. Cramer; O.M. Friday; R.H. White; G. Sriprutkiat

    2003-01-01

    Gypsum board is a common fire barrier used in house and general building construction. Recently, evaluation of the collapses of the World Trade Center Towers highlighted the potential role and failure of gypsum board in containing the fires and resisting damage. The use of gypsum board as primary fire protection of light-flame wood or steel construction is ubiquitous....

  3. Preliminary Study on Impact Resistances of Fiber Reinforced Concrete Applied Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jin, Byeong Moo; Kim, Young Jin; Jeon, Se Jin

    2013-01-01

    Studies to improve the impact resistance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application ratio, are in progress. Authors assessed first the impact resistance of concrete walls depending upon fiber types and missile impact velocities. The safety assessment of nuclear power plants against large civil aircraft crashes have been accomplished for normal concrete and fiber reinforced concretes in this study. Studies on the safety assessments on the nuclear power plants against large civil aircraft crashes are ongoing actively. As a step of evaluating the applicability of fiber reinforced concrete in means of ensuring more structural safety of the nuclear power plants against impact, the impact resistance for the 1% steel and 2% polyamide fiber reinforced concretes have been evaluated. For reactor containment building structures, it seem there is no impact resistance enhancement of fiber reinforced concrete applied to reactor containment building in the cases of impact velocity 150 m/sec considered in this study. However this results from the pre-stressing forces which introduce compressive stresses in concrete wall and dome section of reactor containment building. Nonetheless there may be benefits to apply fiber reinforced concrete to nuclear power plants. For double containment type reactor containment building, the outer structure is a reinforced concrete structure. The impact resistances for non pre-stressed cylindrical reactor containment buildings are enhanced by 23 to 47 % for 2 % polyamide fiber reinforced concretes and 1 % steel fiber reinforced concretes respectively. For other buildings such as auxiliary building, compound building and fuel storage building surrounding the reactor containment building, there are so many reinforced concrete walls which are anticipated some enhancements of impact resistance by using fiber reinforced concretes. And heavier or faster large civil aircraft impacts produce higher

  4. Preliminary Study on Impact Resistances of Fiber Reinforced Concrete Applied Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Byeong Moo; Kim, Young Jin; Jeon, Se Jin [Daewoo E and C Co. Ltd., Suwon (Korea, Republic of)

    2013-10-15

    Studies to improve the impact resistance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application ratio, are in progress. Authors assessed first the impact resistance of concrete walls depending upon fiber types and missile impact velocities. The safety assessment of nuclear power plants against large civil aircraft crashes have been accomplished for normal concrete and fiber reinforced concretes in this study. Studies on the safety assessments on the nuclear power plants against large civil aircraft crashes are ongoing actively. As a step of evaluating the applicability of fiber reinforced concrete in means of ensuring more structural safety of the nuclear power plants against impact, the impact resistance for the 1% steel and 2% polyamide fiber reinforced concretes have been evaluated. For reactor containment building structures, it seem there is no impact resistance enhancement of fiber reinforced concrete applied to reactor containment building in the cases of impact velocity 150 m/sec considered in this study. However this results from the pre-stressing forces which introduce compressive stresses in concrete wall and dome section of reactor containment building. Nonetheless there may be benefits to apply fiber reinforced concrete to nuclear power plants. For double containment type reactor containment building, the outer structure is a reinforced concrete structure. The impact resistances for non pre-stressed cylindrical reactor containment buildings are enhanced by 23 to 47 % for 2 % polyamide fiber reinforced concretes and 1 % steel fiber reinforced concretes respectively. For other buildings such as auxiliary building, compound building and fuel storage building surrounding the reactor containment building, there are so many reinforced concrete walls which are anticipated some enhancements of impact resistance by using fiber reinforced concretes. And heavier or faster large civil aircraft impacts produce higher

  5. Preparation, Mechanical and Thermal Properties of Cement Board with Expanded Perlite Based Composite Phase Change Material for Improving Buildings Thermal Behavior

    Directory of Open Access Journals (Sweden)

    Rongda Ye

    2015-11-01

    Full Text Available Here we demonstrate the mechanical properties, thermal conductivity, and thermal energy storage performance of construction elements made of cement and form-stable PCM-Rubitherm® RT 28 HC (RT28/expanded perlite (EP composite phase change materials (PCMs. The composite PCMs were prepared by adsorbing RT28 into the pores of EP, in which the mass fraction of RT28 should be limited to be no more than 40 wt %. The adsorbed RT28 is observed to be uniformly confined into the pores of EP. The phase change temperatures of the RT28/EP composite PCMs are very close to that of the pure RT28. The apparent density and compression strength of the composite cubes increase linearly with the mass fraction of RT28. Compared with the thermal conductivity of the boards composed of cement and EP, the thermal conductivities of the composite boards containing RT28 increase by 15%–35% with the mass fraction increasing of RT28. The cubic test rooms that consist of six boards were built to evaluate the thermal energy storage performance, it is found that the maximum temperature different between the outside surface of the top board with the indoor temperature using the composite boards is 13.3 °C higher than that of the boards containing no RT28. The thermal mass increase of the built environment due to the application of composite boards can contribute to improving the indoor thermal comfort and reducing the energy consumption in the buildings.

  6. Preparation, Mechanical and Thermal Properties of Cement Board with Expanded Perlite Based Composite Phase Change Material for Improving Buildings Thermal Behavior.

    Science.gov (United States)

    Ye, Rongda; Fang, Xiaoming; Zhang, Zhengguo; Gao, Xuenong

    2015-11-13

    Here we demonstrate the mechanical properties, thermal conductivity, and thermal energy storage performance of construction elements made of cement and form-stable PCM-Rubitherm® RT 28 HC (RT28)/expanded perlite (EP) composite phase change materials (PCMs). The composite PCMs were prepared by adsorbing RT28 into the pores of EP, in which the mass fraction of RT28 should be limited to be no more than 40 wt %. The adsorbed RT28 is observed to be uniformly confined into the pores of EP. The phase change temperatures of the RT28/EP composite PCMs are very close to that of the pure RT28. The apparent density and compression strength of the composite cubes increase linearly with the mass fraction of RT28. Compared with the thermal conductivity of the boards composed of cement and EP, the thermal conductivities of the composite boards containing RT28 increase by 15%-35% with the mass fraction increasing of RT28. The cubic test rooms that consist of six boards were built to evaluate the thermal energy storage performance, it is found that the maximum temperature different between the outside surface of the top board with the indoor temperature using the composite boards is 13.3 °C higher than that of the boards containing no RT28. The thermal mass increase of the built environment due to the application of composite boards can contribute to improving the indoor thermal comfort and reducing the energy consumption in the buildings.

  7. Ten-year monitoring of high-rise building columns using long-gauge fiber optic sensors

    International Nuclear Information System (INIS)

    Glisic, B; Inaudi, D; Lau, J M; Fong, C C

    2013-01-01

    A large-scale lifetime building monitoring program was implemented in Singapore in 2001. The monitoring aims of this unique program were to increase safety, verify performance, control quality, increase knowledge, optimize maintenance costs, and evaluate the condition of the structures after a hazardous event. The first instrumented building, which has now been monitored for more than ten years, is presented in this paper. The long-gauge fiber optic strain sensors were embedded in fresh concrete of ground-level columns, thus the monitoring started at the birth of both the construction material and the structure. Measurement sessions were performed during construction, upon completion of each new story and the roof, and after the construction, i.e., in-service. Based on results it was possible to follow and evaluate long-term behavior of the building through every stage of its life. The results of monitoring were analyzed at a local (column) and global (building) level. Over-dimensioning of one column was identified. Differential settlement of foundations was detected, localized, and its magnitude estimated. Post-tremor analysis was performed. Real long-term behavior of concrete columns was assessed. Finally, the long-term performance of the monitoring system was evaluated. The researched monitoring method, monitoring system, rich results gathered over approximately ten years, data analysis algorithms, and the conclusions on the structural behavior and health condition of the building based on monitoring are presented in this paper. (paper)

  8. Ten-year monitoring of high-rise building columns using long-gauge fiber optic sensors

    Science.gov (United States)

    Glisic, B.; Inaudi, D.; Lau, J. M.; Fong, C. C.

    2013-05-01

    A large-scale lifetime building monitoring program was implemented in Singapore in 2001. The monitoring aims of this unique program were to increase safety, verify performance, control quality, increase knowledge, optimize maintenance costs, and evaluate the condition of the structures after a hazardous event. The first instrumented building, which has now been monitored for more than ten years, is presented in this paper. The long-gauge fiber optic strain sensors were embedded in fresh concrete of ground-level columns, thus the monitoring started at the birth of both the construction material and the structure. Measurement sessions were performed during construction, upon completion of each new story and the roof, and after the construction, i.e., in-service. Based on results it was possible to follow and evaluate long-term behavior of the building through every stage of its life. The results of monitoring were analyzed at a local (column) and global (building) level. Over-dimensioning of one column was identified. Differential settlement of foundations was detected, localized, and its magnitude estimated. Post-tremor analysis was performed. Real long-term behavior of concrete columns was assessed. Finally, the long-term performance of the monitoring system was evaluated. The researched monitoring method, monitoring system, rich results gathered over approximately ten years, data analysis algorithms, and the conclusions on the structural behavior and health condition of the building based on monitoring are presented in this paper.

  9. Employee on Boarding Process Automation

    OpenAIRE

    Khushboo Nalband; Priyanka Jadhav; Geetanjali Salunke

    2017-01-01

    On boarding, also known as organizational socialization, plays a vital role in building the initial relationship between an organization and an employee. It also contributes to an employees’ satisfaction, better performance and greater organizational commitment thus increasing an employees’ effectiveness and productivity in his/her role. Therefore, it is essential that on boarding process of an organization is efficient and effective to improve new employees’ retention. Generally this on boar...

  10. Better Buildings Neighborhood Program: BetterBuildings Lowell Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Heslin, Thomas

    2014-01-31

    Historic Board, which has jurisdiction in the NHP. The Historic Board was cooperative with any exterior renovations as long as they were not changing the existing aesthetics of the property. If we were replacing a rooftop condenser it needed to be placed where the existing rooftop condenser was located. Receiving proper approval from the Historic Board for any external energy conservation measures was known by all the participating contractors. One area of the retrofits that was contentious regarded venting of the new HVAC equipment. Installing external stacks was not allowed so the contractors had to negotiate with the Historic Board regarding the proper way to vent the equipment that met the needs mechanically and aesthetically. Overall BetterBuildings Lowell was successful at implementing energy and cost saving measures into 31 commercial properties located within the NHP. The 31 retrofits had 1,554,768 square feet of commercial and multifamily housing and a total predicted energy savings exceeding 22,869 a year. Overall the City of Lowell achieved its target goals and is satisfied with the accomplishments of the BetterBuildings program. The City will continue to pursue energy efficient programs and projects.

  11. JOINT ADVISORY APPEALS BOARD

    CERN Multimedia

    Human Resources Division

    2001-01-01

    The Joint Advisory Appeals Board was convened to examine the appeal lodged by Mr Neil Calder, Mrs Sudeshna Datta Cockerill, Mrs Andrée Fontbonne, Mrs Moniek Laurent and Mr Ulrich Liptow with regard to membership in the Pension Fund under the period with a Paid Associate contract, appeals dealt with on a collective basis. As the appellants have not objected, the report of the Board and the final decision of the Director-General are brought to the notice of the personnel in accordance with Article R VI 1.20 of the Staff Regulations. The relevant documents will therefore be posted on the notice boards of the Administration Building (N° 60) from 10 to 31 August 2001.

  12. Design of a highly parallel board-level-interconnection with 320 Gbps capacity

    Science.gov (United States)

    Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.; Bauer, H.

    2012-01-01

    A parallel board-level interconnection design is presented consisting of 32 channels, each operating at 10 Gbps. The hardware uses available optoelectronic components (VCSEL, TIA, pin-diodes) and a combination of planarintegrated free-space optics, fiber-bundles and available MEMS-components, like the DMD™ from Texas Instruments. As a specific feature, we present a new modular inter-board interconnect, realized by 3D fiber-matrix connectors. The performance of the interconnect is evaluated with regard to optical properties and power consumption. Finally, we discuss the application of the interconnect for strongly distributed system architectures, as, for example, in high performance embedded computing systems and data centers.

  13. Effect of carbon fiber addition on the electromagnetic shielding properties of carbon fiber/polyacrylamide/wood based fiberboards

    Science.gov (United States)

    Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng

    2018-05-01

    Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).

  14. Independent directors’ board networks and controlling shareholders’ tunneling behavior

    OpenAIRE

    Chen, Yunsen; Wang, Yutao; Lin, Le

    2014-01-01

    As one of the channels by which board directors build important relationships, board networks can affect the governance role of independent directors. Defining director board networks as their connections based on direct ties they establish when serving on at least one common board, this paper explores the role of the network centrality of independent directors in restraining tunneling behavior by controlling shareholders in the Chinese capital market. Our empirical evidence shows that tunnel...

  15. An agenda for board research

    Directory of Open Access Journals (Sweden)

    Sandra Guerra

    2008-01-01

    Full Text Available Scholarly investigations on the board of directors, although intense from the mid-1990s onward, did not lead to entirely convincing results. This study proposes discussion on building a multidisciplinary and integrated theoretical framework able to capture the complexity and distinctive dimensions of the board as a group decision-making process. This is achieved through an essay developed from analytical and descriptive review of the literature. A synthesis on board research is presented, aiming to understand theoretical models lenses used to study corporate governance issues. The strengths and weaknesses of these models are pointed out, and their influence on board investigation is observed. This essay concludes by proposing a research agenda that considers the addition of psychological and sociological approaches to economic models of the analysis of group decision-making

  16. Oriented-strand-board- the wave of the future- for the building trade

    Science.gov (United States)

    Linda Ashton

    1984-01-01

    Move over, plywood. Oriented-strand board is here. It's less expensive. It's as durable. It has as many uses. And it is the wave of the future. "Oriented-strand board is a direct substitute for plywood" said Jerry Buckner, plant manager for the Martco oriented-strand board plant in Lemoyen. OSB, as it is commonly called, is a structural panel made...

  17. Application and feasibility of coal fly ash and scrap tire fiber as wood wall insulation supplements in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Van de Lindt, J.W.; Carraro, J.A.H.; Heyliger, P.R.; Choi, C. [Colorado State University, Department of Civil and Environmental Engineering, Fort Collins, CO (United States)

    2008-08-15

    Each year, nearly 55% of the fly ash (FA) produced by coal burning power plants in the United States is disposed of in landfills and ash ponds, while the amount of recycled fiber from scrap tires that is beneficially used in end-user markets is virtually negligible. This paper presents the results of a study carried out to investigate whether it might be possible to increase the thermal efficiency of a light-frame residential structure through addition of a fly ash-scrap tire fiber composite to traditional fiberglass insulation in light-frame wood residential construction. This type of construction represents more than 80% of the building stock in North America. The results of this study suggest that the fly ash-scrap tire fiber composite provides a sustainable supplement to traditional insulation that not only increases the efficiency of traditional insulation but can also help significantly reduce the environmental issues associated with disposal of these waste products. (author)

  18. Application and feasibility of coal fly ash and scrap tire fiber as wood wall insulation supplements in residential buildings

    International Nuclear Information System (INIS)

    Van de Lindt, J.W.; Carraro, J.A.H.; Heyliger, P.R.; Choi, C.

    2008-01-01

    Each year, nearly 55% of the fly ash (FA) produced by coal burning power plants in the United States is disposed of in landfills and ash ponds, while the amount of recycled fiber from scrap tires that is beneficially used in end-user markets is virtually negligible. This paper presents the results of a study carried out to investigate whether it might be possible to increase the thermal efficiency of a light-frame residential structure through addition of a fly ash-scrap tire fiber composite to traditional fiberglass insulation in light-frame wood residential construction. This type of construction represents more than 80% of the building stock in North America. The results of this study suggest that the fly ash-scrap tire fiber composite provides a sustainable supplement to traditional insulation that not only increases the efficiency of traditional insulation but can also help significantly reduce the environmental issues associated with disposal of these waste products. (author)

  19. Deformation Monitoring for Chinese Traditional Timber Buildings Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Ni-Lei Li

    2018-06-01

    Full Text Available The Fiber Bragg Grating (FBG sensing technique is suitable for a wide variety of measurements, including temperature, pressure, acceleration, liquid level, etc., and has been applied to many bridges and buildings in the past two decades. The fact that the FBG technique can only monitor and measure strain data for most cases when it is used for deformation measurements impedes application of the FBG sensing technique in civil infrastructures. This paper proposes FBG sensing-based deformation monitoring methods that are applicable to monitoring beam deflection, column inclination angle and mortise-tenon joint dislocation for Chinese traditional timber structures. On the basis of improved conjugated beam theory and geometrical trigonometric function relationship, the relationships between the FBG sensing strain values and the deflection of beam, inclination angle of column, as well as the amount of dislocation of mortise-tenon joint are deducted for Chinese traditional buildings. A series of experiments were conducted to verify the applicability and effectiveness of the proposed deformation monitoring methods. The results show that a good agreement is obtained between the values given by the methods proposed in this paper and other methods. This implies that the proposed deformation monitoring methods are applicable and effective in the health monitoring of Chinese traditional timber structures.

  20. Engineering Properties of Treated Natural Hemp Fiber-Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Xiangming Zhou

    2017-06-01

    Full Text Available In recent years, the construction industry has seen a significant rise in the use of natural fibers, for producing building materials. Research has shown that treated hemp fiber-reinforced concrete (THFRC can provide a low-cost building material for residential and low-rise buildings, while achieving sustainable construction and meeting future environmental targets. This study involved enhancing the mechanical properties of hemp fiber-reinforced concrete through the Ca(OH2 solution pretreatment of fibers. Both untreated (UHFRC and treated (THFRC hemp fiber-reinforced concrete were tested containing 15-mm length fiber, at a volume fraction of 1%. From the mechanical strength tests, it was observed that the 28-day tensile and compressive strength of THFRC was 16.9 and 10% higher, respectively, than UHFRC. Based on the critical stress intensity factor (KICs and critical strain energy release rate (GICs, the fracture toughness of THFRC at 28 days was also found to be 7–13% higher than UHFRC. Additionally, based on the determined brittleness number (Q and modulus of elasticity, the THFRC was found to be 11% less brittle and 10.8% more ductile. Furthermore, qualitative analysis supported many of the mechanical strength findings through favorable surface roughness observed on treated fibers and resistance to fiber pull-out.

  1. [Desmin content and transversal stiffness of the left ventricle mouse cardiomyocytes and skeletal muscle fibers after a 30-day space flight on board "BION-M1" biosatellite].

    Science.gov (United States)

    Ogneva, I V; Maximova, M V; Larina, I M

    2014-01-01

    The aim of this study was to determine the transversal stiffness of the cortical cytoskeleton and the cytoskeletal protein desmin content in the left ventricle cardiomyocytes, fibers of the mouse soleus and tibialis anterior muscle after a 30-day space flight on board the "BION-M1" biosatellite (Russia, 2013). The dissection was made after 13-16.5 h after landing. The transversal stiffness was measured in relaxed and calcium activated state by, atomic force microscopy. The desmin content was estimated by western blotting, and the expression level of desmin-coding gene was detected using real-time PCR. The results indicate that, the transversal stiffness of the left ventricle cardiomyocytes and fibers of the soleus muscle in relaxed and activated states did not differ from the control. The transversal stiffness of the tibialis muscle fibers in relaxed and activated state was increased in the mice group after space flight. At the same time, in all types of studied tissues the desmin content and the expression level of desmin-coding gene did not differ from the control level.

  2. Single-mode glass waveguide technology for optical interchip communication on board level

    Science.gov (United States)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  3. Improvement of impact-resistance of a nuclear containment building using fiber reinforced concrete

    International Nuclear Information System (INIS)

    Jeon, Se-Jin; Jin, Byeong-Moo

    2016-01-01

    Highlights: • Impact-resistance of a structure can be improved by fiber reinforced concrete (FRC). • Material modeling of FRC is incorporated into finite element analysis of a structure. • A new index for impact-resistance is proposed based on plastic dissipation energy. • A nuclear power plant made of FRC shows improved resistance against aircraft crashes. - Abstract: Since the act of terrorism that occurred in the USA on September 11, 2001, the protection of nuclear power plants against large commercial aircraft crashes has been an emerging issue. Besides the verification of the safety of nuclear power plants in operation or in design, efficient methods for improving the impact-resistance of these structures have been investigated. Fiber reinforced concrete (FRC) has been generally accepted as an effective material for this purpose. In particular, FRC has been developed to improve the tensile behavior of concrete such as tensile strength, ductility and toughness. One of the main fields of application of FRC can be found in blast-protective or blast-resistant concrete structures. It is expected, therefore, that safety-related structures in a nuclear power plant can also be effectively protected from external blast, aircraft crash, etc. by applying FRC. In order to analytically verify the effect on structural behavior of applying FRC, the particular material properties of FRC should be incorporated into the material modeling of a structural analysis program. This study investigates the mathematical modeling of FRC, which represents various aspects of material behavior. Two numerical examples are provided to show the improved impact-resistance of a nuclear containment building that is expected when applying FRC in comparison with ordinary concrete. The analysis results show that the displacement decreases by 43–67% while the impact-resistance increases by 40–82%, depending on a fiber type.

  4. Improvement of impact-resistance of a nuclear containment building using fiber reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Se-Jin, E-mail: conc@ajou.ac.kr [Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499 (Korea, Republic of); Jin, Byeong-Moo [DAEWOO E& C, Institute of Construction Technology, 20, Suil-ro 123beon-gil, Jangan-gu, Suwon-si, Gyeonggi-do 16297 (Korea, Republic of)

    2016-08-01

    Highlights: • Impact-resistance of a structure can be improved by fiber reinforced concrete (FRC). • Material modeling of FRC is incorporated into finite element analysis of a structure. • A new index for impact-resistance is proposed based on plastic dissipation energy. • A nuclear power plant made of FRC shows improved resistance against aircraft crashes. - Abstract: Since the act of terrorism that occurred in the USA on September 11, 2001, the protection of nuclear power plants against large commercial aircraft crashes has been an emerging issue. Besides the verification of the safety of nuclear power plants in operation or in design, efficient methods for improving the impact-resistance of these structures have been investigated. Fiber reinforced concrete (FRC) has been generally accepted as an effective material for this purpose. In particular, FRC has been developed to improve the tensile behavior of concrete such as tensile strength, ductility and toughness. One of the main fields of application of FRC can be found in blast-protective or blast-resistant concrete structures. It is expected, therefore, that safety-related structures in a nuclear power plant can also be effectively protected from external blast, aircraft crash, etc. by applying FRC. In order to analytically verify the effect on structural behavior of applying FRC, the particular material properties of FRC should be incorporated into the material modeling of a structural analysis program. This study investigates the mathematical modeling of FRC, which represents various aspects of material behavior. Two numerical examples are provided to show the improved impact-resistance of a nuclear containment building that is expected when applying FRC in comparison with ordinary concrete. The analysis results show that the displacement decreases by 43–67% while the impact-resistance increases by 40–82%, depending on a fiber type.

  5. LHCb Scintillating Fiber detector front end electronics design and quality assurance

    Science.gov (United States)

    Vink, W. E. W.; Pellegrino, A.; Ietswaard, G. C. M.; Verkooijen, J. C.; Carneiro, U.; Massefferi, A.

    2017-03-01

    The on-detector electronics of the LHCb Scintillating Fiber Detector consists of multiple PCBs assembled in a unit called Read Out Box, capable of reading out 2048 channels with an output rate of 70 Gbps. There are three types of boards: PACIFIC, Clusterization and Master Board. The Pacific Boards host PACIFIC ASICs, with pre-amplifier and comparator stages producing two bits of data per channel. A cluster-finding algorithm is then run in an FPGA on the Clusterization Board. The Master Board distributes fast and slow control, and power. We describe the design, production and test of prototype PCBs.

  6. Interpersonal Communication Processes Between Students, Caregivers of Boarding School, and Boarding School Environments in Building the Self Concept

    OpenAIRE

    Maulia, Putri; Budi Lestari, SU, Dr. Dra. Sri

    2017-01-01

    In a family, interpersonal communication processes take place in nurturing and controlling against the behavior of their children. Now, many parents who choose to educate his children in boarding schools and they hopes their children can have a religious knowledge as well as a good general science, have a good character, and have a positive self-concept if educated in the boarding school. This research using a qualitative approach, aims to describing interpersonal communication processes betw...

  7. Multi-criteria thermal evaluation of wall enclosures of high-rise buildings insulated products based on modified fibers

    Science.gov (United States)

    Pavlov, Alexey; Pavlova, Larisa; Pavlova, Lyudmila

    2018-03-01

    In article results of research of versions of offered types of heaters on the basis of products from the modified fibers for designing energy efficient building enclosures residential high-rise buildings are presented. Traditional building materials (reinforced concrete, brick, wood) are not able to provide the required value of thermal resistance in areas with a temperate and harsh Russia climate in a single-layered enclosing structure. It can be achieved in a multi-layered enclosing structure, where the decisive role is played by new insulating materials with high thermal properties. In general, modern design solutions for external walls are based on the use of new effective thermal insulation materials with the use of the latest technology. The relevance of the proposed topic is to research thermoinsulation properties of new mineral heaters. Theoretical researches of offered heaters from mineral wool on slime-colloidal binder, bentocolloid and microdispersed binders are carried out. In addition, theoretical studies were carried out with several types of facade systems. Comprehensive studies were conducted on the resistance to heat transfer, resistance to vapor permeation and air permeability. According to the received data, recommendations on the use of insulation types depending on the number of storeys of buildings are proposed.

  8. Single-board 32-bit computer for the FASTBUS

    International Nuclear Information System (INIS)

    Kellner, R.; Blossom, J.M.; Hong, J.P.

    1985-01-01

    The Los Alamos National Laboratory is building a 32bit computer on a FASTBUS board. It will use the National Semiconductor 32032 chip set, including the demand-paged memory management, floating point slave processor and interrupt control chips. The board will support 4 megabytes of memory which can be accessed by the processor over an on-board execution bus at processor speeds and which can be accessed by the FASTBUS at 80 megabytes per second. A windowed, direct memory access mechanism allows transfers of up to all of the memory

  9. Bandwidths of micro-twisted-pair cables and fusion-spliced SIMM-GRIN fiber

    International Nuclear Information System (INIS)

    Gan, K.K.; Kagan, H.P.; Kass, R.D.; Smith, D.S.

    2007-01-01

    The SLHC is designed to increase the luminosity of the LHC by a factor of 10. In the present ATLAS pixel detector, electrical signals between the pixel modules and the optical modules (opto-boards) are transmitted in ∼1 m of micro-twisted-pair cables. The optical signals between the opto-boards and the off-detector optical modules are transmitted in fiber ribbons. Each fiber link consists of 8 m of rad-hard/low bandwidth SIMM fiber fusion spliced to 70 m of rad-tolerant/medium bandwidth GRIN fiber. We currently transmit optical signals at 80 Mb/s and expect to transmit signals at 1 Gb/s in the SLHC. For the SLHC optical link, we would like to take advantage of some of the design features of the present pixel optical links and the many years of R and D effort and production experience. If the present architecture can transmit signals at the higher speed required by the SLHC, the constraint of requiring no extra service space is automatically satisfied. We have measured the bandwidths of the transmission lines and our preliminary results indicate that the micro-twisted-pair cables can transmit signals up to ∼1 Gb/s and the fusion-spliced fiber ribbon can transmit signals up to ∼2 Gb/s

  10. Optical Fiber Protection

    Science.gov (United States)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  11. Durability of pulp fiber-cement composites

    Science.gov (United States)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  12. Invention, design and performance of coconut agrowaste fiberboards for ecologically efficacious buildings

    Science.gov (United States)

    Lokko, Mae-ling Jovenes

    As global quantities of waste by-products from food production as well as the range of their applications increase, researchers are realizing critical opportunities to transform the burden of underutilized wastes into ecological profits. Within the tropical hot-humid region, where half the world's current and projected future population growth is concentrated, there is a dire demand for building materials to meet ambitious development schemes and rising housing deficits. However, the building sector has largely overlooked the potential of local agricultural wastes to serve as alternatives to energy-intensive, imported building technologies. Industrial ecologists have recently investigated the use of agrowaste biocomposites to replace conventional wood products that use harmful urea-formaldehyde, phenolic and isocyanate resins. Furthermore, developments in the performance of building material systems with respect to cost, energy, air quality management and construction innovation have evolved metrics about what constitutes material 'upcycling' within building life cycle. While these developments have largely been focused on technical and cost performance, much less attention has been paid to addressing deeply-seated social and cultural barriers to adoption that have sedimented over decades of importation. This dissertation evaluates the development coconut agricultural building material systems in four phases: (i) non-toxic, low-energy production of medium-high density boards (500-1200 kg/m3) from coconut fibers and emerging biobinders; (ii) characterization and evaluation of coconut agricultural building materials hygrothermal performance (iii) scaled-up design development of coconut modular building material systems and (iv) development of a value translation framework for the bottom-up distribution of value to stakeholders within the upcycling framework. This integrated design methodological approach is significant to develop ecological thinking around agrowaste

  13. Tunable Single Frequency 2.054 Micron Fiber Laser Using New Ho-Doped Fiber, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a near 2 micron widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative...

  14. Tunable Single Frequency 2.05 Micron Fiber Laser Using New Ho-Doped Fiber, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser near 2.05 micron by developing an innovative...

  15. 75 FR 52671 - YouthBuild Program

    Science.gov (United States)

    2010-08-27

    ... appointment during normal business hours at the above address. If you need assistance to review the comments... workforce investment boards (WIBs), One-Stop Career Centers, and their partner programs (for example... YouthBuild Transfer Act, that plan on working together as partners in a YouthBuild program. Each partner...

  16. Radiation hardening of optical fibers and fiber sensors for space applications: recent advances

    Science.gov (United States)

    Girard, S.; Ouerdane, Y.; Pinsard, E.; Laurent, A.; Ladaci, A.; Robin, T.; Cadier, B.; Mescia, L.; Boukenter, A.

    2017-11-01

    In these ICSO proceedings, we review recent advances from our group concerning the radiation hardening of optical fiber and fiber-based sensors for space applications and compare their benefits to state-of-the-art results. We focus on the various approaches we developed to enhance the radiation tolerance of two classes of optical fibers doped with rare-earths: the erbium (Er)-doped ones and the ytterbium/erbium (Er/Yb)-doped ones. As a first approach, we work at the component level, optimizing the fiber structure and composition to reduce their intrinsically high radiation sensitivities. For the Erbium-doped fibers, this has been achieved using a new structure for the fiber that is called Hole-Assisted Carbon Coated (HACC) optical fibers whereas for the Er/Ybdoped optical fibers, their hardening was successfully achieved adding to the fiber, the Cerium element, that prevents the formation of the radiation-induced point defects responsible for the radiation induced attenuation in the infrared part of the spectrum. These fibers are used as part of more complex systems like amplifiers (Erbium-doped Fiber Amplifier, EDFA or Yb-EDFA) or source (Erbium-doped Fiber Source, EDFS or Yb- EDFS), we discuss the impact of using radiation-hardened fibers on the system radiation vulnerability and demonstrate the resistance of these systems to radiation constraints associated with today and future space missions. Finally, we will discuss another radiation hardening approach build in our group and based on a hardening-by-system strategy in which the amplifier is optimized during its elaboration for its future mission considering the radiation effects and not in-lab.

  17. Fiber-based laser MOPA transmitter packaging for space environment

    Science.gov (United States)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Numata, Kenji; Wu, Stewart; Gonzales, Brayler; Han, Lawrence; Fahey, Molly; Plants, Michael; Rodriguez, Michael; Allan, Graham; Abshire, James; Nicholson, Jeffrey; Hariharan, Anand; Mamakos, William; Bean, Brian

    2018-02-01

    NASA's Goddard Space Flight Center has been developing lidar to remotely measure CO2 and CH4 in the Earth's atmosphere. The ultimate goal is to make space-based satellite measurements with global coverage. We are working on maturing the technology readiness of a fiber-based, 1.57-micron wavelength laser transmitter designed for use in atmospheric CO2 remote-sensing. To this end, we are building a ruggedized prototype to demonstrate the required power and performance and survive the required environment. We are building a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture. The laser is a wavelength-locked, single frequency, externally modulated DBR operating at 1.57-micron followed by erbium-doped fiber amplifiers. The last amplifier stage is a polarization-maintaining, very-large-mode-area fiber with 1000 μm2 effective area pumped by a Raman fiber laser. The optical output is single-frequency, one microsecond pulses with >450 μJ pulse energy, 7.5 KHz repetition rate, single spatial mode, and < 20 dB polarization extinction.

  18. A Study of the Relationship Between School Leadership and the Condition of School Buildings

    OpenAIRE

    Brannon, William Lee

    2000-01-01

    The purpose of this study was to examine the relationship between school leadership and the quality, condition, maintenance, improvements, and renovations of public school buildings. The first question examined the relationship between building conditions and perceptions of school board members, superintendent and central office staff, board of supervisors, and principals. The second question examined the relationship between building conditions and the financial support of leadership positio...

  19. Building 107 for surface treatment

    CERN Multimedia

    Brice, Maximilien

    2018-01-01

    A brand new state-of-the-art building hosting laboratories for the surface treatment of vacuum equipment and workshops for the manufacturing and treatment of printed circuit boards was completed in 2017.

  20. 77 FR 46428 - Chief of Engineers Environmental Advisory Board; Meeting

    Science.gov (United States)

    2012-08-03

    .... Metcalfe Federal Building (RMFB), 77 West Jackson Boulevard, Room 331, Chicago, IL 60604. Agenda: The Board... public. Any interested person may attend. However, all attendees will enter and exit RMFB through the...

  1. Fiber Sensor Technology Today

    Science.gov (United States)

    Hotate, Kazuo

    2006-08-01

    Fiber sensor technologies are overviewed. Since the early 1970s, this field has been developed, on the basis of the same devices and photonic principles as fiber communication technologies. Besides simple configurations, in which the fiber acts only as a data transmission line, sophisticated configurations have also been developed, in which the fiber is used as a device to realize unique sensing mechanisms. The fiber optic gyroscope (FOG) is a good example, and has been developed as an absolute rotation sensor used, for example, for navigation and/or attitude control applications. Compared with traditional spinning-mass gyroscopes, the FOG has advantages, such as a short warming-up time, a light weight, and easy handling. A Japanese satellite, which was launched in August 2005 with a mission to observe the aurora, is controlled with a FOG. The FOG has also been used in consumer applications, such as the camera stabilizer, radio-controlled (RC) helicopter navigation, and the control of humanoid robots. Recently, distributed and multiplexed sensing schemes, in particular, have been studied and developed, in which a long fiber acts like a “nerve” for feeling the strain and/or the temperature distribution along the fiber. Performances of artificial nerve systems have markedly improved within the last couple of years, in spatial resolution and measurement speed. By embedding the “fiber-optic nerve system” in aircraft wings, bridges and tall buildings, these materials and structures can sense damage to prevent disasters.

  2. Effect of ultraviolet light irradiation period on bond strengths between fiber-reinforced composite post and core build-up composite resin.

    Science.gov (United States)

    Asakawa, Yuya; Takahashi, Hidekazu; Iwasaki, Naohiko; Kobayashi, Masahiro

    2014-01-01

    The aim of the present study was to characterize the effects of the ultraviolet light (UV) irradiation period on the bond strength of fiber-reinforced composite (FRC) posts to core build-up resin. Three types of FRC posts were prepared using polymethyl methacrylate, urethane dimethacrylate, and epoxy resin. The surfaces of these posts were treated using UV irradiation at a distance of 15 mm for 0 to 600 s. The pull-out bond strength was measured and analyzed with the Dunnett's comparison test (α=0.05). The bond strengths of the post surfaces without irradiation were 6.9 to 7.4 MPa; those after irradiation were 4.2 to 26.1 MPa. The bond strengths significantly increased after 15 to 120-s irradiation. UV irradiation on the FRC posts improved the bond strengths between the FRC posts and core build-up resin regardless of the type of matrix resin.

  3. 78 FR 55057 - Authority To Manufacture Carbon Fiber for the U.S. Market Not Approved; Foreign-Trade Subzone...

    Science.gov (United States)

    2013-09-09

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Order No. 1914] Authority To Manufacture Carbon... behalf of Toho Tenax America, Inc. (TTA), to manufacture carbon fiber under zone procedures for the U.S... approve the application requesting authority to manufacture carbon fiber for the U.S. market under zone...

  4. Building unique surface structure on aramid fibers through a green layer-by-layer self-assembly technique to develop new high performance fibers with greatly improved surface activity, thermal resistance, mechanical properties and UV resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lifang; Yuan, Li; Guan, Qingbao; Gu, Aijuan, E-mail: ajgu@suda.edu.cn; Liang, Guozheng, E-mail: lgzheng@suda.edu.cn

    2017-07-31

    Highlights: • A green technology is setup to build unique surface structure on aramid fiber (AF). • The method is layer-by-layer self-assembling SiO{sub 2} and layered double hydroxide. • The surface of AF is adjustable by controlling the self-assembly cycle number. • New AF has excellent surface activity, anti-UV, thermal and mechanical properties. • The origin behind attractive performances of new AFs was intensively studied. - Abstract: Combining green preparation and high performance is becoming the direction of sustainable development of materials. How to simultaneously overcome the two bottlenecks (poor surface activity and UV resistance) of aramid fibers (AFs) while improving thermal and mechanical properties through a green process is still an interesting issue with big challenge. Herein, new AFs (BL-AFs) were prepared by alternately self-assembling SiO{sub 2} and MgAlFe layered double hydroxide (LDH) on surfaces of AFs, successively, through a green layer-by-layer (LBL) self-assembly technique without using high temperature and organic solvent. The structures and properties of BL-AFs were systematically studied, which are controllable by adjusting the number of self-assembly cycle. The new fibers with three or more self-assembly cycles have remarkably improved surface activity, thermal resistance, mechanical properties and UV resistance compared with AFs. Typically, with three self-assembly cycles, the initial degradation temperature and char yield of the new fiber (3BL-AF) are as high as 552.9 °C and 81.2%, about 92 °C and 25.2% higher than those of AF, respectively; after 168 h-UV irradiation, the retention of tensile performances of 3BL-AF fiber is as high as 91–95%, about 29–14% higher than that of AF, showing the best overall performances among all modified AFs prepared using a green technique reported so far. The origin behind the attractive performances of BL-AFs is revealed through correlating with structures of original and

  5. Reliability analysis of microcomputer boards and computer based systems important to safety of nuclear plants

    International Nuclear Information System (INIS)

    Shrikhande, S.V.; Patil, V.K.; Ganesh, G.; Biswas, B.; Patil, R.K.

    2010-01-01

    Computer Based Systems (CBS) are employed in Indian nuclear plants for protection, control and monitoring purpose. For forthcoming CBS, Reactor Control Division has designed and developed a new standardized family of microcomputer boards qualified to stringent requirements of nuclear industry. These boards form the basic building blocks of CBS. Reliability analysis of these boards is being carried out using analysis package based on MIL-STD-217Plus methodology. The estimated failure rate values of these standardized microcomputer boards will be useful for reliability assessment of these systems. The paper presents reliability analysis of microcomputer boards and case study of a CBS system built using these boards. (author)

  6. Utilization of Infrared Fiber Optic in the Automotive Industry

    Science.gov (United States)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  7. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  8. Fire performance of fiber board coated with nano kaolin-clay film

    Science.gov (United States)

    Zhijia Liu; John F. Hunt; Zhiyong Cai

    2013-01-01

    Fiberboard is a common interior material used both in China and the United States of America. The increase in demand for interior materials has raised concerns regarding combustibility of the materials. The pyrolysis characteristics of fiber, phenolic resin (PF), and nano kaolin-clay (NK) were investigated using thermogravimetry. The fire performances of samples coated...

  9. Hollow fiber liquid supported membranes

    International Nuclear Information System (INIS)

    Violante, V.

    1987-01-01

    The hollow fiber system are well known and developed in the scientific literature because of their applicability in the process separation units. The authors approach to a mathematical model for a particular hollow fiber system, usin liquid membranes. The model has been developed in order to obtain a suitable tool for a sensitivy analysis and for a scaling-up. This kind of investigation is very usefull from an engineering point of view, to get a spread range of information to build up a pilot plant from the laboratory scale

  10. DOE's Environmental Management Site-Specific Advisory Board: The Roles, Work, and Assessment of the Constituent Local Boards - 13587

    International Nuclear Information System (INIS)

    Alexander, Catherine; Freeman, Jenny; Cantrell, Yvette

    2013-01-01

    , the agency draws on the experience of members to create best practices for the EM SSAB, as a unique form of public involvement. Four areas that have been identified by local board Chairpersons as important to their local board operations are - Enhancing communication between technical and non-technical board members; - Building on common ground toward recommendations; - Public involvement in EM SSAB local board activities; - The EM SSAB annual work plan process. The first three areas are addressed below by current or former chairpersons of the EM SSAB: Ralph Phelps, former Chairperson of the Northern New Mexico Citizens' Advisory Board; Susan Leckband, former Chairperson and current Vice Chairperson of the Hanford Advisory Board; and Val Francis, Vice Chairperson of the Portsmouth (PORTS) SSAB. In addition, Eric Roberts, facilitator of the PORTS SSAB, has contributed to the section on public involvement. In a separate paper for this session, Ralph Young, Chairperson of the Paducah Citizens' Advisory Board addresses the EM SSAB annual work plan process. (authors)

  11. Toward a Behavioral Theory of Boards and Corporate Governance

    NARCIS (Netherlands)

    van Ees, Hans; Gabrielsson, Jonas; Huse, Morten; Gabrielson, J.

    Review A coherent alternative to an economic approach of corporate governance is missing. In this paper we take steps towards developing a behavioral theory of boards and corporate governance. Building upon concepts such as political bargaining, routinization of decision making, satisficing, and

  12. Optical fiber sensors based on novel polyimide for humidity monitoring of building materials

    Science.gov (United States)

    Chai, Jing; Liu, Qi; Liu, Jinxuan; Zhang, Dingding

    2018-03-01

    This paper presents novel preparation methods of polyimide and coupling agent, coated on the fiber Bragg grating (FBG) sensor for monitoring relative humidity (RH). The sensing mechanism that the volume change of the moisture-sensitive polyimide induces the shift of the Bragg wavelength of FBG is used in the RH sensor. The performance of the polymer-coated RH sensor was evaluated under laboratory conditions of temperature over a range of values (20.0-80.0 °C) and humidity over a range of RH values (25.0-95.0%). The time response and RH sensitivity of the sensor based on novel polyimide and coupling agent was improved, compared to the previous. A new packaged RH sensor was designed, which was used in detecting the moisture diffusion and evolutions inside of sample made of building materials which exposed to a controlled environment in the lab after casting. Relative humidity inside of sample with time was 100% in the first phase of vapor-saturated, slowly reduced in the latter phase. The results indicate the RH sensor developed provides a feasible method to detect the influence of environment on moisture inside the material in the drying process.

  13. Water-Resistant Material from Recovered Fibers and Acrylic Emulsion Terpolymer

    Directory of Open Access Journals (Sweden)

    Fushan Chen

    2014-01-01

    Full Text Available Styrene (SM, methyl methacrylate (MMA, and butyl acrylate (BA were used to synthesize a polyacrylic emulsion by core-shell emulsion polymerization. The solid content of the emulsion reached 40% using reasonable reactive emulsifier contents and feeding modes. Then, the emulsion and a fiber were dispersed, coated, and dried together. Finally, fiber-based water-resistant material was successfully fabricated. The experimental results showed that under the conditions of a monomer mass ratio of 1:1:1 and a mass ratio of polyacrylic emulsion to fiber of 2:1, the Cobb value of the material reached 5.0 g/m2. The tensile strength, elongation, and breaking length were 7.4225 kN/m, 1.0%, and 11.706 km, respectively. Using scanning electron microscopy (SEM to analyze the surface morphology and internal structure of products, the reasons for the high water resistance of fiber-based material was due to the bonding and filling effects of the polyacrylic emulsion on the fibers. For tightly bound fibers, the porous structures formed in fiber-based boards were reduced. On the other hand, the polyacrylic emulsion filled the gaps between fibers. This filling effect led to a continuous structure, and the water resistance of the material was further enhanced.

  14. 78 FR 63380 - Farm Credit Administration Board Policy Statements

    Science.gov (United States)

    2013-10-24

    ... Business of the Farm Credit Administration Board FCA-PS-65 Release of Consolidated Reporting System... FCS Building Association Management Operations Policies and Practices FCA-PS-71 Disaster Relief... the Members of Farm Credit System Institutions FCA-PS-81 Ethics, Independence, Arm's-Length Role, Ex...

  15. Flame-resistant kapok fiber manufactured using gamma ray

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Hyeong, Min Ho; An, Byung Chull; Lee, Eun Mi; Lee, Seung Sik; Kim, Jin-Hong; Kim, Jae-Sung; Kim, Tae-Hoon; Cho, Jae-Young

    2009-01-01

    Owing to homogeneous hollow tube shape and hydrophobicity of kapok fiber, the usages of this fiber are various such as fiberfill in pillows, quilts, non-woven fabric for oil spill cleanup and plastic green house. Even though kapok fiber is able to apply various industrial usages, it has a serious disadvantage which is the extreme sensitivity to spark or flame. Therefore, we try to make flame-resistant kapok fiber using gamma ray. The radiation caused loss of hydrophobic compounds in kapok fiber and no morphological change, especially fine hollow tube shape, was observed. The lignin contents were negligible changed after gamma irradiation. However, the building units of lignin polymer such as coniferyl alcohol, and sinapyl alcohol were significantly changed that is, functional group as a methoxyl group from lignin polymer was cleaved by gamma irradiation. Based on the results of removal of hydrophobic compounds and cleavage of methoxyl group from lignin polymer, kapok fiber can be converted into a flame-resistant fiber by gamma ray treatment.

  16. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system

    Science.gov (United States)

    Mendoza, Edgar A.; Kempen, Cornelia; Lopatin, Craig

    2007-04-01

    This paper describes recent progress conducted towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense TM) microchip technology. The hybrid InOSense TM microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogator systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The FBG-Transceiver system uses active optoelectronic components monolithically integrated to the InOSense TM microchip, a microprocessor controlled signal processing electronics board capable of processing the FBG sensors signals related to stress-strain and temperature as well as vibration and acoustics. The FBG-Transceiver TM system represents a new, reliable, highly robust technology that can be used to accurately monitor the status of an array of distributed fiber optic Bragg grating sensors installed in critical infrastructures. Its miniature package, low power operation, and state-of-the-art data communications architecture, all at a very affordable price makes it a very attractive solution for a large number of SHM/NDI applications in aerospace, naval and maritime industry, civil structures like bridges, buildings and dams, the oil and chemical industry, and for homeland security applications. The miniature, cost-efficient FBG-Transceiver TM system is poised to revolutionize the field of structural health monitoring and nondestructive inspection market. The sponsor of this program is NAVAIR under a DOD SBIR contract.

  17. Board Governance: Transformational Approaches Under Healthcare Reform.

    Science.gov (United States)

    Zastocki, Deborah K

    2015-01-01

    Previous successes of healthcare organizations and effective governance practices in the pre-reform environment are not predictive of future success. Healthcare has been through numerous phases of growth and development using tried-and-true strategies. The challenge is that our toolbox does not contain what is needed to build the future healthcare delivery systems required in the post-reform world. Healthcare has had a parochial focus at the local level, with some broadening of horizons at the state and national levels. But healthcare delivery is now a global issue that requires a totally different perspective, and many countries are confronting similar issues. US healthcare reform initiatives have far-reaching implications. Compounding the reform dynamics are the simultaneously occurring, gamechanging accelerants such as enabling information technologies and mobile health, new providers of healthcare, increased consumer demands, and limited healthcare dollars, to name a few. Operating in this turbulent environment requires transformational board, executive, and physician leadership because traditional ways of planning for incremental change and attempting to time those adjustments can prove disastrous. Creating the legacy healthcare system for tomorrow requires governing boards and executive leadership to act today as they would in the desired future system. Boards need to create a culture that fosters.innovation with a tolerance for risk and some failure. To provide effective governance, boards must essentially develop new skills, expertise, and ways of thinking. The rapid rate of change requires board members to possess certain capabilities, including the ability to deal with ambiguity and uncertainty while demonstrating flexibility and adaptability, all with a driving commitment to metrics and results. This requires development plans for both individual members and the overall board. In short, the board needs to function differently, particularly regarding the

  18. Fungal Microbiomes Associated with Green and Non-Green Building Materials.

    Science.gov (United States)

    Coombs, Kanistha; Vesper, Stephen; Green, Brett J; Yermakov, Mikhail; Reponen, Tiina

    2017-01-01

    Water-damaged buildings can lead to fungal growth and occupant health problems. Green building materials, derived from renewable sources, are increasingly utilized in construction and renovations. However, the question as to what fungi will grow on these green compared to non-green materials, after they get wet, has not been adequately studied. By determining what fungi grow on each type of material, the potential health risks can be more adequately assessed. In this study, we inoculated green and non-green pieces of ceiling tile, composite board, drywall, and flooring with indoor dust containing a complex mixture of naturally occurring fungi. The materials were saturated with water and incubated for two months in a controlled environment. The resulting fungal microbiomes were evaluated using ITS amplicon sequencing. Overall, the richness and diversity of the mycobiomes on each pair of green and non-green pieces were not significantly different. However, different genera dominated on each type of material. For example, Aspergillus spp. had the highest relative abundance on green and non-green ceiling tiles and green composite boards, but Peniophora spp. dominated the non-green composite board. In contrast, Penicillium spp. dominated green and non-green flooring samples. Green gypsum board was dominated by Phialophora spp. and Stachybotrys spp., but non-green gypsum board by Myrothecium spp. These data suggest that water-damaged green and non-green building materials can result in mycobiomes that are dominated by fungal genera whose member species pose different potentials for health risks.

  19. Level-1 Data Driver Card - A high bandwidth radiation tolerant aggregator board for detectors

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2017-01-01

    The Level-1 Data Driver Card (L1DDC) was designed for the needs of the future upgrades of the innermost stations of the ATLAS end-cap muon spectrometer. The L1DDC is a high speed aggregator board capable of communicating with multiple front-end electronic boards. It collects the Level-1 data along with monitoring data and transmits them to a network interface through bidirectional and/or unidirectional fiber links at 4.8 Gbps each. In addition, the L1DDC board distributes trigger, time and configuration data coming from the network interface to the front-end boards. The L1DDC is fully compatible with the Phase II upgrade where the trigger rate is expected to reach the 1 MHz. Three different types of L1DDC boards will be fabricated handling up to 10.080 Gbps of user data. It consist of custom made radiation tolerant ASICs: the GigaBit Transceiver (GBTx), the FEAST DC-DC converter, the Slow Control Adapter (SCA), and the Versatile Tranceivers (VTRX) and transmitters (VTTX). The overall scheme of the data acquis...

  20. Fiber and colorectal diseases: Separating fact from fiction

    Science.gov (United States)

    Tan, Kok-Yang; Seow-Choen, Francis

    2007-01-01

    Whilst fruits and vegetables are an essential part of our dietary intake, the role of fiber in the prevention of colorectal diseases remains controversial. The main feature of a high-fiber diet is its poor digestibility. Soluble fiber like pectins, guar and ispaghula produce viscous solutions in the gastrointestinal tract delaying small bowel absorption and transit. Insoluble fiber, on the other hand, pass largely unaltered through the gut. The more fiber is ingested, the more stools will have to be passed. Fermentation in the intestines results in build up of large amounts of gases in the colon. This article reviews the physiology of ingestion of fiber and defecation. It also looks into the impact of dietary fiber on various colorectal diseases. A strong case cannot be made for a protective effect of dietary fiber against colorectal polyp or cancer. Neither has fiber been found to be useful in chronic constipation and irritable bowel syndrome. It is also not useful in the treatment of perianal conditions. The fiber deficit - diverticulosis theory should also be challenged. The authors urge clinicians to keep an open mind about fiber. One must be aware of the truths and myths about fiber before recommending it. PMID:17696243

  1. A New Arduino Datalogger Board for Simple, Low Cost Environmental Monitoring and the EnviroDIY Web Community

    Science.gov (United States)

    Hicks, S. D.; Aufdenkampe, A. K.; Montgomery, D. S.; Damiano, S. G.; Brooks, H. P.

    2015-12-01

    Scientists and educators around the world have been building their own dataloggers and devices using a variety of boards based on the Arduino open source electronics platform. While there have been several useful boards on the market in the past few years, they still required significant modification or additional components in order to use them with various sensors or deploy them in remote areas. Here we introduce our new custom datalogger board that makes it very easy to build a rugged environmental monitoring system. These custom boards contain all of the essential features of a solar-powered datalogger with radio telemetry, plus they have a very convenient and modular method for attaching a wide variety of sensors and devices. Various deployment options and installations are shown, as well as the online database that is used for capturing the live streaming data from the loggers and displaying graphs on custom web pages. Following the introduction last year of the EnviroDIY online community (http://enviroDIY.org), it continues to gain new members and share new ideas about open-source hardware and software solutions for observing our environment. EnviroDIY members can showcase their gadgets or describe their projects, ask questions, or follow along with helpful tutorials. Our new datalogger board, together with the EnviroDIY website, will make it easy for anyone to build and deploy their own environmental monitoring stations.

  2. Feasibility of Ultra-Thin Fiber-Optic Dosimeters for Radiotherapy Dosimetry.

    Science.gov (United States)

    Lee, Bongsoo; Kwon, Guwon; Shin, Sang Hun; Kim, Jaeseok; Yoo, Wook Jae; Ji, Young Hoon; Jang, Kyoung Won

    2015-11-17

    In this study, prototype ultra-thin fiber-optic dosimeters were fabricated using organic scintillators, wavelength shifting fibers, and plastic optical fibers. The sensor probes of the ultra-thin fiber-optic dosimeters consisted of very thin organic scintillators with thicknesses of 100, 150 and 200 μm. These types of sensors cannot only be used to measure skin or surface doses but also provide depth dose measurements with high spatial resolution. With the ultra-thin fiber-optic dosimeters, surface doses for gamma rays generated from a Co-60 therapy machine were measured. Additionally, percentage depth doses in the build-up regions were obtained by using the ultra-thin fiber-optic dosimeters, and the results were compared with those of external beam therapy films and a conventional fiber-optic dosimeter.

  3. Manufacturing and process optimization of porous rice straw board

    Science.gov (United States)

    Liu, Dejun; Dong, Bing; Bai, Xuewei; Gao, Wei; Gong, Yuanjuan

    2018-03-01

    Development and utilization of straw resources and the production of straw board can dramatically reduce straw waste and environmental pollution associated with straw burning in China. However, the straw board production faces several challenges, such as improving the physical and mechanical properties, as well as eliminating its formaldehyde content. The recent research was to develop a new straw board compound adhesive containing both inorganic (MgSO4, MgCO3, active silicon and ALSiO4) and organic (bean gum and modified Methyl DiphenylDiisocyanate, MDI) gelling materials, to devise a new high frequency straw board hot pressing technique and to optimize the straw board production parameters. The results indicated that the key hot pressing parameters leading to porous straw board with optimal physical and mechanical properties. These parameters are as follows: an adhesive containing a 4:1 ratio of inorganic-to-organic gelled material, the percentage of adhesive in the total mass of preload straw materials is 40%, a hot-pressing temperature in the range of 120 °C to 140 °C, and a high frequency hot pressing for 10 times at a pressure of 30 MPa. Finally, the present work demonstrated that porous straw board fabricated under optimal manufacturing condition is an environmentally friendly and renewable materials, thereby meeting national standard of medium density fiberboard (MDF) with potential applications in the building industry.

  4. Achievement report for fiscal 2000 on development of technology to recycle disintegrated waste gypsum boards; 1999 nendo kaitai haisekko board no saishigenka gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Investigations and researches have been made on disintegrated waste gypsum boards generated in building demolishing sites, with a target of recycling them as a raw material for boards. In the investigations, the actual status of discarding the disintegrated gypsum boards was identified, whereas the harmful substance contents such as of heavy metals were verified to be below the environmental criteria. As a method to remove impurities and foreign materials from the disintegrated waste gypsum boards, the hydration crushing method was established, in which volumetric change when hemihydrate gypsum returns to gypsum dehydrate is utilized, and bond of gypsum particles with each other and with impurities is destructed to separate them into simple substances. Furthermore, discussions were given on the reforming conditions to reform in an energy saving manner the disintegrated waste gypsum boards into high-quality large-size hemihydrate gypsum by using the wet-type process that utilizes the reversible reaction between hemihydrate gypsum and gypsum dehydrate in the disintegrated waste gypsum boards. A manufacturing process to put the recycled gypsum into practical use was also discussed. Prototype board fabrication and tests were performed by using the reformed gypsum board materials, wherein good results were obtained from all of the practical, chemical, and physical tests. (NEDO)

  5. Asbestos exposure of building maintenance personnel.

    Science.gov (United States)

    Mlynarek, S; Corn, M; Blake, C

    1996-06-01

    The exposures of building maintenance personnel and occupants to airborne asbestos fibers, and the effects of operations and maintenance programs on those exposures, continue to be an important public health issue. The subject of this investigation was a large metropolitan county with numerous public buildings which routinely conducted air sampling for asbestos. A total of 302 personal air samples in nine task categories collected during maintenance worker activities in proximity to asbestos-containing materials were analyzed; 102 environmental air samples in four task categories were also analyzed. The arithmetic means of the 8-hr time weighted average exposures for personal sampling for each task category were all below the Occupational Safety and Health Administration permissible exposure level of 0.1 fibers (f)/cc > 5 microm. The highest mean 8-hr time weighted average exposure was 0.030 f/cc > 5 microm for ceiling tile replacement. The maximum asbestos concentration during sample collection for environmental samples was 0.027 f/cc > 5 microm. All asbestos-related maintenance work was done within the framework of an Operations and Maintenance Program (OMP) which utilized both personal protective equipment and controls against fiber release/dispersion. Results are presented in association with specific OMP procedures or controls. These results support the effectiveness of using Operations and Maintenance Programs to manage asbestos in buildings without incurring unacceptable risk to maintenance workers performing maintenance tasks.

  6. FIBER-TEX 1991: The Fifth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    International Nuclear Information System (INIS)

    Buckley, J.D.

    1992-10-01

    This document is a compilation of papers presented at a joint NASA/North Carolina State University/DoD/Clemson University/Drexel University conference on Fibers, Textile Technology, and Composites Structures held at the College of Textiles Building on Centennial Campus of North Carolina State University, Raleigh, North Carolina on October 15-17, 1991. Conference papers presented information on advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, pultruded composites, and the latest requirements for the use of textiles in the production of composite materials and structures. Separate abstracts have been prepared for papers in this report

  7. Complex of fiber and effects of mix spinning; Sen'i no fukugoka to konbo no koka

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, N. [Asahi Chemical Industry Corp., Tokyo (Japan)

    2000-03-01

    In recently, comfortable life can be spent by performing complex of fibers. As complex of single fibers being materials of yarn, conjugate fiber is listed. Conjugate fiber is a fiber spun over 2 kind of polymer having different characteristics from one nozzle. There are sheath core type fibers as complex functional fibers. Static electricity prevention fibers can be prepared by putting conductive materials, for example, carbon black into core parts. After putting components being able to dissolve by specific solvents into core, hollow fibers can be prepared by dissolving core parts in near process to products. By reason of clothing contacting to skin directly in board aria and long time, fashionable characters of design and so on or comfortability of wearing are needed in many cases. In this reason, many kinds of fibers for clothing prepared complex yarn by being complex and by making the best use of good characteristics of each fibers, and developed a way to new function or new use. (NEDO)

  8. Use of rubble from building demolition in mortars.

    Science.gov (United States)

    Corinaldesi, V; Giuggiolini, M; Moriconi, G

    2002-01-01

    Because of increasing waste production and public concerns about the environment, it is desirable to recycle materials from building demolition. If suitably selected, ground, cleaned and sieved in appropriate industrial crushing plants, these materials can be profitably used in concrete. Nevertheless, the presence of masonry instead of concrete rubble is particularly detrimental to the mechanical performance and durability of recycled-aggregate concrete and the same negative effect is detectable when natural sand is replaced by fine recycled aggregate fraction. An alternative use of both masonry rubble and fine recycled material fraction could be in mortars. These could contain either recycled instead of natural sand or powder obtained by bricks crushing as partial cement substitution. In particular, attention is focused on the modification that takes place when either polypropylene or stainless steel fibers are added to these mortars. Polypropylene fibers are added in order to reduce shrinkage of mortars, stainless steel fibers for improving their flexural strength. The combined use of polypropylene fibers and fine recycled material from building demolition could allow the preparation of mortars showing good performance, in particular when coupled with bricks. Furthermore, the combined use of stainless steel fibers and mortars containing brick powder seems to be an effective way to guarantee a high flexural strength.

  9. DOE's Environmental Management Site-Specific Advisory Board: The Roles, Work, and Assessment of the Constituent Local Boards - 13587

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Catherine [U.S. Dept. of Energy, Office of Environmental Management, Office of Intergovernmental and Community Activities, 1000 Independence Avenue, S.W.,Washington, D.C. 20585 (United States); Freeman, Jenny [Strata-G, LLC, 2027 Castaic Lane, Knoxville, TN 37932 (United States); Cantrell, Yvette [Restoration Services, Inc., 136 Mitchell Road, Oak Ridge, TN 37830 (United States)

    2013-07-01

    effectiveness, the agency draws on the experience of members to create best practices for the EM SSAB, as a unique form of public involvement. Four areas that have been identified by local board Chairpersons as important to their local board operations are - Enhancing communication between technical and non-technical board members; - Building on common ground toward recommendations; - Public involvement in EM SSAB local board activities; - The EM SSAB annual work plan process. The first three areas are addressed below by current or former chairpersons of the EM SSAB: Ralph Phelps, former Chairperson of the Northern New Mexico Citizens' Advisory Board; Susan Leckband, former Chairperson and current Vice Chairperson of the Hanford Advisory Board; and Val Francis, Vice Chairperson of the Portsmouth (PORTS) SSAB. In addition, Eric Roberts, facilitator of the PORTS SSAB, has contributed to the section on public involvement. In a separate paper for this session, Ralph Young, Chairperson of the Paducah Citizens' Advisory Board addresses the EM SSAB annual work plan process. (authors)

  10. Strength Analysis of Coconut Fiber Stabilized Earth for Farm Structures

    Science.gov (United States)

    Enokela, O. S.; P. O, Alada

    2012-07-01

    Investigation of the strength characteristic of soil from alluvial deposit of River Benue in makurdi stabilized with coconut fiber as a stabilizer was carried as local building material for farm structure. Processed coconut fibers were mixed with the soil at four different mix ratios of 1% fiber, 2% fiber, 3% fiber and 4% fiber by percentage weight with 0% fiber as control. Compaction test and compressive strength were carried out on the various stabilizing ratio. From the compaction test, the correlation between the maximum dry density and optimum moisture content is a second order polynomial with a coefficient of 63% obtained at1.91kg/m3and 20.0% respectively while the compressive strength test shows an optimum failure load of 8.62N/mm2 at 2%fibre:100% soil mix ratio at 2.16 maximum dry density.

  11. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, C. J. [Building Science Laboratories, Waterloo, ON (Canada); Fox, M. J. [Building Science Laboratories, Waterloo, ON (Canada); Lstiburek, J. [Building Science Corporation, Westford, MA (United States)

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three fiber glass insulation materials and one stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  12. In-situ long-term thermal performance of impermeably face polyiso foam boards

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyaya, Phalguni; Normandin, Nicole; Van Reenen, David; Lackey, John [National Research Council Canada, Institute for Reserch in Construction, Ottawa, (Canada); Drouin, Michel [Consultant, Dorion, (Canada)

    2010-07-01

    Closed-cell polyisocyanurate (polyiso) foam insulation products are widely used in building envelope constructions as they have one of the highest R-values per unit thickness among the insulations used in the construction industry. The introduction of impermeable facers on the surface of polyiso rigid board is aimed at enhancing the long-term thermal resistance (LTTR) properties of the foam. This paper evaluated the thermal performance of impermeably faced polyiso boards after more than six years of field exposure. Boards were installed and instrumented at NRC-IRC's field test facility. Field monitoring was performed on a regular basis for six years of exposure until 2008. Then, nine specimens were cut from the boards which were removed from the test hut to evaluate their thermal characteristic using a heat flow meter apparatus. It was found that the impermeably faced polyiso foam insulation boards aged significantly.

  13. Buildings and Health. Educational campaign for healthy buildings. Educational material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    In recent years health and comfort problems associated with the indoor climate have come to constitute a problem in Sweden. To come to grips with this a nationwide educational campaign on Buildings and Health is being run. It is directed to those involved in planning, project design, construction and management of buildings. The objective is to convey a body of knowledge to the many occupational and professional groups in the construction sector on how to avoid indoor climate problems in homes, schools, offices and other workplaces. The campaign is being run by the Swedish National Board of Housing and Planning and the Swedish Council for Building Research, in co-operation with various organizations and companies in the construction industry, and with municipalities and authorities. The knowledge which is being disseminated through the campaign is summarized in this compendium. figs., tabs.

  14. An Experimental Study on Non-Compression X-Bracing Systems Using Carbon Fiber Composite Cable for Seismic Strengthening of RC Buildings

    Directory of Open Access Journals (Sweden)

    Kang Seok Lee

    2015-09-01

    Full Text Available Cross-bracing (X-bracing is one of the most popular methods of seismic retrofitting, and has been shown to significantly increase the structural stiffness and strength of buildings. Conventional steel X-bracing methods typically exhibit brittle failure at the connection between the brace and the building, or buckling failure of the braces. This study investigated the structural properties of a new type of non-compression X-bracing system using carbon fiber composite cable (CFCC. This non-compression X-bracing system uses CFCC bracing and bolt connections between structural members and the terminal fixer of the CFCC, instead of conventional steel bracing. The aim is to overcome the brittle and buckling failures that can occur at the connection and bracings with conventional steel X-bracing methods. We carried out cyclic loading tests, and the maximum load carrying capacity and deformation were investigated, as well as hysteresis in the lateral load–drift relations. The test results revealed that the CFCC X-bracing system installed in reinforced concrete frames enhanced the strength markedly, and buckling failure of the bracing was not observed.

  15. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, C. J. [Building Science Labs., Waterloo, ON (Canada); Fox, M. J. [Building Science Labs., Waterloo, ON (Canada); Lstiburek, J. [Building Science Corporation, Westford, MA (United States)

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three (3) fiber glass insulation materials and one (1) stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  16. ENZYMATIC HYDROLYSIS LIGNIN DERIVED FROM CORN STOVER AS AN INTRINSTIC BINDER FOR BIO-COMPOSITES MANUFACTURE: EFFECT OF FIBER MOISTURE CONTENT AND PRESSING TEMPERATURE ON BOARDS’ PROPERTIES

    Directory of Open Access Journals (Sweden)

    Guanben Du

    2011-02-01

    Full Text Available Binderless fiberboards from enzymatic hydrolysis lignin (EHL and cotton stalk fibers were prepared under various manufacturing conditions, and their physico-mechanical properties were evaluated. Full factorial experimental design was used to assess the effect of fiber moisture content and pressing temperature on boards’ properties. In addition, differential scanning calorimetry (DSC was used to obtain the glass transition temperature (Tg of EHL. We found that both fiber moisture content and pressing temperature had significant effects on binderless fiberboards’ properties. High fiber moisture content and pressing temperature are suggested to contribute to the self-bonding improvement among fibers with lignin-rich surface mainly by thermal softening enzymatic hydrolysis lignin. In this experiment, the optimized pressing temperature applied in binderless fiberboard production should be as high as 190°C in accordance with the EHL Tg value of 189.4°C, and the fiber moisture content should be limited to less than 20% with a higher board density of 950 kg/m3 to avoid the delamination of boards during hot pressing.

  17. Study of the mechanical properties of Ziziphus nummularia (ber) fibers for formation of fiber reinforced composites

    Science.gov (United States)

    Joshi, Akshay; Mangal, R.; Bhojak, N.

    2018-05-01

    Ziziphus is the one of the most abundant plant of arid region of Rajasthan and rest part of desert land in world. There are a lots of research work going on and has been done on medical applications of this plant and it is playing very important role in economy of desert areas. In this paper our discussion will bring the attention its physical properties so that we can find the possibility of its applications in the various field of fiber reinforced composites which either can be used in such as interior & exterior part of automotive so it can reduce their overall weight, cost and improve its fuel efficiency without compromising in strength or can be used in flywheel technology for energy saving in automobiles or in building materials and so on. In this paper our approach is to extract the fiber from this plant, analyze the mechanical properties of the fiber and then discuss the various possibility of its application in appropriate field of composites. To find the possibility in FRC for Ziziphus fiber our next step is to compare it with other fibers whose composites have already been formed and studied.

  18. Development of laser surface cladding through energy transmission over optical fiber

    International Nuclear Information System (INIS)

    Hirano, Kenji; Morishige, Norio; Irisawa, Toshio

    1990-01-01

    Much attention has recently been paid to laser cladding techniques as an approach in controlling the composition and structure of the metal surface. If YAG laser is used as the cladding method, the flexibility of laser cladding process increases extremely because YAG laser beam is transmitted through an optical fiber, and enabling cladding on pipes installed in actual plants. So experiments on YAG laser cladding through energy transmission over an optical fiber were performed to prevent stress corrosion cracking in austenitic stainless steel pipes. In order to build a cladding layer, mixed metal powder were pre-placed on the inner surface of the pipe using organic binder and the pre-placed powder beds were melted with YAG laser beam transmitted using an optical fiber. This paper introduces the method of building a cladding layer on pipes in actual nuclear plants. (author)

  19. High-rate tensile behavior of steel fiber-reinforced concrete for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Jin; Park, Gi-Joon [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Kim, Dong Joo, E-mail: djkim75@sejong.ac.kr [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Moon, Jae Heum; Lee, Jang Hwa [Korea Institute of Construction Technology, 2311 Daewha-Dong, Ilsan-Gu, Goyang-Si, Gyeonggi-Do 411-712 (Korea, Republic of)

    2014-01-15

    Highlights: • The final goal is to develop a fiber reinforced concrete for containment buildings. • High rate tensile behavior of FRC was investigated. • Strain energy frame impact machine was used for tensile impact tests. • Different rate sensitivity of FRC was found according to the type fiber. • Adding more fibers by increasing S/a is positive for higher impact resistance of FRC. -- Abstract: The direct tensile behavior of fiber-reinforced concrete (FRC) at high strain rates were investigated for their potential to enhance the resistance of the containment building of nuclear power plants (NPPs) against aircraft impact. Two types of deformed steel, hooked (H) and twisted (T) fibers were employed. To improve the tensile resistance of FRCs even at higher rates by adding more fibers, the mixture of concrete was modified by either increasing the sand-to-coarse aggregate ratio or decreasing the maximum size of coarse aggregate. All FRC specimens produced two to six times greater tensile strength and one to five times higher toughness at high strain rates (4–53 s{sup −1}) than those at a static rate (0.000167 s{sup −1}). T-fiber generally produced higher tensile strength and toughness than H-fiber at both static and high rates. Although both fibers showed favorable rate sensitivity, T-fiber produced much greater enhancement, at higher strain rates, in tensile strength and slightly lower enhancement in toughness than H-fiber. As the maximum size of coarse aggregate decreased from 19 to 5 mm, the tensile strength and toughness of FRCs with T-fibers noticeably increased at both static and high strain rates.

  20. Natural radiation and radon concentration in buildings

    International Nuclear Information System (INIS)

    Ito, Kazuo; Asano, Kenji

    1985-01-01

    The purpose of this subject is to investigate the actual conditions of natural radiation levels in various types of buildings. This study is indispensable for the accurate evaluation of population dose of external and internal exposures from natural radiation. Concentrations of K-40, Ra-226 and Th-232 in building materials such as Portland cement, gypsum boards and its raw materials were measured with Ge gamma spectrometer. (author)

  1. Building Budgets and Trust through the Alchemy of Superintendent Leadership

    Science.gov (United States)

    Bird, James J.

    2010-01-01

    Superintendents have the burden and the opportunity to exert leadership through the budget-building process. This article details a dozen tenets which can be implemented by practicing superintendents. Doing so increases the chances of building trust among the stakeholders of administrators, staff, community, and school board members. The district…

  2. Modeling illumination performance of plastic optical fiber passive daylighting system

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, F; Ahmad, A [Universiti Teknologi MARA, Shah Alam (Malaysia). Faculty of Electrical Engineering; Ahmed, A Z [Universiti Teknologi MARA, Shah Alam (Malaysia). Bureau of Reseaarch and Consultancy

    2006-12-15

    of the most direct methods of utilizing solar energy for energy conservation is to bring natural light indoors to light up an area. This paper reports on the investigation of the feasibility to utilize large core optical fibers to convey and distribute solar light passively throughout residential or commercial structures. The focus of this study is on the mathematical modeling of the illumination performance and the light transmission efficiency of solid core end light fiber for optical day lighting systems. The Meatball simulations features the optical fiber transmittance for glass and plastic fibers, illumination performance over lengths of plastic end-lit fiber, spectral transmission, light intensity loss through the large diameter solid core optical fibers as well as the transmission efficiency of the optical fiber itself. It was found that plastic optical fiber has less transmission loss over the distance of the fiber run which clearly shows that the Plastic Optical Fiber should be optimized for emitting visible light. The findings from the analysis on the performance of large diameter optical fibers for day lighting systems seems feasible for energy efficient lighting system in commercial or residential buildings.

  3. Modeling illumination performance of plastic optical fiber passive daylighting system

    International Nuclear Information System (INIS)

    Sulaiman, F.; Ahmad, A.; Ahmed, A.Z.

    2006-01-01

    One of the most direct methods of utilizing solar energy for energy conservation is to bring natural light indoors to light up an area. This paper reports on the investigation of the feasibility to utilize large core optical fibers to convey and distribute solar light passively throughout residential or commercial structures. The focus of this study is on the mathematical modeling of the illumination performance and the light transmission efficiency of solid core end light fiber for optical day lighting systems. The Meatball simulations features the optical fiber transmittance for glass and plastic fibers, illumination performance over lengths of plastic end-lit fiber, spectral transmission, light intensity loss through the large diameter solid core optical fibers as well as the transmission efficiency of the optical fiber itself. It was found that plastic optical fiber has less transmission loss over the distance of the fiber run which clearly shows that the Plastic Optical Fiber should be optimized for emitting visible light. The findings from the analysis on the performance of large diameter optical fibers for day lighting systems seems feasible for energy efficient lighting system in commercial or residential buildings

  4. Building a digital scale using optical fiber sensors for teaching shift

    International Nuclear Information System (INIS)

    Diaz, L.; Torres, C.

    2016-01-01

    In this article is show the implementation of an electronic balance using Optics fibers for teaching displacement sensors. The system is based on displacement detections using an fiber optical bifurcated as active optical medium, commercial pointers of power lesser 10mW, a converter sensor of light intensities at electric, a PIC for signal processing and LCD to display the data. The importance of the implemented prototype lies in having an electronic device developed by students of the electives of optoelectronic, applying displacement sensing, also, the balance built could be used in zones classified with electromagnetic interference and in the areas hazardous by not using or storing sufficient electrical or thermal energy it can ignite a flammable atmosphere environment. (Author

  5. Research and Development of solar cell frame. Study on solar cell array solid with building material-business building

    Energy Technology Data Exchange (ETDEWEB)

    1986-08-01

    This is a NEDO annual report for 1985. A feasibility study was carried out from the viewpoints demanded both from the building material side and the solar cell. Evaluation from the technical, institutional, and economical viewpoints indicated the possibility of using a roof material solid with carbon-fiber-reinforced concrete and a curtain wall. The solar cell module was verified as a building material to be resistant against the external force, water, and heat. A problem left is how to enlarge the module. Integrated use of CFRC (Carbon Fiber Reinforced Concrete) and a cell of maximum size (1,240 x 700 mm), which is industrially available, can be expected. Present solar cell array can be utilized as a building material as it is for a curtain wall. Cost calculation of the CFRC solid roofing material indicates 276 yen/KWH for 15 years depreciation, 10 % residual value, and 8% annual interest, which is a little expensive, but this cost may be applicable to the use as a curtain wall.

  6. Board Effectiveness and Employee Engagement: Nigeria Stakeholder Perceptions

    Directory of Open Access Journals (Sweden)

    Bashir Mande

    2013-03-01

    Full Text Available The objective of this study is to determine whether employee participation yields effective board performance. To stimulatedebates inthe stakeholder theoretical perspective in an attempt to offer more inclusive approach to strengthen the existing governance structure in Nigeria.This research intends to investigate the suitability of employees participating in board’s decision-making hierarchy because of their contractual importance as wealth creators of the firm. A conceptual model is proposed and tested on public listed companies in Nigeria based on survey perception of sampled 154 respondents. The study employs in-depth confirmatory factory analysis in a structural equation modeling approach. Building upon constructs such as union relations, productivity, and skilled-labor turnover, the study found the indicator variables measure employee participation, which focused more on the board’s control, operational decisions, and strategy in monitoring, service, and networking roles. Hence, we conclude that employees as important contractual company stakeholders affect board performance. Builds on the limited research agenda for boards and corporate governance that focus on coordinating, exploring and distribution of stakes using adventurous research designs and statistical tools, especially in Nigerian emerging economy. This paper exposes the firm’s potentials as provider of sustainable and longer-term benefits not only limited to equityholders, but also to employees as wealth creators, which will improve mutual trust, harmony and confidence for more stable and productive outputs that could give visibility to income inequality. The paper provides valid measures that link corporate governance debates to broader stakeholder perspective.

  7. Compressive failure model for fiber composites by kink band initiation from obliquely aligned, shear-dislocated fiber breaks

    Energy Technology Data Exchange (ETDEWEB)

    Bai, J.; Phoenix, S.L. [Cornell University, Ithaca, NY (United States). Dept. of Theoretical and Applied Mechanics

    2005-04-01

    Predicting compressive failure of a unidirectional fibrous composite is a longstanding and challenging problem that we study from a new perspective. Motivated by previous modelling of tensile failure as well as experimental observations on compressive failures in single carbon fibers, we develop a new micromechanical model for the compressive failure process in unidirectional, planar composites. As the compressive load is increased, random fiber failures are assumed to occur due to statistically distributed flaws, analogous to what occurs in tension. These breaks are often shear-mode failures with slanted surfaces that induce shear dislocations, especially when they occur in small groups aligned obliquely. Our model includes interactions of dislocated and neighboring intact fibers through a system of fourth-order, differential equations governing transverse deformation, and also allows for local matrix plastic yielding and debonding from the fiber near and within the dislocation arrays. Using the Discrete Fourier Transform method, we find a 'building-block' analytical solution form, which naturally embodies local length scales of fiber microbuckling and instability. Based on the influence function, superposition approach, a computationally efficient scheme is developed to model the evolution of fiber and matrix stresses. Under increasing compressive strain the simulations show that matrix yielding and debonding crucially lead to large increases in bending strains in fibers next to small groups of obliquely aligned, dislocated breaks. From the paired locations of maximum fiber bending in flanking fibers, the triggering of an unstable kink band becomes realistic. The geometric features of the kink band, such as the fragment lengths and orientation angles, will depend on the fiber and matrix mechanical and geometric properties. In carbon fiber-polymer matrix systems our model predicts a much lower compressive failure stress than obtained from Rosen

  8. Analysis of aceismatic properties of switch boards

    International Nuclear Information System (INIS)

    Tabuchi, Yoji; Nishikawa, Atsushi

    1986-01-01

    Recently, in order to limit the disaster at the time of earthquakes to the minimum, the aseismatic properties of electric facilities have been regarded as important. By the development and spread of CAE simulation and experimental modal analysis, aseismatic analysis has become feasible also in design section. Taking an example of the switch boards of rigid construction, which have been used mainly for nuclear power plants, the analysis of the aseismatic properties is explained. In the switch boards of rigid construction, the probability of causing resonance behavior due to earthquakes is decreased by making the structure rigid, thus the aseismatic properties are heightened. In the switch boards of rigid construction, the primary natural frequency is heightened usually to above 20 Hz considering earthquake movement and the response of buildings (in the range from 0.5 to 10 Hz). Since the switch boards of rigid construction can be treated as a rigid body in the examination of structural strength, generally static analysis is carried out. The dimensions and weight tend to be large for increasing the rigidity. In most cases, standard equipment can be adopted if the fixing is made strong. The modal analysis of the natural vibration, static stress analysis and time history response analysis were carried out by finite element method. Also the vibration test on a large vibration table was made. The results are reported. (Kako, I.)

  9. Shear transfer in concrete reinforced with carbon fibers

    Science.gov (United States)

    El-Mokadem, Khaled Mounir

    2001-10-01

    Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.

  10. Gas-phase optical fiber photocatalytic reactors for indoor air application: a preliminary study on performance indicators

    Science.gov (United States)

    Palmiste, Ü.; Voll, H.

    2017-10-01

    The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.

  11. Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas T.; Poli, Federica

    2012-01-01

    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with build-in gain shaping is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes define the large-mode-area core. ...

  12. Neural networks within multi-core optic fibers.

    Science.gov (United States)

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-07-07

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.

  13. Safety measures for the main control board replacement project at Ikata units 1 and 2

    International Nuclear Information System (INIS)

    Hashimoto, Nozomu; Tada, Kenji

    2013-01-01

    When Units 1 and 2 of the Ikata Power Station underwent replacement of their main control boards, control cabinets, and associated equipment, it was necessary to remove all the control boards, cabinets, and cables from the control building including from the main control room. This meant the loss of operation and monitoring functions in the main control room and functions of control cabinets. To maintain the operation and monitoring functions required under plant shutdown conditions, temporary operation and monitoring equipment (i.e., temporary main control board) was installed in the temporary main control room. The advance preparations included a trial switching from the permanent to the temporary main control board to identify and address potential problems in advance. When the replacement work was underway, a work schedule sheet posted in the temporary and the permanent control rooms was used to prevent human errors caused by operators’ recognition errors. Monitoring and control signals were switched from the old boards to the temporary boards and from the temporary boards to the new boards at appropriate timings to ensure plant safety during the replacement operation. (author)

  14. Development of a cylindrical tracking detector with multichannel scintillation fibers and pixelated photon detector readout

    Energy Technology Data Exchange (ETDEWEB)

    Akazawa, Y.; Miwa, K.; Honda, R.; Shiozaki, T.; Chiga, N.

    2015-07-01

    We are developing a cylindrical tracking detector for a Σp scattering experiment in J-PARC with scintillation fibers and the Pixelated Photon Detector (PPD) readout, which is called as cylindrical fiber tracker (CFT), in order to reconstruct trajectories of charged particles emitted inside CFT. CFT works not only as a tracking detector but also a particle identification detector from energy deposits. A prototype CFT consisting of two straight layers and one spiral layer was constructed. About 1100 scintillation fibers with a diameter of 0.75 mm (Kuraray SCSF-78 M) were used. Each fiber signal was read by Multi-Pixel Photon Counter (MPPC, HPK S10362-11-050P, 1×1 mm{sup 2}, 400 pixels) fiber by fiber. MPPCs were handled with Extended Analogue Silicon Photomultipliers Integrated ReadOut Chip (EASIROC) boards, which were developed for the readout of a large number of MPPCs. The energy resolution of one layer was 28% for a 70 MeV proton where the energy deposit in fibers was 0.7 MeV.

  15. A filter circuit board for the Earthworm Seismic Data Acquisition System

    Science.gov (United States)

    Jensen, Edward Gray

    2000-01-01

    The Earthworm system is a seismic network data acquisition and processing system used by the Northern California Seismic Network as well as many other seismic networks. The input to the system is comprised of many realtime electronic waveforms fed to a multi-channel digitizer on a PC platform. The digitizer consists of one or more National Instruments Corp. AMUX–64T multiplexer boards attached to an A/D converter board located in the computer. Originally, passive filters were installed on the multiplexers to eliminate electronic noise picked up in cabling. It was later discovered that a small amount of crosstalk occurred between successive channels in the digitizing sequence. Though small, this crosstalk will cause what appear to be small earthquake arrivals at the wrong time on some channels. This can result in erroneous calculation of earthquake arrival times, particularly by automated algorithms. To deal with this problem, an Earthworm filter board was developed to provide the needed filtering while eliminating crosstalk. This report describes the tests performed to find a suitable solution, and the design of the circuit board. Also included are all the details needed to build and install this board in an Earthworm system or any other system using the AMUX–64T board. Available below is the report in PDF format as well as an archive file containing the circuit board manufacturing information.

  16. A Five-Year School Building and Future Sites Program 1966-1970.

    Science.gov (United States)

    1965

    Five-year school building and site needs and related financial requirements are summarized for Milwaukee's schools. Educational policies concerning the school building program are stated, and consideration is given to factors affecting school board needs such as birth rate, public housing projects, urban renewal, highways, and expressways. School…

  17. Structural wood products in onshore buildings at Naval Station Norfolk, 2000.

    Science.gov (United States)

    David B. McKeever

    2003-01-01

    As of December 31, 2000, there were 603 buildings at Naval Station (NAVSTA) Norfolk with a combined floor area of nearly 17.3 million ft2. In one-third of these buildings, structural wood products were used in one or more major structural building applications, utilizing an estimated 11.6 million board feet of lumber, 0.4 million ft2 (3/8-in. basis) of structural...

  18. Detection system using scintillating optical fibers and image tube readout

    International Nuclear Information System (INIS)

    Alspector, J.; Borenstein, S.

    1979-01-01

    The hodoscope subgroup has studied a detection system consisting of bundles of optical fibers with readout via image tubes. The basic building block is an optical fiber with a scintillator inner core. The inner core has refractive index n/sub o/ (1.58 for plastic scintillator), and the outer sheath has a low index (approx. 1.4). Light is created in the core by passage of a particle track; if the light strikes the sheath at an angle greater than the critical angle phi/sub c/, it is trapped in the fiber until it finds its way to the photon detector

  19. Development of fly ash boards with thermal, acoustic and fire insulation properties.

    Science.gov (United States)

    Leiva, C; Arenas, C; Vilches, L F; Alonso-Fariñas, B; Rodriguez-Galán, M

    2015-12-01

    This paper presents an experimental analysis on a new board composed of gypsum and fly ashes from coal combustion, which are mutually compatible. Physical and mechanical properties, sound absorption coefficient, thermal properties and leaching test have been obtained. The mechanical properties showed similar values to other commercial products. As far as the acoustic insulation characteristics are concerned, sound absorption coefficients of 0.3 and 0.8 were found. The board presents a low thermal conductivity and a fire resistance higher than 50 min (for 4 cm of thickness). The leaching of trace elements was below the leaching limit values. These boards can be considered as suitable to be used in building applications as partitions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Report of the HDA building Task Force.

    Science.gov (United States)

    Scheerer, Ernest W

    2006-01-01

    The Building Task Force, after researching the many options, recommended to the Board of Trustees that, at this time, it is in the best interest of the association and its members to keep the building. In addition to the reasons outlined in the preceding paragraphs, the conclusions drawn by the Task Force can be summarized as follows: 1) This is not the time to make a change as both land and construction costs are high; 2) There is little inventory at this time that would provide a significant improvement over the present building; 3) There is no urgent need to act now; and 4) Cost-effective changes can be made to make the building more valuable to the association.

  1. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors.

    Science.gov (United States)

    Cheng, Huhu; Dong, Zelin; Hu, Chuangang; Zhao, Yang; Hu, Yue; Qu, Liangti; Chen, Nan; Dai, Liming

    2013-04-21

    Functional graphene-based fibers are promising as new types of flexible building blocks for the construction of wearable architectures and devices. Unique one-dimensional (1D) carbon nanotubes (CNTs) and 2D graphene (CNT/G) hybrid fibers with a large surface area and high electrical conductivity have been achieved by pre-intercalating graphene fibers with Fe3O4 nanoparticles for subsequent CVD growth of CNTs. The CNT/G hybrid fibers can be further woven into textile electrodes for the construction of flexible supercapacitors with a high tolerance to the repeated bending cycles. Various other applications, such as catalysis, separation, and adsorption, can be envisioned for the CNT/G hybrid fibers.

  2. Board Task Performance

    DEFF Research Database (Denmark)

    Minichilli, Alessandro; Zattoni, Alessandro; Nielsen, Sabina

    2012-01-01

    identify three board processes as micro-level determinants of board effectiveness. Specifically, we focus on effort norms, cognitive conflicts and the use of knowledge and skills as determinants of board control and advisory task performance. Further, we consider how two different institutional settings....... The findings show that: (i) Board processes have a larger potential than demographic variables to explain board task performance; (ii) board task performance differs significantly between boards operating in different contexts; and (iii) national context moderates the relationships between board processes...... and board task performance....

  3. SU-F-T-93: Breast Surface Dose Enhancement Using a Clinical Prone Breast Board

    International Nuclear Information System (INIS)

    Guerra, M; Jozsef, G

    2016-01-01

    Purpose: The use of specialized patient set-up devices in radiotherapy, such as prone breast boards, may have unwanted dosimetric effects. The goal of this study was to evaluate the effect of a clinically used prone breast board on skin dose due to buildup. Methods: GafChromic film (EBT3) was used for dose measurements on the surface of a solid water phantom shaped to mimic the curvature of the breast. We investigated two setup scenarios: the medial field border placed at the medial edge of the board and 1 cm contralaterally from that edge. A strip of film was taped to the medial surface of the phantom. Gantry angles varied from 10 to 30 degrees below the lateral gantry position, representing anterior oblique fields. The measurements were performed with and without the presence of the board; the ratio of their corresponding doses (dose enhancement) was evaluated. Results: For the cases where the field edge is at the edge of the board, the dose enhancement is negligible for all the tested angles. When the field edge is 1 cm inside the board, the maximum surface dose enhancement varies depending on the gantry angle between 2.2 for 30 degrees and 3.2 for 20 degrees. The length on the film at which the presence of the board is detectable (i.e. where there is dose enhancement) is longer for the shallower angles. Conclusion: Even the low-density, thin carbon fiber board with a thin soft foam pad on the top can produce significant dose enhancement on the skin in prone breast treatment due to loss of buildup. However, it happens only when the patient mid-sternum is over the board, i.e. the medial edge of the field traverses through the board and pad. Even then, the effect occurs only at the field edge, i.e. the penumbral region.

  4. Real-Time On-Board Airborne Demonstration of High-Speed On-Board Data Processing for Science Instruments (HOPS)

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.

  5. Hollow fiber: a biophotonic implant for live cells

    Science.gov (United States)

    Silvestre, Oscar F.; Holton, Mark D.; Summers, Huw D.; Smith, Paul J.; Errington, Rachel J.

    2009-02-01

    The technical objective of this study has been to design, build and validate biocompatible hollow fiber implants based on fluorescence with integrated biophotonics components to enable in fiber kinetic cell based assays. A human osteosarcoma in vitro cell model fiber system has been established with validation studies to determine in fiber cell growth, cell cycle analysis and organization in normal and drug treated conditions. The rationale for implant development have focused on developing benchmark concepts in standard monolayer tissue culture followed by the development of in vitro hollow fiber designs; encompassing imaging with and without integrated biophotonics. Furthermore the effect of introducing targetable biosensors into the encapsulated tumor implant such as quantum dots for informing new detection readouts and possible implant designs have been evaluated. A preliminary micro/macro imaging approach has been undertaken, that could provide a mean to track distinct morphological changes in cells growing in a 3D matrix within the fiber which affect the light scattering properties of the implant. Parallel engineering studies have showed the influence of the optical properties of the fiber polymer wall in all imaging modes. Taken all together, we show the basic foundation and the opportunities for multi-modal imaging within an in vitro implant format.

  6. Guidelines for Assessment and Abatement of Asbestos-Containing Materials in Buildings.

    Science.gov (United States)

    Pielert, James H.; Mathey, Robert G.

    This report presents guidelines, based on available information, for the assessment and abatement of asbestos-containing materials in buildings. Section 1 provides background information on the history and use of asbestos-containing products in buildings, the characteristics of asbestos fibers, products and materials containing asbestos, and…

  7. Tunable Single Frequency 1.55 Micron Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative Er/Yb-co-doped...

  8. Novel tunable optical filter employing a fiber loop mirror for synthesis applications in WDM

    OpenAIRE

    Vázquez García, María Carmen; Vargas Palma, Salvador Elías; Sánchez-Pena, José Manuel

    2001-01-01

    A novel optical filter employing a fiber loop mirror within an amplified ring resonator is presented. The fiber loop mirror allows tuning by changing the coupling factor of a coupler. The device can be used as a building block to synthesize optical filters, as previously reported, saving components. Publicado

  9. Board effectiveness: Investigating payment asymmetry between board members and shareholders

    Directory of Open Access Journals (Sweden)

    Wuchun Chi

    2008-01-01

    Full Text Available Board members may well be responsible for dissension between themselves and shareholders since they are simultaneously the setters and receivers of both board remuneration and dividends. They may act out of their own personal interests at the expense of external shareholders. We investigate the impact of ownership structure, board structure and control deviation on payment asymmetry, where excessively high remuneration is paid to board members but considerably lower dividends are distributed to shareholders. We find strong evidence confirming that the smaller the shareholdings of board members and outside blockholders are, the more asymmetric the payments are. With controlling family members on the board and a higher percentage of seats held by independent board members, there is a slight reduction in the likelihood and severity of payment asymmetry. In addition, it is abundantly clear that the larger the board seat-control deviation is, the greater is the likelihood and severity of payment asymmetry. While prior research has primarily focused on board-manager agency issues, the board-shareholder perspective could be even more important in that it is the board that is the most directly delegated agent of shareholders, not the managers

  10. Board of Directors or Supervisory Board

    DEFF Research Database (Denmark)

    Werlauff, Erik

    2009-01-01

    The article analyses the legal consequences of the choice now available to Danish public limited companies, which can now opt for a two-tier management structure, in which the management board undertakes both the day-to-day and the overall management, while a supervisory board exercises control...... over the management board, including its appointment and dismissal. The article considers which companies a two-tier structure may be relevant for, and reviews the consequences for the composition, election and functioning of the company organs....

  11. Prototype performance studies of a Full Mesh ATCA-based General Purpose Data Processing Board

    CERN Document Server

    Okumura, Yasuyuki; Liu, Tiehui Ted; Yin, Hang

    2013-01-01

    High luminosity conditions at the LHC pose many unique challenges for potential silicon based track trigger systems. One of the major challenges is data formatting, where hits from thousands of silicon modules must first be shared and organized into overlapping eta-phi trigger towers. Communication between nodes requires high bandwidth, low latency, and flexible real time data sharing, for which a full mesh backplane is a natural solution. A custom Advanced Telecommunications Computing Architecture data processing board is designed with the goal of creating a scalable architecture abundant in flexible, non-blocking, high bandwidth board to board communication channels while keeping the design as simple as possible. We have performed the first prototype board testing and our first attempt at designing the prototype system has proven to be successful. Leveraging the experience we gained through designing, building and testing the prototype board system we are in the final stages of laying out the next generatio...

  12. Study on Performance of Steel Fiber Concrete Bridge Pier Specimens under Horizontal Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Baiben Chen

    2017-01-01

    Full Text Available Because of that steel fiber can effectively prevent the extension and development of small cracks in the concrete, steel fiber reinforced concrete has good toughness and tensile strength. In the application of building materials, steel fiber reinforced concrete is an ideal elastic-plastic material. For the seismic performance, it has advantages. In order to analyze the seismic performance of steel fiber reinforced concrete, 4 piers of the scale model test under horizontal cyclic loading were done. The results showed that failure mode of steel fiber reinforced concrete is better than that of ordinary concrete, and has a large yield moment under the external loads.

  13. Defense Business Board

    Science.gov (United States)

    Skip to main content (Press Enter). Toggle navigation Defense Business Board Search Search Defense Business Board: Search Search Defense Business Board: Search Defense Business Board Business Excellence in Defense of the Nation Defense Business Board Home Charter Members Meetings Studies Contact Us The Defense

  14. Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber.

    Science.gov (United States)

    Dahl, Wendy J; Stewart, Maria L

    2015-11-01

    It is the position of the Academy of Nutrition and Dietetics that the public should consume adequate amounts of dietary fiber from a variety of plant foods. Dietary fiber is defined by the Institute of Medicine Food Nutrition Board as "nondigestible carbohydrates and lignin that are intrinsic and intact in plants." Populations that consume more dietary fiber have less chronic disease. Higher intakes of dietary fiber reduce the risk of developing several chronic diseases, including cardiovascular disease, type 2 diabetes, and some cancers, and have been associated with lower body weights. The Adequate Intake for fiber is 14 g total fiber per 1,000 kcal, or 25 g for adult women and 38 g for adult men, based on research demonstrating protection against coronary heart disease. Properties of dietary fiber, such as fermentability and viscosity, are thought to be important parameters influencing the risk of disease. Plant components associated with dietary fiber may also contribute to reduced disease risk. The mean intake of dietary fiber in the United States is 17 g/day with only 5% of the population meeting the Adequate Intake. Healthy adults and children can achieve adequate dietary fiber intakes by increasing their intake of plant foods while concurrently decreasing energy from foods high in added sugar and fat, and low in fiber. Dietary messages to increase consumption of whole grains, legumes, vegetables, fruits, and nuts should be broadly supported by food and nutrition practitioners. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  15. Design and fabrication of advanced fiber alignment structures for field-installable fiber connectors

    Science.gov (United States)

    Van Erps, Jürgen; Vervaeke, Michael; Sánchez Martínez, Alberto; Beri, Stefano; Debaes, Christof; Watté, Jan; Thienpont, Hugo

    2012-06-01

    Fiber-To-The-Home (FTTH) networks have been adopted as a potential replacement of traditional electrical connections for the 'last mile' transmission of information at bandwidths over 1Gb/s. However, the success and adoption of optical access networks critically depend on the quality and reliability of connections between optical fibers. In particular a further reduction of insertion loss of field-installable connectors must be achieved without a significant increase in component cost. This requires precise alignment of fibers that can differ in terms of ellipticity, eccentricity or diameter and seems hardly achievable using today's widespread ferrule-based alignment systems. Novel low-cost structures for bare fiber alignment with outstanding positioning accuracies are strongly desired as they would allow reducing loss beyond the level achievable with ferrule-bore systems. However, the realization of such alignment system is challenging as it should provide sufficient force to position the fiber with sub-micron accuracy required in positioning the fiber. In this contribution we propose, design and prototype a bare-fiber alignment system which makes use of deflectable/compressible micro-cantilevers. Such cantilevers behave as springs and provide self-centering functionality to the structure. Simulations of the mechanical properties of the cantilevers are carried out in order to get an analytical approximation and a mathematical model of the spring constant and stress in the structure. Elastic constants of the order of 104 to 105N/m are found out to be compatible with a proof stress of 70 MPa. Finally a first self-centering structure is prototyped in PMMA using our Deep Proton Writing technology. The spring constants of the fabricated cantilevers are in the range of 4 to 6 × 104N/m and the stress is in the range 10 to 20 MPa. These self-centering structures have the potential to become the basic building blocks for a new generation of field-installable connectors.

  16. Bamboo fiberboards and attapulgite : does it lead to an improvement of humidity control in buildings?

    Science.gov (United States)

    Nguyen, D. M.; Grillet, A. C.; Goldin, T.; Hanh Diep, T. M.; Woloszyn, M.

    2018-04-01

    In order to save energy used to heat or cool buildings and to improve the inhabitants comfort, control of humidity inside buildings must be improved. This can be done by using buffering materials able to absorb and release moisture when necessary. Natural fibers and mineral absorbent are good candidates to manufacture such materials. The aim of this research is to mix bamboo fibers with attapulgite to evaluate the influence of this mineral absorbent on the hygric behavior of the fiberboards. The hygric properties are slightly improved by the attapulgite and thus bamboo fiberboards can be used as building insulation materials able to participate to the indoor moisture control.

  17. Students As Stakeholders: Library Advisory Boards and Privileging Our Users

    Directory of Open Access Journals (Sweden)

    Erin Dorney

    2013-02-01

    Full Text Available In Brief: This article investigates the idea of library student advisory boards as mechanisms for building more student-centered libraries at colleges and universities. Benefits of these types of organizations, measures of success, and the importance of acting on evidence-based user feedback are discussed. Introduction A Google search for “library student advisory board” returns hundreds of results [...

  18. Radiation protection monitoring board of the tritium building at Valduc

    International Nuclear Information System (INIS)

    Herve, J.Y.; Constantin, E.; Cordier, C.; Hudelot, F.

    1990-01-01

    The paper describes briefly the radiation protection in a building where a large amount of tritium is handled. A network of detectors (ionization chambers) gives locally acoustic signals and luminous signals. Data are centralized for tritium management, ventilation and waste disposal [fr

  19. CREATION OF MUSIC WITH FIBER REINFORCED CONCRETE

    Science.gov (United States)

    Kato, Hayato; Takeuchi, Masaki; Ogura, Naoyuki; Kitahara, Yukiko; Okamoto, Takahisa

    This research focuses on the Fiber Reinforcement Concrete(FRC) and its performance on musical tones. Thepossibility of future musical instruments made of this concrete is discussed. Recently, the technical properties of FRC had been improved and the different production styles, such as unit weight of binding material and volume of fiber in the structure, hardly affects the results of the acoustics. However, the board thickness in the FRC instruments is directly related with the variety of musical tone. The FRC musical effects were compared with those produced with wood on wind instruments. The sounds were compared with those produced with woodwind instruments. The sound pressure level was affected by the material and it becomes remarkably notorious in the high frequency levels. These differences had great influence on the spectrum analysis of the tone in the wind instruments and the sensory test. The results from the sensory test show dominant performances of brightness, beauty and power in the FRC instruments compared with those made of wood.

  20. Life cycle assessment as a tool to promote sustainable thermowood boards: a portuguese case study

    OpenAIRE

    Ferreira, J.; Esteves, B.; Ribeiro Nunes, L. M.; Domingos, I.

    2015-01-01

    The aim of the present work was to conduct a Life Cycle Assessment study of thermally-modified Atlanticwood® pine boards based on real data provided by the Santos & Santos Madeiras company. Atlanticwood® pine boards have several applications, but are mainly used for exterior decking and the cladding facades of buildings. The LCA study was conducted based on the ISO 14040/44 standard and PCR “Product Category Rules for preparing an environmental product declaration for Constr...

  1. Photonic crystal fiber sensing characteristics research based on alcohol asymmetry filling

    Science.gov (United States)

    Shi, Fu-quan; Luo, Yan; Li, Hai-tao; Peng, Bao-jin

    2018-02-01

    A new type of Sagnac fiber temperature sensor based on alcohol asymmetric filling photonic crystal fiber is proposed. First, the corrosion of photonic crystal fiber and the treatment of air hole collapse are carried out. Then, the asymmetric structure of photonic crystal fiber is filled with alcohol, and then the structure is connected to the Sagnac interference ring. When the temperature changes, the thermal expansion effect of filling alcohol will lead to the change of birefringence of photonic crystal fiber, so that the interference spectrum of the sensor will drift along with the change of temperature. The experimental results show that the interference red shift will occur with the increase of temperature, and the temperature sensitivity is 0.1864nm/ °C. The sensor has high sensitivity to temperature. At the same time, the structure has the advantages of high stability, anti electromagnetic interference and easy to build. It provides a new method for obtaining birefringence in ordinary photonic crystal fibers.

  2. Investigations on Thermal Conductivities of Jute and Banana Fiber Reinforced Epoxy Composites

    Science.gov (United States)

    Pujari, Satish; Ramakrishna, Avasarala; Balaram Padal, Korabu Tulasi

    2017-04-01

    The Jute and Banana fibers are used as reinforcement in epoxy resin matrix for making partially green biodegradable material composite via hand lay-up technique. The thermal conductivity of the jute fiber epoxy composites and banana fiber epoxy composites at different volume fraction of the fiber is determined experimentally by using guarded heat flow meter method. The experimental results had shown that thermal conductivity of the composites decrease with an increase in the fiber content. Experimental results are compared with theoretical models (Series model, Hashin model and Maxwell model) to describe the variation of the thermal conductivity versus the volume fraction of the fiber. Good agreement between theoretical and experimental results is observed. Thermal conductivity of Banana fiber composite is less when compared to that of Jute composite which indicates banana is a good insulator and also the developed composites can be used as insulating materials in building, automotive industry and in steam pipes to save energy by reducing rate of heat transfer.

  3. Patients overwhelmingly prefer inpatient boarding to emergency department boarding.

    Science.gov (United States)

    Viccellio, Peter; Zito, Joseph A; Sayage, Valerie; Chohan, Jasmine; Garra, Gregory; Santora, Carolyn; Singer, Adam J

    2013-12-01

    Boarding of admitted patients in the emergency department (ED) is a major cause of crowding. One alternative to boarding in the ED, a full-capacity protocol where boarded patients are redeployed to inpatient units, can reduce crowding and improve overall flow. Our aim was to compare patient satisfaction with boarding in the ED vs. inpatient hallways. We performed a structured telephone survey regarding patient experiences and preferences for boarding among admitted ED patients who experienced boarding in the ED hallway and then were subsequently transferred to inpatient hallways. Demographic and clinical characteristics, as well as patient preferences, including items related to patient comfort and safety using a 5-point scale, were recorded and descriptive statistics were used to summarize the data. Of 110 patients contacted, 105 consented to participate. Mean age was 57 ± 16 years and 52% were female. All patients were initially boarded in the ED in a hallway before their transfer to an inpatient hallway bed. The overall preferred location after admission was the inpatient hallway in 85% (95% confidence interval 75-90) of respondents. In comparing ED vs. inpatient hallway boarding, the following percentages of respondents preferred inpatient boarding with regard to the following 8 items: rest, 85%; safety, 83%; confidentiality, 82%; treatment, 78%; comfort, 79%; quiet, 84%; staff availability, 84%; and privacy, 84%. For no item was there a preference for boarding in the ED. Patients overwhelmingly preferred the inpatient hallway rather than the ED hallway when admitted to the hospital. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. An Approach for On-Board Software Building Blocks Cooperation and Interfaces Definition

    Science.gov (United States)

    Pascucci, Dario; Campolo, Giovanni; Candia, Sante; Lisio, Giovanni

    2010-08-01

    This paper provides an insight on the Avionic SW architecture developed by Thales Alenia Space Italy (TAS-I) to achieve structuring of the OBSW as a set of self-standing and re-usable building blocks. It is initially described the underlying framework for building blocks cooperation, which is based on ECSSE-70 packets forwarding (for services request to a building block) and standard parameters exchange for data communication. Subsequently it is discussed the high level of flexibility and scalability of the resulting architecture, reporting as example an implementation of the Failure Detection, Isolation and Recovery (FDIR) function which exploits the proposed architecture. The presented approach evolves from avionic SW architecture developed in the scope of the project PRIMA (Mult-Purpose Italian Re-configurable Platform) and has been adopted for the Sentinel-1 Avionic Software (ASW).

  5. Performance Using Bamboo Fiber Ash Concrete as Admixture Adding Superplasticizer

    Science.gov (United States)

    Vasudevan, Gunalaan

    2017-06-01

    The increasing demand on natural resources for housing provisions in developing countries have called for sourcing and use of sustainable local materials for building and housing delivery. Natural materials to be considered sustainable for building construction should be ‘green’ and obtained from local sources, including rapidly renewable plant materials like palm fronds and bamboo, recycled materials and other products that are reusable and renewable. Each year, tens of millions of tons of bamboo are utilized commercially, generating a vast amount of waste. Besides that, bamboo fiber is easy availability, low density, low production cost and satisfactory mechanical properties. One solution is to activate this waste by using it as an additive admixture in concrete to keep it out of landfills and save money on waste disposal. The research investigates the mechanical and physical properties of bamboo fiber powder in a blended Portland cement. The structural value of the bamboo fiber powder in a blended Portland cement was evaluated with consideration for its suitability in concrete. Varied percentage of bamboo fiber powder (BFP) at 0%, 5%, 10%, 15%, and 20% as an admixture in 1:2:4 concrete mixes. The workability of the mix was determined through slump; standard consistency test was carried on the cement. Compressive strength of hardened cured (150 x 150 x 150) mm concrete cubes at 7days, 14days and 28days were tested.

  6. Novel route of synthesis for cellulose fiber-based hybrid polyurethane

    Science.gov (United States)

    Ikhwan, F. H.; Ilmiati, S.; Kurnia Adi, H.; Arumsari, R.; Chalid, M.

    2017-07-01

    Polyurethanes, obtained by the reaction of a diisocyanate compound with bifunctional or multifunctional reagent such as diols or polyols, have been studied intensively and well developed. The wide range modifier such as chemical structures and molecular weight to build polyurethanes led to designs of materials that may easily meet the functional product demand and to the extraordinary spreading of these materials in market. Properties of the obtained polymer are related to the chemical structure of polyurethane backbone. A number polyurethanes prepared from biomass-based monomers have been reported. Cellulose fiber, as a biomass material is containing abundant hydroxyl, promising material as chain extender for building hybrid polyurethanes. In previous researches, cellulose fiber was used as filler in synthesis of polyurethane composites. This paper reported a novel route of hybrid polyurethane synthesis, which a cellulose fiber was used as chain extender. The experiment performed by reacting 4,4’-Methylenebis (cyclohexyl isocyanate) (HMDI) and polyethylene glycol with variation of molecular weight to obtained pre-polyurethane, continued by adding micro fiber cellulose (MFC) with variation of type and composition in the mixture. The experiment was evaluated by NMR, FTIR, SEM and STA measurement. NMR and FTIR confirmed the reaction of the hybrid polyurethane. STA showed hybrid polyurethane has good thermal stability. SEM showed good distribution and dispersion of sorghum-based MFC.

  7. Development of a TiO2-coated optical fiber reactor for water decontamination

    International Nuclear Information System (INIS)

    Danion, A.

    2004-09-01

    The objective of this study was to built and to study a photo-reactor composed by TiO 2 -coated optical fibers for water decontamination. The physico-chemical characteristics and the optical properties of the TiO 2 coating were first studied. Then, the influences of different parameters as the coating thickness, the coating length and the coating volume were investigated both on the light transmission in the TiO 2 - coated fiber and on the photo-catalytic activity of the fiber for a model compound (malic acid). The photo-catalytic degradation of malic acid was optimized using the experimental design methodology allowing to build a multi-fiber reactor comprising 57 optical fibers. The photo-degradation of malic acid was conducted in the multi-fiber reactor and it was demonstrated that the multi-fiber reactor was more efficient than the single-fiber reactor at the same fibers density. Finally, the multi-fiber reactor was applied to the photo-degradation of a fungicide, called fenamidone, and a degradation pathway was proposed. (author)

  8. Towards the development of performance based guidelines for using Phase Change Materials in lightweight buildings

    Science.gov (United States)

    Poudel, Niraj

    Incorporating Phase Change Materials (PCMs) in construction materials can increase the thermal mass of a building. With this increase in thermal mass, PCMs are known to reduce the heating and cooling loads of a building significantly. During the past 10 years, studies have estimated potential reduction of energy consumption of buildings between 10 and 30 percent. This wide range is due to the large number of parameters that effect energy consumption and make the process of selecting the optimal type and amount of PCM challenging. In fact, extensive engineering studies are generally necessary to determine the practicality of PCM in any specific case. As a result, architects and engineers are reluctant to use PCM because of the lack of such a comprehensive study. In the United States, eight climate zones are identified on the basis of annual degree heating and degree cooling days. For a given building in a given climate, there exists an optimal melting temperature and enthalpy that can reduce the energy consumption and the payback period. In this research, the optimal properties of PCM boards are determined for all 15 representative cities. Additional topics discussed in this research are the sensitivity of the optimal properties of PCM and the effect of the average cost of energy on the selection of PCM. The effect of six independent variables on the performance of PCM boards is presented in detail and the climate types where PCM boards perform optimally are narrowed down. In addition, a new procedure is presented to study the temporal and directional melting and solidifying trend of the PCM placed in buildings. The energy consumption and hourly data for the PCM enhanced buildings are determined numerically using the Department of Energy software EnergyPlus, which calculates the energy consumption for heating and cooling a building under any climate and operation schedule. The software is run on a computer cluster for a wide range of properties from which the

  9. Self-centering fiber alignment structures for high-precision field installable single-mode fiber connectors

    Science.gov (United States)

    Van Erps, Jürgen; Ebraert, Evert; Gao, Fei; Vervaeke, Michael; Berghmans, Francis; Beri, Stefano; Watté, Jan; Thienpont, Hugo

    2014-05-01

    constants of the order of 104N=m are found to be compatible with a proof stress of 70 M Pa. We show the successful prototyping of 3-spring fiber alignment structures using deep proton writing and investigate their compatibility with replication techniques such as hot embossing and injection moulding. Fiber insertion in our self-centering alignment structures is achieved by means of a dedicated interferometric setup allowing assessment of the fiber facet quality, of the fiber's position in relation to the connector's front and of the spring deformation during fiber insertion. These self-centering structures have the potential to become the basic building blocks for a new generation of field-installable connectors, ultimately breaking the current paradigm of ferrule-based connectivity requiring extensive pre-engineering and highly specialized manpower for field deployment.

  10. BORA: a front end board, with local intelligence, for the RICH detector of the Compass Collaboration

    International Nuclear Information System (INIS)

    Baum, G.; Birsa, R.; Bradamante, F.; Bressan, A.; Colavita, A.; Crespo, M.; Costa, S.; Dalla Torre, S.; Fauland, P.; Finger, M.; Fratnik, F.; Giorgi, M.; Gobbo, B.; Grasso, A.; Lamanna, M.; Martin, A.; Menon, G.; Panzieri, D.; Schiavon, P.; Tessarotto, F.; Zanetti, A.M.

    1999-01-01

    In this paper we describe the design of the re-configurable front-end boards (BORA boards) for the 82944 channel RICH-1 (Ring Imaging CHerenkov) of the Compass Collaboration (NA58). The front-end electronics controls the sample-and-hold operation after the arrival of an event trigger, acquires the analog voltages from the pre-amp VLSI and converts them into 10 bits at a rate of 20 Ms/s per analog channel. The digitized analogue values are then written into FIFOs. A subsequent operation compares the readings of each and every channel with corresponding programmable thresholds, and transmits those values larger than the threshold, together with the channel number, through an optical fiber to subsequent processing stages of the acquisition system. The overall operation of the board is controlled and supervised by a fast DSP. The availability of local intelligence allows the board to present innovative features such as: to be part of a computer network that connects several similar boards of the detector with a PC. The presence of the DSP allows testing the operability and linearity of the analog channels; and creating engineering frames containing local temperatures and voltages and transmitting the results through the network. The operator can reconfigure the hardware and software of the board by downloading programs from the PC

  11. BORA: A front end board, with local intelligence, for the rich detector of the compass collaboration

    International Nuclear Information System (INIS)

    Baum, G.; Birsa, R.; Bradamante, F.

    1999-02-01

    In this paper we describe the design of the re-configurable front-end boards (BORA boards) for the 82944 channel RICH-1 (Ring Imaging CHerenkov) of the Compass Collaboration (NA58). The front-end electronics controls the sample-and-hold operation after the arrival of an event trigger, acquires the analogue voltages from the pre-amp VLSI and converts them into 10 bits at a rate of 20 Ms/s per analogue channel. After the analog values are digitized they are written into FIFOs. A subsequent operation compares the readings of each and every channel with corresponding programmable thresholds, and transmits those values larger than the threshold, together with the channel number, through an optical fiber to subsequent processing stages of the acquisition system. The overall operation of the board is controlled and supervised by a fast DSP. The availability of local intelligence allows the board to present innovative features such as: to be part of a computer network that connects several similar boards of the detector with a PC. The presence of the DSP allows testing the operability and linearity of the analogue channels; and creating engineering frames containing local temperatures and voltages and transmitting the results through the network. The operator can reconfigure the hardware and software of the board by downloading programs from the PC. (author)

  12. Hardware authentication using transmission spectra modified optical fiber

    International Nuclear Information System (INIS)

    Grubbs, Robert K.; Romero, Juan A.

    2010-01-01

    The ability to authenticate the source and integrity of data is critical to the monitoring and inspection of special nuclear materials, including hardware related to weapons production. Current methods rely on electronic encryption/authentication codes housed in monitoring devices. This always invites the question of implementation and protection of authentication information in an electronic component necessitating EMI shielding, possibly an on board power source to maintain the information in memory. By using atomic layer deposition techniques (ALD) on photonic band gap (PBG) optical fibers we will explore the potential to randomly manipulate the output spectrum and intensity of an input light source. This randomization could produce unique signatures authenticating devices with the potential to authenticate data. An external light source projected through the fiber with a spectrometer at the exit would 'read' the unique signature. No internal power or computational resources would be required.

  13. Investigation of the Building M6-794 Roofing Fatality, Type A Mishap

    Science.gov (United States)

    Casper, John H.; French, Kristie; Tipton, David A.; Bennardo, C. P.; Miller, Darcy H.; Facemire, David L.

    2006-01-01

    The Building M6-794 Roofing Fatality Mishap Investigation Board (Board) was commissioned to gather information; analyze the facts; identify the proximate causes, root causes, and contributing factors relating to the mishap; and recommend appropriate actions to prevent a similar mishap from occurring in the future. During the investigation of this mishap, the Board also examined the fall protection policies of other NASA Centers and operating locations to gain an understanding of how those entities conduct fall protection, as well as the degree to which fall protection is standardized across the Agency.

  14. Influence of sand to coarse aggregate ratio on the interfacial bond strength of steel fibers in concrete for nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Jung Jin; Kim, Dong Joo; Kang, Su Tae; Lee, Jang Hwa

    2012-01-01

    Highlights: ► The final goal is to develop a fiber reinforced concrete for containment buildings. ► We investigated the effect of S/a on the bond strength of steel fibers. ► Deformed steel fibers produced much higher interfacial bond strength. ► As S/a increased, twisted fiber showed a significant enhancement in bond strength. ► Smooth and hooked fiber showed no clear difference as S/a increased. - Abstract: The interfacial bond strength of three high strength steel fibers (smooth, hooked, and twisted fiber) in concrete of nuclear power plants was investigated to develop fiber reinforced concrete for containment building. Sand to aggregate ratio (S/a) was adjusted to compensate reduction in the workability due to adding fibers; the influence of S/a ratio on the interfacial bond strength was investigated. As the S/a ratio increased from 0.444 to 0.615, the bond strength of twisted steel fiber was significantly improved while smooth and hooked steel fiber showed no clear difference. The different sensitivity according to the S/a ratio results from the different pullout mechanism: twisted steel fiber generates more mechanical interaction during fiber pullout at the interface between fiber and matrix than smooth and hooked fibers. The microscopic observation by scanning electron microscope back-scattered electrons images discovered lower porosity at the interfacial transition zone between fiber and concrete with higher S/a ratio.

  15. Influence of sand to coarse aggregate ratio on the interfacial bond strength of steel fibers in concrete for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Jin, E-mail: jjinslow@nate.com [Department of Civil and Environmental Engineering, SeJong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Kim, Dong Joo, E-mail: djkim75@sejong.ac.kr [Department of Civil and Environmental Engineering, SeJong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Kang, Su Tae, E-mail: stkang@daegu.ac.kr [Department of Civil Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 712-714 (Korea, Republic of); Lee, Jang Hwa, E-mail: jhlee@kict.re.kr [Korea Institute of Construction Technology, 2311 Daewha-Dong, Ilsan-Gu, Goyang-Si, Gyeonggi-Do 411-712 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The final goal is to develop a fiber reinforced concrete for containment buildings. Black-Right-Pointing-Pointer We investigated the effect of S/a on the bond strength of steel fibers. Black-Right-Pointing-Pointer Deformed steel fibers produced much higher interfacial bond strength. Black-Right-Pointing-Pointer As S/a increased, twisted fiber showed a significant enhancement in bond strength. Black-Right-Pointing-Pointer Smooth and hooked fiber showed no clear difference as S/a increased. - Abstract: The interfacial bond strength of three high strength steel fibers (smooth, hooked, and twisted fiber) in concrete of nuclear power plants was investigated to develop fiber reinforced concrete for containment building. Sand to aggregate ratio (S/a) was adjusted to compensate reduction in the workability due to adding fibers; the influence of S/a ratio on the interfacial bond strength was investigated. As the S/a ratio increased from 0.444 to 0.615, the bond strength of twisted steel fiber was significantly improved while smooth and hooked steel fiber showed no clear difference. The different sensitivity according to the S/a ratio results from the different pullout mechanism: twisted steel fiber generates more mechanical interaction during fiber pullout at the interface between fiber and matrix than smooth and hooked fibers. The microscopic observation by scanning electron microscope back-scattered electrons images discovered lower porosity at the interfacial transition zone between fiber and concrete with higher S/a ratio.

  16. Optical gateway for intelligent buildings: a new open-up window to the optical fibre sensors market?

    Science.gov (United States)

    Fernandez-Valdivielso, Carlos; Matias, Ignacio R.; Arregui, Francisco J.; Bariain, Candido; Lopez-Amo, Manuel

    2004-06-01

    This paper presents the first optical fiber sensor gateway for integrating these special measurement devices in Home Automation Systems, concretely in those buildings that use the KNX European Intelligent Buildings Standard.

  17. Board members’ contribution to strategy: The mediating role of board internal processes

    Directory of Open Access Journals (Sweden)

    Carmen Barroso-Castro

    2017-05-01

    Full Text Available This study aims to explore what directors do on the board, to what extent the processes occurring in the board allow the sharing and integrating of the existing knowledge, thus facilitating the board members’ contributions to strategy. We adopt the view that the internal board processes increase the impact of the cognitive resources on board performance. Using survey data from 200 large Spanish companies we demonstrate that directors’ level of knowledge of the firm and board job-related diversity positively influence the degree of the board's strategic involvement. Additionally, the internal processes that take place within the board – particularly Cognitive Conflict, the Critical and Independent Approach and the Comprehensive Discussion Process – influence the board's strategic involvement and play a partial mediating role on the aforementioned relationships. However, our results show no evidence for a positive relationship between Board Meeting Dynamics and the board's strategic involvement.

  18. How Use of knowledge, Skills and Cognition Enhance Board Performance in Nigerian market: A SEM-Approach

    Directory of Open Access Journals (Sweden)

    Bashir Mande

    2013-09-01

    Full Text Available This research aims to take steps towards explaining behavioral principle-based board process as factors for effective board performance. Dominant rule-based board structure approach could not transform effective corporate functioning, thus inconclusive. Based on a survey perception of 154 respondents from Nigerian capital market participants, the study employs confirmatory factor analysis (CFA in a structural equation modeling (SEM approach. Other studies used EFA and in developed nations. Replicates and builds upon board process constructs - cognitive conflict, effort norms, use of knowledge and skills, and groupthink. The study concludes that the items are valid measures of the latent constructs and significantly relate to board performance. The paper links corporate governance debates to broader behavioral choices in agency perspective and employs CFA and SEM as alternative approach for the measurement and structural models, in place of the usual exploratory factor analysis (EFA.

  19. Building Energy Management Open Source Software

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-20

    This is the repository for Building Energy Management Open Source Software (BEMOSS), which is an open source operating system that is engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. BEMOSS offers the following key features: (1) Open source, open architecture – BEMOSS is an open source operating system that is built upon VOLTTRON – a distributed agent platform developed by Pacific Northwest National Laboratory (PNNL). BEMOSS was designed to make it easy for hardware manufacturers to seamlessly interface their devices with BEMOSS. Software developers can also contribute to adding additional BEMOSS functionalities and applications. (2) Plug & play – BEMOSS was designed to automatically discover supported load controllers (including smart thermostats, VAV/RTUs, lighting load controllers and plug load controllers) in commercial buildings. (3) Interoperability – BEMOSS was designed to work with load control devices form different manufacturers that operate on different communication technologies and data exchange protocols. (4) Cost effectiveness – Implementation of BEMOSS deemed to be cost-effective as it was built upon a robust open source platform that can operate on a low-cost single-board computer, such as Odroid. This feature could contribute to its rapid deployment in small- or medium-sized commercial buildings. (5) Scalability and ease of deployment – With its multi-node architecture, BEMOSS provides a distributed architecture where load controllers in a multi-floor and high occupancy building could be monitored and controlled by multiple single-board computers hosting BEMOSS. This makes it possible for a building engineer to deploy BEMOSS in one zone of a building, be comfortable with its operation, and later on expand the deployment to the entire building to make it more energy efficient. (6) Ability to provide local and remote monitoring – BEMOSS provides both local and remote monitoring

  20. Interferometric sensor based on the polarization-maintaining fibers

    Science.gov (United States)

    Cubik, Jakub; Kepak, Stanislav; Doricak, Jan; Vašinek, Vladimir; Liner, Andrej; Papes, Martin

    2012-01-01

    The interferometers composed of optical fibers are due to its high sensitivity capable of to measure various influences affecting the fiber. These influences may be bending or different sorts of fiber deformations, vibration, temperature, etc. In this case the vibration is the measured quantity, which is evaluated by analyzing the interference fringes representing changes in the fiber. Was used a Mach-Zehnder interferometer composed of the polarization maintaining elements. The polarization maintaining elements were used because of high sensitivity to polarization state inside the interferometer. The light was splitted into the two optical paths, where the first one is the reference fiber and it is separated from the actual phenomenon, and the second one is measuring fiber, which is directly exposed to vibration transmission from the underlying surface. The light source was narrowband DFB laser serating at a wavelength of 1550nm and as a detector an InGaAs PIN photodiode were used in this measurement. The electrical signal from the photodiode was amplified and fed into the measuring card. On the incoming signal the FFT was applied, which performs the transformation into the frequency domain and the results were further evaluated by software. We were evaluating the characteristic frequencies and their amplitude ratios. The frequency responses are unique for a given phenomenon, thus it is possible to identify recurring events by the characteristic frequencies and their amplitude ratios. The frequency range was limited by the properties of the used speaker, by the frequency characteristics of the filter in the amplifier and used resonant element. For the experiment evaluation the repeated impact of the various spherical objects on the surface board was performed and measured. The stability of amplitude and frequency and also the frequency range was verified in this measurement.

  1. Lightweight Fiber Optic Gas Sensor for Monitoring Regenerative Food Production

    Science.gov (United States)

    Schmidlin, Edward; Goswami, Kisholoy

    1995-01-01

    In this final report, Physical Optics Corporation (POC) describes its development of sensors for oxygen, carbon dioxide, and relative humidity. POC has constructed a phase fluorometer that can detect oxygen over the full concentration range from 0 percent to 100 percent. Phase-based measurements offer distinct advantages, such as immunity to source fluctuation, photobleaching, and leaching. All optics, optoelectronics, power supply, and the printed circuit board are included in a single box; the only external connections to the fluorometer are the optical fiber sensor and a power cord. The indicator-based carbon dioxide sensor is also suitable for short-term and discrete measurements over the concentration range from 0 percent to 100 percent. The optical fiber-based humidity sensor contains a porous core for direct interaction of the light beam with water vapor within fiber pores; the detection range for the humidity sensor is 10 percent to 100 percent, and response time is under five minutes. POC is currently pursuing the commercialization of these oxygen and carbon dioxide sensors for environmental applications.

  2. Robust optical fiber patch-cords for in vivo optogenetic experiments in rats.

    Science.gov (United States)

    Trujillo-Pisanty, Ivan; Sanio, Christian; Chaudhri, Nadia; Shizgal, Peter

    2015-01-01

    In vivo optogenetic experiments commonly employ long lengths of optical fiber to connect the light source (commonly a laser) to the optical fiber implants in the brain. Commercially available patch cords are expensive and break easily. Researchers have developed methods to build these cables in house for in vivo experiments with rodents [1-4]. However, the half-life of those patch cords is greatly reduced when they are used with behaving rats, which are strong enough to break the delicate cable tip and to bite through the optical fiber and furcation tubing. Based on [3] we have strengthened the patch-cord tip that connects to the optical implant, and we have incorporated multiple layers of shielding to produce more robust and resistant cladding. Here, we illustrate how to build these patch cords with FC or M3 connectors. However, the design can be adapted for use with other common optical-fiber connectors. We have saved time and money by using this design in our optical self-stimulation experiments with rats, which are commonly several months long and last four to eleven hours per session. The main advantages are: •Long half-life.•Resistant to moderate rodent bites.•Suitable for long in vivo optogenetic experiments with large rodents.

  3. Radiation-Hardened 1.55 Micron Fiber Laser for Coherent LIDAR, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build high pulse energy near 1.55 micron wavelength single frequency fiber laser by developing an innovative...

  4. Green building challenge 2002 in Canada : an overview

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    The Green Building Challenge (GBC) in Canada was launched to help the building community meet environmental challenges and improve the environmental performance of buildings. Tools have been made available to the building industry to make informed environmental choices during the conception design stage of a project. The tools help architects, researchers and policy analysts in choosing material mixes and other design options that will minimize a building's potential life cycle environmental impacts and promote sustainable development. Green buildings involve the complete structure and envelope, including cladding, insulation, gypsum wall board, roofing and windows. The type of building and its location is also considered. Long term sustainability also considers energy use and emissions related to a building's energy system. This presentation described the following 3 projects which were selected for assessment in the GBC-2002: (1) the Mayo School in Mayo, Yukon Territory, (2) the Jackson-Triggs Winery in Niagara-on-the-Lake, Ontario, and (3) the Red River College in Winnipeg, Manitoba. The GBC-2002 Canadian Team nominated them as the best buildings being designed in Canada.10 figs.

  5. 78 FR 66384 - Membership of the Merit Systems Protection Board's Performance Review Board

    Science.gov (United States)

    2013-11-05

    ... MERIT SYSTEMS PROTECTION BOARD Membership of the Merit Systems Protection Board's Performance Review Board AGENCY: Merit Systems Protection Board. ACTION: Notice. SUMMARY: Notice is hereby given of the members of the Merit Systems Protection Board's Performance Review Board. DATES: November 5, 2013...

  6. Flat Optical Fiber Daylighting System with Lateral Displacement Sun-Tracking Mechanism for Indoor Lighting

    Directory of Open Access Journals (Sweden)

    Ngoc Hai Vu

    2017-10-01

    Full Text Available An essential impact which can improve the indoor environment and save on power consumption for artificial lighting is utilization of daylight. Optical fiber daylighting technology offers a way to use direct daylight for remote spaces in a building. However, the existing paradigm based on the precise orientation of sunlight concentrator toward the Sun is very costly and difficult to install on the roof of buildings. Here, we explore an alternative approach using mirror-coated lens array and planar waveguide to develop a flat optical fiber daylighting system (optical fiber daylighting panel with lateral displacement Sun-tracking mechanism. Sunlight collected and reflected by each mirror-coated lens in a rectangular lens array is coupled into a planar waveguide using cone prisms placed at each lens focus. This geometry yields a thin, flat profile for Sunlight concentrator. Our proposed concentrating panel can be achieved with 35 mm thickness while the concentrator’s width and length are 500 mm × 500 mm. The commercial optical simulation tool (LightToolsTM was used to develop the simulation models and analyze the system performance. Simulation results based on the designed system demonstrated an optical efficiency of 51.4% at a concentration ratio of 125. The system can support utilizing a lateral displacement Sun-tracking system, which allows for replacing bulky and robust conventional rotational Sun-tracking systems. This study shows a feasibility of a compact and inexpensive optical fiber daylighting system to be installed on the roof of buildings.

  7. Supersymmetric Transformations in Optical Fibers

    Science.gov (United States)

    Macho, Andrés; Llorente, Roberto; García-Meca, Carlos

    2018-01-01

    Supersymmetry (SUSY) has recently emerged as a tool to design unique optical structures with degenerate spectra. Here, we study several fundamental aspects and variants of one-dimensional SUSY in axially symmetric optical media, including their basic spectral features and the conditions for degeneracy breaking. Surprisingly, we find that the SUSY degeneracy theorem is partially (totally) violated in optical systems connected by isospectral (broken) SUSY transformations due to a degradation of the paraxial approximation. In addition, we show that isospectral constructions provide a dimension-independent design control over the group delay in SUSY fibers. Moreover, we find that the studied unbroken and isospectral SUSY transformations allow us to generate refractive-index superpartners with an extremely large phase-matching bandwidth spanning the S +C +L optical bands. These singular features define a class of optical fibers with a number of potential applications. To illustrate this, we numerically demonstrate the possibility of building photonic lanterns supporting broadband heterogeneous supermodes with large effective area, a broadband all-fiber true-mode (de)multiplexer requiring no mode conversion, and different mode-filtering, mode-conversion, and pulse-shaping devices. Finally, we discuss the possibility of extrapolating our results to acoustics and quantum mechanics.

  8. The on-board data handling system of the AFIS-P mission

    Energy Technology Data Exchange (ETDEWEB)

    Gaisbauer, Dominic; Greenwald, Daniel; Hahn, Alexander; Hauptmann, Philipp; Konorov, Igor; Meng, Lingxin; Paul, Stephan; Poeschl, Thomas [Physics Department E18, Technische Universitaet Muenchen (Germany); Losekamm, Martin [Physics Department E18, Technische Universitaet Muenchen (Germany); Institute of Astronautics, Technische Universitaet Muenchen (Germany); Renker, Dieter [Physics Department E17, Technische Universitaet Muenchen (Germany)

    2014-07-01

    The Antiproton Flux in Space experiment (AFIS) is a novel particle detector comprised of silicon photomultipliers and scintillating plastic fibers. Its purpose is to measure the trapped antiproton flux in low Earth orbit. To test the detector and the data acquisition system, a prototype detector will be flown aboard a high altitude research balloon as part of the REXUS/BEXUS program by the German Aerospace Center (DLR). This talk presents the on-board data handling system and the ground support equipment of AFIS-P. It will also highlight the data handling algorithms developed and used for the mission.

  9. Ash-Based Building Panels Production and Demonstration of Aerock Decking Building Product

    International Nuclear Information System (INIS)

    Alan E. Bland; Jesse Newcomer

    2007-01-01

    Western Research Institute (WRI) of Laramie, Wyoming and AeRock, LLC of Eagar, Arizona (formerly of Bellevue, Washington) partnered, under sponsorship of the U.S. Department of Energy National Energy Technology Laboratory (U.S. DOE-NETL), to support the development of rapid-setting, ash-based, fiber-incorporated ''green'' building products. Green building materials are a rapidly growing trend in the building and construction industry in the US. A two phase project was implemented wherein Phase I assessed, through chemical and physical testing, ash, ash-based cement and fiber composites exhibiting superior structural performance when applied to the AeRock mixing and extrusion process and involved the conduct of pilot-scale production trials of AeRock products, and wherein Phase II involved the design, construction, and operation of a commercial-scale plant to confirm production issues and to produce panels for performance evaluations. Phase I optimized the composite ingredients including ash-based cement, Class F and Class C DFGD ash, and various fiber reinforcements. Additives, such as retardants and accelerators, were also evaluated as related to extruder performance. The optimized composite from the Phase I effort was characterized by a modulus of rupture (MOR) measured between 1,931 and 2,221 psi flexural strength, comparable to other wood and non-wood building materials. Continuous extrusion of the optimum composite in the AeRock pilot-scale facility produced an excellent product that was assembled into a demonstration for exhibit and durability purposes. Finishes, from plain to marbled, from bright reds to muted earth tones and with various textures, could easily be applied during the mixing and extrusion process. The successful pilot-scale demonstration was in turn used to design the production parameters and extruder dies for a commercial scale demonstration at Ultrapanel Pty, Ltd of Ballarat, Australia under Phase II. The initial commercial-scale production

  10. Hospital board effectiveness: relationships between board training and hospital financial viability.

    Science.gov (United States)

    Molinari, C; Morlock, L; Alexander, J; Lyles, C A

    1992-01-01

    This study examined whether hospital governing boards that invest in board education and training are more informed and effective decision-making bodies. Measures of hospital financial viability (i.e., selected financial ratios and outcomes) are used as indicators of hospital board effectiveness. Board participation in educational programs was significantly associated with improved profitability, liquidity, and occupancy levels, suggesting that investment in the education of directors is likely to enhance hospital viability and thus increase board effectiveness.

  11. Vibration measurement on composite material with embedded optical fiber based on phase-OTDR

    Science.gov (United States)

    Franciscangelis, C.; Margulis, W.; Floridia, C.; Rosolem, J. B.; Salgado, F. C.; Nyman, T.; Petersson, M.; Hallander, P.; Hällstrom, S.; Söderquist, I.; Fruett, F.

    2017-04-01

    Distributed sensors based on phase-optical time-domain reflectometry (phase-OTDR) are suitable for aircraft health monitoring due to electromagnetic interference immunity, small dimensions, low weight and flexibility. These features allow the fiber embedment into aircraft structures in a nearly non-intrusive way to measure vibrations along its length. The capability of measuring vibrations on avionics structures is of interest for what concerns the study of material fatigue or the occurrence of undesirable phenomena like flutter. In this work, we employed the phase-OTDR technique to measure vibrations ranging from some dozens of Hz to kHz in two layers of composite material board with embedded polyimide coating 0.24 numerical aperture single-mode optical fiber.

  12. UNC-Utah NA-MIC framework for DTI fiber tract analysis.

    Science.gov (United States)

    Verde, Audrey R; Budin, Francois; Berger, Jean-Baptiste; Gupta, Aditya; Farzinfar, Mahshid; Kaiser, Adrien; Ahn, Mihye; Johnson, Hans; Matsui, Joy; Hazlett, Heather C; Sharma, Anuja; Goodlett, Casey; Shi, Yundi; Gouttard, Sylvain; Vachet, Clement; Piven, Joseph; Zhu, Hongtu; Gerig, Guido; Styner, Martin

    2014-01-01

    Diffusion tensor imaging has become an important modality in the field of neuroimaging to capture changes in micro-organization and to assess white matter integrity or development. While there exists a number of tractography toolsets, these usually lack tools for preprocessing or to analyze diffusion properties along the fiber tracts. Currently, the field is in critical need of a coherent end-to-end toolset for performing an along-fiber tract analysis, accessible to non-technical neuroimaging researchers. The UNC-Utah NA-MIC DTI framework represents a coherent, open source, end-to-end toolset for atlas fiber tract based DTI analysis encompassing DICOM data conversion, quality control, atlas building, fiber tractography, fiber parameterization, and statistical analysis of diffusion properties. Most steps utilize graphical user interfaces (GUI) to simplify interaction and provide an extensive DTI analysis framework for non-technical researchers/investigators. We illustrate the use of our framework on a small sample, cross sectional neuroimaging study of eight healthy 1-year-old children from the Infant Brain Imaging Study (IBIS) Network. In this limited test study, we illustrate the power of our method by quantifying the diffusion properties at 1 year of age on the genu and splenium fiber tracts.

  13. Excitation of resonances of microspheres on an optical fiber

    Science.gov (United States)

    Serpengüzel, A.; Arnold, S.; Griffel, G.

    1995-04-01

    Morphology-dependent resonances (MDR's) of solid microspheres are excited by using an optical fiber coupler. The narrowest measured MDR linewidths are limited by the excitation laser linewidth ( < 0.025 nm). Only MDR's, with an on-resonance to off-resonance intensity ratio of 104, contribute to scattering. The intensity of various resonance orders is understood by the localization principle and the recently developed generalized Lorentz-Mie theory. The microsphere fiber system has potential for becoming a building block in dispersive microphotonics. The basic physics underlying our approach may be considered a harbinger for the coupling of active photonic microstructures such as microdisk lasers.

  14. Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers.

    Science.gov (United States)

    Mahadeva, Suresha K; Walus, Konrad; Stoeber, Boris

    2014-05-28

    We have successfully developed hybrid piezoelectric paper through fiber functionalization that involves anchoring nanostructured BaTiO3 into a stable matrix with wood cellulose fibers prior to the process of making paper sheets. This is realized by alternating immersion of wood fibers in a solution of poly(diallyldimethylammonium chloride) PDDA (+), followed by poly(sodium 4-styrenesulfonate) PSS (-), and once again in PDDA (+), resulting in the creation of a positively charged surface on the wood fibers. The treated wood fibers are then immersed in a BaTiO3 suspension, resulting in the attachment of BaTiO3 nanoparticles to the wood fibers due to a strong electrostatic interaction. Zeta potential measurements, X-ray diffraction, and microscopic and spectroscopic analysis imply successful functionalization of wood fibers with BaTiO3 nanoparticles without altering the hydrogen bonding and crystal structure of the wood fibers. The paper has the largest piezoelectric coefficient, d33 = 4.8 ± 0.4 pC N(-1), at the highest nanoparticle loading of 48 wt % BaTiO3. This newly developed piezoelectric hybrid paper is promising as a low-cost substrate to build sensing devices.

  15. Basalt fibers: the green material of the XXI-century, for a sustainable restoration of historical buildings

    Directory of Open Access Journals (Sweden)

    Giacomo Di Ruocco

    2016-12-01

    Full Text Available In recent decades in the construction industry, the need to experience consolidation techniques with non-corroding materials is being developed. Studies and tests have been led about integration of basalt fibers in concrete structures: they have shown improvements both in terms of mechanical strength and in terms of intervention of consolidation durability (Ólafsson, Thorhallsson, 2009. The basalt rock can be used to produce not only basalt bars, but also fabrics, paddings, continuous filaments and basalt network. Some applications of these basalt-composites materials concern the consolidation of civil construction structures, thermal and acoustic insulation, security clothing, etc. Some years ago the Italian company ENEA (National Agency for New Technologies, Energy and Sustainable Economic Development has signed an agreement with HG GBF (one of the world's leading companies in the production of basalt fibers, for the verification of possible applications of this material in the construction field but also in the nautical and automotive ones. The use of basalt fiber in construction could present a series of advantages: natural origin, a cycle of production to lower energy impact compared to other fibers, a high chemical inertia and thus a high degree of durability, low thermal conductivity, good mechanical and thermo-acoustic properties, high fire resistance, a competitive cost and, in general, more environmental compatibility and sustainability than other synthetic fibers.

  16. The Audacity of Fiber-Wireless (FiWi) Networks

    Science.gov (United States)

    Maier, Martin; Ghazisaidi, Navid; Reisslein, Martin

    A plethora of enabling optical and wireless technologies have been emerging that can be used to build future-proof bimodal fiber-wireless (FiWi) broadband access networks. After overviewing key enabling radio-over-fiber (RoF) and radio-and-fiber (R&F) technologies and briefly surveying the state of the art of FiWi networks, we introduce an Ethernet-based access-metro FiWi network, called SuperMAN, that integrates next-generation WiFi and WiMAX networks with WDM-enhanced EPON and RPR networks. Throughout the paper we pay close attention to the technical challenges and opportunities of FiWi networks, but also elaborate on their societal benefits and potential to shift the current research focus from optical-wireless networking to the exploitation of personal and in-home computing facilities to create new unforeseen services and applications as we are about to enter the Petabyte age.

  17. Study for the LHCb upgrade read-out board

    CERN Document Server

    Cachemiche, J P; Hachon, F; Le Gac, R; Marin, F; 10.1088/1748-0221/5/12/C12036

    2010-01-01

    The LHCb experiment envisages to upgrade its readout electronics in order to increase the readout rate from 1 MHz to 40 MHz. This electronics upgrade is very challenging, since readout boards will have to handle a higher number of serial links with an increased bandwidth. In addition, the new communication protocol (GBT) developed by the CERN micro-electronics group mixes data acquisition, slow control and clock distribution on the same link. To explore the feasibility of such a readout system, elementary building blocks have been studied. Their goals are multiple: understand signal integrity when using highly integrated high speed serial links running at 8 - 10 Gbits/s; test the implementation of the GBT protocol within FPGAs; understand advantages and limitations of commercial standard with a predefined interconnection topology; validate ideas on how to control easily such a system. We designed two boards compliant with the xTCA standard which meets an increasing interest in the physics community. The first...

  18. Building for a Changing Climate - Adaptation through planning and construction

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    Adaptation through planning and construction can help to reduce the negative effects of climate change, such as flooding, landslides, landslips, and erosion. The National Board of Housing, Building and Planning (Boverket) has conducted an analysis of how the Planning and Building Act can assist in the work towards climate change adaptation. This brochure provides guidance and support to for example property owners, developers, officials and decision makers in municipalities and the state

  19. Self-Monitoring Strengthening System Based on Carbon Fiber Laminate

    Directory of Open Access Journals (Sweden)

    Rafal Krzywon

    2016-01-01

    Full Text Available Externally bonded composites reinforced with high-strength fibers are increasingly popular in construction, especially in structures’ strengthening, where the best possible mechanical properties are required. At the same time the ability to autodetect threats is one of the most desirable features of contemporary structures. The authors of the paper have developed an intelligent fabric, wherein the carbon fibers play the role of not only tensile reinforcement but also strain sensor. The idea is based on the construction of the strain gauge, where the thread of carbon fibers arranged in zig-zag pattern works as electrical conductor and is insulated by parallel thread of glass or acrylic fibers. Preliminary laboratory tests were designed to create effective measurement techniques and assess the effectiveness of the strengthening of selected building structures, as reinforced concrete and timber beams. Presented in the paper, selected results of these studies are very promising, although there were some noted problems to be considered in next steps. The main problem here is the control of the cross section of the fibers tow, affecting the total resistance of the fabric. One of the main deficiencies of the proposed solution is also sensitivity to moisture.

  20. Mobile clusters of single board computers: an option for providing resources to student projects and researchers.

    Science.gov (United States)

    Baun, Christian

    2016-01-01

    Clusters usually consist of servers, workstations or personal computers as nodes. But especially for academic purposes like student projects or scientific projects, the cost for purchase and operation can be a challenge. Single board computers cannot compete with the performance or energy-efficiency of higher-value systems, but they are an option to build inexpensive cluster systems. Because of the compact design and modest energy consumption, it is possible to build clusters of single board computers in a way that they are mobile and can be easily transported by the users. This paper describes the construction of such a cluster, useful applications and the performance of the single nodes. Furthermore, the clusters' performance and energy-efficiency is analyzed by executing the High Performance Linpack benchmark with a different number of nodes and different proportion of the systems total main memory utilized.

  1. Electron beam processing of rubber wood fibers - polypropylene composites. Effects of reactive additives on the physical and mechanical properties

    International Nuclear Information System (INIS)

    Nor Yuziah Mohd Yunus; Jalaluddin Harun; Khairul Zaman

    2000-01-01

    The purpose of this study is to determine the suitability of producing agro-fiber reinforced plastic composite (agro-FRPC) from rubber wood fiber blended in polypropylene matrix. The effects of varying fiber dimension and fiber content on the physical and mechanical properties of the composite were evaluated to provide an insight into the fiber matrix adhesion. The effects of reactive additives on the physical and mechanical properties of the composite were evaluated which provides the insight on the reinforcement of the composite. Rubber wood fiber used in this study is currently being used in the manufacturing of medium density fiber (MDF) board. Two sizes of rubber wood fiber were used i.e. 0.5-1.0 mm and 1.0-2.0 mm. Homopolymer polypropylene of MFI 14.0 was used as a matrix. The irradiation work was carried out using electron beam accelerator, 3.0 MeV, 3.0 mA. Various types of reactive additives (RA) with mono-functional, di-functional, tri-functional and oligomer were applied in the blend. For comparison, a conventional chemical cross-linking using two types of maleated polypropylene, MPA (Mw=9,000) and PMAP (Mw=220,000) were also performed. (author)

  2. Electron beam processing of rubber wood fibers - polypropylene composites. Effects of reactive additives on the physical and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Nor Yuziah Mohd Yunus; Jalaluddin Harun [Universiti Putra Malaysia, Selangor Darul Ehsan (Malaysia); Khairul Zaman [Malaysian Institute for Nuclear Technology Research (MINT), Selangor Darul Ehsan (Malaysia)

    2000-07-01

    The purpose of this study is to determine the suitability of producing agro-fiber reinforced plastic composite (agro-FRPC) from rubber wood fiber blended in polypropylene matrix. The effects of varying fiber dimension and fiber content on the physical and mechanical properties of the composite were evaluated to provide an insight into the fiber matrix adhesion. The effects of reactive additives on the physical and mechanical properties of the composite were evaluated which provides the insight on the reinforcement of the composite. Rubber wood fiber used in this study is currently being used in the manufacturing of medium density fiber (MDF) board. Two sizes of rubber wood fiber were used i.e. 0.5-1.0 mm and 1.0-2.0 mm. Homopolymer polypropylene of MFI 14.0 was used as a matrix. The irradiation work was carried out using electron beam accelerator, 3.0 MeV, 3.0 mA. Various types of reactive additives (RA) with mono-functional, di-functional, tri-functional and oligomer were applied in the blend. For comparison, a conventional chemical cross-linking using two types of maleated polypropylene, MPA (Mw=9,000) and PMAP (Mw=220,000) were also performed. (author)

  3. Low home ventilation rate in combination with moldy odor from the building structure increase the risk for allergic symptoms in children

    DEFF Research Database (Denmark)

    Hägerhed-Engman, L.; Sigsgaard, T.; Samuelson, I.

    2009-01-01

    There are consistent findings on associations between asthma and allergy symptoms and residential mold and moisture. However, definitions of 'dampness' in studies are diverse because of differences in climate and building construction. Few studies have estimated mold problems inside the building...... ventilation rate in combination with moldy odor along the skirting board further increased the risk for three out of four studied outcomes, indicating that the ventilation rate is an effect modifier for indoor pollutants.This study showed that mold odor at the skirting board level is strongly associated...... with allergic symptoms among children. Such odor at that specific place can be seen as a proxy for some kind of hidden moisture or mold problem in the building structure, such as the foundation or wooden ground beam. In houses with odor along the skirting board, dismantling of the structure is required...

  4. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    Science.gov (United States)

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

  5. Research of movement process of fiber suspension in accelerating unit of wet grinding disintegrator

    Science.gov (United States)

    Mykhaylichenko, S. A.; Dubinin, N. N.; Kachaev, A. E.; Goncharov, S. I.; Farafonov, A. A.

    2018-03-01

    At the present stage of development of building material science, products reinforced with fibers of various origin (mineral, organic, metal and others) are commonly used. Determination of the optimal structure and the chemical composition of the fiber depends on a number of requirements for filler, binder, and other miscellaneous additives, etc. The rational combination of physical and chemical composition of the primary matrix of the product (e.g., binders, cement) with dispersion of anisotropic fiber of filler not only contributes to the strength of products, but also stabilizes their internal structure: prevents the occurrence of internal stress of the cement stone, increases the adhesive interaction of particles of cement at the contact boundary with fibers, etc.

  6. The dBoard: a Digital Scrum Board for Distributed Software Development

    DEFF Research Database (Denmark)

    Esbensen, Morten; Tell, Paolo; Cholewa, Jacob Benjamin

    2015-01-01

    In this paper we present the dBoard - a digital Scrum Board for distributed Agile software development teams. The dBoard is designed as a 'virtual window' between two Scrum team spaces. It connects two locations with live video and audio, which is overlaid with a synchronized and interactive...... digital Scrum board, and it adapts the fidelity of the video/audio to the presence of people in front of it. The dBoard is designed to work (i) as a passive information radiator from which it is easy to get an overview of the status of work, (ii) as a media space providing awareness about the presence...... of remote co-workers, and (iii) as an active meeting support tool. The paper presents a case study of distributed Scrum in a large software company that motivates the design of the dBoard, and details the design and technical implementation of the dBoard. The paper also reports on an initial user study...

  7. Multi-material micro-electromechanical fibers with bendable functional domains

    Science.gov (United States)

    Nguyen-Dang, Tung; Page, Alexis G.; Qu, Yunpeng; Volpi, Marco; Yan, Wei; Sorin, Fabien

    2017-04-01

    The integration of increasingly complex functionalities within thermally drawn multi-material fibers is heralding a novel path towards advanced soft electronics and smart fabrics. Fibers capable of electronic, optoelectronic, piezoelectric or energy harvesting functions are created by assembling new materials in intimate contact within increasingly complex architectures. Thus far, however, the opportunities associated with the integration of cantilever-like structures with freely moving functional domains within multi-material fibers have not been explored. Used extensively in the micro-electromechanical system (MEMS) technology, electro-mechanical transductance from moving and bendable domains is used in a myriad of applications. In this article we demonstrate the thermal drawing of micro-electromechanical fibers (MEMF) that can detect and localize pressure with high accuracy along their entire length. This ability results from an original cantilever-like design where a freestanding electrically conductive polymer composite film bends under an applied pressure. As it comes into contact with another conducting domain, placed at a prescribed position in the fiber cross-section, an electrical signal is generated. We show that by a judicious choice of materials and electrical connectivity, this signal can be uniquely related to a position along the fiber axis. We establish a model that predicts the position of a local touch from the measurement of currents generated in the 1D MEMF device, and demonstrate an excellent agreement with the experimental data. This ability to detect and localize touch over large areas, curved surfaces and textiles holds significant opportunities in robotics and prosthetics, flexible electronic interfaces, and medical textiles. , which features invited work from the best early-career researchers working within the scope of J. Phys. D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Fabien Sorin

  8. Two Fiber Optical Fiber Thermometry

    Science.gov (United States)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  9. Direct writing of half-meter long CNT based fiber for flexible electronics.

    Science.gov (United States)

    Huang, Sihan; Zhao, Chunsong; Pan, Wei; Cui, Yi; Wu, Hui

    2015-03-11

    Rapid construction of flexible circuits has attracted increasing attention according to its important applications in future smart electronic devices. Herein, we introduce a convenient and efficient "writing" approach to fabricate and assemble ultralong functional fibers as fundamental building blocks for flexible electronic devices. We demonstrated that, by a simple hand-writing process, carbon nanotubes (CNTs) can be aligned inside a continuous and uniform polymer fiber with length of more than 50 cm and diameters ranging from 300 nm to several micrometers. The as-prepared continuous fibers exhibit high electrical conductivity as well as superior mechanical flexibility (no obvious conductance increase after 1000 bending cycles to 4 mm diameter). Such functional fibers can be easily configured into designed patterns with high precision according to the easy "writing" process. The easy construction and assembly of functional fiber shown here holds potential for convenient and scalable fabrication of flexible circuits in future smart devices like wearable electronics and three-dimensional (3D) electronic devices.

  10. Determination of fungal spore release from wet building materials

    DEFF Research Database (Denmark)

    Kildesø, J.; Wurtz, H.; Nielsen, Kristian Fog

    2003-01-01

    The release and transport of fungal spores from water-damaged building materials is a key factor for understanding the exposure to particles of fungal origin as a possible cause of adverse health effects associated to growth of fungi indoors. In this study, the release of spores from nine species...... of typical indoor fungi has been measured under controlled conditions. The fungi were cultivated for a period of 4-6 weeks on sterilized wet wallpapered gypsum boards at a relative humidity (RH) of approximately 97%. A specially designed small chamber (P-FLEC) was placed on the gypsum board. The release...

  11. Integrated Strip Foundation Systems for Small Residential Buildings

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2010-01-01

    A prefabricated lightweight element was designed for a strip foundation that was used on site as the bases of two small residential buildings, in this case single-family houses; one was built with a double-brick exterior wall separated by mineral fiber insulation and the other was built with a wood...

  12. Fiber optic sensor system for entrance areas monitoring

    Science.gov (United States)

    Fajkus, Marcel; Nedoma, Jan; Kepak, Stanislav; Cubik, Jakub; Jargus, Jan; Zboril, Ondřej; Martinek, Radek; Vasinek, Vladimir

    2017-10-01

    Authors of this article present the fiber-optic system based on fiber Bragg gratings (FBGs) which are used to secure the entrance areas such as buildings, halls, warehouses, etc. The system uses the specially encapsulated sensory array of fiber Bragg gratings which are implemented into the floor or on the floor and allows for monitoring the area of 1 m2 up to 100 m2 depending on the number of FBG sensors. The sensory array is characterized by immunity to electromagnetic interference (EMI), passivity regarding electrical power supply, the possibility of remote evaluation (up to units of km) and high sensitivity. Proposed sensor system has detection capability greater than 99 % and furthermore, provides information about the weight load to an accuracy of +/- 5 kg. The concept has been tested in a real environment within the test polygon for several weeks. As the reference devices, we used the CCTV (Closed Circuit Television).

  13. Board game

    International Nuclear Information System (INIS)

    Brennan, N.S.

    1982-01-01

    A board game comprises a board, a number of counters and two dice. The board is marked to provide a central area, representing the nucleus of an atom, and six or more annular rings extending concentrically around the central area, the rings being divided into 2,8,18,32,48 and 72 squares. Each ring represents an electron shell, and some of the squares are numbered, the number representing the atomic number of different elements. (author)

  14. Towards the use of bioresorbable fibers in time-domain diffuse optics.

    Science.gov (United States)

    Di Sieno, Laura; Boetti, Nadia G; Dalla Mora, Alberto; Pugliese, Diego; Farina, Andrea; Konugolu Venkata Sekar, Sanathana; Ceci-Ginistrelli, Edoardo; Janner, Davide; Pifferi, Antonio; Milanese, Daniel

    2018-01-01

    In the last years bioresorbable materials are gaining increasing interest for building implantable optical components for medical devices. In this work we show the fabrication of bioresorbable optical fibers designed for diffuse optics applications, featuring large core diameter (up to 200 μm) and numerical aperture (0.17) to maximize the collection efficiency of diffused light. We demonstrate the suitability of bioresorbable fibers for time-domain diffuse optical spectroscopy firstly checking the intrinsic performances of the setup by acquiring the instrument response function. We then validate on phantoms the use of bioresorbable fibers by applying the MEDPHOT protocol to assess the performance of the system in measuring optical properties (namely, absorption and scattering coefficients) of homogeneous media. Further, we show an ex-vivo validation on a chicken breast by measuring the absorption and scattering spectra in the 500-1100 nm range using interstitially inserted bioresorbable fibers. This work represents a step toward a new way to look inside the body using optical fibers that can be implanted in patients. These fibers could be useful either for diagnostic (e. g. for monitoring the evolution after surgical interventions) or treatment (e. g. photodynamic therapy) purposes. Picture: Microscopy image of the 100 μm core bioresorbable fiber. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    Directory of Open Access Journals (Sweden)

    Liu Jiqiao

    2016-01-01

    Full Text Available An all-fiber airborne pulsed coherent Doppler lidar (CDL prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  16. Fly-By-Light/Power-By-Wire Fault-Tolerant Fiber-Optic Backplane

    Science.gov (United States)

    Malekpour, Mahyar R.

    2002-01-01

    The design and development of a fault-tolerant fiber-optic backplane to demonstrate feasibility of such architecture is presented. The simulation results of test cases on the backplane in the advent of induced faults are presented, and the fault recovery capability of the architecture is demonstrated. The architecture was designed, developed, and implemented using the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL). The architecture was synthesized and implemented in hardware using Field Programmable Gate Arrays (FPGA) on multiple prototype boards.

  17. Recent development in blast performance of fiber-reinforced concrete

    Science.gov (United States)

    Hajek, R.; Foglar, M.; Kohoutkova, A.

    2017-09-01

    The paper presents an overview of the recent development in blast performance of fiber reinforced concrete. The paper builds on more than ten years’ history of the research in this field by the team of the Department of Concrete and Masonry Structures of the Faculty of Civil Engineering of the Czech Technical University in Prague.

  18. Latest developments on fibered MOPA in mJ range with hollow-core fiber beam delivery and fiber beam shaping used as seeder for large scale laser facilities (Conference Presentation)

    Science.gov (United States)

    Gleyze, Jean-François; Scol, Florent; Perrin, Arnaud; Gouriou, Pierre; Valentin, Constance; Bouwmans, Géraud; Hugonnot, Emmanuel

    2017-05-01

    The Laser Megajoule (LMJ) is a French large scale laser facility dedicated to inertial fusion and plasma physics research. LMJ front-ends are based on fiber laser technology at nanojoule range [1]. Scaling the energy of those fiber seeders to the millijoule range is a way to upgrade LMJ's front ends architecture and could also be used as seeder for lasers for ELI project for example. However, required performances are so restrictive (optical-signal-to-noise ratio higher than 50 dB, temporally-shaped nanosecond pulses and spatial single-mode top-hat beam output) that such fiber systems are very tricky to build. High-energy fiber amplifiers In 2015, we have demonstrated, an all-fiber MOPA prototype able to produce a millijoule seeder, but unfortunately not 100% conform for all LMJ's performances. A major difficulty was to manage the frequency modulation used to avoid stimulated Brillouin scattering, to amplitude modulation (FM-AM) conversion, this limits the energy at 170µJ. For upgrading the energy to the millijoule range, it's necessary to use an amplifier with a larger core fiber. However, this fiber must still be flexible; polarization maintaining and exhibit a strictly single-mode behaviour. We are thus developing a new amplifier architecture based on an Yb-doped tapered fiber: its core diameter is from a narrow input to a wide output (MFD 8 to 26 µm). A S² measurement on a 2,5m long tapered fiber rolled-up on 22 cm diameter confirmed that this original geometry allows obtaining strictly single-mode behaviour. In a 1 kHz repetition rate regime, we already obtain 750 µJ pulses, and we are on the way to mJ, respecting LMJ performances. Beam delivery In LMJ architecture the distance between the nanojoule fiber seeder and the amplifier stages is about 16 m. Beam delivery is achieved with a standard PM fiber, such a solution is no longer achievable with hundreds of kilowatt peak powers. An efficient way to minimize nonlinear effects is to use hollow-core (HC

  19. Experimental demonstration of the switching dose-rate method on doped optical fibers

    Science.gov (United States)

    Thomas, J.; Myara, M.; Troussellier, L.; Régnier, E.; Burov, E.; Gilard, O.; Sottom, M.; Signoret, P.

    2017-11-01

    Optical technology developed for ground and submarine telecommunications is becoming of strong interest for next generation satellites. In addition to inter-satellite laser communications and LIDAR's, new applications are being considered such as on-board distribution and processing of microwave signals, fiber sensors or gyroscopes as well. Whereas common optical / optoelectronic components are known to be weakly sensitive to radiations, the essential optical amplifiers are strongly degraded in such an environment because of the RIA (Radio-Induced-Absorption) experienced by the Erbium-Doped Fiber (EDF) itself [1-3]. This degradation is mainly caused by the presence of co-doping ions, such as Aluminium or Germanium, inserted in the fibre to assist the inclusion of the Erbium ions in the silica matrix or to provide to the optical fibre its guiding properties.

  20. Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers.

    Science.gov (United States)

    Hua, Xiao; Xu, Shanan; Wang, Mingming; Chen, Ying; Yang, Hui; Yang, Ruijin

    2017-10-01

    Tomato residue fibers obtained after derosination and deproteinization were processed by high-speed homogenization (HSH) and high-pressure homogenization (HPH), and their effects on fiber structure was investigated, respectively. Characterizations including particle size distribution, SEM, TEM and XRD were performed. HSH could break raw fibers to small particles of around 60μm, while HPH could reshape fibers to build network structure. Microfibrils were released and their nanostructure consisting of elementary fibrils was observed by TEM. XRD patterns indicated both HSH and HPH could hardly alter the nanostructure of the fibers. Physicochemical properties including expansibility, WHC and OHC were determined. Both HSH and HPH could increase the soluble fiber content by about 8%, but HSH-HPH combined processing did not show better result. Acid (4mol/L HCl) was used in replacement of water medium and the acidic degradation of fibers could be promoted by high speed shearing or high pressure processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Ultrafine fibers of zein and anthocyanins as natural pH indicator.

    Science.gov (United States)

    Prietto, Luciana; Pinto, Vania Zanella; El Halal, Shanise Lisie Mello; de Morais, Michele Greque; Costa, Jorge Alberto Vieira; Lim, Loong-Tak; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2018-05-01

    pH-sensitive indicator membranes, which are useful for pharmaceutical, food, and packaging applications, can be formed by encapsulating halochromic compounds within various solid supports. Accordingly, electrospinning is a versatile technique for the development of these indicators, by entrapping pH dyes within ultrafine polymer fibers. The ultrafine zein fibers, containing 5% (w/v) anthocyanins, had an average diameter of 510 nm. The pH-sensitive membrane exhibited color changes from pink to green when exposed to acidic and alkaline buffers, respectively. The contact angle was negligible after 10 and 2 s for neat and 5% anthocyanin-loaded zein membranes, respectively. The pH membranes exhibited color changes in a board pH range, which can potentially be used in various active packaging applications. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    Science.gov (United States)

    Ye, X. W.; Su, Y. H.; Han, J. P.

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  3. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    X. W. Ye

    2014-01-01

    Full Text Available In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM of civil infrastructure.

  4. Building Green: Construction for the 21st Century

    Science.gov (United States)

    Phillipson, Todd

    2012-01-01

    At Jefferson County Vocational School (JCVS) in Bloomingdale, Ohio, students get a lesson on building green with the construction of a home in the school's subdivision. The home is being built using Energy Star guidelines so that it may be identified as an Energy Star home. The goal for the Jefferson County Vocational Schools Board of Education…

  5. UNC-Utah NA-MIC Framework for DTI Fiber Tract Analysis

    Directory of Open Access Journals (Sweden)

    Audrey Rose Verde

    2014-01-01

    Full Text Available Diffusion tensor imaging has become an important modality in the field ofneuroimaging to capture changes in micro-organization and to assess white matterintegrity or development. While there exists a number of tractography toolsets,these usually lack tools for preprocessing or to analyze diffusion properties alongthe fiber tracts. Currently, the field is in critical need of a coherent end-to-endtoolset for performing an along-fiber tract analysis, accessible to non-technicalneuroimaging researchers. The UNC-Utah NA-MIC DTI framework represents acoherent, open source, end-to-end toolset for atlas fiber tract based DTI analysisencompassing DICOM data conversion, quality control, atlas building, fibertractography, fiber parameterization, and statistical analysis of diffusionproperties. Most steps utilize graphical user interfaces (GUI to simplifyinteraction and provide an extensive DTI analysis framework for non-technicalresearchers/investigators. We illustrate the use of our framework on a smallsample, cross sectional neuroimaging study of 8 healthy 1-year-old children fromthe Infant Brain Imaging Study (IBIS Network. In this limited test study, weillustrate the power of our method by quantifying the diffusion properties at 1year of age on the genu and splenium fiber tracts.

  6. Development of an anti-flood board to protect the interiors and exteriors of the infrastructure

    Science.gov (United States)

    Petru, Michal; Srb, Pavel; Sevcik, Ladislav; Martinec, Tomas; Kulhavy, Petr

    2018-06-01

    This article deals with the development of an anti-flood board to protect the interior and exterior of various infrastructures, such a houses, cottages or industrial buildings. It was designed prototypes and assembled numerical simulations. In Central Europe and in particular in the Czech Republic, floods are an integral part of the natural water cycle and cause great loss of life and great property damage. The development of new types of mobile anti-flood boards is very important as the design solution is developed for flood protection with regard to minimizing weight, cost of production, easy manipulation, simplicity and speed of installation.

  7. Radioactivity in building materials

    International Nuclear Information System (INIS)

    Stranden, E.

    1979-01-01

    The object of this brief report is to make the pollution inspectorate aware of the radiation hazards involved in new building materials, such as gypsum boards and alum slate based concrete blocks whose radium content is high. Experience in Swedish housebuilding has shown that a significant increase in the radiation dose to the occupants can occur. Improved insulation and elimination of draughts in fuel conservation accentuate the problem. Norwegian investigations are referred to and OECD and Scandinavian discussions aiming at recommendations and standards are mentioned. Suggested measures by the Norwegian authorities are given. (JIW)

  8. ECONOMIC AND FINANCIAL ANALYSIS OF THE BUILDINGS REHABILITATION SOLUTIONS

    Directory of Open Access Journals (Sweden)

    STAN IVAN F.E.

    2016-07-01

    Full Text Available The paper includes a simplified economical and financial analysis of the buildings rehabilitation solutions, for heating and lighting. The most important economic and financial indicators analyzed and determined are: economic return on investment and payback period of investment in dynamic form, net present value, and internal rate of return economic residual value of the investment on thermal insulation, building maintenance costs, energy costs. In order to reduce the electricity consumption: the methods consisted in replacing inefficient lighting with some efficient energy and for heat consumption: the proposed solution was building rehabilitation (exterior wall insulation, floor insulation board. The analysis consists in determining the economical and financial indicators before and after the building rehabilitation. The 3 rooms apartment is located in Craiova town, (wind zone IV, 2nd floor, orientation is S.

  9. Impact of Thermomechanical Fiber Pre-Treatment Using Twin-Screw Extrusion on the Production and Properties of Renewable Binderless Coriander Fiberboards

    Science.gov (United States)

    Uitterhaegen, Evelien; Labonne, Laurent; Merah, Othmane; Talou, Thierry; Ballas, Stéphane; Véronèse, Thierry

    2017-01-01

    The aim of this study consisted of manufacturing renewable binderless fiberboards from coriander straw and a deoiled coriander press cake, thus at the same time ensuring the valorization of crop residues and process by-products. The press cake acted as a natural binder inside the boards owing to the thermoplastic behavior of its protein fraction during thermopressing. The influence of different fiber-refining methods was evaluated and it was shown that a twin-screw extrusion treatment effectively improved fiber morphology and resulted in fiberboards with enhanced performance as compared to a conventional grinding process. The best fiberboard was produced with extrusion-refined straw using a 0.4 liquid/solid (L/S) ratio and with 40% press cake addition. The water sensitivity of the boards was effectively reduced by 63% through the addition of an extrusion raw material premixing operation and thermal treatment of the panels at 200 °C, resulting in materials with good performance showing a flexural strength of 29 MPa and a thickness swelling of 24%. Produced without the use of any chemical adhesives, these fiberboards could thus present viable, sustainable alternatives for current commercial wood-based materials such as oriented strand board, particleboard and medium-density fiberboard, with high cost-effectiveness. PMID:28714928

  10. Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures

    OpenAIRE

    Chen, G. M.; He, Y. H.; Yang, H.; Chen, J. F.; Guo, Y.C.

    2014-01-01

    For sustainability considerations, the use of recycled aggregate in concrete has attracted many interests in the research community. One of the main concerns for using such concrete in buildings is its spalling in fire. This may be alleviated by adding steel fibers to form steel fiber reinforced recycled aggregate concrete (SFRAC). This paper presents an experimental investigation into the compressive properties of SFRAC cylinders after exposure to elevated temperatures, including the compres...

  11. 7 CFR 1160.105 - Board.

    Science.gov (United States)

    2010-01-01

    ... and Orders; Milk), DEPARTMENT OF AGRICULTURE FLUID MILK PROMOTION PROGRAM Fluid Milk Promotion Order Definitions § 1160.105 Board. Board means the National Processor Advertising and Promotion Board established... Promotion Board or Board). ...

  12. Meeting of the ITER CTA Project Board

    International Nuclear Information System (INIS)

    2001-01-01

    Full text: A preparatory meeting of the Co-ordinated Technical Activities (CTA) Project Board took place in Vienna on 16 July 2001. The Board Members of Canada, EU, Japan, RF and of the CTA International Team participated in the Meeting, which was chaired by Acad. E. Velikhov. The major item on the Meeting Agenda was the discussion of the scope of the CTA. In this discussion the following comments were expressed: One of the prime objectives during the CTA is to develop technical specifications for procurement of critical items (magnets, vacuum vessel, and buildings). It was noted that the discussions with potential suppliers should confirm manufacturing processes in details in order to explore possible schedule reduction strategies. Safety analysis and licensing preparation should proceed on all proposed sites up to the preferred site designation, to ensure the overall implementation schedule is minimized and to resolve major technical issues needed for licensing. Several R and D issues remain to be further developed during the CTA. Special attention should be given by the Participants to two areas: Diagnostics; Heating and Current Drive Systems. Arrangements for continuation of the ITER Physics Expert Groups activities should be provided. To this end a new framework, called International Tokamak Physics Activity, is being planned. The Board encouraged the Participants' Representatives in the Co-ordinating committee of this activity to support the preparation for urgent Topical Group Meetings. The Board agreed that the Design Authority will be invested in the International Team and that proposals for site specific design changes should be agreed upon by the International Team Leader before being studied in detail. The Meeting agreed on some arrangements which will remain from the EDA, namely the ITER EDA Council Office in Moscow as Office of the PB Chair, and the ITER Office located at the IAEA in Vienna as agreed by the IAEA. The Board recommended that effective

  13. US DOE Perspectives on Advisory Board Effectiveness - 13539

    International Nuclear Information System (INIS)

    Adler, David

    2013-01-01

    Federal missions on the Oak Ridge Reservation began with the Manhattan Project, and continues today with major facilities supporting the Nation's Science and National Security missions. While most of the land area on the Oak Ridge Reservation is free of environmental impacts from these activities, significant legacy contamination is associated with specific facilities and past waste management areas. In 1989, the Oak Ridge Reservation (ORR) was placed on National Priorities List, and DOE established its Office of Environmental Management that same year. Three years later, in 1992, the Federal Facility Agreement for the reservation was signed. Three years afterward, the Oak Ridge Site Specific Advisory Board was established to augment ongoing public involvement activities related to Oak Ridge Reservation cleanup activities. One of the early and most impactful decisions the board made was to organize the End Use Working Group. This broad-based group of board members, DOE representatives, and members of the public was formed in 1997 to study future uses for contaminated areas of the reservation. The group was instrumental in building consensus in the Oak Ridge community regarding the long-term end state of reservation lands. The group's recommendations were a fundamental input into Record's of Decision subsequently developed to establish cleanup requirements across the ORR, and they continue to influence decisions being made today. In developing its recommendations on end states, the End Use Working Group came to the realization that long-term stewardship of contaminated areas of the reservation would be necessary, in some cases in perpetuity. It was from this concept that the Oak Ridge SSAB's 15-year involvement in stewardship would begin. A stewardship committee formed by the End Use Working Group wrote Volume 1 of the Stakeholder Report on Stewardship. This document-and its companion Volume 2, which was written a year later-form a crucial foundation for stewardship

  14. US DOE Perspectives on Advisory Board Effectiveness - 13539

    Energy Technology Data Exchange (ETDEWEB)

    Adler, David [US DOE (United States)

    2013-07-01

    Federal missions on the Oak Ridge Reservation began with the Manhattan Project, and continues today with major facilities supporting the Nation's Science and National Security missions. While most of the land area on the Oak Ridge Reservation is free of environmental impacts from these activities, significant legacy contamination is associated with specific facilities and past waste management areas. In 1989, the Oak Ridge Reservation (ORR) was placed on National Priorities List, and DOE established its Office of Environmental Management that same year. Three years later, in 1992, the Federal Facility Agreement for the reservation was signed. Three years afterward, the Oak Ridge Site Specific Advisory Board was established to augment ongoing public involvement activities related to Oak Ridge Reservation cleanup activities. One of the early and most impactful decisions the board made was to organize the End Use Working Group. This broad-based group of board members, DOE representatives, and members of the public was formed in 1997 to study future uses for contaminated areas of the reservation. The group was instrumental in building consensus in the Oak Ridge community regarding the long-term end state of reservation lands. The group's recommendations were a fundamental input into Record's of Decision subsequently developed to establish cleanup requirements across the ORR, and they continue to influence decisions being made today. In developing its recommendations on end states, the End Use Working Group came to the realization that long-term stewardship of contaminated areas of the reservation would be necessary, in some cases in perpetuity. It was from this concept that the Oak Ridge SSAB's 15-year involvement in stewardship would begin. A stewardship committee formed by the End Use Working Group wrote Volume 1 of the Stakeholder Report on Stewardship. This document-and its companion Volume 2, which was written a year later-form a crucial

  15. Nanowire modified carbon fibers for enhanced electrical energy storage

    Science.gov (United States)

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  16. Effect of Gamma Ray Energies and Steel Fiber addition by Weight on some Shielding Properties of Limestone Concrete

    International Nuclear Information System (INIS)

    Abd El-Latifa, A.A.; Ikraiam, F.A.; Abd El-Latifa, A.A.; Abd Elazziz, A.; Abd Elazziz, A.

    2010-01-01

    The mass attenuation coefficient , the build up factor , the half value thickness X 1/2 , and tenth value thickness X 1/10 of fiber concrete , 0% , 1% , 2%, 3%, and 4% by weight fiber content were measured at different gamma ray energies in MeV, 0.511,1.274 from Na-22 ,1.17 ,1.33 from Co-60 and 0.662 from Cs-137 . Appreciable variations were noted in the former nuclear parameters, due to the changes in the fiber content and gamma ray energies .A comparison of shielding properties of concrete with fiber content and reference sample(concrete without fiber ) have proven that the addition of steel fibers by weight to concrete have a potential application as a radiation shielding

  17. Reconfigurable remote access unit for W-band Radio-over-Fiber transmission

    DEFF Research Database (Denmark)

    Chorchos, Łukasz; Rommel, Simon; Turkiewicz, Jarosław P.

    2016-01-01

    There is a growing demand for cost-effective radio over fibre transmission techniques. In this paper, we propose and realize the reconfigurable remote access unit for radio-over-fiber transmission. The reconfigurable unit is build from the tunable filter and laser as well as remote controller...

  18. The impact of the board's strategy-setting role on board-management relations and hospital performance.

    Science.gov (United States)

    Büchner, Vera Antonia; Schreyögg, Jonas; Schultz, Carsten

    2014-01-01

    The appropriate governance of hospitals largely depends on effective cooperation between governing boards and hospital management. Governing boards play an important role in strategy-setting as part of their support for hospital management. However, in certain situations, this active strategic role may also generate discord within this relationship. The objective of this study is to investigate the impact of the roles, attributes, and processes of governing boards on hospital performance. We examine the impact of the governing board's strategy-setting role on board-management collaboration quality and on financial performance while also analyzing the interaction effects of board diversity and board activity level. The data are derived from a survey that was sent simultaneously to German hospitals and their associated governing board, combined with objective performance information from annual financial statements and quality reports. We use a structural equation modeling approach to test the model. The results indicate that different board characteristics have a significant impact on hospital performance (R = .37). The strategy-setting role and board-management collaboration quality have a positive effect on hospital performance, whereas the impact of strategy-setting on collaboration quality is negative. We find that the positive effect of strategy-setting on performance increases with decreasing board diversity. When board members have more homogeneous backgrounds and exhibit higher board activity levels, the negative effect of the strategy-setting on collaboration quality also increases. Active strategy-setting by a governing board may generally improve hospital performance. Diverse members of governing boards should be involved in strategy-setting for hospitals. However, high board-management collaboration quality may be compromised if managerial autonomy is too highly restricted. Consequently, hospitals should support board-management collaboration about

  19. Production and characterization of MDF using eucalyptus fibers and castor oil-based polyurethane resin

    Directory of Open Access Journals (Sweden)

    Campos Cristiane Inácio de

    2004-01-01

    Full Text Available The growing popularity of wooden panels renders this market segment increasingly competitive. MDF (Medium Density Fiberboard, in particular, is widely employed for a variety of applications, including civil construction, furniture, and packaging. This paper discusses a study of MDF produced from alternative raw materials, i.e., Eucalyptus fibers and castor-oil-based polyurethane resin. Physical and mechanical tests were performed to determine the MDF's modulus of elasticity and modulus of rupture in static bending tests, its swelling, water absorption, moisture and density. The results of the physical and mechanical characterization of this laboratory-produced MDF are discussed and compared with the Euro MDF Board standard. MDF produced with eucalyptus fiber and castor-oil-based polyurethane resin presents results very satisfactory.

  20. Medipix3 array high performance read-out board for synchrotron research

    International Nuclear Information System (INIS)

    Tartoni, N.; Horswell, I. C.; Marchal, J.; Gimenez, E. N.; Fearn, R. D.; Silfhout, R. G. van

    2010-01-01

    The Medipix3 ASIC is one of the most advanced chip that is presently available to build photon counting area detectors. The capabilities of the chip include adjacent pixels charge summing circuitry to sort out the distortion due to charge sharing, simultaneous counting and read-out that enables frames to be acquired without dead time, the colour mode of operation that enables up to eight energy bands to be acquired. In order to fully exploit the capabilities of the Medipix3 chip in synchrotron research, a high performance electronic board capable of driving large arrays of chips is necessary. We propose a parallel read-out board of Medipix3 chip arrays with a scalable architecture that allows driving the Medipix3 chip in all of its modes of operation. The board functions include the control of the chip arrays, data formatting and data compression, the management of the communications with the data storage devices, and operation in various trigger modes. In addition to this the board will have some 'intelligence' embedded. This will add some very important features to the final detector such as pattern recognition, capability of variable frame duration as a function of the photon flux, feedback to other equipment and real time calculations of data relevant to experiments such as the autocorrelation function.

  1. Low Cost Plastic Optical Fiber Pressure Sensor Embedded in Mattress for Vital Signal Monitoring.

    Science.gov (United States)

    Sartiano, Demetrio; Sales, Salvador

    2017-12-13

    The aim of this paper is to report the design of a low-cost plastic optical fiber (POF) pressure sensor, embedded in a mattress. We report the design of a multipoint sensor, a cheap alternative to the most common fiber sensors. The sensor is implemented using Arduino board, standard LEDs for optical communication in POF (λ = 645 nm) and a silicon light sensor. The Super ESKA ® plastic fibers were used to implement the fiber intensity sensor, arranged in a 4 × 4 matrix. During the breathing cycles, the force transmitted from the lungs to the thorax is in the order of tens of Newtons, and the respiration rate is of one breath every 2-5 s (0.2-0.5 Hz). The sensor has a resolution of force applied on a single point of 2.2-4.5%/N on the normalized voltage output, and a bandwidth of 10 Hz, it is then suitable to monitor the respiration movements. Another issue to be addressed is the presence of hysteresis over load cycles. The sensor was loaded cyclically to estimate the drift of the system, and the hysteresis was found to be negligible.

  2. Low Cost Plastic Optical Fiber Pressure Sensor Embedded in Mattress for Vital Signal Monitoring

    Directory of Open Access Journals (Sweden)

    Demetrio Sartiano

    2017-12-01

    Full Text Available The aim of this paper is to report the design of a low-cost plastic optical fiber (POF pressure sensor, embedded in a mattress. We report the design of a multipoint sensor, a cheap alternative to the most common fiber sensors. The sensor is implemented using Arduino board, standard LEDs for optical communication in POF (λ = 645 nm and a silicon light sensor. The Super ESKA® plastic fibers were used to implement the fiber intensity sensor, arranged in a 4 × 4 matrix. During the breathing cycles, the force transmitted from the lungs to the thorax is in the order of tens of Newtons, and the respiration rate is of one breath every 2–5 s (0.2–0.5 Hz. The sensor has a resolution of force applied on a single point of 2.2–4.5%/N on the normalized voltage output, and a bandwidth of 10 Hz, it is then suitable to monitor the respiration movements. Another issue to be addressed is the presence of hysteresis over load cycles. The sensor was loaded cyclically to estimate the drift of the system, and the hysteresis was found to be negligible.

  3. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications.

    Science.gov (United States)

    Zeng, Wei; Shu, Lin; Li, Qiao; Chen, Song; Wang, Fei; Tao, Xiao-Ming

    2014-08-20

    Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable. Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions. The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns. However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation. This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products. In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices. Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  5. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallego, Nidia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thibaud-Erkey, Catherine [United Technologies Research Center (UTRC), East Hartford, CT (United States); Karra, Reddy [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  6. Energy Performance Indicators in the Swedish Building Procurement Process

    Directory of Open Access Journals (Sweden)

    Ingrid Allard

    2017-10-01

    Full Text Available In Sweden, all new buildings need to comply with the National Board of Housing, Building and Planning’s requirement on specific purchased energy (kWh/m2. Accordingly, this indicator is often used to set design criteria in the building procurement process. However, when energy use is measured in finished buildings, the measurements often deviate significantly from the design calculations. The measured specific purchased energy does not necessarily reflect the responsibility of the building contractor, as it is influenced by the building operation, user behavior and climate. Therefore, Swedish building practitioners may prefer other indicators for setting design criteria in the building procurement process. The aim of this study was twofold: (i to understand the Swedish building practitioners’ perspectives and opinions on seven building energy performance indicators (envelope air leakage, U-values for different building parts, average U-value, specific heat loss, heat loss coefficient, specific net energy, and specific purchased energy; and (ii to understand the consequences for the energy performance of multi-family buildings of using the studied indicators to set criteria in the procurement process. The study involved a Delphi approach and simulations of a multi-family case study building. The studied indicators were discussed in terms of how they may meet the needs of the building practitioners when used to set building energy performance criteria in the procurement process.

  7. Sensory ratings of emissions from nontraditional building materials

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Kolarik, Jakub; Peuhkuri, Ruut

    2016-01-01

    Twenty-five subjects assessed the emissions from building materials: linoleum, cement mortar with and without fly ash, gypsum board and tiles with air cleaning properties and natural organic sheep wool. The ratings were made at different material loadings and in combinations with linoleum....... The results showed that except for natural organic product, increasing loading and combining materials with linoleum increased intensity of odor....

  8. Motives and Power of School Board Members: Implications for School Board-Superintendent Relationships

    Science.gov (United States)

    Mountford, Meredith

    2004-01-01

    The qualitative study presented in this article explores motivations for school board membership and conceptions of power held by school board members. The findings of the study suggest a relationship exists between the way board members define power and the type of motivation board members have for service. The implications of these findings for…

  9. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    Science.gov (United States)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination

  10. 77 FR 2541 - Board Meeting

    Science.gov (United States)

    2012-01-18

    ... FARM CREDIT SYSTEM INSURANCE CORPORATION Board Meeting AGENCY: Farm Credit System Insurance Corporation Board; Regular Meeting. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). DATE AND TIME: The meeting of the Board will be held at the...

  11. Building blocks for successful patient and family advisory boards: collaboration, communication, and commitment.

    Science.gov (United States)

    Taloney, Linda; Flores, Gabriela

    2013-01-01

    The mission of our hospital states: "Patients and their families are treated with compassion in a family-centered care environment that recognizes their physical, emotional, financial, and spiritual needs." Family-centered care is an approach to health care that shapes policies, programs, facility design, and day-to-day interactions among patients and their families, physicians, nurses, and other health care professionals. Health care professionals across all disciplines and in all care environments have the opportunity to advance the practice of patient- and family-centered care. They do so by welcoming patients and their families as partners in care-acknowledging patient and family expertise and strengths, encouraging their input, and acknowledging the value of their observations and perceptions. There is a growing recognition of the importance of patient and family care experiences as a key part of quality care. Through this partnership, patients and their families are viewed as valuable sources of information that can impact the quality of the care they receive. Their perspective on the care they receive can be used to shape effective solutions and target practice improvements in the care delivery experience. As an organization, we have been focused on implementing patient- and family-centered care for many years. We are unique in that we have parents of patients on the hospital staff and regularly seek their input, along with that of our Family Advisory Boards (English and Spanish speaking) and Teen Advisory Board. You have to ask yourself the question, "Are you ready to incorporate patient- and family-centered care into your practice?"

  12. Advance study of fiber-reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-01-01

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete

  13. Advance study of fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  14. Advance study of fiber-reinforced self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 4, Sofia 1113 (Bulgaria); Georgiev, I., E-mail: ivan.georgiev@parallel.bas.bg [Institute of Information and Communication Technologies & Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Sofia 1113 (Bulgaria); Stary, J., E-mail: stary@ugn.cas.cz [Institute of Geonics Czech Academy of Sciences, Studentska str., Ostrava 1768 (Czech Republic)

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  15. Does Board Diversity Really Matter?

    DEFF Research Database (Denmark)

    Rose, Caspar; Munch-Madsen, Peter; Funch, Maja

    2013-01-01

    We study the impact of female board representation as well as citizenship on corporate performance based on a sample of the largest listed firms in the Nordic countries as well as Germany. We also seek to determine the variation of board structures using factor analysis. We find no support for any...... performance impact relating to female board representation. However, we find an impact of board citizenship on performance showing that board members with a background from common law have a significant positive influence on corporate performance measured as ROA, ROE and ROCE. Consistent with other studies we...... also document that large boards impact corporate performance negatively. Moreover we also show that data set on boards can be explained by four underlying factors. This article adds insight to board determinants of corporate performance as well as the classification of board variation. Specifically...

  16. Analysis of Building 839: Carlisle Barracks, Pennsylvania

    Science.gov (United States)

    2013-09-01

    within prehistory or history is made clear.”101 A historic property is determined as either significant or not significant by applying standardized...yielded, or is likely to yield, information important in prehistory or history. 3.3 Significance Eligibility to the NRHP is based upon...given period in history or prehistory . The workmanship of Building 839 is evident in the mortar joints of the brick walls (Figure 53), the rake boards

  17. Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    Science.gov (United States)

    Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)

    2018-01-01

    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.

  18. A woven 2D touchpad sensor and a 1D slide sensor using soft capacitor fibers

    International Nuclear Information System (INIS)

    Gorgutsa, Stephan; Gu, Jian Feng; Skorobogatiy, Maksim

    2012-01-01

    Recently reported soft conductive-polymer-based capacitor fibers are used to build a fully woven 2D touchpad sensor and a 1D slide sensor. An individual capacitor fiber features a swiss-roll like structure having two dielectric and two conductive polymer films rolled together in a classic multilayer capacitor configuration. The soft fibers of sub-1 mm outer diameter are fabricated using a fiber drawing procedure from a macroscopic polymeric preform. An individual capacitor fiber is then demonstrated to act as a distributed sensor that allows the touch position to be determined by measuring the fiber’s AC response. In other words, a single fiber acts as a 1D slide sensor. Furthermore, we develop an electrical ladder network model to predict the distributed sensor properties of an individual fiber and show that this model describes the experimental measurements very well. Finally, a two-dimensional touchpad sensor is presented. The sensor is built by weaving a one-dimensional array of capacitor fibers in parallel to each other. The performance of the touchpad sensor is then characterized. (paper)

  19. Hospital boards and hospital strategic focus: the impact of board involvement in strategic decision making.

    Science.gov (United States)

    Ford-Eickhoff, Karen; Plowman, Donde Ashmos; McDaniel, Reuben R

    2011-01-01

    Despite pressures to change the role of hospital boards, hospitals have made few changes in board composition or director selection criteria. Hospital boards have often continued to operate in their traditional roles as either "monitors" or "advisors." More attention to the direct involvement of hospital boards in the strategic decision-making process of the organizations they serve, the timing and circumstances under which board involvement occurs, and the board composition that enhances their abilities to participate fully is needed. We investigated the relationship between broader expertise among hospital board members, board involvement in the stages of strategic decision making, and the hospital's strategic focus. We surveyed top management team members of 72 nonacademic hospitals to explore the participation of critical stakeholder groups such as the board of directors in the strategic decision-making process. We used hierarchical regression analysis to explore our hypotheses that there is a relationship between both the nature and involvement of the board and the hospital's strategic orientation. Hospitals with broader expertise on their boards reported an external focus. For some of their externally-oriented goals, hospitals also reported that their boards were involved earlier in the stages of decision making. In light of the complex and dynamic environment of hospitals today, those charged with developing hospital boards should match the variety in the external issues that the hospital faces with more variety in board makeup. By developing a board with greater breadth of expertise, the hospital responds to its complex environment by absorbing that complexity, enabling a greater potential for sensemaking and learning. Rather than acting only as monitors and advisors, boards impact their hospitals' strategic focus through their participation in the strategic decision-making process.

  20. Adsorption of Organic Compounds to Building Products

    DEFF Research Database (Denmark)

    Kjær, Ulla Dorte

    The presence of VOCs (Volatile Organic Compounds) in the indoor air may be a contributory cause of complaints about irritation of mucous membranes in eyes, nose and throat, difficulty in breathing, frequent airway inflammation, skin irritation, fatigue, concentration difficulty, dizziness and hea...... (6 pages). Detailed summary in English (15 pages). Background (23 pages). Objective and hypotheses (2 pages). Methods and materials (20 pages). Results (26 pages). Discussion (12 pages). Conclusion (3 pages). References (14 pages). Appendices (95 pages)....... on sorption equilibrium and kinetics of temperature, relative humidity, VOC concentrations and air velocity past the surface of the building product. Four common building materials were carefully selected for the sorption/desorption experiments: Painted gypsum board, lacquered beechwood parquet, PVC flooring...

  1. Particle Board and Oriented Strand Board Prepared with Nanocellulose-Reinforced Adhesive

    Directory of Open Access Journals (Sweden)

    Stefan Veigel

    2012-01-01

    Full Text Available Adhesives on the basis of urea-formaldehyde (UF and melamine-urea-formaldehyde (MUF are extensively used in the production of wood-based panels. In the present study, the attempt was made to improve the mechanical board properties by reinforcing these adhesives with cellulose nanofibers (CNFs. The latter were produced from dissolving grade beech pulp by a mechanical homogenization process. Adhesive mixtures with a CNF content of 0, 1, and 3 wt% based on solid resin were prepared by mixing an aqueous CNF suspension with UF and MUF adhesives. Laboratory-scale particle boards and oriented strand boards (OSBs were produced, and the mechanical and fracture mechanical properties were investigated. Particle boards prepared with UF containing 1 wt% CNF showed a reduced thickness swelling and better internal bond and bending strength than boards produced with pure UF. The reinforcing effect of CNF was even more obvious for OSB where a significant improvement of strength properties of 16% was found. For both, particle board and OSB, mode I fracture energy and fracture toughness were the parameters with the greatest improvement indicating that the adhesive bonds were markedly toughened by the CNF addition.

  2. 14 CFR 250.5 - Amount of denied boarding compensation for passengers denied boarding involuntarily.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Amount of denied boarding compensation for passengers denied boarding involuntarily. 250.5 Section 250.5 Aeronautics and Space OFFICE OF THE SECRETARY... boarding compensation for passengers denied boarding involuntarily. (a) Subject to the exceptions provided...

  3. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  4. How Properties of Kenaf Fibers from Burkina Faso Contribute to the Reinforcement of Earth Blocks

    Science.gov (United States)

    Millogo, Younoussa; Aubert, Jean-Emmanuel; Hamard, Erwan; Morel, Jean-Claude

    2015-01-01

    Physicochemical characteristics of Hibiscus cannabinus (kenaf) fibers from Burkina Faso were studied using X-ray diffraction (XRD), infrared spectroscopy, thermal gravimetric analysis (TGA), chemical analysis and video microscopy. Kenaf fibers (3 cm long) were used to reinforce earth blocks, and the mechanical properties of reinforced blocks, with fiber contents ranging from 0.2 to 0.8 wt%, were investigated. The fibers were mainly composed of cellulose type I (70.4 wt%), hemicelluloses (18.9 wt%) and lignin (3 wt%) and were characterized by high tensile strength (1 ± 0.25 GPa) and Young’s modulus (136 ± 25 GPa), linked to their high cellulose content. The incorporation of short fibers of kenaf reduced the propagation of cracks in the blocks, through the good adherence of fibers to the clay matrix, and therefore improved their mechanical properties. Fiber incorporation was particularly beneficial for the bending strength of earth blocks because it reinforces these blocks after the failure of soil matrix observed for unreinforced blocks. Blocks reinforced with such fibers had a ductile tensile behavior that made them better building materials for masonry structures than unreinforced blocks.

  5. Refinement of boards' role required.

    Science.gov (United States)

    Umbdenstock, R J

    1987-01-01

    The governing board's role in health care is not changing, but new competitive forces necessitate a refinement of the board's approach to fulfilling its role. In a free-standing, community, not-for-profit hospital, the board functions as though it were the "owner." Although it does not truly own the facility in the legal sense, the board does have legal, fiduciary, and financial responsibilities conferred on it by the state. In a religious-sponsored facility, the board fulfills these same obligations on behalf of the sponsoring institute, subject to the institute's reserved powers. In multi-institutional systems, the hospital board's power and authority depend on the role granted it by the system. Boards in all types of facilities are currently faced with the following challenges: Fulfilling their basic responsibilities, such as legal requirements, financial duties, and obligations for the quality of care. Encouraging management and the board itself to "think strategically" in attacking new competitive market forces while protecting the organization's traditional mission and values. Assessing recommended strategies in light of consequences if constituencies think the organization is abandoning its commitments. Boards can take several steps to match their mode of operation with the challenges of the new environment. Boards must rededicate themselves to the hospital's mission. Trustees must expand their understanding of health care trends and issues and their effect on the organization. Boards must evaluate and help strengthen management's performance, rather than acting as a "watchdog" in an adversarial position. Boards must think strategically, rather than focusing solely on operational details. Boards must evaluate the methods they use for conducting business.

  6. Decamp Clock Board Firmware

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J. de; Castilla, J.; Martinez, G.

    2007-09-27

    Decamp (Dark Energy Survey Camera) is a new instrument designed to explore the universe aiming to reveal the nature of Dark Energy. The camera consists of 72 CCDs and 520 Mpixels. The readout electronics of DECam is based on the Monsoon system. Monsoon is a new image acquisition system developed by the NOAO (National Optical Astronomical Observatory) for the new generation of astronomical cameras. The Monsoon system uses three types of boards inserted in a Eurocard format based crate: master control board, acquisition board and clock board. The direct use of the Monsoon system for DECam readout electronics requires nine crates mainly due to the high number of clock boards needed. Unfortunately, the available space for DECam electronics is constrained to four crates at maximum. The major drawback to achieve such desired compaction degree resides in the clock board signal density. This document describes the changes performed at CIEMAT on the programmable logic of the Monsoon clock board aiming to meet such restricted space constraints. (Author) 5 refs.

  7. Decamp Clock Board Firmware

    International Nuclear Information System (INIS)

    Vicente, J. de; Castilla, J.; Martinez, G.

    2007-01-01

    Decamp (Dark Energy Survey Camera) is a new instrument designed to explore the universe aiming to reveal the nature of Dark Energy. The camera consists of 72 CCDs and 520 Mpixels. The readout electronics of DECam is based on the Monsoon system. Monsoon is a new image acquisition system developed by the NOAO (National Optical Astronomical Observatory) for the new generation of astronomical cameras. The Monsoon system uses three types of boards inserted in a Eurocard format based crate: master control board, acquisition board and clock board. The direct use of the Monsoon system for DECam readout electronics requires nine crates mainly due to the high number of clock boards needed. Unfortunately, the available space for DECam electronics is constrained to four crates at maximum. The major drawback to achieve such desired compaction degree resides in the clock board signal density. This document describes the changes performed at CIEMAT on the programmable logic of the Monsoon clock board aiming to meet such restricted space constraints. (Author) 5 refs

  8. Fiber properties and their influence on paper structure

    Science.gov (United States)

    Turrado Saucedo, Jose; Ramirez P., R.; Perez R., S.

    1997-08-01

    When we move our considerations of the components of paper, through the manufacture of paper, to the use of paper, we are analyzing the fundamental properties of paper related to its end uses. Paper as a product has a lot of possible uses and they are increasing, nevertheless it is very important in secondary products like corrugated board, etc. Every year the paper world production has an increase of approximately 1.6%. For the year 1994 it was 268,772,000 tons and during 1995 this production was 277,791,000 t. In Mexico for instance in 1994/2,860,162 tons and 1995/3,047,153 tons plus paper importation is possible to reach a per capita consumption of 35.8 kg. All paper quality kinds demand some special paper properties, which require technology, human resources and fibers properties. Surely there are fields to investigate by comparing the fundamental properties of paper and board with those of other materials, that is the reason why research must be done, despite the recent difficult times. In hard times its done distinction on switch of founds from fundamental to applied research and research for immediate development, this is understandable. Nevertheless, to study the relation between fibers and end use performance could well capture and even create a yet unknown market. Rather than adopt the attitude that 'here is paper, let us find markets for it' such research into the fundamental properties of the product will give one a clearer understanding of how it can satisfy future demands and meet possible future specifications. Because it is in meeting these specifications that the future of the industry must depend, it must be clear that money spent in this way now may not produce immediate quantifiable benefits, but it will produce the essential reserves that will in future be turned to good account by the industry.

  9. Robust fiber clustering of cerebral fiber bundles in white matter

    Science.gov (United States)

    Yao, Xufeng; Wang, Yongxiong; Zhuang, Songlin

    2014-11-01

    Diffusion tensor imaging fiber tracking (DTI-FT) has been widely accepted in the diagnosis and treatment of brain diseases. During the rendering pipeline of specific fiber tracts, the image noise and low resolution of DTI would lead to false propagations. In this paper, we propose a robust fiber clustering (FC) approach to diminish false fibers from one fiber tract. Our algorithm consists of three steps. Firstly, the optimized fiber assignment continuous tracking (FACT) is implemented to reconstruct one fiber tract; and then each curved fiber in the fiber tract is mapped to a point by kernel principal component analysis (KPCA); finally, the point clouds of fiber tract are clustered by hierarchical clustering which could distinguish false fibers from true fibers in one tract. In our experiment, the corticospinal tract (CST) in one case of human data in vivo was used to validate our method. Our method showed reliable capability in decreasing the false fibers in one tract. In conclusion, our method could effectively optimize the visualization of fiber bundles and would help a lot in the field of fiber evaluation.

  10. 24 CFR 200.947 - Building product standards and certification program for polystyrene foam insulation board.

    Science.gov (United States)

    2010-04-01

    ... INTRODUCTION TO FHA PROGRAMS Minimum Property Standards § 200.947 Building product standards and certification... product, the administrator's certification of compliance with the applicable standards and the type of... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Building product standards and...

  11. PELAKSANAAN PROGRAM BOARDING SCHOOL DALAM PEMBINAAN MORAL SISWA DI SMA TARUNA INDONESIA PALEMBANG

    Directory of Open Access Journals (Sweden)

    Hendriyenti H

    2014-12-01

    Full Text Available AbstractIndonesia nowadays faces some moral issues in teenagers scope or adult scope such as the use of drugs, violence, rascality, abortion, persecution, gambling, prostitution, and so on. Those problems are very danger for the country. Therefore, moral education is very important in this situation. The study was done at SMA Taruna Indonesia Palembang by the tittle: “the Implementation of boarding School Program for Students Moral education at SMA Taruna Indonesia Palembang”.Based on the result of the stuy, it was found that the implementation of boarding school program to educate students’moral at SMA Taruna Indonesia Palembang was applied throug dicipline implementation program and religion education program. Those two programs were applied by preventive and currative treatment. Moreover, there were some factors which support students’ moral education at SMA Taruna Indonesia Palembang such as students motivation, advisors dedication, 24 hours education and guidance, good coordination between advisors, teachers, securities, and other staff, and far location of boarding school from city center. As long as the teenager is an unstable period, there weremany difficulties in educate them. Finally,it is hoped that school stakeholders could improve the school management so that those difficulties could be solved and moral education could be applied.  Keywords: boarding school, morality building

  12. Impact of Surface Modification and Nanoparticle on Sisal Fiber Reinforced Polypropylene Nano composites

    International Nuclear Information System (INIS)

    Ibrahim, I. D.; Jamiru, T.; Sadiku, E. R.; Agwuncha, S. Ch.; Kupolati, W. K.

    2016-01-01

    The use of plant fibers, polymer, and nanoparticles for composite has gained global attention, especially in the packaging, automobile, aviation, building, and construction industries. Nano composites materials are currently in use as a replacement for traditional materials due to their superior properties, such as high strength-to-weight ratio, cost effectiveness, and environmental friendliness. Sisal fiber (SF) was treated with 5% NaOH for 2 hours at 70"°C. A mixed blend of sisal fiber and recycled polypropylene (rPP) was produced at four different fiber loadings: 10, 20, 30, and 40 wt.%, while nano clay was added at 1, 3, and 5 wt.%. Maleic anhydride grafted polypropylene (MAPP) was used as the compatibilizer for all composites prepared except the untreated sisal fibers. The characterization results showed that the fiber treatment, addition of MAPP, and nano clay improved the mechanical properties and thermal stability and reduced water absorption of the SF/rPP nano composites. The tensile strength, tensile modulus, and impact strength increased by 32.80, 37.62, and 5.48%, respectively, when compared to the untreated SF/rPP composites. Water absorption was reduced due to the treatment of fiber and the incorporation of MAPP and nano clay.

  13. MR neurography of the median nerve at 3.0 T: Optimization of diffusion tensor imaging and fiber tractography

    International Nuclear Information System (INIS)

    Guggenberger, Roman; Eppenberger, Patrick; Markovic, Daniel; Nanz, Daniel; Chhabra, Avneesh; Pruessmann, Klaas P.; Andreisek, Gustav

    2012-01-01

    Objectives: The purpose of this study was to systematically assess the optimal b-value and reconstruction parameters for DTI and fiber tractography of the median nerve at 3.0 T. Methods: Local ethical board approved study with 45 healthy volunteers (15 men, 30 women; mean age, 41 ± 3.4 years) who underwent DTI of the right wrist at 3.0 T. A single-shot echo-planar-imaging sequence (TR/TE 10123/40 ms) was acquired at four different b-values (800, 1000, 1200, and 1400 s/mm 2 ). Two independent readers performed post processing and fiber-tractography. Fractional anisotropy (FA) maps were calculated. Fiber tracts of the median nerve were generated using four different algorithms containing different FA thresholds and different angulation tolerances. Data were evaluated quantitatively and qualitatively. Results: Tracking algorithms using a minimum FA threshold of 0.2 and a maximum angulation of 10° were significantly better than other algorithms. Fiber tractography generated significantly longer fibers in DTI acquisitions with higher b-values (1200 and 1400 s/mm 2 versus 800 s/mm 2 ; p 2 (p 2 for DTI of the median nerve at 3.0 T. Optimal reconstruction parameters for fiber tractography should encompass a minimum FA threshold of 0.2 and a maximum angulation tolerance of 10.

  14. Investigation of drum pressurization incident in the 331 Building, Room 175 on January 10, 1995

    International Nuclear Information System (INIS)

    Pollari, R.A.

    1995-02-01

    On January 10, 1995, a pressurized drum incident occurred at the 331 Building, Room 175. On January 12, 1995, the Manager of the Life Sciences Center appointed members to an Investigation Board to investigate the incident (see Exhibit A). This incident was initially categorized as an Off-Normal Occurrence, but was later elevated to an Unusual Occurrence by the Occurrence Classifier. The scope of this investigation was to employ a formal method of root cause analysis, identify the methodology, and report the results of the analysis, fully explaining the technical elements of the causal sequence along with a description of the barriers that should have or could have prevented the occurrence. During the course of the investigation, the scene of the event was not accessible. Therefore, the investigation relied primarily on testimony from staff members directly involved and their management. In addition, other outside professionals were also consulted. The Investigation Board visited the previous location of the drum, 331A Building, Room 9; Room 173, which fronts room 175, was also visited. The Investigation Board reviewed selected documents, which are also listed

  15. What makes great boards great.

    Science.gov (United States)

    Sonnenfeld, Jeffrey A

    2002-09-01

    In the wake of meltdowns at WorldCom, Tyco, and Enron, enormous attention has been focused on the companies' boards. It seems inconceivable that business disasters of such magnitude could happen without gross or even criminal negligence on the part of board members. And yet a close examination of those boards reveals no broad pattern of incompetence or corruption. In fact, they followed most of the accepted standards for board operations: Members showed up for meetings; they had money invested in the company; audit committees, compensation committees, and codes of ethics were in place; the boards weren't too small or too big, nor were they dominated by insiders. In other words, they passed the tests that would normally be applied to determine whether a board of directors was likely to do a good job. And that's precisely what's so scary, according to corporate governance expert Jeffrey Sonnenfeld, who suggests that it's time for some new thinking about how corporate boards operate and are evaluated. He proposes thinking not only about how to structure the board's work but also about how to manage it as a social system. Good boards are, very simply, high-functioning work groups. They're distinguished by a climate of respect, trust, and candor among board members and between the board and management. Information is shared openly and on time; emergent political factions are quickly eliminated. Members feel free to challenge one another's assumptions and conclusions, and management encourages lively discussion of strategic issues. Directors feel a responsibility to contribute meaningfully to the board's performance. In addition, good boards assess their own performance, both collectively and individually.

  16. Reduced muscle fiber force production and disrupted myofibril architecture in patients with chronic rotator cuff tears.

    Science.gov (United States)

    Mendias, Christopher L; Roche, Stuart M; Harning, Julie A; Davis, Max E; Lynch, Evan B; Sibilsky Enselman, Elizabeth R; Jacobson, Jon A; Claflin, Dennis R; Calve, Sarah; Bedi, Asheesh

    2015-01-01

    A persistent atrophy of muscle fibers and an accumulation of fat, collectively referred to as fatty degeneration, commonly occur in patients with chronic rotator cuff tears. The etiology of fatty degeneration and function of the residual rotator cuff musculature have not been well characterized in humans. We hypothesized that muscles from patients with chronic rotator cuff tears have reduced muscle fiber force production, disordered myofibrils, and an accumulation of fat vacuoles. The contractility of muscle fibers from biopsy specimens of supraspinatus muscles of 13 patients with chronic full-thickness posterosuperior rotator cuff tears was measured and compared with data from healthy vastus lateralis muscle fibers. Correlations between muscle fiber contractility, American Shoulder and Elbow Surgeons (ASES) scores, and tear size were analyzed. Histology and electron microscopy were also performed. Torn supraspinatus muscles had a 30% reduction in maximum isometric force production and a 29% reduction in normalized force compared with controls. Normalized supraspinatus fiber force positively correlated with ASES score and negatively correlated with tear size. Disordered sarcomeres were noted, along with an accumulation of lipid-laden macrophages in the extracellular matrix surrounding supraspinatus muscle fibers. Patients with chronic supraspinatus tears have significant reductions in muscle fiber force production. Force production also correlates with ASES scores and tear size. The structural and functional muscle dysfunction of the residual muscle fibers is independent of the additional area taken up by fibrotic tissue. This work may help establish future therapies to restore muscle function after the repair of chronically torn rotator cuff muscles. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. Glass fiber effect on mechanical properties of Eco-SCC

    Science.gov (United States)

    Prasad M. L., V.; Loksesh, G.; Ramanjaneyulu, B.; Venkatesh, S.; Mousumi, K.

    2017-07-01

    Sustainable Construction encouraging the use of recycled materials and implies adoption of fewer natural resources in buildings and other infrastructure. In this paper Quarry Dust (QD) is used as partial replacement for River Sand (RS) to make Self Compacting Concrete (SCC) of grade M40. Glass fiber is used as strengthening material to the developed concrete. The present study mainly focused to develop Eco-SCC using QD. In this study it was found that, for developing Eco-SCC, what is the optimum dosage of replacement of QD in RS. Fresh properties of SCC are satisfying the EFNARC specifications and also target strength is achieved. Further it is concluded that, with the glass fiber addition there is an improvement in the split and flexural strength values.

  18. Calculation on cosmic-ray muon exposure rate in non-walled concrete buildings

    International Nuclear Information System (INIS)

    Fujitaka, Kazunobu; Abe, Siro

    1984-01-01

    Computer simulations on the exposure indoors from cosmic ray muons were practiced in the framework of non-scattering and non-cascade assumptions. The model buildings were two-dimensional, rectangular, and were made of a normal concrete. A stratified structure was assumed in each building, where no mezzanine was considered. Walls were not taken into account yet. The distributions of the exposure rates in 26-story buildings were illustrated in contour maps for various sets of parameters. All of them gave basically archlike patterns. Analyses of the results showed that the exposure rate is affected most largely by the floor board thickness. The ceiling height would be an insignificant factor for short buildings. The min/max ratio of the muon exposure rate in a moderate size building was estimated to be more than 0.7. (author)

  19. Formulation and characterization of date palm fibers mortar by addition of silica fume

    Science.gov (United States)

    Mokhtari, A.; Kriker, A.; Ouaggad, H.; Merad, N.

    2018-05-01

    This paper presents the results of experimental investigations of the formulated and characterization of date palm fibers mortar by addition of silica fume. The use of addition mineral is widely used in the production of cements through the world. The objective of this work is to bring our contribution to the recovery of local resources in the occurrence vegetable fibers of date palm to weak cost and from renewable source and integrate it in the filled of building. Date palm fiber are from Ouargla town in south of Algeria. Different mortar mixtures were prepared in which the cement was substitute by 10% of silica fume. The mechanical characteristics (compressive and flexural strength) of date palm fibers mortar by treatment of the matrix by the adding of silica fume were examined. The results obtained have shown that the mortar workability as well as the compressive and flexural strength decreases with increasing the silica fume replacement. The results showed that the use of silica fume enabled to evaluate the flexural strength. However, another treatment of fibers and matrix will be recommended for Improved the characteristics.

  20. The Role of School Board Social Capital in District Governance: Effects on Financial and Academic Outcomes

    Science.gov (United States)

    Saatcioglu, Argun; Moore, Suzanne; Sargut, Gokce; Bajaj, Aarti

    2011-01-01

    Social capital refers to the nature of ties within a social unit, as well as the unit's external relationships. We draw from organizational sociology and political science, and also build upon existing insights in school board research, to offer an approach that address the effects of "bonding" (internal ties) and "bridging"…

  1. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete.

    Science.gov (United States)

    Song, Weimin; Yin, Jian

    2016-08-18

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.

  2. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  3. Single-longitudinal mode distributed-feedback fiber laser with low-threshold and high-efficiency

    Science.gov (United States)

    Jiang, Man; Zhou, Pu; Gu, Xijia

    2018-01-01

    Single-frequency fiber laser has attracted a lot of interest in recent years due to its numerous application potentials in telecommunications, LIDAR, high resolution sensing, atom frequency standard, etc. Phosphate glass fiber is one of the candidates for building compact high gain fiber lasers because of its capability of high-concentration of rare-earth ions doping in fiber core. Nevertheless, it is challenging for the integration of UV-written intra-core fiber Bragg gratings into the fiber laser cavity due to the low photosensitivity of phosphate glass fiber. The research presented in this paper will focus on demonstration of UV-written Bragg gratings in phosphate glass fiber and its application in direct-written short monolithic single-frequency fiber lasers. Strong π-phase shift Bragg grating structure is direct-inscribed into the Er/Yb co-doped gain fiber using an excimer laser, and a 5-cm-long phase mask is used to inscribe a laser cavity into the Er/Yb co-doped phosphate glass fibers. The phase mask is a uniform mask with a 50 μm gap in the middle. The fiber laser device emits output power of 10.44 mW with a slope efficiency of 21.5% and the threshold power is about 42.8 mW. Single-longitudinal mode operation is validated by radio frequency spectrum measurement. Moreover, the output spectrum at the highest power shows an excellent optical signal to noise ratio of about 70 dB. These results, to the best of our knowledge, show the lowest power threshold and highest efficiency among the reports that using the same structure to achieve single-longitudinal mode laser output.

  4. Manufacturing and Structural Feasibility of Natural Fiber Reinforced Polymeric Structural Insulated Panels for Panelized Construction

    Directory of Open Access Journals (Sweden)

    Nasim Uddin

    2011-01-01

    Full Text Available Natural fibers are emerging in the fields of automobile and aerospace industries to replace the parts such as body panels, seats, and other parts subjected to higher bending strength. In the construction industries, they have the potential to replace the wood and oriented strand boards (OSB laminates in the structural insulated panels (SIPs. They possess numerous advantages over traditional OSB SIPs such as being environmental friendly, recyclable, energy efficient, inherently flood resistant, and having higher strength and wind resistance. This paper mainly focuses on the manufacturing feasibility and structural characterization of natural fiber reinforced structural insulated panels (NSIPs using natural fiber reinforced polymeric (NFRP laminates as skin. To account for the use of natural fibers, the pretreatments are required on natural fibers prior to use in NFRP laminates, and, to address this issue properly, the natural fibers were given bleaching pretreatments. To this end, flexure test and low-velocity impact (LVI tests were carried out on NSIPs in order to evaluate the response of NSIPs under sudden impact loading and uniform bending conditions typical of residential construction. The paper also includes a comparison of mechanical properties of NSIPs with OSB SIPs and G/PP SIPs. The results showed significant increase in the mechanical properties of resulting NSIP panels mainly a 53% increase in load-carrying capacity compared to OSB SIPs. The bending modulus of NSIPs is 190% higher than OSB SIPs and 70% weight reduction compared to OSB SIPs.

  5. The Perceptions of Georgia School Board Members' Need for Training on School Board Governance

    Science.gov (United States)

    Nutt, Pamela Studdard

    2010-01-01

    This study explored the perceptions of training needs of school board members in Georgia. The study examined perceptions of school board chairs, board members with 1 to 5 years experience, members with 6 to 10 years experience, members with 11 to 15 years experience and board members with 16 plus years experience in the areas of school board…

  6. 77 FR 55837 - Board Meeting

    Science.gov (United States)

    2012-09-11

    ... FARM CREDIT SYSTEM INSURANCE CORPORATION Board Meeting AGENCY: Farm Credit System Insurance Corporation. ACTION: Regular meeting. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). Date and Time: The meeting of the Board will be held...

  7. RESEARCH ON THE THERMAL CONDUCTIVITY OF COMPOSITES MADE OF ECOLOGICAL FIBERS

    Directory of Open Access Journals (Sweden)

    Maria-Luminita BRENCI, Camelia COSEREANU, Adriana FOTIN, Alexandru VASILACHE

    2013-09-01

    Full Text Available The paper presents the results of the researchconducted to obtain new ecological composites thatcould be used for thermal insulation of buildings. Theobtained panels are made of ecological materials thatdo not affect the human health (wood chips andfibers, host of hemp, textile fibers, wool and reed.The testing was performed in eight points, for aninternal temperature of T=200C and an outdoortemperature situated in the range of -200C÷200C. Asthe tests conducted, the results showed that the bestinsulating capacity belonged to a composite whichhas wood fiber and wool in its structure, followed acomposite which has wood chips, hemp particles andwool in its structure.

  8. 75 FR 9196 - Letter From Secretary of Energy Accepting Defense Nuclear Facilities Safety Board (Board...

    Science.gov (United States)

    2010-03-01

    ... DEPARTMENT OF ENERGY Letter From Secretary of Energy Accepting Defense Nuclear Facilities Safety Board (Board) Recommendation 2009-2 AGENCY: Department of Energy. ACTION: Notice. SUMMARY: The...: The Department of Energy (DOE) acknowledges receipt of Defense Nuclear Facilities Safety Board (Board...

  9. Board affiliation and pay gap

    Directory of Open Access Journals (Sweden)

    Shenglan Chen

    2014-06-01

    Full Text Available This paper examines the effects of board affiliation on the corporate pay gap. Using a sample of Chinese listed firms from 2005 to 2011, we find that boards with a greater presence of directors appointed by block shareholders have lower pay gaps. Furthermore, the governance effects of board affiliation with and without pay are distinguished. The empirical results show that board affiliation without pay is negatively related to the pay gap, while board affiliation with pay is positively related to the pay gap. Overall, the results shed light on how block shareholders affect their companies’ pay gaps through board affiliation.

  10. 49 CFR 1011.2 - The Board.

    Science.gov (United States)

    2010-10-01

    ... TRANSPORTATION GENERAL RULES AND REGULATIONS BOARD ORGANIZATION; DELEGATIONS OF AUTHORITY § 1011.2 The Board. (a... submitted for decision except those assigned to an individual Board Member or employee or an employee board...) The Board may bring before it any matter assigned to an individual Board Member or employee or...

  11. 78 FR 67303 - Americans With Disabilities Act (ADA) Accessibility Guidelines for Buildings and Facilities...

    Science.gov (United States)

    2013-11-12

    ... ARCHITECTURAL AND TRANSPORTATION BARRIERS COMPLIANCE BOARD 36 CFR Part 1191 RIN 3014-AA22 Americans With Disabilities Act (ADA) Accessibility Guidelines for Buildings and Facilities; Architectural Barriers Act (ABA) Accessibility Guidelines; Correction AGENCY: Architectural and Transportation Barriers...

  12. 78 FR 4847 - Board Meeting

    Science.gov (United States)

    2013-01-23

    ... FARM CREDIT SYSTEM INSURANCE CORPORATION Board Meeting AGENCY: Farm Credit System Insurance Corporation. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). DATE AND TIME: The meeting of the Board will be held at the offices of the Farm...

  13. Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy

    Science.gov (United States)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-01-01

    The experimental thulium fiber laser (TFL) is being explored as an alternative to the current clinical gold standard Holmium:YAG laser for lithotripsy. The near single-mode TFL beam allows coupling of higher power into smaller optical fibers than the multimode Holmium laser beam profile, without proximal fiber tip degradation. A smaller fiber is desirable because it provides more space in the ureteroscope working channel for increased saline irrigation rates and allows maximum ureteroscope deflection. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback but increased stone retropulsion. A "fiber muzzle brake" was tested for reducing both fiber burnback and stone retropulsion by manipulating vapor bubble expansion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-outer-diameter, 360-μm-inner-diameter tube with a 275-μm-diameter through hole located 250 μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed ex vivo. Small stones with a mass of 40±4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25±4 s (n=10) without visible distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers, respectively. The muzzle brake fiber tip simultaneously provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  14. Thulium fiber laser lithotripsy using a muzzle brake fiber tip

    Science.gov (United States)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-02-01

    The Thulium fiber laser (TFL) is being explored as an alternative to Holmium:YAG laser for lithotripsy. TFL beam profile allows coupling of higher power into smaller fibers than multimode Holmium laser beam, without proximal fiber tip degradation. A smaller fiber provides more space in ureteroscope working channel for increased saline irrigation and allows maximum ureteroscope flexion. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback, but increased retropulsion. In this study, a "fiber muzzle brake" was tested for reducing fiber burnback and stone retropulsion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-OD, 360-μm-ID tube with 275-μm thru hole located 250-μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed, ex vivo. Small stones with a mass of 40 +/- 4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25 +/- 4 s (n=10), without distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers. The muzzle brake fiber tip provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  15. TEMPERATURE FIELDS IN THE ZONE OF CONNECTION BETWEEN WINDOW AND BUILDING ENVELOPE

    OpenAIRE

    V. V. Ivanov; A. N. Butenko; L. V. Karaseva

    2011-01-01

    Problem statement. To determine additional heat losses through window opening slopes, it is ne-cessary to calculate temperature fields of a wall in the zone of connection between window and building envelope. Two types of building envelopes are considered: solid brick wall and two-layer-wall of bricks and fiber foam concrete block interlayered with air.Results. The results obtained show the influence of a window on the temperature field of wall opening. Different types of wall structures are ...

  16. Pilot Boarding Areas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pilot boarding areas are locations at sea where pilots familiar with local waters board incoming vessels to navigate their passage to a destination port. Pilotage is...

  17. Board Certification in Counseling Psychology

    Science.gov (United States)

    Crowley, Susan L.; Lichtenberg, James W.; Pollard, Jeffrey W.

    2012-01-01

    Although specialty board certification by the American Board of Professional Psychology (ABPP) has been a valued standard for decades, the vast majority of counseling psychologists do not pursue board certification in the specialty. The present article provides a brief history of board certification in general and some historical information about…

  18. Radon-222 exhalation from Danish building materials: H + H Industri A/S results

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    1999-01-01

    rate measurements for 10 samples of Danish building materials are reported. Samples include ordinary concrete, lightweight aggregate concrete,autoclaved aerated concrete, bricks, and gypsum board. The maximum mass-specific exhalation rate is about 20 m Bq h"-"1 kg "-"1. Under consideration...

  19. Making Capacity Building Meaningful: A Framework for Strategic Action

    Science.gov (United States)

    Robins, Lisa

    2008-11-01

    This paper aims to give practical meaning to ‘capacity building’ through (a) identifying a suite of practical measures, such as mentoring or best practice guidelines, that have been shown to or are considered to build human, social, institutional, and economic capital; (b) placing these measures within a broader systems framework; and (c) exploring stakeholder feedback on specific measures to inform framework implementation. The 29 measures described provide actors, whether government or nongovernment, with a suite of practical investment choices for building capacity. These measures are then clustered into eight groups according to their primary purpose and placed within a systems framework. The framework provides a tool for actors with responsibilities for or an interest in capacity building to inform more holistic and strategic targeting of effort and investment. Stakeholder feedback gathered through surveys and workshops is subsequently reported to further inform implementation of specific measures within the framework’s eight groupings. The framework presented may be built upon through the identification and inclusion of further capacity building measures. The research is conducted within the context of decentralized governance arrangements for natural resource management (NRM), with specific focus on Australia’s recently formalized 56 NRM regions and their community-based governing boards as an informative arena of learning. Application of the framework is explored in the Australian setting through the identification and comparison of measures supported and most preferred by four major stakeholder groups, namely board members, regional NRM organization staff, policy/research interests, and Indigenous interests. The research also examines stakeholder perceptions of capacity issues, and whether these issues are likely to be addressed through implementing their preferred measures.

  20. Production of mycotoxins on artificially and naturally infested building materials

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Gravesen, S.; Nielsen, P.A.

    1999-01-01

    , especially Asp. ustus and Asp. niger produced many unknown secondary metabolites on the building materials. Analyses of wallpaper and glass-fibre wallpaper naturally infested with Asp. versicolor revealed sterigmatocystin and 5-methoxysterigmatocystin. Analyses of naturally infested wallpaper showed that C......In this study, the ability to produce mycotoxins during growth on artificially infested building materials was investigated for Penicillium chrysogenum, Pen. polonicum, Pen. brevicompactum, Chaetomium spp., Aspergillus ustus, Asp. niger, Ulocladium spp., Alternaria spp., and Paecilomyces spp., all...... isolated from water-damaged building materials. Spores from the different isolates of the above mentioned species were inoculated on gypsum board with and without wallpaper and on chipboard with and without wallpaper. Fungal material was scraped off the materials, extracted, and analyzed using high...

  1. Implementation of Highly-Flowable Strain Hardening Fiber Reinforced Concrete in New RC Beam-Column Joints

    Directory of Open Access Journals (Sweden)

    Liao Wen-Cheng

    2018-01-01

    Full Text Available The purpose of New RC project was aimed to reduce the member sections and increase the available space of high rise buildings by using high strength concrete (f’c > 70 MPa and high strength rebars (fy > 685 MPa. Material consumptions and member section sizes can be further reduced owing to the upgrade of strength. However, the nature of brittleness of high strength may also cause early cover spalling and other ductility issues. Addition of steel fibers is an alternative as transverse reinforcement. Highly flowable strain hardening fiber reinforced concrete (HF-SHFRC has excellent workability in the fresh state and exhibits the strain-hardening and multiple cracking characteristics of high performance fiber reinforced cementitious composites (HPFRCC in their hardened state. The objective of this study is to investigate the feasibility of implementing HF-SHFRC in New RC building systems, particularly for beam-column joints as an alternative of transverse reinforcements. Four full-scale exterior beam-column joints, including two specimens with intensive transverse reinforcements and two specimens made of HF-SHFRC without any stirrup, are tested. Test results show that the HF-SHFRC specimens perform as well as specimens with intensive transverse reinforcements regarding failure mode, ductility, energy dissipation and crack width control. Integration of New RC building systems and HF-SHFRC can assuring construction qualities and further diminish labor work and give infrastructure longer service life, and eventually lower the life-cycle cost.

  2. Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anbo [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2016-09-30

    This report summarizes technical progress on the program “Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology at Virginia Tech. The objective of this project is to develop a first-of-a-kind technology for remote fiber optic generation and detection of acoustic waves for structural health monitoring in harsh environments. During the project period, which is from April 1, 2013 to Septemeber 30, 2016, three different acoustic generation mechanisms were studied in detail for their applications in building a fiber optic acoustic generation unit (AGU), including laser induced plasma breakdown (LIP), Erbium-doped fiber laser absorption, and metal laser absorption. By comparing the performance of the AGUs designed based on these three mechanisms and analyzing the experimental results with simulations, the metal laser absorption method was selected to build a complete fiber optic structure health monitoring (FO-SHM) system for the proposed high temperature multi-parameter structure health monitoring application. Based on the simulation of elastic wave propagation and fiber Bragg grating acoustic pulse detection, an FO-SHM element together with a completed interrogation system were designed and built. This system was first tested on an aluminum piece in the low-temperature range and successfully demonstrated its capability of multi-parameter monitoring and multi-point sensing. In the later stages of the project, the research was focused on improving the surface attachment design and preparing the FO-SHM element for high temperature environment tests. After several upgrades to the surface attachment methods, the FO-SHM element was able to work reliably up to 600oC when attached to P91 pipes, which are the target material of this project. In the final stage of this project, this FO

  3. QoS Provisioning Techniques for Future Fiber-Wireless (FiWi Access Networks

    Directory of Open Access Journals (Sweden)

    Martin Maier

    2010-04-01

    Full Text Available A plethora of enabling optical and wireless access-metro network technologies have been emerging that can be used to build future-proof bimodal fiber-wireless (FiWi networks. Hybrid FiWi networks aim at providing wired and wireless quad-play services over the same infrastructure simultaneously and hold great promise to mitigate the digital divide and change the way we live and work by replacing commuting with teleworking. After overviewing enabling optical and wireless network technologies and their QoS provisioning techniques, we elaborate on enabling radio-over-fiber (RoF and radio-and-fiber (R&F technologies. We describe and investigate new QoS provisioning techniques for future FiWi networks, ranging from traffic class mapping, scheduling, and resource management to advanced aggregation techniques, congestion control, and layer-2 path selection algorithms.

  4. Board-to-Board Free-Space Optical Interconnections Passing through Boards for a Bookshelf-Assembled Terabit-Per-Second-Class ATM Switch.

    Science.gov (United States)

    Hirabayashi, K; Yamamoto, T; Matsuo, S; Hino, S

    1998-05-10

    We propose free-space optical interconnections for a bookshelf-assembled terabit-per-second-class ATM switch. Thousands of arrayed optical beams, each having a rate of a few gigabits per second, propagate vertically to printed circuit boards, passing through some boards, and are connected to arbitrary transmitters and receivers on boards by polarization controllers and prism arrays. We describe a preliminary experiment using a 1-mm-pitch 2 x 2 beam-collimator array that uses vertical-cavity surface-emitting laser diodes. These optical interconnections can be made quite stable in terms of mechanical shock and temperature fluctuation by the attachment of reinforcing frames to the boards and use of an autoalignment system.

  5. Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable

    OpenAIRE

    Ràfols Bellés, Joan

    2016-01-01

    The objective of this project is to build a python application to monitor radiofrequency (RF) packets on a personal computer (PC). In order to do this, a NRF24L01 board will be used together with a USB-MPSSE cable to connect the board with the PC. This system attempts to replicate a sniffer functionality, capable of receiving packets from different transmitters with very little information from their configuration. This functionality, which goes beyond regular packet reception, allows the use...

  6. Cellulosic Fibers: Effect of Processing on Fiber Bundle Strength

    DEFF Research Database (Denmark)

    Thygesen, Anders; Madsen, Bo; Thomsen, Anne Belinda

    2011-01-01

    A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding, and cotto......A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding...

  7. In Defense of Boards

    NARCIS (Netherlands)

    B. Visser (Bauke); S. Dominguez Martinez (Silvia); O.H. Swank (Otto)

    2007-01-01

    textabstractIt is often assumed that bad corporate performance means a bad CEO. The task of a board of directors is then simple: dismiss the executive. If it fails to do so, the board is said to be indolent. We take a kinder approach to observed board behaviour and point to the problems even

  8. Mechanical behavior of sustainable building materials using PET waste and industrial by-products

    OpenAIRE

    Juárez, C. A; Mendoza-Rangel, J. M; González, J. R; Rodríguez, J. A; Valdez, P

    2015-01-01

    The building industry is facing the challenge of satisfying a growing demand for housing spaces that can be mitigated by the use of construction materials manufactured with industrial by-products that allow the production of low-cost housing with a low environmental impact. In this research, an alternative building system to manufacture lightweight masonry blocks with polyethylene terephthalate (PET) bottles and fiber-reinforced panels using binary mixture (Portland cement and fly ash), was s...

  9. Manitoba Hydro-Electric Board 52. annual report : Building as one

    International Nuclear Information System (INIS)

    2003-01-01

    A provincial Crown corporation, Manitoba Hydro serves approximately 502,000 customers throughout Manitoba with electric energy, and provides natural gas service to 251,000 customers in several communities in southern Manitoba. In addition, Manitoba Hydro exports electricity to electric utilities and marketers in the mid-western United States, Ontario, and Saskatchewan. In 2002, Winnipeg Hydro was purchased from the City of Winnipeg. Records were broken for historical peak demand for electricity (24 February 2003) and natural gas (22 January 2003). A study of wind power generation was launched, with seven sites being monitored. A Power Smart program focusing on geothermal heat pump systems also offered assistance to Manitoba homeowners. Successful conversion of the Selkirk Generating Station from coal to natural gas was achieved. In Brandon, a 260 mega watt (MW) natural gas combustion turbine plant was opened. Over $29 million in loans were issued to customers under the Home Comfort and Energy Savings Program. Electricity rates for residential customers remained unchanged, as did those for large industrial customers. Approval was received by the National Energy Board to export 500 MW of electricity to Northern States Power. A new international interconnection was brought into service in November 2002 between Glenboro, Manitoba and Harvey, North Dakota. The ISO 14001 international certification for environmental management systems was awarded to Manitoba Hydro. tabs., figs

  10. A Mini Review on Nanocarbon-Based 1D Macroscopic Fibers:Assembly Strategies and Mechanical Properties

    Institute of Scientific and Technical Information of China (English)

    Liang Kou; Yingjun Liu; Cheng Zhang; Le Shao; Zhanyuan Tian; Zengshe Deng; Chao Gao

    2017-01-01

    Nanocarbon-based materials, such as carbon nanotubes(CNTs) and graphene have been attached much attention by scientific and industrial community. As two representative nanocarbon materials, one-dimensional CNTs and twodimensional graphene both possess remarkable mechanical properties. In the past years, a large amount of work have been done by using CNTs or graphene as building blocks for constructing novel, macroscopic, mechanically strong fibrous materials. In this review, we summarize the assembly approaches of CNT-based fibers and graphene-based fibers in chronological order, respectively. The mechanical performances of these fibrous materials are compared, and the critical influences on the mechanical properties are discussed. Personal perspectives on the fabrication methods of CNT-and graphene-based fibers are further presented.

  11. Comparación entre redes de fibras sintéticas y redes de fibras de cáñamo para el refuerzo de muros de albañileria = Comparison between synthetic fiber networks and hemp fiber networks for the reinforcement of masonry walls

    Directory of Open Access Journals (Sweden)

    Alessandra Vilardi

    2016-12-01

    Full Text Available La existencia de una gran cantidad de edificios antiguos ha movilizado la investigación para estudiar nuevos sistemas de refuerzo a aquellas construcciones que sean dañadas por decadencia fisiológica o por terremoto. El presente documento demuestra la eficacia de un sistema de refuerzo innovador para los muros de mampostería, constituyentes los elementos estructurales de los edificios históricos. Se hace una comparación entre unas redes bidireccionales de fibras sintéticas tradicionales y las de fibras naturales, ambas pegadas a las dos fachadas del muro con matriz de mortero. El resultado muestra la aplicación de las fibras de cáñamo como refuerzo sísmico y una mayor compatibilidad de estas con el material que caracterizan los edificios antiguos. Abstract The existence of a large number of old buildings has mobilized research to study new systems of reinforcement to those buildings that are damaged by physiological decay or earthquake. This document demonstrates the effectiveness of an innovative reinforcement system for masonry walls, which are the structural elements of historic buildings. A comparison is made between bidirectional networks of traditional synthetic fibers and those of natural fibers, both glued to the two facades of the wall with mortar matrix. The result shows the application of hemp fibers as seismic reinforcement and a greater compatibility of these with the material that characterize the old buildings.

  12. COLLABORATION BOARD (CB55)

    CERN Multimedia

    B. Cousins

    Open Access Publication Policy ATLAS had recently issued a short statement in support of open access publishing. The mood of the discussions in the December CMS Collaboration Board had appeared to be in favour and so it was being proposed that CMS issue the same statement as that made by ATLAS (the statement is attached to the agenda of this meeting). The Collaboration Board agreed. Election of the Chair of the Collaboration Board Following the agreement to shorten the terms of both the Spokesperson and the Collaboration Board Chair, and to introduce a longer overlap period between the election and the start of the term, the election for the next Collaboration Board Chair was due in December 2007. If the old standard schedule specified in the Constitution were adapted to this date, then the Board should be informed at the present meeting that the election was being prepared. However, it was felt that the experience of the previous year's election of the Spokesperson had shown that it would be desirable to...

  13. WeaselBoard :

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, John C.; Schwartz, Moses Daniel; Berg, Michael J.; Van Houten, Jonathan Roger; Urrea, Jorge Mario; King, Michael Aaron; Clements, Abraham Anthony; Jacob, Joshua A.

    2013-10-01

    Critical infrastructures, such as electrical power plants and oil refineries, rely on programmable logic controllers (PLCs) to control essential processes. State of the art security cannot detect attacks on PLCs at the hardware or firmware level. This renders critical infrastructure control systems vulnerable to costly and dangerous attacks. WeaselBoard is a PLC backplane analysis system that connects directly to the PLC backplane to capture backplane communications between modules. WeaselBoard forwards inter-module traffic to an external analysis system that detects changes to process control settings, sensor values, module configuration information, firmware updates, and process control program (logic) updates. WeaselBoard provides zero-day exploit detection for PLCs by detecting changes in the PLC and the process. This approach to PLC monitoring is protected under U.S. Patent Application 13/947,887.

  14. Study on basalt fiber parameters affecting fiber-reinforced mortar

    Science.gov (United States)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  15. 49 CFR 1011.5 - Employee boards.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Employee boards. 1011.5 Section 1011.5... OF TRANSPORTATION GENERAL RULES AND REGULATIONS BOARD ORGANIZATION; DELEGATIONS OF AUTHORITY § 1011.5 Employee boards. This section covers matters assigned to the Accounting Board, a board of employees of the...

  16. Board Size and Board Independence: A Quantitative Study on Banking Industry in Pakistan

    Directory of Open Access Journals (Sweden)

    Kashif Rashid

    2014-12-01

    Full Text Available This paper aims to investigate the relationship of board independence and board size with productivity and efficiency of the listed banks on the Karachi Stock Exchange, Pakistan. There is a lack of consensus regarding impact of corporate governance practices in correspondence to number of board members and board independence in banking sector. The derived results of the study show that there is a positive relationship between board independence and bank profitability and efficiency. Independent directors play a crucial role in providing genuine advice during executive decision making process which is an important source for improving overall corporate governance. Moreover, results regarding the role of control variables suggest a positive relationship of the total assets and deposits of the firm with the firm’s performance supporting stewardship theory in the market.

  17. NASA Automated Fiber Placement Capabilities: Similar Systems, Complementary Purposes

    Science.gov (United States)

    Wu, K. Chauncey; Jackson, Justin R.; Pelham, Larry I.; Stewart, Brian K.

    2015-01-01

    New automated fiber placement systems at the NASA Langley Research Center and NASA Marshall Space Flight Center provide state-of-art composites capabilities to these organizations. These systems support basic and applied research at Langley, complementing large-scale manufacturing and technology development at Marshall. These systems each consist of a multi-degree of freedom mobility platform including a commercial robot, a commercial tool changer mechanism, a bespoke automated fiber placement end effector, a linear track, and a rotational tool support structure. In addition, new end effectors with advanced capabilities may be either bought or developed with partners in industry and academia to extend the functionality of these systems. These systems will be used to build large and small composite parts in support of the ongoing NASA Composites for Exploration Upper Stage Project later this year.

  18. Properties of Sugarcane Fiber on the Strength of the Normal and Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Sheikh Khalid Faisal

    2017-01-01

    Full Text Available The usage of natural fiber in construction are widely used in building materials engineering. However, using sugarcane fiber waste material as a natural in construction is very precious, because it can increase crack control and ductility, brittle concrete. Furthermore, the usage of sugarcane in construction can reduce of environmental pollution.In this study, a mixture of sugarcane fiber to be used in normal grade concrete and lightweight concrete to determine whether there is an increase in the compressive and tensile strength of the concrete. The objective of this study was to determine the compressive and tensile strength between control concrete and concrete mix with sugarcane fiber. In addition, the optimal volume of sugarcane fiber in the concrete mixture where the percentage of sugarcane fiber used was 0.5%, 1.0% and 1.5%. Compessive strength was tested on days 7 and 28 after curing test is carried out. Meanwhile, the tensile test, has been carried out to measure the tensile strength of sugarcane fiber relations in concrete mixes only at 28 day curing. Result of the testing showed that the optimum value containing admixtures of sugarcane is 0.5%. This percentage get the value of compressive strength is nearest with concrete control and the value of tensile strength is higher than concrete control and also the timing of concrete to cracked getting slower. Therefore, the use of sugarcane fiber suitable for addition that do not exceed 0.5% of the concrete mixture.

  19. Sub-pm{{\\sqrt{Hz}^{-1}}} non-reciprocal noise in the LISA backlink fiber

    Science.gov (United States)

    Fleddermann, Roland; Diekmann, Christian; Steier, Frank; Tröbs, Michael; Heinzel, Gerhard; Danzmann, Karsten

    2018-04-01

    The future space-based gravitational wave detector laser interferometer space antenna (LISA) requires bidirectional exchange of light between its two optical benches on board of each of its three satellites. The current baseline foresees a polarization-maintaining single-mode fiber for this backlink connection. Phase changes which are common in both directions do not enter the science measurement, but differential (‘non-reciprocal’) phase fluctuations directly do and must thus be guaranteed to be small enough. We have built a setup consisting of a Zerodur baseplate with fused silica components attached to it using hydroxide-catalysis bonding and demonstrated the reciprocity of a polarization-maintaining single-mode fiber at the 1 pm \\sqrt{Hz}-1 level as is required for LISA. We used balanced detection to reduce the influence of parasitic optical beams on the reciprocity measurement and a fiber length stabilization to avoid nonlinear effects in our phase measurement system (phase meter). For LISA, a different phase meter is planned to be used that does not show this nonlinearity. We corrected the influence of beam angle changes and temperature changes on the reciprocity measurement in post-processing.

  20. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation.

    Science.gov (United States)

    Choi, Jeong-Il; Lee, Bang Yeon

    2015-09-30

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber's suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  1. To evaluate and compare the effect of different Post Surface treatments on the Tensile Bond Strength between Fiber Posts and Composite Resin.

    OpenAIRE

    Shori, Deepa; Pandey, Swapnil; Kubde, Rajesh; Rathod, Yogesh; Atara, Rahul; Rathi, Shravan

    2013-01-01

    Background: Fiber posts are widely used for restoration of mutilated teeth that lack adequate coronal tooth structure to retain a core for definitive restoration, bond between the fiber post and composite material depends upon the chemical reaction between the post surface and the resin material used for building up the core. In attempt to maximize the resin bonding with fiber post, different post surface conditioning is advocated. Therefore the purpose of the study is to examine the interfac...

  2. Preserving the Legitimacy of Board Certification.

    Science.gov (United States)

    Hanemann, Michael S; Wall, Holly C; Dean, John A

    2017-06-01

    The aims of this discussion were to inform the medical community about the American Board of Cosmetic Surgery's ongoing attempts in Louisiana to achieve equivalency to American Board of Medical Specialties (ABMS) member boards so that its diplomates may use the term "board certified" in advertising and to ensure public safety by upholding the standards for medical board certification. In 2011, Louisiana passed a truth in medical advertising law, which was intended to protect the public by prohibiting the use of the term "board certified" by improperly credentialed physicians. An American Board of Cosmetic Surgery diplomate petitioned the Louisiana State Board of Medical Examiners to approve a rule that would establish a pathway to equivalency for non-ABMS member boards, whose diplomates have not completed training approved by the Accreditation Council for Graduate Medical Education (ACGME) in the specialty they are certifying. Physicians and physician organizations representing multiple specialties (facial plastic and reconstructive surgery, otolaryngology [head and neck surgery], orthopedic spine surgery, pediatric neurosurgery, dermatology, and plastic surgery) urged the Louisiana State Board of Medical Examiners to clarify its advertising policy, limiting the use of the term "board certified" to physicians who have completed ACGME-approved training in the specialty or subspecialty named in the certificate. The public equates the term "board certified" with the highest level of expertise in a medical specialty. When a certifying board does not require completion of ACGME or American Osteopathic Association (AOA)-accredited training in the specialty it certifies, the result is an unacceptable degree of variability in the education and training standards applied to its diplomates. Independent, third-party oversight of certifying boards and training programs is necessary to ensure quality standards are upheld. Any system that assesses a non-ABMS member or non

  3. [Identification of varieties of textile fibers by using Vis/NIR infrared spectroscopy technique].

    Science.gov (United States)

    Wu, Gui-Fang; He, Yong

    2010-02-01

    The aim of the present paper was to provide new insight into Vis/NIR spectroscopic analysis of textile fibers. In order to achieve rapid identification of the varieties of fibers, the authors selected 5 kinds of fibers of cotton, flax, wool, silk and tencel to do a study with Vis/NIR spectroscopy. Firstly, the spectra of each kind of fiber were scanned by spectrometer, and principal component analysis (PCA) method was used to analyze the characteristics of the pattern of Vis/NIR spectra. Principal component scores scatter plot (PC1 x PC2 x PC3) of fiber indicated the classification effect of five varieties of fibers. The former 6 principal components (PCs) were selected according to the quantity and size of PCs. The PCA classification model was optimized by using the least-squares support vector machines (LS-SVM) method. The authors used the 6 PCs extracted by PCA as the inputs of LS-SVM, and PCA-LS-SVM model was built to achieve varieties validation as well as mathematical model building and optimization analysis. Two hundred samples (40 samples for each variety of fibers) of five varieties of fibers were used for calibration of PCA-LS-SVM model, and the other 50 samples (10 samples for each variety of fibers) were used for validation. The result of validation showed that Vis/NIR spectroscopy technique based on PCA-LS-SVM had a powerful classification capability. It provides a new method for identifying varieties of fibers rapidly and real time, so it has important significance for protecting the rights of consumers, ensuring the quality of textiles, and implementing rationalization production and transaction of textile materials and its production.

  4. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    Directory of Open Access Journals (Sweden)

    Jeong-Il Choi

    2015-09-01

    Full Text Available The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber’s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  5. Building machines that learn and think like people

    OpenAIRE

    Lake, Brenden M.; Ullman, Tomer David; Tenenbaum, Joshua B; Gershman, Samuel J

    2016-01-01

    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitiv...

  6. Measurements of noise immission from wind turbines at receptor locations: Use of a vertical microphone board to improve the signal-to-noise ratio

    International Nuclear Information System (INIS)

    Fegeant, Olivier

    1999-01-01

    The growing interest in wind energy has increased the need of accuracy in wind turbine noise immission measurements and thus, the need of new measurement techniques. This paper shows that mounting the microphone on a vertical board improves the signal-to-noise ratio over the whole frequency range compared to the free microphone technique. Indeed, the wind turbine is perceived two times noisier by the microphone due to the signal reflection by the board while, in addition, the wind noise is reduced. Furthermore, the board shielding effect allows the measurements to be carried out in the presence of reflecting surfaces such as building facades

  7. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  8. Illumination properties and energy savings of a solar fiber optic lighting system balanced by artificial lights

    OpenAIRE

    Lingfors, David

    2013-01-01

    A solar fiber optic lighting system, SP3 from the Swedish company Parans Solar Lighting AB, has been installed in a study area/corridor test site. A collector is tracking the sun during daytime, focusing the direct sun irradiance via Fresnel lenses into optical fibers, which guide the solar light into the building. The illumination properties of the system have been characterized. The energy saving due to reduced need of artificial lighting have been calculated and methods for balancing the a...

  9. Cardanol-based thermoset plastic reinforced by sponge gourd fibers (Luffa cylindrica

    Directory of Open Access Journals (Sweden)

    André Leandro da Silva

    2016-02-01

    Full Text Available Abstract A growing global trend for maximum use of natural resources through new processes and products has enhanced studies and exploration of renewable natural materials. In this study, cardanol, a component of the cashew nut shell liquid (CNSL, was used as a building block for the development of a thermosetting matrix, which was reinforced by raw and modified sponge gourd fibers (Luffa cylindrica. DSC and TG results showed that among biocomposites, the one reinforced by sponge gourd fibers treated with NaOH 10 wt% (BF10 had the highest thermal stability, besides the best performance in the Tensile testing, showing good incorporation, dispersion, and adhesion to polymer matrix, observed by SEM. After 80 days of simulated soil experiments, it has been discovered that the presence of treated fiber allowed better biodegradability behavior to biocomposites. The biobased thermoset plastic and biocomposites showed a good potential to several applications, such as manufacturing of articles for furniture and automotive industries, especially BF10.

  10. Graphene fiber: a new trend in carbon fibers

    OpenAIRE

    Zhen Xu; Chao Gao

    2015-01-01

    New fibers with increased strength and rich functionalities have been untiringly pursued by materials researchers. In recent years, graphene fiber has arisen as a new carbonaceous fiber with high expectations in terms of mechanical and functional performance. In this review, we elucidated the concept of sprouted graphene fibers, including strategies for their fabrication and their basic structural attributes. We examine the rapid advances in the promotion of mechanical/functional properties o...

  11. 76 FR 52997 - Public Company Accounting Oversight Board; Order Approving Proposed Board Funding Final Rules for...

    Science.gov (United States)

    2011-08-24

    ... Accounting Oversight Board; Order Approving Proposed Board Funding Final Rules for Allocation of the Board's... August 18, 2011. I. Introduction On June 21, 2011, the Public Company Accounting Oversight Board (the... public accounting firm, in amounts that are sufficient to cover the costs of processing and reviewing...

  12. Influence of fiber upon the radiation degradation of fiber-reinforced plastics

    International Nuclear Information System (INIS)

    Udagawa, Akira

    1992-01-01

    Influences of fiber upon the radiation degradation of fiber-reinforced plastics were investigated by using 2 MeV electrons. Radiation resistances were evaluated from the three-point bending strength of the fiber laminates which used bisphenol A-type epoxy resin as a matrix. Carbon fiber laminates had higher radiation resistance values than the laminates made of glass fiber. Model laminates using polyethylene as a matrix were prepared in order to examine the differences between carbon fiber and glass fiber filler, the relation between gel fraction and absorbed dose was established. When the polyethylene was filled in the carbon fiber, forming the gel was strikingly delayed. This result suggests that radiation protective action existing in carbon fiber to matrix resin is the main cause of the higher radiation resistance of carbon fiber reinforced plastics. (author)

  13. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    Science.gov (United States)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  14. A Refractive Index Sensor Based on the Resonant Coupling to Cladding Modes in a Fiber Loop

    Science.gov (United States)

    Reyes, Mauricio; Monzón-Hernández, David; Martínez-Ríos, Alejandro; Silvestre, Enrique; Díez, Antonio; Cruz, José Luis; Andrés, Miguel V.

    2013-01-01

    We report an easy-to-build, compact, and low-cost optical fiber refractive index sensor. It consists of a single fiber loop whose transmission spectra exhibit a series of notches produced by the resonant coupling between the fundamental mode and the cladding modes in a uniformly bent fiber. The wavelength of the notches, distributed in a wavelength span from 1,400 to 1,700 nm, can be tuned by adjusting the diameter of the fiber loop and are sensitive to refractive index changes of the external medium. Sensitivities of 170 and 800 nm per refractive index unit for water solutions and for the refractive index interval 1.40–1.442, respectively, are demonstrated. We estimate a long range resolution of 3 × 10−4 and a short range resolution of 2 × 10−5 for water solutions. PMID:23979478

  15. Technical assessment of three layered cement-bonded boards produced from wastepaper and sawdust

    International Nuclear Information System (INIS)

    Fuwape, Joseph Adeola; Fabiyi, James Sunday; Osuntuyi, Edward Olusola

    2007-01-01

    The technical properties of three layered cement-bonded boards (CBBs) made from wastepaper and sawdust were investigated. The CBBs were produced at three density levels of 1000, 1200 and 1300 kg/m 3 and at four cement/particle ratios of 2.0:1, 2.5:1, 3.0:1 and 3.5:1 on a weight to weight basis. The technical properties evaluated were modulus of rupture (MOR), modulus of elasticity (MOE), water absorption (WA) and thickness swelling (TS). The MOR values ranged from 4.85 to 11.69 MPa and MOE values ranged from 2.80 to 5.57 GPa. The mean values of WA and TS after 24 h of water soaking of the CBBs ranged from 18.18% to 40.49% and 3.55% to 12.13%, respectively. MOR and MOE of the CBBs increased with increase in board density, but MOR decreased with the increase in cement/particle ratio. On the other hand, WA and TS decreased with increase in board density and cement/particle ratio. CBBs produced from wastepaper and sawdust at cement/particle ratios of 3.0:1 and 3.5:1 are suitable for building construction such as paneling, ceiling and partitioning

  16. Primary Manufacturing Processes for Fiber Reinforced Composites: History, Development & Future Research Trends

    Science.gov (United States)

    Tapan Bhatt, Alpa; Gohil, Piyush P.; Chaudhary, Vijaykumar

    2018-03-01

    Composite Materials are becoming more popular gradually replacing traditional material with extra strength, lighter weight and superior property. The world is exploring use of fiber reinforced composites in all application which includes air, land and water transport, construction industry, toys, instrumentation, medicine and the list is endless. Based on application and reinforcement used, there are many ways to manufactures parts with fiber reinforced composites. In this paper various manufacturing processes have been discussed at length, to make fiber reinforced composites components. The authors have endeavored to include all the processes available recently in composite industry. Paper first highlights history of fiber reinforced composites manufacturing, and then the comparison of different manufacturing process to build composites have been discussed, to give clear understanding on, which process should be selected, based on reinforcement, matrix and application. All though, there are several advantages to use such fiber reinforcement composites, still industries have not grown at par and there is a lot of scope to improve these industries. At last, where India stands today, what are the challenges in market has been highlighted and future market and research trend of exploring such composite industries have been discussed. This work is carried out as a part of research project sanctioned by GUJCOST, Gandhinagar.

  17. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    OpenAIRE

    Choi, Jeong-Il; Lee, Bang

    2015-01-01

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber?s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then th...

  18. 49 CFR 393.118 - What are the rules for securing dressed lumber or similar building products?

    Science.gov (United States)

    2010-10-01

    ... plywood, gypsum board or other materials of similar shape. Lumber or building products which are not... the middle tier that must be secured may not exceed 6 feet about the deck of the trailer; or (ii...

  19. Continuous Natural Fiber Reinforced Thermoplastic Composites by Fiber Surface Modification

    Directory of Open Access Journals (Sweden)

    Patcharat Wongsriraksa

    2013-01-01

    Full Text Available Continuous natural fiber reinforced thermoplastic materials are expected to replace inorganic fiber reinforced thermosetting materials. However, in the process of fabricating the composite, it is difficult to impregnate the thermoplastic resin into reinforcement fiber because of the high melt viscosity. Therefore, intermediate material, which allows high impregnation during molding, has been investigated for fabricating continuous fiber reinforced thermoplastic composite by aligning resin fiber alongside reinforcing fiber with braiding technique. This intermediate material has been called “microbraid yarn (MBY.” Moreover, it is well known that the interfacial properties between natural fiber and resin are low; therefore, surface treatment on continuous natural fiber was performed by using polyurethane (PU and flexible epoxy (FLEX to improve the interfacial properties. The effect of surface treatment on the mechanical properties of continuous natural fiber reinforced thermoplastic composites was examined. From these results, it was suggested that surface treatment by PU with low content could produce composites with better mechanical properties.

  20. Use of flexible engineered cementitious composite in buildings

    International Nuclear Information System (INIS)

    Khitab, A.; Nadeem, M.; Hussain, S.

    2011-01-01

    This article describes the applications and benefits of a recently developed smart building material namely Engineered cementitious composite (ECC), also known as flexible or bendable concrete. Conventional concretes have a strain capacity of only 0.1 percent and are highly brittle and rigid. This lack of bend ability is a major cause of failure under strain and has been a pushing factor in the development of an elegant material which is capable to exhibit an enhanced flexibility. An ECC has a strain capacity of more than 3 percent and thus acts more like a ductile metal rather than like a brittle glass. The aim of this paper is to highlight a probable success of ECC in terms of industrial and commercial use in Pakistan. With the introduction of flexible concrete in building technology, it is likely to have safer and more durable construction. The material is expected to display reduced detrimental impacts on the natural environment. A bendable concrete is composed of all the ingredients of a traditional concrete minus coarse aggregates or crushed stones and is reinforced with micro mechanically designed polymer fibers. The mechanism of action of the micro-polymeric fibers in concrete has also been emphasized. The principles of mix designs of the mortar incorporating fibers to make an ECC have also been explained. It has also been mentioned in detail as how this technology can be used to enhance the flexibility of some modern concrete types like flowing concrete, self-compacting concrete, and lightweight concrete. ECC is a green construction material. The possible benefits like environment friendliness, cost effectiveness, and durability have been also been elucidated in the paper. (author)

  1. Fiber dielectrophoresis

    International Nuclear Information System (INIS)

    Lipowicz, P.J.; Yeh, H.C.

    1988-01-01

    Dielectrophoresis is the motion of uncharged particles in nonuniform electric fields. We find that the theoretical dielectrophoretic velocity of a conducting fiber in an insulating medium is proportional to the square of the fiber length, and is virtually independent of fiber diameter. This prediction has been verified experimentally. The results point to the development of a fiber length classifier based on dielectrophoresis. (author)

  2. Single fiber pullout from hybrid fiber reinforced concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes

  3. NPS Transit System Passenger Boardings Study: Converting Ticket Sales to Passenger Boardings.

    Science.gov (United States)

    2016-01-01

    This report examines the reporting of passenger boardings (unlinked passenger trips) by NPS transit systems that use a ticket sales conversion methodology. By studying and validating the park units' passenger boarding methodology from converting tick...

  4. Ultrathin Coaxial Fiber Supercapacitors Achieving High Energy and Power Densities.

    Science.gov (United States)

    Shen, Caiwei; Xie, Yingxi; Sanghadasa, Mohan; Tang, Yong; Lu, Longsheng; Lin, Liwei

    2017-11-15

    Fiber-based supercapacitors have attracted significant interests because of their potential applications in wearable electronics. Although much progress has been made in recent years, the energy and power densities, mechanical strength, and flexibility of such devices are still in need of improvement for practical applications. Here, we demonstrate an ultrathin microcoaxial fiber supercapacitor (μCFSC) with high energy and power densities (2.7 mW h/cm 3 and 13 W/cm 3 ), as well as excellent mechanical properties. The prototype with the smallest reported overall diameter (∼13 μm) is fabricated by successive coating of functional layers onto a single micro-carbon-fiber via a scalable process. Combining the simulation results via the electrochemical model, we attribute the high performance to the well-controlled thin coatings that make full use of the electrode materials and minimize the ion transport path between electrodes. Moreover, the μCFSC features high bending flexibility and large tensile strength (more than 1 GPa), which make it promising as a building block for various flexible energy storage applications.

  5. Single-mode annular chirally-coupled core fibers for fiber lasers

    Science.gov (United States)

    Zhang, Haitao; Hao, He; He, Linlu; Gong, Mali

    2018-03-01

    Chirally-coupled core (CCC) fiber can transmit single fundamental mode and effectively suppresses higher-order mode (HOM) propagation, thus improve the beam quality. However, the manufacture of CCC fiber is complicated due to its small side core. To decrease the manufacture difficulty in China, a novel fiber structure is presented, defined as annular chirally-coupled core (ACCC) fiber, replacing the small side core by a larger side annulus. In this paper, we designed the fiber parameters of this new structure, and demonstrated that the new structure has a similar property of single mode with traditional CCC fiber. Helical coordinate system was introduced into the finite element method (FEM) to analyze the mode field in the fiber, and the beam propagation method (BPM) was employed to analyze the influence of the fiber parameters on the mode loss. Based on the result above, the fiber structure was optimized for efficient single-mode transmission, in which the core diameter is 35 μm with beam quality M2 value of 1.04 and an optical to optical conversion efficiency of 84%. In this fiber, fundamental mode propagates in an acceptable loss, while the HOMs decay rapidly.

  6. Modification of NSSC pulp broke fibers using layering method and investigating its effect on paper properties

    Directory of Open Access Journals (Sweden)

    hamidreza rudi

    2016-12-01

    Full Text Available In the current study, modification of NSSC pulp broke fibers was done by forming starch polymeric multilayers, using Layer-by-Layer (LbL layering method. After fiber slushing and preparation of pulp suspension with 0.5% consistency and conductivity formation of about 437 µS/cm, adding water solution of 1 mM NaCl, the experiments of fibers treatment were conducted to build the polymeric layers (up to 5 consecutive layers. Afterward, water retention value (WRV of fibers was calculated in samples to evaluate the influence of this method on fibers hydrophilicity. The fibers were then used to prepare standard handsheets (60±3g/m2 and the physical and strength properties of sheets were evaluated as a function of the number of layers deposited on the fibers. The results showed that the WRV index of the fibers was improved by the LbL treatment of NSSC broke pulp fibers, due to the increase in starch electrostatic absorption. Successive variation in paper apparent density increase and paper thickness decrease confirmed the construction of starch multilayers on the surface of broke fibers. Formation of such multilayers on broke fibers has led to considerable improvement in tensile index (from 13.21 N.m/g to 30.65 N.m/g and burst index (from 1.23 kPa.m2/g to 2.36 kPa.m2/g. Also, the prepared SEM micrographs approve the sheet web compaction and paper mechanical improvement resulted due to an increase in inter-fiber bonding.

  7. Board of Director Configurations in Mutual Funds Sponsors: A Board-Level Analysis of Director Performance and Ownership

    National Research Council Canada - National Science Library

    Fraser, Steven

    2003-01-01

    ... (or a cluster of funds); referred to as a Multiple Board Configuration (MBC). In a sample of the largest open-end mutual fund sponsors, I find MBC boards have significantly higher board-level objective-adjusted excess returns than SBC boards...

  8. SMART Boards Rock

    Science.gov (United States)

    Giles, Rebecca M.; Shaw, Edward L.

    2011-01-01

    SMART Board is a technology that combines the functionality of a whiteboard, computer, and projector into a single system. The interactive nature of the SMART Board offers many practical uses for providing an introduction to or review of material, while the large work area invites collaboration through social interaction and communication. As a…

  9. Departmental Appeals Board Decisions

    Data.gov (United States)

    U.S. Department of Health & Human Services — Decisions issued by the Chair and Board Members of the Departmental Appeals Board concerning determinations in discretionary, project grant programs, including...

  10. Method for the preparation of carbon fiber from polyolefin fiber precursor

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2017-11-28

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  11. Characterization and modeling of microstructured chalcogenide fibers for efficient mid-infrared wavelength conversion.

    Science.gov (United States)

    Xing, Sida; Grassani, Davide; Kharitonov, Svyatoslav; Billat, Adrien; Brès, Camille-Sophie

    2016-05-02

    We experimentally demonstrate wavelength conversion in the 2 µm region by four-wave mixing in an AsSe and a GeAsSe chalcogenide photonic crystal fibers. A maximum conversion efficiency of -25.4 dB is measured for 112 mW of coupled continuous wave pump in a 27 cm long fiber. We estimate the dispersion parameters and the nonlinear refractive indexes of the chalcogenide PCFs, establishing a good agreement with the values expected from simulations. The different fiber geometries and glass compositions are compared in terms of performance, showing that GeAsSe is a more suited candidate for nonlinear optics at 2 µm. Building from the fitted parameters we then propose a new tapered GeAsSe PCF geometry to tailor the waveguide dispersion and lower the zero dispersion wavelength (ZDW) closer to the 2 µm pump wavelength. Numerical simulations shows that the new design allows both an increased conversion efficiency and bandwidth, and the generation of idler waves further in the mid-IR regions, by tuning the pump wavelength in the vicinity of the fiber ZDW.

  12. 77 FR 1956 - National Science Board; Notice of Opportunity for Public Comment on the National Science Board...

    Science.gov (United States)

    2012-01-12

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Notice of Opportunity for Public Comment on the National Science Board Data Policies Report AGENCY: National Science Board (NSB), NSF. ACTION: Request for public comments. SUMMARY: The National Science Board seeks comments from the public on the...

  13. Design principles and realization of electro-optical circuit boards

    Science.gov (United States)

    Betschon, Felix; Lamprecht, Tobias; Halter, Markus; Beyer, Stefan; Peterson, Harry

    2013-02-01

    The manufacturing of electro-optical circuit boards (EOCB) is based to a large extent on established technologies. First products with embedded polymer waveguides are currently produced in series. The range of applications within the sensor and data communication markets is growing with the increasing maturity level. EOCBs require design flows, processes and techniques similar to existing printed circuit board (PCB) manufacturing and appropriate for optical signal transmission. A key aspect is the precise and automated assembly of active and passive optical components to the optical waveguides which has to be supported by the technology. The design flow is described after a short introduction into the build-up of EOCBs and the motivation for the usage of this technology within the different application fields. Basis for the design of EOCBs are the required optical signal transmission properties. Thereafter, the devices for the electro-optical conversion are chosen and the optical coupling approach is defined. Then, the planar optical elements (waveguides, splitters, couplers) are designed and simulated. This phase already requires co-design of the optical and electrical domain using novel design flows. The actual integration of an optical system into a PCB is shown in the last part. The optical layer is thereby laminated to the purely electrical PCB using a conventional PCB-lamination process to form the EOCB. The precise alignment of the various electrical and optical layers is thereby essential. Electrical vias are then generated, penetrating also the optical layer, to connect the individual electrical layers. Finally, the board has to be tested electrically and optically.

  14. Board diversity in family firms

    OpenAIRE

    Menozzi, Anna; Fraquelli, Giovanni; Novara, Jolanda de

    2015-01-01

    The paper deals with diversity as a key factor to improve the board of directors’ decision process in family firms. The empirical literature about board diversity points at the positive impact of diversity on board functioning and firm performance. The paper uses a statistical diversity index to capture the heterogeneity of board of directors and put it in relation with firm performance, as measured by firm profitability. The empirical analysis is based on a newly collected panel of 327 famil...

  15. Photorefractive Fibers

    National Research Council Canada - National Science Library

    Kuzyk, Mark G

    2003-01-01

    ... scope of the project. In addition to our work in optical limiting fibers, spillover results included making fiber-based light-sources, writing holograms in fibers, and developing the theory of the limits of the nonlinear...

  16. Batako Quality Optimization with Addition of Palm Oil Stem Fiber from Kampar District and Dumai City

    Science.gov (United States)

    Zainuri; Yanti, Gusneli; Wahyuni Megasari, Shanti

    2017-12-01

    The waste of dry palm oil produced by 148 trees per hectare is 3,108 ton/month or 37,296 ton/year as calculated. Riau province has oil palm plantations covering an area of 2.399.172 hectares (BPS Riau Province, 2014). It can be estimated the amount of waste generated. Palm stem waste can be utilized, one of which is the utilization of midrib fiber as an added material in the manufacture of batako. Batako- fiber that is made still must be examined feasibility as building materials. The purpose of this study was to determine the optimization of the quality of batako works by the addition of palm stem fiber originated from the districts of Kampar and Dumai. This research used experimental method with laboratory research. Batako-fiber with the addition of palm fiber stem 1% of the weight of cement can increase the value of compressive strength above the normal batako and a batako with first quality according to SNI 03-0349-1989 standard. The use of palm stem fiber originating from the Kampar district resulted in better batakos with higher average compressive strength values than the dumai-derived fibers, especially in the addition of 1% fiber by weight of cement. The finding of this research is that the batakos originating from Kampar district are better than those from Dumai city. The most optimal addition of palm fiber burrs to batako-fiber products is 1% of the weight of cement.

  17. Fiber optic connector

    Science.gov (United States)

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  18. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    Science.gov (United States)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  19. Buddy Board

    DEFF Research Database (Denmark)

    Enggaard, Helle; Moselund, Lene

    2015-01-01

    Projekt ’BuddyBoard’ er kommet i stand via et samarbejde mellem Frederikshavn kommune, Bunker43 og Lab. X. Afdeling en ’Havly’ på Sæby Ældrecenter fungerer som living lab, hvilket betyder, at det udgør et levende laboratorium for udvikling og afprøvning af teknologi (Schultz, 2013). Projektet er....... Bunker43 har udviklet en teknologi (BuddyBoard) til hurtig formidling af billeder fra pårørende og personale til beboere på institutioner. Pårørende og personale uploader billeder via en APP eller en hjemmeside og har mulighed for at tilføje en kort forklarende tekst til hvert billede. Beboeren ser...... billederne via en tablet. Systemet bygger på et simpelt og brugervenligt design, så ældre med kognitive og/eller fysiske funktionsnedsættelser kan anvende teknologien. BuddyBoard fungerer via internettet, og billederne gemmes på en sikret server hos udbyderen, som er Bunker43. Intentionerne med BuddyBoard er...

  20. In-fiber modal interferometer based on multimode and double cladding fiber segments for tunable fiber laser applications

    Science.gov (United States)

    Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.

    2018-02-01

    We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.

  1. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    Science.gov (United States)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  2. Latest development of high-power fiber lasers in SPI

    Science.gov (United States)

    Norman, Stephen; Zervas, Mikhail N.; Appleyard, Andrew; Durkin, Michael K.; Horley, Ray; Varnham, Malcolm P.; Nilsson, Johan; Jeong, Yoonchan

    2004-06-01

    High Power Fiber Lasers (HPFLs) and High Power Fiber Amplifiers (HPFAs) promise a number of benefits in terms of their high optical efficiency, degree of integration, beam quality, reliability, spatial compactness and thermal management. These benefits are driving the rapid adoption of HPFLs in an increasingly wide range of applications and power levels ranging from a few Watts, in for example analytical applications, to high-power >1kW materials processing (machining and welding) applications. This paper describes SPI"s innovative technologies, HPFL products and their performance capabilities. The paper highlights key aspects of the design basis and provides an overview of the applications space in both the industrial and aerospace domains. Single-fiber CW lasers delivering 1kW output power at 1080nm have been demonstrated and are being commercialized for aerospace and industrial applications with wall-plug efficiencies in the range 20 to 25%, and with beam parameter products in the range 0.5 to 100 mm.mrad (corresponding to M2 = 1.5 to 300) tailored to application requirements. At power levels in the 1 - 200 W range, SPI"s proprietary cladding-pumping technology, GTWaveTM, has been employed to produce completely fiber-integrated systems using single-emitter broad-stripe multimode pump diodes. This modular construction enables an agile and flexible approach to the configuration of a range of fiber laser / amplifier systems for operation in the 1080nm and 1550nm wavelength ranges. Reliability modeling is applied to determine Systems martins such that performance specifications are robustly met throughout the designed product lifetime. An extensive Qualification and Reliability-proving programme is underway to qualify the technology building blocks that are utilized for the fiber laser cavity, pump modules, pump-driver systems and thermo-mechanical management. In addition to the CW products, pulsed fiber lasers with pulse energies exceeding 1mJ with peak pulse

  3. In-building Unlicensed WiFi Band OFDM Signal Distribution over MMF&BIF Using VCSEL

    DEFF Research Database (Denmark)

    Deng, Lei; Jensen, Jesper Bevensee; Yu, Xianbin

    2011-01-01

    For in-building applications, an OFDM-VCSEL RoF system operating in unlicensed WiFi band is experimentally tested using MMF and bend insensitive fiber (BIF). A spectral efficiency of 4.32 bit/s/Hz with 0.9 Gbps data rate is achieved....

  4. 22 CFR 902.3 - Board staff.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Board staff. 902.3 Section 902.3 Foreign Relations FOREIGN SERVICE GRIEVANCE BOARD ORGANIZATION § 902.3 Board staff. The chairperson shall select the Board's executive secretary and other staff provided for in the Act. The executive secretary and staff...

  5. 76 FR 40950 - Public Company Accounting Oversight Board; Notice of Filing of Proposed Board Funding Final Rules...

    Science.gov (United States)

    2011-07-12

    ... available, the issuer's net asset value. (i)(v) Issuer Accounting Support Fee The term ``issuer accounting... Accounting Oversight Board; Notice of Filing of Proposed Board Funding Final Rules for Allocation of the Board's Accounting Support Fee Among Issuers, Brokers, and Dealers, and Other Amendments to the Board's...

  6. Fiber Tracking Cylinder Nesting

    International Nuclear Information System (INIS)

    Stredde, H.

    1999-01-01

    The fiber tracker consists of 8 concentric carbon fiber cylinders of varying diameters, from 399mm to 1032.2mm and two different lengths. 1.66 and 2.52 meters. Each completed cylinder is covered over the entire o.d. with scintillating fiber ribbons with a connector on each ribbon. These ribbons are axial (parallel to the beam line) at one end and stereo (at 3 deg. to the beam line) at the other. The ribbon connectors have dowel pins which are used to match with the connectors on the wave guide ribbons. These dowel pins are also used during the nesting operation, locating and positioning measurements. The nesting operation is the insertion of one cylinder into another, aligning them with one another and fastening them together into a homogeneous assembly. For ease of assembly. the nesting operation is accomplished working from largest diameter to smallest. Although the completed assembly of all 8 cylinders glued and bolted together is very stiff. individual cylinders are relatively flexible. Therefore. during this operation, No.8 must be supported in a manner which maintains its integrity and yet allows the insertion of No.7. This is accomplished by essentially building a set of dummy end plates which replicate a No.9 cylinder. These end plates are mounted on a wheeled cart that becomes the nesting cart. Provisions for a protective cover fastened to these rings has been made and will be incorporated in finished product. These covers can be easily removed for access to No.8 and/or the connection of No.8 to No.9. Another wheeled cart, transfer cart, is used to push a completed cylinder into the cylinder(s) already mounted in the nesting cart.

  7. The Application of Coconut Fiber as Dissipative Silencer

    Science.gov (United States)

    Madlan, M. A.; Ghazali, M. I.; Zaman, I.; Kasron, M. Z.; Ying, T. C.

    2017-01-01

    Heat ventilation air conditioning system (HVAC) is one of the ducting systems that broadly applied in the building. There are HVAC silencers in the market, however the sound absorptive material commonly used is mineral wool. In this research study, a sound absorptive material made of coconut fiber was tested to identify its performance as a potential replacement of green material for ducting silencer. The experiment was carried out in a testing apparatus that follows the BS EN ISO 11691:2009 standard. Different configurations of sound absorptive material and contents of coconut fiber were investigated in the study. The trend of insertion loss at 1/3 octave frequency was identified where at frequency below 3000Hz, the insertion loss of dissipative silencer is observed high at certain frequency with a very narrow range. At 3000Hz, the insertion loss of 4dB to 6dB is constant until 4000Hz and drops until 5000Hz before it increases again steadily up to 13dB at 10000Hz. A similar trend was observed for different configuration of sound absorptive material. Despite the configuration different, the outcome shows that the insertion loss is increasing with higher content of coconut fiber.

  8. A New European COST Network 'NORM4Building' (TU1301) for the Reuse of NORM Containing Residues in Building Materials

    International Nuclear Information System (INIS)

    Schroeyers, W.; Schreurs, S.

    2014-01-01

    The new COST action was initiated on the 1st of January 2014 and runs for four years. COST is supported by the EU RTD Framework Program. In the presentation more information on how to participate in the network will be provided. In the presentation the new approach and new initiatives of the NORM4BUILDING network, that has its first meeting here in the DEAD SEA Hotel on the 12-13/02/2014, will be introduced. The NORM4Building materials network will be an open network of researchers. An Advisory Board consisting mainly from NORM processing and construction industries and relevant associations and regulators are invited to work in collaboration with the scientists that will populate the various working groups and the management committee of the new COST action

  9. Bioinspired design and macroscopic assembly of poly(vinyl alcohol)-coated graphene into kilometers-long fibers

    Science.gov (United States)

    Kou, Liang; Gao, Chao

    2013-05-01

    Nacre is characterized by its excellent mechanical performance due to the well-recognized ``brick and mortar'' structure. Many efforts have been applied to make nacre-mimicking materials, but it is still a big challenge to realize their continuous production. Here, we prepared sandwich-like building blocks of poly(vinyl alcohol) (PVA)-coated graphene, and achieved high-nanofiller-content kilometers-long fibers by continuous wet-spinning assembly technology. The fibers have a strict ``brick and mortar'' layered structure, with graphene sheet as rigid brick and PVA as soft mortar. The mortar thickness can be precisely tuned from 2.01 to 3.31 nm by the weight feed ratio of PVA to graphene, as demonstrated by both atomic force microscopy and X-ray diffraction measurements. The mechanical strength of the nacre-mimicking fibers increases with increasing the content of PVA, and it rises gradually from 81 MPa for the fiber with 53.1 wt% PVA to 161 MPa for the fiber with 65.8 wt% PVA. The mechanical performance of our fibers was independent of the molecular weight (MW) of PVA in the wide range of 2-100 kDa, indicating that low MW polymers can also be used to make strong nanocomposites. The tensile stress of fibers immersed in PVA 5 wt% solution reached ca. 200 MPa, surpassing the values of nacre and most of other nacre-mimicking materials. The nacre-mimicking fibers are highly electrically conductive (~350 S m-1) after immersing in hydroiodic acid, enabling them to connect a circuit to illuminate an LED lamp.Nacre is characterized by its excellent mechanical performance due to the well-recognized ``brick and mortar'' structure. Many efforts have been applied to make nacre-mimicking materials, but it is still a big challenge to realize their continuous production. Here, we prepared sandwich-like building blocks of poly(vinyl alcohol) (PVA)-coated graphene, and achieved high-nanofiller-content kilometers-long fibers by continuous wet-spinning assembly technology. The fibers

  10. Low-fiber diet

    Science.gov (United States)

    ... residue; Low-fiber diet; Fiber restricted diet; Crohn disease - low fiber diet; Ulcerative colitis - low fiber diet; ... them if they do not contain seeds or pulp: Yellow squash (without seeds) Spinach Pumpkin Eggplant Potatoes, ...

  11. Bringing out the Best Board Behavior

    Science.gov (United States)

    Caruso, Nicholas

    2004-01-01

    The author's advice for for a school board superintendent is to assume incompetence instead of malevolence. Board members who behave inappropriately are a minority, and those with malicious intent are extremely rare. Most misbehaving board members act out of frustration. They may not understand the appropriate role of a board member.…

  12. What makes boards effective? An examination of the relationships between board inputs, structures, processes and effectiveness in non-profit organizations

    OpenAIRE

    Cornforth, Chris

    2001-01-01

    Based on a survey of charity boards in England and Wales this paper examines what influence board inputs, structures and processes have on board effectiveness. The findings provide mixed support for the normative literature on board effectiveness. Using stepwise logistic regression the research suggests that board inputs and three process variables are important in explaining board effectiveness, namely: board members have the time, skills and experience to do the job; clear board roles and r...

  13. Document turn-over analysis to determine need of NPP construction in build-up structures of reinforced concrete

    International Nuclear Information System (INIS)

    Vojpe, D.K.; Lyubavin, V.K.

    1986-01-01

    Document turn-over to determine used of NPP construction in build-up structures of reinforced concrete is carried out. Ways of improving determination of needs of NPP construction board in the mentioned structures are pointed out

  14. Protection of critical infrastructure using fiber optic sensors embedded in technical textiles

    Science.gov (United States)

    Krebber, Katerina; Lenke, Philipp; Liehr, Sascha; Noether, Nils; Wendt, Mario; Wosniok, Aleksander

    2010-04-01

    Terrorists and criminals more and more attack and destroy important infrastructures like routes, railways, bridges, tunnels, dikes and dams, important buildings. Therefore, reliable on-line and long-term monitoring systems are required to protect such critical infrastructures. Fiber optic sensors are well-suited for that. They can be installed over many kilometers and are able to measure continuously distributed strain, pressure, temperature and further mechanical and physical quantities. The very tiny optical fibers can be integrated into structures and materials and can provide information about any significant changes or damages of the structures. These so-called smart materials and smart structures are able to monitor itself or its environment. Particularly smart technical textiles with embedded fiber optic sensors have become very attractive because of their high importance for the structural health monitoring of geotechnical and masonry infrastructures. Such textiles are usually used for reinforcement of the structures; the embedded fiber optic sensors provide information about the condition of the structures and detect the presence of any damages and destructions in real time. Thus, critical infrastructures can be preventively protected. The paper will introduce this innovative field and will present the results achieved within several German and European projects.

  15. Governing Board of the Pension Fund

    CERN Multimedia

    2006-01-01

    The Governing Board of the Pension Fund held its 142nd meeting on 14 March 2006. As an introduction to the meeting, the Administrator underlined that, at 12.4%, the performance achieved by the Fund on its assets had been excellent and had taken the Fund's assets at the end of the year to 4,209 MCHF, which was well above the 4 billion Swiss franc mark. The Chairman of the Governing Board, Professor Ferrini, reported on the Board's closed session on 7 March to examine the nominations received for the election of the Vice-Chairmen of the Governing Board of the Pension Fund. The Governing Board had unanimously agreed to recommend the CERN Council to appoint Mr A. J. Naudi and Dr J.-P. Matheys. At its session on 16 March 2006, the Council had followed the recommendation of the Governing Board by re-appointing J.-P. Matheys and A. J. Naudi Vice-Chairmen of the Board until the end of their respective terms of office as members of the Governing Board. Regarding the comparison with other European pension funds launc...

  16. Comparison of fiber lasers based on distributed side-coupled cladding-pumped fibers and double-cladding fibers.

    Science.gov (United States)

    Huang, Zhihe; Cao, Jianqiu; Guo, Shaofeng; Chen, Jinbao; Xu, Xiaojun

    2014-04-01

    We compare both analytically and numerically the distributed side-coupled cladding-pumped (DSCCP) fiber lasers and double cladding fiber (DCF) lasers. We show that, through optimization of the coupling and absorbing coefficients, the optical-to-optical efficiency of DSCCP fiber lasers can be made as high as that of DCF lasers. At the same time, DSCCP fiber lasers are better than the DCF lasers in terms of thermal management.

  17. Intermediate filament mechanics in vitro and in the cell: From coiled coils to filaments, fibers and networks

    OpenAIRE

    Köster, Sarah; Weitz, David; Goldman, Robert D.; Aebi, Ueli; Herrmann, Harald

    2015-01-01

    Intermediate filament proteins form filaments, fibers and networks both in the cytoplasm and the nucleus of metazoan cells. Their general structural building plan accommodates highly varying amino acid sequences to yield extended dimeric α-helical coiled coils of highly conserved design. These “rod” particles are the basic building blocks of intrinsically flexible, filamentous structures that are able to resist high mechanical stresses, i.e. bending and stretching to a considerable degree, bo...

  18. Polymer optical fiber with Rhodamine doped cladding for fiber light systems

    Energy Technology Data Exchange (ETDEWEB)

    Narro-García, R., E-mail: roberto.narro@gmail.com [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Quintero-Torres, R. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Domínguez-Juárez, J.L. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Cátedras CONACyT, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Ocampo, M.A. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico)

    2016-01-15

    Both preform and polymer optical fiber with a Poly(methyl methacrylate) core and THV–Rhodamine 6G cladding were characterized. UV–vis absorbance, photoluminescence spectra and lifetime of the preform were measured. Axial and lateral photoluminescence spectra of the polymer optical fiber were studied under 404 nm excitation in order to study the illumination performance of the fiber. It was observed that the peak wavelength from the fiber photoluminescence spectra is higher than the peak wavelength from the fiber preform and that the peak wavelength from the fiber photoluminescence spectra is red shifted with the fiber length in the case of axial emission. The obtained results suggest the influence of self-absorption on the photoluminescence shape. Strong lateral emission along the fiber was observed with the naked eyes in all the cases. The lateral photoluminescence spectra show that the lateral emission is a combination between the pump laser and the Rh6G molecule photoluminescence. The results suggest that this polymer optical fiber could be a potential candidate for the development of fiber lighting systems. - Highlights: • Axial and lateral emission along the fiber was studied. • Self-absorption effect was confirmed in the case of axial photoluminescence. • The lateral emission is a combination between the laser and the RhG6 emission. • This fiber could be a potential candidate for the development of lighting systems.

  19. Enhanced electric and magnetic response of a THz sub-wavelength fiber excited by a localized source

    DEFF Research Database (Denmark)

    Atakaramians, Shaghik; Stefani, Alessio; Shardivov, Ilya V.

    2017-01-01

    the magnetic response of the coupled system when excited with an electric dipole oriented along the circumference of the fiber. This result introduces a new platform for achieving enhanced magnetic response, which is the fundamental building block for metamaterial devices. Here we investigate experimentally......Recently we have shown that a nanofiber excited by a localized electric source can have enhanced electric and magnetic response depending of the relative orientation of the source and the fiber [1]. We have demonstrated that the dielectric nanofiber can suppress the electric response and enhance...

  20. Multi-Purpose Anthropomorphic Robotic Hand Design for Extra-Vehicular Activity Manipulation Tasks using Embedded Fiber Optic Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — IFOS proposes to design and build fiber-optically sensorized robotic fingers that can sense force and, objects using only tactile feedback, similar to the skin on a...

  1. Random fiber laser based on artificially controlled backscattering fibers.

    Science.gov (United States)

    Wang, Xiaoliang; Chen, Daru; Li, Haitao; She, Lijuan; Wu, Qiong

    2018-01-10

    The random fiber laser (RFL), which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previously reported RFLs are based on distributed feedback of Rayleigh scattering amplified through the stimulated Raman-Brillouin scattering effect in single-mode fibers, which require long-distance (tens of kilometers) single-mode fibers and high threshold, up to watt level, due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open-cavity RFL based on a segment of an artificially controlled backscattering single-mode fiber with a length of 210 m, 310 m, or 390 m. A fiber Bragg grating with a central wavelength of 1530 nm and a segment of artificially controlled backscattering single-mode fiber fabricated by using a femtosecond laser form the half-open cavity. The proposed RFL achieves thresholds of 25 mW, 30 mW, and 30 mW, respectively. Random lasing at a wavelength of 1530 nm and extinction ratio of 50 dB is achieved when a segment of 5 m erbium-doped fiber is pumped by a 980 nm laser diode in the RFL. A novel RFL with many short cavities has been achieved with low threshold.

  2. Deriving muscle fiber diameter from recorded single fiber potential.

    Science.gov (United States)

    Zalewska, Ewa

    2017-12-01

    The aim of the study was to estimate muscle fiber diameters through analysis of single muscle fiber potentials (SFPs) recorded in the frontalis muscle of a healthy subject. Our previously developed analytical and graphic method to derive fiber diameter from the analysis of the negative peak duration and the amplitude of SFP, was applied to a sample of ten SFPs recorded in vivo. Muscle fiber diameters derived from the simulation method for the sample of frontalis muscle SFPs are consistent with anatomical data for this muscle. The results confirm the utility of proposed simulation method. Outlying data could be considered as the result of a contribution of other fibers to the potential recorded using an SFEMG electrode. Our graphic tool provides a rapid estimation of muscle fiber diameter. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Naheed Saba

    2014-08-01

    Full Text Available The increasing demand for greener and biodegradable materials leading to the satisfaction of society requires a compelling towards the advancement of nano-materials science. The polymeric matrix materials with suitable and proper filler, better filler/matrix interaction together with advanced and new methods or approaches are able to develop polymeric composites which shows great prospective applications in constructions and buildings, automotive, aerospace and packaging industries. The biodegradability of the natural fibers is considered as the most important and interesting aspects of their utilization in polymeric materials. Nanocomposite shows considerable applications in different fields because of larger surface area, and greater aspect ratio, with fascinating properties. Being environmentally friendly, applications of nanocomposites offer new technology and business opportunities for several sectors, such as aerospace, automotive, electronics, and biotechnology industries. Hybrid bio-based composites that exploit the synergy between natural fibers in a nano-reinforced bio-based polymer can lead to improved properties along with maintaining environmental appeal. This review article intended to present information about diverse classes of natural fibers, nanofiller, cellulosic fiber based composite, nanocomposite, and natural fiber/nanofiller-based hybrid composite with specific concern to their applications. It will also provide summary of the emerging new aspects of nanotechnology for development of hybrid composites for the sustainable and greener environment.

  4. Studies on the construction of a vertex detector of scintillation fibers and a multi-channel photomultiplier XP 4702

    International Nuclear Information System (INIS)

    Pfeiffer, G.

    1991-04-01

    In the last years recent attempts have been made in the development of scintillating fibers and multichannel photomultiplier tubes. A combination of these two components therefore becomes attractive in building a position sensitive detector. For this purpose some investigations were made to prove the capability of such a combination. It has been shown, that both components would be well suited for building a position sensitive detector. (orig.) [de

  5. German versus Nordic Board Models

    DEFF Research Database (Denmark)

    Ringe, Georg

    2016-01-01

    Board structure is an important component of the individual governance of firms, and the appropriateness of the various models is one of the most debated issues in corporate governance today. A comparison of the Nordic and German approaches to the structure of corporate boards reveals stark...... conceptual differences, as emphasized by the 2014 Lekvall Report on the Nordic Corporate Governance Model. This article provides a conceptual comparison between the two approaches to board structure and confirms the fundamental divergence between both models. However, relying on a number of recent legal...... changes and developments in business practice, the article argues that board practices in the two systems effectively blur the structural distinction, and that board organization is converging in practice. It thereby contributes to the broader debates on functionality and comparative corporate law...

  6. Advanced specialty fiber designs for high power fiber lasers

    Science.gov (United States)

    Gu, Guancheng

    The output power of fiber lasers has increased rapidly over the last decade. There are two major limiting factors, namely nonlinear effects and transverse mode instability, prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating from high optical intensity, primarily limit the peak power scaling. The mode instability, on the other hand, arises from quantum-defect driven heating, causing undesired mode coupling once the power exceeds the threshold and degradation of beam quality. The mode instability has now become the bottleneck for average output power scaling of fiber lasers. Mode area scaling is the most effective way to mitigate nonlinear effects. However, the use of large mode area may increase the tendency to support multiple modes in the core, resulting in lower mode instability threshold. Therefore, it is critical to maintain single mode operation in a large mode area fiber. Sufficient higher order mode suppression can lead to effective single-transverse-mode propagation. In this dissertation, we explore the feasibility of using specialty fiber to construct high power fiber lasers with robust single-mode output. The first type of fiber discussed is the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional finite element mothod mode solver considering infinite cladding. In this work, we conducted careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a

  7. Build-up dynamics of heavy metals deposited on impermeable urban surfaces.

    Science.gov (United States)

    Wicke, D; Cochrane, T A; O'Sullivan, A

    2012-12-30

    A method using thin boards (3 cm thick, 0.56 m(2)) comprising different paving materials typically used in urban environments (2 asphalt types and concrete) was employed to specifically investigate air-borne deposition dynamics of TSS, zinc, copper and lead. Boards were exposed at an urban car park near vehicular traffic to determine the rate of contaminant build-up over a 13-day dry period. Concentration profiles from simulated rainfall wash-off were used to determine contaminant yields at different antecedent dry days. Maximum contaminant yields after 13 days of exposure were 2.7 kg ha(-1) for TSS, 35 g ha(-1) zinc, 2.3 g ha(-1) copper and 0.4 g ha(-1) lead. Accumulation of all contaminants increased over the first week and levelled off thereafter, supporting theoretical assumptions that contaminant accumulation on impervious surfaces asymptotically approaches a maximum. Comparison of different surface types showed approximately four times higher zinc concentrations in runoff from asphalt surfaces and two times higher TSS concentrations in runoff from concrete, which is attributed to different physical and chemical compositions of the pavement types. Contaminant build-up and wash-off behaviours were modelled using exponential and saturation functions commonly applied in the US EPA's Stormwater Management Model (SWMM) showing good correlation between measured and modelled concentrations. Maximum build-up, half-saturation time, build-up rate constants and wash-off coefficients, necessary for stormwater contaminant modelling, were determined for the four contaminants studied. These parameters are required to model contaminant concentrations in urban runoff assisting in stormwater management decisions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Elections of members to the Governing Board of the Pension Fund

    CERN Multimedia

    2004-01-01

    Members of the Pension Fund are informed of the elections of the 2005 Governing Board, in accordance with the Regulations for Elections to the Governing Board of the Pension Fund approved by the Finance Committee on 11 October 1989. Two members and two alternates are to be elected. Nomination forms are provided in this Bulletin and must be deposited with the Administration of the Fund by midday on Monday 27 September at the latest. These elections will take place following the timetable given below: Monday 27 September 2004 Closure of the submission of candidatures at the Administration of the Fund (Building 5/1-025), at 12 hrs. Candidates are responsible for sending in their â€ワpublicity” in French and English in a WORD document to the Administrator of the Fund (e-mail: Christian.Cuenoud@Cern.ch) as soon as possible after having submitted their candidature and at the latest by 4 October for publication in the Bulletin of 11 October. Monday 1st November 2004 Second publication of the ...

  9. Elections of members to the Governing Board of the Pension Fund

    CERN Multimedia

    2006-01-01

    Members of the Pension Fund are hereby informed of the 2007 elections to the Governing Board, in accordance with the Regulations for Elections to the Governing Board of the Pension Fund approved by the Finance Committee on 11 October 1989. One member and one alternate are to be elected. Nomination forms are provided in this Bulletin and must be deposited with the Administration of the Fund (office 33-S-022) by midday on Monday 2 October at the latest. These elections will take place following the timetable given below: Monday 2 October 2006 Closing date for the submission of candidatures to the Administration of the Fund (building 33-S-022), at 12 o'clock midday.Candidates must send their 'manifesto'in French and English in a WORD document to the Administrator of the Fund (e-mail: Christian.Cuenoud@cern.ch) as soon as possible after submitting their candidature, and at the latest by 9 October for publication in the Bulletin of 16 October. Monday 30 October 2006 Second publication of the candidates'ma...

  10. Elections of members to the Governing Board of the Pension Fund

    CERN Multimedia

    2006-01-01

    Members of the Pension Fund are hereby informed of the 2007 elections to the Governing Board, in accordance with the Regulations for Elections to the Governing Board of the Pension Fund approved by the Finance Committee on 11 October 1989. One member and one alternate are to be elected. Nomination forms are provided in this Bulletin and must be deposited with the Administration of the Fund (office 33-S-022) by midday on Monday 2 October at the latest. These elections will take place following the timetable given below: Monday 2 October 2006 Closing date for the submission of candidatures to the Administration of the Fund (building 33-S-022), at 12 o'clock midday. Candidates must send their 'manifesto'in French and English in a WORD document to the Administrator of the Fund (e-mail: Christian.Cuenoud@cern.ch) as soon as possible after submitting their candidature, and at the latest by 9 October for publication in the Bulletin of 16 October. Monday 30 October 2006 Second publication of the candidates'm...

  11. Project Management Plan/Progress Report UT/GTKS Training Program Development for Commercial Building Operators

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-03-31

    Universidad del Turabo (UT), in a collaborative effort with Global Turn Key Services, Inc. (GTKS), proposed to develop a training program and a commercialization plan for the development of Commercial Building Operators (CBOs). The CBOs will operate energy efficient buildings to help maintain existing buildings up to their optimal energy performance level, and ensure that net-zero-energy buildings continuously operate at design specifications, thus helping achieve progress towards meeting BTP Strategic Goals of creating technologies and design approaches that enable net-zero-energy buildings at low incremental costs by 2025. The proposed objectives were then: (1) Develop a Commercial Building Operator (CBO) training program and accreditation that will in turn provide a certification to participants recognized by Accreditation Boards such as the North American Board of Certified Energy Practitioners (NABCEP) and Leadership in Energy & Environmental Designs (LEED). (2) Develop and implement a commercialization and sustainability plan that details marketing, deployment, financial characterization, job placement, and other goals required for long-term sustainability of the project after the funding period. (3) After program development and deployment, provide potential candidates with the knowledge and skill sets to obtain employment in the commercial building green energy (net-zero-energy building) job market. The developed CBO training program will focus on providing skills for participants, such as displaced and unemployed workers, to enter the commercial building green energy (net-zeroenergy building) job market. This course was designed to allow a participant with minimal to no experience in commercial building green technology to obtain the required skill sets to enter the job market in as little as 12 weeks of intensive multi-faceted learning. After completion of the course, the CBO staff concluded the participant will meet minimum established accreditation

  12. FIBER LASER CONSTRUCTION AND THEORY INCLUDING FIBER BRAGG GRATINGS Photonic Crystal Fibers (PCFs) and applications of gas filled PCFs

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Jacob O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-08

    The principles used in fiber lasers have been around for a while but it is only within the past few years that fiber lasers have become commercially available and used in high power laser applications. This paper will focus on the basic design principles of fiber lasers, including fiber Bragg gratings, principles of operation, and forms of non-linear effects. It will describe the type and associated doping of the fiber used and difficult designs used to guide energy from the pump to the active medium. Topics covered include fiber laser design, fiber Bragg gratings, materials used, differences in quantum energy loss, thermo-optical effects, stimulated Raman scattering, Brillouin scattering, photonic crystal fibers and applications of gas filled Photonic Crystal Fibers (PCFs). Thanks to fiber lasers, the energy required to produce high power lasers has greatly dropped and as such we can now produce kW power using a standard 120V 15A circuit. High power laser applications are always requiring more power. The fiber laser can now deliver the greater power that these applications demand. Future applications requiring more power than can be combined using standard materials or configurations will need to be developed to overcome the high energy density and high non-linear optical scattering effects present during high power operations.

  13. ChalkBoard: Mapping Functions to Polygons

    Science.gov (United States)

    Matlage, Kevin; Gill, Andy

    ChalkBoard is a domain specific language for describing images. The ChalkBoard language is uncompromisingly functional and encourages the use of modern functional idioms. ChalkBoard uses off-the-shelf graphics cards to speed up rendering of functional descriptions. In this paper, we describe the design of the core ChalkBoard language, and the architecture of our static image generation accelerator.

  14. Why Not Charter School Boards?

    Science.gov (United States)

    Schlechty, Phillip C.; Cole, Robert W.

    1993-01-01

    Claiming that individual school board members act in selfish ways, proposes electing entire school board as a slate. Board would collectively be held responsible for performance of the school system and all of its employees. State legislation would be required to specify how interested groups would select a slate and create a charter, which is the…

  15. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers

    International Nuclear Information System (INIS)

    Magne, S.

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs

  16. Association of Regulatory Boards of Optometry

    Science.gov (United States)

    ... website of the Association of Regulatory Boards of Optometry (ARBO). ARBO's web site is designed to provide resources to regulatory boards of optometry throughout the world. State/Provincial/Territorial Boards of ...

  17. Bio-susceptibility of materials and thermal insulation systems used for historical buildings

    Science.gov (United States)

    Sterflinger, Katja; Ettenauer, Joerg; Pinar, Guadalupe

    2013-04-01

    In historical buildings of Northern countries high levels of energy are necessary to reach comfortable temperatures especially during the cold season. For this reason historical buildings are now also included in country specific regulations and ordinances to enhance the "energy - efficiency". Since an exterior insulation - as it is commonly used for modern architecture - is incompatible with monument protection, several indoor insulation systems based on historical and ecological materials, are on the market that should improve the thermic performance of a historical building. However, using organic materials as cellulose, loam, weed or wood, bears the risk of fungal growth and thus may lead to health problems in indoor environments. For this reason 5 different ecological indoor insulations systems were tested for their bio-susceptibility against various fungi both under natural conditions - after 2 years of installation in an historical building - and under laboratory conditions with high levels of relative humidity. Fungal growth was evaluated by classical isolation and cultivation as well as by molecular methods. The materials turned out to have a quite different susceptibility towards fungal contamination. Whereas insulations made of bloated Perlite (plaster and board) did not show any fungal growth after 2 years of exposition, the historical insulation made of loam and weed had high cell counts of various fungi. In laboratory experiments wooden softboard represented the best environment for fungal growth. As a result from this study, plaster and board made of bloated Perlite are presented as being the most appropriate materials for thermal insulation at least from the microbiological and hygienic point of view. For future investigations and for the monitoring of fungi in insulation and other building materials we suggest a molecular biology approach with a common protocol for quantitative DNA-extraction and amplification.

  18. The usage of optical fibers for damage detection in ballistic protection composite laminates

    Directory of Open Access Journals (Sweden)

    Živković Irena D.

    2006-01-01

    Full Text Available This paper describes the procedure of embedding fiber optic sensors in laminar thermoplastic composite material, as well as damage investigation after ballistic loading. Thermoplastic-reinforced composite materials were made for increased material damage resistance during ballistic loading. Damage inside the composite material was detected by observing the intensity drop of the light signal transmitted through the optical fibers. Experimental testing was carried out in order to observe and analyze the response of the material under various load conditions. Different types of Kevlar reinforced composite materials (thermoplastic, thermo reactive and thermoplastic with ceramic plate as the impact face were made. Material damage resistance during ballistic loading was investigated and compared. Specimens were tested under multiple load conditions. The opto-electronic part of the measurement system consists of two light-emitting diodes as light sources for the optical fibers, and two photo detectors for the light intensity measurement. The output signal was acquired from photo detectors by means of a data acquisition board and personal computer. The measurements showed an intensity drop of the transmitted light signal as a result of the applied loading on composite structure for all the optical fibers. All the diagrams show similar behavior of the light signal intensity. In fact, all of them may be divided into three zones: the zone of penetration of the first composite layer, the bullet traveling zone through the composite material till its final stop, and the material relaxation zone. The attenuation of the light signal intensity during impact is caused by the influence of the applied dynamic stress on the embedded optical fibers. The applied stress caused micro bending of the optical fiber, changes in the shape of the cross-section and the unequal changes of the indices of refraction of the core and cladding due to the stress-optic effect. The

  19. Integrated fiber Michelson interferometer based on poled hollow twin-core fiber.

    Science.gov (United States)

    Liu, Zhihai; Bo, Fusen; Wang, Lei; Tian, Fengjun; Yuan, Libo

    2011-07-01

    We propose an integrated fiber Michelson interferometer based on a poled hollow twin-core fiber. The Michelson interferometer can be used as an electro-optic modulator by thermal poling one core of the twin-core fiber and introducing second-order nonlinearity in the fiber. The proposed fiber Michelson interferometer is experimentally demonstrated under driving voltages at the frequency range of 149 to 1000 Hz. The half-wave voltage of the poled fiber is 135 V, and the effective second-order nonlinear coefficient χ² is 1.23 pm/V.

  20. Design and Analysis of Tow-Steered Composite Shells Using Fiber Placement

    Science.gov (United States)

    Wu, K. Chauncey

    2008-01-01

    In this study, a sub-scale advanced composite shell design is evaluated to determine its potential for use on a future aircraft fuselage. Two composite shells with the same nominal 8-ply [+/-45/+/-Theta](sub s) layup are evaluated, where Theta indicates a tow-steered ply. To build this shell, a fiber placement machine would be used to steer unidirectional prepreg tows as they are placed around the circumference of a 17-inch diameter right circular cylinder. The fiber orientation angle varies continuously from 10 degrees (with respect to the shell axis of revolution) at the crown, to 45 degrees on the side, and back to 10 degrees on the keel. All 24 tows are placed at each point on every fiber path in one structure designated as the shell with overlaps. The resulting pattern of tow overlaps causes the laminate thickness to vary between 8 and 16 plies. The second shell without tow overlaps uses the capability of the fiber placement machine to cut and add tows at any point along the fiber paths to fabricate a shell with a nearly uniform 8-ply laminate thickness. Issues encountered during the design and analysis of these shells are presented and discussed. Static stiffness and buckling loads of shells with tow-steered layups are compared with the performance of a baseline quasi-isotropic shell using both finite element analyses and classical strength of materials theory.

  1. Comparison of sizing effect of T700 grade carbon fiber on interfacial properties of fiber/BMI and fiber/epoxy

    International Nuclear Information System (INIS)

    Yao Lirui; Li Min; Wu Qing; Dai Zhishuang; Gu Yizhuo; Li Yanxia; Zhang Zuoguang

    2012-01-01

    Highlights: ► Carbon fiber sizings can react itself and with resin at high temperature. ► Sizings improve IFSS of carbon fiber/epoxy, but reduce that of BMI matrix. ► IFSS of carbon fiber/epoxy is larger than corresponding carbon fiber/BMI. ► Partially desized carbon fiber shows the effect of polymeric sizing component. ► The results are helpful for optimizing sizing agent of carbon fiber composites. - Abstract: This paper aims to study impact of sizing agents on interfacial properties of two T700 grade high strength carbon fibers with bismaleimide (BMI) and epoxy (EP) resin matrix. The fiber surface roughness and chemical properties are analyzed for sized, desized, and partially desized carbon fibers, using atom force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. FTIR analysis indicates that the sizing agents are chemically reactive, and they can react with BMI and EP at high temperatures. The micro-droplet tests exhibit that the desized carbon fibers have lower interfacial strengths with EP than the sized fibers, however, for BMI matrix, opposite trend is revealed. This is consistent with the chemical reactions of the sizing agents with the EP and BMI resins, in which sufficient reactions are observed for the sizing/EP mixture, while only partial reactions are probed for the sizing/BMI mixture. Interestingly, un-extracted epoxy type sizing particles are observed on partially desized carbon fiber surface, which significantly improves the interfacial adhesion with EP matrix.

  2. Primer printed circuit boards

    CERN Document Server

    Argyle, Andrew

    2009-01-01

    Step-by-step instructions for making your own PCBs at home. Making your own printed circuit board (PCB) might seem a daunting task, but once you master the steps, it's easy to attain professional-looking results. Printed circuit boards, which connect chips and other components, are what make almost all modern electronic devices possible. PCBs are made from sheets of fiberglass clad with copper, usually in multiplelayers. Cut a computer motherboard in two, for instance, and you'll often see five or more differently patterned layers. Making boards at home is relatively easy

  3. Photonic crystal fibers -

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou

    2002-01-01

    . Such micro-structured fibers are the ones most often trated in literature concerning micro-structured fibers. These micro-structured fibers offer a whole range of novel wave guiding characteristics, including the possibility of fibers that guide only one mode irrespective of the frequency of light...

  4. State-of-the-Art Report on Fiber-Reinforced Lightweight Aggregate Concrete Masonry

    Directory of Open Access Journals (Sweden)

    Saul Rico

    2017-01-01

    Full Text Available Masonry construction is the most widely used building method in the world. Concrete masonry is relatively low in cost due to the vast availability of aggregates used within the production process. These aggregate materials are not always reliable for structural use. One of the principal issues associated with masonry is the brittleness of the unit. When subject to seismic loads, the brittleness of the masonry magnifies. In regions with high seismic activity and unspecified building codes or standards, masonry housing has developed into a death trap for countless individuals. A common approach concerning the issue associated with the brittle characteristic of masonry is addition of steel reinforcement. However, this can be expensive, highly dependent on skillfulness of labor, and particularly dependent on the quality of available steel. A proposed solution presented in this investigation consists of introducing steel fibers to the lightweight aggregate concrete masonry mix. Previous investigations in the field of lightweight aggregate fiber-reinforced concrete have shown an increase in flexural strength, toughness, and ductility. The outcome of this research project provides invaluable data for the production of a ductile masonry unit capable of withstanding seismic loads for prolonged periods.

  5. Thermal conductivity of cement stabilized earth bricks reinforced with date palm fiber

    Science.gov (United States)

    Berrehail, Tahar; Zemmouri, Noureddine; Agoudjil, Boudjemaa

    2018-05-01

    Recently, some cheap materials are available and adaptable to climate seem to meet current requirements. This paper investigates the thermal and mechanical properties of cement stabilized earth bricks(CSEB) reinforced with date palm fibers (DPF). The main goal is to develop and expand the field of use of these materials in the construction sector, and investigate the possibility of new bio composite as renewable, insulating building material with low cost, made of earth and reinforced with palm wood waste. In this study, a particular interest is brought to the thermal and mechanical characteristics, which constitute a decisive character for the choice of a building material. A series of earthen samples stabilized at 5% and reinforced with DPF of various fiber weight fractions, (5%, 10%), were manufactured and compacted applying two levels compacting, (5MPa and 10MPa). Compressive strength and thermal conductivity were experimentally studied; heating capacity and diffusivity were indirectly calculated. It was found that the fibrous reinforcement proved thermal conductivity and compressive strength. it also enhanced thermal performances. Thus, the results found allow us to investigate hygrothermal behaviour and its impact on occupants comfort.

  6. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  7. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  8. Application of glass-nonmetals of waste printed circuit boards to produce phenolic moulding compound

    International Nuclear Information System (INIS)

    Guo Jie; Rao Qunli; Xu Zhenming

    2008-01-01

    The aim of this study was to investigate the feasibility of using glass-nonmetals, a byproduct of recycling waste printed circuit boards (PCBs), to replace wood flour in production of phenolic moulding compound (PMC). Glass-nonmetals were attained by two-step crushing and corona electrostatic separating processes. Glass-nonmetals with particle size shorter than 0.07 mm were in the form of single fibers and resin powder, with the biggest portion (up to 34.6 wt%). Properties of PMC with glass-nonmetals (PMCGN) were compared with reference PMC and the national standard of PMC (PF2C3). When the adding content of glass-nonmetals was 40 wt%, PMCGN exhibited flexural strength of 82 MPa, notched impact strength of 2.4 kJ/m 2 , heat deflection temperature of 175 deg. C, and dielectric strength of 4.8 MV/m, all of which met the national standard. Scanning electron microscopy (SEM) showed strong interfacial bonding between glass fibers and the phenolic resin. All the results showed that the use of glass-nonmetals as filler in PMC represented a promising method for resolving the environmental pollutions and reducing the cost of PMC, thus attaining both environmental and economic benefits

  9. Applied Mathematical Optimization Technique on Menu Scheduling for Boarding School Student Using Delete-Reshuffle-Reoptimize Algorithm

    Science.gov (United States)

    Sufahani, Suliadi; Mohamad, Mahathir; Roslan, Rozaini; Ghazali Kamardan, M.; Che-Him, Norziha; Ali, Maselan; Khalid, Kamal; Nazri, E. M.; Ahmad, Asmala

    2018-04-01

    Boarding school student needs to eat well balanced nutritious food which includes proper calories, vitality and supplements for legitimate development, keeping in mind the end goal is to repair and support the body tissues and averting undesired ailments and disease. Serving healthier menu is a noteworthy stride towards accomplishing that goal. Be that as it may, arranging a nutritious and adjusted menu physically is confounded, wasteful and tedious. This study intends to build up a scientific mathematical model for eating routine arranging that improves and meets the vital supplement consumption for boarding school student aged 13-18 and in addition saving the financial plan. It likewise gives the adaptability for the cook to change any favoured menu even after the ideal arrangement has been produced. A recalculation procedure will be performed in view of the ideal arrangement. The information was gathered from the the Ministry of Education and boarding schools’ authorities. Menu arranging is a notable enhancement issue and part of well-established optimization problem. The model was fathomed by utilizing Binary Programming and “Delete-Reshuffle-Reoptimize Algortihm (DDRA)”.

  10. Two innovative solutions based on fibre concrete blocks designed for building substructure

    Science.gov (United States)

    Pazderka, J.; Hájek, P.

    2017-09-01

    Using of fibers in a high-strength concrete allows reduction of the dimensions of small precast concrete elements, which opens up new ways of solution for traditional construction details in buildings. The paper presents two innovative technical solutions for building substructure: The special shaped plinth block from fibre concrete and the fibre concrete elements for new technical solution of ventilated floor. The main advantages of plinth block from fibre concrete blocks (compared with standard plinth solutions) is: easier and faster assembly, higher durability and thanks to the air cavity between the vertical part of the block, the building substructure reduced moisture level of structures under the waterproofing layer and a comprehensive solution to the final surface of building plinth as well as the surface of adjacent terrain. The ventilated floor based on fibre concrete precast blocks is an attractive structural alternative for tackling the problem of increased moisture in masonry in older buildings, lacking a functional waterproof layer in the substructure.

  11. The Kostyuk report: Corporate board practices in Ukraine

    Directory of Open Access Journals (Sweden)

    Alexander N. Kostyuk

    2005-01-01

    Full Text Available The author reports on the corporate board practices in Ukraine. The roles of board of directors are mainly about control. The strategic and advisory roles are not developed. The mode of strategic involvement of the members of supervisory boards in Ukraine is mainly about reviewing and approving. Thus, the board of directors in Ukraine is "a rubber stamp". The degree of independence of directors is very low. Major board practices in Ukraine are: small number of independent directors on the board; low frequency of meeting of the board; small number of committees on the board; the management board influences the supervisory board. Board practices in Ukraine need a sort of recommendations, similar to those, made in UK at the end of 1990s, and at the start of the third millennium.

  12. Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations.

    Science.gov (United States)

    Li, Chung-Yi; Lu, Hai-Han; Lu, Ting-Chieh; Chu, Chien-An; Chen, Bo-Rui; Lin, Chun-Yu; Peng, Peng-Chun

    2015-12-14

    A hybrid lightwave transmission system for cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission based on fiber-wired/fiber-wireless/fiber-visible laser light communication (VLLC) integrations is proposed and demonstrated. For down-link transmission, the light is intensity-modulated with 50-550 MHz CATV signal and optically promoted from 25 GHz radio frequency (RF) signal to 10 Gbps/50 GHz and 20 Gbps/100 GHz MMW data signals based on fiber-wired and fiber-wireless integrations. Good performances of carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) are obtained over a 40-km single-mode fiber (SMF) and a 10-m RF wireless transport. For up-link transmission, the light is successfully intensity-remodulated with 5-Gbps BB data stream based on fiber-VLLC integration. Good BER performance is achieved over a 40-km SMF and a 10-m free-space VLLC transport. Such a hybrid CATV/MMW/BB lightwave transmission system is an attractive alternative, it gives the benefits of a communication link for broader bandwidth and higher transmission rate.

  13. Internationalilzation of the Firm and its Board

    DEFF Research Database (Denmark)

    Oxelheim, Lars; Gregoric, Aleksandra; Randøy, Trond

    competencies required by firm internationalization positively affect board internationalization, whereas the impact of the internationalization of a firm’s commercial operations is positive but not significant across all model specifications. We find that the higher the number of national board members......, the amount of foreigners on the nomination committee also positively relates to the number of foreigners on the board. Rather than age, the median board tenure negatively impacts the prevalence of foreigners on the supervisory board. This barrier to board internationalization may reflect conservatism, fear...

  14. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  15. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  16. Application Specific Optical Fibers

    OpenAIRE

    Pal, Bishnu P.

    2010-01-01

    In this chapter we have attempted to provide a unified summary description of the most important propagation characteristics of an optical fiber followed by discussion on several variety of special fibers for realizing fiber amplifiers, dispersion compensating fibers, microstructured optical fibers, and so on. Even though huge progress has been made on development of optical fibers for telecom application, a need for developing special fibers, not necessarily for telecom alone, has arisen. Th...

  17. Toward efficient fiber-based quantum interface (Conference Presentation)

    Science.gov (United States)

    Soshenko, Vladimir; Vorobyov, Vadim V.; Bolshedvorsky, Stepan; Lebedev, Nikolay; Akimov, Alexey V.; Sorokin, Vadim; Smolyaninov, Andrey

    2016-04-01

    NV center in diamond is attracting a lot of attention in quantum information processing community [1]. Been spin system in clean and well-controlled environment of diamond it shows outstanding performance as quantum memory even at room temperature, spin control with single shot optical readout and possibility to build up quantum registers even on single NV center. Moreover, NV centers could be used as high-resolution sensitive elements of detectors of magnetic or electric field, temperature, tension, force or rotation. For all of these applications collection of the light emitted by NV center is crucial point. There were number of approaches suggested to address this issue, proposing use of surface plasmoms [2], manufacturing structures in diamond [3] etc. One of the key feature of any practically important interface is compatibility with the fiber technology. Several groups attacking this problem using various approaches. One of them is placing of nanodiamonds in the holes of photonic crystal fiber [4], another is utilization of AFM to pick and place nanodiamond on the tapered fiber[5]. We have developed a novel technique of placing a nanodiamond with single NV center on the tapered fiber by controlled transfer of a nanodiamond from one "donor" tapered fiber to the "target" clean tapered fiber. We verify our ability to transfer only single color centers by means of measurement of second order correlation function. With this technique, we were able to double collection efficiency of confocal microscope. The majority of the factors limiting the collection of photons via optical fiber are technical and may be removed allowing order of magnitude improved in collection. We also discuss number of extensions of this technique to all fiber excitation and integration with nanostructures. References: [1] Marcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jörg Wrachtrup, Lloyd C.L. Hollenberg , " The nitrogen-vacancy colour centre in diamond," Physics Reports

  18. Handbook of Thermal Insulation Applications.

    Science.gov (United States)

    1983-01-01

    Wiuppuoror *tIe beamsWiefag ln~ td ~oair ilmstool beams Plate 18. Metal Building Ceilings - A 18b: Fir* hataird rathge may limit the use of foam Insulation...RFCTANGUI.AR SOL TD A = 2(WxL+LxH+HxW) B V = WxLxH H L TRAPEZOID A 2 (A + B) x H A CONE A -n xRxS+ i xR 2 B V =( /3)x R2 x H TRIANGLE A BxH A- 2 CYLI NDER H 2...FABRICATIIG RECTANGULAR HEATING AND COOLING DUCTWORK. FIBERGLAS DUCT BOARD OWENS-CORNING FIBERGLAS CORP GLASS FIBER RIGID BOARD WITH ALUMINUM 4bD FOIL VAPOR

  19. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  20. PRODUCE BUYING AND MARKETING BOARDS IN NIGERIA: INTERROGATING THE FISCAL ROLE OF WESTERN NIGERIA MARKETING BOARD 1942-1962

    OpenAIRE

    Adeyinka Theresa Ajayi; Ajibade Idowu Samuel; Oladiti Abiodun Akeem

    2017-01-01

    Marketing Board system was one of the mechanisms of British colonial policy in Nigeria. Primary products were channeled through the Boards to Europe at the expense of both the Nigerian state and the farmers, the producers of these commodities. This study examines produce buying via Marketing Boards in Nigeria and specifically interrogates the fiscal role of Western Nigeria Marketing Board. It argues that the Marketing Boards, in spite of their exploitative nature was beneficial to the regiona...

  1. Fiber breakage phenomena in long fiber reinforced plastic preparation

    International Nuclear Information System (INIS)

    Huang, Chao-Tsai; Tseng, Huan-Chang; Chang, Rong-Yeu; Vlcek, Jiri

    2015-01-01

    Due to the high demand of smart green, the lightweight technologies have become the driving force for the development of automotives and other industries in recent years. Among those technologies, using short and long fiber-reinforced plastics (FRP) to replace some metal components can reduce the weight of an automotive significantly. However, the microstructures of fibers inside plastic matrix are too complicated to manage and control during the injection molding through the screw, the runner, the gate, and then into the cavity. This study focuses on the fiber breakage phenomena during the screw plastification. Results show that fiber breakage is strongly dependent on screw design and operation. When the screw geometry changes, the fiber breakage could be larger even with lower compression ratio. (paper)

  2. Facile method of building hydroxyapatite 3D scaffolds assembled from porous hollow fibers enabling nutrient delivery

    NARCIS (Netherlands)

    Salamon, David; Da Silva Teixeira, Sandra; Dutczak, S.M.; Stamatialis, Dimitrios

    2014-01-01

    Nowadays, diffusion through scaffold and tissue usually limits transport, and forms potentially hypoxic regions. Several methods are used for preparation of 3D hydroxyapatite scaffolds, however, production of a scaffold including porous hollow fibers for nutrition delivery is difficult and

  3. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing.

    Science.gov (United States)

    Wang, Qiang; Wang, Zhen; Chang, Jun; Ren, Wei

    2017-06-01

    We demonstrated a novel trace gas sensing method based on fiber-ring laser intracavity photoacoustic spectroscopy. This spectroscopic technique is a merging of photoacoustic spectroscopy (PAS) with a fiber-ring cavity for sensitive and all-fiber gas detection. A transmission-type PAS gas cell (resonant frequency f0=2.68  kHz) was placed inside the fiber-ring laser to fully utilize the intracavity laser power. The PAS signal was excited by modulating the laser wavelength at f0/2 using a custom-made fiber Bragg grating-based modulator. We used this spectroscopic technique to detect acetylene (C2H2) at 1531.6 nm as a proof of principle. With a low Q-factor (4.9) of the PAS cell, our sensor achieved a good linear response (R2=0.996) to C2H2 concentration and a minimum detection limit of 390 ppbv at 2-s response time.

  4. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  5. GOVERNING BOARD OF THE PENSION FUND

    CERN Multimedia

    2004-01-01

    The Governing Board held its 120th and 121st meetings on 4 November and 2 December 2003 respectively. At the first of these two meetings, the Board first continued its examination of ESO's requests. In connection to this, the Board heard a presentation of the requests by M. Bloch, ESO's Head of Personnel, including a proposal that ESO's contributions and benefits to its beneficiaries be paid in euros. This option had previously been examined by the Working Group on ESO's Requests which had submitted a negative opinion to the Governing Board. Mr Bloch informed the Board that ESO was suspending that request and therefore invited the Governing Board to concentrate on the other options. After some discussion, the Governing Board decided that the euro-based request should be deemed withdrawn and that the Working Group would resume its examination of the other options put forward by ESO at the beginning of the year. At the same meeting, J.-P. Matheys reported on the recent meeting of the Working Group on Actuarial...

  6. Monolithic all-PM femtosecond Yb-doped fiber laser using photonic bandgap fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2009-01-01

    We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm.......We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm....

  7. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Lee

    2015-03-01

    Full Text Available In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter. In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  8. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.

    Science.gov (United States)

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-03-27

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  9. Corporate boards and bank loan contracting

    OpenAIRE

    Francis, Bill; Hasan, Iftekhar; Koetter, Michael; Wu, Qiang

    2012-01-01

    We investigate the role of corporate boards in bank loan contracting. We find that when corporate boards are more independent, both price and nonprice loan terms (e.g., interest rates, collateral, covenants, and performance-pricing provisions) are more favorable, and syndicated loans comprise more lenders. In addition, board size, audit committee structure, and other board characteristics influence bank loan prices. However, they do not consistently affect all nonprice loan terms except for a...

  10. Cultural differences and board gender diversity

    OpenAIRE

    Carrasco , Amélia; Francoeur , Claude; Réal , Isabelle; Laffarga , Joaquina; Ruiz-Barbadillo , Emiliano

    2012-01-01

    International audience; As evidence of the continuing interest raised by "board gender diversity", major studies (Catalyst, 2008; World Economic Forum, 2010; European Board Diversity Analysis, 2010) were recently carried out and have all led to reports confirming the imbalance of women on boards and the need to address this issue. Moreover, our analysis of these reports indicates that the low proportion of women observed on corporate boards varies across countries, which raises the question a...

  11. Fiber optics in adverse environments

    International Nuclear Information System (INIS)

    Lyous, P.B.

    1982-01-01

    Radiation effects in optical fibers are considered, taking into account recent progress in the investigation of radiation resistant optical fibers, radiation damage in optical fibers, radiation-induced transient absorption in optical fibers, X-ray-induced transient attenuation at low temperatures in polymer clad silica (PCS) fibers, optical fiber composition and radiation hardness, the response of irradiated optical waveguides at low temperatures, and the effect of ionizing radiation on fiber-optic waveguides. Other topics explored are related to environmental effects on components of fiber optic systems, and radiation detection systems using optical fibers. Fiber optic systems in adverse environments are also discussed, giving attention to the survivability of Army fiber optics systems, space application of fiber optics systems, fiber optic wavelength multiplexing for civil aviation applications, a new fiber optic data bus topology, fiber optics for aircraft engine/inlet control, and application of fiber optics in high voltage substations

  12. Municipal boards and educational management: the continuing education distance and its movements

    Directory of Open Access Journals (Sweden)

    Dalla Corte, Marilene Gabriel

    2014-04-01

    Full Text Available Through scientific research in development, this article is based on distance extension actions of continuing education of a specific public program, the National Program of Training Municipal Counselors of Education (Pro-Council. This program targets a policy of democratization of education management and qualification on work of municipal counselors of education as well as education technicians in relation to educational practices, legislation, financing mechanisms, transfer and control of the use of funds of education in order to enable a good performance of the Municipal Boards of Education (MCE in their socio-educational institutions. In this context, the objective is recognizing and analyzing the continuing education impacts developed under Pro-Council/Federal University of Santa Maria about aspects as competence and commitment of ex-attendants at the Municipal Councils of Education as a democratic collective bodies. The study is developed under a quantitative and qualitative approach, using the production of semi-open questionnaires data applied to counselors and technicians. From this, we stress the growing interest of the Boards of Education and the Departments of Education to capacitate their counselors and technicians; the establishment and implementation of new Municipal Boards of Education in Rio Grande do Sul State/Brazil; the relationship between the professional exercise and political and theoretical reflection; and so on. Whereas the Municipal Boards of Education are required to consolidate the democratic management, it is very important the training of individuals involved and especially establishing dialogic processes with social demands of each municipality, mainly, the educational ones, in the sense of [re] building the public policies for basic education in a responsible and participatory way.

  13. Space-division-multiplexed transmission of 3x3 multiple-input multiple-output wireless signals over conventional graded-index multimode fiber.

    Science.gov (United States)

    Lei, Yi; Li, Jianqiang; Fan, Yuting; Yu, Dawei; Fu, Songnian; Yin, Feifei; Dai, Yitang; Xu, Kun

    2016-12-12

    In this paper, we experimentally demonstrate space-division-multiplexed (SDM) transmission of IEEE 802.11ac-compliant 3-spatial-stream WLAN signals over 3 spatial modes of conventional 50um graded-index (GI) multimode fiber (MMF) employing non-mode-selective 3D-waveguide photonic lantern. Two kinds of scenarios, including fiber-only transmission and fiber-wireless hybrid transmission, were investigated by measuring error vector magnitude (EVM) performance for each stream and condition number (CN) of the channel matrix. The experimental results show that, SDM-based MMF link could offer a CNwireless MIMO signals over existing in-building commercially-available MMFs with enormous cost-saving.

  14. Statement by the outgoing Chairperson of the Board of Governors regarding the working arrangements of the Board

    International Nuclear Information System (INIS)

    2009-01-01

    At the request of the outgoing Chairperson of the Board of Governors, her statement delivered in the Board of Governors meeting on 22 September 2009, regarding the working arrangements of the Board, is reproduced herewith for information

  15. Board Size, Non-Executive Board Members and Financial Performance in Non-Usury Banks in Iran

    Directory of Open Access Journals (Sweden)

    GholamReza Karami

    2016-07-01

    Full Text Available Prior studies investigating the relation between the financial performance and corporate governance mechanisms for firms in Tehran Stock Exchange mainly exclude banks due to their different types of rules and structure. We study the relation between corporate governance structure and financial performance of the banks under the non-usury banking act. We study various corporate governance factors including board size and the number of non-executive board members using a sample of 21 banks for 2010 to 2012. Result show a significant positive correlation among board size and financial performance. However, non-executive board members do not correlate with financial performance.

  16. Fibers in the NGC 1333 proto-cluster

    Science.gov (United States)

    Hacar, A.; Tafalla, M.; Alves, J.

    2017-10-01

    Are the initial conditions for clustered star formation the same as for non-clustered star formation? To investigate the initial gas properties in young proto-clusters we carried out a comprehensive and high-sensitivity study of the internal structure, density, temperature, and kinematics of the dense gas content of the NGC 1333 region in Perseus, one of the nearest and best studied embedded clusters. The analysis of the gas velocities in the position-position-velocity space reveals an intricate underlying gas organization both in space and velocity. We identified a total of 14 velocity-coherent, (tran-)sonic structures within NGC 1333, with similar physical and kinematic properties than those quiescent, star-forming (aka fertile) fibers previously identified in low-mass star-forming clouds. These fibers are arranged in a complex spatial network, build-up the observed total column density, and contain the dense cores and protostars in this cloud. Our results demonstrate that the presence of fibers is not restricted to low-mass clouds but can be extended to regions of increasing mass and complexity. We propose that the observational dichotomy between clustered and non-clustered star-forming regions might be naturally explained by the distinct spatial density of fertile fibers in these environments. Based on observations carried out under project number 169-11 with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Based on observations with the 100-m telescope of the MPIfR (Max-Planck-Institut für Radioastronomie) at Effelsberg.Molecular line observations (spectral cubes) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A123

  17. Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors.

    Science.gov (United States)

    Yoon, Sang Su; Lee, Kang Eun; Cha, Hwa-Jin; Seong, Dong Gi; Um, Moon-Kwang; Byun, Joon-Hyung; Oh, Youngseok; Oh, Joon Hak; Lee, Wonoh; Lee, Jea Uk

    2015-11-09

    Mechanically robust, flexible, and electrically conductive textiles are highly suitable for use in wearable electronic applications. In this study, highly conductive and flexible graphene/Ag hybrid fibers were prepared and used as electrodes for planar and fiber-type transistors. The graphene/Ag hybrid fibers were fabricated by the wet-spinning/drawing of giant graphene oxide and subsequent functionalization with Ag nanoparticles. The graphene/Ag hybrid fibers exhibited record-high electrical conductivity of up to 15,800 S cm(-1). As the graphene/Ag hybrid fibers can be easily cut and placed onto flexible substrates by simply gluing or stitching, ion gel-gated planar transistors were fabricated by using the hybrid fibers as source, drain, and gate electrodes. Finally, fiber-type transistors were constructed by embedding the graphene/Ag hybrid fiber electrodes onto conventional polyurethane monofilaments, which exhibited excellent flexibility (highly bendable and rollable properties), high electrical performance (μh = 15.6 cm(2) V(-1) s(-1), Ion/Ioff > 10(4)), and outstanding device performance stability (stable after 1,000 cycles of bending tests and being exposed for 30 days to ambient conditions). We believe that our simple methods for the fabrication of graphene/Ag hybrid fiber electrodes for use in fiber-type transistors can potentially be applied to the development all-organic wearable devices.

  18. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  19. Polymer-Derived Ceramic Fibers

    Science.gov (United States)

    Ichikawa, Hiroshi

    2016-07-01

    SiC-based ceramic fibers are derived from polycarbosilane or polymetallocarbosilane precursors and are classified into three groups according to their chemical composition, oxygen content, and C/Si atomic ratio. The first-generation fibers are Si-C-O (Nicalon) fibers and Si-Ti-C-O (Tyranno Lox M) fibers. Both fibers contain more than 10-wt% oxygen owing to oxidation during curing and lead to degradation in strength at temperatures exceeding 1,300°C. The maximum use temperature is 1,100°C. The second-generation fibers are SiC (Hi-Nicalon) fibers and Si-Zr-C-O (Tyranno ZMI) fibers. The oxygen content of these fibers is reduced to less than 1 wt% by electron beam irradiation curing in He. The thermal stability of these fibers is improved (they are stable up to 1,500°C), but their creep resistance is limited to a maximum of 1,150°C because their C/Si atomic ratio results in excess carbon. The third-generation fibers are stoichiometric SiC fibers, i.e., Hi-Nicalon Type S (hereafter Type S), Tyranno SA, and Sylramic™ fibers. They exhibit improved thermal stability and creep resistance up to 1,400°C. Stoichiometric SiC fibers meet many of the requirements for the use of ceramic matrix composites for high-temperature structural application. SiBN3C fibers derived from polyborosilazane also show promise for structural applications, remain in the amorphous state up to 1,800°C, and have good high-temperature creep resistance.

  20. The concrete technology of post pouring zone of raft foundation of Hongyun Building B tower

    Science.gov (United States)

    Yin, Suhua; Yu, Liu; Wu, Yanli; Zhao, Ying

    2017-08-01

    The foundation of Hongyun building B tower is made of raft board foundation which is 3300mm in the thickness concreted pouring amount of large and the late poured band in the pouring settlement formed. The temperature of the pouring settlement was controlled in order to prevent the crack of the construction of the late poured band. The steel of post pouring band was designed and monitorred. The quality of post pouring band quality is guaranteed in the raft concrete foundation of Hongyun Building B tower.

  1. Rev-Changes in Primary Energy Use and CO2 Emissions—An Impact Assessment for a Building with Focus on the Swedish Proposal for Nearly Zero Energy Buildings

    Directory of Open Access Journals (Sweden)

    Mattias Gustafsson

    2017-07-01

    Full Text Available In the European Union’s Energy Performance of Buildings Directive, the energy efficiency goal for buildings is set in terms of primary energy use. In the proposal from the National Board of Housing, Building, and Planning, for nearly zero energy buildings in Sweden, the use of primary energy is expressed as a primary energy number calculated with given primary energy factors. In this article, a multi-dwelling building is simulated and the difference in the primary energy number is investigated when the building uses heat from district heating systems or from heat pumps, alone or combined with solar thermal or solar photovoltaic systems. It is also investigated how the global CO2 emissions are influenced by the different energy system combinations and with different fuels used. It is concluded that the calculated primary energy number is lower for heat pump systems, but the global CO2 emissions are lowest when district heating uses mostly biofuels and is combined with solar PV systems. The difference is up to 140 tonnes/year. If the aim with the Swedish building code is to decrease the global CO2 emissions then the ratio between the primary energy factors for electricity and heat should be larger than three and considerably higher than today.

  2. Optimal back-to-front airplane boarding

    Science.gov (United States)

    Bachmat, Eitan; Khachaturov, Vassilii; Kuperman, Ran

    2013-06-01

    The problem of finding an optimal back-to-front airplane boarding policy is explored, using a mathematical model that is related to the 1+1 polynuclear growth model with concave boundary conditions and to causal sets in gravity. We study all airplane configurations and boarding group sizes. Optimal boarding policies for various airplane configurations are presented. Detailed calculations are provided along with simulations that support the main conclusions of the theory. We show that the effectiveness of back-to-front policies undergoes a phase transition when passing from lightly congested airplanes to heavily congested airplanes. The phase transition also affects the nature of the optimal or near-optimal policies. Under what we consider to be realistic conditions, optimal back-to-front policies lead to a modest 8-12% improvement in boarding time over random (no policy) boarding, using two boarding groups. Having more than two groups is not effective.

  3. Optimal back-to-front airplane boarding.

    Science.gov (United States)

    Bachmat, Eitan; Khachaturov, Vassilii; Kuperman, Ran

    2013-06-01

    The problem of finding an optimal back-to-front airplane boarding policy is explored, using a mathematical model that is related to the 1+1 polynuclear growth model with concave boundary conditions and to causal sets in gravity. We study all airplane configurations and boarding group sizes. Optimal boarding policies for various airplane configurations are presented. Detailed calculations are provided along with simulations that support the main conclusions of the theory. We show that the effectiveness of back-to-front policies undergoes a phase transition when passing from lightly congested airplanes to heavily congested airplanes. The phase transition also affects the nature of the optimal or near-optimal policies. Under what we consider to be realistic conditions, optimal back-to-front policies lead to a modest 8-12% improvement in boarding time over random (no policy) boarding, using two boarding groups. Having more than two groups is not effective.

  4. Fiber-optical accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer.......Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  5. Bioinspired design and macroscopic assembly of poly(vinyl alcohol)-coated graphene into kilometers-long fibers.

    Science.gov (United States)

    Kou, Liang; Gao, Chao

    2013-05-21

    Nacre is characterized by its excellent mechanical performance due to the well-recognized "brick and mortar" structure. Many efforts have been applied to make nacre-mimicking materials, but it is still a big challenge to realize their continuous production. Here, we prepared sandwich-like building blocks of poly(vinyl alcohol) (PVA)-coated graphene, and achieved high-nanofiller-content kilometers-long fibers by continuous wet-spinning assembly technology. The fibers have a strict "brick and mortar" layered structure, with graphene sheet as rigid brick and PVA as soft mortar. The mortar thickness can be precisely tuned from 2.01 to 3.31 nm by the weight feed ratio of PVA to graphene, as demonstrated by both atomic force microscopy and X-ray diffraction measurements. The mechanical strength of the nacre-mimicking fibers increases with increasing the content of PVA, and it rises gradually from 81 MPa for the fiber with 53.1 wt% PVA to 161 MPa for the fiber with 65.8 wt% PVA. The mechanical performance of our fibers was independent of the molecular weight (MW) of PVA in the wide range of 2-100 kDa, indicating that low MW polymers can also be used to make strong nanocomposites. The tensile stress of fibers immersed in PVA 5 wt% solution reached ca. 200 MPa, surpassing the values of nacre and most of other nacre-mimicking materials. The nacre-mimicking fibers are highly electrically conductive (∼350 S m(-1)) after immersing in hydroiodic acid, enabling them to connect a circuit to illuminate an LED lamp.

  6. VME bus based microcomputer system boards

    International Nuclear Information System (INIS)

    Chandra, A.K.; Ganesh, G.; Mayya, Anuradha; Chachondia, A.S.; Premraj, M.K.

    1991-01-01

    Several operator information systems for nuclear plants has been developed in the Division and these have involved extensive use of microcomputer boards for achieving various functions. Standard VME bus based boards have been developed to provide the most used functions. These boards have been fabricated and tested and used in several systems including Channel Temperature Monitoring systems, Disturbance Recording Systems etc. and are also proposed to be used in additional systems under developement. The use of standard bus and boards provides considerable savings in engineering time, prototyping, testing and evaluation costs, and maintenance support. This report desribes the various boards developed and the functions available on each. (author). 4 refs., 11 figs., 3 appendixes

  7. Development of a Publicly Available, Comprehensive Database of Fiber and Health Outcomes: Rationale and Methods.

    Directory of Open Access Journals (Sweden)

    Kara A Livingston

    Full Text Available Dietary fiber is a broad category of compounds historically defined as partially or completely indigestible plant-based carbohydrates and lignin with, more recently, the additional criteria that fibers incorporated into foods as additives should demonstrate functional human health outcomes to receive a fiber classification. Thousands of research studies have been published examining fibers and health outcomes.(1 Develop a database listing studies testing fiber and physiological health outcomes identified by experts at the Ninth Vahouny Conference; (2 Use evidence mapping methodology to summarize this body of literature. This paper summarizes the rationale, methodology, and resulting database. The database will help both scientists and policy-makers to evaluate evidence linking specific fibers with physiological health outcomes, and identify missing information.To build this database, we conducted a systematic literature search for human intervention studies published in English from 1946 to May 2015. Our search strategy included a broad definition of fiber search terms, as well as search terms for nine physiological health outcomes identified at the Ninth Vahouny Fiber Symposium. Abstracts were screened using a priori defined eligibility criteria and a low threshold for inclusion to minimize the likelihood of rejecting articles of interest. Publications then were reviewed in full text, applying additional a priori defined exclusion criteria. The database was built and published on the Systematic Review Data Repository (SRDR™, a web-based, publicly available application.A fiber database was created. This resource will reduce the unnecessary replication of effort in conducting systematic reviews by serving as both a central database archiving PICO (population, intervention, comparator, outcome data on published studies and as a searchable tool through which this data can be extracted and updated.

  8. From Global Firms to Global Boards?

    DEFF Research Database (Denmark)

    Thomsen, Steen; Gregoric, Aleksandra; Randøy, Trond

    2011-01-01

    . This indicates some support for the view that different kinds of firm internationalization – commercial versus financial - might lead to different types of board internationalization. We find no evidence that the internationalization of boards is limited by the conservatism of existing national board members...

  9. Gender Distribution Among American Board of Medical Specialties Boards of Directors.

    Science.gov (United States)

    Walker, Laura E; Sadosty, Annie T; Colletti, James E; Goyal, Deepi G; Sunga, Kharmene L; Hayes, Sharonne N

    2016-11-01

    Since 1995, women have comprised more than 40% of all medical school graduates. However, representation at leadership levels in medicine remains considerably lower. Gender representation among the American Board of Medical Specialties (ABMS) boards of directors (BODs) has not previously been evaluated. Our objective was to determine the relative representation of women on ABMS BODs and compare it with the in-training and in-practice gender composition of the respective specialties. The composition of the ABMS BODs was obtained from websites in March 2016 for all Member Boards. Association of American Medical Colleges and American Medical Association data were utilized to identify current and future trends in gender composition. Although represented by a common board, neurology and psychiatry were evaluated separately because of their very different practices and gender demographic characteristics. A total of 25 specialties were evaluated. Of the 25 specialties analyzed, 12 BODs have proportional gender representation compared with their constituency. Seven specialties have a larger proportion of women serving on their boards compared with physicians in practice, and 6 specialties have a greater proportion of men populating their BODs. Based on the most recent trainee data (2013), women have increasing workforce representation in almost all specialties. Although women in both training and practice are approaching equal representation, there is variability in gender ratios across specialties. Directorship within ABMS BODs has a more equitable gender distribution than other areas of leadership in medicine. Further investigation is needed to determine the reasons behind this difference and to identify opportunities to engage women in leadership in medicine. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  10. Education Unit Transformation for Maintain Its Existence in Islamic Boarding School (Multi-Case Study on Tebuireng Islamic Boarding School, Gading Islamic Boarding School Malang, and Sidogiri Islamic Boarding School Pasuruan)

    Science.gov (United States)

    Busyairi AS, M.

    2017-01-01

    Islamic Boarding School which serves as native Islamic education institution is a continuation of education tradition grown strongly in Islamization history in unitary nation Republic of Indonesia. The education of Islamic Boarding School is also a sub-system of National Education with the purpose to make intelligent national life, to make…

  11. 14 CFR 250.8 - Denied boarding compensation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Denied boarding compensation. 250.8 Section... PROCEEDINGS) ECONOMIC REGULATIONS OVERSALES § 250.8 Denied boarding compensation. (a) Every carrier shall tender to a passenger eligible for denied boarding compensation, on the day and place the denied boarding...

  12. Governing Board of the Pension Fund

    CERN Document Server

    2004-01-01

    The Governing Board of the Pension Fund held its one-hundred-and-twenty-seventh meeting on 4, 5 and 6 October. During the meeting, the Governing Board heard a report by the actuary on the Actuarial Review as at 1 January 2004. The Governing Board then examined the conclusions to be drawn and the action to be taken as a result of the Review. During its first half-day meeting the Board heard a report on the meetings of the CERN Finance Committee and Council on 15 and 16 September. As a result, the Board asked its Chairman to consult the President of the CERN Council in order to find out about the terms of reference and the composition of the working group on pensions set up by the Council. Next the Board examined a request for compensation to the Fund for the reduction in active members between 2001 and 2003. It was the third such request which the Governing Board would be making to the CERN Council following the latter's 1995 decision to reduce staff numbers. The request related to the previous three years (...

  13. Currency Boards; The Ultimate Fix?

    OpenAIRE

    Atish R. Ghosh

    1998-01-01

    The growing integration of world capital markets has made it fashionable to argue that only extreme exchange rate regimes are sustainable. Short of adopting a common currency, currency board arrangements represent the most extreme form of exchange rate peg. This paper compares the macroeconomic performance of countries with currency boards to those with other forms of pegged exchange rate regime. Currency boards are indeed associated with better inflation performance, even allowing for potent...

  14. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  15. Analysis of second order harmonic distortion due to transmitter non-linearity and chromatic and modal dispersion of optical OFDM SSB modulated signals in SMF-MMF fiber links

    Science.gov (United States)

    Patel, Dhananjay; Singh, Vinay Kumar; Dalal, U. D.

    2017-01-01

    Single mode fibers (SMF) are typically used in Wide Area Networks (WAN), Metropolitan Area Networks (MAN) and also find applications in Radio over Fiber (RoF) architectures supporting data transmission in Fiber to the Home (FTTH), Remote Antenna Units (RAUs), in-building networks etc. Multi-mode fibers (MMFs) with low cost, ease of installation and low maintenance are predominantly (85-90%) deployed in-building networks providing data access in local area networks (LANs). The transmission of millimeter wave signals through the SMF in WAN and MAN, along with the reuse of MMF in-building networks will not levy fiber reinstallation cost. The transmission of the millimeter waves experiences signal impairments due to the transmitter non-linearity and modal dispersion of the MMF. The MMF exhibiting large modal dispersion limits the bandwidth-length product of the fiber. The second and higher-order harmonics present in the optical signal fall within the system bandwidth. This causes degradation in the received signal and an unwanted radiation of power at the RAU. The power of these harmonics is proportional to the non-linearity of the transmitter and the modal dispersion of the MMF and should be maintained below the standard values as per the international norms. In this paper, a mathematical model is developed for Second-order Harmonic Distortion (HD2) generated due to non-linearity of the transmitter and chromatic-modal dispersion of the SMF-MMF optic link. This is also verified using a software simulation. The model consists of a Mach Zehnder Modulator (MZM) that generates two m-QAM OFDM Single Sideband (SSB) signals based on phase shift of the hybrid coupler (90° and 120°). Our results show that the SSB signal with 120° hybrid coupler has suppresses the higher-order harmonics and makes the system more robust against the HD2 in the SMF-MMF optic link.

  16. 33 CFR 401.90 - Boarding for inspections.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Boarding for inspections. 401.90... OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations General § 401.90 Boarding for inspections... approved means of boarding. Pigeon holes are not accepted as a means of boarding and an alternate safe...

  17. Fiber optic transmission system delivered to Fusion Research Center of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Hayashida, Mutsuo; Hiramoto, Kiyoshi; Yamazaki, Kunihiro

    1983-01-01

    In general there are many electromagnetically induced noises in the premises of factories, power plants and substations. Under such electrically bad environments, for the computer data transmission that needs high speed processing and high reliability, the optical fiber cable is superion to the coaxial cable or the flat-type cable in aspects of the inductionlessness and a wide bandwidth. Showa Electric Wire and Cable Co., Ltd. has delivered and installed a computer data transmission system consisting of optical modems and optical fiber cables for connecting every experiment building in the premises of Fusion Research Center of Japan Atomic Energy Research Institute. This paper describes the outline of this system. (author)

  18. Modified optical fiber daylighting system with sunlight transportation in free space.

    Science.gov (United States)

    Vu, Ngoc-Hai; Pham, Thanh-Tuan; Shin, Seoyong

    2016-12-26

    We present the design, optical simulation, and experiment of a modified optical fiber daylighting system (M-OFDS) for indoor lighting. The M-OFDS is comprised of three sub-systems: concentration, collimation, and distribution. The concentration part is formed by coupling a Fresnel lens with a large-core plastic optical fiber. The sunlight collected by the concentration sub-system is propagated in a plastic optical fiber and then collimated by the collimator, which is a combination of a parabolic mirror and a convex lens. The collimated beam of sunlight travels in free space and is guided to the interior by directing flat mirrors, where it is diffused uniformly by a distributor. All parameters of the system are calculated theoretically. Based on the designed system, our simulation results demonstrated a maximum optical efficiency of 71%. The simulation results also showed that sunlight could be delivered to the illumination destination at distance of 30 m. A prototype of the M-OFDS was fabricated, and preliminary experiments were performed outdoors. The simulation results and experimental results confirmed that the M-OFDS was designed effectively. A large-scale system constructed by several M-OFDSs is also proposed. The results showed that the presented optical fiber daylighting system is a strong candidate for an inexpensive and highly efficient application of solar energy in buildings.

  19. Reinforcement of RC structure by carbon fibers

    Directory of Open Access Journals (Sweden)

    Kissi B.

    2016-01-01

    Full Text Available In recent years, rehabilitation has been the subject of extensive research due to the increased spending on building maintenance work and restoration of built works. In all cases, it is essential to carry out methods of reinforcement or maintenance of structural elements, following an inspection analysis and methodology of a correct diagnosis. This research focuses on the calculation of the necessary reinforcement sections of carbon fiber for structural elements with reinforced concrete in order to improve their load bearing capacity and rigidity. The different results obtained reveal a considerable gain in resistance and deformation capacity of reinforced sections without significant increase in the weight of the rehabilitated elements.

  20. SVX Sequencer Board

    International Nuclear Information System (INIS)

    Utes, M.

    1997-01-01

    The SVX Sequencer boards are 9U by 280mm circuit boards that reside in slots 2 through 21 of each of eight Eurocard crates in the D0 Detector Platform. The basic purpose is to control the SVX chips for data acquisition and when a trigger occurs, to gather the SVX data and relay the data to the VRB boards in the Movable Counting House. Functions and features are as follows: (1) Initialization of eight SVX chip strings using the MIL-STD-1553 data bus; (2) Real time manipulation of the SVX control lines to effect data acquisition, digitization, and readout based on the NRZ/Clock signals from the Controller; (3) Conversion of 8-bit electrical SVX readout data to an optical signal operating at 1.062 Gbit/sec, sent to the VRB. Eight HDIs will be serviced per board; (4) Built-in logic analyzer which can record the most important control and data lines during a data acquisition cycle and put this recorded information onto the 1553 bus; (5) Identification header and end of data trailer tacked onto data stream; (6) 1553 register which can read the current values of the control and data lines; (7) 1553 register which can test the optical link; (8) 1553 registers for crossing pulse width, calibration pulse voltage, and calibration pipeline select; (9) 1553 register for reading the optical drivers status link; (10) 1553 register for power control of SVX chips and ignoring bad SVX strings; (11) Front panel displays and LEDs show the board status at a glance; (12) In-system programmable EPLDs are programmed via 1553 or Altera's 'Bitblaster'; (13) Automatic readout abort after 45us; (14) Supplies BUSY signal back to Trigger Framework; (15) Supports a heartbeat system to prevent excessive SVX current draw; and (16) Supports a SVX power trip feature if heartbeat failure occurs.