Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
Oscillators from nonlinear realizations
Kozyrev, N.; Krivonos, S.
2018-02-01
We construct the systems of the harmonic and Pais-Uhlenbeck oscillators, which are invariant with respect to arbitrary noncompact Lie algebras. The equations of motion of these systems can be obtained with the help of the formalism of nonlinear realizations. We prove that it is always possible to choose time and the fields within this formalism in such a way that the equations of motion become linear and, therefore, reduce to ones of ordinary harmonic and Pais-Uhlenbeck oscillators. The first-order actions, that produce these equations, can also be provided. As particular examples of this construction, we discuss the so(2, 3) and G 2(2) algebras.
Oscillations in nonlinear systems
Hale, Jack K
2015-01-01
By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction to the theory of nonlinear oscillations provides a unified approach to obtaining periodic solutions to nonautonomous and autonomous differential equations. It also indicates key relationships with other related procedures and probes the consequences of the methods of averaging and integral manifolds.Part I of the text features introductory material, including discussions of matrices, linear systems of differential equations, and stability of solutions of nonlinear systems. Pa
Energy Technology Data Exchange (ETDEWEB)
Chandra, J; Scott, A C
1983-01-01
Topics discussed include transitions in weakly coupled nonlinear oscillators, singularly perturbed delay-differential equations, and chaos in simple laser systems. Papers are presented on truncated Navier-Stokes equations in a two-dimensional torus, on frequency locking in Josephson point contacts, and on soliton excitations in Josephson tunnel junctions. Attention is also given to the nonlinear coupling of radiation pulses to absorbing anharmonic molecular media, to aspects of interrupted coarse-graining in stimulated excitation, and to a statistical analysis of long-term dynamic irregularity in an exactly soluble quantum mechanical model.
Nonlinear (Anharmonic Casimir Oscillator
Directory of Open Access Journals (Sweden)
Habibollah Razmi
2011-01-01
Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.
International Nuclear Information System (INIS)
Tatchim Bemmo, D.; Siewe Siewe, M.; Tchawoua, C.
2011-01-01
The continuous FitzHugh-Nagumo (FHN for short) model is transformed into modified van der Pol oscillator with asymmetry under external and two-frequency parametric excitations. At the first, the dependence of the solutions on a combined external and two-frequency parametric stimulus forcing is investigated. By using the multiple scale method, ranges of applied current and/or parametric forcing in which nonlinear oscillations are observed are described. Second, when the multiple scale method cannot be used, we numerically prove that in the modified van der Pol oscillator with asymmetry under external and two-frequency parametric excitations, chaos and periodic solution depending on the combination between different frequencies of the model should appear. We also show that the amplitude of the oscillations can be reduced or increased. To do this, we perform the study of the FHN model by choosing a range of parameters exhibiting Hopf bifurcation and two qualitative different regimes in phase portrait. - Highlights: → We model both external and two-frequency parametric excitations in FHN equations. → We examine effects of harmonic forcing on coupled nonlinear oscillator. → Jump and hysteresis phenomena are observed in the dynamical response. → By increasing the constant stimulus we obtain limit cycle. → Some combinations of frequencies produce limit cycle and chaos for other.
Modeling nonlinearities in MEMS oscillators.
Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A
2013-08-01
We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
... are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.
Cubication of conservative nonlinear oscillators
International Nuclear Information System (INIS)
Belendez, Augusto; Alvarez, Mariela L; Fernandez, Elena; Pascual, Inmaculada
2009-01-01
A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.
Oscillating nonlinear acoustic shock waves
DEFF Research Database (Denmark)
Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth
2016-01-01
We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....
Nonlinearity in oscillating bridges
Directory of Open Access Journals (Sweden)
Filippo Gazzola
2013-09-01
Full Text Available We first recall several historical oscillating bridges that, in some cases, led to collapses. Some of them are quite recent and show that, nowadays, oscillations in suspension bridges are not yet well understood. Next, we survey some attempts to model bridges with differential equations. Although these equations arise from quite different scientific communities, they display some common features. One of them, which we believe to be incorrect, is the acceptance of the linear Hooke law in elasticity. This law should be used only in presence of small deviations from equilibrium, a situation which does not occur in widely oscillating bridges. Then we discuss a couple of recent models whose solutions exhibit self-excited oscillations, the phenomenon visible in real bridges. This suggests a different point of view in modeling equations and gives a strong hint how to modify the existing models in order to obtain a reliable theory. The purpose of this paper is precisely to highlight the necessity of revisiting the classical models, to introduce reliable models, and to indicate the steps we believe necessary to reach this target.
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
The study of solitons in those physical systems reveals some exciting .... With the following power series expansions for g(z,t) and f(z,t): g(z,t) = εg1(z,t) + ... If nonlinearity γ (z) is also taken as a function in figure 1b, the periodic and oscillation.
On the nonlinear modeling of ring oscillators
Elwakil, Ahmed S.
2009-06-01
We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.
On the nonlinear modeling of ring oscillators
Elwakil, Ahmed S.; Salama, Khaled N.
2009-01-01
We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.
A simple approach to nonlinear oscillators
International Nuclear Information System (INIS)
Ren Zhongfu; He Jihuan
2009-01-01
A very simple and effective approach to nonlinear oscillators is suggested. Anyone with basic knowledge of advanced calculus can apply the method to finding approximately the amplitude-frequency relationship of a nonlinear oscillator. Some examples are given to illustrate its extremely simple solution procedure and an acceptable accuracy of the obtained solutions.
Nonlinearity induced synchronization enhancement in mechanical oscillators
Czaplewski, David A.; Lopez, Omar; Guest, Jeffrey R.; Antonio, Dario; Arroyo, Sebastian I.; Zanette, Damian H.
2018-05-08
An autonomous oscillator synchronizes to an external harmonic force only when the forcing frequency lies within a certain interval, known as the synchronization range, around the oscillator's natural frequency. Under ordinary conditions, the width of the synchronization range decreases when the oscillation amplitude grows, which constrains synchronized motion of micro- and nano-mechanical resonators to narrow frequency and amplitude bounds. The present invention shows that nonlinearity in the oscillator can be exploited to manifest a regime where the synchronization range increases with an increasing oscillation amplitude. The present invention shows that nonlinearities in specific configurations of oscillator systems, as described herein, are the key determinants of the effect. The present invention presents a new configuration and operation regime that enhances the synchronization of micro- and nano-mechanical oscillators by capitalizing on their intrinsic nonlinear dynamics.
Nonlinear analysis of ring oscillator circuits
Ge, Xiaoqing
2010-06-01
Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.
Nonlinear analysis of ring oscillator circuits
Ge, Xiaoqing; Arcak, Murat; Salama, Khaled N.
2010-01-01
Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.
Single-ion nonlinear mechanical oscillator
International Nuclear Information System (INIS)
Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R.
2010-01-01
We study the steady-state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate here the unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the laser-cooling parameters. Our observations pave the way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.
PT -symmetric dimer of coupled nonlinear oscillators
Indian Academy of Sciences (India)
We provide a systematic analysis of a prototypical nonlinear oscillator ... recently, a number of nonlinear variants have been explored, like split-ring resonator chain .... Note that these solutions are valid for any value of ǫ (and hence δ) including ǫ ..... [16] M Abramowitz and I A Stegun, Handbook of mathematical functions ...
Analytical solution of strongly nonlinear Duffing oscillators
El-Naggar, A.M.; Ismail, G.M.
2016-01-01
In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε)α=α(ε) is defined such that the value of α is always small regardless of the magnitude of the original parameter εε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to αα. Approximate solution obtained by the present method is compared with the solution of energy balance m...
Chaotic synchronization of two complex nonlinear oscillators
International Nuclear Information System (INIS)
Mahmoud, Gamal M.; Mahmoud, Emad E.; Farghaly, Ahmed A.; Aly, Shaban A.
2009-01-01
Synchronization is an important phenomenon commonly observed in nature. It is also often artificially induced because it is desirable for a variety of applications in physics, applied sciences and engineering. In a recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors and chaos control in periodically forced complex Duffing's oscillators. Physica A 2001;292:193-206], a system of periodically forced complex Duffing's oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. Their connection to solutions of the nonlinear Schroedinger equation has also been pointed out. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using active control and global synchronization techniques. We derive analytical expressions for control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.
Detecting Nonlinear Oscillations in Broadband Signals
Czech Academy of Sciences Publication Activity Database
Vejmelka, Martin; Paluš, Milan
2009-01-01
Roč. 19, - (2009), 1015114-1-1015114-7 ISSN 1054-1500 R&D Projects: GA MŠk 7E08027 EU Projects: European Commission(XE) 200728 - BRAINSYNC Institutional research plan: CEZ:AV0Z10300504 Keywords : nonlinear dynamical systems * oscillations * random processes * time series analysis * EEG Subject RIV: FH - Neurology Impact factor: 1.795, year: 2009
Analytical solution of strongly nonlinear Duffing oscillators
Directory of Open Access Journals (Sweden)
A.M. El-Naggar
2016-06-01
Full Text Available In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε is defined such that the value of α is always small regardless of the magnitude of the original parameter ε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to α. Approximate solution obtained by the present method is compared with the solution of energy balance method, homotopy perturbation method, global error minimization method and lastly numerical solution. We observe from the results that this method is very simple, easy to apply, and gives a very good accuracy not only for small parameter εbut also for large values of ε.
Nonlinear oscillations in coriolis based gyroscopes
Directory of Open Access Journals (Sweden)
Dag Kristiansen
1999-01-01
Full Text Available In this paper we model and analyze nonlinear oscillations which are known to exist in some Coriolis based gyroscopes due to large amplitude excitation in the drive loop. A detailed derivation of a dynamic model for a cylinder gyroscope which includes geometric nonlinearities is given, and energy transfer between the system's modes are analyzed using perturbation theory and by proposing a simplified model. The model is also simulated, and the results are shown to give an accurate description of the experimental results. This work is done in order to gain a better understanding of the gyroscope's dynamics, and is intended to be a starting point for designing nonlinear observers and vibration controllers for the gyroscope in order to increase the performance.
Sensitivity and Nonlinearity of Thermoacoustic Oscillations
Juniper, Matthew P.; Sujith, R. I.
2018-01-01
Nine decades of rocket engine and gas turbine development have shown that thermoacoustic oscillations are difficult to predict but can usually be eliminated with relatively small ad hoc design changes. These changes can, however, be ruinously expensive to devise. This review explains why linear and nonlinear thermoacoustic behavior is so sensitive to parameters such as operating point, fuel composition, and injector geometry. It shows how nonperiodic behavior arises in experiments and simulations and discusses how fluctuations in thermoacoustic systems with turbulent reacting flow, which are usually filtered or averaged out as noise, can reveal useful information. Finally, it proposes tools to exploit this sensitivity in the future: adjoint-based sensitivity analysis to optimize passive control designs and complex systems theory to warn of impending thermoacoustic oscillations and to identify the most sensitive elements of a thermoacoustic system.
Complex behavior in chains of nonlinear oscillators.
Alonso, Leandro M
2017-06-01
This article outlines sufficient conditions under which a one-dimensional chain of identical nonlinear oscillators can display complex spatio-temporal behavior. The units are described by phase equations and consist of excitable oscillators. The interactions are local and the network is poised to a critical state by balancing excitation and inhibition locally. The results presented here suggest that in networks composed of many oscillatory units with local interactions, excitability together with balanced interactions is sufficient to give rise to complex emergent features. For values of the parameters where complex behavior occurs, the system also displays a high-dimensional bifurcation where an exponentially large number of equilibria are borne in pairs out of multiple saddle-node bifurcations.
Breaking of ensembles of linear and nonlinear oscillators
International Nuclear Information System (INIS)
Buts, V.A.
2016-01-01
Some results concerning the study of the dynamics of ensembles of linear and nonlinear oscillators are stated. It is shown that, in general, a stable ensemble of linear oscillator has a limited number of oscillators. This number has been defined for some simple models. It is shown that the features of the dynamics of linear oscillators can be used for conversion of the low-frequency energy oscillations into high frequency oscillations. The dynamics of coupled nonlinear oscillators in most cases is chaotic. For such a case, it is shown that the statistical characteristics (moments) of chaotic motion can significantly reduce potential barriers that keep the particles in the capture region
Analytical Solutions to Non-linear Mechanical Oscillation Problems
DEFF Research Database (Denmark)
Kaliji, H. D.; Ghadimi, M.; Barari, Amin
2011-01-01
In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated u...
Nonlinear resonance in Duffing oscillator with fixed and integrative ...
Indian Academy of Sciences (India)
We study the nonlinear resonance, one of the fundamental phenomena in nonlinear oscillators, in a damped and periodically-driven Dufﬁng oscillator with two types of time-delayed feedbacks, namely, ﬁxed and integrative. Particularly, we analyse the effect of the time-delay parameter and the strength of the ...
Nonlinear resonance in Duffing oscillator with fixed and integrative ...
Indian Academy of Sciences (India)
2012-03-02
Mar 2, 2012 ... Abstract. We study the nonlinear resonance, one of the fundamental phenomena in nonlinear oscillators, in a damped and periodically-driven Duffing oscillator with two types of time-delayed feedbacks, namely, fixed and integrative. Particularly, we analyse the effect of the time-delay parameter α and the ...
Qualitative analysis of nonlinear power oscillation in NSRR
International Nuclear Information System (INIS)
Suzudo, T.; Shinohara, Y.
1994-01-01
The performance of the automatic control system of NSRR is investigated experimentally and theoretically in connection with the power oscillation. A subsystem in the automatic control system relevant to the onset of the power oscillation is determined, and it is found that the subsystem possesses nonlinearity. Although the detailed mechanism of the nonlinearity cannot be identified because of lack of signals measured inside the subsystem, the input and output signals imply that the nonlinearity is a sort of backlash. A simplified reactor dynamic model with backlash simulates the dynamics of the NSRR power oscillation. (Author)
Nonlinear Oscillations in Biology and Chemistry
1986-01-01
This volume contains the proceedings of a meeting entitled 'Nonlinear Oscillations in Biology and Chemistry', which was held at the University of Utah May 9-11,1985. The papers fall into four major categories: (i) those that deal with biological problems, particularly problems arising in cell biology, (ii) those that deal with chemical systems, (iii) those that treat problems which arise in neurophysiology, and (iv), those whose primary emphasis is on more general models and the mathematical techniques involved in their analysis. Except for the paper by Auchmuty, all are based on talks given at the meeting. The diversity of papers gives some indication of the scope of the meeting, but the printed word conveys neither the degree of interaction between the participants nor the intellectual sparks generated by that interaction. The meeting was made possible by the financial support of the Department of Mathe matics of the University of Utah. I am indebted to Ms. Toni Bunker of the Department of Mathematics for...
Computing with networks of nonlinear mechanical oscillators.
Directory of Open Access Journals (Sweden)
Jean C Coulombe
Full Text Available As it is getting increasingly difficult to achieve gains in the density and power efficiency of microelectronic computing devices because of lithographic techniques reaching fundamental physical limits, new approaches are required to maximize the benefits of distributed sensors, micro-robots or smart materials. Biologically-inspired devices, such as artificial neural networks, can process information with a high level of parallelism to efficiently solve difficult problems, even when implemented using conventional microelectronic technologies. We describe a mechanical device, which operates in a manner similar to artificial neural networks, to solve efficiently two difficult benchmark problems (computing the parity of a bit stream, and classifying spoken words. The device consists in a network of masses coupled by linear springs and attached to a substrate by non-linear springs, thus forming a network of anharmonic oscillators. As the masses can directly couple to forces applied on the device, this approach combines sensing and computing functions in a single power-efficient device with compact dimensions.
Experimental analysis of nonlinear oscillations in the undergraduate physics laboratory
International Nuclear Information System (INIS)
Moreno, R; Page, A; Riera, J; Hueso, J L
2014-01-01
In this paper, we present a simple experiment to introduce the nonlinear behaviour of oscillating systems in the undergraduate physics laboratory. The transverse oscillations of a spring allow reproduction of three totally different scenarios: linear oscillations, nonlinear oscillations reducible to linear for small displacements, and intrinsically nonlinear oscillations. The chosen approach consists of measuring the displacements using video photogrammetry and computing the velocities and the accelerations by means of a numerical differentiation algorithm. In this way, one can directly check the differential equation of the motion without having to integrate it, or perform an experimental study of the potential energy in each of the analysed scenarios. This experiment allows first year students to reflect on the consequences and the limits of the linearity assumption for small displacements that is so often made in technical studies. (paper)
Forced oscillation of hyperbolic equations with mixed nonlinearities
Directory of Open Access Journals (Sweden)
Yutaka Shoukaku
2012-04-01
Full Text Available In this paper, we consider the mixed nonlinear hyperbolic equations with forcing term via Riccati inequality. Some sufficient conditions for the oscillation are derived by using Young inequality and integral averaging method.
Oscillation criteria for fourth-order nonlinear delay dynamic equations
Directory of Open Access Journals (Sweden)
Yunsong Qi
2013-03-01
Full Text Available We obtain criteria for the oscillation of all solutions to a fourth-order nonlinear delay dynamic equation on a time scale that is unbounded from above. The results obtained are illustrated with examples
Oscillation criteria for third order delay nonlinear differential equations
Directory of Open Access Journals (Sweden)
E. M. Elabbasy
2012-01-01
via comparison with some first differential equations whose oscillatory characters are known. Our results generalize and improve some known results for oscillation of third order nonlinear differential equations. Some examples are given to illustrate the main results.
Classical Yang-Mills mechanics. Nonlinear colour oscillations
International Nuclear Information System (INIS)
Matinyan, S.G.; Savvidi, G.K.; Ter-Arutyunyan-Savvidi, N.G.
1981-01-01
A novel class of solutions of the classical Yang-Mills equations in the Minkowsky space which leads to nonlinear colour oscillations is studied. The system discribing these oscillations is apparently stochastic. Periodic trajectories corresponding to the solutions are found and studied and it is demonstrated that they constitute at least an enumerable set [ru
Chaotic Dynamics and Application of LCR Oscillators Sharing Common Nonlinearity
Jeevarekha, A.; Paul Asir, M.; Philominathan, P.
2016-06-01
This paper addresses the problem of sharing common nonlinearity among nonautonomous and autonomous oscillators. By choosing a suitable common nonlinear element with the driving point characteristics capable of bringing out chaotic motion in a combined system, we obtain identical chaotic states. The dynamics of the coupled system is explored through numerical and experimental studies. Employing the concept of common nonlinearity, a simple chaotic communication system is modeled and its performance is verified through Multisim simulation.
Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits
Ge, Xiaoqing
2010-12-01
Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.
Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits
Ge, Xiaoqing; Arcak, Murat; Salama, Khaled N.
2010-01-01
Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.
Three-dimensional analysis of nonlinear plasma oscillation
International Nuclear Information System (INIS)
Miano, G.
1990-01-01
In an underdense plasma a large-amplitude plasma oscillation may be produced by the beating of two external and colinear electromagnetic waves with a frequency difference approximately equal to the plasma frequency - plasma beat wave (PBW) resonant mechanism. The plasma oscillations are driven by the ponderomotive force arising from the beating of the two imposed electromagnetic waves. In this paper two pump electromagnetic waves with arbitrary transverse profiles have been considered. The plasma is described by using the three dimensinal weakly relativistic fluid equations. The nonlinear plasma oscillation dynamics is studied by using the eulerian description, the averaging and the multiple time scale methods. Unlike the linear theory a strong cross field coupling between longitudinal ans transverse electric field components of the plasma oscillation comes out, resulting in a nonlinear phase change and energy transfer between the two components. Unlike the one-dimensional nonlinear theory, the nonlinear frequency shift is caused by relativistic effects as well as by convective effects and electromagnetic field generated from the three dimensional plasma oscillation. The large amplitude plasma oscillation dynamics produced by a bunched relativistic electron beam with arbitrary transverse profile - plasma wave field (PWF) - or by a high power single frequency short electromagnetic pulse with arbitrary transverse profile - electromagnetic plasma wake field (EPWF) - may be described by means of the present theory. (orig.)
OSCILLATION OF NONLINEAR DELAY DIFFERENCE EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This paper deals with the oscillatory properties of a class of nonlinear difference equations with several delays. Sufficient criteria in the form of infinite sum for the equations to be oscillatory are obtained.
Nonlinear oscillations of inviscid free drops
Patzek, T. W.; Benner, R. E., Jr.; Basaran, O. A.; Scriven, L. E.
1991-01-01
The present analysis of free liquid drops' inviscid oscillations proceeds through solution of Bernoulli's equation to obtain the free surface shape and of Laplace's equation for the velocity potential field. Results thus obtained encompass drop-shape sequences, pressure distributions, particle paths, and the temporal evolution of kinetic and surface energies; accuracy is verified by the near-constant drop volume and total energy, as well as the diminutiveness of mass and momentum fluxes across drop surfaces. Further insight into the nature of oscillations is provided by Fourier power spectrum analyses of mode interactions and frequency shifts.
SIMULATION OF SYNCHRONIZATION OF NONLINEAR OSCILLATORS BY THE EXTERNAL FIELD
Directory of Open Access Journals (Sweden)
V. M. Kuklin
2017-05-01
Full Text Available In this paper, the self-consistent model was considered, consisting of a system of oscillators, the coupling between them was assumed to be integral (due to the fields formed as a result of their co-radiation. With the help of this model, the features of synchronization by waves of finite amplitude of a system of oscillators were refined, the initial phase values of which are random. The effect of nonlinearity, in particular, due to the change in the mass of the oscillator due to relativistic effects, was taken into account. It was shown that the nonlinearity does not violate the nature of the energy exchange between the wave and the oscillator system, leading only to a slight decrease in the efficiency of such an exchange.
Nonlinearly driven oscillations in the gyrotron traveling-wave amplifier
International Nuclear Information System (INIS)
Chiu, C. C.; Pao, K. F.; Yan, Y. C.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.
2008-01-01
By delivering unprecedented power and gain, the gyrotron traveling-wave amplifier (gyro-TWT) offers great promise for advanced millimeter wave radars. However, the underlying physics of this complex nonlinear system is yet to be fully elucidated. Here, we report a new phenomenon in the form of nonlinearly driven oscillations. A zero-drive stable gyro-TWT is shown to be susceptible to a considerably reduced dynamic range at the band edge, followed by a sudden transition into driven oscillations and then a hysteresis effect. An analysis of this unexpected behavior and its physical interpretation are presented.
Electronegative nonlinear oscillating modes in plasmas
Panguetna, Chérif Souleman; Tabi, Conrad Bertrand; Kofané, Timoléon Crépin
2018-02-01
The emergence of nonlinear modulated waves is addressed in an unmagnetized electronegative plasma made of Boltzmann electrons, Boltzmann negative ions and cold mobile positive ions. The reductive perturbation method is used to reduce the dynamics of the whole system to a cubic nonlinear Schrödinger equation, whose the nonlinear and dispersion coefficients, P and Q, are function of the negative ion parameters, namely the negative ion concentration ratio (α) and the electron-to-negative ion temperature ratio (σn). It is observed that these parameters importantly affect the formation of modulated ion-acoustic waves, either as exact solutions or via the activation of modulational instability. Especially, the theory of modulational instability is used to show the correlation between the parametric analysis and the formation of modulated solitons, obtained here as bright envelopes and kink-wave solitons.
Multisynchronization of Chaotic Oscillators via Nonlinear Observer Approach
Directory of Open Access Journals (Sweden)
Ricardo Aguilar-López
2014-01-01
Full Text Available The goal of this work is to synchronize a class of chaotic oscillators in a master-slave scheme, under different initial conditions, considering several slaves systems. The Chen oscillator is employed as a benchmark model and a nonlinear observer is proposed to reach synchronicity between the master and the slaves’ oscillators. The proposed observer contains a proportional and integral form of a bounded function of the synchronization error in order to provide asymptotic synchronization with a satisfactory performance. Numerical experiments were carried out to show the operation of the considered methodology.
Multisynchronization of chaotic oscillators via nonlinear observer approach.
Aguilar-López, Ricardo; Martínez-Guerra, Rafael; Mata-Machuca, Juan L
2014-01-01
The goal of this work is to synchronize a class of chaotic oscillators in a master-slave scheme, under different initial conditions, considering several slaves systems. The Chen oscillator is employed as a benchmark model and a nonlinear observer is proposed to reach synchronicity between the master and the slaves' oscillators. The proposed observer contains a proportional and integral form of a bounded function of the synchronization error in order to provide asymptotic synchronization with a satisfactory performance. Numerical experiments were carried out to show the operation of the considered methodology.
Nonlinear transient waves in coupled phase oscillators with inertia.
Jörg, David J
2015-05-01
Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators.
Chen, Changyao; Zanette, Damián H; Czaplewski, David A; Shaw, Steven; López, Daniel
2017-05-26
Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.
Periodic Solutions for Highly Nonlinear Oscillation Systems
DEFF Research Database (Denmark)
Ghadimi, M; Barari, Amin; Kaliji, H.D
2012-01-01
In this paper, Frequency-Amplitude Formulation is used to analyze the periodic behavior of tapered beam as well as two complex nonlinear systems. Many engineering structures, such as offshore foundations, oil platform supports, tower structures and moving arms, are modeled as tapered beams...
Analytical Evaluation of the Nonlinear Vibration of Coupled Oscillator Systems
DEFF Research Database (Denmark)
Bayat, M.; Shahidi, M.; Barari, Amin
2011-01-01
approximations to the achieved nonlinear differential oscillation equations where the displacement of the two-mass system can be obtained directly from the linear second-order differential equation using the first order of the current approach. Compared with exact solutions, just one iteration leads us to high......We consider periodic solutions for nonlinear free vibration of conservative, coupled mass-spring systems with linear and nonlinear stiffnesses. Two practical cases of these systems are explained and introduced. An analytical technique called energy balance method (EBM) was applied to calculate...
Shocks, singularities and oscillations in nonlinear optics and fluid mechanics
Santo, Daniele; Lannes, David
2017-01-01
The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .
Controllability of nonlinear delay oscillating systems
Directory of Open Access Journals (Sweden)
Chengbin Liang
2017-05-01
Full Text Available In this paper, we study the controllability of a system governed by second order delay differential equations. We introduce a delay Gramian matrix involving the delayed matrix sine, which is used to establish sufficient and necessary conditions of controllability for the linear problem. In addition, we also construct a specific control function for controllability. For the nonlinear problem, we construct a control function and transfer the controllability problem to a fixed point problem for a suitable operator. We give a sufficient condition to guarantee the nonlinear delay system is controllable. Two examples are given to illustrate our theoretical results by calculating a specific control function and inverse of a delay Gramian matrix.
Chaotic Motion of Nonlinearly Coupled Quintic Oscillators | Adeloye ...
African Journals Online (AJOL)
With a fixed energy, we investigate the motion of two nonlinearly coupled quintic oscillators for various values of the coupling strength with the aid of the Poincare surface of section. It is observed that chaotic motion sets in for coupling strength as low as 0.001. The degree of chaoticity generally increases as the coupling ...
Oscillation criteria for first-order forced nonlinear difference equations
Grace Said R; Agarwal Ravi P; Smith Tim
2006-01-01
Some new criteria for the oscillation of first-order forced nonlinear difference equations of the form Δx(n)+q1(n)xμ(n+1) = q2(n)xλ(n+1)+e(n), where λ, μ are the ratios of positive odd integers 0 <μ < 1 and λ > 1, are established.
Nonlinear analysis of a cross-coupled quadrature harmonic oscillator
DEFF Research Database (Denmark)
Djurhuus, Torsten; Krozer, Viktor; Vidkjær, Jens
2005-01-01
The dynamic equations governing the cross-coupled quadrature harmonic oscillator are derived assuming quasi-sinusoidal operation. This allows for an investigation of the previously reported tradeoff between close-to-carrier phase noise and quadrature precision. The results explain how nonlinearity...
An exactly solvable three-dimensional nonlinear quantum oscillator
International Nuclear Information System (INIS)
Schulze-Halberg, A.; Morris, J. R.
2013-01-01
Exact analytical, closed-form solutions, expressed in terms of special functions, are presented for the case of a three-dimensional nonlinear quantum oscillator with a position dependent mass. This system is the generalization of the corresponding one-dimensional system, which has been the focus of recent attention. In contrast to other approaches, we are able to obtain solutions in terms of special functions, without a reliance upon a Rodrigues-type of formula. The wave functions of the quantum oscillator have the familiar spherical harmonic solutions for the angular part. For the s-states of the system, the radial equation accepts solutions that have been recently found for the one-dimensional nonlinear quantum oscillator, given in terms of associated Legendre functions, along with a constant shift in the energy eigenvalues. Radial solutions are obtained for all angular momentum states, along with the complete energy spectrum of the bound states
An exactly solvable three-dimensional nonlinear quantum oscillator
Energy Technology Data Exchange (ETDEWEB)
Schulze-Halberg, A. [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States); Morris, J. R. [Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States)
2013-11-15
Exact analytical, closed-form solutions, expressed in terms of special functions, are presented for the case of a three-dimensional nonlinear quantum oscillator with a position dependent mass. This system is the generalization of the corresponding one-dimensional system, which has been the focus of recent attention. In contrast to other approaches, we are able to obtain solutions in terms of special functions, without a reliance upon a Rodrigues-type of formula. The wave functions of the quantum oscillator have the familiar spherical harmonic solutions for the angular part. For the s-states of the system, the radial equation accepts solutions that have been recently found for the one-dimensional nonlinear quantum oscillator, given in terms of associated Legendre functions, along with a constant shift in the energy eigenvalues. Radial solutions are obtained for all angular momentum states, along with the complete energy spectrum of the bound states.
Suppressing nonlinear resonances in an impact oscillator using SMAs
International Nuclear Information System (INIS)
Sitnikova, Elena; Pavlovskaia, Ekaterina; Ing, James; Wiercigroch, Marian
2012-01-01
In this paper, we study the resonant responses of an impact oscillator with a one sided SMA motion constraint operating in the pseudoelastic regime. The effectiveness of the SMA restraint in suppressing nonlinear resonances of the impact oscillator is assessed by comparing the dynamic responses of the impact oscillator with SMA and elastic restraints. It is shown that the hysteretic behaviour of the SMA restraint provides an overall vibration reduction in the resonant frequency ranges. Due to the softening behaviour of the SMA element, the resonant frequencies for the SMA oscillator were found to be lower than for the oscillator with an elastic restraint. At each resonance, a single periodic response for the oscillator with the elastic restraint corresponds to two co-existing periodic responses of the SMA oscillator. While at the first resonance peak the emergence of one of the co-existing responses is associated with the hardening effect of the SMA restraint when the pseudoelastic force varies over a complete transformation cycle, at higher frequency resonances incomplete phase transformations in the SMA were detected for both responses. The experimental study undertaken verified the response-modification effects predicted by the numerical analysis conducted under the isothermal approximation. The experimental results showed a good quantitative correspondence with the mathematical modelling. (paper)
Discrete oscillator design linear, nonlinear, transient, and noise domains
Rhea, Randall W
2014-01-01
Oscillators are an essential part of all spread spectrum, RF, and wireless systems, and today's engineers in the field need to have a firm grasp on how they are designed. Presenting an easy-to-understand, unified view of the subject, this authoritative resource covers the practical design of high-frequency oscillators with lumped, distributed, dielectric and piezoelectric resonators. Including numerous examples, the book details important linear, nonlinear harmonic balance, transient and noise analysis techniques. Moreover, the book shows you how to apply these techniques to a wide range of os
Nanopore Current Oscillations: Nonlinear Dynamics on the Nanoscale.
Hyland, Brittany; Siwy, Zuzanna S; Martens, Craig C
2015-05-21
In this Letter, we describe theoretical modeling of an experimentally realized nanoscale system that exhibits the general universal behavior of a nonlinear dynamical system. In particular, we consider the description of voltage-induced current fluctuations through a single nanopore from the perspective of nonlinear dynamics. We briefly review the experimental system and its behavior observed and then present a simple phenomenological nonlinear model that reproduces the qualitative behavior of the experimental data. The model consists of a two-dimensional deterministic nonlinear bistable oscillator experiencing both dissipation and random noise. The multidimensionality of the model and the interplay between deterministic and stochastic forces are both required to obtain a qualitatively accurate description of the physical system.
Nonlinear oscillation system of mass with serial linear and nonlinear springs
DEFF Research Database (Denmark)
Seyedalizadeh Ganji,, S.R; Barari, Amin; Karimpour, S
2013-01-01
In this paper, two powerful methods called Max–Min and parameter expansion have been applied for the determination of the periodic solutions of the nonlinear free vibration of a conservative oscillator with inertia and static type cubic nonlinearities. It is found that these methods introduce two...... alternatives to overcome the difficulty of capturing the periodic behavior of the solution, as the most evident characteristic of oscillators. It can be clearly observed that approximate frequencies and periodic solutions are in excellent agreement with the exact ones. First approximation leads to high...
Self-synchronization in an ensemble of nonlinear oscillators
Energy Technology Data Exchange (ETDEWEB)
Ostrovsky, L. A., E-mail: lev.ostrovsky@gmail.com [Physical Science Division, NOAA Earth Science Research Laboratory, and University of Colorado, Boulder, Colorado 80305 (United States); Galperin, Y. V.; Skirta, E. A. [Department of Mathematics, East Stroudsburg University, East Stroudsburg, Pennsylvania 18301 (United States)
2016-06-15
The paper describes the results of study of a system of coupled nonlinear, Duffing-type oscillators, from the viewpoint of their self-synchronization, i.e., generation of a coherent field (order parameter) via instability of an incoherent (random-phase) initial state. We consider both the cases of dissipative coupling (e.g., via the joint radiation) and reactive coupling in a Hamiltonian system.
Quantum dynamics and breakdown of classical realism in nonlinear oscillators
International Nuclear Information System (INIS)
Gat, Omri
2007-01-01
The leading nonclassical term in the quantum dynamics of nonlinear oscillators is calculated in the Moyal quasi-trajectory representation. The irreducibility of the quantum dynamics to phase-space trajectories is quantified by the discrepancy of the canonical quasi-flow and the quasi-flow of a general observable. This discrepancy is shown to imply the breakdown of classical realism that can give rise to a dynamical violation of Bell's inequalities. (fast track communication)
Closed-loop suppression of chaos in nonlinear driven oscillators
Aguirre, L. A.; Billings, S. A.
1995-05-01
This paper discusses the suppression of chaos in nonlinear driven oscillators via the addition of a periodic perturbation. Given a system originally undergoing chaotic motions, it is desired that such a system be driven to some periodic orbit. This can be achieved by the addition of a weak periodic signal to the oscillator input. This is usually accomplished in open loop, but this procedure presents some difficulties which are discussed in the paper. To ensure that this is attained despite uncertainties and possible disturbances on the system, a procedure is suggested to perform control in closed loop. In addition, it is illustrated how a model, estimated from input/output data, can be used in the design. Numerical examples which use the Duffing-Ueda and modified van der Pol oscillators are included to illustrate some of the properties of the new approach.
Negative Resistance Circuit for Damping an Array of Coupled FitzHugh-Nagumo Oscillators
DEFF Research Database (Denmark)
Tamaševičius, Arūnas; Adomaitienė, Elena; Bumelienė, Skaidra
2015-01-01
An analog circuit, based on a negative impedance converter and a capacitor, for damping oscillations in an array of mean-field coupled neuronal FitzHugh–Nagumo (FHN) type oscillators is described. The circuit is essentially a two-terminal feedback controller. When coupled to an array of the FHN...
Experimental Observation of Chaotic Beats in Oscillators Sharing Nonlinearity
Paul Asir, M.; Jeevarekha, A.; Philominathan, P.
This paper deals with the generation of chaotic beats in a system of two forced dissipative LCR oscillators sharing a nonlinear element. The presence of two external periodic excitations and a common nonlinear element in the chosen system enables the facile generation of chaotic beats. Thus rendered chaotic beats were characterized in both time domain and phase space. Lyapunov exponents and envelope of the beats were computed to diagnose the chaotic nature of the signals. The role of common nonlinearity on the complexity of the generated beats is discussed. Real-time experimental hardware implementation has also been done to confirm the subsistence of the phenomenon, for the first time. Extensive Multisim simulations were carried out to understand, a bit more about the shrinkage and revivals of state variables in phase space.
Analytical Solutions to Nonlinear Conservative Oscillator with Fifth-Order Nonlinearity
DEFF Research Database (Denmark)
Sfahania, M. G.; Ganji, S. S.; Barari, Amin
2010-01-01
This paper describes analytical and numerical methods to analyze the steady state periodic response of an oscillator with symmetric elastic and inertia nonlinearity. A new implementation of the homotopy perturbation method (HPM) and an ancient Chinese method called the max-min approach are presen...
Nonlinear dynamics in micromechanical and nanomechanical resonators and oscillators
Dunn, Tyler
dynamics in passive resonators, self-sustained MEMS are becoming increasingly prevalent in both research and technology for crucial objectives, such as measurement of time. Despite some effort, much work remains in order to understand phase noise and stability for an oscillator based upon a nonlinear resonator. With the eventual goal of making comprehensive measurements of such a nonlinear oscillator with controlled amplitude and phase, this work describes the realization of a micromechanical phase feedback oscillator.
Cardiovascular oscillations: in search of a nonlinear parametric model
Bandrivskyy, Andriy; Luchinsky, Dmitry; McClintock, Peter V.; Smelyanskiy, Vadim; Stefanovska, Aneta; Timucin, Dogan
2003-05-01
We suggest a fresh approach to the modeling of the human cardiovascular system. Taking advantage of a new Bayesian inference technique, able to deal with stochastic nonlinear systems, we show that one can estimate parameters for models of the cardiovascular system directly from measured time series. We present preliminary results of inference of parameters of a model of coupled oscillators from measured cardiovascular data addressing cardiorespiratory interaction. We argue that the inference technique offers a very promising tool for the modeling, able to contribute significantly towards the solution of a long standing challenge -- development of new diagnostic techniques based on noninvasive measurements.
Oscillations in the spectrum of nonlinear Thomson-backscattered radiation
Directory of Open Access Journals (Sweden)
C. A. Brau
2004-02-01
Full Text Available When an electron beam collides with a high-intensity laser beam, the spectrum of the nonlinear Thomson scattering in the backward direction shows strong oscillations like those in the spectrum of an optical klystron. Laser gain on the backward Thomson scattering is estimated using the Madey theorem, and the results suggest that Thomson-backscatter free-electron lasers are possible at wavelengths extending to the far uv using a terawatt laser beam from a chirped-pulse amplifier and a high-brightness electron beam from a needle cathode.
Signatures of nonlinearity in single cell noise-induced oscillations.
Thomas, Philipp; Straube, Arthur V; Timmer, Jens; Fleck, Christian; Grima, Ramon
2013-10-21
A class of theoretical models seeks to explain rhythmic single cell data by postulating that they are generated by intrinsic noise in biochemical systems whose deterministic models exhibit only damped oscillations. The main features of such noise-induced oscillations are quantified by the power spectrum which measures the dependence of the oscillatory signal's power with frequency. In this paper we derive an approximate closed-form expression for the power spectrum of any monostable biochemical system close to a Hopf bifurcation, where noise-induced oscillations are most pronounced. Unlike the commonly used linear noise approximation which is valid in the macroscopic limit of large volumes, our theory is valid over a wide range of volumes and hence affords a more suitable description of single cell noise-induced oscillations. Our theory predicts that the spectra have three universal features: (i) a dominant peak at some frequency, (ii) a smaller peak at twice the frequency of the dominant peak and (iii) a peak at zero frequency. Of these, the linear noise approximation predicts only the first feature while the remaining two stem from the combination of intrinsic noise and nonlinearity in the law of mass action. The theoretical expressions are shown to accurately match the power spectra determined from stochastic simulations of mitotic and circadian oscillators. Furthermore it is shown how recently acquired single cell rhythmic fibroblast data displays all the features predicted by our theory and that the experimental spectrum is well described by our theory but not by the conventional linear noise approximation. © 2013 Elsevier Ltd. All rights reserved.
Parametric excitation of nonlinear longitudinal oscillations in a magnetoactive plasma
International Nuclear Information System (INIS)
Demchenko, V.V.
1977-01-01
Parametric excitation by HF field of nonlinear longitudinal electron oscillations in the region of hybrid resonances of a cold nonrelativistic plasma has been investigated. It is shown that the inhomogeneity of a pumping field and that of the equilibrium plasma density result in the parametric instability. Expressions are derived for the increments of instable oscillations and the widths of the instability regions are determined. The increments of instable oscillations in the order of magnitude due to the inhomogeneities of the pumping field (γsub(E)) or of the plasma density (γsub(N)) are egual to γsub(E) approximately k(zetasub(0)) ωsub(pe), γsub(N) approximately (zetasub(0))/Lωsub(pe), where (zetasub(0))=(e)Esub(0)/msub(e)ωsub(0)sup(2) is the amplitude of displacement of an electron from the equilibrium state, k, ω 0 , E 0 are the wave number, frequency and amplitude of the pumping field, L is the characteristic size of the inhomogeneity of the plasma density, ωsub(pe) is the electron plasma frequency
Extreme nonlinear energy exchanges in a geometrically nonlinear lattice oscillating in the plane
Zhang, Zhen; Manevitch, Leonid I.; Smirnov, Valeri; Bergman, Lawrence A.; Vakakis, Alexander F.
2018-01-01
We study the in-plane damped oscillations of a finite lattice of particles coupled by linear springs under distributed harmonic excitation. Strong nonlinearity in this system is generated by geometric effects due to the in-plane stretching of the coupling spring elements. The lattice has a finite number of nonlinear transverse standing waves (termed nonlinear normal modes - NNMs), and an equal number of axial linear modes which are nonlinearly coupled to the transverse ones. Nonlinear interactions between the transverse and axial modes under harmonic excitation give rise to unexpected and extreme nonlinear energy exchanges in the lattice. In particular, we directly excite a transverse NNM by harmonic forcing (causing simulataneous indirect excitation of a corresponding axial linear mode due to nonlinear coupling), and identify three energy transfer mechanisms in the lattice. First, we detect the stable response of the directly excited transverse NNM (despite its instability in the absence of forcing), with simultaneous stability of the indirectly excited axial linear mode. Second, by changing the system and forcing parameters we report extreme nonlinear "energy explosions," whereby, after an initial regime of stability, the directly excited transverse NNM loses stability, leading to abrupt excitation of all transverse and axial modes of the lattice, at all possible wave numbers. This strong instability is triggered by the parametric instability of an indirectly excited axial mode which builds energy until the explosion. This is proved through theoretical analysis. Finally, in other parameter ranges we report intermittent, intense energy transfers from the directly excited transverse NNM to a small set of transverse NNMs with smaller wavelengths, and from the indirectly excited axial mode to a small set of axial modes, but with larger wavelengths. These intermittent energy transfers resemble energy cascades occurring in turbulent flows. Our results show that
A nonlinear oscillator with parametric coloured noise: some analytical results
International Nuclear Information System (INIS)
Mallick, Kirone; Marcq, Philippe
2005-01-01
The asymptotic behaviour of a nonlinear oscillator subject to a multiplicative Ornstein-Uhlenbeck noise is investigated. When the dynamics is expressed in terms of energy-angle coordinates, it is observed that the angle is a fast variable as compared to the energy. Thus, an effective stochastic dynamics for the energy can be derived if the angular variable is averaged out. However, the standard elimination procedure, performed earlier for a Gaussian white noise, fails when the noise is coloured because of correlations between the noise and the fast angular variable. We develop here a specific averaging scheme that retains these correlations. This allows us to calculate the probability distribution function (PDF) of the system and to derive the behaviour of physical observables in the long time limit
History of nonlinear oscillations theory in France (1880-1940)
Ginoux, Jean-Marc
2017-01-01
This book reveals the French scientific contribution to the mathematical theory of nonlinear oscillations and its development. The work offers a critical examination of sources with a focus on the twentieth century, especially the period between the wars. Readers will see that, contrary to what is often written, France's role has been significant. Important contributions were made through both the work of French scholars from within diverse disciplines (mathematicians, physicists, engineers), and through the geographical crossroads that France provided to scientific communication at the time. This study includes an examination of the period before the First World War which is vital to understanding the work of the later period. By examining literature sources such as periodicals on the topic of electricity from that era, the author has unearthed a very important text by Henri Poincaré, dating from 1908. In this work Poincaré applied the concept of limit cycle (which he had introduced in 1882 through his own...
Aeroelastic Limit-Cycle Oscillations resulting from Aerodynamic Non-Linearities
van Rooij, A.C.L.M.
2017-01-01
Aerodynamic non-linearities, such as shock waves, boundary layer separation or boundary layer transition, may cause an amplitude limitation of the oscillations induced by the fluid flow around a structure. These aeroelastic limit-cycle oscillations (LCOs) resulting from aerodynamic non-linearities
Spectral properties of a confined nonlinear quantum oscillator in one and three dimensions
International Nuclear Information System (INIS)
Schulze-Halberg, Axel; Gordon, Christopher R.
2013-01-01
We analyze the spectral behaviour of a nonlinear quantum oscillator model under confinement. The underlying potential is given by a harmonic oscillator interaction plus a nonlinear term that can be weakened or strengthened through a parameter. Numerical eigenvalues of the model in one and three dimensions are presented. The asymptotic behaviour of the eigenvalues for confinement relaxation and for vanishing nonlinear term in the potential is investigated. Our findings are compared with existing results.
Non-linear phenomena in electronic systems consisting of coupled single-electron oscillators
International Nuclear Information System (INIS)
Kikombo, Andrew Kilinga; Hirose, Tetsuya; Asai, Tetsuya; Amemiya, Yoshihito
2008-01-01
This paper describes non-linear dynamics of electronic systems consisting of single-electron oscillators. A single-electron oscillator is a circuit made up of a tunneling junction and a resistor, and produces simple relaxation oscillation. Coupled with another, single electron oscillators exhibit complex behavior described by a combination of continuous differential equations and discrete difference equations. Computer simulation shows that a double-oscillator system consisting of two coupled oscillators produces multi-periodic oscillation with a single attractor, and that a quadruple-oscillator system consisting of four oscillators also produces multi-periodic oscillation but has a number of possible attractors and takes one of them determined by initial conditions
Nonlinear Dynamics of Memristor Based 2nd and 3rd Order Oscillators
Talukdar, Abdul Hafiz
2011-05-01
Exceptional behaviours of Memristor are illustrated in Memristor based second order (Wien oscillator) and third order (phase shift oscillator) oscillator systems in this Thesis. Conventional concepts about sustained oscillation have been argued by demonstrating the possibility of sustained oscillation with oscillating resistance and dynamic poles. Mathematical models are also proposed for analysis and simulations have been presented to support the surprising characteristics of the Memristor based oscillator systems. This thesis also describes a comparative study among the Wien family oscillators with one Memristor. In case of phase shift oscillator, one Memristor and three Memristors systems are illustrated and compared to generalize the nonlinear dynamics observed for both 2nd order and 3rd order system. Detail explanations are provided with analytical models to simplify the unconventional properties of Memristor based oscillatory systems.
Nonlinear oscillation regime of electromagnetic disturbances in the equatorial F region
International Nuclear Information System (INIS)
Sazonov, S.V.
1990-01-01
Nonlinear oscillation regime of electromagnetic dicturbances within equatorial ionosphere F-region resulted from Rayleigh-Taylor instability, gradient-drift instability and recombination processes is investigated on the basis of two-liquid quasihydrodynamics equations. It is shown, that at positive linear increment the oscillations are developing in regime with aggregation and are terminated by increment the effect of threshold destabilization, when under certain initial conditions underlgoes oscillation nonlinear swinging, resulting, as well, in bubble formation in contrast to small damping oscillations, is detected
Nonlinear dynamics of a nonsmooth shape memory alloy oscillator
International Nuclear Information System (INIS)
Cardozo dos Santos, Bruno; Amorim Savi, Marcelo
2009-01-01
In the last years, there is an increasing interest in nonsmooth system dynamics motivated by different applications including rotor dynamics, oil drilling and machining. Besides, shape memory alloys (SMAs) have been used in various applications exploring their high dissipation capacity related to their hysteretic behavior. This contribution investigates the nonlinear dynamics of shape memory alloy nonsmooth systems considering a linear oscillator with a discontinuous support built with an SMA element. A constitutive model developed by Paiva et al. [Paiva A, Savi MA, Braga AMB, Pacheco PMCL. A constitutive model for shape memory alloys considering tensile-compressive asymmetry and plasticity. Int J Solids Struct 2005;42(11-12):3439-57] is employed to describe the thermomechanical behavior of the SMA element. Numerical investigations show results where the SMA discontinuous support can dramatically change the system dynamics when compared to those associated with a linear elastic support system. A parametric study is of concern showing the system behavior for different system characteristics, forcing excitation and also gaps. These results show that smart materials can be employed in different kinds of mechanical systems exploring some of the remarkable properties of these alloys.
Noise-induced chaos in a quadratically nonlinear oscillator
International Nuclear Information System (INIS)
Gan Chunbiao
2006-01-01
The present paper focuses on the noise-induced chaos in a quadratically nonlinear oscillator. Simple zero points of the stochastic Melnikov integral theoretically mean the necessary rising of noise-induced chaotic response in the system based on the stochastic Melnikov method. To quantify the noise-induced chaos, the boundary of the system's safe basin is firstly studied and it is shown to be incursively fractal when chaos arises. Three cases are considered in simulating the safe basin of the system, i.e., the system is excited only by the harmonic excitation, by both the harmonic and the Gaussian white noise excitations, and only by the Gaussian white noise excitation. Secondly, the leading Lyapunov exponent by Rosenstein's algorithm is shown to quantify the chaotic nature of the sample time series of the system. The results show that the boundary of the safe basin can also be fractal even if the system is excited only by the external Gaussian white noise. Most importantly, the almost-harmonic, the noise-induced chaotic and the thoroughly random responses can be found in the system
Nonlinear effects on Turing patterns: Time oscillations and chaos
Aragó n, J. L.; Barrio, R. A.; Woolley, T. E.; Baker, R. E.; Maini, P. K.
2012-01-01
consequence, the patterns oscillate in time. When varying a single parameter, a series of bifurcations leads to period doubling, quasiperiodic, and chaotic oscillations without modifying the underlying Turing pattern. A Ruelle-Takens-Newhouse route to chaos
Non-linear oscillations of fluid in a container
Verhagen, J.H.G.; van Wijngaarden, L.
1965-01-01
This paper is concerned with forced oscillations of fluid in a rectangular container. From the linearized approximation of the equations governing these oscillations, resonance frequencies are obtained for which the amplitude of the oscillations becomes infinite. Observation shows that under these
Isochronous Liénard-type nonlinear oscillators of arbitrary dimensions
Indian Academy of Sciences (India)
2015-10-13
Oct 13, 2015 ... Isochronous system; Liénard-type system; singular and nonsingular Hamiltonian. ... Liénard-type nonlinear oscillators exhibiting isochronous properties, including linear, quadratic and ... Pramana – Journal of Physics | News.
Oscillating particle-like solutions of nonlinear Klein-Gordon equation
International Nuclear Information System (INIS)
Bogolubsky, I.L.
1976-01-01
A denumerable set of oscillating spherically-symmetric particle-like solutions of the Klein-Gordon equation with cubic nonlinearity is found. Extended particles modelled by them turn out to be slightly radiating and long-lived
Coordination of the Walking Stick Insect Using a System of Nonlinear Coupled Oscillators
National Research Council Canada - National Science Library
Marvin, Daryl J
1992-01-01
The area of walking machines is investigated. A design for a central pattern generator composed of nonlinear coupled oscillators which generates the characteristic gaits of the walking stick insect is presented...
Oscillation of solutions to neutral nonlinear impulsive hyperbolic equations with several delays
Directory of Open Access Journals (Sweden)
Jichen Yang
2013-01-01
Full Text Available In this article, we study oscillatory properties of solutions to neutral nonlinear impulsive hyperbolic partial differential equations with several delays. We establish sufficient conditions for oscillation of all solutions.
Analysis of highly nonlinear oscillation systems using He's max–min ...
Indian Academy of Sciences (India)
Min–max method; nonlinear oscillation; duffing equation; homo- .... where c and ε are the linear and cubic stiffness which do not need to be small in the ..... an easy and direct procedure for determining approximations to the periodic solutions.
Flutter and limit cycle oscillation suppression using linear and nonlinear tuned vibration absorbers
Verstraelen, Edouard; Kerschen, Gaëtan; Dimitriadis, Grigorios
2017-01-01
Aircraft are more than ever pushed to their limits for performance reasons. Consequently, they become increasingly nonlinear and they are more prone to undergo aeroelastic limit cycle oscillations. Structural nonlinearities affect aircraft such as the F-16, which can undergo store-induced limit cycle oscillations (LCOs). Furthermore, transonic buzz can lead to LCOs because of moving shock waves in transonic flight conditions on many aircraft. This study presents a numerical investigation o...
Self-oscillations of aircraft landing gear shock-strut at considerable non-linear friction
Directory of Open Access Journals (Sweden)
Б.М. Шифрин
2004-01-01
Full Text Available The report considers self-oscillations at ε >1. The previous works were dedicated to the elastic frictional L.G. shock strut oscillations, the mathematical model of which is a non-linear differential equation with low ε parameter of its right-hand part.
Nonlinear coherent beam-beam oscillations in the rigid bunch model
International Nuclear Information System (INIS)
Dikansky, N.; Pestrikov, D.
1990-01-01
Within the framework of the rigid bunch model coherent oscillations of strong-strong colliding bunches are described by equations which are specific for the weak-strong beam case. In this paper some predictions of the model for properties of nonlinear coherent oscillations as well as for associated limitations of the luminosity are discussed. 14 refs.; 6 figs
Non-linear neutron star oscillations viewed as deviations from an equilibrium state
International Nuclear Information System (INIS)
Sperhake, U
2002-01-01
A numerical technique is presented which facilitates the evolution of non-linear neutron star oscillations with a high accuracy essentially independent of the oscillation amplitude. We apply this technique to radial neutron star oscillations in a Lagrangian formulation and demonstrate the superior performance of the new scheme compared with 'conventional' techniques. The key feature of our approach is to describe the evolution in terms of deviations from an equilibrium configuration. In contrast to standard perturbation analysis we keep all higher order terms in the evolution equations and thus obtain a fully non-linear description. The advantage of our scheme lies in the elimination of background terms from the equations and the associated numerical errors. The improvements thus achieved will be particularly significant in the study of mildly non-linear effects where the amplitude of the dynamic signal is small compared with the equilibrium values but large enough to warrant non-linear effects. We apply the new technique to the study of non-linear coupling of Eigenmodes and non-linear effects in the oscillations of marginally stable neutron stars. We find non-linear effects in low amplitude oscillations to be particularly pronounced in the range of modes with vanishing frequency which typically mark the onset of instability. (author)
International Nuclear Information System (INIS)
Donko, Z.; Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D.
2009-01-01
At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies
Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators.
Sun, Xuan; Liang, Hanxiao; Luo, Rui; Jiang, Wei C; Zhang, Xi-Cheng; Lin, Qiang
2017-06-12
Recent advance of lithium niobate microphotonic devices enables the exploration of intriguing nonlinear optical effects. We show complex nonlinear oscillation dynamics in high-Q lithium niobate microresonators that results from unique competition between the thermo-optic nonlinearity and the photorefractive effect, distinctive to other device systems and mechanisms ever reported. The observed phenomena are well described by our theory. This exploration helps understand the nonlinear optical behavior of high-Q lithium niobate microphotonic devices which would be crucial for future application of on-chip nonlinear lithium niobate photonics.
Signatures of nonlinearity in single cell noise-induced oscillations
Thomas, P.; Straube, A.V.; Timmer, J.; Fleck, C.; Grima, R.
2013-01-01
A class of theoretical models seeks to explain rhythmic single cell data by postulating that they are generated by intrinsic noise in biochemical systems whose deterministic models exhibit only damped oscillations. The main features of such noise-induced oscillations are quantified by the power
Coupled oscillators in identification of nonlinear damping of a real parametric pendulum
Olejnik, Paweł; Awrejcewicz, Jan
2018-01-01
A damped parametric pendulum with friction is identified twice by means of its precise and imprecise mathematical model. A laboratory test stand designed for experimental investigations of nonlinear effects determined by a viscous resistance and the stick-slip phenomenon serves as the model mechanical system. An influence of accurateness of mathematical modeling on the time variability of the nonlinear damping coefficient of the oscillator is proved. A free decay response of a precisely and imprecisely modeled physical pendulum is dependent on two different time-varying coefficients of damping. The coefficients of the analyzed parametric oscillator are identified with the use of a new semi-empirical method based on a coupled oscillators approach, utilizing the fractional order derivative of the discrete measurement series treated as an input to the numerical model. Results of application of the proposed method of identification of the nonlinear coefficients of the damped parametric oscillator have been illustrated and extensively discussed.
Non-linear frequency and amplitude modulation of a nano-contact spin torque oscillator
Muduli, P. K.; Pogoryelov, Ye.; Bonetti, S.; Consolo, G.; Mancoff, Fred; Åkerman, Johan
2009-01-01
We study the current controlled modulation of a nano-contact spin torque oscillator. Three principally different cases of frequency non-linearity ($d^{2}f/dI^{2}_{dc}$ being zero, positive, and negative) are investigated. Standard non-linear frequency modulation theory is able to accurately describe the frequency shifts during modulation. However, the power of the modulated sidebands only agrees with calculations based on a recent theory of combined non-linear frequency and amplitude modulation.
Equivalent Representation Form of Oscillators with Elastic and Damping Nonlinear Terms
Directory of Open Access Journals (Sweden)
Alex Elías-Zúñiga
2013-01-01
Full Text Available In this work we consider the nonlinear equivalent representation form of oscillators that exhibit nonlinearities in both the elastic and the damping terms. The nonlinear damping effects are considered to be described by fractional power velocity terms which provide better predictions of the dissipative effects observed in some physical systems. It is shown that their effects on the system dynamics response are equivalent to a shift in the coefficient of the linear damping term of a Duffing oscillator. Then, its numerical integration predictions, based on its equivalent representation form given by the well-known forced, damped Duffing equation, are compared to the numerical integration values of its original equations of motion. The applicability of the proposed procedure is evaluated by studying the dynamics response of four nonlinear oscillators that arise in some engineering applications such as nanoresonators, microresonators, human wrist movements, structural engineering design, and chain dynamics of polymeric materials at high extensibility, among others.
Building better oscillators using nonlinear dynamics and pattern ...
Indian Academy of Sciences (India)
Frequency and time references play an essential role in modern technology and in liv- ... of noise and improve the frequency precision of oscillators, with particular ..... signal is cyclostationary (the statistics is periodic rather than stationary) the ...
Dynamics of nonlinear oscillators with time-varying conjugate coupling
Indian Academy of Sciences (India)
oscillators. We analyze the behavior of coupled systems with respect to the coupling switching frequency using ..... are of potential utility in appropriate design strategies and/or understanding of complex systems with dynamic interaction ...
Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators
Energy Technology Data Exchange (ETDEWEB)
Senthilkumar, D. V., E-mail: skumarusnld@gmail.com [School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695016 (India); Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401 (India); Suresh, K. [Department of Physics, Anjalai Ammal-Engineering College, Kovilvenni 614 403, Tamilnadu (India); Centre for Nonlinear Dynamics, Bharathidasan University, Trichy 620024, Tamilnadu (India); Chandrasekar, V. K. [Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401 (India); Zou, Wei [School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074 (China); Centre for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074 (China); Dana, Syamal K. [CSIR-Indian Institute of Chemical Biology, Kolkata 700032 (India); Kathamuthu, Thamilmaran [Centre for Nonlinear Dynamics, Bharathidasan University, Trichy 620024, Tamilnadu (India); Kurths, Jürgen [Potsdam Institute for Climate Impact Research, Telegrafenberg, Potsdam D-14415 (Germany); Institute of Physics, Humboldt University Berlin, Berlin D-12489 (Germany); Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3FX (United Kingdom); Department of Control Theory, Nizhny Novgorod State University, Gagarin Avenue 23, 606950 Nizhny Novgorod (Russian Federation)
2016-04-15
We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of the stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.
Elwakil, Ahmed S.
2009-04-28
Two novel sinusoidal oscillator structures with an explicit tanh(x) nonlinearity are proposed. The oscillators have the attractive feature: the higher the operating frequency, the lower the necessary gain required to start oscillations. A nonlinear model for the two oscillators is derived and verified numerically. Spice simulations using AMS BiCMOS 0.35 μ model parameters and experimental results are shown. Copyright © 2009 John Wiley & Sons, Ltd.
Moore, Keegan J.; Bunyan, Jonathan; Tawfick, Sameh; Gendelman, Oleg V.; Li, Shuangbao; Leamy, Michael; Vakakis, Alexander F.
2018-01-01
In linear time-invariant dynamical and acoustical systems, reciprocity holds by the Onsager-Casimir principle of microscopic reversibility, and this can be broken only by odd external biases, nonlinearities, or time-dependent properties. A concept is proposed in this work for breaking dynamic reciprocity based on irreversible nonlinear energy transfers from large to small scales in a system with nonlinear hierarchical internal structure, asymmetry, and intentional strong stiffness nonlinearity. The resulting nonreciprocal large-to-small scale energy transfers mimic analogous nonlinear energy transfer cascades that occur in nature (e.g., in turbulent flows), and are caused by the strong frequency-energy dependence of the essentially nonlinear small-scale components of the system considered. The theoretical part of this work is mainly based on action-angle transformations, followed by direct numerical simulations of the resulting system of nonlinear coupled oscillators. The experimental part considers a system with two scales—a linear large-scale oscillator coupled to a small scale by a nonlinear spring—and validates the theoretical findings demonstrating nonreciprocal large-to-small scale energy transfer. The proposed study promotes a paradigm for designing nonreciprocal acoustic materials harnessing strong nonlinearity, which in a future application will be implemented in designing lattices incorporating nonlinear hierarchical internal structures, asymmetry, and scale mixing.
International Nuclear Information System (INIS)
Belendez, A.; Gimeno, E.; Alvarez, M.L.; Mendez, D.I.; Hernandez, A.
2008-01-01
An analytical approximate technique for conservative nonlinear oscillators is proposed. This method is a modification of the rational harmonic balance method in which analytical approximate solutions have rational form. This approach gives us the frequency of the motion as a function of the amplitude of oscillation. We find that this method works very well for the whole range of parameters, and excellent agreement of the approximate frequencies with the exact one has been demonstrated and discussed. The most significant features of this method are its simplicity and its excellent accuracy for the whole range of oscillation amplitude values and the results reveal that this technique is very effective and convenient for solving conservative truly nonlinear oscillatory systems with complex nonlinearities
International Nuclear Information System (INIS)
Pradeep, R. Gladwin; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.
2009-01-01
In this paper we point out the existence of a remarkable nonlocal transformation between the damped harmonic oscillator and a modified Emden-type nonlinear oscillator equation with linear forcing, xe+αxx+βx 3 +γx=0, which preserves the form of the time independent integral, conservative Hamiltonian, and the equation of motion. Generalizing this transformation we prove the existence of nonstandard conservative Hamiltonian structure for a general class of damped nonlinear oscillators including Lienard-type systems. Further, using the above Hamiltonian structure for a specific example, namely, the generalized modified Emden equation xe+αx q x+βx 2q+1 =0, where α, β, and q are arbitrary parameters, the general solution is obtained through appropriate canonical transformations. We also present the conservative Hamiltonian structure of the damped Mathews-Lakshmanan oscillator equation. The associated Lagrangian description for all the above systems is also briefly discussed.
PERFORMANCE IMPROVEMENT OF A CHEMICAL REACTOR BY NONLINEAR NATURAL OSCILLATIONS
RAY, AK
1995-01-01
The dynamic behaviour of two coupled continuous stirred tank reactors in sequence is studied when the first reactor is being operated under limit cycle regimes producing self-sustained natural oscillations. The periodic output from the first reactor is then used as a forced input into the second
SOLUTION OF HARMONIC OSCILLATOR OF NONLINEAR MASTER SCHRÃ–DINGER
Directory of Open Access Journals (Sweden)
T B Prayitno
2012-02-01
Full Text Available We have computed the solution of a nonrelativistic particle motion in a harmonic oscillator potential of the nonlinear master SchrÃ¶dinger equation. The equation itself is based on two classical conservation laws, the Hamilton-Jacobi and the continuity equations. Those two equations give each contribution for the definition of quantum particle. We also prove that the solution canâ€™t be normalized. Â Keywords : harmonic oscillator, nonlinear SchrÃ¶dinger.
Oscillation criteria for third order nonlinear delay differential equations with damping
Directory of Open Access Journals (Sweden)
Said R. Grace
2015-01-01
Full Text Available This note is concerned with the oscillation of third order nonlinear delay differential equations of the form \\[\\label{*} \\left( r_{2}(t\\left( r_{1}(ty^{\\prime}(t\\right^{\\prime}\\right^{\\prime}+p(ty^{\\prime}(t+q(tf(y(g(t=0.\\tag{\\(\\ast\\}\\] In the papers [A. Tiryaki, M. F. Aktas, Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping, J. Math. Anal. Appl. 325 (2007, 54-68] and [M. F. Aktas, A. Tiryaki, A. Zafer, Oscillation criteria for third order nonlinear functional differential equations, Applied Math. Letters 23 (2010, 756-762], the authors established some sufficient conditions which insure that any solution of equation (\\(\\ast\\ oscillates or converges to zero, provided that the second order equation \\[\\left( r_{2}(tz^{\\prime }(t\\right^{\\prime}+\\left(p(t/r_{1}(t\\right z(t=0\\tag{\\(\\ast\\ast\\}\\] is nonoscillatory. Here, we shall improve and unify the results given in the above mentioned papers and present some new sufficient conditions which insure that any solution of equation (\\(\\ast\\ oscillates if equation (\\(\\ast\\ast\\ is nonoscillatory. We also establish results for the oscillation of equation (\\(\\ast\\ when equation (\\(\\ast\\ast\\ is oscillatory.
Yang, Tao; Cao, Qingjie
2018-03-01
This work presents analytical studies of the stiffness nonlinearities SD (smooth and discontinuous) oscillator under displacement and velocity feedback control with a time delay. The SD oscillator can capture the qualitative characteristics of quasi-zero-stiffness and negative-stiffness. We focus mainly on the primary resonance of the quasi-zero-stiffness SD oscillator and the stochastic resonance (SR) of the negative-stiffness SD oscillator. Using the averaging method, we have been analyzed the amplitude response of the quasi-zero-stiffness SD oscillator. In this regard, the optimum time delay for changing the control intensity according to the optimization standard proposed can be obtained. For the optimum time delay, increasing the displacement feedback intensity is advantageous to suppress the vibrations in resonant regime where vibration isolation is needed, however, increasing the velocity feedback intensity is advantageous to strengthen the vibrations. Moreover, the effects of time-delayed feedback on the SR of the negative-stiffness SD oscillator are investigated under harmonic forcing and Gaussian white noise, based on the Langevin and Fokker-Planck approaches. The time-delayed feedback can enhance the SR phenomenon where vibrational energy harvesting is needed. This paper established the relationship between the parameters and vibration properties of a stiffness nonlinearities SD which provides the guidance for optimizing time-delayed control for vibration isolation and vibrational energy harvesting of the nonlinear systems.
Korman, M. S.; Duong, D. V.; Kalsbeck, A. E.
2015-10-01
An apparatus (SPO), designed to study flexural vibrations of a soil loaded plate, consists of a thin circular elastic clamped plate (and cylindrical wall) supporting a vertical soil column. A small magnet attached to the center of the plate is driven by a rigid AC coil (located coaxially below the plate) to complete the electrodynamic soil plate oscillator SPO design. The frequency dependent mechanical impedance Zmech (force / particle velocity, at the plate's center) is inversely proportional to the electrical motional impedance Zmot. Measurements of Zmot are made using the complex output to input response of a Wheatstone bridge that has an identical coil element in one of its legs. Near resonance, measurements of Zmot (with no soil) before and after a slight point mass loading at the center help determine effective mass, spring, damping and coupling constant parameters of the system. "Tuning curve" behavior of real{ Zmot } and imaginary{ Zmot } at successively higher vibration amplitudes of dry sifted masonry sand are measured. They exhibit a decrease "softening" in resonance frequency along with a decrease in the quality Q factor. In soil surface vibration measurements a bilinear hysteresis model predicts the tuning curve shape for this nonlinear mesoscopic elastic SPO behavior - which also models the soil vibration over an actual plastic "inert" VS 1.6 buried landmine. Experiments are performed where a buried 1m cube concrete block supports a 12 inch deep by 30 inch by 30 inch concrete soil box for burying a VS 1.6 in dry sifted masonry sand for on-the-mine and off-the-mine soil vibration experiments. The backbone curve (a plot of the peak amplitude vs. corresponding resonant frequency from a family of tuning curves) exhibits mostly linear behavior for "on target" soil surface vibration measurements of the buried VS 1.6 or drum-like mine simulants for relatively low particle velocities of the soil. Backbone curves for "on target" measurements exhibit
Reactor noise analysis based on nonlinear dynamic theory - application to power oscillation
International Nuclear Information System (INIS)
Suzudo, Tomoaki
1993-01-01
The information dimension is one of the simplest quantities that can be used to determine the asymptotic motion of the time evolution of a nonlinear system. The application of this quantity to reactor noise analysis is proposed, and the possibility of its application to power oscillation analysis is examined. The information dimension of this regime is equal to the number of independent oscillating modes, which is an intuitive physical variable. Time series data from computer experiments and experiments with an actual physical system are used for the analysis. The results indicate that the method is useful for a detailed analysis of reactor power oscillation
Large time asymptotics of solutions to the anharmonic oscillator model from nonlinear optics
Jochmann, Frank
2005-01-01
The anharmonic oscillator model describing the propagation of electromagnetic waves in an exterior domain containing a nonlinear dielectric medium is investigated. The system under consideration consists of a generally nonlinear second order differential equation for the dielectrical polarization coupled with Maxwell's equations for the electromagnetic field. Local decay of the electromagnetic field for t to infinity in the charge free case is shown for a large class of potentials. (This pape...
Nonlinear Vibration of Oscillation Systems using Frequency-Amplitude Formulation
Directory of Open Access Journals (Sweden)
A. Fereidoon
2012-01-01
Full Text Available In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifth-order nonlinearity for two examples using He's Frequency-Amplitude Formulation (HFAF.The effectiveness and convenience of the method is illustrated in these examples. It will be shown that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems.
Nonlinear behavior of nonradial oscillations in ε Per
International Nuclear Information System (INIS)
Smith, M.A.
1987-01-01
The authors conducted a simultaneous spectroscopic/photometric campaign of ε Per (BO.7 III) during five nights in November, 1984. The spectroscopic data consist of 300 observations of the Si III λλ4552-74 triplet, while the photometric data were obtained at two different observatories. In both sets of data they find a dominant 3.85+-.02 hr. period. The analysis of line profiles in the context of nonradial pulsation (NRP) indicates this oscillation is caused by a -m=iota =4 mode. In this context the line profiles also indicate the presence of a secondary -m=iota =6 mode with a period of 2.25+-.03 hr, an oscillation below the detection threshold in the photometric data. These periodicities and mode identifications have been reported by Penrod on other occasions. They may be considered to be stable except that their amplitudes vary from epoch to epoch
Nonlinear effects on Turing patterns: Time oscillations and chaos
Aragón, J. L.
2012-08-08
We show that a model reaction-diffusion system with two species in a monostable regime and over a large region of parameter space produces Turing patterns coexisting with a limit cycle which cannot be discerned from the linear analysis. As a consequence, the patterns oscillate in time. When varying a single parameter, a series of bifurcations leads to period doubling, quasiperiodic, and chaotic oscillations without modifying the underlying Turing pattern. A Ruelle-Takens-Newhouse route to chaos is identified. We also examine the Turing conditions for obtaining a diffusion-driven instability and show that the patterns obtained are not necessarily stationary for certain values of the diffusion coefficients. These results demonstrate the limitations of the linear analysis for reaction-diffusion systems. © 2012 American Physical Society.
Rational extension and Jacobi-type Xm solutions of a quantum nonlinear oscillator
International Nuclear Information System (INIS)
Schulze-Halberg, Axel; Roy, Barnana
2013-01-01
We construct a rational extension of a recently studied nonlinear quantum oscillator model. Our extended model is shown to retain exact solvability, admitting a discrete spectrum and corresponding closed-form solutions that are expressed through Jacobi-type X m exceptional orthogonal polynomials
Oscillation and asymptotic stability of a delay differential equation with Richard's nonlinearity
Directory of Open Access Journals (Sweden)
Leonid Berezansky
2005-04-01
Full Text Available We obtain sufficient conditions for oscillation of solutions, and for asymptotical stability of the positive equilibrium, of the scalar nonlinear delay differential equation $$ frac{dN}{dt} = r(tN(tBig[a-Big(sum_{k=1}^m b_k N(g_k(tBig^{gamma}Big], $$ where $ g_k(tleq t$.
Transient and Steady-State Responses of an Asymmetric Nonlinear Oscillator
Directory of Open Access Journals (Sweden)
Alex Elías-Zúñiga
2013-01-01
oscillator that describes the motion of a damped, forced system supported symmetrically by simple shear springs on a smooth inclined bearing surface. We also use the percentage overshoot value to study the influence of damping and nonlinearity on the transient and steady-state oscillatory amplitudes.
Rational extension and Jacobi-type X{sub m} solutions of a quantum nonlinear oscillator
Energy Technology Data Exchange (ETDEWEB)
Schulze-Halberg, Axel [Department of Mathematics and Actuarial Science and Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States); Roy, Barnana [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India)
2013-12-15
We construct a rational extension of a recently studied nonlinear quantum oscillator model. Our extended model is shown to retain exact solvability, admitting a discrete spectrum and corresponding closed-form solutions that are expressed through Jacobi-type X{sub m} exceptional orthogonal polynomials.
An Apparatus to Demonstrate Linear and Nonlinear Oscillations of a Pendulum
Mayer, V. V.; Varaksina, E. I.
2016-01-01
A physical pendulum with a magnetic load is proposed for comparison of linear and nonlinear oscillations. The magnetic load is repelled by permanent magnets which are disposed symmetrically relative to the load. It is established that positions of the pendulum and the magnets determine the dependence of restoring force on displacement of the load.…
RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios
Directory of Open Access Journals (Sweden)
Zhi-Ling Tang
2016-06-01
Full Text Available Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system’s starting oscillation is determined, and the simulation results of the system’s response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured.
Bifurcation and synchronization of synaptically coupled FHN models with time delay
International Nuclear Information System (INIS)
Wang Qingyun; Lu Qishao; Chen Guanrong; Feng Zhaosheng; Duan Lixia
2009-01-01
This paper presents an investigation of dynamics of the coupled nonidentical FHN models with synaptic connection, which can exhibit rich bifurcation behavior with variation of the coupling strength. With the time delay being introduced, the coupled neurons may display a transition from the original chaotic motions to periodic ones, which is accompanied by complex bifurcation scenario. At the same time, synchronization of the coupled neurons is studied in terms of their mean frequencies. We also find that the small time delay can induce new period windows with the coupling strength increasing. Moreover, it is found that synchronization of the coupled neurons can be achieved in some parameter ranges and related to their bifurcation transition. Bifurcation diagrams are obtained numerically or analytically from the mathematical model and the parameter regions of different behavior are clarified.
Special function solutions of a spectral problem for a nonlinear quantum oscillator
International Nuclear Information System (INIS)
Schulze-Halberg, A; Morris, J R
2012-01-01
We construct exact solutions of a spectral problem involving the Schrödinger equation for a nonlinear, one-parameter oscillator potential. In contrast to a previous analysis of the problem (Carinena et al 2007 Ann. Phys. 322 434–59), where solutions were given through a Rodrigues-type formula, our approach leads to closed-form representations of the solutions in terms of special functions, not containing any derivative operators. We show normalizability and orthogonality of our solutions, as well as correct reduction of the problem to the harmonic oscillator model, if the parameter in the potential gets close to zero. (paper)
Directory of Open Access Journals (Sweden)
Qi Wang
2012-01-01
Full Text Available This paper deals with the oscillations of numerical solutions for the nonlinear delay differential equations in physiological control systems. The exponential θ-method is applied to p′(t=β0ωμp(t−τ/(ωμ+pμ(t−τ−γp(t and it is shown that the exponential θ-method has the same order of convergence as that of the classical θ-method. Several conditions under which the numerical solutions oscillate are derived. Moreover, it is proven that every nonoscillatory numerical solution tends to positive equilibrium of the continuous system. Finally, the main results are illustrated with numerical examples.
Flavor Oscillations in the Supernova Hot Bubble Region: Nonlinear Effects of Neutrino Background
Pastor, Sergio; Raffelt, Georg
2002-10-01
The neutrino flux close to a supernova core contributes substantially to neutrino refraction so that flavor oscillations become a nonlinear phenomenon. One unexpected consequence is efficient flavor transformation for antineutrinos in a region where only neutrinos encounter a Mikheyev-Smirnov-Wolfenstein resonance or vice versa. Contrary to previous studies we find that in the neutrino-driven wind the electron fraction Ye always stays below 0.5, corresponding to a neutron-rich environment as required by r-process nucleosynthesis. The relevant range of masses and mixing angles includes the region indicated by LSND, but not the atmospheric or solar oscillation parameters.
Dynamics of a nonlinear oscillator and a low-amplitude frequency-modulated wave
International Nuclear Information System (INIS)
White, R.C.; McNamara, B.
1987-01-01
When the frequency of a small amplitude plane wave is varied slowly over a large enough bandwidth and this wave is incident upon a nonlinear oscillator, the resulting perturbed motion can exhibit stochastic behavior. Applications for the study of this system are wide and varied. We apply Lie-transform perturbation theory and mapping techniques in the analysis of the stochastic transition and the consequent induced diffusion in the oscillator phase space. A constant of the motion to the first order in a peturbation parameter is calculated, a mapping approximation is derived, and diffusion calculations from the mapping are given. Copyright 1987 Academic Press, Inc
Exact solutions for oscillators with quadratic damping and mixed-parity nonlinearity
International Nuclear Information System (INIS)
Lai, S K; Chow, K W
2012-01-01
Exact vibration modes of a nonlinear oscillator, which contains both quadratic friction and a mixed-parity restoring force, are derived analytically. Two families of exact solutions are obtained in terms of rational expressions for classical Jacobi elliptic functions. The present solutions allow the investigation of the dynamical behaviour of the system in response to changes in physical parameters that concern nonlinearity. The physical significance of the signs (i.e. attractive or repulsive nature) of the linear, quadratic and cubic restoring forces is discussed. A qualitative analysis is also conducted to provide valuable physical insight into the nature of the system. (paper)
Energy Technology Data Exchange (ETDEWEB)
Emenheiser, Jeffrey [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Physics, University of California, Davis, California 95616 (United States); Chapman, Airlie; Mesbahi, Mehran [William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States); Pósfai, Márton [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Crutchfield, James P. [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Physics, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Santa Fe Institute, Santa Fe, New Mexico 87501 (United States); D' Souza, Raissa M. [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Santa Fe Institute, Santa Fe, New Mexico 87501 (United States); Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States)
2016-09-15
Following the long-lived qualitative-dynamics tradition of explaining behavior in complex systems via the architecture of their attractors and basins, we investigate the patterns of switching between distinct trajectories in a network of synchronized oscillators. Our system, consisting of nonlinear amplitude-phase oscillators arranged in a ring topology with reactive nearest-neighbor coupling, is simple and connects directly to experimental realizations. We seek to understand how the multiple stable synchronized states connect to each other in state space by applying Gaussian white noise to each of the oscillators' phases. To do this, we first analytically identify a set of locally stable limit cycles at any given coupling strength. For each of these attracting states, we analyze the effect of weak noise via the covariance matrix of deviations around those attractors. We then explore the noise-induced attractor switching behavior via numerical investigations. For a ring of three oscillators, we find that an attractor-switching event is always accompanied by the crossing of two adjacent oscillators' phases. For larger numbers of oscillators, we find that the distribution of times required to stochastically leave a given state falls off exponentially, and we build an attractor switching network out of the destination states as a coarse-grained description of the high-dimensional attractor-basin architecture.
DEFF Research Database (Denmark)
Blekhman, I. I.; Sorokin, V. S.
2016-01-01
A general approach to study effects produced by oscillations applied to nonlinear dynamic systems is developed. It implies a transition from initial governing equations of motion to much more simple equations describing only the main slow component of motions (the vibro-transformed dynamics.......g., the requirement for the involved nonlinearities to be weak. The approach is illustrated by several relevant examples from various fields of science, e.g., mechanics, physics, chemistry and biophysics....... equations). The approach is named as the oscillatory strobodynamics, since motions are perceived as under a stroboscopic light. The vibro-transformed dynamics equations comprise terms that capture the averaged effect of oscillations. The method of direct separation of motions appears to be an efficient...
Quantifying non-linear dynamics of mass-springs in series oscillators via asymptotic approach
Starosta, Roman; Sypniewska-Kamińska, Grażyna; Awrejcewicz, Jan
2017-05-01
Dynamical regular response of an oscillator with two serially connected springs with nonlinear characteristics of cubic type and governed by a set of differential-algebraic equations (DAEs) is studied. The classical approach of the multiple scales method (MSM) in time domain has been employed and appropriately modified to solve the governing DAEs of two systems, i.e. with one- and two degrees-of-freedom. The approximate analytical solutions have been verified by numerical simulations.
Hamiltonian formulation and statistics of an attracting system of nonlinear oscillators
International Nuclear Information System (INIS)
Tasso, H.
1987-10-01
An attracting system of r nonlinear oscillators of an extended van der Pol type was investigated with respect to Hamiltonian formulation. The case of r=2 is rather simple, though nontrivial. For r>2 the tests with Jacobi's identity and Frechet derivatives are negative if Hamiltonians in the natural variables are looked for. Independently, a Liouville theorem is proved and equilibrium statistics is made possible, which leads to a Gaussian distribution in the natural variables. (orig.)
International Nuclear Information System (INIS)
El Kinani, A.H; Daoud, M.
2001-10-01
This article is an illustration of the construction of coherent and generalized intelligent states which has been recently proposed by us for an arbitrary quantum system. We treat the quantum system submitted to the infinite square well potential and the nonlinear oscillators. By means of the analytical representation of the coherent states a la Gazeau-Klauder and those a la Klauder-Perelomov, we derive the generalized intelligent states in analytical ways. (author)
On the non-linear dynamics of potential relaxation oscillations in bounded plasmas
International Nuclear Information System (INIS)
Krssak, M.; Skalny, J.D.; Gyergyek, T.; Cercek, M.
2007-01-01
Plasma in a 1-dimensional diode is studied theoretically and the computer simulations are used for verification of the theoretical model. When collector in the diode is biased positively, a double-layer is created in the system and consequently, we are able to observe oscillations of the potential, density and other plasma parameters. When external periodic forcing is applied, spectra of these oscillations are changed and effects of synchronisation and periodic pulling can be observed. Both of these effects are of non-linear nature and a good explanation is found using the analogy with Van der Pol oscillators. Following [1] and [2] approximate analytical solutions are found and then compared with computer simulations obtained using a 1-dimensional particle-in-cell code XPDP1. (author)
On the quantization of a nonlinear oscillator with quasi-harmonic behaviour
International Nuclear Information System (INIS)
Ranada, M.F.; Carinena, J.F.; Satander, M.
2006-01-01
Full text: (author)The quantum version of a non-linear oscillator, depending of a parameter λ, is studied. This λ-dependent system can be considered deformation of the harmonic oscillator in the sense that for λ→0 all the characteristics of the linear oscillator are recovered. This is a problem of quantization of a system with position-dependent mass and with a λ-dependent nonpolynominal rational potential. The quantization problem is solved using existence of a Killing vector, the λ-dependent Schroedinger equation is exactly solved and λ-dependent eigenenergies and eigenfunctions are obtained. The λ-dependent wave functions appear as related with a family of orthogonal polynomials that can be considered as deformations of the standard Hermite polynomials. In the second part, it is proved the superintegrability of the two-dimensional system
Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity
Beléndez, A.; Martínez, F. J.; Beléndez, T.; Pascual, C.; Alvarez, M. L.; Gimeno, E.; Arribas, E.
2018-04-01
Closed-form exact solutions for an oscillator with anti-symmetric quadratic nonlinearity are derived from the first integral of the nonlinear differential equation governing the behaviour of this oscillator. The mathematical model is an ordinary second order differential equation in which the sign of the quadratic nonlinear term changes. Two parameters characterize this oscillator: the coefficient of the linear term and the coefficient of the quadratic term. Not only the common case in which both coefficients are positive but also all possible combinations of positive and negative signs of these coefficients which provide periodic motions are considered, giving rise to four different cases. Three different periods and solutions are obtained, since the same result is valid in two of these cases. An interesting feature is that oscillatory motions whose equilibrium points are not at x = 0 are also considered. The periods are given in terms of an incomplete or complete elliptic integral of the first kind, and the exact solutions are expressed as functions including Jacobi elliptic cosine or sine functions.
Ganji, S. S.; Domairry, G.; Davodi, A. G.; Babazadeh, H.; Seyedalizadeh Ganji, S. H.
The main objective of this paper is to apply the parameter expansion technique (a modified Lindstedt-Poincaré method) to calculate the first, second, and third-order approximations of motion of a nonlinear oscillator arising in rigid rod rocking back. The dynamics and frequency of motion of this nonlinear mechanical system are analyzed. A meticulous attention is carried out to the study of the introduced nonlinearity effects on the amplitudes of the oscillatory states and on the bifurcation structures. We examine the synchronization and the frequency of systems using both the strong and special method. Numerical simulations and computer's answers confirm and complement the results obtained by the analytical approach. The approach proposes a choice to overcome the difficulty of computing the periodic behavior of the oscillation problems in engineering. The solutions of this method are compared with the exact ones in order to validate the approach, and assess the accuracy of the solutions. In particular, APL-PM works well for the whole range of oscillation amplitudes and excellent agreement of the approximate frequency with the exact one has been demonstrated. The approximate period derived here is accurate and close to the exact solution. This method has a distinguished feature which makes it simple to use, and also it agrees with the exact solutions for various parameters.
Application of He's homotopy perturbation method to conservative truly nonlinear oscillators
International Nuclear Information System (INIS)
Belendez, A.; Belendez, T.; Marquez, A.; Neipp, C.
2008-01-01
We apply He's homotopy perturbation method to find improved approximate solutions to conservative truly nonlinear oscillators. This approach gives us not only a truly periodic solution but also the period of the motion as a function of the amplitude of oscillation. We find that this method works very well for the whole range of parameters in the case of the cubic oscillator, and excellent agreement of the approximate frequencies with the exact one has been demonstrated and discussed. For the second order approximation we have shown that the relative error in the analytical approximate frequency is approximately 0.03% for any parameter values involved. We also compared the analytical approximate solutions and the Fourier series expansion of the exact solution. This has allowed us to compare the coefficients for the different harmonic terms in these solutions. The most significant features of this method are its simplicity and its excellent accuracy for the whole range of oscillation amplitude values and the results reveal that this technique is very effective and convenient for solving conservative truly nonlinear oscillatory systems
Zhang, Zhen; Koroleva, I; Manevitch, L I; Bergman, L A; Vakakis, A F
2016-09-01
We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "NL pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the
Two-oscillator model of trapped-modes interaction in a nonlinear bilayer fish-scale metamaterial
Tuz, Vladimir R.; Kochetov, Bogdan A.; Kochetova, Lyudmila A.; Mladyonov, Pavel L.; Prosvirnin, Sergey L.
2014-01-01
We discuss the similarity between the nature of resonant oscillations in two nonlinear systems, namely, a chain of coupled Duffing oscillators and a bilayer fish-scale metamaterial. In such systems two different resonant states arise which differ in their spectral lines. The spectral line of the first resonant state has a Lorentzian form, while the second one has a Fano form. This difference leads to a specific nonlinear response of the systems which manifests itself in appearance of closed l...
Comparison among nonlinear excitation control strategies used for damping power system oscillations
International Nuclear Information System (INIS)
Leon, A.E.; Solsona, J.A.; Valla, M.I.
2012-01-01
Highlights: ► A description and comparison of nonlinear control strategies for synchronous generators are presented. ► Advantages of using nonlinear controllers are emphasized against the use of classical PSSs. ► We find that a particular selection of IDA gains achieve the same performance that FL controllers. - Abstract: This work is focused on the problem of power system stability. A thorough description of nonlinear control strategies for synchronous generator excitation, which are designed for damping oscillations and improving transient stability on power systems, is presented along with a detailed comparison among these modern strategies and current solutions based on power system stabilizers. The performance related to damping injection in each controller, critical time enhancement, robustness against parametric uncertainties, and control signal energy consumption is analyzed. Several tests are presented to validate discussions on various advantages and disadvantages of each control strategy.
Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations
Energy Technology Data Exchange (ETDEWEB)
Sandhu, Rimple [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Poirel, Dominique [Department of Mechanical and Aerospace Engineering, Royal Military College of Canada, Kingston, Ontario (Canada); Pettit, Chris [Department of Aerospace Engineering, United States Naval Academy, Annapolis, MD (United States); Khalil, Mohammad [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Sarkar, Abhijit, E-mail: abhijit.sarkar@carleton.ca [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada)
2016-07-01
A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid–structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic system leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib–Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers.
Directory of Open Access Journals (Sweden)
M. Ordu
2017-09-01
Full Text Available Germanium optical fibers hold great promise in extending semiconductor photonics into the fundamentally important mid-infrared region of the electromagnetic spectrum. The demonstration of nonlinear response in fabricated Ge fiber samples is a key step in the development of mid-infrared fiber materials. Here we report the observation of detuning oscillations in a germanium fiber in the mid-infrared region using femtosecond dispersed pump-probe spectroscopy. Detuning oscillations are observed in the frequency-resolved response when mid-infrared pump and probe pulses are overlapped in a fiber segment. The oscillations arise from the nonlinear frequency resolved nonlinear (χ(3 response in the germanium semiconductor. Our work represents the first observation of coherent oscillations in the emerging field of germanium mid-infrared fiber optics.
Han, Qun; Xu, Wei; Sun, Jian-Qiao
2016-09-01
The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.
International Nuclear Information System (INIS)
Belendez, A.; Hernandez, A.; Belendez, T.; Neipp, C.; Marquez, A.
2008-01-01
He's homotopy perturbation method is used to calculate higher-order approximate periodic solutions of a nonlinear oscillator with discontinuity for which the elastic force term is proportional to sgn(x). We find He's homotopy perturbation method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Only one iteration leads to high accuracy of the solutions with a maximal relative error for the approximate period of less than 1.56% for all values of oscillation amplitude, while this relative error is 0.30% for the second iteration and as low as 0.057% when the third-order approximation is considered. Comparison of the result obtained using this method with those obtained by different harmonic balance methods reveals that He's homotopy perturbation method is very effective and convenient
Effect of state-dependent delay on a weakly damped nonlinear oscillator.
Mitchell, Jonathan L; Carr, Thomas W
2011-04-01
We consider a weakly damped nonlinear oscillator with state-dependent delay, which has applications in models for lasers, epidemics, and microparasites. More generally, the delay-differential equations considered are a predator-prey system where the delayed term is linear and represents the proliferation of the predator. We determine the critical value of the delay that causes the steady state to become unstable to periodic oscillations via a Hopf bifurcation. Using asymptotic averaging, we determine how the system's behavior is influenced by the functional form of the state-dependent delay. Specifically, we determine whether the branch of periodic solutions will be either sub- or supercritical as well as an accurate estimation of the amplitude. Finally, we choose a few examples of state-dependent delay to test our analytical results by comparing them to numerical continuation.
Amplitude death in a ring of nonidentical nonlinear oscillators with unidirectional coupling.
Ryu, Jung-Wan; Kim, Jong-Ho; Son, Woo-Sik; Hwang, Dong-Uk
2017-08-01
We study the collective behaviors in a ring of coupled nonidentical nonlinear oscillators with unidirectional coupling, of which natural frequencies are distributed in a random way. We find the amplitude death phenomena in the case of unidirectional couplings and discuss the differences between the cases of bidirectional and unidirectional couplings. There are three main differences; there exists neither partial amplitude death nor local clustering behavior but an oblique line structure which represents directional signal flow on the spatio-temporal patterns in the unidirectional coupling case. The unidirectional coupling has the advantage of easily obtaining global amplitude death in a ring of coupled oscillators with randomly distributed natural frequency. Finally, we explain the results using the eigenvalue analysis of the Jacobian matrix at the origin and also discuss the transition of dynamical behavior coming from connection structure as the coupling strength increases.
Self-synchronization of populations of nonlinear oscillators in the thermodynamic limit
International Nuclear Information System (INIS)
Bonilla, L.L.; Casado, J.M.; Morillo, M.
1987-01-01
A population of identical nonlinear oscillators, subject to random forces and coupled via a mean-field interaction, is studied in the thermodynamic limit. The model presents a nonequilibrium phase transition from a stationary to a time-periodic probability density. Below the transition line, the population of oscillators is in a quiescent state with order parameter equal to zero. Above the transition line, there is a state of collective rhythmicity characterized by a time-periodic behavior of the order parameter and all moments of the probability distribution. The information entropy of the ensemble is a constant both below and above the critical line. Analytical and numerical analyses of the model are provided
Quantum perturbation solution of sextic nonlinear oscillator and its classical limit
International Nuclear Information System (INIS)
Jafarpour, M.; Ashrafpour, M.
2000-01-01
We consider the time evolution of the perturbed coherent states to solve the quantum sex tic nonlinear oscillator, in the framework of time dependent perturbation theory. An appropriate limit, h-bar → 0, (absolute value of α)→ ∞,(absolute value of α )√h-bar fixed, is then taken and the classical Poincare'-Landsat series is retrieved. We observe that a proper renormalization of the amplitude and the frequency is needed, if a meaningful comparison between the quantum and the classical results are to be made
The Study of a Nonlinear Duffing – Type Oscillator Driven by Two Voltage Sources
Directory of Open Access Journals (Sweden)
J. O. Maaita
2013-10-01
Full Text Available In the present work, a detailed study of a nonlinear electrical oscillator with damping and external excitation is presented. The system under study consists of a Duffing-type circuit driven by two sinusoidal voltage sources having different frequencies. The dynamical behavior of the proposed system is investigated numerically, by solving the system of state equations and simulating its behavior as a circuit using MultiSim. The tools of the theoretical approach are the bifurcation diagrams, the Poincaré sections, the phase portraits, and the maximum Lyapunov exponent. The numerical investigation showed that the system has rich complex dynamics including phenomena such as quasiperiodicity, 3-tori, and chaos.
Jahanbakhsh, F.; Honarasa, G.
2018-04-01
The potential of nonharmonic systems has several applications in the field of quantum physics. The photon-added coherent states for annharmonic oscillators in a nonlinear Kerr medium can be used to describe some quantum systems. In this paper, the phase properties of these states including number-phase Wigner distribution function, Pegg-Barnett phase distribution function, number-phase squeezing and number-phase entropic uncertainty relations are investigated. It is found that these states can be considered as the nonclassical states.
Oscillation of Nonlinear Delay Differential Equation with Non-Monotone Arguments
Directory of Open Access Journals (Sweden)
Özkan Öcalan
2017-07-01
Full Text Available Consider the first-order nonlinear retarded differential equation $$ x^{\\prime }(t+p(tf\\left( x\\left( \\tau (t\\right \\right =0, t\\geq t_{0} $$ where $p(t$ and $\\tau (t$ are function of positive real numbers such that $%\\tau (t\\leq t$ for$\\ t\\geq t_{0},\\ $and$\\ \\lim_{t\\rightarrow \\infty }\\tau(t=\\infty $. Under the assumption that the retarded argument is non-monotone, new oscillation results are given. An example illustrating the result is also given.
Observation of a Pomeau-Manneville intermittent route to chaos in a nonlinear oscillator
International Nuclear Information System (INIS)
Jeffries, C.; Perez, J.
1982-01-01
For a driven nonlinear semiconductor oscillator which shows a period-doubling pitchfork bifurcation route to chaos, we report an additional route to chaos: the Pomeau-Manneville intermittency route, characterized by a periodic (laminar) phase interrupted by bursts of aperiodic behavior. This occurs near a tangent bifurcation as the system driving parameter is reduced by epsilon from the threshold value for a periodic window. Data are presented for the dependence of the average laminar length on epsilon, and also on additive random noise voltage. The results are in reasonable agreement with the intermittency theory of Hirsch, Huberman, and Scalapino. The distribution P(l) is also reported
Navarrete-Benlloch, Carlos; Roldán, Eugenio; Chang, Yue; Shi, Tao
2014-10-06
Nonlinear optical cavities are crucial both in classical and quantum optics; in particular, nowadays optical parametric oscillators are one of the most versatile and tunable sources of coherent light, as well as the sources of the highest quality quantum-correlated light in the continuous variable regime. Being nonlinear systems, they can be driven through critical points in which a solution ceases to exist in favour of a new one, and it is close to these points where quantum correlations are the strongest. The simplest description of such systems consists in writing the quantum fields as the classical part plus some quantum fluctuations, linearizing then the dynamical equations with respect to the latter; however, such an approach breaks down close to critical points, where it provides unphysical predictions such as infinite photon numbers. On the other hand, techniques going beyond the simple linear description become too complicated especially regarding the evaluation of two-time correlators, which are of major importance to compute observables outside the cavity. In this article we provide a regularized linear description of nonlinear cavities, that is, a linearization procedure yielding physical results, taking the degenerate optical parametric oscillator as the guiding example. The method, which we call self-consistent linearization, is shown to be equivalent to a general Gaussian ansatz for the state of the system, and we compare its predictions with those obtained with available exact (or quasi-exact) methods. Apart from its operational value, we believe that our work is valuable also from a fundamental point of view, especially in connection to the question of how far linearized or Gaussian theories can be pushed to describe nonlinear dissipative systems which have access to non-Gaussian states.
Energy Technology Data Exchange (ETDEWEB)
Robinson, Brandon [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering; Rocha da Costa, Leandro Jose [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering; Poirel, Dominique [Royal Military College of Canada, Kingston (Canada). Dept. of Mechanical and Aerospace Engineering; Pettit, Chris [US Naval Academy, Annapolis, MD (United States). Dept. of Mechanical and Aerospace Engineering; Khalil, Mohammad [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sarkar, Abhijit [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering
2017-09-01
Our study details the derivation of the nonlinear equations of motion for the axial, biaxial bending and torsional vibrations of an aeroelastic cantilever undergoing rigid body (pitch) rotation at the base. The primary attenstion is focussed on the geometric nonlinearities of the system, whereby the aeroelastic load is modeled by the theory of linear quasisteady aerodynamics. This modelling effort is intended to mimic the wind-tunnel experimental setup at the Royal Military College of Canada. While the derivation closely follows the work of Hodges and Dowell [1] for rotor blades, this aeroelastic system contains new inertial terms which stem from the fundamentally different kinematics than those exhibited by helicopter or wind turbine blades. Using the Hamilton’s principle, a set of coupled nonlinear partial differential equations (PDEs) and an ordinary differential equation (ODE) are derived which describes the coupled axial-bending-bending-torsion-pitch motion of the aeroelastic cantilever with the pitch rotation. The finite dimensional approximation of the coupled system of PDEs are obtained using the Galerkin projection, leading to a coupled system of ODEs. Subsequently, these nonlinear ODEs are solved numerically using the built-in MATLAB implicit ODE solver and the associated numerical results are compared with those obtained using Houbolt’s method. It is demonstrated that the system undergoes coalescence flutter, leading to a limit cycle oscillation (LCO) due to coupling between the rigid body pitching mode and teh flexible mode arising from the flapwise bending motion.
Periodic oscillations in linear continuous media coupled with nonlinear discrete systems
International Nuclear Information System (INIS)
Lupini, R.
1998-01-01
A general derivation of partial differential equations with boundary conditions in the form of ordinary differential equations is obtained using the principle of stationary action for a Lagrangian function composed of continuous plus discrete parts in interaction across the boundaries of a 1-dimensional medium. This approach leads directly to the theorem of energy conservation. For linear continuous medium, homogeneous Dirichlet condition at one boundary, and nonlinear oscillator at the other boundary, the entire differential problem reduces to a nonlinear differential-difference equation of neutral type and of the second order. The lag parameter is τ = l/c, where c is the phase speed, l the length of the continuum. The Author investigate the problem of the occurrence of periodic solutions of period integer multiple of the lag (super harmonic solutions) in the case of zero inertia of the boundary system. The problem for such oscillations is shown to reduce to systems of ordinary differential equations with matching conditions in a phase space of lower dimensionality: Phase-plane techniques are used to determine solutions of period 4τ, 8τ and 6τ
Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model
Energy Technology Data Exchange (ETDEWEB)
Freitas, Celso, E-mail: cbnfreitas@gmail.com; Macau, Elbert, E-mail: elbert.macau@inpe.br [Associate Laboratory for Computing and Applied Mathematics - LAC, Brazilian National Institute for Space Research - INPE (Brazil); Pikovsky, Arkady, E-mail: pikovsky@uni-potsdam.de [Department of Physics and Astronomy, University of Potsdam, Germany and Department of Control Theory, Nizhni Novgorod State University, Gagarin Av. 23, 606950, Nizhni Novgorod (Russian Federation)
2015-04-15
We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinearity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors, then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic results yield that if the repulsion parameter is small enough in comparison with the degree of the maximum hub, then the full synchronization state is locally stable. Numerical experiments are performed to explore the model beyond this threshold, where the overall cohesion is lost. We report in detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, periodic and chaotic states. Via statistical analysis of different network organizations like tree, scale-free, and random ones, we found a measure allowing one to predict relative abundance of partially synchronous stationary states in comparison to time-dependent ones.
Balaji, Nidish Narayanaa; Krishna, I. R. Praveen; Padmanabhan, C.
2018-05-01
The Harmonic Balance Method (HBM) is a frequency-domain based approximation approach used for obtaining the steady state periodic behavior of forced dynamical systems. Intrinsically these systems are non-autonomous and the method offers many computational advantages over time-domain methods when the fundamental period of oscillation is known (generally fixed as the forcing period itself or a corresponding sub-harmonic if such behavior is expected). In the current study, a modified approach, based on He's Energy Balance Method (EBM), is applied to obtain the periodic solutions of conservative systems. It is shown that by this approach, periodic solutions of conservative systems on iso-energy manifolds in the phase space can be obtained very efficiently. The energy level provides the additional constraint on the HBM formulation, which enables the determination of the period of the solutions. The method is applied to the linear harmonic oscillator, a couple of nonlinear oscillators, the elastic pendulum and the Henon-Heiles system. The approach is used to trace the bifurcations of the periodic solutions of the last two, being 2 degree-of-freedom systems demonstrating very rich dynamical behavior. In the process, the advantages offered by the current formulation of the energy balance is brought out. A harmonic perturbation approach is used to evaluate the stability of the solutions for the bifurcation diagram.
International Nuclear Information System (INIS)
Eliasi, H.; Menhaj, M.B.; Davilu, H.
2011-01-01
Research highlights: → In this work, a robust nonlinear model predictive control algorithm is developed. → This algorithm is applied to control the power level for load following. → The state constraints are imposed on the predicted trajectory during optimization. → The xenon oscillations are the main constraint for the load following problem. → In this algorithm, xenon oscillations are bounded within acceptable limits. - Abstract: One of the important operations in nuclear power plants is load-following in which imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation considered to be a constraint for the load-following operation. In this paper, a robust nonlinear model predictive control for the load-following operation problem is proposed that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to maintain xenon oscillations to be bounded. The constant AO is a robust state constraint for load-following problem. The controller imposes restricted state constraints on the predicted trajectory during optimization which guarantees robust satisfaction of state constraints without restoring to a min-max optimization problem. Simulation results show that the proposed controller for the load-following operation is so effective so that the xenon oscillations kept bounded in the given region.
Nonlinear Dynamics of Memristor Based 2nd and 3rd Order Oscillators
Talukdar, Abdul Hafiz
2011-01-01
Exceptional behaviours of Memristor are illustrated in Memristor based second order (Wien oscillator) and third order (phase shift oscillator) oscillator systems in this Thesis. Conventional concepts about sustained oscillation have been argued
Directory of Open Access Journals (Sweden)
P. Musumeci
2013-10-01
Full Text Available The evolution of picosecond modulations of the longitudinal profile of an electron beam generated in an rf photoinjector is analyzed and optimized with the goal of obtaining high peak current electron bunch trains at very high frequencies (≥THz. Taking advantage of nonlinear longitudinal space charge forces, it is found that more than 500 A peak current 1 THz bunch trains can be generated using a standard 1.6 cell SLAC/UCLA/BNL rf gun. Postacceleration is used to freeze the longitudinal phase space dynamics after one half plasma oscillation. Applications range from tunable narrow bandwidth THz radiation generation to drivers for high frequency high gradient accelerators.
Directory of Open Access Journals (Sweden)
Rong Haiwu
2014-01-01
Full Text Available The erosion of the safe basins and chaotic motions of a nonlinear vibroimpact oscillator under both harmonic and bounded random noise is studied. Using the Melnikov method, the system’s Melnikov integral is computed and the parametric threshold for chaotic motions is obtained. Using the Monte-Carlo and Runge-Kutta methods, the erosion of the safe basins is also discussed. The sudden change in the character of the stochastic safe basins when the bifurcation parameter of the system passes through a critical value may be defined as an alternative stochastic bifurcation. It is founded that random noise may destroy the integrity of the safe basins, bring forward the occurrence of the stochastic bifurcation, and make the parametric threshold for motions vary in a larger region, hence making the system become more unsafely and chaotic motions may occur more easily.
Chimera regimes in a ring of oscillators with local nonlinear interaction
Shepelev, Igor A.; Zakharova, Anna; Vadivasova, Tatiana E.
2017-03-01
One of important problems concerning chimera states is the conditions of their existence and stability. Until now, it was assumed that chimeras could arise only in ensembles with nonlocal character of interactions. However, this assumption is not exactly right. In some special cases chimeras can be realized for local type of coupling [1-3]. We propose a simple model of ensemble with local coupling when chimeras are realized. This model is a ring of linear oscillators with the local nonlinear unidirectional interaction. Chimera structures in the ring are found using computer simulations for wide area of values of parameters. Diagram of the regimes on plane of control parameters is plotted and scenario of chimera destruction are studied when the parameters are changed.
Rotation and oscillation of nonlinear dipole vortex in the drift-unstable plasma
International Nuclear Information System (INIS)
Orito, Kohtaro; Hatori, Tadatsugu.
1997-10-01
The behaviors of the nonlinear dipole vortex in the drift unstable plasma are studied by numerical approaches. Model equations used in numerical simulation are derived from two-fluid model and are composed of two equations with respect to the electrostatic potential and the density perturbation. When the initial dipole vortex is inclined at some angle with respect to the direction of the drift velocity, the dipole vortex oscillates or rotates in the first stage. These phenomenon also happen in the stable system. In the second stage, one part of the dipole vortex grows and another decays because of the destabilization. The shrunk vortex rotates around the enlarged vortex. Consequently, a monopole vortex appears out of the dipole vortex. (author)
Directory of Open Access Journals (Sweden)
Zhonghai Guo
2012-01-01
Full Text Available We study the following second order mixed nonlinear impulsive differential equations with delay (r(tΦα(x′(t′+p0(tΦα(x(t+∑i=1npi(tΦβi(x(t-σ=e(t, t≥t0, t≠τk,x(τk+=akx(τk, x'(τk+=bkx'(τk, k=1,2,…, where Φ*(u=|u|*-1u, σ is a nonnegative constant, {τk} denotes the impulsive moments sequence, and τk+1-τk>σ. Some sufficient conditions for the interval oscillation criteria of the equations are obtained. The results obtained generalize and improve earlier ones. Two examples are considered to illustrate the main results.
Analysis of bus width and delay on a fully digital signum nonlinearity chaotic oscillator
Mansingka, Abhinav S.
2012-07-29
This paper introduces the first fully digital implementation of a 3rd order ODE-based chaotic oscillator with signum nonlinearity. A threshold bus width of 12-bits for reliable chaotic behavior is observed, below which the system output becomes periodic. Beyond this threshold, the maximum Lyapunov exponent (MLE) is shown to improve up to a peak value at 16-bits and subsequently decrease with increasing bus width. The MLE is also shown to gradually increase with number of introduced internal delay cycles until a peak value at 14 cycles, after which the system loses chaotic properties. Introduced external delay cycles are shown to rotate the attractors in 3-D phase space. Bus width and delay elements can be independently modulated to optimize the system to suit specifications. The experimental results of the system show low area and high performance on a Xilinx Virtex 4 FPGA with throughput of 13.35 Gbits/s for a 32-bit implementation.
Analysis of bus width and delay on a fully digital signum nonlinearity chaotic oscillator
Mansingka, Abhinav S.; Radwan, Ahmed G.; Salama, Khaled N.; Zidan, Mohammed A.
2012-01-01
This paper introduces the first fully digital implementation of a 3rd order ODE-based chaotic oscillator with signum nonlinearity. A threshold bus width of 12-bits for reliable chaotic behavior is observed, below which the system output becomes periodic. Beyond this threshold, the maximum Lyapunov exponent (MLE) is shown to improve up to a peak value at 16-bits and subsequently decrease with increasing bus width. The MLE is also shown to gradually increase with number of introduced internal delay cycles until a peak value at 14 cycles, after which the system loses chaotic properties. Introduced external delay cycles are shown to rotate the attractors in 3-D phase space. Bus width and delay elements can be independently modulated to optimize the system to suit specifications. The experimental results of the system show low area and high performance on a Xilinx Virtex 4 FPGA with throughput of 13.35 Gbits/s for a 32-bit implementation.
Robust Nonlinear Regulation of Limit Cycle Oscillations in UAVs Using Synthetic Jet Actuators
Directory of Open Access Journals (Sweden)
Natalie Ramos Pedroza
2014-09-01
Full Text Available In this paper, a synthetic jet actuators (SJA-based nonlinear robust controller is developed, which is capable of completely suppressing limit cycle oscillations (LCO in UAV systems with parametric uncertainty in the SJA dynamics and unmodeled external disturbances. Specifically, the control law compensates for uncertainty in an input gain matrix, which results from the unknown airflow dynamics generated by the SJA. Challenges in the control design include compensation for input-multiplicative parametric uncertainty in the actuator dynamic model. The result was achieved via innovative algebraic manipulation in the error system development, along with a Lyapunov-based robust control law. A rigorous Lyapunov-based stability analysis is utilized to prove asymptotic LCO suppression, considering a detailed dynamic model of the pitching and plunging dynamics. Numerical simulation results are provided to demonstrate the robustness and practical performance of the proposed control law.
Remote synchronization of amplitudes across an experimental ring of non-linear oscillators
Energy Technology Data Exchange (ETDEWEB)
Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it [Center for Mind/Brain Science, University of Trento, 38123 Mattarello TN, Italy and Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)
2015-12-15
In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a “mixing” stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.
Validity of the cumulant method for a pulse nonlinear Kerr oscillator
International Nuclear Information System (INIS)
Grygiel, K.; Leonski, W.; Szlachetka, P.
1998-01-01
We study the dynamics of an anharmonic oscillator driven by a train of pulses. The cumulant expansion and quantum evolution operator approaches are presented and compared. The modifications introduced by quantum mechanics into the dynamics of classical systems which manifest chaos are a problem of great importance. It is known that quantization modifies the dynamics of classical system is usually studied by means of the equation for the Wigner function derived from the quantum Liouville equation. In Wigner's formulation of quantum mechanics we treat a quantum system in a 'classical way' including all their quantum features. And what is more, we can contrast the quantum and classical dynamics within the framework of one formalism. The problem is, that the equations for the Wigner functions are mathematically cumbersome and their analytic solutions for most nonlinear systems are unknown. However, instead of the equation for the Wigner function we can use the set of equations for statistical moments generated by our equation for the Wigner function. It is obvious that in this approach a quantum system is governed by an infinite set of equations. Therefore, for numerical reasons the set of equations for statistical moments has to be truncated at a finite number, which means approximating it. It is known that first cumulant approximation represents the classical dynamics. The second cumulant approximation adds the first quantum corrections to the classical dynamics. In this paper we compare some aspects of the cumulant method and the method used by Leonski and Tanas to study an anharmonic oscillator driven by a train of pulses. The Kerr oscillator model is the same ad that is discussed in an earlier paper albeit without the damping mechanism
Charlemagne, S.; Ture Savadkoohi, A.; Lamarque, C.-H.
2018-07-01
The continuous approximation is used in this work to describe the dynamics of a nonlinear chain of light oscillators coupled to a linear main system. A general methodology is applied to an example where the chain has local nonlinear restoring forces. The slow invariant manifold is detected at fast time scale. At slow time scale, equilibrium and singular points are sought around this manifold in order to predict periodic regimes and strongly modulated responses of the system. Analytical predictions are in good accordance with numerical results and represent a potent tool for designing nonlinear chains for passive control purposes.
International Nuclear Information System (INIS)
Shukla, Anant Kant; Ramamohan, T R; Srinivas, S
2014-01-01
In this paper we propose a technique to obtain limit cycles and quasi-periodic solutions of forced nonlinear oscillators. We apply this technique to the forced Van der Pol oscillator and the forced Van der Pol Duffing oscillator and obtain for the first time their limit cycles (periodic) and quasi-periodic solutions analytically. We introduce a modification of the homotopy analysis method to obtain these solutions. We minimize the square residual error to obtain accurate approximations to these solutions. The obtained analytical solutions are convergent and agree well with numerical solutions even at large times. Time trajectories of the solution, its first derivative and phase plots are presented to confirm the validity of the proposed approach. We also provide rough criteria for the determination of parameter regimes which lead to limit cycle or quasi-periodic behaviour. (papers)
International Nuclear Information System (INIS)
Macias-Diaz, J.E.; Puri, A.
2007-01-01
In the present Letter, we simulate the propagation of binary signals in semi-infinite, mechanical chains of coupled oscillators harmonically driven at the end, by making use of the recently discovered process of nonlinear supratransmission. Our numerical results-which are based on a brand-new computational technique with energy-invariant properties-show an efficient and reliable transmission of information
Michiels, W.; Nijmeijer, H.
2009-01-01
We consider the synchronization problem of an arbitrary number of coupled nonlinear oscillators with delays in the interconnections. The network topology is described by a directed graph. Unlike the conventional approach of deriving directly sufficient synchronization conditions, the approach of the
International Nuclear Information System (INIS)
Akopyan, A A; Oganesyan, D L
1998-01-01
It is shown that the wave equation can be solved by the method of unidirectional waves for a pulse with a duration of several oscillation periods in a medium with a quadratic nonlinearity, such as a group-3m crystal. The wave equation reduces to a system of two equations for waves with different polarisations. (laser applications and other topics in quantum electronics)
Existence of periodic orbits in nonlinear oscillators of Emden–Fowler form
Energy Technology Data Exchange (ETDEWEB)
Mancas, Stefan C., E-mail: mancass@erau.edu [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, SLP (Mexico)
2016-01-28
The nonlinear pseudo-oscillator recently tackled by Gadella and Lara is mapped to an Emden–Fowler (EF) equation that is written as an autonomous two-dimensional ODE system for which we provide the phase-space analysis and the parametric solution. Through an invariant transformation we find periodic solutions to a certain class of EF equations that pass an integrability condition. We show that this condition is necessary to have periodic solutions and via the ODE analysis we also find the sufficient condition for periodic orbits. EF equations that do not pass integrability conditions can be made integrable via an invariant transformation which also allows us to construct periodic solutions to them. Two other nonlinear equations, a zero-frequency Ermakov equation and a positive power Emden–Fowler equation, are discussed in the same context. - Highlights: • An invariant transformation is used to find periodic solution of EF equations. • Phase plane study of the EF autonomous two-dimensional ODE system is performed. • Three examples are presented from the standpoint of the phase plane analysis.
International Nuclear Information System (INIS)
Belendez, A.; Fernandez, E.; Rodes, J.J.; Fuentes, R.; Pascual, I.
2009-01-01
The harmonic balance method is used to construct approximate frequency-amplitude relations and periodic solutions to an oscillating charge in the electric field of a ring. By combining linearization of the governing equation with the harmonic balance method, we construct analytical approximations to the oscillation frequencies and periodic solutions for the oscillator. To solve the nonlinear differential equation, firstly we make a change of variable and secondly the differential equation is rewritten in a form that does not contain the square-root expression. The approximate frequencies obtained are valid for the complete range of oscillation amplitudes and excellent agreement of the approximate frequencies and periodic solutions with the exact ones are demonstrated and discussed
BOERTJENS, G. J.; VAN HORSSEN, W. T.
2000-08-01
In this paper an initial-boundary value problem for the vertical displacement of a weakly non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends of the beam is studied. The initial-boundary value problem can be regarded as a simple model describing oscillations of flexible structures like suspension bridges or iced overhead transmission lines. Using a two-time-scales perturbation method an approximation of the solution of the initial-boundary value problem is constructed. Interactions between different oscillation modes of the beam are studied. It is shown that for certain external excitations, depending on the phase of an oscillation mode, the amplitude of specific oscillation modes changes.
Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei
2016-07-01
Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.
Osherovich, V. A.; Fainberg, J.
2018-01-01
We consider simultaneous oscillations of electrons moving both along the axis of symmetry and also in the direction perpendicular to the axis. We derive a system of three nonlinear ordinary differential equations which describe self-similar oscillations of cold electrons in a constant proton density background (np = n0 = constant). These three equations represent an exact class of solutions. For weak nonlinear conditions, the frequency spectra of electric field oscillations exhibit split frequency behavior at the Langmuir frequency ωp0 and its harmonics, as well as presence of difference frequencies at low spectral values. For strong nonlinear conditions, the spectra contain peaks at frequencies with values ωp0(n +m √{2 }) , where n and m are integer numbers (positive and negative). We predict that both spectral types (weak and strong) should be observed in plasmas where axial symmetry may exist. To illustrate possible applications of our theory, we present a spectrum of electric field oscillations observed in situ in the solar wind by the WAVES experiment on the Wind spacecraft during the passage of a type III solar radio burst.
International Nuclear Information System (INIS)
Shokair, I.R.
1991-01-01
Phase mixing of transverse oscillations changes the nature of the ion hose instability from an absolute to a convective instability. The stronger the phase mixing, the faster an electron beam reaches equilibrium with the guiding ion channel. This is important for long distance propagation of relativistic electron beams where it is desired that transverse oscillations phase mix within a few betatron wavelengths of injection and subsequently an equilibrium is reached with no further beam emittance growth. In the linear regime phase mixing is well understood and results in asymptotic decay of transverse oscillations as 1/Z 2 for a Gaussian beam and channel system, Z being the axial distance measured in betatron wavelengths. In the nonlinear regime (which is likely mode of propagation for long pulse beams) results of the spread mass model indicate that phase mixing is considerably weaker than in the regime. In this paper we consider this problem of phase mixing in the nonlinear regime. Results of the spread mass model will be shown along with a simple analysis of phase mixing for multiple oscillator models. Particle simulations also indicate that phase mixing is weaker in nonlinear regime than in the linear regime. These results will also be shown. 3 refs., 4 figs
International Nuclear Information System (INIS)
Chae, Jongchul; Litvinenko, Yuri E.
2017-01-01
The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and long-wavelength limits were previously considered separately, the new solution describes both limiting cases within a common framework and provides a straightforward way of interpolating between the two limits. Physical features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront breaking and shock formation. The analytical results suggest that observations of three-minute oscillations in the solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic, obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na i D 2 and H α lines.
Energy Technology Data Exchange (ETDEWEB)
Chae, Jongchul [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton 3240 (New Zealand)
2017-08-01
The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and long-wavelength limits were previously considered separately, the new solution describes both limiting cases within a common framework and provides a straightforward way of interpolating between the two limits. Physical features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront breaking and shock formation. The analytical results suggest that observations of three-minute oscillations in the solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic, obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na i D{sub 2} and H α lines.
Institute of Scientific and Technical Information of China (English)
应阳君; 黄祖洽
2001-01-01
Frequency catastrophe is found in a cell Ca2+ nonlinear oscillation model with time delay. The relation of the frequency transition to the time delay is studied by numerical simulations and theoretical analysis. There is a range of parameters in which two kinds of attractors with great frequency differences co-exist in the system. Along with parameter changes, a critical phenomenon occurs and the oscillation frequency changes greatly. This mechanism helps us to deepen the understanding of the complex dynamics of delay systems, and might be of some meaning in cell signalling.
Effect of Magnetic Twist on Nonlinear Transverse Kink Oscillations of Line-tied Magnetic Flux Tubes
Terradas, J.; Magyar, N.; Van Doorsselaere, T.
2018-01-01
Magnetic twist is thought to play an important role in many structures of the solar atmosphere. One of the effects of twist is to modify the properties of the eigenmodes of magnetic tubes. In the linear regime standing kink solutions are characterized by a change in polarization of the transverse displacement along the twisted tube. In the nonlinear regime, magnetic twist affects the development of shear instabilities that appear at the tube boundary when it is oscillating laterally. These Kelvin–Helmholtz instabilities (KHI) are produced either by the jump in the azimuthal component of the velocity at the edge of the sharp boundary between the internal and external part of the tube or by the continuous small length scales produced by phase mixing when there is a smooth inhomogeneous layer. In this work the effect of twist is consistently investigated by solving the time-dependent problem including the process of energy transfer to the inhomogeneous layer. It is found that twist always delays the appearance of the shear instability, but for tubes with thin inhomogeneous layers the effect is relatively small for moderate values of twist. On the contrary, for tubes with thick layers, the effect of twist is much stronger. This can have some important implications regarding observations of transverse kink modes and the KHI itself.
Bogdan, V. M.; Bond, V. B.
1980-01-01
The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.
Energy Technology Data Exchange (ETDEWEB)
Liu, Yunqiao [MOE Key Laboratory of Hydrodynamics, Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240 (China); Calvisi, Michael L [Department of Mechanical and Aerospace Engineering, University of Colorado, Colorado Springs, CO 80918, United States of America (United States); Wang, Qianxi, E-mail: yunqiaoliu@sjtu.edu.cn [School of Mathematics, University of Birmingham, Birmingham B15 2TT (United Kingdom)
2017-04-15
Encapsulated microbubbles (EMBs) are widely used in medical ultrasound imaging as contrast-enhanced agents. However, the potential damaging effects of violent collapsing EMBs to cells and tissues in clinical settings have remained a concern. Dual-frequency ultrasound is a promising technique for improving the efficacy and safety of sonography. The system modeled consists of the external liquid, membrane and internal gases of an EMB. The microbubble dynamics are simulated using a simple nonlinear interactive theory, considering the compressibility of the internal gas, viscosity of the liquid flow and viscoelasticity of the membrane. The radial oscillation and interfacial stability of an EMB under single- and dual-frequency excitations are compared. The simulation results show that the dual-frequency technique produces larger backscatter pressure at higher harmonics of the primary driving frequency—this enriched acoustic spectrum can enhance blood-tissue contrast and improve the quality of sonographic images. The results further show that the acoustic pressure threshold associated with the onset of shape instability is greater for dual-frequency driving. This suggests that the dual-frequency technique stabilizes the encapsulated bubble, thereby improving the efficacy and safety of contrast-enhanced agents. (paper)
Meyer, Yves
2001-01-01
Image compression, the Navier-Stokes equations, and detection of gravitational waves are three seemingly unrelated scientific problems that, remarkably, can be studied from one perspective. The notion that unifies the three problems is that of "oscillating patterns", which are present in many natural images, help to explain nonlinear equations, and are pivotal in studying chirps and frequency-modulated signals. The first chapter of this book considers image processing, more precisely algorithms of image compression and denoising. This research is motivated in particular by the new standard for compression of still images known as JPEG-2000. The second chapter has new results on the Navier-Stokes and other nonlinear evolution equations. Frequency-modulated signals and their use in the detection of gravitational waves are covered in the final chapter. In the book, the author describes both what the oscillating patterns are and the mathematics necessary for their analysis. It turns out that this mathematics invo...
Directory of Open Access Journals (Sweden)
Paulius Palevicius
2014-01-01
Full Text Available Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms.
International Nuclear Information System (INIS)
Litak, Grzegorz; Syta, Arkadiusz; Borowiec, Marek
2007-01-01
We examine the Melnikov criterion for transition to chaos in case of one degree of freedom non-linear oscillator with non-symmetric potential. This system, when subjected to an external periodic force, shows homoclinic transition from regular vibrations to chaos just before escape from a potential well. We focus especially on the effect of a second resonant excitation with a different phase on the system transition to chaos. We propose a way of its control
Palevicius, Paulius; Ragulskis, Minvydas; Palevicius, Arvydas; Ostasevicius, Vytautas
2014-01-01
Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms. PMID:24451467
Palevicius, Paulius; Ragulskis, Minvydas; Palevicius, Arvydas; Ostasevicius, Vytautas
2014-01-21
Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms.
Decuyper, J.; De Troyer, T.; Runacres, M. C.; Tiels, K.; Schoukens, J.
2018-01-01
The flow-induced vibration of bluff bodies is an important problem of many marine, civil, or mechanical engineers. In the design phase of such structures, it is vital to obtain good predictions of the fluid forces acting on the structure. Current methods rely on computational fluid dynamic simulations (CFD), with a too high computational cost to be effectively used in the design phase or for control applications. Alternative methods use heuristic mathematical models of the fluid forces, but these lack the accuracy (they often assume the system to be linear) or flexibility to be useful over a wide operating range. In this work we show that it is possible to build an accurate, flexible and low-computational-cost mathematical model using nonlinear system identification techniques. This model is data driven: it is trained over a user-defined region of interest using data obtained from experiments or simulations, or both. Here we use a Van der Pol oscillator as well as CFD simulations of an oscillating circular cylinder to generate the training data. Then a discrete-time polynomial nonlinear state-space model is fit to the data. This model relates the oscillation of the cylinder to the force that the fluid exerts on the cylinder. The model is finally validated over a wide range of oscillation frequencies and amplitudes, both inside and outside the so-called lock-in region. We show that forces simulated by the model are in good agreement with the data obtained from CFD.
International Nuclear Information System (INIS)
Crebbin, K.C.
1985-05-01
Uniform magnetic field perturbations cause a closed orbit distortion in a circular accelerator. If the magnetic guide field is non-linear these perturbations can also cause a Nu shift in the betatron oscillations. Such a shift in radial Nu values has been observed in the Bevalac while studying the low energy resonant extraction system. In the Bevalac, the radial perturbation comes from the quadrants being magnetically about 0.8% longer than 90 0 . The normal effect of this type of perturbation is a radial closed orbit shift and orbit distortion. The Nu shift, associated with this type of perturbation in the presence of a non-linear guide field, is discussed in this paper. A method of handling the non-linear n values is discussed as well as the mechanism for the associated Nu shift. Computer calculations are compared to measurements. 2 refs., 4 figs
Directory of Open Access Journals (Sweden)
Gang Chen
2012-01-01
Full Text Available It is not easy for the system identification-based reduced-order model (ROM and even eigenmode based reduced-order model to predict the limit cycle oscillation generated by the nonlinear unsteady aerodynamics. Most of these traditional ROMs are sensitive to the flow parameter variation. In order to deal with this problem, a support vector machine- (SVM- based ROM was investigated and the general construction framework was proposed. The two-DOF aeroelastic system for the NACA 64A010 airfoil in transonic flow was then demonstrated for the new SVM-based ROM. The simulation results show that the new ROM can capture the LCO behavior of the nonlinear aeroelastic system with good accuracy and high efficiency. The robustness and computational efficiency of the SVM-based ROM would provide a promising tool for real-time flight simulation including nonlinear aeroelastic effects.
Ulvila, Ville; Phillips, C R; Halonen, Lauri; Vainio, Markku
2013-11-01
We report optical frequency comb generation by a continuous-wave pumped optical parametric oscillator (OPO) without any active modulation. The OPO is configured as singly resonant with an additional nonlinear crystal (periodically poled MgO:LiNbO3) placed inside the OPO for phase mismatched second harmonic generation (SHG) of the resonating signal beam. The phase mismatched SHG causes cascading χ(2) nonlinearities, which can substantially increase the effective χ(3) nonlinearity in MgO:LiNbO3, leading to spectral broadening of the OPO signal beam via self-phase modulation. The OPO generates a stable 4 THz wide (-30 dB) frequency comb centered at 1.56 μm.
Di Egidio, Angelo; Contento, Alessandro; Vestroni, Fabrizio
2015-12-01
An open-cross section thin-walled beam model, already developed by the authors, has been conveniently simplified while maintaining the capacity of accounting for the significant nonlinear warping effects. For a technical range of geometrical and mechanical characteristics of the beam, the response is characterized by the torsional curvature prevailing over the flexural ones. A Galerkin discretization is performed by using a suitable expansion of displacements based on shape functions. The attention is focused on the dynamic response of the beam to a harmonic force, applied at the free end of the cantilever beam. The excitation is directed along the symmetry axis of the beam section. The stability of the one-component oscillations has been investigated using the analytical model, showing the importance of the internal resonances due to the nonlinear warping coupling terms. Comparison with the results provided by a computational finite element model has been performed. The good agreement among the results of the analytical and the computational models confirms the effectiveness of the simplified model of a nonlinear open-cross section thin-walled beam and overall the important role of the warping and of the torsional elongation in the study of the one-component dynamic oscillations and their stability.
Are human spontaneous otoacoustic emissions generated by a chain of coupled nonlinear oscillators?
Wit, Hero P.; van Dijk, Pim
Spontaneous otoacoustic emissions (SOAEs) are generated by self-sustained cochlear oscillators. Properties of a computational model for a linear array of active oscillators with nearest neighbor coupling are investigated. The model can produce many experimentally well-established properties of
Are human spontaneous otoacoustic emissions generated by a chain of coupled nonlinear oscillators?
Wit, Hero P; van Dijk, Pim
2012-08-01
Spontaneous otoacoustic emissions (SOAEs) are generated by self-sustained cochlear oscillators. Properties of a computational model for a linear array of active oscillators with nearest neighbor coupling are investigated. The model can produce many experimentally well-established properties of SOAEs.
Phase-locking phenomena and excitation of damped and driven nonlinear oscillators
DEFF Research Database (Denmark)
Shagalov, A.G.; Juul Rasmussen, Jens; Naulin, Volker
2009-01-01
Resonant phase-locking phenomena ('autoresonance') in the van der Pol Duffing oscillator forced by a small amplitude periodic driving with slowly varying frequency have been studied. We show that autoresonance occurs for oscillators with sufficiently small damping, when the system may have bi-stable...
International Nuclear Information System (INIS)
Donoso, Guillermo; Ladera, Celso L
2012-01-01
We study the nonlinear oscillations of a forced and weakly dissipative spring–magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet–spring system. The second coil, located below the first, excited with an ac current, provides the oscillating magnetic driving force on the system. From the magnet–coil interactions, we obtain, analytically, the nonlinear motion equation of the system, found to be a forced and damped cubic Duffing oscillator moving in a quartic potential. The relative strengths of the coefficients of the motion equation can be easily set by varying the coils’ dc and ac currents. We demonstrate, theoretically and experimentally, the nonlinear behaviour of this oscillator, including its oscillation modes and nonlinear resonances, the fold-over effect, the hysteresis and amplitude jumps, and its chaotic behaviour. It is an oscillating system suitable for teaching an advanced experiment in nonlinear dynamics both at senior undergraduate and graduate levels. (paper)
International Nuclear Information System (INIS)
Belendez, A.; Fernandez, E.; Rodes, J.J.; Fuentes, R.; Pascual, I.
2009-01-01
In a previous short communication [A. Belendez, E. Fernandez, J.J. Rodes, R. Fuentes, I. Pascual, Phys. Lett. A 373 (2009) 735] the nonlinear oscillations of a punctual charge in the electric field of a charged ring were analyzed. Approximate frequency-amplitude relations and periodic solutions were obtained using the harmonic balance method. Now we clarify an important aspect about of this oscillation charge. Taking into account Earnshaw's theorem, this punctual charge cannot be a free charge and so it must be confined, for example, on a finite conducting wire placed along the axis of the ring. Then, the oscillatory system may consist of a punctual charge on a conducting wire placed along the axis of the uniformly charged ring.
Directory of Open Access Journals (Sweden)
Zong Weikai
2017-01-01
Full Text Available Nonlinear mode interactions are difficult to observe from ground-based telescopes as the typical periods of the modulations induced by those nonlinear phenomena are on timescales of weeks, months, even years. The launch of space telescopes, e.g., Kepler, has tremendously changed the situation and shredded new light on this research field. We present results from Kepler photometry showing evidence that nonlinear interactions between modes occur in the two compact pulsators KIC 8626021, a DB white dwarf, and KIC 10139564, a short period hot B subdwarf. KIC 8626021 and KIC 10139564 had been monitored by Kepler in short-cadence for nearly two years and more than three years without interruption, respectively. By analyzing these high-quality photometric data, we found that the modes within the triplets induced by rotation clearly reveal different behaviors: their frequencies and amplitudes may exhibit either periodic or irregular modulations, or remain constant. These various behaviors of the amplitude and of the frequency modulations of the oscillation modes observed in these two stars are in good agreement with those predicted within the amplitude equation formalism in the case of the nonlinear resonant mode coupling mechanism.
Directory of Open Access Journals (Sweden)
Li Gang
2016-01-01
Full Text Available This investigation is to solve the power-level control issue of a nonlinear pressurized water reactor core with xenon oscillations. A nonlinear pressurized water reactor core is modeled using the lumped parameter method, and a linear model of the core is then obtained through the small perturbation linearization way. The H∞loop shapingcontrolis utilized to design a robust controller of the linearized core model.The calculated H∞loop shaping controller is applied to the nonlinear core model. The nonlinear core model and the H∞ loop shaping controller build the nonlinear core power-level H∞loop shaping control system.Finally, the nonlinear core power-level H∞loop shaping control system is simulatedconsidering two typical load processes that are a step load maneuver and a ramp load maneuver, and simulation results show that the nonlinear control system is effective.
International Nuclear Information System (INIS)
Fujimoto, Kazuya; Tsubota, Makoto
2011-01-01
We consider a trapped atomic Bose-Einstein condensate penetrated by a repulsive Gaussian potential and theoretically investigate the dynamics induced by oscillating the Gaussian potential. Our study is based on the numerical calculation of the two-dimensional Gross-Pitaevskii equation. Our calculation reveals the dependence of the characteristic behavior of the condensate on the amplitude and frequency of the oscillating potential. These dynamics are deeply related to the nucleation and dynamics of quantized vortices and solitons. When the potential oscillates with a large amplitude, it nucleates many vortex pairs that move away from the potential. When the amplitude of the oscillation is small, it nucleates solitons through an annihilation of vortex pairs. We discuss three issues concerning the nucleation of vortices. The first is the phase diagram for the nucleation of vortices and solitons near the oscillating potential. The second is the mechanism and critical velocity of the nucleation. The critical velocity of the nucleation is an important issue in quantum fluids, and we propose an expression for the velocity containing both the coherence length and the size of the potential. The third is the divergence of the nucleation time, which is the time it takes for the potential to nucleate vortices, near the critical parameters for vortex nucleation.
Chimera at the phase-flip transition of an ensemble of identical nonlinear oscillators
Gopal, R.; Chandrasekar, V. K.; Senthilkumar, D. V.; Venkatesan, A.; Lakshmanan, M.
2018-06-01
A complex collective emerging behavior characterized by coexisting coherent and incoherent domains is termed as a chimera state. We bring out the existence of a new type of chimera in a nonlocally coupled ensemble of identical oscillators driven by a common dynamic environment. The latter facilitates the onset of phase-flip bifurcation/transitions among the coupled oscillators of the ensemble, while the nonlocal coupling induces a partial asynchronization among the out-of-phase synchronized oscillators at this onset. This leads to the manifestation of coexisting out-of-phase synchronized coherent domains interspersed by asynchronous incoherent domains elucidating the existence of a different type of chimera state. In addition to this, a rich variety of other collective behaviors such as clusters with phase-flip transition, conventional chimera, solitary state and complete synchronized state which have been reported using different coupling architectures are found to be induced by the employed couplings for appropriate coupling strengths. The robustness of the resulting dynamics is demonstrated in ensembles of two paradigmatic models, namely Rössler oscillators and Stuart-Landau oscillators.
On One Means of Hard Excitation of Oscillations in Nonlinear Flutter Systems
Directory of Open Access Journals (Sweden)
S. D. Glyzin
2014-01-01
Full Text Available Considered are so-called finite-dimensional flutter systems, i.e. systems of ordinary differential equations, arising from Galerkin approximations of certain boundary value problems of aeroelasticity theory as well as from a number of radiophysics applications. We study small oscillations of these equations in case of 1 : 3 resonance. By combining analytical and numerical methods, it is concluded that the mentioned resonance can cause a hard excitation of oscillations. Namely, for flutter systems shown is the possibility of coexistence, along with the stable zero state, of stable invariant tori of arbitrary finite dimension as well as chaotic attractors.
Botari, Tiago; Leonel, Edson D
2013-01-01
A modification of the one-dimensional Fermi accelerator model is considered in this work. The dynamics of a classical particle of mass m, confined to bounce elastically between two rigid walls where one is described by a nonlinear van der Pol type oscillator while the other one is fixed, working as a reinjection mechanism of the particle for a next collision, is carefully made by the use of a two-dimensional nonlinear mapping. Two cases are considered: (i) the situation where the particle has mass negligible as compared to the mass of the moving wall and does not affect the motion of it; and (ii) the case where collisions of the particle do affect the movement of the moving wall. For case (i) the phase space is of mixed type leading us to observe a scaling of the average velocity as a function of the parameter (χ) controlling the nonlinearity of the moving wall. For large χ, a diffusion on the velocity is observed leading to the conclusion that Fermi acceleration is taking place. On the other hand, for case (ii), the motion of the moving wall is affected by collisions with the particle. However, due to the properties of the van der Pol oscillator, the moving wall relaxes again to a limit cycle. Such kind of motion absorbs part of the energy of the particle leading to a suppression of the unlimited energy gain as observed in case (i). The phase space shows a set of attractors of different periods whose basin of attraction has a complicated organization.
Gao, Peng
2018-04-01
This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.
Hawes, D. H.; Langley, R. S.
2018-01-01
Random excitation of mechanical systems occurs in a wide variety of structures and, in some applications, calculation of the power dissipated by such a system will be of interest. In this paper, using the Wiener series, a general methodology is developed for calculating the power dissipated by a general nonlinear multi-degree-of freedom oscillatory system excited by random Gaussian base motion of any spectrum. The Wiener series method is most commonly applied to systems with white noise inputs, but can be extended to encompass a general non-white input. From the extended series a simple expression for the power dissipated can be derived in terms of the first term, or kernel, of the series and the spectrum of the input. Calculation of the first kernel can be performed either via numerical simulations or from experimental data and a useful property of the kernel, namely that the integral over its frequency domain representation is proportional to the oscillating mass, is derived. The resulting equations offer a simple conceptual analysis of the power flow in nonlinear randomly excited systems and hence assist the design of any system where power dissipation is a consideration. The results are validated both numerically and experimentally using a base-excited cantilever beam with a nonlinear restoring force produced by magnets.
Gao, Peng
2018-06-01
This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.
Non-linear Shape Oscillations of Rising Drops and Bubbles: Experiments and Simulations.
Czech Academy of Sciences Publication Activity Database
Lalanne, B.; Abi Chebel, N.; Vejražka, Jiří; Tanguy, S.; Masbernat, O.; Risso, F.
2015-01-01
Roč. 27, č. 12 (2015), s. 123305 ISSN 1070-6631. [Conference of European Colloid and Interface Society /27./. Sofia, 01.09.2013-06.09.2013] R&D Projects: GA MŠk(CZ) LD13018 Institutional support: RVO:67985858 Keywords : shape oscillations * nonlinearitites * interface dynamics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.017, year: 2015
An exactly solvable model of an oscillator with nonlinear coupling and zeros of Bessel functions
Dodonov, V. V.; Klimov, A. B.
1993-01-01
We consider an oscillator model with nonpolynomial interaction. The model admits exact solutions for two situations: for energy eigenvalues in terms of zeros of Bessel functions, that were considered as functions of the continuous index; and for the corresponding eigenstates in terms of Lommel polynomials.
Efficient computation of quasiperiodic oscillations in nonlinear systems with fast rotating parts
DEFF Research Database (Denmark)
Schilder, Frank; Rübel, Jan; Starke, Jens
2008-01-01
We present a numerical method for the investigation of quasiperiodic oscillations in applications modeled by systems of ordinary differential equations. We focus on systems with parts that have a significant rotational speed. An important element of our approach is that it allows us to verify whe...
Nonlinear Aeroelastic Study of Stall Induced Oscillation in a Symmetric Airfoil
Sarkar, S.; Bijl, H.
2006-01-01
In this paper the aeroelastic stability of a wind turbine rotor in the dynamic stall regime is investigated. Increased flexibility of modern turbine blades makes them more susceptible to aeroelastic instabilities. Complex oscillation modes like flap/lead-lag are of particular concern, which give way
Nonlinear oscillations of a coupled autoparametrical system with ideal and nonideal sources of power
Directory of Open Access Journals (Sweden)
Sado Danuta
2006-01-01
Full Text Available An ideal and nonideal autoparametrical system excited by DC motor with unbalanced mass is presented in this work. The system consists of the body of mass M which is hung on a nonlinear spring with a nonlinear damper, and a pendulum of the length l and mass m mounted to the body of mass M. It is assumed that the motion of the pendulum is damped by nonlinear resistive forces. Vibrations of both models (ideal and nonideal are researched. Solutions for the system response are presented for specific values of the parameters of system and the energy transfer between modes of vibrations is studied. Next excited vibrations for both models have been examined analytically and numerically. Except different kinds of periodic vibrations, there may also appear chaotic vibrations.
Non-linear Vibration of Oscillation Systems using Frequency-Amplitude Formulation
DEFF Research Database (Denmark)
Fereidoon, A.; Ghadimi, M.; Barari, Amin
2012-01-01
In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifthorder nonlinearity for two examples using He’s Frequency Amplitude Formulation (HFAF).The effectiveness and convenience of the method is illustrated in these examples. It will be shown that t...... that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems....
The effect of nonlinear forces on coherently oscillating space-charge-dominated beams
International Nuclear Information System (INIS)
Celata, C.M.
1987-03-01
A particle-in-cell computer simulation code has been used to study the transverse dynamics of nonrelativistic misaligned space-charge-dominated coasting beams in an alternating gradient focusing channel. In the presence of nonlinear forces due to dodecapole or octupole imperfections of the focusing fields or to image forces, the transverse rms emittance grows in a beat pattern. Analysis indicates that this emittance dilution is due to the driving of coherent modes of the beam near their resonant frequencies by the nonlinear force. The effects of the dodecapole and images forces can be made to effectively cancel for some boundary conditions, but the mechanism is not understood at this time
Energy Technology Data Exchange (ETDEWEB)
Rahmani, S.; Hassanabadi, H. [Shahrood University of Technology, Physics Department, Shahrood (Iran, Islamic Republic of)
2017-09-15
Employing generalized quantum isotonic oscillator potential we determine wave function for mesonic system in nonrelativistic formalism. Then we investigate branching ratios of leptonic decays for heavy-light mesons including a charm quark. Next, by applying the Isgur-Wise function we obtain branching ratios of semileptonic decays for mesons including a bottom quark. The weak decay of the B{sub c} meson is also analyzed to study the life time. Comparison with other available theoretical approaches is presented. (orig.)
Nonlinear dynamics in a laser field: spontaneous oscillation of mesoscopic soft matter
Nomura, S; Yoshikawa, K
2003-01-01
Experimental studies on the utilization of a laser to create a thermodynamically open system in a mesoscopic scale have been performed, where the laser has the roles to generate attractive and scattering forces on an optically trapped object. We have succeeded in the observation of various novel oscillatory phenomena under laser illumination. In this paper, we present the results of new experiments on the cyclic oscillation of a single giant molecule and periodic bursting in a cluster of micrometer sized beads.
Numerical Analysis of Strongly Nonlinear Oscillation Systems using He's Max-Min Method
DEFF Research Database (Denmark)
Babazadeh, H; Domairry, G; Barari, Amin
2011-01-01
Nonlinear functions are crucial points and terms in engineering problems. Actual and physical problems can be solved by solving and processing such functions. Thus, most scientists and engineers focus on solving these equations. This paper presents a novel method called the max-min method...
Oscillations of a Beam on a Non-Linear Elastic Foundation under Periodic Loads
Directory of Open Access Journals (Sweden)
Donald Mark Santee
2006-01-01
Full Text Available The complexity of the response of a beam resting on a nonlinear elastic foundation makes the design of this structural element rather challenging. Particularly because, apparently, there is no algebraic relation for its load bearing capacity as a function of the problem parameters. Such an algebraic relation would be desirable for design purposes. Our aim is to obtain this relation explicitly. Initially, a mathematical model of a flexible beam resting on a non-linear elastic foundation is presented, and its non-linear vibrations and instabilities are investigated using several numerical methods. At a second stage, a parametric study is carried out, using analytical and semi-analytical perturbation methods. So, the influence of the various physical and geometrical parameters of the mathematical model on the non-linear response of the beam is evaluated, in particular, the relation between the natural frequency and the vibration amplitude and the first period doubling and saddle-node bifurcations. These two instability phenomena are the two basic mechanisms associated with the loss of stability of the beam. Finally Melnikov's method is used to determine an algebraic expression for the boundary that separates a safe from an unsafe region in the force parameters space. It is shown that this can be used as a basis for a reliable engineering design criterion.
International Nuclear Information System (INIS)
Song Yongli; Tadé, Moses O; Zhang Tonghua
2009-01-01
In this paper, a delayed neural network with unidirectional coupling is considered which consists of two two-dimensional nonlinear differential equation systems with exponential decay where one system receives a delayed input from the other system. Some parameter regions are given for conditional/absolute stability and Hopf bifurcations by using the theory of functional differential equations. Conditions ensuring the stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the centre manifold theorem. We also investigate the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay-differential equations combined with representation theory of Lie groups. Then the global continuation of phase-locked periodic solutions is investigated. Numerical simulations are given to illustrate the results obtained
Hoefer, Mark A.
This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued
Donoso, Guillermo; Ladera, Celso L.
2012-01-01
We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…
Conservative Chaos Generators with CCII+ Based on Mathematical Model of Nonlinear Oscillator
Directory of Open Access Journals (Sweden)
J. Slezak
2008-09-01
Full Text Available In this detailed paper, several novel oscillator's configurations which consist only of five positive second generation current conveyors (CCII+ are presented and experimentally verified. Each network is able to generate the conservative chaotic attractors with the certain degree of the structural stability. It represents a class of the autonomous deterministic dynamical systems with two-segment piecewise linear (PWL vector fields suitable also for the theoretical analysis. Route to chaos can be traced and observed by a simple change of the external dc voltage. Advantages and other possible improvements are briefly discussed in the text.
Optimum Design of a Nonlinear Vibration Absorber Coupled to a Resonant Oscillator: A Case Study
Directory of Open Access Journals (Sweden)
H. F. Abundis-Fong
2018-01-01
Full Text Available This paper presents the optimal design of a passive autoparametric cantilever beam vibration absorber for a linear mass-spring-damper system subject to harmonic external force. The design of the autoparametric vibration absorber is obtained by using an approximation of the nonlinear frequency response function, computed via the multiple scales method. Based on the solution given by the perturbation method mentioned above, a static optimization problem is formulated in order to determine the optimum parameters (mass and length of the nonlinear absorber which minimizes the steady state amplitude of the primary mass under resonant conditions; then, a PZT actuator is cemented to the base of the beam, so the nonlinear absorber is made active, thus enabling the possibility of controlling the effective stiffness associated with the passive absorber and, as a consequence, the implementation of an active vibration control scheme able to preserve, as possible, the autoparametric interaction as well as to compensate varying excitation frequencies and parametric uncertainty. Finally, some simulations and experimental results are included to validate and illustrate the dynamic performance of the overall system.
International Nuclear Information System (INIS)
Ünal, Hakkı Ulaş; Michiels, Wim
2013-01-01
The full synchronization of coupled nonlinear oscillators has been widely studied. In this paper we investigate conditions for which partial synchronization of time-delayed diffusively coupled systems arises. The coupling configuration of the systems is described by a directed graph. As a novel quantitative result we first give necessary and sufficient conditions for the presence of forward invariant sets characterized by partially synchronous motion. These conditions can easily be checked from the eigenvalues and eigenvectors of the graph Laplacian. Second, we perform stability analysis of the synchronized equilibria in a (gain,delay) parameter space. For this analysis the coupled nonlinear systems are linearized around the synchronized equilibria and then the resulting characteristic function is factorized. By such a factorization, it is shown that the relation between the behaviour of different agents at the zero of the characteristic function depends on the structure of the eigenvectors of the weighted Laplacian matrix. By determining the structure of the solutions in the unstable manifold, combined with the characterization of invariant sets, we predict which partially synchronous regimes occur and estimate the corresponding coupling gain and delay values. We apply the obtained results to networks of coupled Hindmarsh–Rose neurons and verify the occurrence of the expected partially synchronous regimes by using a numerical simulation. We also make a comparison with an existing approach based on Lyapunov functionals. (paper)
Sage, Cindy
2015-01-01
The 'informational content' of Earth's electromagnetic signaling is like a set of operating instructions for human life. These environmental cues are dynamic and involve exquisitely low inputs (intensities) of critical frequencies with which all life on Earth evolved. Circadian and other temporal biological rhythms depend on these fluctuating electromagnetic inputs to direct gene expression, cell communication and metabolism, neural development, brainwave activity, neural synchrony, a diversity of immune functions, sleep and wake cycles, behavior and cognition. Oscillation is also a universal phenomenon, and biological systems of the heart, brain and gut are dependent on the cooperative actions of cells that function according to principles of non-linear, coupled biological oscillations for their synchrony. They are dependent on exquisitely timed cues from the environment at vanishingly small levels. Altered 'informational content' of environmental cues can swamp natural electromagnetic cues and result in dysregulation of normal biological rhythms that direct growth, development, metabolism and repair mechanisms. Pulsed electromagnetic fields (PEMF) and radiofrequency radiation (RFR) can have the devastating biological effects of disrupting homeostasis and desynchronizing normal biological rhythms that maintain health. Non-linear, weak field biological oscillations govern body electrophysiology, organize cell and tissue functions and maintain organ systems. Artificial bioelectrical interference can give false information (disruptive signaling) sufficient to affect critical pacemaker cells (of the heart, gut and brain) and desynchronize functions of these important cells that orchestrate function and maintain health. Chronic physiological stress undermines homeostasis whether it is chemically induced or electromagnetically induced (or both exposures are simultaneous contributors). This can eventually break down adaptive biological responses critical to health
Rigatos, Gerasimos
2014-12-01
A synchronizing control scheme for coupled neural oscillators of the FitzHugh-Nagumo type is proposed. Using differential flatness theory the dynamical model of two coupled neural oscillators is transformed into an equivalent model in the linear canonical (Brunovsky) form. A similar linearized description is succeeded using differential geometry methods and the computation of Lie derivatives. For such a model it becomes possible to design a state feedback controller that assures the synchronization of the membrane's voltage variations for the two neurons. To compensate for disturbances that affect the neurons' model as well as for parametric uncertainties and variations a disturbance observer is designed based on Kalman Filtering. This consists of implementation of the standard Kalman Filter recursion on the linearized equivalent model of the coupled neurons and computation of state and disturbance estimates using the diffeomorphism (relations about state variables transformation) provided by differential flatness theory. After estimating the disturbance terms in the neurons' model their compensation becomes possible. The performance of the synchronization control loop is tested through simulation experiments.
Michiels, Wim; Nijmeijer, Henk
2009-09-01
We consider the synchronization problem of an arbitrary number of coupled nonlinear oscillators with delays in the interconnections. The network topology is described by a directed graph. Unlike the conventional approach of deriving directly sufficient synchronization conditions, the approach of the paper starts from an exact stability analysis in a (gain, delay) parameter space of a synchronized equilibrium and extracts insights from an analysis of its bifurcations and from the corresponding emerging behavior. Instrumental to this analysis a factorization of the characteristic equation is employed that not only facilitates the analysis and reduces computational cost but also allows to determine the precise role of the individual agents and the topology of the network in the (in)stability mechanisms. The study provides an algorithm to perform a stability and bifurcation analysis of synchronized equilibria. Furthermore, it reveals fundamental limitations to synchronization and it explains under which conditions on the topology of the network and on the characteristics of the coupling the systems are expected to synchronize. In the second part of the paper the results are applied to coupled Lorenz systems. The main results show that for sufficiently large coupling gains, delay-coupled Lorenz systems exhibit a generic behavior that does not depend on the number of systems and the topology of the network, as long as some basic assumptions are satisfied, including the strong connectivity of the graph. Here the linearized stability analysis is strengthened by a nonlinear stability analysis which confirms the predictions based on the linearized stability and bifurcation analysis. This illustrates the usefulness of the exact linearized analysis in a situation where a direct nonlinear stability analysis is not possible or where it yields conservative conditions from which it is hard to get qualitative insights in the synchronization mechanisms and their scaling properties
Dynamical Chaos Rise in the System of Large Number of Nonlinear Coupled Oscillators
International Nuclear Information System (INIS)
Buts, V.A.; Koval'chuk, I.K.; Tarasov, D.V.
2007-01-01
The problem of dynamical chaos arising in distributed systems is considered. It was shown that in many cases it is possible to allocate relatively isolated subsystem which may be simpler for investigation. We suppose that chaos in this subsystem leads to chaotic behaviour of all system. Besides, the allocated subsystem may be used for describing complex dynamics of nonlinear three-wave interaction, in particular, in plasma systems. The analytical criterion of arising dynamics chaos in distributed system was obtained. This criterion was confirmed by numerical simulation
Intermittently chaotic oscillations for a differential-delay equation with Gaussian nonlinearity
Hamilton, Ian
1992-01-01
For a differential-delay equation the time dependence of the variable is a function of the variable at a previous time. We consider a differential-delay equation with Gaussian nonlinearity that displays intermittent chaos. Although not the first example of a differential-delay equation that displays such behavior, for this example the intermittency is classified as type III, and the origin of the intermittent chaos may be qualitatively understood from the limiting forms of the equation for large and small variable magnitudes.
Directory of Open Access Journals (Sweden)
seyd ghasem enayati
2017-01-01
Full Text Available In this paper, two powerful analytical methods known as modified homotopy perturbation method and Amplitude Frequency Formulation called respectively MHPM and AFF, are introduced to derive approximate solutions of a system of ordinary differential equations appear in mechanical applications. These methods convert a difficult problem into a simple one, which can be easily handled. The obtained solutions are compared with numerical fourth order runge-kutta method to show the applicability and accuracy of both MHPM and AFF in solving this sample problem. The results attained in this paper confirm the idea that MHPM and AFF are powerful mathematical tools and they can be applied to linear and nonlinear problems.
Internal crisis in a second-order non-linear non-autonomous electronic oscillator
International Nuclear Information System (INIS)
Stavrinides, S.G.; Deliolanis, N.C.; Miliou, A.N.; Laopoulos, Th.; Anagnostopoulos, A.N.
2008-01-01
The internal crisis of a second-order non-linear non-autonomous chaotic electronic circuit is studied. The phase portraits consist of two interacting sub-attractors, a chaotic and a periodic one. Maximal Lyapunov exponents were calculated, for both the periodic and the chaotic waveforms, in order to confirm their nature. Transitions between the chaotic and the periodic sub-attractors become more frequent by increasing the circuit driving frequency. The frequency distribution of the corresponding laminar lengths and their average values indicate that an internal crisis takes place in this circuit, manifested in the intermittent behaviour of the corresponding orbits
Nonlinear Dynamics of a Bubble Contrast Agent Oscillating near an Elastic Wall
Garashchuk, Ivan R.; Sinelshchikov, Dmitry I.; Kudryashov, Nikolay A.
2018-05-01
Contrast agent microbubbles, which are encapsulated gas bubbles, are widely used to enhance ultrasound imaging. There are also several new promising applications of the contrast agents such as targeted drug delivery and noninvasive therapy. Here we study three models of the microbubble dynamics: a nonencapsulated bubble oscillating close to an elastic wall, a simple coated bubble and a coated bubble near an elastic wall.We demonstrate that complex dynamics can occur in these models. We are particularly interested in the multistability phenomenon of bubble dynamics. We show that coexisting attractors appear in all of these models, but for higher acoustic pressures for the models of an encapsulated bubble.We demonstrate how several tools can be used to localize the coexisting attractors. We provide some considerations why the multistability can be undesirable for applications.
Directory of Open Access Journals (Sweden)
Elena Adomaitienė
2017-01-01
Full Text Available We suggest employing the first-order stable RC filters, based on a single capacitor, for control of unstable fixed points in an array of oscillators. A single capacitor is sufficient to stabilize an entire array, if the oscillators are coupled strongly enough. An array, composed of 24 to 30 mean-field coupled FitzHugh–Nagumo (FHN type asymmetric oscillators, is considered as a case study. The investigation has been performed using analytical, numerical, and experimental methods. The analytical study is based on the mean-field approach, characteristic equation for finding the eigenvalue spectrum, and the Routh–Hurwitz stability criteria using low-rank Hurwitz matrix to calculate the threshold value of the coupling coefficient. Experiments have been performed with a hardware electronic analog, imitating dynamical behavior of an array of the FHN oscillators.
Yoshimura, K.
2000-11-01
We study analytically the induction phenomenon in the Fermi-Pasta-Ulam β oscillator chain under initial conditions consisting of single mode excitation. Our study is based on the analytical computation of the largest characteristic exponent of an approximate version of the variational equation. The main results can be summarized as follows: (1) the energy density ɛ scaling of the induction time T is given by T~ɛ-1, and T becomes smaller for higher-frequency mode excitation; (2) there is a threshold energy density ɛc such that the induction time diverges when ɛ∞ (3) the threshold ɛc vanishes as ɛc~N-2 in the limit N-->∞ (4) the threshold ɛc does not depend on the mode number k that is excited in the initial condition; (5) the two modes k+/-m have the largest exponential growth rate, and m increases with increasing ɛ as m/N=3βɛ/π. The above analytical results are thoroughly verified in numerical experiments. Moreover, we discuss the energy exchange process after the induction period in some energy density regimes, based on the numerical results.
Chen, Bor-Sen; Hsu, Chih-Yuan
2012-10-26
Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI
Sabeerali, C. T.; Ajayamohan, R. S.; Giannakis, Dimitrios; Majda, Andrew J.
2017-11-01
An improved index for real-time monitoring and forecast verification of monsoon intraseasonal oscillations (MISOs) is introduced using the recently developed nonlinear Laplacian spectral analysis (NLSA) technique. Using NLSA, a hierarchy of Laplace-Beltrami (LB) eigenfunctions are extracted from unfiltered daily rainfall data from the Global Precipitation Climatology Project over the south Asian monsoon region. Two modes representing the full life cycle of the northeastward-propagating boreal summer MISO are identified from the hierarchy of LB eigenfunctions. These modes have a number of advantages over MISO modes extracted via extended empirical orthogonal function analysis including higher memory and predictability, stronger amplitude and higher fractional explained variance over the western Pacific, Western Ghats, and adjoining Arabian Sea regions, and more realistic representation of the regional heat sources over the Indian and Pacific Oceans. Real-time prediction of NLSA-derived MISO indices is demonstrated via extended-range hindcasts based on NCEP Coupled Forecast System version 2 operational output. It is shown that in these hindcasts the NLSA MISO indices remain predictable out to ˜3 weeks.
DEFF Research Database (Denmark)
Lindberg, Erik
1997-01-01
In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos....
International Nuclear Information System (INIS)
Kurkin, S. A.; Koronovski, A. A.; Hramov, A. E.
2009-01-01
Results are presented from a numerical study of the effect of an external magnetic field on the conditions and mechanisms for the formation of a virtual cathode in a relativistic electron beam. Characteristic features of the nonlinear dynamics of an electron beam with a virtual cathode are considered when the external magnetic field is varied. Various mechanisms are investigated by which the virtual cathode oscillations become chaotic and their spectrum becomes a multifrequency spectrum, thereby complicating the dynamics of the vircator system. A general mechanism for chaotization of the oscillations of a virtual cathode in a vircator system is revealed: the electron structures that form in an electron beam interact by means of a common space charge field to give rise to additional internal feedback. That the oscillations of a virtual cathode change from the chaotic to the periodic regime is due to the suppression of the mechanism for forming secondary electron structures.
International Nuclear Information System (INIS)
Bliokh, Yu.P.
2001-01-01
During more than 50 years of Plasma Electronics development a great number of experimental and theoretical results have been achieved. These results allow understanding of physical processes which originate under charged particles beams interaction with a plasma. However, one essential aspect of such interaction remains insufficiently studied. The question is about a correlation between conditions of microwave excitation by a beam in plasma and plasma parameters. Each of these effects, namely the influence of plasma parameters on conditions of microwave excitation by a beam and plasma parameters variations under the influence of propagating microwave radiation are well known and investigated enough. However their common action under beam-plasma instability (BPI) development were not studied systematically, although the role of such reciprocal influence on character of these processes may be very large. The aim of this report is a review of recent theoretical and experimental investigations of such plasma nonlinearity in plasma-filled trawling-wave tubes. N.M.Zemlyansky and E.A.Kornilov have done experiments in Kharkov Institute of Physics and Technology (KhPhTI). Development of the theoretical model was started in KhPhTI (Yu.P.Bliokh, Ya.B.Fainberg, M.G.Lyubarsky, and V.O.Podobinsky) and continues by author in Technion. The developed theory takes into account two main reasons of the plasma density redistribution: high frequency pressure (HFP) force which ''push out'' plasma from the regions with increased microwave amplitude, or microwave discharge, which appears in the region where amplitude is large enough. Displaced (under HFP action) or additionally originating (under (BPD) development) plasma propagates from the disturbance source in the form of slow plasma waves (for example, ion-sound or magneto-sound waves), and the BPI develops in the nonhomogeneous plasma. It changes both magnitude and longitudinal distribution of excited microwave amplitude. As a result
Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A.
2017-01-01
Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region. PMID:29249950
Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A
2017-01-01
Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region.
Chimera states in bipartite networks of FitzHugh-Nagumo oscillators
Wu, Zhi-Min; Cheng, Hong-Yan; Feng, Yuee; Li, Hai-Hong; Dai, Qiong-Lin; Yang, Jun-Zhong
2018-04-01
Chimera states consisting of spatially coherent and incoherent domains have been observed in different topologies such as rings, spheres, and complex networks. In this paper, we investigate bipartite networks of nonlocally coupled FitzHugh-Nagumo (FHN) oscillators in which the units are allocated evenly to two layers, and FHN units interact with each other only when they are in different layers. We report the existence of chimera states in bipartite networks. Owing to the interplay between chimera states in the two layers, many types of chimera states such as in-phase chimera states, antiphase chimera states, and out-of-phase chimera states are classified. Stability diagrams of several typical chimera states in the coupling strength-coupling radius plane, which show strong multistability of chimera states, are explored.
Bifurcation and Nonlinear Oscillations.
1980-09-28
Structural stability and bifurcation theory. pp. 549-560 in Dinamical Systems (Ed. MI. Peixoto), Academic Press, 1973. [211 J. Sotomayor, Generic one...Dynamical Systems Brown University ELECTP" 71, Providence, R. I. 02912 1EC 2 4 1980j //C -*)’ Septabe-4., 1980 / -A + This research was supported in...problems are discussed. The first one deals with the characterization of the flow for a periodic planar system which is the perturbation of an autonomous
International Nuclear Information System (INIS)
Belendez, A.; Belendez, T.; Neipp, C.; Hernandez, A.; Alvarez, M.L.
2009-01-01
The homotopy perturbation method is used to solve the nonlinear differential equation that governs the nonlinear oscillations of a system typified as a mass attached to a stretched elastic wire. The restoring force for this oscillator has an irrational term with a parameter λ that characterizes the system (0 ≤ λ ≤ 1). For λ = 1 and small values of x, the restoring force does not have a dominant term proportional to x. We find this perturbation method works very well for the whole range of parameters involved, and excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Only one iteration leads to high accuracy of the solutions and the maximal relative error for the approximate frequency is less than 2.2% for small and large values of oscillation amplitude. This error corresponds to λ = 1, while for λ < 1 the relative error is much lower. For example, its value is as low as 0.062% for λ = 0.5.
Molz, F. J.; Faybishenko, B.; Jenkins, E. W.
2012-12-01
Mass and energy fluxes within the soil-plant-atmosphere continuum are highly coupled and inherently nonlinear. The main focus of this presentation is to demonstrate the results of numerical modeling of a system of 4 coupled, nonlinear ordinary differential equations (ODEs), which are used to describe the long-term, rhizosphere processes of soil microbial dynamics, including the competition between nitrogen-fixing bacteria and those unable to fix nitrogen, along with substrate concentration (nutrient supply) and oxygen concentration. Modeling results demonstrate the synchronized patterns of temporal oscillations of competing microbial populations, which are affected by carbon and oxygen concentrations. The temporal dynamics and amplitude of the root exudation process serve as a driving force for microbial and geochemical phenomena, and lead to the development of the Gompetzian dynamics, synchronized oscillations, and phase-space attractors of microbial populations and carbon and oxygen concentrations. The nonlinear dynamic analysis of time series concentrations from the solution of the ODEs was used to identify several types of phase-space attractors, which appear to be dependent on the parameters of the exudation function and Monod kinetic parameters. This phase space analysis was conducted by means of assessing the global and local embedding dimensions, correlation time, capacity and correlation dimensions, and Lyapunov exponents of the calculated model variables defining the phase space. Such results can be used for planning experimental and theoretical studies of biogeochemical processes in the fields of plant nutrition, phyto- and bio-remediation, and other ecological areas.
Ananthakrishnan, Palaniswamy
2012-11-01
The problem is of practical relevance in determining the motion response of multi-hull and air-cushion vehicles in high seas and in littoral waters. The linear inviscid problem without surface pressure has been well studied in the past. In the present work, the nonlinear wave-body interaction problem is solved using finite-difference methods based on boundary-fitted coordinates. The inviscid nonlinear problem is tackled using the mixed Eulerian-Lagrangian formulation and the solution of the incompressible Navier-Stokes equations governing the viscous problem using a fractional-step method. The pressure variation in the air cushion is modeled using the isentropic gas equation pVγ = Constant. Results show that viscosity and free-surface nonlinearity significantly affect the hydrodynamic force and the wave motion at the resonant Helmholtz frequency (at which the primary wave motion is the vertical oscillation of the mean surface in between the bodies). Air compressibility suppresses the Helmholtz oscillation and enhances the wave radiation. Work supported by the ONR under the grant N00014-98-1-0151.
Kashyap, Rahul; Westley, Alexandra; Sen, Surajit
The Duffing oscillator, a nonlinear oscillator with a potential energy with both quadratic and cubic terms, is known to show highly chaotic solutions in certain regions of its parameter space. Here, we examine the behaviors of small chains of harmonically and anharmonically coupled Duffing oscillators and show that these chains exhibit localized nonlinear excitations (LNEs) similar to the ones seen in the Fermi-Pasta-Ulam-Tsingou (FPUT) system. These LNEs demonstrate properties such as long-time energy localization, high periodicity, and slow energy leaking which rapidly accelerates upon frequency matching with the adjacent particles all of which have been observed in the FPUT system. Furthermore, by examining bifurcation diagrams, we will show that many qualitative properties of this system during the transition from weakly to strongly nonlinear behavior depend directly upon the frequencies associated with the individual Duffing oscillators.
A memristor-based third-order oscillator: beyond oscillation
Talukdar, Abdul Hafiz Ibne
2012-10-06
This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.
A memristor-based third-order oscillator: beyond oscillation
Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.
2012-01-01
This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.
Energy Technology Data Exchange (ETDEWEB)
Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it [Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy); Center for Mind/Brain Sciences, University of Trento, Trento (Italy); Chiesa, Pietro; Tabarelli, Davide; Jovicich, Jorge [Center for Mind/Brain Sciences, University of Trento, Trento (Italy); D' Incerti, Ludovico [Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)
2015-03-15
In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D{sub 2}), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.
International Nuclear Information System (INIS)
Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; Jovicich, Jorge; D'Incerti, Ludovico
2015-01-01
In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D 2 ), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes
Oden, Jérémy; Lavrov, Roman; Chembo, Yanne K.; Larger, Laurent
2017-11-01
We propose a chaos communication scheme based on a chaotic optical phase carrier generated with an optoelectronic oscillator with nonlinear time-delay feedback. The system includes a dedicated non-local nonlinearity, which is a customized three-wave imbalanced interferometer. This particular feature increases the complexity of the chaotic waveform and thus the security of the transmitted information, as these interferometers are characterized by four independent parameters which are part of the secret key for the chaos encryption scheme. We first analyze the route to chaos in the system, and evidence a sequence of period doubling bifurcations from the steady-state to fully developed chaos. Then, in the chaotic regime, we study the synchronization between the emitter and the receiver, and achieve chaotic carrier cancellation with a signal-to-noise ratio up to 20 dB. We finally demonstrate error-free chaos communications at a data rate of 3 Gbit/s.
Oden, Jérémy; Lavrov, Roman; Chembo, Yanne K; Larger, Laurent
2017-11-01
We propose a chaos communication scheme based on a chaotic optical phase carrier generated with an optoelectronic oscillator with nonlinear time-delay feedback. The system includes a dedicated non-local nonlinearity, which is a customized three-wave imbalanced interferometer. This particular feature increases the complexity of the chaotic waveform and thus the security of the transmitted information, as these interferometers are characterized by four independent parameters which are part of the secret key for the chaos encryption scheme. We first analyze the route to chaos in the system, and evidence a sequence of period doubling bifurcations from the steady-state to fully developed chaos. Then, in the chaotic regime, we study the synchronization between the emitter and the receiver, and achieve chaotic carrier cancellation with a signal-to-noise ratio up to 20 dB. We finally demonstrate error-free chaos communications at a data rate of 3 Gbit/s.
Elwakil, Ahmed S.; Ozoguz, Serdar; Salama, Khaled N.
2009-01-01
model for the two oscillators is derived and verified numerically. Spice simulations using AMS BiCMOS 0.35 μ model parameters and experimental results are shown. Copyright © 2009 John Wiley & Sons, Ltd.
Norris, G; McConnell, G
2010-03-01
A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm(2) (corresponding to 3.55 GW/cm(2) from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm(2), without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.
The colpitts oscillator family
DEFF Research Database (Denmark)
Lindberg, Erik; Murali, K.; Tamasevicius, A.
A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...
Energy Technology Data Exchange (ETDEWEB)
Blaquiere, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1961-07-01
The author completes the two-parameter diagram theory which he has previously explained, by giving a geometric criterion of stability for a non-linear system under forced conditions. After two simple geometric transformations of the diagram he obtains the separators which are the boundary conditions for the zones of stability. (author) [French] L'auteur complete la theorie du diagramme a deux parametres, qu'il a anterieurement exposee, par l'enonce d'un critere geometrique de stabilite, relatif aux regimes forces d'un systeme non lineaire. Il obtient, par deux transformations geometriques simples du diagramme, les separatrices qui delimitent les zones de stabilite. (auteur)
Ge, Li; Zhao, Nan
2018-04-01
We study the coherence dynamics of a qubit coupled to a harmonic oscillator with both linear and quadratic interactions. As long as the linear coupling strength is much smaller than the oscillator frequency, the long time behavior of the coherence is dominated by the quadratic coupling strength g 2. The coherence decays and revives at a period , with the width of coherence peak decreasing as the temperature increases, hence providing a way to measure g 2 precisely without cooling. Unlike the case of linear coupling, here the coherence dynamics never reduces to the classical limit in which the oscillator is classical. Finally, the validity of linear coupling approximation is discussed and the coherence under Hahn-echo is evaluated.
International Nuclear Information System (INIS)
Barz, Kay
2010-01-01
In this work experimental techniques for characterization of ferroelectric nm-thin films and ferroelectric/semiconductor structures by means of nonlinear phenomena are discussed. The thin film sample is applied in a series resonant circuit. By recording time series data and amplitude-frequency-characteristics (resonance frequency shift), the nonlinear behavior can be analyzed with respect to the theoretical aspects of these effects in the framework of nonlinear dynamics. The evolving ferroelectric hysteresis is represented by the amplitude-frequency-characteristic in a very detailed form. Interpretations are presented on how transient alterations like fatigue or retention loss, affect the amplitude-frequency-characteristics. Time series analysis allows to separate the specific influence of the nonlinear components and their corresponding time constants. The work closes with suggestions for a systematic application of the presented techniques for an extended characterization of ferroelectric thin films. (orig.)
International Nuclear Information System (INIS)
Ji, J.C.; Zhang, N.
2009-01-01
Non-resonant bifurcations of codimension two may appear in the controlled van der Pol-Duffing oscillator when two critical time delays corresponding to a double Hopf bifurcation have the same value. With the aid of centre manifold theorem and the method of multiple scales, the non-resonant response and two types of primary resonances of the forced van der Pol-Duffing oscillator at non-resonant bifurcations of codimension two are investigated by studying the possible solutions and their stability of the four-dimensional ordinary differential equations on the centre manifold. It is shown that the non-resonant response of the forced oscillator may exhibit quasi-periodic motions on a two- or three-dimensional (2D or 3D) torus. The primary resonant responses admit single and mixed solutions and may exhibit periodic motions or quasi-periodic motions on a 2D torus. Illustrative examples are presented to interpret the dynamics of the controlled system in terms of two dummy unfolding parameters and exemplify the periodic and quasi-periodic motions. The analytical predictions are found to be in good agreement with the results of numerical integration of the original delay differential equation.
Nature's Autonomous Oscillators
Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.
2012-01-01
Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.
International Nuclear Information System (INIS)
Kovacic, Ivana
2009-01-01
An analytical approach to determine the approximate solution for the periodic motion of non-conservative oscillators with a fractional-order restoring force and slowly varying parameters is presented. The solution has the form of the first-order differential equation for the amplitude and phase of motion. The method used is based on the combination of the Krylov-Bogoliubov method with Hamilton's variational principle with the uncommutative rule for the variation of velocity. The conservative systems with slowly varying parameters are also considered. The corresponding adiabatic invariant is obtained. Two examples are given to illustrate derived theoretical results.
Momeni, F.; Naderi, M. H.
2018-05-01
In this paper, we study theoretically a hybrid optomechanical system consisting of a degenerate optical parametric amplifier inside a driven optical cavity with a moving end mirror which is modeled as a stiffening Duffing-like anharmonic quantum mechanical oscillator. By providing analytical expressions for the critical values of the system parameters corresponding to the emergence of the multistability behavior in the steady-state response of the system, we show that the stiffening mechanical Duffing anharmonicity reduces the width of the multistability region while the optical parametric nonlinearity can be exploited to drive the system toward the multistability region. We also show that for appropriate values of the mechanical anharmonicity strength the steady-state mechanical squeezing and the ground-state cooling of the mechanical resonator can be achieved. Moreover, we find that the presence of the nonlinear gain medium can lead to the improvement of the mechanical anharmonicity-induced cooling of the mechanical motion, as well as to the mechanical squeezing beyond the standard quantum limit of 3 dB.
Demekhov, A. G.
2017-03-01
By using numerical simulations we generalize certain relationships between the parameters of quasimonochromatic whistler-mode waves generated at the linear and nonlinear stages of the cyclotron instability in the backward-wave oscillator regime. One of these relationships is between the wave amplitude at the nonlinear stage and the linear growth rate of the cyclotron instability. It was obtained analytically by V.Yu.Trakhtengerts (1984) for a uniform medium under the assumption of constant frequency and amplitude of the generated wave. We show that a similar relationship also holds for the signals generated in a nonuniform magnetic field and having a discrete structure in the form of short wave packets (elements) with fast frequency drift inside each element. We also generalize the formula for the linear growth rate of absolute cyclotron instability in a nonuniform medium and analyze the relationship between the frequency drift rate in the discrete elements and the wave amplitude. These relationships are important for analyzing the links between the parameters of chorus emissions in the Earth's and planetary magnetospheres and the characteristics of the energetic charged particles generating these signals.
On the New Scenario of Annihilation of the Cross-Well Chaotic Attractor in a Nonlinear Oscillator
International Nuclear Information System (INIS)
Szemplinska, W.; Zubrzycki, A.; Tyrkiel, E.
1999-01-01
The twin-well potential Duffing oscillator is considered and the investigations are focused on a new scenario of destruction of the cross-well chaotic attractor. The new phenomenon belongs to the category of subduction bifurcation and consists in replacement of the cross-well chaotic attractor by a pair of unsymmetric 2T-periodic attractors. It is shown that the new scenario forms a transition zone in the system control parameter plane, the zone, which separates the two known scenarios of annihilation of the cross-well chaotic attractor: the boundary crisis, and the subduction in which the two single-well T-periodic attractors are born in a saddle-node bifurcation. (author)
Haimovich, Ory; Oron, Alexander
2013-05-01
The nonlinear dynamics of a thin axisymmetric liquid film on a horizontal cylindrical substrate subjected to an axial double-frequency forcing that consists of two components of different amplitudes and frequencies and a possible phase shift is considered in this paper. A nonlinear evolution equation governing the spatiotemporal dynamics of the film interface has been derived in the long-wave limit. Similar to the case of a single-frequency forcing considered in our earlier work, there exists a critical forcing amplitude below which the film undergoes a long-time capillary rupture typical for a static cylinder, whereas above it the film remains continuous. We find that it is possible to arrest the rupture even if the forcing parameters of each of the two components correspond separately to the domain where rupture takes place. It is shown that the critical forcing amplitude is easily determined via a single-frequency case when the two forcing frequencies are equal. In the case of different forcing amplitudes and frequencies, the variation of the critical forcing amplitude as a function of the frequency ratio exhibits a unique behavior displaying the emergence of spikes. A related case of an amplitude-modulated single-frequency forcing is also addressed here. For a sufficiently small frequency of the amplitude modulation, a significant increase of the pattern amplitude is observed. In the case of commensurate forcing frequencies, the flow is found to be quasiperiodic.
DEFF Research Database (Denmark)
Hjorth, Poul G.
2008-01-01
We discuss nonlinear mechanical systems containing several oscillators whose frequecies are all much higher than frequencies associated with the remaining degrees of freedom. In this situation a near constant of the motion, an adiabatic invariant, exists which is the sum of all the oscillator...... actions. The phenomenon is illustrated, and calculations of the small change of the adiabatic invariant is outlined....
Directory of Open Access Journals (Sweden)
Bin Guo
2016-03-01
Full Text Available Changes in precipitation could have crucial influences on the regional water resources in arid regions such as Xinjiang. It is necessary to understand the intrinsic multi-scale variations of precipitation in different parts of Xinjiang in the context of climate change. In this study, based on precipitation data from 53 meteorological stations in Xinjiang during 1960–2012, we investigated the intrinsic multi-scale characteristics of precipitation variability using an adaptive method named ensemble empirical mode decomposition (EEMD. Obvious non-linear upward trends in precipitation were found in the north, south, east and the entire Xinjiang. Changes in precipitation in Xinjiang exhibited significant inter-annual scale (quasi-2 and quasi-6 years and inter-decadal scale (quasi-12 and quasi-23 years. Moreover, the 2–3-year quasi-periodic fluctuation was dominant in regional precipitation and the inter-annual variation had a considerable effect on the regional-scale precipitation variation in Xinjiang. We also found that there were distinctive spatial differences in variation trends and turning points of precipitation in Xinjiang. The results of this study indicated that compared to traditional decomposition methods, the EEMD method, without using any a priori determined basis functions, could effectively extract the reliable multi-scale fluctuations and reveal the intrinsic oscillation properties of climate elements.
Guo, Bin; Chen, Zhongsheng; Guo, Jinyun; Liu, Feng; Chen, Chuanfa; Liu, Kangli
2016-03-21
Changes in precipitation could have crucial influences on the regional water resources in arid regions such as Xinjiang. It is necessary to understand the intrinsic multi-scale variations of precipitation in different parts of Xinjiang in the context of climate change. In this study, based on precipitation data from 53 meteorological stations in Xinjiang during 1960-2012, we investigated the intrinsic multi-scale characteristics of precipitation variability using an adaptive method named ensemble empirical mode decomposition (EEMD). Obvious non-linear upward trends in precipitation were found in the north, south, east and the entire Xinjiang. Changes in precipitation in Xinjiang exhibited significant inter-annual scale (quasi-2 and quasi-6 years) and inter-decadal scale (quasi-12 and quasi-23 years). Moreover, the 2-3-year quasi-periodic fluctuation was dominant in regional precipitation and the inter-annual variation had a considerable effect on the regional-scale precipitation variation in Xinjiang. We also found that there were distinctive spatial differences in variation trends and turning points of precipitation in Xinjiang. The results of this study indicated that compared to traditional decomposition methods, the EEMD method, without using any a priori determined basis functions, could effectively extract the reliable multi-scale fluctuations and reveal the intrinsic oscillation properties of climate elements.
International Nuclear Information System (INIS)
Yoshimura, H.
1979-01-01
A new dynamical model of the solar cycle has predicted that the cycle should have a hysteretic nature: the behavior of each 11 year cycle should depend on previous cycles. In the light of this new understanding of the dynamical mechanism of the solar cycle, Waldmeier's (hypothetical) law was examined as a yet unexplained characteristic of the cycle by studying the observed sunspot frequency curve. Contrary to this hypothetical law, however, it was found that sunspot cycle curves did not form a single-parameter family characterized by the maximum amplitude of the cycle. The evolutionary trajectories in period-amplitude phase space verified the hysteretic nature of the observed cycle and revealed long-term (55 year instead of the previously claimed 80 year) periodic modulations, called here 55 year grand cycles. Each 55 year grand cycle forms a loop in the phase space, and the characteristics of each 11 year cycle depend on its position in the ascending or descending phase of the grand cycle. This new law was analyzed by the nonlinear multiple-period dynamo oscillation model which has predicted the hysteretic nature. The era from cycle 11 to cycle 15 turned out to be an anomalous one characterized by alternating amplitudes for odd and even cycles. Cycles 16--20 seem to constitute one grand cycle. If this is true, cycle 21 would be the beginning of another grand maximum and the model predicts that its duration would be short
Fox, William
2012-01-01
The purpose of our modeling effort is to predict future outcomes. We assume the data collected are both accurate and relatively precise. For our oscillating data, we examined several mathematical modeling forms for predictions. We also examined both ignoring the oscillations as an important feature and including the oscillations as an important…
Hanamura, Eiichi; Yamanaka, Akio
2007-01-01
This graduate-level textbook gives an introductory overview of the fundamentals of quantum nonlinear optics. Based on the quantum theory of radiation, Quantum Nonlinear Optics incorporates the exciting developments in novel nonlinear responses of materials (plus laser oscillation and superradiance) developed over the past decade. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, mutual manipulation of light and matter, laser oscillation, dynamics of light, nonlinear optical response, and nonlinear spectroscopy, as well as ultrashort and ultrastrong laser pulse. Also considered are Q-switching, mode locking and pulse compression. Experimental and theoretical aspects are intertwined throughout.
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
Author Affiliations. Lin Xiao-Gang1 Liu Wen-Jun2 Lei Ming2. Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing, China; School of Science, Beijing University of Posts and Telecommunications, P.O. Box 122, Beijing 100876, China ...
Oscillators and operational amplifiers
Lindberg, Erik
2005-01-01
A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation of the general circuit is derived. The dynamic nonlinear transfer characteristic of the amplifier is investigated. Examples of negative resistance oscillators are discussed.
Energy Technology Data Exchange (ETDEWEB)
Blacher, S; Perdang, J [Institut d' Astrophysique, B-4200 Cointe-Ougree (Belgium)
1981-09-01
A numerical experiment on Hamiltonian oscillations demonstrates the existence of chaotic motions which satisfy the property of phase coherence. It is observed that the low-frequency end of the power spectrum of such motions is remarkably similar in structure to the low-frequency SCLERA spectra. Since the smallness of the observed solar amplitudes is not a sufficient mathematical ground for inefficiency of non-linear effects the possibility of chaos among solar oscillations cannot be discarded a priori.
International Nuclear Information System (INIS)
Chedjou, Jean Chamberlain; Kyamakya, Kyandoghere
2010-01-01
It is well known that a machine vision-based analysis of a dynamic scene, for example in the context of advanced driver assistance systems (ADAS), does require real-time processing capabilities. Therefore, the system used must be capable of performing both robust and ultrafast analyses. Machine vision in ADAS must fulfil the above requirements when dealing with a dynamically changing visual context (i.e. driving in darkness or in a foggy environment, etc). Among the various challenges related to the analysis of a dynamic scene, this paper focuses on contrast enhancement, which is a well-known basic operation to improve the visual quality of an image (dynamic or static) suffering from poor illumination. The key objective is to develop a systematic and fundamental concept for image contrast enhancement that should be robust despite a dynamic environment and that should fulfil the real-time constraints by ensuring an ultrafast analysis. It is demonstrated that the new approach developed in this paper is capable of fulfilling the expected requirements. The proposed approach combines the good features of the 'coupled oscillators'-based signal processing paradigm with the good features of the 'cellular neural network (CNN)'-based one. The first paradigm in this combination is the 'master system' and consists of a set of coupled nonlinear ordinary differential equations (ODEs) that are (a) the so-called 'van der Pol oscillator' and (b) the so-called 'Duffing oscillator'. It is then implemented or realized on top of a 'slave system' platform consisting of a CNN-processors platform. An offline bifurcation analysis is used to find out, a priori, the windows of parameter settings in which the coupled oscillator system exhibits the best and most appropriate behaviours of interest for an optimal resulting image processing quality. In the frame of the extensive bifurcation analysis carried out, analytical formulae have been derived, which are capable of determining the various
Stochastic multiresonance in coupled excitable FHN neurons
Li, Huiyan; Sun, Xiaojuan; Xiao, Jinghua
2018-04-01
In this paper, effects of noise on Watts-Strogatz small-world neuronal networks, which are stimulated by a subthreshold signal, have been investigated. With the numerical simulations, it is surprisingly found that there exist several optimal noise intensities at which the subthreshold signal can be detected efficiently. This indicates the occurrence of stochastic multiresonance in the studied neuronal networks. Moreover, it is revealed that the occurrence of stochastic multiresonance has close relationship with the period of subthreshold signal Te and the noise-induced mean period of the neuronal networks T0. In detail, we find that noise could induce the neuronal networks to generate stochastic resonance for M times if Te is not very large and falls into the interval ( M × T 0 , ( M + 1 ) × T 0 ) with M being a positive integer. In real neuronal system, subthreshold signal detection is very meaningful. Thus, the obtained results in this paper could give some important implications on detecting subthreshold signal and propagating neuronal information in neuronal systems.
Nonlinear Waves in Complex Systems
DEFF Research Database (Denmark)
2007-01-01
The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations, it is the ......The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations...
Autonomous third-order duffing-holmes type chaotic oscillator
DEFF Research Database (Denmark)
Lindberg, Erik; Tamaseviciute, E; Mykolaitis, G
2009-01-01
feedback loop. In contrast to many other autonomous chaotic oscillators, including linear unstable resonators and nonlinear damping loops, the novel circuit is based on nonlinear resonator and linear damping loop in the negative feedback. SPICE simulation and hardware experimental investigations...
Divya, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.
2014-08-01
TiN nanoparticles of average size 55 nm were investigated for their optical non-linear properties. During the experiment the irradiated laser wavelength coincided with the surface plasmon resonance (SPR) peak of the nanoparticle. The large non-linearity of the nanoparticle was attributed to the plasmon resonance, which largely enhanced the local field within the nanoparticle. Both open and closed aperture Z-scan experiments were performed and the corresponding optical constants were explored. The post-excitation absorption spectra revealed the interesting phenomenon of photo fragmentation leading to the blue shift in band gap and red shift in the SPR. The results are discussed in terms of enhanced interparticle interaction simultaneous with size reduction. Here, the optical constants being intrinsic constants for a particular sample change unusually with laser power intensity. The dependence of χ(3) is discussed in terms of the size variation caused by photo fragmentation. The studies proved that the TiN nanoparticles are potential candidates in photonics technology offering huge scope to study unexplored research for various expedient applications.
State space modeling of Memristor-based Wien oscillator
Talukdar, Abdul Hafiz Ibne
2011-12-01
State space modeling of Memristor based Wien \\'A\\' oscillator has been demonstrated for the first time considering nonlinear ion drift in Memristor. Time dependant oscillating resistance of Memristor is reported in both state space solution and SPICE simulation which plausibly provide the basis of realizing parametric oscillation by Memristor based Wien oscillator. In addition to this part Memristor is shown to stabilize the final oscillation amplitude by means of its nonlinear dynamic resistance which hints for eliminating diode in the feedback network of conventional Wien oscillator. © 2011 IEEE.
State space modeling of Memristor-based Wien oscillator
Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.
2011-01-01
State space modeling of Memristor based Wien 'A' oscillator has been demonstrated for the first time considering nonlinear ion drift in Memristor. Time dependant oscillating resistance of Memristor is reported in both state space solution and SPICE simulation which plausibly provide the basis of realizing parametric oscillation by Memristor based Wien oscillator. In addition to this part Memristor is shown to stabilize the final oscillation amplitude by means of its nonlinear dynamic resistance which hints for eliminating diode in the feedback network of conventional Wien oscillator. © 2011 IEEE.
International Nuclear Information System (INIS)
McNeill, G.A.
1981-01-01
Present high-speed data acquisition systems in nuclear diagnostics use high-frequency oscillators to provide timing references for signals recorded on fast, traveling-wave oscilloscopes. An oscillator's sinusoidal wave shape is superimposed on the recorded signal with each cycle representing a fixed time increment. During data analysis the sinusoid is stripped from the signal, leaving a clean signal shape with known timing. Since all signal/time relationships are totally dependant upon working oscillators, these critical devices must have remote verification of proper operation. This manual presents the newly-developed oscillator monitor which will provide the required verification
The charged bubble oscillator: Dynamics and thresholds
Indian Academy of Sciences (India)
The nonlinear, forced oscillations of a bubble in a fluid due to an external pressure field are studied theoretically. ... for the system, delineating different dynamics. Keywords. ..... (c) Power spectral density of the charged and uncharged bub-.
International Nuclear Information System (INIS)
Ferkous, F.; Saihi, Y.
2018-01-01
Quantitative structure-activity relationships were constructed for 107 inhibitors of HIV-1 reverse transcriptase that are derivatives of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT). A combination of a support vector machine (SVM) and oscillating search (OS) algorithms for feature selection was adopted to select the most appropriate descriptors. The application was optimized to obtain an SVM model to predict the biological activity EC50 of the HEPT derivatives with a minimum number of descriptors (SpMax4 B h (e) MLOGP MATS5m) and high values of R2 and Q2 (0.8662, 0.8769). The statistical results showed good correlation between the activity and three best descriptors were included in the best SVM model. The values of R2 and Q2 confirmed the stability and good predictive ability of the model. The SVM technique was adequate to produce an effective QSAR model and outperformed those in the literature and the predictive stages for the inhibitory activity of reverse transcriptase by HEPT derivatives. (author)
Lites, B.W.; Rutten, R.J.; Thomas, J.H.
1995-01-01
We show results from SO/Sacramento Peak data to discuss three issues: (i)--the spatial occurrence of chromospheric 3--min oscillations; (ii)--the validity of Ca II H&K line-center Doppler Shift measurements; (iii)--the signi ?cance of oscillation power and phase at frequencies above 10 mHz.
Energy Technology Data Exchange (ETDEWEB)
Yuce, C [Physics Department, Anadolu University, Eskisehir (Turkey); Kilic, A [Physics Department, Anadolu University, Eskisehir (Turkey); Coruh, A [Physics Department, Sakarya University, Sakarya (Turkey)
2006-07-15
The inverted harmonic oscillator problem is investigated quantum mechanically. The exact wavefunction for the confined inverted oscillator is obtained and it is shown that the associated energy eigenvalues are discrete, and the energy is given as a linear function of the quantum number n.
Coupled oscillators with parity-time symmetry
Energy Technology Data Exchange (ETDEWEB)
Tsoy, Eduard N., E-mail: etsoy@uzsci.net
2017-02-05
Different models of coupled oscillators with parity-time (PT) symmetry are studied. Hamiltonian functions for two and three linear oscillators coupled via coordinates and accelerations are derived. Regions of stable dynamics for two coupled oscillators are obtained. It is found that in some cases, an increase of the gain-loss parameter can stabilize the system. A family of Hamiltonians for two coupled nonlinear oscillators with PT-symmetry is obtained. An extension to high-dimensional PT-symmetric systems is discussed. - Highlights: • A generalization of a Hamiltonian system of linear coupled oscillators with the parity-time (PT) symmetry is suggested. • It is found that an increase of the gain-loss parameter can stabilize the system. • A family of Hamiltonian functions for two coupled nonlinear oscillators with PT-symmetry is obtained.
Discontinuous Spirals of Stable Periodic Oscillations
DEFF Research Database (Denmark)
Sack, Achim; Freire, Joana G.; Lindberg, Erik
2013-01-01
We report the experimental discovery of a remarkable organization of the set of self-generated periodic oscillations in the parameter space of a nonlinear electronic circuit. When control parameters are suitably tuned, the wave pattern complexity of the periodic oscillations is found to increase...
Phase-locked Josephson soliton oscillators
DEFF Research Database (Denmark)
Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.
1991-01-01
Detailed experimental characterization of the phase-locking at both DC and at microwave frequencies is presented for two closely spaced Josephson soliton (fluxon) oscillators. In the phase-locked state, the radiated microwave power exhibited an effective gain. With one common bias source......, a frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. The interacting soliton oscillators were modeled by two inductively coupled nonlinear transmission lines...
Prediction of pilot induced oscillations
Directory of Open Access Journals (Sweden)
Valentin PANĂ
2011-03-01
Full Text Available An important problem in the design of flight-control systems for aircraft under pilotedcontrol is the determination of handling qualities and pilot-induced oscillations (PIO tendencieswhen significant nonlinearities exist in the vehicle description. The paper presents a method to detectpossible pilot-induced oscillations of Category II (with rate and position limiting, a phenomenonusually due to a misadaptation between the pilot and the aircraft response during some tasks in whichtight closed loop control of the aircraft is required from the pilot. For the analysis of Pilot in the LoopOscillations an approach, based on robust stability analysis of a system subject to uncertainparameters, is proposed. In this analysis the nonlinear elements are substituted by linear uncertainparameters. This approach assumes that PIO are characterized by a limit cycle behavior.
Linear and nonlinear piezoelectric shunting strategies for vibration mitigation
Directory of Open Access Journals (Sweden)
Soltani P.
2014-01-01
Full Text Available This paper studies linear and nonlinear piezoelectric vibration absorbers that are designed based on the equal-peak method. A comparison between the performance of linear mechanical and electrical tuned vibration absorbers coupled to a linear oscillator is first performed. Nonlinearity is then introduced in the primary oscillator to which a new nonlinear electrical tuned vibration absorber is attached. Despite the frequency-energy dependence of nonlinear oscillations, we show that the nonlinear absorber is capable of effectively mitigating the vibrations of the nonlinear primary system in a large range of forcing amplitudes.
Indian Academy of Sciences (India)
IMTECH),. Chandigarh. Praveen Kumar is pursuing his PhD in chemical dynamics at. Panjab University,. Chandigarh. Keywords. Chemical oscillations, autoca-. talYSis, Lotka-Volterra model, bistability, hysteresis, Briggs-. Rauscher reaction.
Indian Academy of Sciences (India)
the law of mass-action that every simple reaction approaches ... from thermodynamic equilibrium. Such oscillating systems cor- respond to thermodynamically open systems. .... experimentally observable, and the third is always unstable.
Oscillators - an approach for a better understanding
DEFF Research Database (Denmark)
Lindberg, Erik
2003-01-01
The aim of this tutorial is to provide an electronic engineer knowledge and insight for a better understanding of the mechanisms behind the behaviour of electronic oscillators. A linear oscillator is a mathematical fiction which can only be used as a starting point for the design of a real...... oscillator based on the Barkhausen criteria. Statements in textbooks and papers saying that the nonlinearities are bringing back the poles to the imaginary axis are wrong. The concept of "frozen eigenvalues" is introduced by means of piece-wise-linear modelling of the nonlinear components which are necessary...
Andronov, Aleksandr Aleksandrovich; Vitt, Aleksandr Adolfovich
1966-01-01
Theory of Oscillators presents the applications and exposition of the qualitative theory of differential equations. This book discusses the idea of a discontinuous transition in a dynamic process. Organized into 11 chapters, this book begins with an overview of the simplest type of oscillatory system in which the motion is described by a linear differential equation. This text then examines the character of the motion of the representative point along the hyperbola. Other chapters consider examples of two basic types of non-linear non-conservative systems, namely, dissipative systems and self-
The Duffing oscillator with damping
DEFF Research Database (Denmark)
Johannessen, Kim
2015-01-01
An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term...... of the differential equation is allowed to be considerable compared to the linear term. The solution is expressed in terms of the Jacobi elliptic functions by including a parameter-dependent elliptic modulus. The analytical solution is compared to the numerical solution, and the agreement is found to be very good....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....
Neuromorphic computing with nanoscale spintronic oscillators.
Torrejon, Jacob; Riou, Mathieu; Araujo, Flavio Abreu; Tsunegi, Sumito; Khalsa, Guru; Querlioz, Damien; Bortolotti, Paolo; Cros, Vincent; Yakushiji, Kay; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, Mark D; Grollier, Julie
2017-07-26
Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 10 8 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals and several candidates, including memristive and superconducting oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction) can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.
Flutter analysis of an airfoil with multiple nonlinearities and uncertainties
Directory of Open Access Journals (Sweden)
Haitao Liao
2013-09-01
Full Text Available An original method for calculating the limit cycle oscillations of nonlinear aero-elastic system is presented. The problem of determining the maximum vibration amplitude of limit cycle is transformed into a nonlinear optimization problem. The harmonic balance method and the Floquet theory are selected to construct the general nonlinear equality and inequality constraints. The resulting constrained maximization problem is then solved by using the MultiStart algorithm. Finally, the proposed approach is validated and used to analyse the limit cycle oscillations of an airfoil with multiple nonlinearities and uncertainties. Numerical examples show that the coexistence of multiple nonlinearities may lead to low amplitude limit cycle oscillation.
Driven, autoresonant three-oscillator interactions
International Nuclear Information System (INIS)
Yaakobi, O.; Friedland, L.; Henis, Z.
2007-01-01
An efficient control scheme of resonant three-oscillator interactions using an external chirped frequency drive is suggested. The approach is based on formation of a double phase-locked (autoresonant) state in the system, as the driving oscillation passes linear resonance with one of the interacting oscillators. When doubly phase locked, the amplitudes of the oscillators increase with time in proportion to the driving frequency deviation from the linear resonance. The stability of this phase-locked state and the effects of dissipation and of the initial three-oscillator frequency mismatch on the autoresonance are analyzed. The associated autoresonance threshold phenomenon in the driving amplitude is also discussed. In contrast to other nonlinear systems, driven, autoresonant three-oscillator excitations are independent of the sign of the driving frequency chirp rate
Effect of boundary on controlled memristor-based oscillator
Fouda, Mohamed E.
2012-10-01
Recently, the applications of memristors have spread into many fields and especially in the circuit theory. Many models have been proposed for the HP-memristor based on the window functions. In this paper, we introduce a complete mathematical analysis of the controlled reactance-less oscillator for two different window functions of Joglekar\\'s model (linear and nonlinear dopant drift) to discuss the effect of changing the window function on the oscillator\\'s behavior. The generalized necessary and sufficient conditions based on the circuit elements and control voltages for both the linear and nonlinear models are introduced. Moreover, closed form expressions for the oscillation frequency and duty cycle are derived for these models and verified using PSPICE simulations showing an excellent matching. Finally a comparison between the linear and nonlinear models which shows their effect on the oscillation frequency and conditions of oscillation is introduced. © 2012 IEEE.
Waves and Oscillations in Plasmas
Pecseli, Hans L
2012-01-01
The result of more than 15 years of lectures in plasma sciences presented at universities in Denmark, Norway, and the United States, Waves and Oscillations in Plasmas addresses central issues in modern plasma sciences. The book covers fluid models as well as kinetic plasma models, including a detailed discussion of, for instance, collisionless Landau damping. Offering a clear separation of linear and nonlinear models, the book can be tailored for readers of varying levels of expertise.Designed to provide basic training in linear as well as nonlinear plasma dynamics, and practical in areas as d
A minimal model for a slow pacemaking neuron
International Nuclear Information System (INIS)
Zakharov, D.G.; Kuznetsov, A.
2012-01-01
Highlights: ► We have constructed a phenomenological model for slow pacemaking neurons. ► The model implements a nonlinearity introduced by an ion-dependent current. ► The new nonlinear dependence allows for differentiating responses to various stimuli. ► We discuss implications of our results for a broad class of neurons. - Abstract: We have constructed a phenomenological model for slow pacemaking neurons. These are neurons that generate very regular periodic oscillations of the membrane potential. Many of these neurons also differentially respond to various types of stimulation. The model is based on FitzHugh–Nagumo (FHN) oscillator and implements a nonlinearity introduced by a current that depends on an ion concentration. The comparison with the original FHN oscillator has shown that the new nonlinear dependence allows for differentiating responses to various stimuli. We discuss implications of our results for a broad class of neurons.
Williams, John Michael
2000-01-01
The symmetry of the problem of the apparent deficit in upward-going atmospheric muon neutrinos reveals two possible, nonexclusive kinds of solution: Nonlinearity in distance or nonlinearity in angle of observation. Nonlinearity in distance leads to the most popular theory for the atmospheric problem, neutrino flavor oscillations. If the observed deficit is caused by oscillations and not, say, flavor-changing or other weak-force scattering, neutrinos must be massive. But, if flavor oscillation...
OnWien Bridge Oscillators as Modified Multi-vibrators
DEFF Research Database (Denmark)
Lindberg, Erik
2014-01-01
A tutorial introduction to electrical oscilla- tors. Investigating Wien bridge oscillators as modified multi-vibrators. Introducing chaotic behavior into a Wien bridge oscillator by means of adding a simple nonlinear cir- cuit as a load of one of the amplifier input terminals......A tutorial introduction to electrical oscilla- tors. Investigating Wien bridge oscillators as modified multi-vibrators. Introducing chaotic behavior into a Wien bridge oscillator by means of adding a simple nonlinear cir- cuit as a load of one of the amplifier input terminals...
Rayleigh-type parametric chemical oscillation
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Rayleigh-type parametric chemical oscillation.
Ghosh, Shyamolina; Ray, Deb Shankar
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Nonlinearity and nonclassicality in a nanomechanical resonator
Energy Technology Data Exchange (ETDEWEB)
Teklu, Berihu [Clermont Universite, Blaise Pascal University, CNRS, PHOTON-N2, Institut Pascal, Aubiere Cedex (France); Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy); Ferraro, Alessandro; Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Paris, Matteo G.A. [Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy)
2015-12-15
We address quantitatively the relationship between the nonlinearity of a mechanical resonator and the nonclassicality of its ground state. In particular, we analyze the nonclassical properties of the nonlinear Duffing oscillator (being driven or not) as a paradigmatic example of a nonlinear nanomechanical resonator. We first discuss how to quantify the nonlinearity of this system and then show that the nonclassicality of the ground state, as measured by the volume occupied by the negative part of the Wigner function, monotonically increases with the nonlinearity in all the working regimes addressed in our study. Our results show quantitatively that nonlinearity is a resource to create nonclassical states in mechanical systems. (orig.)
Damped nonlinear Schrodinger equation
International Nuclear Information System (INIS)
Nicholson, D.R.; Goldman, M.V.
1976-01-01
High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time
Hyperchaotic circuit with damped harmonic oscillators
DEFF Research Database (Denmark)
Lindberg, Erik; Murali, K.; Tamasevicius, A.
2001-01-01
A simple fourth-order hyperchaotic circuit with damped harmonic oscillators is described. ANP3 and PSpice simulations including an eigenvalue study of the linearized Jacobian are presented together with a hardware implementation. The circuit contains two inductors with series resistance, two ideal...... capacitors and one nonlinear active conductor. The Lyapunov exponents are presented to confirm the hyperchaotic nature of the oscillations of the circuit. The nonlinear conductor is realized with a diode. A negative impedance converter and a linear resistor. The performance of the circuit is investigated...... by means of numerical integration of the appropriate differential equations....
Graf, Rudolf F
1996-01-01
This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing
Study of chaotic oscillations in practical work on radio physics
International Nuclear Information System (INIS)
Ezdov, A.A.; Il'in, V.A.; Petrova, E.B.
1995-01-01
A description is given of a laboratory study of chaotic oscillations in deterministic dynamical systems. This work utilizes mathematical modeling and a computer experiment, as well as a direct study of the chaotic behavior of nonlinear electrical circuits
Monlinear fish-scale metamaterial via coupled duffing oscillators
Kochetov, Bogdan; Tuz, Vladimir; Mladyonov, Pavel; Prosvirnin, Sergey; Kochetova, Lyudmila
2012-01-01
The dynamic system of two coupled Duffing oscillators is considered in order to predict the optical response of the nonlinear planar fish-scale metamaterial. The direct numerical calculation of meta material response confirms the correctness of the proposed model
Modified Legendre Wavelets Technique for Fractional Oscillation Equations
Directory of Open Access Journals (Sweden)
Syed Tauseef Mohyud-Din
2015-10-01
Full Text Available Physical Phenomena’s located around us are primarily nonlinear in nature and their solutions are of highest significance for scientists and engineers. In order to have a better representation of these physical models, fractional calculus is used. Fractional order oscillation equations are included among these nonlinear phenomena’s. To tackle with the nonlinearity arising, in these phenomena’s we recommend a new method. In the proposed method, Picard’s iteration is used to convert the nonlinear fractional order oscillation equation into a fractional order recurrence relation and then Legendre wavelets method is applied on the converted problem. In order to check the efficiency and accuracy of the suggested modification, we have considered three problems namely: fractional order force-free Duffing–van der Pol oscillator, forced Duffing–van der Pol oscillator and higher order fractional Duffing equations. The obtained results are compared with the results obtained via other techniques.
One dimension harmonic oscillator
International Nuclear Information System (INIS)
Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.
1977-01-01
The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr
Power oscillation damping controller
DEFF Research Database (Denmark)
2012-01-01
A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...
International Nuclear Information System (INIS)
Akhiezer, A.I.; Davydov, L.N.; Spol'nik, Z.A.
1976-01-01
Oscillations of a nonideal crystal are studied, in which macroscopic defects (pores) form a hyperlattice. It is shown that alongside with acoustic and optical phonons (relative to the hyperlattice), in such a crystal oscillations of the third type are possible which are a hydridization of sound oscillations of atoms and surface oscillations of a pore. Oscillation spectra of all three types were obtained
NR-code: Nonlinear reconstruction code
Yu, Yu; Pen, Ue-Li; Zhu, Hong-Ming
2018-04-01
NR-code applies nonlinear reconstruction to the dark matter density field in redshift space and solves for the nonlinear mapping from the initial Lagrangian positions to the final redshift space positions; this reverses the large-scale bulk flows and improves the precision measurement of the baryon acoustic oscillations (BAO) scale.
Memcapacitor model and its application in chaotic oscillator with memristor.
Wang, Guangyi; Zang, Shouchi; Wang, Xiaoyuan; Yuan, Fang; Iu, Herbert Ho-Ching
2017-01-01
Memristors and memcapacitors are two new nonlinear elements with memory. In this paper, we present a Hewlett-Packard memristor model and a charge-controlled memcapacitor model and design a new chaotic oscillator based on the two models for exploring the characteristics of memristors and memcapacitors in nonlinear circuits. Furthermore, many basic dynamical behaviors of the oscillator, including equilibrium sets, Lyapunov exponent spectrums, and bifurcations with various circuit parameters, are investigated theoretically and numerically. Our analysis results show that the proposed oscillator possesses complex dynamics such as an infinite number of equilibria, coexistence oscillation, and multi-stability. Finally, a discrete model of the chaotic oscillator is given and the main statistical properties of this oscillator are verified via Digital Signal Processing chip experiments and National Institute of Standards and Technology tests.
A new analytical approximation to the Duffing-harmonic oscillator
International Nuclear Information System (INIS)
Fesanghary, M.; Pirbodaghi, T.; Asghari, M.; Sojoudi, H.
2009-01-01
In this paper, a novel analytical approximation to the nonlinear Duffing-harmonic oscillator is presented. The variational iteration method (VIM) is used to obtain some accurate analytical results for frequency. The accuracy of the results is excellent in the whole range of oscillation amplitude variations.
Oscillators - a simple introduction
DEFF Research Database (Denmark)
Lindberg, Erik
2013-01-01
Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?......Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?...
Oscillation and chaos in physiological control systems.
Mackey, M C; Glass, L
1977-07-15
First-order nonlinear differential-delay equations describing physiological control systems are studied. The equations display a broad diversity of dynamical behavior including limit cycle oscillations, with a variety of wave forms, and apparently aperiodic or "chaotic" solutions. These results are discussed in relation to dynamical respiratory and hematopoietic diseases.
Phase multistability of self-modulated oscillations
DEFF Research Database (Denmark)
Sosnovtseva, Olga; Postnov, D.E.; Nekrasov, A.M.
2002-01-01
The paper examines the type of multistability that one can observe in the synchronization of two oscillators when the systems individually display self-modulation or other types of multicrest wave forms. The investigation is based on a phase reduction method and on the calculation of phase maps...... nonlinearity and a biologically motivated model of nephron autoregulation are presented....
Experimental studies of nonlinear beam dynamics
International Nuclear Information System (INIS)
Caussyn, D.D.; Ball, M.; Brabson, B.; Collins, J.; Curtis, S.A.; Derenchuck, V.; DuPlantis, D.; East, G.; Ellison, M.; Ellison, T.; Friesel, D.; Hamilton, B.; Jones, W.P.; Lamble, W.; Lee, S.Y.; Li, D.; Minty, M.G.; Sloan, T.; Xu, G.; Chao, A.W.; Ng, K.Y.; Tepikian, S.
1992-01-01
The nonlinear beam dynamics of transverse betatron oscillations were studied experimentally at the Indiana University Cyclotron Facility cooler ring. Motion in one dimension was measured for betatron tunes near the third, fourth, fifth, and seventh integer resonances. This motion is described by coupling between the transverse modes of motion and nonlinear field errors. The Hamiltonian for nonlinear particle motion near the third- and fourth-integer-resonance conditions has been deduced
Nonlinear optical interactions in silicon waveguides
Directory of Open Access Journals (Sweden)
Kuyken B.
2017-03-01
Full Text Available The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.
Engineering high-order nonlinear dissipation for quantum superconducting circuits
Mundhada, S. O.; Grimm, A.; Touzard, S.; Shankar, S.; Minev, Z. K.; Vool, U.; Mirrahimi, M.; Devoret, M. H.
Engineering nonlinear driven-dissipative processes is essential for quantum control. In the case of a harmonic oscillator, nonlinear dissipation can stabilize a decoherence-free manifold, leading to protected quantum information encoding. One possible approach to implement such nonlinear interactions is to combine the nonlinearities provided by Josephson circuits with parametric pump drives. However, it is usually hard to achieve strong nonlinearities while avoiding undesired couplings. Here we propose a scheme to engineer a four-photon drive and dissipation in a harmonic oscillator by cascading experimentally demonstrated two-photon processes. We also report experimental progress towards realization of such a scheme. Work supported by: ARO, ONR, AFOSR and YINQE.
Chimera States in Neural Oscillators
Bahar, Sonya; Glaze, Tera
2014-03-01
Chimera states have recently been explored both theoretically and experimentally, in various coupled nonlinear oscillators, ranging from phase-oscillator models to coupled chemical reactions. In a chimera state, both coherent and incoherent (or synchronized and desynchronized) states occur simultaneously in populations of identical oscillators. We investigate chimera behavior in a population of neural oscillators using the Huber-Braun model, a Hodgkin-Huxley-like model originally developed to characterize the temperature-dependent bursting behavior of mammalian cold receptors. One population of neurons is allowed to synchronize, with each neuron receiving input from all the others in its group (global within-group coupling). Subsequently, a second population of identical neurons is placed under an identical global within-group coupling, and the two populations are also coupled to each other (between-group coupling). For certain values of the coupling constants, the neurons in the two populations exhibit radically different synchronization behavior. We will discuss the range of chimera activity in the model, and discuss its implications for actual neural activity, such as unihemispheric sleep.
Practical design of a nonlinear tuned vibration absorber
DEFF Research Database (Denmark)
Grappasonni, C.; Habib, G.; Detroux, T.
2014-01-01
The aim of the paper is to develop a new nonlinear tuned vibration absorber (NLTVA) capable of mitigating the vibrations of nonlinear systems which are known to exhibit frequency-energy-dependent oscillations. A nonlinear generalization of Den Hartog's equal-peak method is proposed to ensure equa...
The nonlinear dynamics of the Oklo natural reactor
International Nuclear Information System (INIS)
Bilanovic, Z.; Harms, A.A.
1985-01-01
An analysis of the Oklo natural reactor, a self-sustaining and self-regulating critical assembly that existed some 2 billion years ago in Gabon, Africa, is presented. Nonlinear continuous dif ferential and nonlinear discrete iterative formulations are established and selected parameter characterizations identified. Conceivable power oscillations are calculated and discussed. Some implications of nonlinear mappings for nuclear simulation are suggested
International Conference on Applications in Nonlinear Dynamics
Longhini, Patrick; Palacios, Antonio
2017-01-01
This book presents collaborative research works carried out by experimentalists and theorists around the world in the field of nonlinear dynamical systems. It provides a forum for applications of nonlinear systems while solving practical problems in science and engineering. Topics include: Applied Nonlinear Optics, Sensor, Radar & Communication Signal Processing, Nano Devices, Nonlinear Biomedical Applications, Circuits & Systems, Coupled Nonlinear Oscillator, Precision Timing Devices, Networks, and other contemporary topics in the general field of Nonlinear Science. This book provides a comprehensive report of the various research projects presented at the International Conference on Applications in Nonlinear Dynamics (ICAND 2016) held in Denver, Colorado, 2016. It can be a valuable tool for scientists and engineering interested in connecting ideas and methods in nonlinear dynamics with actual design, fabrication and implementation of engineering applications or devices.
Reconstructing baryon oscillations: A Lagrangian theory perspective
International Nuclear Information System (INIS)
Padmanabhan, Nikhil; White, Martin; Cohn, J. D.
2009-01-01
Recently Eisenstein and collaborators introduced a method to 'reconstruct' the linear power spectrum from a nonlinearly evolved galaxy distribution in order to improve precision in measurements of baryon acoustic oscillations. We reformulate this method within the Lagrangian picture of structure formation, to better understand what such a method does, and what the resulting power spectra are. We show that reconstruction does not reproduce the linear density field, at second order. We however show that it does reduce the damping of the oscillations due to nonlinear structure formation, explaining the improvements seen in simulations. Our results suggest that the reconstructed power spectrum is potentially better modeled as the sum of three different power spectra, each dominating over different wavelength ranges and with different nonlinear damping terms. Finally, we also show that reconstruction reduces the mode-coupling term in the power spectrum, explaining why miscalibrations of the acoustic scale are reduced when one considers the reconstructed power spectrum.
Asymptotic representation of relaxation oscillations in lasers
Grigorieva, Elena V
2017-01-01
In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations.
NONLINEAR DYNAMICS OF A ROTOR WITH CANTILEVERED DISK RESTING ON ANGULAR CONTACT BALL BEARINGS
Directory of Open Access Journals (Sweden)
S. Filipkovskyi
2016-06-01
Full Text Available The mathematical model of nonlinear oscillations of the rotor resting on angular contact ball bearings is developed. The disc is fixed on the console end of the shaft. The deflection of the shaft, and the elastic deformation of the bearings have the same order. Analysis of free oscillations is carried out, using nonlinear normal modes. The modes and backbone curves of rotor nonlinear oscillations are calculated. The system has soft characteristics.
Directory of Open Access Journals (Sweden)
S.H. Chen
1996-01-01
Full Text Available A modified Lindstedt–Poincaré method is presented for extending the range of the validity of perturbation expansion to strongly nonlinear oscillations of a system with quadratic and cubic nonlinearities. Different parameter transformations are introduced to deal with equations with different nonlinear characteristics. All examples show that the efficiency and accuracy of the present method are very good.
International Nuclear Information System (INIS)
Boyd, R.W.
1992-01-01
Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics
Modeling of Coupled Chaotic Oscillators
International Nuclear Information System (INIS)
Lai, Y.; Grebogi, C.
1999-01-01
Chaotic dynamics may impose severe limits to deterministic modeling by dynamical equations of natural systems. We give theoretical argument that severe modeling difficulties may occur for high-dimensional chaotic systems in the sense that no model is able to produce reasonably long solutions that are realized by nature. We make these ideas concrete by investigating systems of coupled chaotic oscillators. They arise in many situations of physical and biological interests, and they also arise from discretization of nonlinear partial differential equations. copyright 1999 The American Physical Society
Wave Physics Oscillations - Solitons - Chaos
Nettel, Stephen
2009-01-01
This textbook is intended for those second year undergraduates in science and engineering who will later need an understanding of electromagnetic theory and quantum mechanics. The classical physics of oscillations and waves is developed at a more advanced level than has been customary for the second year, providing a basis for the quantum mechanics that follows. In this new edition the Green's function is explained, reinforcing the integration of quantum mechanics with classical physics. The text may also form the basis of an "introduction to theoretical physics" for physics majors. The concluding chapters give special attention to topics in current wave physics: nonlinear waves, solitons, and chaotic behavior.
Spatial xenon oscillation control with expert systems
International Nuclear Information System (INIS)
Alten, S.; Danofsky, R.A.
1993-01-01
Spatial power oscillations were attributed to the xenon transients in a reactor core in 1958 by Randall and St. John. These transients are usually initiated by a local reactivity insertion and lead to divergent axial flux oscillations in the core at constant power. Several heuristic manual control strategies and automatic control methods were developed to damp the xenon oscillations at constant power operations. However, after the load-follow operation of the reactors became a necessity of life, a need for better control strategies arose. Even though various advanced control strategies were applied to solve the xenon oscillation control problem for the load-follow operation, the complexity of the system created difficulties in modeling. The strong nonlinearity of the problem requires highly sophisticated analytical approaches that are quite inept for numerical solutions. On the other hand, the complexity of a system and heuristic nature of the solutions are the basic reasons for using artificial intelligence techniques such as expert systems
Exact folded-band chaotic oscillator.
Corron, Ned J; Blakely, Jonathan N
2012-06-01
An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.
First integral method for an oscillator system
Directory of Open Access Journals (Sweden)
Xiaoqian Gong
2013-04-01
Full Text Available In this article, we consider the nonlinear Duffing-van der Pol-type oscillator system by means of the first integral method. This system has physical relevance as a model in certain flow-induced structural vibration problems, which includes the van der Pol oscillator and the damped Duffing oscillator etc as particular cases. Firstly, we apply the Division Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to explore a quasi-polynomial first integral to an equivalent autonomous system. Then, through solving an algebraic system we derive the first integral of the Duffing-van der Pol-type oscillator system under certain parametric condition.
Modified Legendre Wavelets Technique for Fractional Oscillation Equations
Mohyud-Din, Syed; Iqbal, Muhammad; Hassan, Saleh
2015-01-01
Physical Phenomena’s located around us are primarily nonlinear in nature and their solutions are of highest significance for scientists and engineers. In order to have a better representation of these physical models, fractional calculus is used. Fractional order oscillation equations are included among these nonlinear phenomena’s. To tackle with the nonlinearity arising, in these phenomena’s we recommend a new method. In the proposed method, Picard’s iteration is used to convert the nonlinea...
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Chemical event chain model of coupled genetic oscillators.
Jörg, David J; Morelli, Luis G; Jülicher, Frank
2018-03-01
We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.
Chemical event chain model of coupled genetic oscillators
Jörg, David J.; Morelli, Luis G.; Jülicher, Frank
2018-03-01
We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.
Nonlinear Dynamics in Spear Wigglers
International Nuclear Information System (INIS)
2002-01-01
BL11, the most recently installed wiggler in the SPEAR storage ring at SSRL, produces a large nonlinear perturbation of the electron beam dynamics, which was not directly evident in the integrated magnetic field measurements. Measurements of tune shifts with betatron oscillation amplitude and with closed orbit shifts were used to characterize the nonlinear fields of the SPEAR insertion devices (IDs). Because of the narrow pole width in BL11, the nonlinear fields seen along the wiggling electron trajectory are dramatically different than the flip coil measurements made along a straight line. This difference explains the tune shift measurements and the observed degradation in dynamic aperture. Corrector magnets to cancel the BL11 nonlinear fields are presently under construction
Extreme Nonlinear Optics An Introduction
Wegener, Martin
2005-01-01
Following the birth of the laser in 1960, the field of "nonlinear optics" rapidly emerged. Today, laser intensities and pulse durations are readily available, for which the concepts and approximations of traditional nonlinear optics no longer apply. In this regime of "extreme nonlinear optics," a large variety of novel and unusual effects arise, for example frequency doubling in inversion symmetric materials or high-harmonic generation in gases, which can lead to attosecond electromagnetic pulses or pulse trains. Other examples of "extreme nonlinear optics" cover diverse areas such as solid-state physics, atomic physics, relativistic free electrons in a vacuum and even the vacuum itself. This book starts with an introduction to the field based primarily on extensions of two famous textbook examples, namely the Lorentz oscillator model and the Drude model. Here the level of sophistication should be accessible to any undergraduate physics student. Many graphical illustrations and examples are given. The followi...
Oscillations in Mathematical Biology
1983-01-01
The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...
Phase locking between Josephson soliton oscillators
DEFF Research Database (Denmark)
Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.
1990-01-01
We report observations of phase-locking phenomena between two Josephson soliton (fluxon) oscillators biased in self-resonant modes. The locking strength was measured as a function of bias conditions. A frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. Two coupled...... perturbed sine-Gordon equations were derived from an equivalent circuit consisting of inductively coupled, nonlinear, lossy transmission lines. These equations were solved numerically to find the locking regions. Good qualitative agreement was found between the experimental results and the calculations...
Yoshida, Zensho
2010-01-01
This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl
A probabilistic analysis of the crystal oscillator behavior at low drive levels
Shmaliy, Yuriy S.; Brendel, Rémi
2008-03-01
The paper discusses a probabilistic model of a crystal oscillator at low drive levels where the noise intensity is comparable with the oscillation amplitude. The stationary probability density of the oscillations envelope is derived and investigated for the nonlinear resonator loses. A stochastic explanation is given for the well-known phenomenon termed sleeping sickness associated with losing a facility of self-excitation by a crystal oscillator after a long storage without a power supply. It is shown that, with low drive levels leading to an insufficient feedback, a crystal oscillator generates the noise-induced oscillations rather than it absolutely "falls in sleep".
Nonlinear chaos control in a permanent magnet reluctance machine
International Nuclear Information System (INIS)
Harb, Ahmad M.
2004-01-01
The dynamics of a permanent magnet synchronous machine (PMSM) is analyzed. The study shows that under certain conditions the PMSM is experiencing chaotic behavior. To control these unwanted chaotic oscillations, a nonlinear controller based on the backstepping nonlinear control theory is designed. The objective of the designed control is to stabilize the output chaotic trajectory by forcing it to the nearest constant solution in the basin of attraction. The result is compared with a nonlinear sliding mode controller. The designed controller that based on backstepping nonlinear control was able to eliminate the chaotic oscillations. Also the study shows that the designed controller is mush better than the sliding mode control
Ma, Hongbin
2015-01-01
This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation, theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary factors affecting oscillating motions and heat transfer, neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes. The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...
1981-03-01
Final Report: February 1978 ZAUTOMATIC OSCILLATING TURRET SYSTEM September 1980 * 6. PERFORMING 01G. REPORT NUMBER .J7. AUTHOR(S) S. CONTRACT OR GRANT...o....e.... *24 APPENDIX P-4 OSCILLATING BUMPER TURRET ...................... 25 A. DESCRIPTION 1. Turret Controls ...Other criteria requirements were: 1. Turret controls inside cab. 2. Automatic oscillation with fixed elevation to range from 20* below the horizontal to
Neutrino oscillations in matter
International Nuclear Information System (INIS)
Mikheyev, S.P.; Smirnov, A.Yu.
1986-01-01
In this paper we describe united formalism of ν-oscillations for different regimes, which is immediate generalization of vacuum oscillations theory. Adequate graphical representation of this formalism is given. We summarize main properties of ν-oscillations for different density distributions. (orig./BBOE)
Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús
2018-01-01
This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...
On the theory of internal kink oscillations
International Nuclear Information System (INIS)
Breizman, B.N.; Candy, J.; Berk, H.L.
1997-12-01
In this paper the authors derive a time evolution equation for internal kink oscillations which is valid for both stable and unstable plasma regimes, and incorporates the nonlinear response of an energetic particle population. A linear analysis reveals a parallel between (i) the time evolution of the spatial derivative of the internal kink radial displacement and (ii) the time evolution of the perturbed particle distribution function in the field of an electrostatic wave (Landau problem). They show that diamagnetic drift effects make the asymptotic decay of internal kink perturbations in a stable plasma algebraic rather than exponential. However, under certain conditions the stable root of the dispersion relation can dominate the response of the on-axis displacement for a significant period of time. The form of the evolution equation naturally allows one to include a nonlinear, fully toroidal treatment of energetic particles into the theory of internal kink oscillations
Linear and nonlinear low-frequency electrostatic waves in a nonuniform pair-ion-dust magnetoplasma
International Nuclear Information System (INIS)
Saleem, H; Shukla, P K; Eliasson, B
2008-01-01
Linear and nonlinear properties of the low-frequency (in comparison with the ion gyrofrequency) electrostatic oscillations in pair-ion-dust magnetoplasma are presented. In the linear limit, the Shukla-Varma mode is coupled with the ion oscillations while the nonlinearly coupled modes appear in the form of a dipolar or a monopolar vortex
Nonlinear magnetohydrodynamics of edge localized mode precursors
Energy Technology Data Exchange (ETDEWEB)
Guo, Z. B., E-mail: guozhipku@gmail.com [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China); WCI Center for Fusion Theory, NFRI, Gwahangno 113, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Wang, Lu [SEEE, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang, X. G. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China)
2015-02-15
A possible origin of edge-localized-mode (ELM) precursors based on nonlinear ideal peeling-ballooning mode is reported. Via nonlinear variational principle, a nonlinear evolution equation of the radial displacement is derived and solved, analytically. Besides an explosive growth in the initial nonlinear phase, it is found that the local displacement evolves into an oscillating state in the developed nonlinear phase. The nonlinear frequency of the ELM precursors scales as ω{sub pre}∼x{sup 1/3}ξ{sup ^}{sub ψ,in}{sup 2/3}n, with x position in radial direction, ξ{sup ^}{sub ψ,in} strength of initial perturbation, and n toroidal mode number.
Tuning chaos in network sharing common nonlinearity
Paul Asir, M.; Jeevarekha, A.; Philominathan, P.
2016-06-01
In this paper, a novel type of network called network sharing common nonlinearity comprising both autonomous and non-autonomous oscillators have been investigated. We propose that these networks are robust for operating at desired modes i.e., chaotic or periodic by altering the v-i characteristics of common nonlinear element alone. The dynamics of these networks were examined through numerical, analytical, experimental and Multisim simulations.
Image processing with a cellular nonlinear network
International Nuclear Information System (INIS)
Morfu, S.
2005-01-01
A cellular nonlinear network (CNN) based on uncoupled nonlinear oscillators is proposed for image processing purposes. It is shown theoretically and numerically that the contrast of an image loaded at the nodes of the CNN is strongly enhanced, even if this one is initially weak. An image inversion can be also obtained without reconfiguration of the network whereas a gray levels extraction can be performed with an additional threshold filtering. Lastly, an electronic implementation of this CNN is presented
Suppression and revival of oscillation in indirectly coupled limit cycle oscillators
International Nuclear Information System (INIS)
Sharma, P.R.; Kamal, N.K.; Verma, U.K.; Suresh, K.; Thamilmaran, K.; Shrimali, M.D.
2016-01-01
Highlights: • The phenomena of suppression and revival of oscillations are studied in indirectly coupled nonlinear oscillators. • The decay parameter and a feedback factor play a crucial role in emergent dynamical behavior of oscillators. • The critical curves for different dynamical regions are obtained analytically using linear stability analysis. • Electronic circuit experiments demonstrate these emergent dynamical states. - Abstract: We study the phenomena of suppression and revival of oscillations in a system of limit cycle oscillators coupled indirectly via a dynamic local environment. The dynamics of the environment is assumed to decay exponentially with time. We show that for appropriate coupling strength, the decay parameter of the environment plays a crucial role in the emergent dynamics such as amplitude death (AD) and oscillation death (OD). We also show that introducing a feedback factor in the diffusion term revives the oscillations in this system. The critical curves for the regions of different emergent states as a function of coupling strength, decay parameter of the environment and feedback factor in the coupling are obtained analytically using linear stability analysis. These results are found to be consistent with the numerics and are also observed experimentally.
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
Bifurcaciones del Sistema de FitzHugh-Nagumo (FHN
Directory of Open Access Journals (Sweden)
Fernando Ongay Larios
2011-01-01
Full Text Available La familia paramétrica de los sistemas de FitzHugh-Nagumo es rica en bifurcaciones (Rocsoreanu et al., 2000. En este artículo estudiamos las bifurcaciones silla-nodo y de Hopf desde el punto de vista matemático de esta familia y se describen completamente los conjuntos de bifurcación en el espacio de parámetros.
National Research Council Canada - National Science Library
Drazin, P. G
1992-01-01
This book is an introduction to the theories of bifurcation and chaos. It treats the solution of nonlinear equations, especially difference and ordinary differential equations, as a parameter varies...
Gasinski, Leszek
2005-01-01
Hausdorff Measures and Capacity. Lebesgue-Bochner and Sobolev Spaces. Nonlinear Operators and Young Measures. Smooth and Nonsmooth Analysis and Variational Principles. Critical Point Theory. Eigenvalue Problems and Maximum Principles. Fixed Point Theory.
Pure odd-order oscillators with constant excitation
Cveticanin, L.
2011-02-01
In this paper the excited vibrations of a truly nonlinear oscillator are analyzed. The excitation is assumed to be constant and the nonlinearity is pure (without a linear term). The mathematical model is a second-order nonhomogeneous differential equation with strong nonlinear term. Using the first integral, the exact value of period of vibration i.e., angular frequency of oscillator described with a pure nonlinear differential equation with constant excitation is analytically obtained. The closed form solution has the form of gamma function. The period of vibration depends on the value of excitation and of the order and coefficient of the nonlinear term. For the case of pure odd-order-oscillators the approximate solution of differential equation is obtained in the form of trigonometric function. The solution is based on the exact value of period of vibration. For the case when additional small perturbation of the pure oscillator acts, the so called 'Cveticanin's averaging method' for a truly nonlinear oscillator is applied. Two special cases are considered: one, when the additional term is a function of distance, and the second, when damping acts. To prove the correctness of the method the obtained results are compared with those for the linear oscillator. Example of pure cubic oscillator with constant excitation and linear damping is widely discussed. Comparing the analytically obtained results with exact numerical ones it is concluded that they are in a good agreement. The investigations reported in the paper are of special interest for those who are dealing with the problem of vibration reduction in the oscillator with constant excitation and pure nonlinear restoring force the examples of which can be found in various scientific and engineering systems. For example, such mechanical systems are seats in vehicles, supports for machines, cutting machines with periodical motion of the cutting tools, presses, etc. The examples can be find in electronics
Nonlinear optics principles and applications
Rottwitt, Karsten
2014-01-01
IntroductionReview of linear opticsInduced polarizationHarmonic oscillator modelLocal field correctionsEstimated nonlinear responseSummaryTime-domain material responseThe polarization time-response functionThe Born-Oppenheimer approximationRaman scattering response function of silicaSummaryMaterial response in the frequency domain, susceptibility tensorsThe susceptibility tensorThe induced polarization in the frequency domainSum of monochromatic fieldsThe prefactor to the induced polarizationThird-order polarization in the Born-Oppenheimer approximation in the frequency domainKramers-Kronig relationsSummarySymmetries in nonlinear opticsSpatial symmetriesSecond-order materialsThird-order nonlinear materialsCyclic coordinate-systemContracted notation for second-order susceptibility tensorsSummaryThe nonlinear wave equationMono and quasi-monochromatic beamsPlane waves - the transverse problemWaveguidesVectorial approachNonlinear birefringenceSummarySecond-order nonlinear effectsGeneral theoryCoupled wave theoryP...
International Nuclear Information System (INIS)
Du Zeng-Ji; Lin Wan-Tao; Mo Jia-Qi
2012-01-01
The EI Niño-southern oscillation (ENSO) is an interannual phenomenon involved in tropical Pacific ocean-atmosphere interactions. In this paper, we develop an asymptotic method of solving the nonlinear equation using the ENSO model. Based on a class of the oscillator of the ENSO model, a approximate solution of the corresponding problem is studied employing the perturbation method
Kato, Shoji
2016-01-01
This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...
Periodic Solutions of the Duffing Harmonic Oscillator by He's Energy Balance Method
Directory of Open Access Journals (Sweden)
A. M. El-Naggar
2015-11-01
Full Text Available Duffing harmonic oscillator is a common model for nonlinear phenomena in science and engineering. This paper presents He´s Energy Balance Method (EBM for solving nonlinear differential equations. Two strong nonlinear cases have been studied analytically. Analytical results of the EBM are compared with the solutions obtained by using He´s Frequency Amplitude Formulation (FAF and numerical solutions using Runge-Kutta method. The results show the presented method is potentially to solve high nonlinear oscillator equations.
Nonlinear von Neumann equations for quantum dissipative systems
International Nuclear Information System (INIS)
Messer, J.; Baumgartner, B.
1978-01-01
For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Auth.)
Nonlinear von Neumann equations for quantum dissipative systems
International Nuclear Information System (INIS)
Messer, J.; Baumgartner, B.
For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Author)
Curvature-induced symmetry breaking in nonlinear Schrodinger models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Mingaleev, S. F.; Christiansen, Peter Leth
2000-01-01
We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity leads to a symmetry breaking when an asymmetric stationary state becomes energetically more favorable than a symmetric stationary state. We show that the energy of localized states...
Non-linear stochastic response of a shallow cable
DEFF Research Database (Denmark)
Larsen, Jesper Winther; Nielsen, Søren R.K.
2004-01-01
The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two...
Oscillations in stellar atmospheres
International Nuclear Information System (INIS)
Costa, A.; Ringuelet, A.E.; Fontenla, J.M.
1989-01-01
Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized. 7 refs
Deterministic nonlinear phase gates induced by a single qubit
Park, Kimin; Marek, Petr; Filip, Radim
2018-05-01
We propose deterministic realizations of nonlinear phase gates by repeating a finite sequence of non-commuting Rabi interactions between a harmonic oscillator and only a single two-level ancillary qubit. We show explicitly that the key nonclassical features of the ideal cubic phase gate and the quartic phase gate are generated in the harmonic oscillator faithfully by our method. We numerically analyzed the performance of our scheme under realistic imperfections of the oscillator and the two-level system. The methodology is extended further to higher-order nonlinear phase gates. This theoretical proposal completes the set of operations required for continuous-variable quantum computation.
The chimera state in colloidal phase oscillators with hydrodynamic interaction
Hamilton, Evelyn; Bruot, Nicolas; Cicuta, Pietro
2017-12-01
The chimera state is the incongruous situation where coherent and incoherent populations coexist in sets of identical oscillators. Using driven non-linear oscillators interacting purely through hydrodynamic forces at low Reynolds number, previously studied as a simple model of motile cilia supporting waves, we find concurrent incoherent and synchronised subsets in small arrays. The chimeras seen in simulation display a "breathing" aspect, reminiscent of uniformly interacting phase oscillators. In contrast to other systems where chimera has been observed, this system has a well-defined interaction metric, and we know that the emergent dynamics inherit the symmetry of the underlying Oseen tensor eigenmodes. The chimera state can thus be connected to a superposition of eigenstates, whilst considering the mean interaction strength within and across subsystems allows us to make a connection to more generic (and abstract) chimeras in populations of Kuramoto phase oscillators. From this work, we expect the chimera state to emerge in experimental observations of oscillators coupled through hydrodynamic forces.
Mode competition and hopping in optomechanical nano-oscillators
Zhang, Xingwang; Lin, Tong; Tian, Feng; Du, Han; Zou, Yongchao; Chau, Fook Siong; Zhou, Guangya
2018-04-01
We investigate the inter-mode nonlinear interaction in the multi-mode optomechanical nano-oscillator which consists of coupled silicon nanocantilevers, where the integrated photonic crystal nanocavities provide the coupling between the optical and mechanical modes. Due to the self-saturation and cross-saturation of the mechanical gain, the inter-mode competition is observed, which leads to the bistable operation of the optomechanical nano-oscillator: only one of the mechanical modes can oscillate at any one time, and the oscillation of one mode extremely suppresses that of the other with a side mode suppression ratio (SMSR) up to 40 dB. In the meantime, mode hopping, i.e., the optomechanical oscillation switches from one mode to the other, is also observed and found to be able to be provoked by excitation laser fluctuations.
Synchronization of muscular oscillations between two subjects during isometric interaction
Directory of Open Access Journals (Sweden)
Laura V. Schaefer
2014-05-01
Full Text Available Muscles oscillate with a frequency around 10 Hz. But what happens with myofascial oscillations, if two neuromuscular systems interact? The purpose of this study was to examine this question, initially, on the basis of a case study. Oscillations of the triceps brachii muscles of two subjects were determined through mechanomyography (MMG during isometric interaction. The MMG-signals were analyzed concerning the interaction of the two subjects with algorithms of nonlinear dynamics. In this case study it could be shown, that the muscles of both neuromuscular systems also oscillate with the known frequency (here 12 Hz during interaction. Furthermore, both subjects were able to adapt their oscillations against each other. This adjustment induced a significant ( < .05 coherent behavior, which was characterized by a phase shifting of approximately 90°. The authors draw the conclusion, that the complementary neuromuscular partners potentially have the ability of mutual synchronization.
Basin stability measure of different steady states in coupled oscillators
Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar
2017-04-01
In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.
New Oscillation Criteria for Second-Order Forced Quasilinear Functional Differential Equations
Directory of Open Access Journals (Sweden)
Mervan Pašić
2013-01-01
or delay-advanced types. The nonlinear terms are of superlinear or supersublinear (mixed types. Consequences and examples are shown to illustrate the novelty and simplicity of our oscillation criteria.
Relation of deformed nonlinear algebras with linear ones
International Nuclear Information System (INIS)
Nowicki, A; Tkachuk, V M
2014-01-01
The relation between nonlinear algebras and linear ones is established. For a one-dimensional nonlinear deformed Heisenberg algebra with two operators we find the function of deformation for which this nonlinear algebra can be transformed to a linear one with three operators. We also establish the relation between the Lie algebra of total angular momentum and corresponding nonlinear one. This relation gives a possibility to simplify and to solve the eigenvalue problem for the Hamiltonian in a nonlinear case using the reduction of this problem to the case of linear algebra. It is demonstrated in an example of a harmonic oscillator. (paper)
Ruszczynski, Andrzej
2011-01-01
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern top...
Modeling of termokinetic oscillations at partial oxidation of methane
Arutyunov, A. V.; Belyaev, A. A.; Inovenkov, I. N.; Nefedov, V. V.
2017-12-01
Partial oxidation of natural gas at moderate temperatures below 1500 K has significant interest for a number of industrial applications. But such processes can proceed at different unstable regimes including oscillating modes. Nonlinear phenomena at partial oxidation of methane were observed at different conditions. The investigation of the complex nonlinear system of equations that describes this process is a real method to insure its stability at industrial conditions and, at the same time, is an effective tool for its further enhancement. Numerical analysis of methane oxidation kinetics in the continuous stirred-tank reactor, with the use of detailed kinetic model has shown the possibility of the appearance of oscillating modes in the appropriate range of reaction parameters that characterize the composition, pressure, reagents flow, thermophysical features of the system, and geometry of the reactor. The appearance of oscillating modes is connected both with the reaction kinetics, heat release and sink and reagents introduction and removing. At that, oscillations appear only at a limited range of parameters, but can be accompanied by significant change in the yield of products. We have determined the range of initial temperature and pressure at which oscillations can be observed, if all other parameters remained fixed. The boundaries of existence of oscillations on the phase plane were calculated. It was shown that depending on the position inside the oscillation region the oscillations have different frequency and amplitude. It was reviled the role of heat exchange with the environment: at the absence of heat exchange the oscillating modes are impossible. In the vicinity of the boundary of phase range, where oscillations exist, significant change of concentration of some products were observed, for example, that of CO2, which in this case one of the principal products is. At that, insignificant increase in pressure not only change the character of CO2 behaving
International Nuclear Information System (INIS)
Megam Ngouonkadi, E B; Fotsin, H B; Louodop Fotso, P
2014-01-01
This paper investigates the dynamics of a memristor-based Van der Pol oscillator coupled to a linear circuit (VDPCL). This chaotic oscillator is a modification of the classical Van der Pol coupled to a linear circuit, and is obtained by replacing the classical cubic nonlinearity by the memristive one. The memristive VDPCL oscillator, in addition to having a very special stability property, exhibits interesting spectral characteristics, which makes it suitable for chaos-based secure communication applications. The memristor is realized by using off-the-shelf components. The basic properties of the circuit are analyzed by means of bifurcation analysis. Chaotic attractors from numerical and experimental analysis are presented, followed by a comparison of results obtained from the modified VDPCL oscillator and those from the classical VDPCL oscillator. An application to synchronization and chaos secure communication is also presented. (paper)
The Oscillator Principle of Nature
DEFF Research Database (Denmark)
Lindberg, Erik
2012-01-01
Oscillators are found on all levels in Nature. The general oscillator concept is defined and investigated. Oscillators may synchronize into fractal patterns. Apparently oscillators are the basic principle in Nature. The concepts of zero and infinite are discussed. Electronic manmade oscillators...
Nonlinear Entanglement and its Application to Generating Cat States
Shen, Y.; Assad, S. M.; Grosse, N. B.; Li, X. Y.; Reid, M. D.; Lam, P. K.
2015-03-01
The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.
Application of He’s Energy Balance Method to Duffing-Harmonic Oscillators
DEFF Research Database (Denmark)
Momeni, M.; Jamshidi, j.; Barari, Amin
2011-01-01
In this article, He's energy balance method is applied for calculating angular frequencies of nonlinear Duffing oscillators. This method offers a promising approach by constructing a Hamiltonian for the nonlinear oscillator. We illustrate that the energy balance is very effective and convenient...... and does not require linearization or small perturbation. Contrary to the conventional methods, in energy balance, only one iteration leads to high accuracy of the solutions. It is predicted that the energy balance method finds wide applications in engineering problems....
International Nuclear Information System (INIS)
Rodrigues, R. de Lima
2007-01-01
In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)
Synchronization of hyperchaotic oscillators
DEFF Research Database (Denmark)
Tamasevicius, A.; Cenys, A.; Mykolaitis, G.
1997-01-01
Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....
Nonlinear extraordinary wave in dense plasma
Energy Technology Data Exchange (ETDEWEB)
Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Russian University of Peoples’ Friendship (Russian Federation)
2013-10-15
Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.
Adaptive synchronization of uncertain chaotic colpitts oscillators based on parameter identification
International Nuclear Information System (INIS)
Fotsin, H.B.; Daafouz, J.
2005-01-01
This Letter uses systematic tools from recent papers to design non-linear observers for synchronization of a chaotic colpitts oscillator both in the non adaptive and adaptive cases. It is shown that all parameters of a totally uncertain model of the oscillator can be estimated through adaptive synchronization. A strategy for practical implementation of a secure communication strategy is also discussed
Higher-order chaotic oscillator using active bessel filter
DEFF Research Database (Denmark)
Lindberg, Erik; Mykolaitis, Gytis; Bumelien, Skaidra
2010-01-01
A higher-order oscillator, including a nonlinear unit and an 8th-order low-pass active Bessel filter is described. The Bessel unit plays the role of "three-in-one": a delay line, an amplifier and a filter. Results of hardware experiments and numerical simulation are presented. Depending...
Spiral intensity patterns in the internally pumped optical parametric oscillator
DEFF Research Database (Denmark)
Lodahl, Peter; Bache, Morten; Saffman, Mark
2001-01-01
We describe a nonlinear optical system that supports spiral pattern solutions in the field intensity. This new spatial structure is found to bifurcate above a secondary instability in the internally pumped optical parametric oscillator. The analytical predictions of threshold and spatial scale...
Chaotic synchronization of three coupled oscillators with ring connection
International Nuclear Information System (INIS)
Kyprianidis, I.M.; Stouboulos, I.N.
2003-01-01
We study the evolution of three identical, resistively coupled with ring connection, nonlinear and nonautonomous electric circuits from nonsynchronized oscillations to synchronized ones, when they exhibit chaotic behavior. Phase-locked states are also observed, as the coupling parameter is varied. The system's dynamics depends on the way of coupling (unidirectional or bidirectional)
Chaotic synchronization of three coupled oscillators with ring connection
Kyprianidis, I M
2003-01-01
We study the evolution of three identical, resistively coupled with ring connection, nonlinear and nonautonomous electric circuits from nonsynchronized oscillations to synchronized ones, when they exhibit chaotic behavior. Phase-locked states are also observed, as the coupling parameter is varied. The system's dynamics depends on the way of coupling (unidirectional or bidirectional).
Heartbeat of the Southern Oscillation explains ENSO climatic resonances
Bruun, John T.; Allen, J. Icarus; Smyth, Timothy J.
2017-08-01
The El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and human activities. The up to 10 year quasi-period cycle of the El Niño and subsequent La Niña is known to be dominated in the tropics by nonlinear physical interaction of wind with the equatorial waveguide in the Pacific. Long-term cyclic phenomena do not feature in the current theory of the ENSO process. We update the theory by assessing low (>10 years) and high (features. The observational data sets of the Southern Oscillation Index (SOI), North Pacific Index Anomaly, and ENSO Sea Surface Temperature Anomaly, as well as a theoretical model all confirm the existence of long-term and short-term climatic cycles of the ENSO process with resonance frequencies of {2.5, 3.8, 5, 12-14, 61-75, 180} years. This fundamental result shows long-term and short-term signal coupling with mode locking across the dominant ENSO dynamics. These dominant oscillation frequency dynamics, defined as ENSO frequency states, contain a stable attractor with three frequencies in resonance allowing us to coin the term Heartbeat of the Southern Oscillation due to its characteristic shape. We predict future ENSO states based on a stable hysteresis scenario of short-term and long-term ENSO oscillations over the next century.Plain Language SummaryThe Pacific El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and our human activities. This work can help predict both long-term and short-term future ENSO events and to assess the risk of future climate hysteresis changes: is the elastic band that regulates the ENSO climate breaking? We update the current theory of the ENSO process with a sophisticated analysis approach (Dominant Frequency State Analysis) to include long-term oscillations (up to 200 years) as well as tropical and extratropical interaction dynamics. The analysis uses instrumental and paleoproxy data
Integrability and symmetries for the Helmholtz oscillator with friction
International Nuclear Information System (INIS)
Almendral, Juan A; Sanjuan, Miguel A F
2003-01-01
This paper deals with the Helmholtz oscillator, which is a simple nonlinear oscillator whose equation presents a quadratic nonlinearity and the possibility of escape. When a periodic external force is introduced, the width of the stochastic layer, which is a region around the separatrix where orbits may exhibit transient chaos, is calculated. In the absence of friction and external force, it is well known that analytical solutions exist since it is completely integrable. When only friction is included, there is no analytical solution for all parameter values. However, by means of the Lie theory for differential equations we find a relation between parameters for which the oscillator is integrable. This is related to the fact that the system possesses a symmetry group and the corresponding symmetries are computed. Finally, the analytical explicit solutions are shown and related to the basins of attraction
Observation of Quasichanneling Oscillations
International Nuclear Information System (INIS)
Wistisen, T. N.; Mikkelsen, R. E.; Uggerhoj, University I.; Wienands, University; Markiewicz, T. W.
2017-01-01
Here, we report on the first experimental observations of quasichanneling oscillations, recently seen in simulations and described theoretically. Although above-barrier particles penetrating a single crystal are generally seen as behaving almost as in an amorphous substance, distinct oscillation peaks nevertheless appear for particles in that category. The quasichanneling oscillations were observed at SLAC National Accelerator Laboratory by aiming 20.35 GeV positrons and electrons at a thin silicon crystal bent to a radius of R = 0.15 m, exploiting the quasimosaic effect. For electrons, two relatively faint quasichanneling peaks were observed, while for positrons, seven quasichanneling peaks were clearly identified.
LSND neutrino oscillation results
International Nuclear Information System (INIS)
Louis, W.C.
1996-01-01
In the past several years, a number of experiments have searched for neutrino oscillations, where a neutrino of one type (say bar ν μ ) spontaneously transforms into a neutrino of another type (say bar ν e ). For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. In 1995 the LSND experiment published data showing candidate events that are consistent with bar ν μ oscillations. Additional data are reported here which provide stronger evidence for neutrino oscillations
International Nuclear Information System (INIS)
Kayser, Boris
2014-01-01
To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures
Energy Technology Data Exchange (ETDEWEB)
Kayser, Boris [Fermilab (United States)
2014-07-01
To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.
International Nuclear Information System (INIS)
Agaisse, R.; Leguen, R.; Ombredane, D.
1960-01-01
The authors present a mechanical device and an electronic control circuit which have been designed to sinusoidally modulate the reactivity of the Proserpine atomic pile. The mechanical device comprises an oscillator and a mechanism assembly. The oscillator is made of cadmium blades which generate the reactivity oscillation. The mechanism assembly comprises a pulse generator for cycle splitting, a gearbox and an engine. The electronic device comprises or performs pulse detection, an on-off device, cycle pulse shaping, phase separation, a dephasing amplifier, electronic switches, counting scales, and control devices. All these elements are briefly presented
Complete solution of the modified Cherry oscillator problem
International Nuclear Information System (INIS)
Pfirsch, D.
1990-04-01
In 1925, T.M. Cherry presented a simple example demonstrating that linear stability analysis will in general not be sufficient for finding out whether a system is stable or not with respect to small-amplitude perturbations. The example consisted of two nonlinearly coupled oscillators, one possessing positive energy, the other negative energy, with frequencies ω 1 =2ω 2 allowing third-order resonance. In a previous paper, the present author reformulated Cherry's example and then generalized it to three coupled oscillators corresponding to three-wave interaction in a continuum theory like that of Maxwell-Vlasov. Cherry was able to present a two-parameter solution set for his example which would, however, allow a four-parameter solution set, and a three-parameter solution set for the resonant three-oscillator case was obtained which, however, would allow a six-parameter solution set. Nonlinear instability could therefore be proven only for a very small part of the phase space of the oscillators. This paper now gives the complete solution for the three-oscillator case and shows that, except for a singular case, all initial conditions, especially those with arbitrarily small amplitudes, lead to explosive behaviour. This is true of the resonant case. The non-resonant oscillators can sometimes also become explosively unstable, but only if the initial amplitudes are not infinitesimally small. (orig.)
Energy flow theory of nonlinear dynamical systems with applications
Xing, Jing Tang
2015-01-01
This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...
Microwave oscillator based on an intrinsic BSCCO-type Josephson junction
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Madsen, Søren Peder
2005-01-01
. The resulting model is a set of coupled nonlinear partial differential equations. By direct numerical simulations we have demonstrated that the qualitative behavior of the combined intrinsic Josephson junction and cavity system can be understood on the basis of general concepts of nonlinear oscillators...
OSCILLATING FILAMENTS. I. OSCILLATION AND GEOMETRICAL FRAGMENTATION
Energy Technology Data Exchange (ETDEWEB)
Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas, E-mail: gritschm@usm.uni-muenchen.de [University Observatory Munich, LMU Munich, Scheinerstrasse 1, D-81679 Munich (Germany)
2017-01-10
We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.
Modulation linearization of a frequency-modulated voltage controlled oscillator, part 3
Honnell, M. A.
1975-01-01
An analysis is presented for the voltage versus frequency characteristics of a varactor modulated VHF voltage controlled oscillator in which the frequency deviation is linearized by using the nonlinear characteristics of a field effect transistor as a signal amplifier. The equations developed are used to calculate the oscillator output frequency in terms of pertinent circuit parameters. It is shown that the nonlinearity exponent of the FET has a pronounced influence on frequency deviation linearity, whereas the junction exponent of the varactor controls total frequency deviation for a given input signal. A design example for a 250 MHz frequency modulated oscillator is presented.
Again on neutrino oscillations
International Nuclear Information System (INIS)
Bilenky, S.M.; Pontecorvo, B.
1976-01-01
The general case is treated of a weak interaction theory in which a term violating lepton charges is present. In such a scheme the particles with definite masses are Majorana neutrinos (2N if in the weak interaction participate N four-component neutrinos). Neutrino oscillations are discussed and it is shown that the minimum average intensity at the earth of solar neutrinos is 1/2N of the intensity expected when oscillations are absent
International Nuclear Information System (INIS)
Belblidia, L.A.; Bratianu, C.
1979-01-01
Boiling flow in a steam generator, a water-cooled reactor, and other multiphase processes can be subject to instabilities. It appears that the most predominant instabilities are the so-called density-wave oscillations. They can cause difficulties for three main reasons; they may induce burnout; they may cause mechanical vibrations of components; and they create system control problems. A comprehensive review is presented of experimental and theoretical studies concerning density-wave oscillations. (author)
Nonlinear waves and pattern dynamics
Pelinovsky, Efim; Mutabazi, Innocent
2018-01-01
This book addresses the fascinating phenomena associated with nonlinear waves and spatio-temporal patterns. These appear almost everywhere in nature from sand bed forms to brain patterns, and yet their understanding still presents fundamental scientific challenges. The reader will learn here, in particular, about the current state-of-the art and new results in: Nonlinear water waves: resonance, solitons, focusing, Bose-Einstein condensation, as well as and their relevance for the sea environment (sea-wind interaction, sand bed forms, fiber clustering) Pattern formation in non-equilibrium media: soap films, chimera patterns in oscillating media, viscoelastic Couette-Taylor flow, flow in the wake behind a heated cylinder, other pattern formation. The editors and authors dedicate this book to the memory of Alexander Ezersky, Professor of Fluid Mechanics at the University of Caen Normandie (France) from September 2007 to July 2016. Before 2007, he had served as a Senior Scientist at the Institute of Applied Physi...
Nonlinear analysis on power reactor dynamics
International Nuclear Information System (INIS)
Konno, H.; Hayashi, K.
1997-01-01
We have shown that the origin of intermittent oscillation observed in a BWR can be ascribed to the couplings among the spatial modes starting from a non-linear center manifold equation with a delay-time and a spatial diffusion. We can reduce the problem to the stochastic coupled van der Pol oscillators with non-linear coupling term. This non-linear coupling term plays an important role to break the symmetry of the system and the non-linear damping of the system. The phenomenological generalization of van der Pol oscillator coupled by the linear diffusion term is not appropriate for describing the nuclear power reactors. However, one must start from the coupled partial differential equations by taking into account the two energy group neutrons, the thermo-hydraulic equations including two-phase flow. In this case, the diffusion constant must be a complex number as is demonstrated in a previous paper. The results will be reported in the near future. (J.P.N.)
Case for neutrino oscillations
International Nuclear Information System (INIS)
Ramond, P.
1982-01-01
The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations
Nonlinear Dynamic Models in Advanced Life Support
Jones, Harry
2002-01-01
To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.
Chaplygin sleigh with periodically oscillating internal mass
Bizyaev, Ivan A.; Borisov, Alexey V.; Kuznetsov, Sergey P.
2017-09-01
We consider the movement of Chaplygin sleigh on a plane that is a solid body with imposed nonholonomic constraint, which excludes the possibility of motions transversal to the constraint element (“knife-edge”), and complement the model with an attached mass, periodically oscillating relatively to the main platform of the sleigh. Numerical simulations indicate the occurrence of either unrestricted acceleration of the sleigh, or motions with bounded velocities and momenta, depending on parameters. We note the presence of phenomena characteristic to nonholonomic systems with complex dynamics; in particular, attractors occur responsible for chaotic motions. In addition, quasiperiodic regimes take place similar to those observed in conservative nonlinear dynamics.
Many-dimensional anisotropic anharmonic oscillator
International Nuclear Information System (INIS)
Turbiner, A.V.
1987-01-01
Precision calculation of energies of several first states at d=2 and first 17 states at d=3 has been performed within the framework of a unique method based on ''nonlinearization'' method for d-dimension anisotropic an harmonic oscillator. Spectrum behaviour within the limit d → ∞ has been investigated and problems of the given approach accuracy have been studied. For the first time properties of nodal surfaces of the given task have been investigated. Routine perturbation theory in degrees of a perturbation parameter has been constructed for several first states
Neutrino oscillations in dense neutrino gases
International Nuclear Information System (INIS)
Samuel, S.
1993-01-01
We consider oscillations of neutrinos under conditions in which the neutrino density is sufficiently large that neutrino-neutrino interactions cannot be neglected. A formalism is developed to treat this highly nonlinear system. Numerical analysis reveals a rich array of phenomena. In certain gases, a self-induced Mikheyev-Smirnov-Wolfenstein effect occurs in which electron neutrinos are resonantly converted into muon neutrinos. In another relatively low-density gas, an unexpected parametric resonant conversion takes place. Finally, neutrino-neutrino interactions maintain coherence in one system for which a priori one expected decoherence
Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities
Indian Academy of Sciences (India)
In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...
Chaos Noise on Phase of Van Der Pol Oscillator
Directory of Open Access Journals (Sweden)
Xian He Huang
2010-12-01
Full Text Available Phase noise is the most important parameter in many oscillators. In this paper, based on nonlinear stochastic differential equation for phase noise analysis approach is proposed. And then discusses and compares the influence of two different sources of noise in the Van Der Pol oscillator adopted this method. One source of noise is a white noise process, which is a genuinely stochastic process; the other source of noise is actually a deterministic system, which exhibits chaotic behavior in some regions. The behavior of the oscillator under different conditions is investigated numerically. It is shown that the phase noise of the oscillator is affected more by noise arising from chaos than by noise arising from the genuine stochastic process at the same noise intensity.
Nonlinear dynamics of boiling water reactors
International Nuclear Information System (INIS)
March-Leuba, J.; Cacuci, D.G.; Perez, R.B.
1983-01-01
Recent stability tests in Boiling Water Reactors (BWRs) have indicated that these reactors can exhibit the special nonlinear behavior of following a closed trajectory called limit cycle. The existence of a limit cycle corresponds to an oscillation of fixed amplitude and period. During these tests, such oscillations had their amplitudes limited to about +- 15% of the operating power. Since limit cycles are fairly insensitive to parameter variations, it is possible to operate a BWR under conditions that sustain a limit cycle (of fixed amplitude and period) over a finite range of reactor parameters
Halo Mitigation Using Nonlinear Lattices
Sonnad, Kiran G
2005-01-01
This work shows that halos in beams with space charge effects can be controlled by combining nonlinear focusing and collimation. The study relies on Particle-in-Cell (PIC) simulations for a one dimensional, continuous focusing model. The PIC simulation results show that nonlinear focusing leads to damping of the beam oscillations thereby reducing the mismatch. It is well established that reduced mismatch leads to reduced halo formation. However, the nonlinear damping is accompanied by emittance growth causing the beam to spread in phase space. As a result, inducing nonlinear damping alone cannot help mitigate the halo. To compensate for this expansion in phase space, the beam is collimated in the simulation and further evolution of the beam shows that the halo is not regenerated. The focusing model used in the PIC is analysed using the Lie Transform perturbation theory showing that by averaging over a lattice period, one can reuduce the focusing force to a form that is identical to that used in the PIC simula...
Nonlinear ordinary differential equations analytical approximation and numerical methods
Hermann, Martin
2016-01-01
The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march...
Applications of Nonlinear Dynamics Model and Design of Complex Systems
In, Visarath; Palacios, Antonio
2009-01-01
This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.
Vibrational mechanics nonlinear dynamic effects, general approach, applications
Blekhman, Iliya I
2000-01-01
This important book deals with vibrational mechanics - the new, intensively developing section of nonlinear dynamics and the theory of nonlinear oscillations. It offers a general approach to the study of the effect of vibration on nonlinear mechanical systems.The book presents the mathematical apparatus of vibrational mechanics which is used to describe such nonlinear effects as the disappearance and appearance under vibration of stable positions of equilibrium and motions (i.e. attractors), the change of the rheological properties of the media, self-synchronization, self-balancing, the vibrat
The benefits of noise and nonlinearity: Extracting energy from random vibrations
Energy Technology Data Exchange (ETDEWEB)
Gammaitoni, Luca, E-mail: luca.gammaitoni@pg.infn.it [NiPS Laboratory, Universita di Perugia, I-06100 Perugia (Italy); Neri, Igor; Vocca, Helios [NiPS Laboratory, Universita di Perugia, I-06100 Perugia (Italy)
2010-10-05
Nonlinear behavior is the ordinary feature of the vast majority of dynamical systems and noise is commonly present in any finite temperature physical and chemical system. In this article we briefly review the potentially beneficial outcome of the interplay of noise and nonlinearity by addressing the novel field of vibration energy harvesting. The role of nonlinearity in a piezoelectric harvester oscillator dynamics is modeled with nonlinear stochastic differential equation.
Oscillations in the interactions among multiple solitons in an optical fibre
Energy Technology Data Exchange (ETDEWEB)
Hu, Wen-Qiang; Gao, Yi-Tian; Zhao, Chen; Feng, Yu-Jie; Su, Chuan-Qi [Beijing University of Aeronautics and Astronautics (China). Ministry of Education Key Laboratory of Fluid Mechanics; Beijing University of Aeronautics and Astronautics (China). National Laboratory for Computational Fluid Dynamics
2016-07-01
In this article, under the investigation on the interactions among multiple solitons for an eighth-order nonlinear Schroedinger equation in an optical fibre, oscillations in the interaction zones are observed theoretically. With different coefficients of the operators in this equation, we find that (1) the oscillations in the solitonic interaction zones have different forms with different spectral parameters of this equation; (2) the oscillations in the interactions among the multiple solitons are affected by the choice of spectral parameters, the dispersive effects and nonlinearity of the eighth-order operator; (3) the second-, fifth-, sixth-, and seventh-order operators restrain oscillations in the solitonic interaction zones and the higher-order operators have stronger attenuated effects than the lower ones, while the third- and fourth-order operators stimulate and extend the scope of oscillations.
New Approach for the Analysis of Damped Vibrations of Fractional Oscillators
Directory of Open Access Journals (Sweden)
Yuriy A. Rossikhin
2009-01-01
Full Text Available The dynamic behavior of linear and nonlinear mechanical oscillators with constitutive equations involving fractional derivatives defined as a fractional power of the operator of conventional time-derivative is considered. Such a definition of the fractional derivative enables one to analyse approximately vibratory regimes of the oscillator without considering the drift of its position of equilibrium. The assumption of small fractional derivative terms allows one to use the method of multiple time scales whereby a comparative analysis of the solutions obtained for different orders of low-level fractional derivatives and nonlinear elastic terms is possible to be carried out. The interrelationship of the fractional parameter (order of the fractional operator and nonlinearity manifests itself in full measure when orders of the small fractional derivative term and of the cubic nonlinearity entering in the oscillator's constitutive equation coincide.
Magma chamber interaction giving rise to asymmetric oscillations
Walwer, D.; Ghil, M.; Calais, E.
2017-12-01
Geodetic time series at four volcanoes (Okmok, Akutan, Shishaldin, and Réunion) are processed using Multi-channel Singular Spectrum Analysis (M-SSA) and reveal sawtooth-shaped oscillations ; the latter are characterized by short intervals of fast inflations followed by longer intervals of slower deflations. At Okmok and Akutan, the oscillations are first damped and then accentuated. At Okmok, the increase in amplitude of the oscillations is followed by an eruption. We first show that the dynamics of these four volcanoes bears similarities with that of a simple nonlinear, dissipative oscillator, indicating that the inflation-deflation episodes are relaxation oscillations. These observations imply that ab initio dynamical models of magma chambers should possess an asymmetric oscillatory regime. Next, based on the work of Whitehead and Helfrich [1991], we show that a model of two magma chambers — connected by a cylindrical conduit in which the magma viscosity depends on temperature — gives rise to asymmetric overpressure oscillations in the magma reservoirs. These oscillations lead to surface deformations that are consistent with those observed at the four volcanoes in this study. This relaxation oscillation regime occurs only when the vertical temperature gradient in the host rock between the two magma chambers is large enough and when the magma flux entering the volcanic system is sufficiently high. The magma being supplied by a deeper source region, the input flux depends on the pressure difference between the source and the deepest reservoir. When this difference is not sufficiently high, the magma flux exponentially decreases, leading to damped oscillations as observed at Akutan and Okmok. The combination of observational and modeling results clearly supports the role of relaxation oscillations in the dynamics of volcanic systems.
Limit cycle analysis of nuclear coupled density wave oscillations
International Nuclear Information System (INIS)
Ward, M.E.
1985-01-01
An investigation of limit cycle behavior for the nuclear-coupled density wave oscillation (NCDWO) in a boiling water reactor (BWR) was performed. A simplified nonlinear model of BWR core behavior was developed using a two-region flow channel representation, coupled with a form of the point-kinetics equation. This model has been used to investigate the behavior of large amplitude NCDWO's through conventional time-integration solutions and through application of a direct relaxation-oscillation limit cycle solution in phase space. The numerical solutions demonstrate the potential for severe global power and flow oscillations in a BWR core at off-normal conditions, such as might occur during Anticipated Transients without Scram. Because of the many simplifying assumptions used, it is felt that the results should not be interpreted as an absolute prediction of core behavior, but as an indication of the potential for large oscillations and a demonstration of the corresponding limit cycle mechanisms. The oscillations in channel density drive the core power variations, and are reinforced by heat flux variations due to the changing fuel temperature. A global temperature increase occurs as energy is accumulated in the fuel, and limits the magnitude of the oscillations because as the average channel density decreases, the amplitude and duration of positive void reactivity at a given oscillation amplitude is lessened
Quantum synchronization of quantum van der Pol oscillators with trapped ions.
Lee, Tony E; Sadeghpour, H R
2013-12-06
The van der Pol oscillator is the prototypical self-sustained oscillator and has been used to model nonlinear behavior in biological and other classical processes. We investigate how quantum fluctuations affect phase locking of one or many van der Pol oscillators. We find that phase locking is much more robust in the quantum model than in the equivalent classical model. Trapped-ion experiments are ideally suited to simulate van der Pol oscillators in the quantum regime via sideband heating and cooling of motional modes. We provide realistic experimental parameters for 171Yb+ achievable with current technology.
Excitation of high numbers harmonics by flows of oscillators in a periodic potential
International Nuclear Information System (INIS)
Buts, V.A.; Marekha, V.I.; Tolstoluzhsky, A.P.
2005-01-01
It is shown that the maximum of radiation spectrum of nonrelativistic oscillators, which move into a periodically inhomogeneous potential, can be in the region of high numbers harmonics. Spectrum of such oscillators radiation becomes similar to the radiation spectrum of relativistic oscillators. The equations, describing the non-linear self-consistent theory of excitations, of high numbers harmonics by ensemble of oscillators are formulated and its numerical analysis is conducted. The numerical analysis has confirmed the capability of radiation of high numbers of harmonics. Such peculiarity of radiation allows t expect of creation of nonrelativistic FEL
International Nuclear Information System (INIS)
Wang, C M; Lei, X L
2014-01-01
We study dc-current effects on the magnetoresistance oscillation in a two-dimensional electron gas with Rashba spin-orbit coupling, using the balance-equation approach to nonlinear magnetotransport. In the weak current limit the magnetoresistance exhibits periodical Shubnikov-de Haas oscillation with changing Rashba coupling strength for a fixed magnetic field. At finite dc bias, the period of the oscillation halves when the interbranch contribution to resistivity dominates. With further increasing current density, the oscillatory resistivity exhibits phase inversion, i.e., magnetoresistivity minima (maxima) invert to maxima (minima) at certain values of the dc bias, which is due to the current-induced magnetoresistance oscillation. (paper)
Model Reduction of Nonlinear Aeroelastic Systems Experiencing Hopf Bifurcation
Abdelkefi, Abdessattar
2013-06-18
In this paper, we employ the normal form to derive a reduced - order model that reproduces nonlinear dynamical behavior of aeroelastic systems that undergo Hopf bifurcation. As an example, we consider a rigid two - dimensional airfoil that is supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. We apply the center manifold theorem on the governing equations to derive its normal form that constitutes a simplified representation of the aeroelastic sys tem near flutter onset (manifestation of Hopf bifurcation). Then, we use the normal form to identify a self - excited oscillator governed by a time - delay ordinary differential equation that approximates the dynamical behavior while reducing the dimension of the original system. Results obtained from this oscillator show a great capability to predict properly limit cycle oscillations that take place beyond and above flutter as compared with the original aeroelastic system.
Transition from weak to strong measurements by nonlinear quantum feedback control
International Nuclear Information System (INIS)
Zhang Jing; Liu Yuxi; Wu Rebing; Li Chunwen; Tarn, Tzyh-Jong
2010-01-01
We find that feedback control may induce 'pseudo'-nonlinear dynamics in a damped harmonic oscillator, whose centroid trajectory in the phase space behaves like a classical nonlinear system. Thus, similar to nonlinear amplifiers (e.g., rf-driven Josephson junctions), feedback control on the harmonic oscillator can induce nonlinear bifurcation, which can be used to amplify small signals and further to measure quantum states of qubits. Using the cavity QED and the circuit QED systems as examples, we show how to apply our method to measuring the states of two-level atoms and superconducting charge qubits.
Laser beam propagation in nonlinear optical media
Guha, Shekhar
2013-01-01
""This is very unique and promises to be an extremely useful guide to a host of workers in the field. They have given a generalized presentation likely to cover most if not all situations to be encountered in the laboratory, yet also highlight several specific examples that clearly illustrate the methods. They have provided an admirable contribution to the community. If someone makes their living by designing lasers, optical parametric oscillators or other devices employing nonlinear crystals, or designing experiments incorporating laser beam propagation through linear or nonlinear media, then
International Nuclear Information System (INIS)
Dolgov, A.D.; Morozov, A.Yu.; Okun, L.B.; Schepkin, M.G.
1997-01-01
We develop a theory of the EPR-like effects due to neutrino oscillations in the π→μν decays. Its experimental implications are space-time correlations of the neutrino and muon when they are both detected, while the pion decay point is not fixed. However, the more radical possibility of μ-oscillations in experiments where only muons are detected (as suggested in hep-ph/9509261), is ruled out. We start by discussing decays of monochromatic pions, and point out a few ''paradoxes''. Then we consider pion wave packets, solve the ''paradoxes'', and show that the formulas for μν correlations can be transformed into the usual expressions, describing neutrino oscillations, as soon as the pion decay point is fixed. (orig.)
International Nuclear Information System (INIS)
Hoeye, Gudrun Kristine
1999-01-01
We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l → 4) f-modes we were also able to derive a formula that determines II l+1 from II l and II l-1 to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n c , while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)
Energy Technology Data Exchange (ETDEWEB)
Hoeye, Gudrun Kristine
1999-07-01
We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)
Studies of hydromagnetic waves and oscillations in plasmas
International Nuclear Information System (INIS)
Sawley, M.L.
1980-10-01
Small amplitude magnetoacoustic oscillations in a partially ionized, non-uniform, current carrying plasma column of finite beta are considered. The linearized magnetohydrodynamic equations are used to develop a theory describing both free and forced magnetoacoustic oscillations. The results of numerical calculations are given for the specific case of diffuse pinch equilibrium configurations. In an experimental study the amplitude of the oscillating axial magnetic flux is determined for several frequencies in the vicinity of the first magnetoacoustic resonance. Accurate determination of the plasma density profile is shown to be possible. Finite-amplitude effects on the propagation of axisymmetric hydromagnetic waves are examined. A nonlinear theory is developed which describes the second-order perturbation that accompanies the primary wave. The influence of Hall currents and the presence of neutral atoms on the second-order fields is treated. In an investigation on the propagation of torsional waves the observed second-order fields are shown to exhibit good quantitative agreement with theoretical calculations for moderate primary wave amplitudes. The re-ionization of the plasma by a torsional wave is investigated. A theoretical description is given of the nonlinear excitation of magnetoacoustic oscillations by means of an oscillating axial current
Superconducting Nanowires as Nonlinear Inductive Elements for Qubits
Ku, Jaseung; Manucharyan, Vladimir; Bezryadin, Alexey
2010-01-01
We report microwave transmission measurements of superconducting Fabry-Perot resonators (SFPR), having a superconducting nanowire placed at a supercurrent antinode. As the plasma oscillation is excited, the supercurrent is forced to flow through the nanowire. The microwave transmission of the resonator-nanowire device shows a nonlinear resonance behavior, significantly dependent on the amplitude of the supercurrent oscillation. We show that such amplitude-dependent response is due to the nonl...
Oscillating acoustic streaming jet
International Nuclear Information System (INIS)
Moudjed, Brahim; Botton, Valery; Henry, Daniel; Millet, Severine; Ben Hadid, Hamda; Garandet, Jean-Paul
2014-01-01
The present paper provides the first experimental investigation of an oscillating acoustic streaming jet. The observations are performed in the far field of a 2 MHz circular plane ultrasound transducer introduced in a rectangular cavity filled with water. Measurements are made by Particle Image Velocimetry (PIV) in horizontal and vertical planes near the end of the cavity. Oscillations of the jet appear in this zone, for a sufficiently high Reynolds number, as an intermittent phenomenon on an otherwise straight jet fluctuating in intensity. The observed perturbation pattern is similar to that of former theoretical studies. This intermittently oscillatory behavior is the first step to the transition to turbulence. (authors)
Alabdulmohsin, Ibrahim M.
2018-03-07
In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.
Brownian parametric oscillators
Zerbe, Christine; Jung, Peter; Hänggi, Peter
1994-05-01
We discuss the stochastic dynamics of dissipative, white-noise-driven Floquet oscillators, characterized by a time-periodic stiffness. Thus far, little attention has been paid to these exactly solvable nonstationary systems, although they carry a rich potential for several experimental applications. Here, we calculate and discuss the mean values and variances, as well as the correlation functions and the Floquet spectrum. As one main result, we find for certain parameter values that the fluctuations of the position coordinate are suppressed as compared to the equilibrium value of a harmonic oscillator (parametric squeezing).
Friedel oscillations in graphene
DEFF Research Database (Denmark)
Lawlor, J. A.; Power, S. R.; Ferreira, M.S.
2013-01-01
Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...
Proprioceptive evoked gamma oscillations
DEFF Research Database (Denmark)
Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.
2007-01-01
A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...
Alabdulmohsin, Ibrahim M.
2018-01-01
In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.
Fu, Y. B.; Ogden, R. W.
2001-05-01
This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
Nonlinear resonance in Duffing oscillator with fixed and integrative ...
Indian Academy of Sciences (India)
2012-03-02
Mar 2, 2012 ... ence of machine tool vibration due to some external disturbances gives rise to a cutting ... of delayed feedback the frequency–response curve is multivalued and typical ..... Therefore, in the following we restrict our analysis for.
Nonlinear oscillations of laminated plates using an accurate four ...
Indian Academy of Sciences (India)
replacing the traditional metallic structures in the weight-sensitive aerospace and ... to resort to numerical methods such as finite elements (Zienkiewicz 1977; ... extensively during the last few decades (refer, the comprehensive survey by ...
Nonlinear dynamic effects in a two-wave CO2 laser
International Nuclear Information System (INIS)
Gorobets, V A; Kozlov, K V; Kuntsevich, B F; Petukhov, V O
1999-01-01
Theoretical and experimental investigations were made of nonlinear dynamic regimes of the operation of a two-wave CO 2 laser with cw excitation in an electric discharge and loss modulation in one of the channels. Nonlinear amplitude - frequency characteristics of each of the laser channels have two low-frequency resonance spikes, associated with forced linear oscillations of two coupled oscillators, and high-frequency spikes, corresponding to doubling of the period of the output radiation oscillations. At low loss-modulation frequencies the intensity oscillations of the output radiation in the coupled channels are in antiphase, whereas at high modulation frequencies the dynamics is cophasal. Nonlinear dynamic effects, such as doubling of the period and of the repetition frequency of the pulses and chaotic oscillations of the output radiation intensity, are observed for certain system parameters. (control of laser radiation parameters)
Picone-type inequalities for nonlinear elliptic equations and their applications
Directory of Open Access Journals (Sweden)
Takaŝi Kusano
2001-01-01
Full Text Available Picone-type inequalities are derived for nonlinear elliptic equations, and Sturmian comparison theorems are established as applications. Oscillation theorems for forced super-linear elliptic equations and superlinear-sublinear elliptic equations are also obtained.
Oscillation Baselining and Analysis Tool
Energy Technology Data Exchange (ETDEWEB)
2017-03-27
PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).
Directory of Open Access Journals (Sweden)
Kun Wei
Full Text Available In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE. Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.
Wei, Kun; Gao, Shilong; Zhong, Suchuan; Ma, Hong
2012-01-01
In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.
Deep saturated Free Electron Laser oscillators and frozen spikes
Energy Technology Data Exchange (ETDEWEB)
Ottaviani, P.L. [ENEA - Centro Ricerche Bologna, via Martiri di Monte Sole, 4, IT 40129, Bologna (Italy); Pagnutti, S., E-mail: simonetta.pagnutti@enea.it [ENEA - Centro Ricerche Bologna, via Martiri di Monte Sole, 4, IT 40129, Bologna (Italy); Dattoli, G., E-mail: giuseppe.dattoli@enea.it [ENEA - Centro Ricerche Frascati, via E. Fermi, 45, IT 00044, Frascati, Roma (Italy); Sabia, E., E-mail: elio.sabia@enea.it [ENEA - Centro Ricerche Frascati, via E. Fermi, 45, IT 00044, Frascati, Roma (Italy); Petrillo, V., E-mail: vittoria.petrillo@mi.infn.it [Universita' degli Studi di Milano, via Celoria 16, IT 20133, Milano (Italy); INFN - Mi, via Celoria 16, IT 20133, Milano (Italy); Slot, P.J.M. van der, E-mail: p.j.m.vanderslot@utwente.nl [Mesa+ Institute for Nanotechnology, University of Twente, P.O.Box 217, 7500 AE, Enschede (Netherlands); Biedron, S., E-mail: sandra.biedron@colostate.edu [Department of Electrical and Computer Engineering Colorado State University (United States); Milton, S., E-mail: milton@engr.colostate.edu [Department of Electrical and Computer Engineering Colorado State University (United States)
2016-10-21
We analyze the behavior of Free Electron Laser (FEL) oscillators operating in the deep saturated regime and point out the formation of sub-peaks of the optical pulse. These are very stable configurations and the sub-peaks are found to have a duration corresponding to the coherence length. We speculate on the physical mechanisms underlying their growth and attempt an identification with natural mode-locked structures in FEL oscillators. Their impact on the intra-cavity nonlinear harmonic generation is also discussed along with the possibility of exploiting them as cavity out-coupler.
Bifurcation of forced periodic oscillations for equations with Preisach hysteresis
International Nuclear Information System (INIS)
Krasnosel'skii, A; Rachinskii, D
2005-01-01
We study oscillations in resonant systems under periodic forcing. The systems depend on a scalar parameter and have the form of simple pendulum type equations with ferromagnetic friction represented by the Preisach hysteresis nonlinearity. If for some parameter value the period of free oscillations of the principal linear part of the system coincides with the period of the forcing term, then one may expect the existence of unbounded branches of periodic solutions for nearby parameter values. We present conditions for the existence and nonexistence of such branches and estimates of their number
Predicting chaos in memristive oscillator via harmonic balance method.
Wang, Xin; Li, Chuandong; Huang, Tingwen; Duan, Shukai
2012-12-01
This paper studies the possible chaotic behaviors in a memristive oscillator with cubic nonlinearities via harmonic balance method which is also called the method of describing function. This method was proposed to detect chaos in classical Chua's circuit. We first transform the considered memristive oscillator system into Lur'e model and present the prediction of the existence of chaotic behaviors. To ensure the prediction result is correct, the distortion index is also measured. Numerical simulations are presented to show the effectiveness of theoretical results.
Synchronization of modified Colpitts oscillators with structural perturbations
Energy Technology Data Exchange (ETDEWEB)
Kammogne, Soup Tewa; Fotsin, H B, E-mail: hbfotsin@yahoo.fr [Laboratoire d' electronique, Departement de Physique, Faculte des sciences, Universite de Dschang, PO Box 067, Dschang (Cameroon)
2011-06-01
This paper deals with the problem of the synchronization of uncertain modified Colpitts oscillators. Considering the effect of external disturbances on the system parameters and nonlinear control inputs, a robust controller based on Lyapunov theory is designed for the output synchronization between a slave system and a master system in order to ensure the synchronization of uncertain modified Colpitts oscillator systems. This approach was chosen not only to guarantee a stable synchronization but also to reduce the effect of external perturbation. Nonadaptive feedback synchronization with only one controller for the system is investigated. Numerical simulations are performed to confirm the efficiency of the proposed control scheme.
The dynamics of two linearly coupled Goodwin oscillators
Antonova, A. O.; Reznik, S. N.; Todorov, M. D.
2017-10-01
In this paper the Puu model of the interaction of Goodwin's business cycles for two regions is reconsidered. We investigated the effect of the accelerator coefficients and the Hicksian 'ceiling' and 'floor' parameters on the time dynamics of incomes for different values of marginal propensity to import. The cases when the periods of isolated Goodwin's cycles are close, and when they differ approximately twice are considered. By perturbation theory we obtained the formulas for slowly varying amplitudes and phase difference of weakly nonlinear coupled Goodwin oscillations. The coupled oscillations of two Goodwin's cycles with piecewise linear accelerators with only 'floor' are considered.
Nonlinear dynamics, chaos and complex cardiac arrhythmias
Glass, L.; Courtemanche, M.; Shrier, A.; Goldberger, A. L.
1987-01-01
Periodic stimulation of a nonlinear cardiac oscillator in vitro gives rise to complex dynamics that is well described by one-dimensional finite difference equations. As stimulation parameters are varied, a large number of different phase-locked and chaotic rhythms is observed. Similar rhythms can be observed in the intact human heart when there is interaction between two pacemaker sites. Simplified models are analyzed, which show some correspondence to clinical observations.
Nonlinear longitudinal dynamics studies at the ALS
International Nuclear Information System (INIS)
Byrd, J.M.; Cheng, W.-H.; De Santis, S.; Li, D.; Stupakov, G.; Zimmermann, F.
1999-01-01
We present a summary of results for a variety of studies of nonlinear longitudinal dynamics in the Advanced Light Source, an electron storage ring. These include observation of decoherence at injection, decay of an injected beam, forced synchrotron oscillations and diffusion from one bunch to the next. All of the measurements were made using a dual-scan streak camera which allowed the real-time observation of the longitudinal distribution of the electron beam
Dynamical Jumps in a Shape Memory Alloy Oscillator
Directory of Open Access Journals (Sweden)
H. S. Oliveira
2014-01-01
Full Text Available The dynamical response of systems with shape memory alloy (SMA elements presents a rich behavior due to their intrinsic nonlinear characteristic. SMA’s nonlinear response is associated with both adaptive dissipation related to hysteretic behavior and huge changes in properties caused by phase transformations. These characteristics are attracting much technological interest in several scientific and engineering fields, varying from medical to aerospace applications. An important characteristic associated with dynamical response of SMA system is the jump phenomenon. Dynamical jumps result in abrupt changes in system behavior and its analysis is essential for a proper design of SMA systems. This paper discusses the nonlinear dynamics of a one degree of freedom SMA oscillator presenting pseudoelastic behavior and dynamical jumps. Numerical simulations show different aspects of this kind of behavior, illustrating its importance for a proper understanding of nonlinear dynamics of SMA systems.
Multiple sine wave excitation of a hard spring oscillator
International Nuclear Information System (INIS)
Curreri, J.R.; Bezler, P.
1976-06-01
The vibration testing of non-linear systems has not received much attention in the literature. Frequently, linear procedures are used in the hope that large differences between the linear and non-linear responses will not occur. This may be valid for certain small ranges of the non-linearity and for a single harmonic component excitation. However, for multi-component periodic inputs, there is very little guidance in the literature for even a qualitative evaluation of the probable response. With multi-component periodic inputs, it has been shown that sub-combination frequencies can occur in cubic non-linear systems. Under these conditions, large responses can develop. The critical nature of the development of the large response has not been discussed. This is the subject of this paper. The qualitative response of a two component sine wave applied to a hard spring oscillator is shown
DEFF Research Database (Denmark)
Bureau, Emil; Schilder, Frank; Santos, Ilmar
2014-01-01
We show how to implement control-based continuation in a nonlinear experiment using existing and freely available software. We demonstrate that it is possible to track the complete frequency response, including the unstable branches, for a harmonically forced impact oscillator.......We show how to implement control-based continuation in a nonlinear experiment using existing and freely available software. We demonstrate that it is possible to track the complete frequency response, including the unstable branches, for a harmonically forced impact oscillator....
From excitability to oscillations
DEFF Research Database (Denmark)
Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.
2013-01-01
One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow dif...
Neutrino oscillation experiments
International Nuclear Information System (INIS)
Camilleri, L.
1996-01-01
Neutrino oscillation experiments (ν μ →ν e and ν μ →ν τ ) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs
Jones, R. T.
1976-01-01
For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.
Integrated optoelectronic oscillator.
Tang, Jian; Hao, Tengfei; Li, Wei; Domenech, David; Baños, Rocio; Muñoz, Pascual; Zhu, Ninghua; Capmany, José; Li, Ming
2018-04-30
With the rapid development of the modern communication systems, radar and wireless services, microwave signal with high-frequency, high-spectral-purity and frequency tunability as well as microwave generator with light weight, compact size, power-efficient and low cost are increasingly demanded. Integrated microwave photonics (IMWP) is regarded as a prospective way to meet these demands by hybridizing the microwave circuits and the photonics circuits on chip. In this article, we propose and experimentally demonstrate an integrated optoelectronic oscillator (IOEO). All of the devices needed in the optoelectronic oscillation loop circuit are monolithically integrated on chip within size of 5×6cm 2 . By tuning the injection current to 44 mA, the output frequency of the proposed IOEO is located at 7.30 GHz with phase noise value of -91 dBc/Hz@1MHz. When the injection current is increased to 65 mA, the output frequency can be changed to 8.87 GHz with phase noise value of -92 dBc/Hz@1MHz. Both of the oscillation frequency can be slightly tuned within 20 MHz around the center oscillation frequency by tuning the injection current. The method about improving the performance of IOEO is carefully discussed at the end of in this article.
The variational spiked oscillator
International Nuclear Information System (INIS)
Aguilera-Navarro, V.C.; Ullah, N.
1992-08-01
A variational analysis of the spiked harmonic oscillator Hamiltonian -d 2 / d x 2 + x 2 + δ/ x 5/2 , δ > 0, is reported in this work. A trial function satisfying Dirichlet boundary conditions is suggested. The results are excellent for a large range of values of the coupling parameter. (author)
Neutrino oscillation experiments
Energy Technology Data Exchange (ETDEWEB)
Camilleri, L [European Organization for Nuclear Research, Geneva (Switzerland)
1996-11-01
Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.
Location identification of closed crack based on Duffing oscillator transient transition
Liu, Xiaofeng; Bo, Lin; Liu, Yaolu; Zhao, Youxuan; Zhang, Jun; Deng, Mingxi; Hu, Ning
2018-02-01
The existence of a closed micro-crack in plates can be detected by using the nonlinear harmonic characteristics of the Lamb wave. However, its location identification is difficult. By considering the transient nonlinear Lamb under the noise interference, we proposed a location identification method for the closed crack based on the quantitative measurement of Duffing oscillator transient transfer in the phase space. The sliding short-time window was used to create a window truncation of to-be-detected signal. And then, the periodic extension processing for transient nonlinear Lamb wave was performed to ensure that the Duffing oscillator has adequate response time to reach a steady state. The transient autocorrelation method was used to reduce the occurrence of missed harmonic detection due to the random variable phase of nonlinear Lamb wave. Moreover, to overcome the deficiency in the quantitative analysis of Duffing system state by phase trajectory diagram and eliminate the misjudgment caused by harmonic frequency component contained in broadband noise, logic operation method of oscillator state transition function based on circular zone partition was adopted to establish the mapping relation between the oscillator transition state and the nonlinear harmonic time domain information. Final state transition discriminant function of Duffing oscillator was used as basis for identifying the reflected and transmitted harmonics from the crack. Chirplet time-frequency analysis was conducted to identify the mode of generated harmonics and determine the propagation speed. Through these steps, accurate position identification of the closed crack was achieved.
Supersymmetric construction of exactly solvable potentials and nonlinear algebras
International Nuclear Information System (INIS)
Junker, G.; Roy, P.
1998-01-01
Using algebraic tools of supersymmetric quantum mechanics we construct classes of conditionally exactly solvable potentials being the supersymmetric partners of the linear or radial harmonic oscillator. With the help of the raising and lowering operators of these harmonic oscillators and the SUSY operators we construct ladder operators for these new conditionally solvable systems. It is found that these ladder operators together with the Hamilton operator form a nonlinear algebra which is of quadratic and cubic type for the SUSY partners of the linear and radial harmonic oscillator
Uncertainty Quantification and Bifurcation Analysis of an Airfoil with Multiple Nonlinearities
Directory of Open Access Journals (Sweden)
Haitao Liao
2013-01-01
Full Text Available In order to calculate the limit cycle oscillations and bifurcations of nonlinear aeroelastic system, the problem of finding periodic solutions with maximum vibration amplitude is transformed into a nonlinear optimization problem. An algebraic system of equations obtained by the harmonic balance method and the stability condition derived from the Floquet theory are used to construct the general nonlinear equality and inequality constraints. The resulting constrained maximization problem is then solved by using the MultiStart algorithm. Finally, the proposed approach is validated, and the effects of structural parameter uncertainty on the limit cycle oscillations and bifurcations of an airfoil with multiple nonlinearities are studied. Numerical examples show that the coexistence of multiple nonlinearities may lead to low amplitude limit cycle oscillation.
Inference of a Nonlinear Stochastic Model of the Cardiorespiratory Interaction
Smelyanskiy, V. N.; Luchinsky, D. G.; Stefanovska, A.; McClintock, P. V.
2005-03-01
We reconstruct a nonlinear stochastic model of the cardiorespiratory interaction in terms of a set of polynomial basis functions representing the nonlinear force governing system oscillations. The strength and direction of coupling and noise intensity are simultaneously inferred from a univariate blood pressure signal. Our new inference technique does not require extensive global optimization, and it is applicable to a wide range of complex dynamical systems subject to noise.
Analytical approximations for the amplitude and period of a relaxation oscillator
Directory of Open Access Journals (Sweden)
Golkhou Vahid
2009-01-01
Full Text Available Abstract Background Analysis and design of complex systems benefit from mathematically tractable models, which are often derived by approximating a nonlinear system with an effective equivalent linear system. Biological oscillators with coupled positive and negative feedback loops, termed hysteresis or relaxation oscillators, are an important class of nonlinear systems and have been the subject of comprehensive computational studies. Analytical approximations have identified criteria for sustained oscillations, but have not linked the observed period and phase to compact formulas involving underlying molecular parameters. Results We present, to our knowledge, the first analytical expressions for the period and amplitude of a classic model for the animal circadian clock oscillator. These compact expressions are in good agreement with numerical solutions of corresponding continuous ODEs and for stochastic simulations executed at literature parameter values. The formulas are shown to be useful by permitting quick comparisons relative to a negative-feedback represillator oscillator for noise (10× less sensitive to protein decay rates, efficiency (2× more efficient, and dynamic range (30 to 60 decibel increase. The dynamic range is enhanced at its lower end by a new concentration scale defined by the crossing point of the activator and repressor, rather than from a steady-state expression level. Conclusion Analytical expressions for oscillator dynamics provide a physical understanding for the observations from numerical simulations and suggest additional properties not readily apparent or as yet unexplored. The methods described here may be applied to other nonlinear oscillator designs and biological circuits.
Chimera states in two-dimensional networks of locally coupled oscillators
Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.
2018-02-01
Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera
[Nonlinear magnetohydrodynamics
International Nuclear Information System (INIS)
1994-01-01
Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday's law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm's law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile
Large time behaviour of oscillatory nonlinear solute transport in porous media
Duijn, van C.J.; Zee, van der S.E.A.T.M.
2018-01-01
Oscillations in flow occur under many different situations in natural porous media, due to tidal, daily or seasonal patterns. In this paper, we investigate how such oscillations in flow affect the transport of an initially sharp solute front, if the solute undergoes nonlinear sorption and,
Synchronization of chaotic and nonchaotic oscillators: Application to bipolar disorder
Energy Technology Data Exchange (ETDEWEB)
Nono Dueyou Buckjohn, C., E-mail: bucknono@yahoo.f [Laboratoire de Mecanique, Departement de Physique, Faculte des Sciences, Universite de Yaounde I, B.P. 812 Yaounde (Cameroon); Siewe Siewe, M., E-mail: martinsiewesiewe@yahoo.f [Laboratoire de Mecanique, Departement de Physique, Faculte des Sciences, Universite de Yaounde I, B.P. 812 Yaounde (Cameroon); Tchawoua, C., E-mail: ctchawa@yahoo.f [Laboratoire de Mecanique, Departement de Physique, Faculte des Sciences, Universite de Yaounde I, B.P. 812 Yaounde (Cameroon); Kofane, T.C., E-mail: tckofane@yahoo.co [Laboratoire de Mecanique, Departement de Physique, Faculte des Sciences, Universite de Yaounde I, B.P. 812 Yaounde (Cameroon)
2010-08-02
In this Letter, we use a synchronization scheme on two bipolar disorder models consisting of a strong nonlinear system with multiplicative excitation and a nonlinear oscillator without parametric harmonic forcing. The stability condition following our control function is analytically demonstrated using the Lyapunov theory and Routh-Hurwitz criteria, we then have the condition for the existence of a feedback gain matrix. A convenient demonstration of the accuracy of the method is complemented by the numerical simulations from which we illustrate the synchronized dynamics between the two non-identical bipolar disorder patients.
Synchronization of chaotic and nonchaotic oscillators: Application to bipolar disorder
International Nuclear Information System (INIS)
Nono Dueyou Buckjohn, C.; Siewe Siewe, M.; Tchawoua, C.; Kofane, T.C.
2010-01-01
In this Letter, we use a synchronization scheme on two bipolar disorder models consisting of a strong nonlinear system with multiplicative excitation and a nonlinear oscillator without parametric harmonic forcing. The stability condition following our control function is analytically demonstrated using the Lyapunov theory and Routh-Hurwitz criteria, we then have the condition for the existence of a feedback gain matrix. A convenient demonstration of the accuracy of the method is complemented by the numerical simulations from which we illustrate the synchronized dynamics between the two non-identical bipolar disorder patients.
Synchronization of chaotic and nonchaotic oscillators: Application to bipolar disorder
Nono Dueyou Buckjohn, C.; Siewe Siewe, M.; Tchawoua, C.; Kofane, T. C.
2010-08-01
In this Letter, we use a synchronization scheme on two bipolar disorder models consisting of a strong nonlinear system with multiplicative excitation and a nonlinear oscillator without parametric harmonic forcing. The stability condition following our control function is analytically demonstrated using the Lyapunov theory and Routh-Hurwitz criteria, we then have the condition for the existence of a feedback gain matrix. A convenient demonstration of the accuracy of the method is complemented by the numerical simulations from which we illustrate the synchronized dynamics between the two non-identical bipolar disorder patients.
Analytical solution for Van der Pol-Duffing oscillators
International Nuclear Information System (INIS)
Kimiaeifar, A.; Saidi, A.R.; Bagheri, G.H.; Rahimpour, M.; Domairry, D.G.
2009-01-01
In this paper, the problem of single-well, double-well and double-hump Van der Pol-Duffing oscillator is studied. Governing equation is solved analytically using a new kind of analytic technique for nonlinear problems namely the 'Homotopy Analysis Method' (HAM), for the first time. Present solution gives an expression which can be used in wide range of time for all domain of response. Comparisons of the obtained solutions with numerical results show that this method is effective and convenient for solving this problem. This method is a capable tool for solving this kind of nonlinear problems.
Simple Chaotic Oscillator: From Mathematical Model to Practical Experiment
Directory of Open Access Journals (Sweden)
S. Hanus
2006-04-01
Full Text Available This paper shows the circuitry implementation and practical verification of the autonomous nonlinear oscillator. Since it is described by a single third-order differential equation, its state variables can be considered as the position, velocity and acceleration and thus have direct connection to a real physical system. Moreover, for some specific configurations of internal system parameters, it can exhibit a period doubling bifurcation leading to chaos. Two different structures of the nonlinear element were verified by a comparison of numerically integrated trajectory with the oscilloscope screenshots .
Anharmonic oscillator and Bogoliubov transformation
International Nuclear Information System (INIS)
Pattnayak, G.C.; Torasia, S.; Rath, B.
1990-01-01
The anharmonic oscillator occupies a cornerstone in many problems in physics. It was observed that none of the authors have tested Bogoliubov transformation to study anharmonic oscillator. The groundstate energy of the anharmonic oscillator is studied using Bogoliubov transformation and the results presented. (author)
Bimodal oscillations in nephron autoregulation
DEFF Research Database (Denmark)
Sosnovtseva, Olga; Pavlov, A.N.; Mosekilde, Erik
2002-01-01
The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular ...
Nonlinear response and bistability of driven ion acoustic waves
Akbari-Moghanjoughi, M.
2017-08-01
The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.
Acoustic Pressure Oscillations Induced in I-Burner
Matsui, Kiyoshi
Iwama et al. invented the I-burner to investigate acoustic combustion instability in solid-propellant rockets (Proceedings of ICT Conference, 1994, pp. 26-1 26-14). Longitudinal pressure oscillations were induced in the combustion chamber of a thick-walled rocket by combustion of a stepped-perforation grain (I-burner). These oscillations were studied here experimentally. Two I-burners with an internal diameter of 80 mm and a length of 1208 mm or 2240 mm were made. The grain had stepped perforations (20 and 42 mm in diameter and 657 and 160 mm in length, respectively). Longitudinal pressure oscillations always occur in two stages when an HTPB (hydroxyl-terminated polybutadiene)/AP (ammonium perchlorate)/aluminum-powder propellant burns (54 tests; the highest average pressure in the combustion chamber was 9.5 29 MPa), but no oscillations occur when an HTPB/AP propellant burns (29 tests). The pressure oscillations are essentially linear, but dissipation adds a nonlinear nature to them. In the first stage, the amplitudes are small and the first wave group predominates. In the next stage, the amplitudes are large and many wave groups are present. The change in the grain form accompanying the combustion affects the pressure oscillations.
Observation and analysis of oscillations in linear accelerators
International Nuclear Information System (INIS)
Seeman, J.T.
1991-11-01
This report discusses the following on oscillation in linear accelerators: Betatron Oscillations; Betatron Oscillations at High Currents; Transverse Profile Oscillations; Transverse Profile Oscillations at High Currents.; Oscillation and Profile Transient Jitter; and Feedback on Transverse Oscillations
Theory and design of nonlinear metamaterials
Rose, Alec Daniel
and oscillators. By applying this set of tools and knowledge to microwave metamaterials, I experimentally confirm several novel nonlinear phenomena. Most notably, I construct a backward wave nonlinear medium from varactor-loaded split ring resonators loaded in a rectangular waveguide, capable of generating second-harmonic opposite to conventional nonlinear materials with a conversion efficiency as high as 1.5%. In addition, I confirm nonlinear magnetoelectric coupling in two dual gap varactor-loaded split ring resonator metamaterials through measurement of the amplitude and phase of the second-harmonic generated in the forward and backward directions from a thin slab. I then use the presence of simultaneous nonlinearities in such metamaterials to observe nonlinear interference, manifest as unidirectional difference frequency generation with contrasts of 6 and 12 dB in the forward and backward directions, respectively. Finally, I apply these principles and intuition to several plasmonic platforms with the goal of achieving similar enhancements and configurations at optical frequencies. Using the example of fluorescence enhancement in optical patch antennas, I develop a semi-classical numerical model for the calculation of field-induced enhancements to both excitation and spontaneous emission rates of an embedded fluorophore, showing qualitative agreement with experimental results, with enhancement factors of more than 30,000. Throughout these series of works, I emphasize the indispensability of effective design and retrieval tools in understanding and optimizing both metamaterials and plasmonic systems. Ultimately, when weighed against the disadvantages in fabrication and optical losses, the results presented here provide a context for the application of nonlinear metamaterials within three distinct areas where a competitive advantage over conventional materials might be obtained: fundamental science demonstrations, linear and nonlinear anisotropy engineering, and
Energy Technology Data Exchange (ETDEWEB)
Lolic, B; Loloc, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)
1961-12-15
The organizational structure for operating the reactor with the reactor oscillator describes the duties of the reactor operators; staff responsible for operating the oscillator who are responsible for measurements, preparation of the samples and further treatment of the obtained results.
Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators
Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei
2018-03-01
Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.