WorldWideScience

Sample records for few-cycles laser pulses

  1. Phase Dependence of Few-Cycle Pulsed Laser Propagation in a Two-Level Atom Medium

    Institute of Scientific and Technical Information of China (English)

    肖健; 王中阳; 徐至展

    2002-01-01

    The phase-dependent feature of few-cycle pulsed laser propagation in a resonant two-level atom medium is demonstrated by solving the full Maxwell-Bloch equations. Even in the perturbative region, the propagating carrier field and the corresponding spectra of the few-cycle pulsed laser are sensitive to the initial phase due to self-phase modulation. For the larger pulse area, the fact that the carrier-wave reshaping comes from the carrier wave Rabi flopping is also responsible for this sensitivity, and the phase-dependent feature is more evident.

  2. Propagation of Few-Cycle Pulse Laser in Two-Level Atom Medium

    Institute of Scientific and Technical Information of China (English)

    肖健; 王中阳; 徐至展

    2001-01-01

    By comparing the numerical solutions of Maxwell-Bloch equations beyond and within the slowly-varying envelope approximation and the rotating-wave approximation for the propagation of a few-cycle pulse laser in a resonant two-level atom medium, we found that both the Rabi flopping and the refractive index, and subsequently the carrier and the propagation velocity of the few-cycle pulse, are closely connected with the time-derivative behaviour of the electric field. This is because the Rabi flopping is such that the soliton pulse splits during propagation and that a shorter pulse propagates faster than a broader one.

  3. Magnus expansion for laser-matter interaction: Application to generic few-cycle laser pulses

    DEFF Research Database (Denmark)

    Klaiber, Michael; Dimitrovski, Darko; Briggs, John S.

    2009-01-01

    We treat the interaction of an atom with a short intense few-cycle laser pulse by the use of the Magnus expansion of the time-evolution operator. Terms of the Magnus expansion up to the third order in the pulse duration are evaluated explicitly, and expressions for the transition probability...... of the Magnus approximation are in excellent agreement with time-dependent transition probabilities obtained from accurate ab initio numerical calculations. However, the limitation of the Magnus expansion for pulses having both vanishing momentum and position shifts is demonstrated also....

  4. Dopant induced ignition of helium nanodroplets in intense few-cycle laser pulses

    CERN Document Server

    Krishnan, S R; Kremer, M; Sharma, V; Fischer, B; Camus, N; Jha, J; Krishnamurthy, M; Pfeifer, T; Moshammer, R; Ullrich, J; Stienkemeier, F; Mudrich, M; Mikaberidze, A; Saalmann, U; Rost, J -M

    2011-01-01

    We demonstrate ultrafast resonant energy absorption of rare-gas doped He nanodroplets from intense few-cycle (~10 fs) laser pulses. We find that less than 10 dopant atoms "ignite" the droplet to generate a non-spherical electronic nanoplasma resulting ultimately in complete ionization and disintegration of all atoms, although the pristine He droplet is transparent for the laser intensities applied. Our calculations at those intensities reveal that the minimal pulse length required for ignition is about 9 fs.

  5. Probing excited states dynamics in CO cations using few-cycle IR and EUV laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Alnaser, A S [Department of Physics, American University in Sharjah, Sharjah (United Arab Emirates); Bocharova, I; Singh, K P; Wei, C; Cocke, C L; Litvinyuk, I V [J. R. Macdonald Laboratory, Physics Department, Kansas State University (United States); Kling, M, E-mail: aalnaser@aus.ed [Max-Planck Institute for Quantum Optics, Garching (Germany)

    2009-11-01

    We have used few-cycle IR and EUV laser pulses in pump-probe arrangement to trace out the dissociation pathways in CO when exploded by strong laser fields. We present two preliminary sets of data of different pump pulses. In these sets, different excited state of CO cations are populated using (< 10 fs) IR, and EUV pulses respectively. We followed the time evolution of these states using the time-resolved Coulomb explosion imaging technique. We compare the time evolution of IR- and EUV-induced excited states by measuring the KER of the fragment ions as a function of the time delay between the pump and the IR probe pulse.

  6. Tunable high-harmonic generation by chromatic focusing of few-cycle laser pulses

    Science.gov (United States)

    Holgado, W.; Hernández-García, C.; Alonso, B.; Miranda, M.; Silva, F.; Varela, O.; Hernández-Toro, J.; Plaja, L.; Crespo, H.; Sola, I. J.

    2017-06-01

    In this work we study the impact of chromatic focusing of few-cycle laser pulses on high-order-harmonic generation (HHG) through analysis of the emitted extreme ultraviolet (XUV) radiation. Chromatic focusing is usually avoided in the few-cycle regime, as the pulse spatiotemporal structure may be highly distorted by the spatiotemporal aberrations. Here, however, we demonstrate it as an additional control parameter to modify the generated XUV radiation. We present experiments where few-cycle pulses are focused by a singlet lens in a Kr gas jet. The chromatic distribution of focal lengths allows us to tune HHG spectra by changing the relative singlet-target distance. Interestingly, we also show that the degree of chromatic aberration needed for this control does not degrade substantially the harmonic conversion efficiency, still allowing for the generation of supercontinua with the chirped-pulse scheme, demonstrated previously for achromatic focusing. We back up our experiments with theoretical simulations reproducing the experimental HHG results depending on diverse parameters (input pulse spectral phase, pulse duration, and focus position) and proving that, under the considered parameters, the attosecond pulse train remains very similar to the achromatic case, even showing cases of isolated attosecond pulse generation for near-single-cycle driving pulses.

  7. Comment on "Direct photodetachment of F$^-$ by mid-infrared few-cycle femtosecond laser pulses"

    CERN Document Server

    Gribakin, G F

    2016-01-01

    Multiphoton detachment of F$^-$ by strong few-cycle laser pulses was studied by Shearer and Monteith using a Keldysh-type approach [Phys. Rev. A 88, 033415 (2013)]. We believe that this work contained errors in the calculation of the detachment amplitude and photoelectron spectra. We describe the necessary corrections to the theory and show that the results, in particular, the interference features of the photoelectron spectra, appear noticeably different.

  8. Few-cycle high energy mid-infrared pulse from Ho:YLF laser

    Energy Technology Data Exchange (ETDEWEB)

    Murari, Krishna

    2017-04-15

    Over the past decade, development of high-energy ultrafast laser sources has led to important breakthroughs in attoscience and strong-field physics study in atoms and molecules. Coherent pulse synthesis of few-cycle high-energy laser pulse is a promising tool to generate isolated attosecond pulses via high harmonics generation (HHG). An effective way to extend the HHG cut-off energy to higher values is making use of long mid-infrared (MIR) driver wavelength, as the ponderomotive potential scales quadratically with wavelength. If properly scaled in energy to multi-mJ level and few-cycle duration, such pulses provide a direct path to intriguing attoscience experiments in gases and solids, which even permit the realization of bright coherent table-top HHG sources in the water-window and keV X-ray region. However, the generation of high-intensity long-wavelength MIR pulses has always remained challenging, in particular starting from high-energy picosecond 2-μm laser driver, that is suitable for further energy scaling of the MIR pulses to multi-mJ energies by utilizing optical parametric amplifiers (OPAs). In this thesis, a front-end source for such MIR OPA is presented. In particular, a novel and robust strong-field few-cycle 2-μm laser driver directly from picosecond Ho:YLF laser and utilizing Kagome fiber based compression is presented. We achieved: a 70-fold compression of 140-μJ, 3.3-ps pulses from Ho:YLF amplifier to 48 fs with 11 μJ energy. The work presented in this thesis demonstrates a straightforward path towards generation of few-cycle MIR pulses and we believe that in the future the ultrafast community will benefit from this enabling technology. The results are summarized in mainly four parts: The first part is focused on the development of a 2-μm, high-energy laser source as the front-end. Comparison of available technology in general and promising gain media at MIR wavelength are discussed. Starting from the basics of an OPA, the design criteria

  9. Electron acceleration by tightly focused radially polarized few-cycle laser pulses

    Institute of Scientific and Technical Information of China (English)

    Liu Jin-Lu; Sheng Zheng-Ming; Zheng Jun

    2012-01-01

    Within the framework of plane-wave angular spectrum analysis of the electromagnetic field structure,a solution valid for tightly focused radially polarized few-cycle laser pulses propagating in vacuum is presented.The resulting field distribution is significantly different from that based on the paraxial approximation for pulses with either small or large beam diameters.We compare the electron accelerations obtained with the two solutions and find that the energy gain obtained with our new solution is usually much larger than that with the paraxial approximation solution.

  10. Accurate determination of the absolute phase and temporal-pulse phase of few-cycle laser pulses

    Institute of Scientific and Technical Information of China (English)

    Xia Ke-Yu; Gong Shang-Qing; Niu Yue-Ping; Li Ru-Xin; Xu Zhi-Zhan

    2007-01-01

    A Fourier analysis method is used to accurately determine not only the absolute phase but also the temporalpulse phase of an isolated few-cycle (chirped) laser pulse. This method is independent of the pulse shape and can fully characterize the light wave even though only a few samples per optical cycle are available. It paves the way for investigating the absolute phase-dependent extreme nonlinear optics, and the evolutions of the absolute phase and the temporal-pulse phase of few-cycle laser pulses.

  11. Quantum beats in the polarization response of a dielectric to intense few-cycle laser pulses

    CERN Document Server

    Korbman, Michael; Yakovlev, Vladislav S

    2012-01-01

    We have investigated the polarization response of a dielectric to intense few-cycle laser pulses with a focus on interband tunnelling. Once charge carriers are created in an initially empty conduction band, they make a significant contribution to the polarization response. In particular, the coherent superposition of conduction- and valence-band states results in quantum beats. We investigate how the quantum-beat part of the polarization response is affected by excitation dynamics and the attosecond-scale motion of charge carriers in an intense laser field. We find that, with the onset of tunnelling and Bloch oscillations, the nonlinear polarization response becomes sensitive to the carrier-envelope phase of a laser pulse.

  12. Few-cycle pulse laser induced damage threshold determination of ultra-broadband optics.

    Science.gov (United States)

    Kafka, Kyle R P; Talisa, Noah; Tempea, Gabriel; Austin, Drake R; Neacsu, Catalin; Chowdhury, Enam A

    2016-12-12

    A systematic study of few-cycle pulse laser induced damage threshold (LIDT) determination was performed for commercially-available ultra-broadband optics, (i.e. chirped mirrors, silver mirrors, beamsplitters, etc.) in vacuum and in air, for single and multi-pulse regime (S-on-1). Multi-pulse damage morphology at fluences below the single-pulse LIDT was studied in order to investigate the mechanisms leading to the onset of damage. Stark morphological contrast was observed between multi-pulse damage sites formed in air versus those in vacuum. One effect of vacuum testing compared to air included suppression of laser-induced periodic surface structures (LIPSS) formation, possibly influenced by a reduced presence of damage debris. Another effect of vacuum was occasional lowering of LIDT, which appears to be due to the stress-strain performance of the coating design during laser irradiation and under the external stress of vacuum ambience. A fused silica substrate is also examined, and a non-LIPSS nanostructuring is observed on the surface. Possible mechanisms are discussed.

  13. A nanoscale vacuum-tube diode triggered by few-cycle laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Takuya, E-mail: takuya.higuchi@fau.de; Hommelhoff, Peter, E-mail: peter.hommelhoff@physik.uni-erlangen.de [Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 1, D-91058 Erlangen (Germany); Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany); Maisenbacher, Lothar; Liehl, Andreas; Dombi, Péter [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany)

    2015-02-02

    We propose and demonstrate a nanoscale vacuum-tube diode triggered by few-cycle near-infrared laser pulses. It represents an ultrafast electronic device based on light fields, exploiting near-field optical enhancement at surfaces of two metal nanotips. The sharper of the two tips displays a stronger field-enhancement, resulting in larger photoemission yields at its surface. One laser pulse with a peak intensity of 4.7 × 10{sup 11 }W/cm{sup 2} triggers photoemission of ∼16 electrons from the sharper cathode tip, while emission from the blunter anode tip is suppressed by 19 dB to ∼0.2 electrons per pulse. Thus, the laser-triggered current between two tips exhibit a rectifying behavior, in analogy to classical vacuum-tube diodes. According to the kinetic energy of the emitted electrons and the distance between the tips, the total operation time of this laser-triggered nanoscale diode is estimated to be below 1 ps.

  14. A search for the sulphur hexafluoride cation with intense, few cycle laser pulses.

    Science.gov (United States)

    Dota, Krithika; Dharmadhikari, Aditya K; Dharmadhikari, Jayashree A; Patra, Kaustuv; Tiwari, Ashwani K; Mathur, Deepak

    2013-11-21

    It is well established that upon ionization of sulphur hexafluoride, the SF6(+) ion is never observed in mass spectra. Recent work with ultrashort intense laser pulses has offered indications that when strong optical field are used, the resulting "bond hardening" can induce changes in the potential energy surfaces of molecular cations such that molecular ions that are normally unstable may, indeed, become metastable enough to enable their detection by mass spectrometry. Do intense, ultrashort laser pulses permit formation of SF6(+)? We have utilized intense pulses of 5 fs, 11 fs, and 22 fs to explore this possibility. Our results are negative: no evidence is discovered for SF6(+). However, multiply charged sulphur and fluorine ions from highly charged SF6(q+) ions are observed that enable us to resolve the controversy regarding the kinetic energy release accompanying formation of F(+) fragment ions. Quantum chemical computations of field-distorted potential energy curves of SF6 and its molecular ion enable us to rationalize our non-observation of SF6(+). Our findings have implications for high harmonic generation from SF6 in the few-cycle regime.

  15. SPECTRUM OF A FEW-CYCLE LASER PULSE PROPAGATING IN A TWO-LEVEL ATOM MEDIUM

    Institute of Scientific and Technical Information of China (English)

    肖健; 王中阳; 徐至展

    2001-01-01

    The spectrum evolution of a few-cycle optical pulse in a resonant two-level atom medium is studied theoretically by using the full Maxwell-Bloch equations. On the propagating pulse, significantly much faster oscillation components separated with the main pulse appear due to strong self-phase modulation and pulse reshaping. In this case, ideal selfinduced transparency cannot occur for a 2r pulse. The spectrum of the 4r pulse shows an evident oscillatory feature because of the continuum interference of the separate pulses. For larger pulse areas, continuum generation from near ultraviolet to infrared occurs.

  16. Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics

    Energy Technology Data Exchange (ETDEWEB)

    Schultze, M [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermannstrasse 1, D-85748 Garching (Germany); Goulielmakis, E [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermannstrasse 1, D-85748 Garching (Germany); Uiberacker, M [Department fuer Physik, Ludwig-Maximilians-Universitaet, Am Coulombwall 1, D-85748 Garching (Germany); Hofstetter, M [Department fuer Physik, Ludwig-Maximilians-Universitaet, Am Coulombwall 1, D-85748 Garching (Germany); Kim, J [Laser Science Laboratory, Department of Physics, POSTECH, Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, D [Laser Science Laboratory, Department of Physics, POSTECH, Pohang, Kyungbuk 790-784 (Korea, Republic of); Krausz, F [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermannstrasse 1, D-85748 Garching (Germany); Kleineberg, U [Department fuer Physik, Ludwig-Maximilians-Universitaet, Am Coulombwall 1, D-85748 Garching (Germany)

    2007-07-15

    Single 170-as extreme ultraviolet (XUV) pulses delivering more than 10{sup 6} photons/pulse at {approx}100 eV at a repetition rate of 3 kHz are produced by ionizing neon with waveform-controlled sub-5 fs near-infrared (NIR) laser pulses and spectrally filtering the emerging near-cutoff high-harmonic continuum with a broadband, chirped multilayer molybdenum-silicon (Mo/Si) mirror.

  17. Plasma-Based Generation and Control of a Single Few-Cycle High-Energy Ultrahigh-Intensity Laser Pulse

    Science.gov (United States)

    Tamburini, M.; Di Piazza, A.; Liseykina, T. V.; Keitel, C. H.

    2014-07-01

    A laser-boosted relativistic solid-density paraboloidal foil is known to efficiently reflect and focus a counterpropagating laser pulse. Here we show that in the case of an ultrarelativistic counterpropagating pulse, a high-energy and ultrahigh-intensity reflected pulse can be more effectively generated by a relatively slow and heavy foil than by a fast and light one. This counterintuitive result is explained with the larger reflectivity of a heavy foil, which compensates for its lower relativistic Doppler factor. Moreover, since the counterpropagating pulse is ultrarelativistic, the foil is abruptly dispersed and only the first few cycles of the counterpropagating pulse are reflected. Our multidimensional particle-in-cell simulations show that even few-cycle counterpropagating laser pulses can be further shortened (both temporally and in the number of laser cycles) with pulse amplification. A single few-cycle, multipetawatt laser pulse with several joules of energy and with a peak intensity exceeding 1023 W/cm2 can be generated already employing next-generation high-power laser systems. In addition, the carrier-envelope phase of the generated few-cycle pulse can be tuned provided that the carrier-envelope phase of the initial counterpropagating pulse is controlled.

  18. Ionization and Coulomb explosion of Xenon clusters by intense, few-cycle laser pulses

    CERN Document Server

    Mathur, D

    2010-01-01

    Intense, ultrashort pulses of 800 nm laser light (12 fs, $\\sim$4 optical cycles) of peak intensity 5$\\times$10$^{14}$ W cm$^{-2}$ have been used to irradiate gas-phase Xe$_n$ clusters ($n$=500-25,000) so as to induce multiple ionization and subsequent Coulomb explosion. Energy distributions of exploding ions are measured in the few-cycle domain that does not allow sufficient time for the cluster to undergo Coulomb-driven expansion. This results in overall dynamics that appear to be significantly different to those in the many-cycle regime. One manifestation is that the maximum ion energies are measured to be much lower than those obtained when longer pulses of the same intensity are used. Ion yields are cluster-size independent but polarization dependent in that they are significantly larger when the polarization is perpendicular to the detection axis than along it. This unexpected behavior is qualitatively rationalized in terms of a spatially anisotropic shielding effect induced by the electronic charge clou...

  19. Analytical description of generation of the residual current density in the plasma produced by a few-cycle laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Silaev, A. A., E-mail: silaev@appl.sci-nnov.ru; Vvedenskii, N. V., E-mail: vved@appl.sci-nnov.ru [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation)

    2015-05-15

    When a gas is ionized by a few-cycle laser pulse, some residual current density (RCD) of free electrons remains in the produced plasma after the passage of the laser pulse. This quasi-dc RCD is an initial impetus to plasma polarization and excitation of the plasma oscillations which can radiate terahertz (THz) waves. In this work, the analytical model for calculation of RCD excited by a few-cycle laser pulse is developed for the first time. The dependences of the RCD on the carrier-envelope phase (CEP), wavelength, duration, and intensity of the laser pulse are derived. It is shown that maximum RCD corresponding to optimal CEP increases with the laser pulse wavelength, which indicates the prospects of using mid-infrared few-cycle laser pulses in the schemes of generation of high-power THz pulses. Analytical formulas for optimal pulse intensity and maximum efficiency of excitation of the RCD are obtained. Basing on numerical solution of the 3D time-dependent Schrödinger equation for hydrogen atoms, RCD dependence on CEP is calculated in a wide range of wavelengths. High accuracy of analytical formulas is demonstrated at the laser pulse parameters which correspond to the tunneling regime of ionization.

  20. The interaction of excited atoms and few-cycle laser pulses

    CERN Document Server

    Calvert, J E; Palmer, A J; Glover, R D; Tong, X M; Dolmatov, V K; Kheifets, A S; Bartschat, K; Litvinyuk, I V; Kielpinski, D; Sang, R T

    2016-01-01

    This work describes the first observations of the ionisation of neon in a metastable atomic state utilising a strong-field, few-cycle light pulse. We compare the observations to theoretical predictions based on the Ammosov-Delone-Krainov (ADK) theory and a solution to the time-dependent Schrodinger equation (TDSE). The TDSE provides better agreement with the experimental data than the ADK theory. We optically pump the target atomic species and demonstrate that the ionisation rate depends on the spin state of the target atoms and provide physically transparent interpretation of such a spin dependence in the frameworks of the spin-polarised Hartree-Fock and random-phase approximations.

  1. Nonadiabatic dynamics and multiphoton resonances in strong field molecular ionization with few cycle laser pulses

    CERN Document Server

    Tagliamonti, Vincent; Zhao, Arthur; Rozgonyi, Tamás; Marquetand, Philipp; Weinacht, Thomas

    2016-01-01

    We study strong field molecular ionization using few- (four to ten) cycle laser pulses. Employing a supercontinuum light source, we are able to tune the optical laser wavelength (photon energy) over a range of about $\\sim$200 nm (500 meV). We measure the photoelectron spectrum for a series of different molecules as a function of laser intensity, frequency, and bandwidth and illustrate how the ionization dynamics vary with these parameters. We find that multiphoton resonances and nonadiabatic dynamics (internal conversion) play an important role and result in ionization to different ionic continua. Interestingly, while nuclear dynamics can be "frozen" for sufficiently short laser pulses, we find that resonances strongly influence the photoelectron spectrum and final cationic state of the molecule regardless of pulse duration -- even for pulses that are less than four cycles in duration.

  2. Generating few-cycle pulses for nanoscale photoemission easily with an erbium-doped fiber laser.

    Science.gov (United States)

    Thomas, Sebastian; Holzwarth, Ronald; Hommelhoff, Peter

    2012-06-18

    We demonstrate a simple setup capable of generating four-cycle pulses at a center wavelength of 1700 nm for nanoscale photoemission. Pulses from an amplified erbium-doped fiber laser are spectrally broadened by propagation through a highly non-linear fiber. Subsequently, we exploit dispersion in two different types of glass to compress the pulses. The pulse length is estimated by measuring an interferometric autocorrelation trace and comparing it to a numerical simulation. We demonstrate highly non-linear photoemission of electrons from a nanometric tungsten tip in a hitherto unexplored pulse parameter range.

  3. In situ characterization of few-cycle laser pulses in transient absorption spectroscopy

    CERN Document Server

    Blättermann, Alexander; Kaldun, Andreas; Ding, Thomas; Stooß, Veit; Laux, Martin; Rebholz, Marc; Pfeifer, Thomas

    2016-01-01

    Attosecond transient absorption spectroscopy has thus far been lacking the capability to simultaneously characterize the intense laser pulses at work within a time-resolved quantum-dynamics experiment. However, precise knowledge of these pulses is key to extracting quantitative information in strong-field highly nonlinear light-matter interactions. Here, we introduce and experimentally demonstrate an ultrafast metrology tool based on the time-delay-dependent phase shift imprinted on a strong-field driven resonance. Since we analyze the signature of the laser pulse interacting with the absorbing spectroscopy target, the laser pulse duration and intensity are determined in situ. As we also show, this approach allows for the quantification of time-dependent bound-state dynamics in one and the same experiment. In the future, such experimental data will facilitate more precise tests of strong-field dynamics theories.

  4. In situ characterization of few-cycle laser pulses in transient absorption spectroscopy.

    Science.gov (United States)

    Blättermann, Alexander; Ott, Christian; Kaldun, Andreas; Ding, Thomas; Stooß, Veit; Laux, Martin; Rebholz, Marc; Pfeifer, Thomas

    2015-08-01

    Attosecond transient absorption spectroscopy has thus far been lacking the capability to simultaneously characterize the intense laser pulses at work within a time-resolved quantum-dynamics experiment. However, precise knowledge of these pulses is key to extracting quantitative information in strong-field highly nonlinear light-matter interactions. Here, we introduce and experimentally demonstrate an ultrafast metrology tool based on the time-delay-dependent phase shift imprinted on a strong-field-driven resonance. Since we analyze the signature of the laser pulse interacting with the absorbing spectroscopy target, the laser pulse duration and intensity are determined in situ. As we also show, this approach allows for the quantification of time-dependent bound-state dynamics in one and the same experiment. In the future, such experimental data will facilitate more precise tests of strong-field dynamics theories.

  5. Coulomb effect on the left–right asymmetry in photoelectron emission with few-cycle laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, YongJu; Yu, ShaoGang [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); University of Chinese Academy of Sciences, Beijing 100080 (China); Lai, XuanYang, E-mail: xylai@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Quan, Wei [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Liu, XiaoJun, E-mail: xjliu@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China)

    2016-05-27

    We theoretically study the strong-field ionization of hydrogen atom in few-cycle laser pulses with the Coulomb–Volkov distorted-wave approximation (CVA) theory and focus on the role of the Coulomb potential in the left–right asymmetry of the photoelectron yields along the laser polarization direction, by comparing the CVA results with strong-field approximation (SFA) simulations. Our simulations show that the carrier-envelope phase (CEP) dependent asymmetry in CVA deviates from the SFA simulation and more interestingly, there is a phase shift of the asymmetry curve as a function of CEP when the laser intensity increases, contrary to what is expected in the SFA simulations. In terms of the simple man's model, the deviation of the asymmetry curves in CVA from the SFA simulations is attributed to the significant influence of the Coulomb potential on the forward rescattering electron which will get close to the core again after tunneling ionization. Furthermore, the laser-intensity dependence of the phase shift of the asymmetry curves in CVA is elucidated. - Highlights: • The asymmetry in electron emission by few-cycle pulse is studied with CVA theory. • The asymmetry in CVA deviates from the SFA simulation. • The asymmetry curve in CVA has a phase shift as the laser intensity increases. • The Coulomb effect on the asymmetry in electron emission is revealed.

  6. Plasma-based generation of a single few-cycle, high-energy and ultrahigh intensity laser pulse

    CERN Document Server

    Tamburini, M; Liseykina, T V; Keitel, C H

    2012-01-01

    A laser-boosted relativistic solid-density paraboloidal foil is known to efficiently reflect and focus a counterpropagating laser pulse. We show that in the case of an ultrarelativistic counterpropagating pulse, a high-energy and ultrahigh intensity reflected pulse can be more effectively generated by a relatively slow and heavy foil than by a fast and light one. This counterintuitive feature is explained with the larger reflectivity of a heavy foil, which compensates for the lower relativistic Doppler factor. Moreover, since the counterpropagating pulse is ultrarelativistic, the foil is abruptly dispersed and only the first few cycles of the counterpropagating pulse are reflected. Our three-dimensional particle-in-cell simulations show that a single sub-5-femtosecond, multi-petawatt laser pulse with several joule of energy and with peak intensity exceeding 1024 W cm^{-2} can be generated employing laser pulses with peak intensity of the order of 1022 W cm^{-2}. In addition, the carrier envelope phase of the ...

  7. Controlling of Slope of Carrier-Envelope Phase of Few-Cycle Laser Pulses on Propagation Distance near the Focus

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong-Heng; JIANG Hong-Bing; GONG Qi-Huang

    2007-01-01

    The effect of focusing geometry on slope of carrier-envelope (CE) phase φCE versus propagation distance from the focus in few-cycle laser pulses is investigated. The slope could be adjusted by changing the distance L between the waist of the incident beam and the lens. At the focus,(δ)φCE/(δ)(z/zR) = 0 when L = 0, and (δ)φCE/(δ)(z/zR) = -2 when L = ∞. The longer the distance L, the steeper the curve of the CE phase at the focus.

  8. Wakefield-acceleration of relativistic electrons with few-cycle laser pulses at kHz-repetition-rate

    Science.gov (United States)

    Guenot, Diego; Gustas, Dominykas; Vernier, Aline; Boehle, Frederik; Beaurepaire, Benoit; Lopez-Martens, Rodrigo; Faure, Jerome; Appli Team

    2016-10-01

    The generation of relativistic electron beams using laser wakefield acceleration has become a standard technique, providing low emittance electron bunches with femtosecond durations. However, this technique usually requires multi-ten-terawatt lasers and is thus limited to low repetition-rate (typically 10 Hz or less). We have recently demonstrated the generation of few MeV electrons using 2.5-mJ, 4-fs, 1-kHz repetition-rate laser pulses, focused to relativistic intensity onto a gas jet with electron density 1020 cm-3. We have investigated the influence of the pulse duration, the gas density. We demonstrated that an electron beam with a charge in the range of 10-fC/shot, with a divergence of 20-mrad and a peaked spectrum with energies between 2 and 4 MeV can be generated at kHz repetition-rate. These results confirm the possibility of using few-cycle laser pulses with very low energy for exciting wakefields in the bubble regime and for trapping electrons, as predicted by PIC simulations. This kHz electron source is ideally suited for performing electron diffraction experiments with very high temporal resolution. Our results also open the way to other applications, such as the generation of a kHz ultrafast X-ray source. ERC femtoelec.

  9. Generation of few-cycle laser pulses:Comparison between atomic and molecular gases in a hollow-core fiber

    Institute of Scientific and Technical Information of China (English)

    黄志远; 戴晔; 赵睿睿; 王丁; 冷雨欣

    2016-01-01

    We numerically study the pulse compression approaches based on atomic or molecular gases in a hollow-core fiber. From the perspective of self-phase modulation (SPM), we give the extensive study of the SPM infl uence on a probe pulse with molecular phase modulation (MPM) effect. By comparing the two compression methods, we summarize their advan-tages and drawbacks to obtain the few-cycle pulses with micro-or millijoule energies. It is also shown that the double pump-probe approach can be used as a tunable dual-color source by adjusting the time delay between pump and probe pulses to proper values.

  10. Experimental ionization of atomic hydrogen with few-cycle pulses

    CERN Document Server

    Pullen, M G; Laban, D E; Palmer, A J; Hanne, G F; Grum-Grzhimailo, A N; Abeln, B; Bartschat, K; Weflen, D; Ivanov, I; Kheifets, A; Quiney, H M; Litvinyuk, I V; Sang, R T; Kielpinski, D

    2011-01-01

    We present the first experimental data on strong-field ionization of atomic hydrogen by few-cycle laser pulses. We obtain quantitative agreement at the 10% level between the data and an {\\it ab initio} simulation over a wide range of laser intensities and electron energies.

  11. Generation of few-cycle laser pulses: Comparison between atomic and molecular gases in a hollow-core fiber

    Science.gov (United States)

    Zhi-Yuan, Huang; Ye, Dai; Rui-Rui, Zhao; Ding, Wang; Yu-Xin, Leng

    2016-07-01

    We numerically study the pulse compression approaches based on atomic or molecular gases in a hollow-core fiber. From the perspective of self-phase modulation (SPM), we give the extensive study of the SPM influence on a probe pulse with molecular phase modulation (MPM) effect. By comparing the two compression methods, we summarize their advantages and drawbacks to obtain the few-cycle pulses with micro- or millijoule energies. It is also shown that the double pump-probe approach can be used as a tunable dual-color source by adjusting the time delay between pump and probe pulses to proper values. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204328, 61221064, 61078037, 11127901, 11134010, and 61205208), the National Basic Research Program of China (Grant No. 2011CB808101), and the Natural Science Foundation of Shanghai, China (Grant No. 13ZR1414800).

  12. Electron self-injection during interaction of tightly focused few-cycle laser pulses with underdense plasma

    Science.gov (United States)

    Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi

    2008-09-01

    We study the interaction of short laser pulses tightly focused in a tiny volume proportional to the cube of the pulse wavelength (λ3) with underdense plasma by means of real-geometry particle-in-cell simulations. Underdense plasma irradiated by relatively low-energy λ3 (and λ2 ) laser pulses is shown to be an efficient source of multi-MeV electrons, ˜50nC/J , and coherent hard x rays, despite a strong pulse diffraction. Transverse wave breaking in the vicinity of the laser focus is found to give rise to an immense electron charge loading to the acceleration phase of a laser wake field. A strong blowout regime provoked by the injected electrons resulting in the distribution of accelerated electrons is found for λ3 pulses (further electron acceleration driving by λ2 pulses runs in the usual way). With an increase of pulse energy, wiggling and electron-hose instabilities in the λ3 pulse wake are recognized in the blowout regime. For higher-energy λ3 pulses, the injected beams are well modulated and may serve as a good source of coherent x rays.

  13. Carrier shock and frequency conversion of a few-cycle pulse laser propagating in a non-resonant two-level atom medium

    Institute of Scientific and Technical Information of China (English)

    肖健; 王中阳; 徐至展

    2002-01-01

    We have studied the spectral behaviour of few-cycle soliton pulses in a non-resonant two-level atom medium by solving the full Maxwell-Bloch equations. It is demonstrated further that the carrier effects play an important role in the propagation of the few-cycle pulse laser. When the frequency detuning is not very large, both the population distribution and the refractive index of the medium follow the oscillatory carrier field instantaneously; in this case,carrier-wave compression or carrier shock occurs, and a supercontinuum broader than that in the resonant medium may be generated. When the frequency detuning is large, the carrier shock is weak and the spectrum is not continuous, only showing an odd harmonic radiation.

  14. Counterintuitive angular shifts in the photoelectron momentum distribution for atoms in strong few-cycle circularly polarized laser pulses

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2009-01-01

    We solve the three-dimensional time-dependent Schrödinger equation for a three-cycle circularly polarized laser pulse interacting with an atom. The photoelectron momentum distributions show counterintuitive shifts, similar to those observed in a recent experiment (Eckle et al 2008 Science 322 1525......). The physical origin of the shifts is examined by a detailed investigation of the wave packet after the pulse. We show that the shifts arise as a consequence of an intimate interplay between the external field and the binding potential, and that the shifts occur also at lower intensities than used...

  15. Compact, simple and robust cross polarized wave generation source of few-cycle, high-contrast pulses for seeding petawatt-class laser systems

    OpenAIRE

    Ramirez, Patricia; Papadopoulos, Dimitris N.; Hanna, Marc; Pellegrina, Alain; Friebel, Florence; Georges, Patrick; Druon, Frédéric

    2013-01-01

    International audience; A compact and robust, dual-crystal cross polarized wave generation setup combined with a hollow waveguide filter is implemented to deliver few-cycle, high-contrast laser pulses sourced from a commercial multipass Ti:Sa amplifier. The initial 25-fs pulses with a temporal contrast of 108 are shortened to 10 fs with an improved contrast of at least 10^10. The single nonlinear stage for spectral broadening and contrast enhancement of a commercial amplifier serves as an ide...

  16. Noncollinear wave mixing of attosecond XUV and few-cycle optical laser pulses in gas-phase atoms: Toward multidimensional spectroscopy involving XUV excitations

    Science.gov (United States)

    Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Neumark, Daniel M.; Leone, Stephen R.

    2016-11-01

    Ultrafast nonlinear spectroscopy, which records transient wave-mixing signals in a medium, is a powerful tool to access microscopic information using light sources in the radio-frequency and optical regimes. The extension of this technique towards the extreme ultraviolet (XUV) or even x-ray regimes holds the promise to uncover rich structural or dynamical information with even higher spatial or temporal resolution. Here, we demonstrate noncollinear wave mixing between weak XUV attosecond pulses and a strong near-infrared (NIR) few-cycle laser pulse in gas phase atoms (one photon of XUV and two photons of NIR). In the noncollinear geometry the attosecond and either one or two NIR pulses interact with argon atoms. Nonlinear XUV signals are generated in a spatially resolved fashion as required by phase matching. Different transition pathways can be identified from these background-free nonlinear signals according to the specific phase-matching conditions. Time-resolved measurements of the spatially gated XUV signals reveal electronic coherences of Rydberg wave packets prepared by a single XUV photon or XUV-NIR two-photon excitation, depending on the applied pulse sequences. These measurements open possible applications of tabletop multidimensional spectroscopy to the study of dynamics associated with valence or core excitation with XUV photons.

  17. Modulational instability of few cycle pulses in optical fibers

    CERN Document Server

    Sarma, Amarendra K

    2010-01-01

    We investigate the modulational instability of a mathematical model [based on the model proposed by T. Brabec and F. Krausz, Phys.Rev. Lett. 78, 3282(1997)] appropriate for few cycle optical pulses with pulse duration as short as one carrier oscillation cycle in the context of a standard silica fiber operating at the telecommunication wavelength 1550 nm.

  18. Near infrared few-cycle pulses for high harmonic generation

    CERN Document Server

    Driever, Steffen; Delagnes, Jean-Christophe; Fedorov, Nikita; Arnold, Martin; Bigourd, Damien; Cormier, Eric; Guichard, Roland; Constant, Eric; Zair, Amelle

    2014-01-01

    We report on the development of tunable few-cycle pulses with central wavelengths from 1.6 um to 2 um. Theses pulses were used as a proof of principle for high harmonic generation in atomic and molecular targets. In order to generate such pulses we produced a filament in a 4 bar krypton cell. Spectral broadening by a factor of 2 to 3 of a 40 fs near infrared input pulse was achieved. The spectrally broadened output pulses were then compressed by fused silica plates down to the few-cycle regime close to the Fourier limit. The auto-correlation of these pulses revealed durations of about 3 cycles for all investigated central wavelengths. Pulses with a central wavelength of 1.7 um and up to 430 uJ energy per pulse were employed to generate high order harmonics in Xe, Ar and N2. Moving to near infrared few-cycle pulses opens the possibility to operate deeply in the non-perturbative regime with a Keldysh parameter smaller than 1. Hence, this source is suitable for the study of the non-adiabatic tunneling regime in ...

  19. Dynamic Alignment of D2 Enhanced by Two Few-cycle Pulses

    Institute of Scientific and Technical Information of China (English)

    Zeng-qiang Yang; Zhi-rong Guo; Bao-xiang Yin; Mao-zhu Sun

    2008-01-01

    Dynamic alignment of D2 induced by two few-cycle pulses was investigated by solving the time-dependent Schr(o)dinger equation numerically based on a rigid rotor model. The results show that alignment of D2 can be enhanced by two few-cycle pulses compared with the level achievable by a single fewcycle pulse as long as the time delay between two pulses is chosen properly, and the pulse duration of two lasers plays an important role in the aligning process of D2 molecules.

  20. Isotopic scaling in strong-field dissociation by few-cycle pulses

    DEFF Research Database (Denmark)

    Madsen, Lars Bojer

    2009-01-01

    Within the Born-Oppenheimer approximation, scaling laws are derived for isotopic homonuclear diatomic molecules interacting with strong few-cycles laser pulses. As a consequence of an approximate scaling of the transition dipole moment function between charge-resonant states, the Schrödinger...

  1. Method to generate a pulse train of few-cycle coherent radiation

    Science.gov (United States)

    Garcia, Bryant; Hemsing, Erik; Raubenheimer, Tor; Campbell, Lawrence T.; McNeil, Brian W. J.

    2016-09-01

    We develop a method to generate a long pulse train of few-cycle coherent radiation by modulating an electron beam with a high power laser. The large energy modulation disperses the beam in a radiating undulator and leads to the production of phase-locked few-cycle coherent radiation pulses. These pulses are produced at a high harmonic of the modulating laser, and are longitudinally separated by the modulating laser wavelength. We discuss an analytical model for this scheme and investigate the temporal and spectral properties of this radiation. This model is compared with numerical simulation results using the unaveraged code Puffin. We examine various harmful effects and how they might be avoided, as well as a possible experimental realization of this scheme.

  2. Method to generate a pulse train of few-cycle coherent radiation

    Directory of Open Access Journals (Sweden)

    Bryant Garcia

    2016-09-01

    Full Text Available We develop a method to generate a long pulse train of few-cycle coherent radiation by modulating an electron beam with a high power laser. The large energy modulation disperses the beam in a radiating undulator and leads to the production of phase-locked few-cycle coherent radiation pulses. These pulses are produced at a high harmonic of the modulating laser, and are longitudinally separated by the modulating laser wavelength. We discuss an analytical model for this scheme and investigate the temporal and spectral properties of this radiation. This model is compared with numerical simulation results using the unaveraged code Puffin. We examine various harmful effects and how they might be avoided, as well as a possible experimental realization of this scheme.

  3. Generalized Short Pulse Equation for Propagation of Few-Cycle Pulses in Metamaterials

    CERN Document Server

    Pietrzyk, Monika E

    2016-01-01

    We show that propagation of ultrashort (few-cycle) pulses in nonlinear Drude metamaterials with both electric and magnetic Kerr nonlinearities is described by coupled generalized Short Pulse Equations. The resulting system of equations generalizes to the case of metamaterials both the Short Pulse Equation and its vector generalizations which describe the few-cycle pulses in dielectric optical fibers beyond the slowly varying envelope approximation leading to the nonlinear Schroedinger equation.

  4. FAST TRACK COMMUNICATION: Counterintuitive angular shifts in the photoelectron momentum distribution for atoms in strong few-cycle circularly polarized laser pulses

    Science.gov (United States)

    Martiny, C. P. J.; Abu-samha, M.; Madsen, L. B.

    2009-08-01

    We solve the three-dimensional time-dependent Schrödinger equation for a three-cycle circularly polarized laser pulse interacting with an atom. The photoelectron momentum distributions show counterintuitive shifts, similar to those observed in a recent experiment (Eckle et al 2008 Science 322 1525). The physical origin of the shifts is examined by a detailed investigation of the wave packet after the pulse. We show that the shifts arise as a consequence of an intimate interplay between the external field and the binding potential, and that the shifts occur also at lower intensities than used in the experiment, corresponding to the multiphoton regime. In contrast to the recent experiment we do not invoke the concept of a tunnelling time in our explanation of the shifts.

  5. Effect of the ratio of transition dipole moments on few-cycle pulse propagation

    Institute of Scientific and Technical Information of China (English)

    Xia Tan; Yanling Yang; Dianmin Tong; Xijun Fan

    2008-01-01

    Propagation of a few-cycle laser pulses in a dense V-type three-level atomic medium is investigated based on full-wave Maxwell-Bloch equations by taking the near dipole-dipole (NDD) interaction into account. We find that the ratio, γ, of the transition dipole moments has strong influence on the time evolution and split of the pulse: when γ≤ 1, the NDD interaction delays propagation and split of the pulse, and this phenomenon is more obvious when the value of γ is smaller; when γ = 2, the NDD interaction accelerates propagation and split of the pulse.

  6. Scalability of components for kW-level average power few-cycle lasers.

    Science.gov (United States)

    Hädrich, Steffen; Rothhardt, Jan; Demmler, Stefan; Tschernajew, Maxim; Hoffmann, Armin; Krebs, Manuel; Liem, Andreas; de Vries, Oliver; Plötner, Marco; Fabian, Simone; Schreiber, Thomas; Limpert, Jens; Tünnermann, Andreas

    2016-03-01

    In this paper, the average power scalability of components that can be used for intense few-cycle lasers based on nonlinear compression of modern femtosecond solid-state lasers is investigated. The key components of such a setup, namely, the gas-filled waveguides, laser windows, chirped mirrors for pulse compression and low dispersion mirrors for beam collimation, focusing, and beam steering are tested under high-average-power operation using a kilowatt cw laser. We demonstrate the long-term stable transmission of kW-level average power through a hollow capillary and a Kagome-type photonic crystal fiber. In addition, we show that sapphire substrates significantly improve the average power capability of metal-coated mirrors. Ultimately, ultrabroadband dielectric mirrors show negligible heating up to 1 kW of average power. In summary, a technology for scaling of few-cycle lasers up to 1 kW of average power and beyond is presented.

  7. Influence of generalized focusing of few-cycle Gaussian pulses in attosecond pulse generation

    CERN Document Server

    Karimi, Ebrahim; Tosa, Valer; Velotta, Raffaele; Marrucci, Lorenzo

    2013-01-01

    In contrast to the case of quasi-monochromatic waves, a focused optical pulse in the few-cycle limit may exhibit two independent curved wavefronts, associated with phase and group retardations, respectively. Focusing optical elements will generally affect these two wavefronts differently, thus leading to very different behavior of the pulse near focus. As limiting cases, we consider an ideal diffractive lens introducing only phase retardations and a perfect non-dispersive refractive lens (or a curved mirror) introducing equal phase and group retardations. We study the resulting diffraction effects on the pulse, finding both strong deformations of the pulse shape and shifts in the spectrum. We then show how important these effects can be in highly nonlinear optics, by studying their role in attosecond pulse generation. In particular, the focusing effects are found to affect substantially the generation of isolated attosecond pulses in gases from few-cycle fundamental optical fields.

  8. Few-cycle pulse generation from noncollinear optical parametric amplifier with static dispersion compensation

    Science.gov (United States)

    Adachi, Shunsuke; Watanabe, Yuya; Sudo, Yuki; Suzuki, Toshinori

    2017-09-01

    We present a novel design of a few-cycle noncollinear optical parametric amplifier (NOPA) pumped by the second harmonic of a Ti:sapphire laser. A quasi-transform-limited sub-6 fs pulse width was realized by static dispersion compensation with commercially available chirped mirrors. The performance of the NOPA was tested by performing transient absorption spectroscopy on sensory rhodopsin II, and we observe short-lived oscillatory components that are associated with the vibrational coherence from the isomerizing molecule in the excited electronic state.

  9. Nonlinear pulse propagation in a single- and a few-cycle regimes with Raman response

    Indian Academy of Sciences (India)

    Vimlesh Mishra; Ajit Kumar

    2010-09-01

    The propagation equation for a single- and a few-cycle pulses was derived in a cubic nonlinear medium including the Raman response. Using this equation, the propagation characteristics of a single- and a 4-cycle pulse, at 0.8 m wavelength, were studied numerically in one spatial dimension. It was shown that Raman term does influence the propagation characteristics of a single- as well as a few-cycle pulses by counteracting the self-steepening effect.

  10. Steering proton migration in hydrocarbons using intense few-cycle laser fields

    CERN Document Server

    Kübel, M; Burger, C; Kling, Nora G; Li, H; Alnaser, A S; Bergues, B; Zherebtsov, S; Azzeer, A M; Ben-Itzhak, I; Moshammer, R; de Vivie-Riedle, R; Kling, M F

    2015-01-01

    Proton migration is a ubiquitous process in chemical reactions related to biology, combustion, and catalysis. Thus, the ability to control the movement of nuclei with tailored light, within a hydrocarbon molecule holds promise for far-reaching applications. Here, we demonstrate the steering of hydrogen migration in simple hydrocarbons, namely acetylene and allene, using waveform-controlled, few-cycle laser pulses. The rearrangement dynamics are monitored using coincident 3D momentum imaging spectroscopy, and described with a quantum-dynamical model. Our observations reveal that the underlying control mechanism is due to the manipulation of the phases in a vibrational wavepacket by the intense off-resonant laser field.

  11. Supersonic micro-jets and their application to few-cycle laser-driven electron acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Karl

    2009-07-23

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. The laser system employed in this work is a new development based on optical parametric chirped pulse amplification and is the only multi-TW few-cycle laser in the world. In the experiment, the laser beam is focused onto a supersonic helium gas jet which leads to the formation of a plasma channel. The laser pulse, having an intensity of 10{sup 19} W/cm{sup 2} propagates through the plasma with an electron density of 2 x 10{sup 19} cm{sup -3} and forms via a highly nonlinear interaction a strongly anharmonic plasma wave. The amplitude of the wave is so large that the wave breaks, thereby injecting electrons from the background plasma into the accelerating phase. The energy transfer from the laser pulse to the plasma is so strong that the maximum propagation distance is limited to the 100 m range. Therefore, gas jets specifically tuned to these requirements have to be employed. The properties of microscopic supersonic gas jets are thoroughly analyzed in this work. Based on numeric flow simulation, this study encompasses several extensive parameter studies that illuminate all relevant features of supersonic flows in microscopic gas nozzles. This allowed the optimized design of de Laval nozzles with exit diameters ranging from 150 {mu}m to 3 mm. The employment of these nozzles in the experiment greatly improved the electron beam quality. After these optimizations, the laser-driven electron accelerator now yields monoenergetic electron pulses with energies up to 50 MeV and charges between one and ten pC. The electron beam has a typical divergence of 5 mrad and comprises an energy spectrum that is virtually free from low energetic background. The electron pulse duration could not yet be determined experimentally but simulations point towards values in the range of 1 fs. The acceleration gradient is estimated from simulation and experiment to be approximately 0.5 TV/m. The

  12. Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification

    NARCIS (Netherlands)

    Witte, S.; Zinkstok, R.T.; Hogervorst, W.; Eikema, K.S.E.

    2005-01-01

    We demonstrate the generation of 9.8 +/- 0.3 fs laser pulses with a peak power exceeding one terawatt at 30 Hz repetition rate, using optical parametric chirped pulse amplification. The amplifier is pumped by 140 mJ, 60 ps pulses at 532 nm, and amplifies seed pulses from a Ti: Sapphire oscillator to

  13. Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification.

    Science.gov (United States)

    Witte, S; Zinkstok, R; Hogervorst, W; Eikema, K

    2005-06-27

    We demonstrate the generation of 9.8+/-0.3 fs laser pulses with a peak power exceeding one terawatt at 30 Hz repetition rate, using optical parametric chirped pulse amplification. The amplifier is pumped by 140 mJ, 60 ps pulses at 532 nm, and amplifies seed pulses from a Ti:Sapphire oscillator to 23 mJ/pulse, resulting in 10.5 mJ/pulse after compression while amplified fluorescence is kept below 1%. We employ grating-based stretching and compression in combination with an LCD phase-shaper, allowing compression close to the Fourier limit of 9.3 fs.

  14. Frequency modulated few-cycle optical pulse trains induced controllable ultrafast coherent population oscillations in three-level atomic systems

    CERN Document Server

    Kumar, Parvendra

    2012-01-01

    We report a study on the ultrafast coherent population oscillations (UCPO) in sodium atoms induced by the frequency modulated few-cycle optical pulse trains. The phenomenon of UCPO is investigated by numerically solving the appropriate density matrix equations beyond the rotating wave approximation. We demonstrate that the quantum state of the atoms and the frequency of UCPO may be controlled by controlling the number of pulses in the pulse trains and the pulse repetition time respectively. Moreover, the robustness of population transfer against the variation of laser pulse parameters is also investigated. The proposed scheme may be useful for the creation of atomic beam in selected quantum state for desired time duration and may have potential applications in ultrafast optical switching.

  15. 53 W average power few-cycle fiber laser system generating soft x rays up to the water window.

    Science.gov (United States)

    Rothhardt, Jan; Hädrich, Steffen; Klenke, Arno; Demmler, Stefan; Hoffmann, Armin; Gotschall, Thomas; Eidam, Tino; Krebs, Manuel; Limpert, Jens; Tünnermann, Andreas

    2014-09-01

    We report on a few-cycle laser system delivering sub-8-fs pulses with 353 μJ pulse energy and 25 GW of peak power at up to 150 kHz repetition rate. The corresponding average output power is as high as 53 W, which represents the highest average power obtained from any few-cycle laser architecture so far. The combination of both high average and high peak power provides unique opportunities for applications. We demonstrate high harmonic generation up to the water window and record-high photon flux in the soft x-ray spectral region. This tabletop source of high-photon flux soft x rays will, for example, enable coherent diffractive imaging with sub-10-nm resolution in the near future.

  16. Measurement of Carrier-Envelope Phase and Field Strength of a Few-Cycle Pulse by Non-sequential Double Ionization

    Institute of Scientific and Technical Information of China (English)

    LI Hong-Yun; CHEN Jing; JIANG Hong-Bing; LIU Jie; FU Pan-Ming; GONG Qi-Huang; YAN Zong-Chao; WANG Bing-Bing

    2009-01-01

    We propose a method to measure the carrier-envelop phase (CEP) and the intensity of a few-cycle pulse by controlling the non-sequential double ionization (NSDI) process.By using an additional static electric field, we can change the momentum distribution of the double-charged ions parallel to the laser polarization from an asymmetrical double-hump structure to a nearly symmetrical one.It is found that the ratio between the strength of the static electric field and that of the laser field is sensitive to the CEP but robust against the intensity fluctuation.Therefore we can determine the CEP of a few-cycle pulse precisely by measuring the static electric field.Furthermore, if the CEP of the few-cycle pulse is fixed at a certain value, we can also calibrate the intensity of the laser pulse by the static electric field.

  17. Generation of unipolar pulses in a circular Raman-active medium excited by few-cycle optical pulses

    CERN Document Server

    Arkhipov, R M; Babushkin, I; Pakhomov, A V; Tolmachev, Yu A; Rosanov, N N

    2016-01-01

    We study theoretically a new possibility of unipolar pulses generation in Raman-active medium excited by a series of few-cycle optical pulses. We consider the case when the Raman-active particles are uniformly distributed along the circle, and demonstrate a possibility to obtain a unipolar rectangular video pulses with an arbitrarily long duration, ranging from a minimum value equal to the natural period of the low frequency vibrations in the Raman-active medium.

  18. Scheme for Generation of Single 100 GW 300-as Pulse in the X-ray SASE FEL with the Use of a Few Cycles Optical Pulse from Ti sapphire Laser System

    CERN Document Server

    Saldin, Evgeny L; Yurkov, Mikhail V

    2004-01-01

    Femtosecond optical pulse interacts with the electron beam in the two-period undulator and produces energy modulation within a slice of the electron bunch. Then the electron beam enters the first part of the X-ray undulator and produces SASE radiation with 100 MW-level power. Due to energy modulation the frequency is correlated to the longitudinal position, and the largest frequency offset corresponds to a single-spike pulse in the time domain which is confined to one half-oscillation period near the central peak electron energy. After the first undulator the electron beam is guided through a magnetic delay which we use to position the X-ray spike with the largest frequency offset at the "fresh" part of the electron bunch. After the chicane the electron beam and the radiation enter the second undulator which is resonant with the offset frequency where only a single (300 as duration) spike grows rapidly. The final part of the undulator is a tapered section allowing to achieve maximum output power 100-150 GW in...

  19. Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle near- to mid-IR pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin

    2011-01-01

    Through cascaded second-harmonic generation, few-cycle solitons can form that resonantly emit strongly red-shifted optical Cherenkov radiation. Numerical simulations show that such dispersive waves can be an efficient source of near- to mid-IR few-cycle broadband pulses....

  20. The origin of the Redshift Spikes in the reflection spectrum of a Few-cycle Pulse in a Dense Medium

    CERN Document Server

    Chen, Yue-Yue; Xu, Zhi-Zhan; Liu, Chengpu

    2015-01-01

    We give a detailed description about the reflected spectrum of a few-cycle pulse propagating through a resonant dense medium. An unexpected low-frequency spike appeared in the red edge of the spectrum. To figure out the origin of this redshift spike, we analysis the mechanisms responsible for the redshift of the reflected field. So far, the redshift has not been well studied for few-cycle pulses except a brief explanation made by the previous study [Kaloshan et al., Phys. Rev. Lett. 83 544 (1999).], which attributed the origin of the redshift to the so-called intrapulse four-wave mixing. However, we demonstrate numerically that the redshift consists of two separated spikes is actually produced by the Doppler effect of backpropagation waves, which is an analogue effect of dynamic nonlinear optical skin effect. Our study elucidates the underlying physics of the dynamic nonlinear optical effects responsible for the redshift spikes. Moreover, the dependency of the their frequency on the laser and medium parameter...

  1. Few-cycle, Broadband, Mid-infrared Optical Parametric Oscillator Pumped by a 20-fs Ti:sapphire Laser

    CERN Document Server

    Kumar, Suddapalli Chaitanya; Ideguchi, Takuro; Yan, Ming; Holzner, Simon; Hänsch, Theodor W; Picqué, Nathalie; Ebrahim-Zadeh, Majid

    2014-01-01

    We report a few-cycle, broadband, singly-resonant optical parametric oscillator (OPO) for the mid-infrared based on MgO-doped periodically-poled LiNbO3 (MgO:PPLN), synchronously pumped by a 20-fs Ti:sapphire laser. By using crystal interaction lengths as short as 250 um, and careful dispersion management of input pump pulses and the OPO resonator, near-transform-limited, few-cycle idler pulses tunable across the mid-infrared have been generated, with as few as 3.7 optical cycles at 2682 nm. The OPO can be continuously tuned over 2179-3732 nm by cavity delay tuning, providing up to 33 mW of output power at 3723 nm. The idler spectra exhibit stable broadband profiles with bandwidths spaning over 422 nm (FWHM) recorded at 3732 nm. We investigate the effect of crystal length on spectral bandwidth and pulse duration at a fixed wavelength, confirming near-transform-limited idler pulses for all grating interaction lengths. By locking the repetition frequency of the pump laser to a radio-frequency reference, and with...

  2. Adaptive non-collinear autocorrelation of few-cycle pulses with an angular tunable bi-mirror

    Energy Technology Data Exchange (ETDEWEB)

    Treffer, A., E-mail: treffer@mbi-berlin.de; Bock, M.; König, S.; Grunwald, R. [Max Born Institute for Nonlinear Optics and Short-Pulse Spectroscopy, Max Born Strasse 2A, D-12489 Berlin (Germany); Brunne, J.; Wallrabe, U. [Laboratory for Microactuators, Department of Microsystems Engineering, IMTEK, University of Freiburg, Georges-Koehler-Allee 102, Freiburg 79110 (Germany)

    2016-02-01

    Adaptive autocorrelation with an angular tunable micro-electro-mechanical system is reported. A piezo-actuated Fresnel bi-mirror structure was applied to measure the second order autocorrelation of near-infrared few-cycle laser pulses in a non-collinear setup at tunable superposition angles. Because of enabling measurements with variable scaling and minimizing the influence of distortions by adaptive self-reconstruction, the approach extends the capability of autocorrelators. Flexible scaling and robustness against localized amplitude obscurations are demonstrated. The adaptive reconstruction of temporal frequency information by the Fourier analysis of autocorrelation data is shown. Experimental results and numerical simulations of the beam propagation and interference are compared for variable angles.

  3. Spectral properties of optical pulse, containing a few cycles, reflected from or passed through disordered layered structure

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Pedan, Eugeniy V.

    2016-04-01

    As it is well-known, THz TDS is a modern tool for the detection and identification of substance. Often, in real conditions a substance under identification is covered by various materials (paper sheet, napkins, rag, and et.al). Therefore, the identification occurs for a substance covered by disordered structure, which acts for THz radiation as disordered photonic structure. In standard THz TDS method the substance detection carries out using a comparison of spectrum of a substance under consideration with spectra of the substances from database. Thus, an investigation of spectral medium response covered by disordered structure is very important for security and screening problem. Moreover, what we will see if we analyze a response from disordered structure without any dangerous substance? This question is a key one for practical application. Using computer simulation, we investigate below a propagation of laser pulse with a few cycles in a linear layered structure with random fluctuation of either layer dielectric permittivity or layers thicknesses or both characteristics of this structure. The process under consideration is described by 1D Maxwell's equations. We show that a spectrum of pulse either reflected from substance or transmitted through substance depends in strong way from a number of random realization and fluctuating parameters of layered structure and an observer can see various absorption frequencies corresponding to dangerous substances. Nevertheless, we discuss one of possible ways for overcoming the influence of disordered structure on the observed spectrum.

  4. Phase- and intensity-dependence of ultrafast dynamics in hydrocarbon molecules in few-cycle laser fields

    CERN Document Server

    Kübel, Matthias; Siemering, Robert; Kling, Nora G; Bergues, Boris; Alnaser, Ali S; Ben-Itzhak, Itzik; Moshammer, Robert; de Vivie-Riedle, Regina; Kling, Matthias F

    2016-01-01

    In strong laser fields, sub-femtosecond control of chemical reactions with the carrier-envelope phase (CEP) becomes feasible. We have studied the control of reaction dynamics of acetylene and allene in intense few-cycle laser pulses at 750 nm, where ionic fragments are recorded with a reaction microscope. We find that by varying the CEP and intensity of the laser pulses it is possible to steer the motion of protons in the molecular dications, enabling control over deprotonation and isomerization reactions. The experimental results are compared to predictions from a quantum dynamical model, where the control is based on the manipulation of the phases of a vibrational wave packet by the laser waveform. The measured intensity dependence in the CEP-controlled deprotonation of acetylene is well captured by the model. In the case of the isomerization of acetylene, however, we find differences in the intensity dependence between experiment and theory. For the isomerization of allene, an inversion of the CEP-dependen...

  5. Soliton delivery of few-cycle optical gigawatt pulses in Kagome-lattice hollow-core photonic crystal fibers

    Science.gov (United States)

    Im, Song-Jin; Husakou, Anton; Herrmann, Joachim

    2010-08-01

    We study the delivery of few-cycle soliton-like pulses at 800 nm with gigawatt power or microjoule energy through a hollow-core kagome-lattice photonic crystal fiber over 1 m with preserved temporal and spectral shape. We show that with optimized pressure of the argon filling, 5 fs input pulses are compressed up to 2.5 fs after 20 cm and restore their shape after 1 m propagation.

  6. Femtosecond few-cycle mid-infrared laser pulses

    DEFF Research Database (Denmark)

    Liu, Xing

    efficiency is possible for a high effective soliton order. The near-IR self-defocusing soliton can form in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous...... a large nonlinear Kerr coefficient and two zero dispersion wavelengths giving broadband anomalous dispersion centered around the pump wavelength. This is achieved by slightly increasing the silicon content over stoichiometric silicon nitride and waveguide geometry engineering. The spectral broadening...

  7. Few-cycle fiber pulse compression and evolution of negative resonant radiation

    CERN Document Server

    McLenaghan, Joanna

    2013-01-01

    We present numerical simulations and experimental observations of the spectral expansion of fs-pulses compressing in optical fibers. Using the input pulse frequency chirp we are able to scan through the pulse compression spectra and observe in detail the emergence of negative-frequency resonant radiation (NRR), a recently discovered pulse instability coupling to negative frequencies [Rubino et al., PRL 108, 253901 (2012)]. We observe how the compressing pulse is exciting NRR as long as it overlaps spectrally with the resonant frequency. Furthermore, we observe that optimal pulse compression can be achieved at an optimal input chirp and for an optimal fiber length. The results are important for Kerr-effect pulse compressors, to generate novel light sources, as well as for the observation of quantum vacuum radiation.

  8. Ladder型三能级介质中传播的少周期激光脉冲的空间分布%Spatial Distribution of Few-cycle Laser Pulses Propagating in a Ladder-type Three-level Medium

    Institute of Scientific and Technical Information of China (English)

    王蕾; 王振东; 梁变; 樊锡君

    2011-01-01

    利用由时域有限差分法和预估校正法求得全波Maxwell-Bloch 方程的数值解,研究少周期超短激光脉冲在Ladder型三能级原子介质中传播时脉冲及介质粒子布居的空间分布.结果表明,脉冲及介质粒子布居的空间分布规律随脉冲面积的改变而发生明显的变化.当脉冲面积较小时,脉冲形状不规则,振荡次数较多;当脉冲面积较大时,脉冲形状变得较为规则,振荡次数明显减少.随着脉冲面积的增大,脉冲振幅和传播速度逐渐增大,各能级粒子布居振荡次数增多,不同时刻的脉冲和粒子布居空间分布的变化明显减小.粒子布居的空间分布与脉冲的空间分布密切相关.%With numerical solution of full Maxwell-Bloch equations obtained by finite-difference time-domain method and iterative predictor-corrector method, spatial distributions of pulse and populations of few-cycle laser pulse propagates in a ladder-type three-level atomic medium are investigated. It shows that, spatial distributions changes evidently with pulse area. As the pulse area is smallr, the pulse shape is irregular and oscillation time increases. As the pulse area is large, the pulse shape becomes relatively regular and oscillation times decreases evidently. With increasing of pulse area, amplitude and group velocity of pulse increase progressively,oscillation times of populations increase gradually and variation of spatial distributions of the pulse and populations at different moments decreases considerably. Moreover, spatial distribution of populations correlates closely to spatial distribution of the pulse.

  9. Anomalous enhancement and suppression of ionization induced by an effective few-cycle pulse in the frequency domain

    Science.gov (United States)

    Foote, David; Lin, Yingda; Hill, Wendell T., III

    2015-05-01

    In a recent set of coherent control experiments, an anomalous sinusoidal variation of the ionization yield was observed in Xe when ionized by a pairs of phase-locked, many-cycle 800 nm pulses. Compared with the signal of a single transform limited pulse, both enhancement and suppression was possible, which depended on the temporal separation and relative phase of the pulses. In the time domain, the control can be viewed as a temporal Young's double slit experiment - two coherent electron wavepackets interfering. In the frequency domain, the photoelectron spectrum is given by the modulus squared of the Fourier transform of the field, which is a few-cycle squared sinusodial function. In analogy to a few-cycle pulse where the carrier phase dictates the ejection direction of rescattered electrons, enhancement (suppression) occurs when the effective carrier waveform is cos[w-w0]2 (sin[w-w0]2). The contrast decreased with increasing pulse separation and decreasing multiphoton order. Detailed results and a model simulation will be presented.

  10. Experimental study on generation of high energy few cycle pulses with hollow fiber filled with neon

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    25 fs pulses with energy up to 0.8 mJ from a multi-pass amplifier system have been spectrally broadened from 460 nm to 950 nm due to strong self-phase modulation(SPM) effect in a gas filled hollow fiber.Using a set of chirped mirrors,the ul-tra-broadband dispersion compensation was achieved,and the compressed pulses reached their transform limit.Under optimized conditions we achieved pulses with duration of 5.1 fs and with energy of 400 μJ,corresponding to the peak power up to 80 GW.

  11. Experimental study on generation of high energy few cycle pulses with hollow fiber filled with neon

    Institute of Scientific and Technical Information of China (English)

    ZHU JiangFeng; WANG Peng; HAN HaiNian; TENG Hao; WEI ZhiYi

    2008-01-01

    25 fs pulses with energy up to 0.8 mJ from a multi-pass amplifier system have been spectrally broadened from 460 nm to 950 nm due to strong self-phase modulation (SPM) effect in a gas filled hollow fiber. Using a set of chirped mirrors, the ul-tra-broadband dispersion compensation was achieved, and the compressed pulses reached their transform limit. Under optimized conditions we achieved pulses with duration of 5.1 fs and with energy of 400 μJ, corresponding to the peak power up to 80 GW.

  12. Ultrashort spatiotemporal optical solitons in quadratic nonlinear media: Generation of line and lump solitons from few-cycle input pulses

    CERN Document Server

    Leblond, Hervé; Mihalache, Dumitru; 10.1103/PHYSREVA.80.053812

    2011-01-01

    By using a powerful reductive perturbation technique, or a multiscale analysis, a generic Kadomtsev-Petviashvili evolution equation governing the propagation of femtosecond spatiotemporal optical solitons in quadratic nonlinear media beyond the slowly varying envelope approximation is put forward. Direct numerical simulations show the formation, from adequately chosen few-cycle input pulses, of both stable line solitons (in the case of a quadratic medium with normal dispersion) and of stable lumps (for a quadratic medium with anomalous dispersion). Besides, a typical example of the decay of the perturbed unstable line soliton into stable lumps for a quadratic nonlinear medium with anomalous dispersion is also given.

  13. Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin;

    2011-01-01

    When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons radiate Cherenkov (dispersive) waves in the λ = 2...... efficiency is up to 25%. Thus, optical Cherenkov waves formed with cascaded nonlinearities could become an efficient source of energetic near- to mid-IR few-cycle pulses....

  14. Time-resolved analysis of strong-field induced plasmon oscillations in metal clusters by spectral interferometry with few-cycle laser fields

    CERN Document Server

    Köhn, Jörg

    2010-01-01

    We propose a scheme for ultrafast real-time imaging of laser-induced collective electron oscillations (Mie plasmons) in gas phase metal clusters by interferometrically stable scanning of two intense few-cycle optical laser pulses. The feasibility of our nonlinear spectral interferometry method with experimentally accessible observables is tested in a theoretical case study on simple-metal clusters (Na$_{147}$). The results show that the plasmon period and lifetime as well as the phase and relative amplitude of the collective electron motion can be extracted with sub-fs resolution. The access to nonlinear response effects, as the demonstrated increase of the plasmon lifetime with laser intensity due to ionization-induced contraction of the electron cloud, opens up vast opportunities for interrogating ultrafast many-particle dynamics in nanosystems under strong laser fields with unprecedented resolution.

  15. Generating energetic few-cycle pulses at 800 nm using soliton compression with type 0 cascaded quadratic interaction in lithium niobate

    DEFF Research Database (Denmark)

    Bache, Morten; Zhou, Binbin; Chong, A.

    2010-01-01

    We show that ultra-short few-cycle pulses can be generated through soliton compression of energetic femtosecond pulses from a Ti:Sapphire regenerative amplifier. The compression relies on cascaded type 0 second-harmonic generation in mm-length lithium niobate crystals.......We show that ultra-short few-cycle pulses can be generated through soliton compression of energetic femtosecond pulses from a Ti:Sapphire regenerative amplifier. The compression relies on cascaded type 0 second-harmonic generation in mm-length lithium niobate crystals....

  16. Generating energetic few-cycle pulses at 800 nm using soliton compression with type 0 cascaded quadratic interaction in lithium niobate

    DEFF Research Database (Denmark)

    Bache, Morten; Zhou, Binbin; Chong, A.

    2010-01-01

    We show that ultra-short few-cycle pulses can be generated through soliton compression of energetic femtosecond pulses from a Ti:Sapphire regenerative amplifier. The compression relies on cascaded type 0 second-harmonic generation in mm-length lithium niobate crystals.......We show that ultra-short few-cycle pulses can be generated through soliton compression of energetic femtosecond pulses from a Ti:Sapphire regenerative amplifier. The compression relies on cascaded type 0 second-harmonic generation in mm-length lithium niobate crystals....

  17. Terawatt-level few-cycle mid-IR pulses through nonlinear self-compression in bulk

    CERN Document Server

    Shumakova, V; Ališauskas, S; Zheltikov, A Voronin A M; Faccio, D; Kartashov, D; Baltuška, A; Pugžlys, A

    2015-01-01

    The physics of strong-field applications requires driver laser pulses that are both energetic and extremely short. Whereas optical amplifiers, laser and parametric, boost the energy, their gain bandwidth restricts the attainable pulse duration, requiring additional nonlinear spectral broadening to enable few or even single cycle compression and a corresponding peak power increase. In the mid-IR wavelength range that is critically important for scaling the ponderomotive energy in strong-field interactions, we demonstrate a remarkably simple energy-efficient and scalable soliton-like pulse compression in a mm-long YAG crystal with no additional dispersion management. Sub-three-cycle pulses with >0.65 TW peak power are compressed and extracted before the onset of modulation instability and multiple filamentation as a result of a favorable interplay between strong anomalous dispersion and optical nonlinearity around the wavelength of 3900 nm. As a striking manifestation of the increased peak power, we show the ev...

  18. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk.

    Science.gov (United States)

    Shumakova, V; Malevich, P; Ališauskas, S; Voronin, A; Zheltikov, A M; Faccio, D; Kartashov, D; Baltuška, A; Pugžlys, A

    2016-09-13

    The physics of strong-field applications requires driver laser pulses that are both energetic and extremely short. Whereas optical amplifiers, laser and parametric, boost the energy, their gain bandwidth restricts the attainable pulse duration, requiring additional nonlinear spectral broadening to enable few or even single cycle compression and a corresponding peak power increase. Here we demonstrate, in the mid-infrared wavelength range that is important for scaling the ponderomotive energy in strong-field interactions, a simple energy-efficient and scalable soliton-like pulse compression in a mm-long yttrium aluminium garnet crystal with no additional dispersion management. Sub-three-cycle pulses with >0.44 TW peak power are compressed and extracted before the onset of modulation instability and multiple filamentation as a result of a favourable interplay between strong anomalous dispersion and optical nonlinearity around the wavelength of 3.9 μm. As a manifestation of the increased peak power, we show the evidence of mid-infrared pulse filamentation in atmospheric air.

  19. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk

    Science.gov (United States)

    Shumakova, V.; Malevich, P.; Ališauskas, S.; Voronin, A.; Zheltikov, A. M.; Faccio, D.; Kartashov, D.; Baltuška, A.; Pugžlys, A.

    2016-09-01

    The physics of strong-field applications requires driver laser pulses that are both energetic and extremely short. Whereas optical amplifiers, laser and parametric, boost the energy, their gain bandwidth restricts the attainable pulse duration, requiring additional nonlinear spectral broadening to enable few or even single cycle compression and a corresponding peak power increase. Here we demonstrate, in the mid-infrared wavelength range that is important for scaling the ponderomotive energy in strong-field interactions, a simple energy-efficient and scalable soliton-like pulse compression in a mm-long yttrium aluminium garnet crystal with no additional dispersion management. Sub-three-cycle pulses with >0.44 TW peak power are compressed and extracted before the onset of modulation instability and multiple filamentation as a result of a favourable interplay between strong anomalous dispersion and optical nonlinearity around the wavelength of 3.9 μm. As a manifestation of the increased peak power, we show the evidence of mid-infrared pulse filamentation in atmospheric air.

  20. Dissociation and Ionization of Quasi-Periodically Vibrating H2+ in Intense Few-Cycle Mid-Infrared Laser Fields

    Science.gov (United States)

    Jiang, Shicheng; Yu, Chao; Yuan, Guanglu; Wu, Tong; Lu, Ruifeng

    2017-02-01

    Using quantum mechanics calculations, we theoretically study the dissociation and ionization dynamics of the hydrogen-molecule ion in strong laser fields. Having prepared the nuclear wave packet of H2+ in a specific vibrational state, a pump laser is used to produce a vibrational excitation, leading to quasi-periodical vibration without ionization. Then, a time-delayed few-cycle laser is applied to trigger the dissociation or ionization of H2+. Both the time delay and the intensity of the probe laser alter the competition between dissociation and ionization. We also explore the dependence of kinetic-energy release spectra of fragments on the time delay, showing that the channels of above-threshold dissociation and below-threshold dissociation are opened and closed periodically. Also, dissociation from different channels is influenced by nuclear motion. The dissociation mechanism has been described in detail using the Floquet picture. This work provides a useful method for steering the electronic and nuclear dynamics of diatomic molecules in intense laser fields.

  1. Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses.

    Science.gov (United States)

    Bache, M; Bang, O; Zhou, B B; Moses, J; Wise, F W

    2011-11-07

    When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons radiate Cherenkov (dispersive) waves in the λ = 2.2 - 4.5 μm range when pumping at λ₁ = 1.2 - 1.8 μm. The exact phase-matching point depends on the soliton wavelength, and we show that a simple longpass filter can separate the Cherenkov waves from the solitons. The Cherenkov waves are born few-cycle with an excellent Gaussian pulse shape, and the conversion efficiency is up to 25%. Thus, optical Cherenkov waves formed with cascaded nonlinearities could become an efficient source of energetic near- to mid-IR few-cycle pulses.

  2. Generation of high-photon flux-coherent soft x-ray radiation with few-cycle pulses.

    Science.gov (United States)

    Demmler, Stefan; Rothhardt, Jan; Hädrich, Steffen; Krebs, Manuel; Hage, Arvid; Limpert, Jens; Tünnermann, Andreas

    2013-12-01

    We present a tabletop source of coherent soft x-ray radiation with high-photon flux. Two-cycle pulses delivered by a fiber-laser-pumped optical parametric chirped-pulse amplifier operating at 180 kHz repetition rate are upconverted via high harmonic generation in neon to photon energies beyond 200 eV. A maximum photon flux of 1.3·10(8) photons/s is achieved within a 1% bandwidth at 125 eV photon energy. This corresponds to a conversion efficiency of ~10(-9), which can be reached due to a gas jet simultaneously providing a high target density and phase matching. Further scaling potential toward higher photon flux as well as higher photon energies are discussed.

  3. Evolution of few-cycle pulses in nonlinear dispersive media: Velocity of the center of mass and root-mean-square duration

    Science.gov (United States)

    Kapoyko, Yury A.; Drozdov, Arkadiy A.; Kozlov, Sergei A.; Zhang, Xi-Cheng

    2016-09-01

    Simple arithmetic dependencies of the velocity of the mass center motion and the root-mean-square duration of initially single-cycle, two-cycle, and Gaussian pulses with a random number of oscillations under the pulse envelope are derived depending on their center frequency, initial duration, and peak field amplitude, as well as on dispersive and nonlinear characteristics of homogeneous isotropic dielectric media. In media with normal group dispersion, it is shown that due to nonresonant dispersion the square of the few-cycle pulse duration increases with distance inversely proportional to the fourth power of the number of input pulse cycles. In media with normal group dispersion, the square of the pulse duration is inversely proportional to the number of input pulse cycles due to cubic nonlinearity. In media with anomalous group dispersion, it is shown that due to cubic nonlinearity, few-cycle pulse self-compression decreases with the reduction of the number of cycles in the initial pulse. This pulse self-compression effect has a threshold nature and terminates at a fixed number of cycles of the input pulse. Such a number of cycles is determined by the input intensity and the central frequency of the pulse, as well as by the dispersive and nonlinear characteristics of the medium.

  4. Investigation of two-beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses.

    Science.gov (United States)

    Herrmann, Daniel; Tautz, Raphael; Tavella, Franz; Krausz, Ferenc; Veisz, Laszlo

    2010-03-01

    We demonstrate a new and compact Phi-plane-pumped noncollinear optical parametric chirped-pulse amplification (NOPCPA) scheme for broadband pulse amplification, which is based on two-beam-pumping (TBP) at 532 nm. We employ type-I phase-matching in a 5 mm long BBO crystal with moderate pump intensities to preserve the temporal pulse contrast. Amplification and compression of the signal pulse from 675 nm - 970 nm is demonstrated, which results in the generation of 7.1-fs light pulses containing 0.35 mJ energy. In this context, we investigate the pump-to-signal energy conversion efficiency for TBP-NOPCPA and outline details for few-cycle pulse characterization. Furthermore, it is verified, that the interference at the intersection of the two pump beams does not degrade the signal beam spatial profile. It is theoretically shown that the accumulated OPA phase partially compensates for wave-vector mismatch and leads to extended broadband amplification. The experimental outcome is supported by numerical split-step simulations of the parametric signal gain, including pump depletion and parametric fluorescence.

  5. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    Science.gov (United States)

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  6. Performance tests of the 5 TW, 1 kHz, passively CEP-stabilized ELI-ALPS SYLOS few-cycle laser system (Conference Presentation)

    Science.gov (United States)

    Stanislauskas, Tomas; Budriūnas, Rimantas; Veitas, Gediminas; Gadonas, Darius; Adamonis, Jonas; Aleknavičius, Aidas; Masian, Gžegož; Kuprionis, Zenonas; Hoff, Dominik; Paulus, Gerhard G.; Börzsönyi, Ádám.; Toth, Szabolcs; Kovacs, Mate; Csontos, János; López-Martens, Rodrigo; Osvay, Károly

    2017-05-01

    ELI-ALPS in Hungary, one of the three pillars of the Extreme Light Infrastructure, aims at providing diverse light sources, including energetic attosecond pulses at the highest possible repetition rates. One of the main laser systems for driving plasma and gas-based HHG stages, is a state-of-the-art 1 kHz few-cycle laser called SYLOS. Targeted pulse parameters are an energy of 100 mJ and a duration shorter than two optical cycles (energy, phase and pointing stability as well as high spatiotemporal quality. The first phase of the laser system has already set a new standard in kHz laser system engineering and technology. The performance and reliability of the SYLOS laser have been consistently tested over the course of a six-month trial period. During this time the system was running at least 8 hours a day at full power for more than 5 months. The current output parameters are 5 TW peak power, 45 mJ pulse energy with 9 fs duration and 300 mrad CEP stability, while the spectrum spans over 300 nm around 840 nm central wavelength. The layout follows the general scheme NOPCPA architecture with a passively CEP-stabilized front-end. The pulses are negatively chirped for the amplification process and compressed by a combination of large aperture bulk glass blocks and positively chirped mirrors under vacuum conditions at the output. During the trial period, the laser system demonstrated outstanding reliability. Daily startup and shutdown procedures take only a few minutes, and the command-control system enables pulse parameters to be modified instantly. Controlling the delays of individual NOPCPA stages makes it possible to tailor the output spectrum of the pulses and tune the central wavelength between 770 nm and 940 nm. We performed several experimental tests to find out the pulse characteristics. Pulse duration was verified with Wizzler, chirp-scan, autocorrelation methods and a stereo-ATI independently. All of them confirmed the sub-9 fs pulse duration. We recorded the

  7. High-energy Few-cycle Pulses Directly Generated from Strongly Phase-mismatched Lithium Niobate Crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Chong, A.; Wise, F.W.;

    2012-01-01

    We show that effective soliton compression can be realized in strongly phase-mismatched quadratic media. Sub-15 fs pulses are experimentally generated directly from 10-mm-long bulk lithium niobate crystal by 120-fs input pulses at 1300 nm.......We show that effective soliton compression can be realized in strongly phase-mismatched quadratic media. Sub-15 fs pulses are experimentally generated directly from 10-mm-long bulk lithium niobate crystal by 120-fs input pulses at 1300 nm....

  8. SIMULATION OF FORWARD AND BACKWARD WAVES EVOLUTION OF FEW-CYCLE PULSES PROPAGATING IN AN OPTICAL WAVEGUIDE WITH DISPERSION AND CUBIC NONLINEARITY OF ELECTRONIC AND ELECTRONIC-VIBRATION NATURE

    Directory of Open Access Journals (Sweden)

    L. S. Konev

    2015-09-01

    Full Text Available Numerical method for calculation of forward and backward waves of intense few-cycle laser pulses propagating in an optical waveguide with dispersion and cubic nonlinearity of electronic and electronic-vibration nature is described. Simulations made with the implemented algorithm show that accounting for Raman nonlinearity does not lead to qualitative changes in behavior of the backward wave. Speaking about quantitative changes, the increase of efficiency of energy transfer from the forward wave to the backward wave is observed. Presented method can be also used to simulate interaction of counterpropagating pulses.

  9. Nonlinear Dichroism in Back-to-Back Double Ionization of He by an Intense Elliptically Polarized Few-Cycle Extreme Ultraviolet Pulse.

    Science.gov (United States)

    Ngoko Djiokap, J M; Manakov, N L; Meremianin, A V; Hu, S X; Madsen, L B; Starace, Anthony F

    2014-11-28

    Control of double ionization of He by means of the polarization and carrier-envelope phase (CEP) of an intense, few-cycle extreme ultraviolet (XUV) pulse is demonstrated numerically by solving the six-dimensional two-electron, time-dependent Schrödinger equation for He interacting with an elliptically polarized XUV pulse. Guided by perturbation theory (PT), we predict the existence of a nonlinear dichroic effect (∝I^{3/2}) that is sensitive to the CEP, ellipticity, peak intensity I, and temporal duration of the pulse. This dichroic effect (i.e., the difference of the two-electron angular distributions for opposite helicities of the ionizing XUV pulse) originates from interference of first- and second-order PT amplitudes, allowing one to probe and control S- and D-wave channels of the two-electron continuum. We show that the back-to-back in-plane geometry with unequal energy sharing is an ideal one for observing this dichroic effect that occurs only for an elliptically polarized, few-cycle attosecond pulse.

  10. Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals

    DEFF Research Database (Denmark)

    Bache, Morten; Guo, Hairun; Zhou, Binbin

    2013-01-01

    of the promising crystals: in one case soliton pulse compression from 50 fs to 15 fs (1.5 cycles) at 3.0 μm is achieved, and at the same time a 3-cycle dispersive wave at 5.0 μm is formed that can be isolated using a long-pass filter. In another example we show that extremely broadband supercontinua can form......We discuss a novel method for generating octave-spanning supercontinua and few-cycle pulses in the important mid-IR wavelength range. The technique relies on strongly phase-mismatched cascaded second-harmonic generation (SHG) in mid-IR nonlinear frequency conversion crystals. Importantly we here...

  11. Photonics at the frontiers. Generation of few-cycle light pulses via NOPCPA and real-time probing of charge transfer in hybrid photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Daniel

    2011-11-11

    In the first part of this thesis the methodics of the non-collinear, optically parametric amplification of chirped light pulses (NOPCPA) for the generation of few-cycle light pulses in the visible (Vis) and near infrared (NIR) with of 5-8 fs half-width are essential further developed. Fundamental parametric influences, like the existence of a parametrically induced phase and the generation of optically parametric fluorescence (OPF), are studied both by theoretical analyses and numerical simulations and by concrete experiments. Experimentally in the framework of this thesis fwe-cycle light pulses with a pulse width of 7.9 fs, 130 mJ energy, at 805 nm central wavelength and a very high seed-pulse-limited prepulse contrast of 11 and 8 orders of magnitude are reached at 30 ps and approximately 3 ps. One the one hand it has been succeeded to accelerate with the broad-band pulse amplifier quasi-monoenergetic electrons with energies of up to 50 MeV. For this the light pulse is focussed to relativistic intensities of several W/cm{sup 2} in a helium gas jet. On the other hand XUV light was produced up to the 20th harmonic of the generated light pulse from the broad-band pulse amplifier by its sub-cycle interaction with solid surfaces. In the framework of this thesis furthermore new, extended concepts for still broader-band NOPCPA over one octave were developed and characterized, which contain the application of two pump pulses in one NOPCPA stage and the application of two different pump wavelength in two subsequent NOPCPA stages. In the second part of this thesis broad-band white-light spectra and by means of NOPCPA spectrally tunable light pulses are applied in order to realize a transient absorption spectrometer with multichannel detection. This new excitation-query construction combines a very broad-band UV-Vis-NIR query with a high time resolution of 40 fs and high sensitivity for the transient change of the optical density of less than 10{sup -4}. By this it has in

  12. Self-compression in a solid fiber to 24 MW peak power with few-cycle pulses at 2 μm wavelength.

    Science.gov (United States)

    Gaida, C; Gebhardt, M; Stutzki, F; Jauregui, C; Limpert, J; Tünnermann, A

    2015-11-15

    We report on the experimental realization of a compact, fiber-based, ultrashort-pulse laser system in the 2 μm wavelength region delivering 24 fs pulse duration with 24 MW pulse peak power and 24.6 W average power. This performance level has been enabled by the favorable quadratic wavelength-dependence of the self-focusing limit, which has been experimentally verified to be at approximately 24 MW for circular polarization in a solid-core fused-silica fiber operated at a wavelength around 2 μm. The anomalous dispersion in this wavelength region allows for a simultaneous nonlinear spectral broadening and temporal pulse compression. This makes an additional compression stage redundant and facilitates a very simple and power-scalable approach. Simulations that include both the nonlinear pulse evolution and the transverse optical Kerr effect support the experimental results.

  13. Propagation of electric field of the few-cycle femtosecond pulse in nonlinear Kerr medium%周期量级飞秒脉冲电场在非线性克尔介质中的传输∗

    Institute of Scientific and Technical Information of China (English)

    刘丹; 洪伟毅; 郭旗

    2016-01-01

    In this paper, the propagation of a few-cycle femtosecond pulse in a nonlinear Kerr medium is studied by the method of time-transformation. The time-transformation approach can greatly improve the computational efficiency. Because the width of electric field of the few-cycle femtosecond pulse is less than the characteristic time of Raman response in a nonlinear medium, it is observed that the electric field of the pulse experiences a significant deformation and breaks into a Raman soliton and the dispersion waves during the propagation, which can be attributed to strongly nonlocal nonlinearity. A deeper investigation of the time-frequency distributions for both the Raman soliton and the dispersion waves is also included. Since the pulse contains only few cycles, the carrier-envelope phase (CEP) of the pulse plays an important role in the process of nonlinear propagation. The numerical results show the CEP-dependence in the process of nonlinear propagation: the phase changes for both the Raman soliton and the dispersive waves are just equal to the CEP change of the initial pulse, which indicates that the CEP of the pulse is linearly transmitted in the process of nonlinear propagation. This phenomenon can be attributed to the fact that the phase change due to the nonlinearity is only dependent on the intensities of the fields of both the Raman soliton and the dispersion wave, which are unchanged for all the CEPs.

  14. Ion Acceleration by Short Chirped Laser Pulses

    Directory of Open Access Journals (Sweden)

    Jian-Xing Li

    2015-02-01

    Full Text Available Direct laser acceleration of ions by short frequency chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1% can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies in the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e., higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  15. Ion Acceleration by Short Chirped Laser Pulses

    CERN Document Server

    Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

    2015-01-01

    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  16. Coherent manipulation of four-level double lambda-like atomic system by a train of ultra-short few-cycle-optical pulses

    CERN Document Server

    Kumar, Pawan

    2014-01-01

    We have demonstrated that near complete coherence can be achieved in a four level double lambda-like systems using a train of ultra-short optical pulses. The effect of the Doppler broadening has been analyzed and a scheme has been proposed for establishing high and uniform coherence across different velocity groups in the atomic ensemble. We have also presented a novel scheme of excitation using chirped pulses and shown that in addition to generating coherence in the system it is possible to alter the translational states of the atoms.

  17. Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy.

    Science.gov (United States)

    Spokoyny, Boris; Koh, Christine J; Harel, Elad

    2015-03-15

    Broadband supercontinuum (SC) pulses in the few cycle regime are a promising source for spectroscopic and imaging applications. However, SC sources are plagued by poor stability, greatly limiting their utility in phase-resolved nonlinear experiments such as 2D photon echo spectroscopy (2D PES). Here, we generated SC by two-stage filamentation in argon and air starting from 100 fs input pulses, which are sufficiently high-power and stable to record time-resolved 2D PE spectra in a single laser shot. We obtain a total power of 400 μJ/pulse in the visible spectral range of 500-850 nm and, after compression, yield pulses with duration of 6 fs according to transient-grating frequency-resolved optical gating (TG-FROG) measurements. We demonstrate the method on the laser dye, Cresyl Violet, and observe coherent oscillations indicative of nuclear wavepacket dynamics.

  18. High-power multi-megahertz source of waveform-stabilized few-cycle light.

    Science.gov (United States)

    Pronin, O; Seidel, M; Lücking, F; Brons, J; Fedulova, E; Trubetskov, M; Pervak, V; Apolonski, A; Udem, Th; Krausz, F

    2015-05-05

    Waveform-stabilized laser pulses have revolutionized the exploration of the electronic structure and dynamics of matter by serving as the technological basis for frequency-comb and attosecond spectroscopy. Their primary sources, mode-locked titanium-doped sapphire lasers and erbium/ytterbium-doped fibre lasers, deliver pulses with several nanojoules energy, which is insufficient for many important applications. Here we present the waveform-stabilized light source that is scalable to microjoule energy levels at the full (megahertz) repetition rate of the laser oscillator. A diode-pumped Kerr-lens-mode-locked Yb:YAG thin-disk laser combined with extracavity pulse compression yields waveform-stabilized few-cycle pulses (7.7 fs, 2.2 cycles) with a pulse energy of 0.15 μJ and an average power of 6 W. The demonstrated concept is scalable to pulse energies of several microjoules and near-gigawatt peak powers. The generation of attosecond pulses at the full repetition rate of the oscillator comes into reach. The presented system could serve as a primary source for frequency combs in the mid infrared and vacuum UV with unprecedented high power levels.

  19. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  20. Electron rescattering at metal nanotips induced by ultrashort laser pulses

    Science.gov (United States)

    Wachter, G.; Lemell, C.; Burgdörfer, J.

    2014-04-01

    We theoretically investigate the interaction of moderate intensity near-infrared few cycle laser pulses with nano-scale metal tips. Local field enhancement in a nanometric region around the tip apex triggers coherent electron emission on the nanometer length and femtosecond time scale. The quantum dynamics at the surface are simulated with time-dependent density functional theory (TDDFT) and interpreted based on the simple man's model. We investigate the dependence of the emitted electron spectra on the laser wavelength.

  1. Excimer Laser Pulse Compress With Pulse Feedback

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>To attain a shorter laser pulse, a compressing technique called pulse feedback was developed from the saturation gain switch applied to the amplification in a discharge pumping excimer laser cavity. It can

  2. Nanofabrication with pulsed lasers.

    Science.gov (United States)

    Kabashin, Av; Delaporte, Ph; Pereira, A; Grojo, D; Torres, R; Sarnet, Th; Sentis, M

    2010-02-24

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser-matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  3. Few-cycle effect in H$_2^+$ joint electron-ion energy spectra

    CERN Document Server

    Mosert, V

    2015-01-01

    Joint electron-ion energy spectra for the dissociative ionization of a model H$_2^+$ in few-cycle, infrared laser pulses are calculated via the numerical ab initio solution of the time-dependent Schr\\"odinger equation. A strong, pulse-dependent modulation of the ionization probability for certain values of the protons' kinetic energy (but almost independent of the electron's energy) is observed. With the help of models with frozen ions, this feature---which mistakenly might be attributed to vibrational excitations---is traced back to the transient population of electronically excited states, followed by ionization. This assertion is further corroborated employing a two-level model incorporating strong-field ionization from the excited state.

  4. Pulsed inductive HF laser

    Energy Technology Data Exchange (ETDEWEB)

    Razhev, A M; Kargapol' tsev, E S [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); Churkin, D S; Demchuk, S V [Novosibirsk State University, Novosibirsk (Russian Federation)

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  5. Nanofabrication with Pulsed Lasers

    Directory of Open Access Journals (Sweden)

    Kabashin AV

    2010-01-01

    Full Text Available Abstract An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3, is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  6. Micro pulse laser radar

    Science.gov (United States)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  7. Double pulse laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Changbum [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)], E-mail: chbkim@postech.ac.kr; Kim, Jin-Cheol B. [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Kukhee [National Fusion Reserch Center, Daejeon 305-333 (Korea, Republic of); Ko, In Soo [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Suk, Hyyong [Center for Advanced Accelerators, Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of)

    2007-10-22

    Two-dimensional simulation studies are performed for modified laser wakefield acceleration. After one laser pulse, another identical laser pulse is sent to the plasma to amplify the wake wave resonantly. The simulation results show that the number of injected electrons is bigger than that of the single pulse case and the beam energy is higher as well. In addition, increase of the transverse amplitude is noticed in the wake wave after the second laser pulse. This shows that the transverse motion of the wake wave enhances the wave breaking for strong injection and acceleration of electron beams.

  8. Adaptive Generation and Diagnostics of Linear Few-Cycle Light Bullets

    Directory of Open Access Journals (Sweden)

    Martin Bock

    2013-02-01

    Full Text Available Recently we introduced the class of highly localized wavepackets (HLWs as a generalization of optical Bessel-like needle beams. Here we report on the progress in this field. In contrast to pulsed Bessel beams and Airy beams, ultrashort-pulsed HLWs propagate with high stability in both spatial and temporal domain, are nearly paraxial (supercollimated, have fringe-less spatial profiles and thus represent the best possible approximation to linear “light bullets”. Like Bessel beams and Airy beams, HLWs show self-reconstructing behavior. Adaptive HLWs can be shaped by ultraflat three-dimensional phase profiles (generalized axicons which are programmed via calibrated grayscale maps of liquid-crystal-on-silicon spatial light modulators (LCoS-SLMs. Light bullets of even higher complexity can either be freely formed from quasi-continuous phase maps or discretely composed from addressable arrays of identical nondiffracting beams. The characterization of few-cycle light bullets requires spatially resolved measuring techniques. In our experiments, wavefront, pulse and phase were detected with a Shack-Hartmann wavefront sensor, 2D-autocorrelation and spectral phase interferometry for direct electric-field reconstruction (SPIDER. The combination of the unique propagation properties of light bullets with the flexibility of adaptive optics opens new prospects for applications of structured light like optical tweezers, microscopy, data transfer and storage, laser fusion, plasmon control or nonlinear spectroscopy.

  9. Few-cycle and sub-cycle metrology for the characterization of high harmonics

    Science.gov (United States)

    Power, Erik P.

    The rapid advances in the generation of ultra-short optical pulses in recent decades have often outstripped the ability of metrologists to accurately measure the pulses' temporal profiles. With each reduction in pulse duration, existing measurement techniques must be re-evaluated and often times partially or completely replaced with newer schemes providing the required temporal sensitivity. Frequency or time-domain metrology performed after a short pulse interaction with a physical system can provide volumes of information about the governing physics of the system. Two new techniques for the temporal characterization of ultra-broadband few-cycle and sub-cycle radiation are presented, along with experimental results and analysis. A dispersion-free autocorrelator designed to characterize attosecond pulses generated through relativistic laser-plasma interactions is demonstrated. As opposed to all other dispersion-free autocorrelation designs, this device is capable of measuring a linear autocorrelation as well as a nonlinear autocorrelation, and hence is suitable for complete characterization of ultrafast pulses in-situ. Experimental results demonstrate that this autocorrelator produces pulse reconstructions that are in good agreement with measurements performed using an alternative time-resolved technique. In the strong-field regime, a cross-correlation frequency-resolved optical gating scheme is presented. The XFROG is designed for characterizing harmonics generated by a scaled system: a lambda0 = 3.6mum laser driving a cesium source. Unlike more widely-used time-domain measurements, this scheme is sensitive to the relative arrival time between harmonic orders. A novel technique employing the XFROG itself to completely characterize the unknown dispersive properties of the cesium heat pipe output window is demonstrated, allowing the removal of the window dispersion from the data and the reconstruction of the harmonics inside the heat pipe. Error analysis demonstrates

  10. Laser system using ultra-short laser pulses

    Science.gov (United States)

    Dantus, Marcos; Lozovoy, Vadim V.; Comstock, Matthew

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  11. High-power pulsed lasers

    Energy Technology Data Exchange (ETDEWEB)

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  12. Optical pulses, lasers, measuring techniques

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology: Volume II: Optical Pulses - Lasers - Measuring Techniques focuses on the theoretical and engineering problems that result from the capacitor discharge technique.This book is organized into three main topics: light flash production from a capacitive energy storage; signal transmission and ranging systems by capacitor discharges and lasers; and impulse measuring technique. This text specifically discusses the air spark under atmospheric conditions, industrial equipment for laser flashing, and claims for light transmitting system. The application of light impulse sign

  13. Pulse-Width Jitter Measurement for Laser Diode Pulses

    Institute of Scientific and Technical Information of China (English)

    TANG Jun-Hua; WANG Yun-Cai

    2006-01-01

    @@ Theoretical analysis and experimental measurement of pulse-width jitter of diode laser pulses are presented. The expression of pulse power spectra with all amplitude jitter, timing jitter and pulse-width jitter is deduced.

  14. Circularly polarized few-cycle optical rogue waves: rotating reduced Maxwell-Bloch equations.

    Science.gov (United States)

    Xu, Shuwei; Porsezian, K; He, Jingsong; Cheng, Yi

    2013-12-01

    The rotating reduced Maxwell-Bloch (RMB) equations, which describe the propagation of few-cycle optical pulses in a transparent media with two isotropic polarized electronic field components, are derived from a system of complete Maxwell-Bloch equations without using the slowly varying envelope approximations. Two hierarchies of the obtained rational solutions, including rogue waves, which are also called few-cycle optical rogue waves, of the rotating RMB equations are constructed explicitly through degenerate Darboux transformation. In addition to the above, the dynamical evolution of the first-, second-, and third-order few-cycle optical rogue waves are constructed with different patterns. For an electric field E in the three lower-order rogue waves, we find that rogue waves correspond to localized large amplitude oscillations of the polarized electric fields. Further a complementary relationship of two electric field components of rogue waves is discussed in terms of analytical formulas as well as numerical figures.

  15. Electron rescattering at metal nanotips induced by ultrashort laser pulses

    CERN Document Server

    Wachter, Georg; Burgdörfer, Joachim; Schenk, Markus; Krüger, Michael; Hommelhoff, Peter

    2012-01-01

    We report on the first investigation of plateau and cut-off structures in photoelectron spectra from nano-scale metal tips interacting with few-cycle near-infrared laser pulses. These hallmarks of electron rescattering, well-known from atom-laser interaction in the strong-field regime, appear at remarkably low laser intensities with nominal Keldysh parameters of the order of $\\gtrsim 10$. Quantum and quasi-classical simulations reveal that a large field enhancement near the tip and the increased backscattering probability at a solid-state target play a key role. Plateau electrons are by an order of magnitude more abundant than in comparable atomic spectra, reflecting the high density of target atoms at the surface. The position of the cut-off serves as an in-situ probe for the locally enhanced electric field at the tip apex.

  16. Self-referenced characterization of space-time couplings in near single-cycle laser pulses

    CERN Document Server

    Witting, T; Barilot, T; Greening, D; Matia-Hernando, P; Walke, D; Marangos, J P; Tisch, J W G

    2016-01-01

    We report on the characterization of space-time couplings in high energy sub-2-cycle 770nm laser pulses using a self-referencing single-shot method. Using spatially-encoded arrangement filter-based spectral phase interferometry for direct electric fi?eld reconstruction (SEA-F-SPIDER) we characterize few-cycle pulses with a wave-front rotation of 2.8x?10^11 rev/sec (1.38 mrad per half-cycle) and pulses with pulse front tilts ranging from to -0.33 fs/um to -3.03 fs/um.

  17. High-energy ultra-short pulse thin-disk lasers: new developments and applications

    Science.gov (United States)

    Michel, Knut; Klingebiel, Sandro; Schultze, Marcel; Tesseit, Catherine Y.; Bessing, Robert; Häfner, Matthias; Prinz, Stefan; Sutter, Dirk; Metzger, Thomas

    2016-03-01

    We report on the latest developments at TRUMPF Scientific Lasers in the field of ultra-short pulse lasers with highest output energies and powers. All systems are based on the mature and industrialized thin-disk technology of TRUMPF. Thin Yb:YAG disks provide a reliable and efficient solution for power and energy scaling to Joule- and kW-class picosecond laser systems. Due to its efficient one dimensional heat removal, the thin-disk exhibits low distortions and thermal lensing even when pumped under extremely high pump power densities of 10kW/cm². Currently TRUMPF Scientific Lasers develops regenerative amplifiers with highest average powers, optical parametric amplifiers and synchronization schemes. The first few-ps kHz multi-mJ thin-disk regenerative amplifier based on the TRUMPF thindisk technology was developed at the LMU Munich in 20081. Since the average power and energy have continuously been increased, reaching more than 300W (10kHz repetition rate) and 200mJ (1kHz repetition rate) at pulse durations below 2ps. First experiments have shown that the current thin-disk technology supports ultra-short pulse laser solutions >1kW of average power. Based on few-picosecond thin-disk regenerative amplifiers few-cycle optical parametric chirped pulse amplifiers (OPCPA) can be realized. These systems have proven to be the only method for scaling few-cycle pulses to the multi-mJ energy level. OPA based few-cycle systems will allow for many applications such as attosecond spectroscopy, THz spectroscopy and imaging, laser wake field acceleration, table-top few-fs accelerators and laser-driven coherent X-ray undulator sources. Furthermore, high-energy picosecond sources can directly be used for a variety of applications such as X-ray generation or in atmospheric research.

  18. Above threshold ionization by few-cycle spatially inhomogeneous fields

    CERN Document Server

    Ciappina, M F; Shaaran, T; Biegert, J; Quidant, R; Lewenstein, M

    2012-01-01

    We present theoretical studies of above threshold ionization (ATI) produced by spatially inhomo- geneous fields. This kind of field appears as a result of the illumination of plasmonic nanostructures and metal nanoparticles with a short laser pulse. We use the time-dependent Schr\\"odinger equation (TDSE) in reduced dimensions to understand and characterize the ATI features in these fields. It is demonstrated that the inhomogeneity of the laser electric field plays an important role in the ATI process and it produces appreciable modifications to the energy-resolved photoelectron spectra. In fact, our numerical simulations reveal that high energy electrons can be generated. Specifically, using a linear approximation for the spatial dependence of the enhanced plasmonic field and with a near infrared laser with intensities in the mid- 10^{14} W/cm^{2} range, we show it is possible to drive electrons with energies in the near-keV regime. Furthermore, we study how the carrier envelope phase influences the emission ...

  19. Electron detachment from negative ions in a short laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, S. F. C.; Smyth, M. C.; Gribakin, G. F. [School of Mathematics and Physics, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom)

    2011-09-15

    We present an efficient and accurate method to study electron detachment from negative ions by a few-cycle linearly polarized laser pulse. The adiabatic saddle-point method of Gribakin and Kuchiev [Phys. Rev. A 55, 3760 (1997)] is adapted to calculate the transition amplitude for a short laser pulse. Its application to a pulse with N optical cycles produces 2(N+1) saddle points in complex time, which form a characteristic 'smile.' Numerical calculations are performed for H{sup -} in a 5-cycle pulse with frequency 0.0043 a.u. and intensities of 10{sup 10}, 5x10{sup 10}, and 10{sup 11} W/cm{sup 2}, and for various carrier-envelope phases. We determine the spectrum of the photoelectrons as a function of both energy and emission angle, as well as the angle-integrated energy spectra and total detachment probabilities. Our calculations show that the dominant contribution to the transition amplitude is given by 5-6 central saddle points, which correspond to the strongest part of the pulse. We examine the dependence of the photoelectron angular distributions on the carrier-envelope phase and show that measuring such distributions can provide a way of determining this phase.

  20. Electron dynamics and optical properties modulation of monolayer MoS2 by femtosecond laser pulse: a simulation using time-dependent density functional theory

    Science.gov (United States)

    Su, Xiaoxing; Jiang, Lan; Wang, Feng; Su, Gaoshi; Qu, Liangti; Lu, Yongfeng

    2017-07-01

    In this study, we adopted time-dependent density functional theory to investigate the optical properties of monolayer MoS2 and the effect of intense few-cycle femtosecond laser pulses on these properties. The electron dynamics of monolayer MoS2 under few-cycle and multi-cycle laser irradiation were described. The polarization direction of the laser had a marked effect on the energy absorption and electronic excitation of monolayer MoS2 because of anisotropy. Change in the polarization direction of few-cycle pulse changed the absorbed energy by a factor over 4000. Few-cycle pulse showed a higher sensitivity to the electronic property of material than multi-cycle pulse. The modulation of the dielectric properties of the material was observed on the femtosecond time scale. The negative divergence appeared in the real part of the function at low frequencies and photoinduced blue shift occurred due to Burstein-Moss effect. The irradiation of femtosecond laser caused the dielectric response within the infrared region and introduced anisotropy to the in-plane optical properties. Laser-based engineering of optical properties through controlling transient electron dynamics expands the functionality of MoS2 and has potential applications in direction-dependent optoelectronic devices.

  1. One laser pulse generates two photoacoustic signals

    OpenAIRE

    Gao, Fei; Feng, Xiaohua; Bai, Linyi; Zhang, Ruochong; Liu, Siyu; Ding, Ran; Kishor, Rahul; Zhao, Yanli; Zheng, Yuanjin

    2016-01-01

    Photoacoustic sensing and imaging techniques have been studied widely to explore optical absorption contrast based on nanosecond laser illumination. In this paper, we report a long laser pulse induced dual photoacoustic (LDPA) nonlinear effect, which originates from unsatisfied stress and thermal confinements. Being different from conventional short laser pulse illumination, the proposed method utilizes a long square-profile laser pulse to induce dual photoacoustic signals. Without satisfying...

  2. Ultrashort-pulse laser calligraphy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weijia; Kazansky, Peter G. [Optoelectronics Research Centre, University of Southampton, SO17 1BJ (United Kingdom); Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Hirao, Kazuyuki [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2008-10-27

    Control of structural modifications inside silica glass by changing the front tilt of an ultrashort pulse is demonstrated, achieving a calligraphic style of laser writing. The phenomena of anisotropic bubble formation at the boundary of an irradiated region and modification transition from microscopic bubbles formation to self-assembled form birefringence are observed, and the physical mechanisms are discussed. The results provide the comprehensive evidence that the light beam with centrosymmetric intensity distribution can produce noncentrosymmetric material modifications.

  3. Ultrashort-pulse laser calligraphy

    Science.gov (United States)

    Yang, Weijia; Kazansky, Peter G.; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Hirao, Kazuyuki

    2008-10-01

    Control of structural modifications inside silica glass by changing the front tilt of an ultrashort pulse is demonstrated, achieving a calligraphic style of laser writing. The phenomena of anisotropic bubble formation at the boundary of an irradiated region and modification transition from microscopic bubbles formation to self-assembled form birefringence are observed, and the physical mechanisms are discussed. The results provide the comprehensive evidence that the light beam with centrosymmetric intensity distribution can produce noncentrosymmetric material modifications.

  4. Progress in time transfer by laser pulses

    Science.gov (United States)

    Li, Xin; Yang, Fu-Min

    2004-03-01

    Time transfer by laser pulses is based on the propagation of light pulses between satellite and ground clocks or between remote clocks on earth. It will realize the synchronization of these clocks with high accuracy and stability. Several experiments of the time transfer by laser pulses had been successfully carried out in some countries. These experiments validate the feasibility of the synchronization of clocks by laser pulses. The paper describes the results of these experiments. The time comparison by laser pulses between atomic clocks on aircraft and ground ones in the United States, and the LASSO and T2L2 projects in France are introduced in detail.

  5. Ultrashort Laser Pulses in Biology and Medicine

    CERN Document Server

    Braun, Markus; Zinth, Wolfgang

    2008-01-01

    Sources of ultrashort laser pulses are nowadays commercially available and have entered many areas of research and development. This book gives an overview of biological and medical applications of these laser pulses. The briefness of these laser pulses permits the tracing of the fastest processes in photo-active bio-systems, which is one focus of the book. The other focus is applications that rely on the high peak intensity of ultrashort laser pulses. Examples covered span non-linear imaging techniques, optical tomography, and laser surgery.

  6. Ionization of oriented targets by intense circularly polarized laser pulses: Imprints of orbital angular nodes in the two-dimensional momentum distribution

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2010-01-01

    We solve the three-dimensional time-dependent Schrödinger equation for a few-cycle circularly polarized femtosecond laser pulse that interacts with an oriented target exemplified by an argon atom, initially in a 3px or 3py state. The photoelectron momentum distributions show distinct signatures o...

  7. Pulsed laser deposition: metal versus oxide ablation

    NARCIS (Netherlands)

    Doeswijk, L.M.; Rijnders, G.; Blank, D.H.A.

    2004-01-01

    We present experimental results of pulsed laser interaction with metal (Ni, Fe, Nb) and oxide (TiO2, SrTiO3, BaTiO3) targets. The influence of the laser fluence and the number of laser pulses on the resulting target morphology are discussed. Although different responses for metal and oxide targets t

  8. Strong-field Breit-Wheeler pair production in short laser pulses: Relevance of spin effects

    Science.gov (United States)

    Jansen, M. J. A.; Kamiński, J. Z.; Krajewska, K.; Müller, C.

    2016-07-01

    Production of electron-positron pairs in the collision of a high-energy photon with a high-intensity few-cycle laser pulse is studied. By utilizing the frameworks of laser-dressed spinor and scalar quantum electrodynamics, a comparison between the production of pairs of Dirac and Klein-Gordon particles is drawn. Positron energy spectra and angular distributions are presented for various laser parameters. We identify conditions under which predictions from Klein-Gordon theory either closely resemble or largely differ from those of the proper Dirac theory. In particular, we address the question to which extent the relevance of spin effects is influenced by the short duration of the laser pulse.

  9. Strong-field Breit-Wheeler pair production in short laser pulses: Relevance of spin effects

    CERN Document Server

    Jansen, M J A; Krajewska, K; Müller, C

    2016-01-01

    Production of electron-positron pairs in the collision of a high-energy photon with a high-intensity few-cycle laser pulse is studied. By utilizing the frameworks of laser-dressed spinor and scalar quantum electrodynamics, a comparison between the production of pairs of Dirac and Klein-Gordon particles is drawn. Positron energy spectra and angular distributions are presented for various laser parameters. We identify conditions under which predictions from Klein-Gordon theory either closely resemble or largely differ from those of the proper Dirac theory. In particular, we address the question to which extent the relevance of spin effects is influenced by the short duration of the laser pulse.

  10. Subthreshold pair production in short laser pulses

    OpenAIRE

    Nousch, T.; Seipt, D.; Kampfer, B.; Titov, A. I.

    2012-01-01

    The $e^+e^-$ pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold $\\sqrt{s} = 2m$ a similar enhancement of the pair production rate as for circular polarization. The strong subthreshold enhancement is traced back to the finite bandwidth of the laser pulse. A folding model is develo...

  11. Analysis of picosecond pulsed laser melted graphite

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm/sup -1/ and the disorder-induced mode at 1360 cm/sup -1/, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  12. Analysis of Picosecond Pulsed Laser Melted Graphite

    Science.gov (United States)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  13. Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser

    Directory of Open Access Journals (Sweden)

    A. A. Zholents

    2005-05-01

    Full Text Available We describe a technique for the generation of a solitary attosecond x-ray pulse in a free-electron laser (FEL, via a process of self-amplified spontaneous emission. In this method, electrons experience an energy modulation upon interacting with laser pulses having a duration of a few cycles within single-period wiggler magnets. Two consecutive modulation sections, followed by compression in a dispersive section, are used to obtain a single, subfemtosecond spike in the electron peak current. This region of the electron beam experiences an enhanced growth rate for FEL amplification. After propagation through a long undulator, this current spike emits a ∼250   attosecond x-ray pulse whose intensity dominates the x-ray emission from the rest of the electron bunch.

  14. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich

    2016-01-01

    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  15. Subthreshold pair production in short laser pulses

    CERN Document Server

    Nousch, T; Kampfer, B; Titov, A I

    2012-01-01

    The $e^+e^-$ pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold $\\sqrt{s} = 2m$ a similar enhancement of the pair production rate as for circular polarization. The strong subthreshold enhancement is traced back to the finite bandwidth of the laser pulse. A folding model is developed which accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.

  16. One laser pulse generates two photoacoustic signals

    CERN Document Server

    Gao, Fei; Zheng, Yuanjin

    2016-01-01

    Photoacoustic sensing and imaging techniques have been studied widely to explore optical absorption contrast based on nanosecond laser illumination. In this paper, we report a long laser pulse induced dual photoacoustic (LDPA) nonlinear effect, which originates from unsatisfied stress and thermal confinements. Being different from conventional short laser pulse illumination, the proposed method utilizes a long square-profile laser pulse to induce dual photoacoustic signals. Without satisfying the stress confinement, the dual photoacoustic signals are generated following the positive and negative edges of the long laser pulse. More interestingly, the first expansion-induced photoacoustic signal exhibits positive waveform due to the initial sharp rising of temperature. On the contrary, the second contraction-induced photoacoustic signal exhibits exactly negative waveform due to the falling of temperature, as well as pulse-width-dependent, signal amplitude which is caused by the concurrent heat accumulation and ...

  17. Picosecond Pulse Laser Microstructuring of silicon

    Institute of Scientific and Technical Information of China (English)

    赵明; 尹钢; 朱京涛; 赵利

    2003-01-01

    We report the experimental results of picosecond pulse laser microstructuring (pulse duration 35ps, wavelength 1.06μm, repetition rate 10Hz) of silicon using the direct focusing technique. Arrays of sharp conical spikes located below the initial surface have been formed by cumulative picosecond pulsed laser irradiation of silicon in SF6. Irradiation of silicon surface in air, N2, or vacuum creates ripple-like patterns, but does not create the sharp conical spikes.

  18. Short pulse laser systems for biomedical applications

    CERN Document Server

    Mitra, Kunal

    2017-01-01

    This book presents practical information on the clinical applications of short pulse laser systems and the techniques for optimizing these applications in a manner that will be relevant to a broad audience, including engineering and medical students as well as researchers, clinicians, and technicians. Short pulse laser systems are useful for both subsurface tissue imaging and laser induced thermal therapy (LITT), which hold great promise in cancer diagnostics and treatment. Such laser systems may be used alone or in combination with optically active nanoparticles specifically administered to the tissues of interest for enhanced contrast in imaging and precise heating during LITT. Mathematical and computational models of short pulse laser-tissue interactions that consider the transient radiative transport equation coupled with a bio-heat equation considering the initial transients of laser heating were developed to analyze the laser-tissue interaction during imaging and therapy. Experiments were first performe...

  19. Pulsed pumping of semiconductor disk lasers.

    Science.gov (United States)

    Hempler, Nils; Hopkins, John-Mark; Kemp, Alan J; Schulz, Nico; Rattunde, Marcel; Wagner, Joachim; Dawson, Martin D; Burns, David

    2007-03-19

    Efficient operation of semiconductor disk lasers is demonstrated using uncooled and inexpensive 905nm high-power pulsed semiconductor pump lasers. Laser emission, with a peak power of 1.7W, is obtained from a 2.3mum semiconductor disk laser. This is seven times the power achieved under continuous pumping. Analysis of the time-dependent spectral characteristics of the laser demonstrate that significant device heating occurs over the 100-200ns duration of the pumping pulse - finite element modelling of the thermal processes is undertaken in support of these data. Spectral narrowing to below 0.8nm is obtained by using an intra-cavity birefringent filter.

  20. High Power Picosecond Laser Pulse Recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  1. High-power picosecond laser pulse recirculation.

    Science.gov (United States)

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  2. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    Science.gov (United States)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  3. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Shalloo, R.J., E-mail: robert.shalloo@physics.ox.ac.uk; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S.M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150–170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  4. Propagating Characteristics of Pulsed Laser in Rain

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2015-01-01

    Full Text Available To understand the performance of laser ranging system under the rain weather condition, we need to know the propagating characteristics of laser pulse in rain. In this paper, the absorption and attenuation coefficients were calculated based on the scattering theories in discrete stochastic media, and the propagating characteristics of laser pulse in rain were simulated and analyzed using Monte-Carlo method. Some simulation results were verified by experiments, and the simulation results are well matched with the experimental data, with the maximal deviation not less than 7.5%. The results indicated that the propagating laser beam would be attenuated and distorted due to the scattering and absorption of raindrops, and the energy attenuation and pulse shape distortion strongly depended on the laser pulse widths.

  5. Laser sclerostomy by pulsed-dye laser and goniolens

    Energy Technology Data Exchange (ETDEWEB)

    Latina, M.A.; Dobrogowski, M.; March, W.F.; Birngruber, R. (Massachusetts General Hospital, Boston (USA))

    1990-12-01

    We describe an ab-interno laser sclerostomy procedure using the method termed dye-enhanced ablation with a slit-lamp delivery system and special goniolens such that only the laser light beam penetrates the anterior chamber. The procedure uses a microsecond-pulsed-dye laser emitting at 666 nm and iontophoresis of methylene blue dye (absorption of 668 nm) into the sclera at the limbus to enhance the absorption of the laser light. We compared the number of pulses needed to perforate excised human sclera at pulse durations of 1.5, 20, and 300 microseconds. Pulse durations of 1.5 and 20 microseconds required 20 pulses or fewer to perforate excised human sclera with pulse energies of 75 to 100 mJ. The ab-interno laser sclerostomy procedure was performed in 54 eyes of Dutch-belted rabbits with pulse durations of 1.5 or 20 microseconds and a 100- or 200-microns incident spot diameter delivered using a CGF goniolens. Full-thickness fistulas were successfully created at both pulse durations in approximately 80% of eyes treated. A range of three to 25 pulses was required to perforate sclera with slightly fewer pulses and lower pulse energies at 1.5 microseconds compared with 20 microseconds. There were no significant complications from the procedure. This technique could permit filtration surgery to be performed on an outpatient basis.

  6. Pulsed Laser Cladding of Ni Based Powder

    Science.gov (United States)

    Pascu, A.; Stanciu, E. M.; Croitoru, C.; Roata, I. C.; Tierean, M. H.

    2017-06-01

    The aim of this paper is to optimize the operational parameters and quality of one step Metco Inconel 718 atomized powder laser cladded tracks, deposited on AISI 316 stainless steel substrate by means of a 1064 nm high power pulsed laser, together with a Precitec cladding head manipulated by a CLOOS 7 axes robot. The optimization of parameters and cladding quality has been assessed through Taguchi interaction matrix and graphical output. The study demonstrates that very good cladded layers with low dilution and increased mechanical proprieties could be fabricated using low laser energy density by involving a pulsed laser.

  7. Measurement of pulse lengthening with pulse energy increase in picosecond Nd:YAG laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Cutolo, A.; Zeni, L.; Berardi, V.; Bruzzese, R.; Solimeno, S.; Spinelli, N.

    1989-03-15

    Taking advantage of a new technique, we have monitored the relative variations of time duration and mode size as a function of the pulse energy for 30-ps-long Nd:YAG laser pulses. In particular, by carrying out a statistical analysis, we have observed that the pulse time duration is an increasing function of the pulse energy, according to the theoretical modeling of passively mode-locked lasers. The measurements can be easily extended to the femtosecond regime.

  8. Evolution Strategies for Laser Pulse Compression

    NARCIS (Netherlands)

    Monmarché, Nicolas; Fanciulli, Riccardo; Willmes, Lars; Talbi, El-Ghazali; Savolainen, Janne; Collet, Pierre; Schoenauer, Marc; van der Walle, P.; Lutton, Evelyne; Back, Thomas; Herek, Jennifer Lynn

    2008-01-01

    This study describes first steps taken to bring evolutionary optimization technology from computer simulations to real world experimentation in physics laboratories. The approach taken considers a well understood Laser Pulse Compression problem accessible both to simulation and laboratory experiment

  9. Molecular wakes for ultrashort laser pulses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The molecular wake-assisted interaction between two collinear femotosecond laser pulses is investigated in air,which leads to the generation of a controllable 1.8 mJ super-continuum pulse with an elongated self-guided channel due to the cross-phase modulation of the impulsively aligned diatomic molecules in air. For two parallel launched femtosecond laser pulses with a certain spatial separation,controllable attraction and repulsion of the pulses are observed due to the counter-balance among molecular wakes,Kerr and plasma effects,where the molecular wakes show a longer interaction distance than the others to control the propagation of the intense ultrashort laser pulses.

  10. Pulsed lasers in dentistry: sense or nonsense?

    Science.gov (United States)

    Koort, Hans J.; Frentzen, Matthias

    1991-05-01

    The great interest in the field of laser applications in dentistry provokes the question, if all these new techniques may really fulfill advantages, which are expected after initial in-vitro studies. Whereas laser surgery of soft oral tissues has been developed to a standard method, laser treatment of dental hard tissues and the bone are attended with many unsolved problems. Different laser types, especially pulsed lasers in a wide spectrum of wavelengths have been proofed for dental use. Today neither the excimer lasers, emitting in the far uv-range from 193 to 351 nm, nor the mid-infrared lasers like Nd:YAG (1,064 μm), Ho:YAG (2,1 μm) and Er:YAG (2,96 μm) or the C02-laser (10,6 μm) show mechanism of interaction more carefully and faster than a preparation of teeth with diamond drillers. The laser type with the most precise and considerate treatment effects in the moment is the short pulsed (15 ns) ArF-excimer laser with a wavelength of 193 nm. However this laser type has not yet the effectivity of mechanical instruments and it needs a mirror system to deliver the radiation. Histological results point out, that this laser shows no significant pathological alterations in the adjacent tissues. Another interesting excimer laser, filled with XeCI and emitting at a wavelength of 308 nm has the advantage to be good to deliver through quartz fibers. A little more thermal influence is to be seen according to the longer wavelength. Yet the energy density, necessary to cut dental hard tissues will not be reached with the laser systems available now. Both the pulsed Er:YAG- (2,94 μm, pulse duration 250 s) and the Ho:YAG -laser (2,1 μm, pulse duration 250 μs) have an effective coupling of the laser energy to hydrogeneous tissues, but they do not work sufficient on healthy enamel and dentine. The influence to adjacent healthy tissue is not tolerable, especially in regard of the thermal damage dentine and pulp tissues. Moreover, like the 193 nm ArF-excimer laser

  11. Evolution of laser pulse shape in a parabolic plasma channel

    Science.gov (United States)

    Kaur, M.; Gupta, D. N.; Suk, H.

    2017-01-01

    During high-intensity laser propagation in a plasma, the group velocity of a laser pulse is subjected to change with the laser intensity due to alteration in refractive index associated with the variation of the nonlinear plasma density. The pulse front sharpened while the back of the pulse broadened due to difference in the group velocity at different parts of the laser pulse. Thus the distortion in the shape of the laser pulse is expected. We present 2D particle-in-cell simulations demonstrating the controlling the shape distortion of a Gaussian laser pulse using a parabolic plasma channel. We show the results of the intensity distribution of laser pulse in a plasma with and without a plasma channel. It has been observed that the plasma channel helps in controlling the laser pulse shape distortion. The understanding of evolution of laser pulse shape may be crucial while applying the parabolic plasma channel for guiding the laser pulse in plasma based accelerators.

  12. Generation of 30  fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser.

    Science.gov (United States)

    Ma, Jie; Huang, Haitao; Ning, Kaijie; Xu, Xiaodong; Xie, Guoqiang; Qian, Liejia; Loh, Kian Ping; Tang, Dingyuan

    2016-03-01

    Stable 30 fs pulses centered at 1068 nm (less than 10 optical cycles) are demonstrated in a diode pumped Yb:CaYAlO4 laser by using high-quality chemical vapor deposited monolayer graphene as the saturable absorber. The mode-locked 8.43 optical-cycle pulses have a spectral bandwidth of ∼50  nm and a pulse repetition frequency of ∼113.5  MHz. To the best of our knowledge, this is the shortest pulse ever reported for graphene mode-locked lasers and mode-locked Yb-doped bulk lasers. Our experimental results demonstrate that graphene mode locking is a very promising practical technique for directly generating few-cycle optical pulses from a laser oscillator.

  13. Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO_4 laser

    Science.gov (United States)

    Ma, Jie; Huang, Haitao; Ning, Kaijie; Xu, Xiaodong; Xie, Guoqiang; Qian, Liejia; Loh, Kian Ping; Tang, Dingyuan

    2016-03-01

    Stable 30 fs pulses centered at 1068 nm (less than 10 optical cycles) are demonstrated in a diode pumped Yb:CaYAlO4 laser by using high-quality chemical vapor deposited monolayer graphene as the saturable absorber. The mode locked 8.43 optical-cycle pulses have a spectral bandwidth of ~ 50 nm and a pulse repetition frequency of ~ 113.5 MHz. To our knowledge, this is the shortest pulse ever reported for graphene mode-locked lasers and mode-locked Yb-doped bulk lasers. Our experimental results demonstrate that graphene mode locking is a very promising practical technique to generate few-cycle optical pulses directly from a laser oscillator.

  14. Generation of 30-fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser

    CERN Document Server

    Ma, Jie; Ning, Kaijie; Xu, Xiaodong; Xie, Guoqiang; Qian, Liejia; Loh, Kian Ping; Tang, Dingyuan

    2015-01-01

    Stable 30 fs pulses centered at 1068 nm (less than 10 optical cycles) are demonstrated in a diode pumped Yb:CaYAlO4 laser by using high-quality chemical vapor deposited monolayer graphene as the saturable absorber. The mode locked 8.43 optical-cycle pulses have a spectral bandwidth of ~ 50 nm and a pulse repetition frequency of ~ 113.5 MHz. To our knowledge, this is the shortest pulse ever reported for graphene mode-locked lasers and mode-locked Yb-doped bulk lasers. Our experimental results demonstrate that graphene mode locking is a very promising practical technique to generate few-cycle optical pulses directly from a laser oscillator.

  15. Drop Shaping by Laser-Pulse Impact

    NARCIS (Netherlands)

    Klein, A.L.; Bouwhuis, W.; Visser, C.W.; Lhuissier, H.E.; Sun, C.; Snoeijer, J.H.; Villermaux, E.; Lohse, D.; Gelderblom, H.

    2015-01-01

    We show how the deposition of laser energy induces propulsion and strong deformation of an absorbing liquid body. Combining high speed with stroboscopic imaging, we observe that a millimeter-sized dyed water drop hit by a millijoule nanosecond laser pulse propels forward at several meters per second

  16. Laser pulse shaping for high gradient accelerators

    Science.gov (United States)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  17. Laser pulse shaping for high gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Villa, F., E-mail: fabio.villa@lnf.infn.it [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Anania, M.P.; Bellaveglia, M. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Bisesto, F. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Università La Sapienza di Roma, Via A. Scarpa 14, Rome (Italy); Chiadroni, E. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN-Roma Tor Vergata and Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Moreno, M.; Petrarca, M. [Università La Sapienza di Roma, Via A. Scarpa 14, Rome (Italy); Pompili, R.; Vaccarezza, C. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy)

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc-lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  18. Synchronization and coherent combining of two pulsed fiber lasers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We demonstrate a scalable architecture for coherent combining of pulsed fiber lasers.A new method for generating synchronous pulsed fiber lasers by direct phase modulation is proposed and investigated.It is shown that phase modulated mutually coupled laser array can be a steady synchronous pulsed fiber laser source.The synchronous pulsed fiber lasers are coherently combined with an invariable phase difference of π in adjacent lasers.Neither active phase control nor polarization control is taken in our experiment.

  19. Ultra-short pulse laser proton acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Zeil, Karl; Kraft, Stephan; Bussmann, Michael; Cowan, Thomas; Kluge, Thomas; Metzkes, Josefine; Richter, Tom; Schramm, Ulrich [Forschungszentrum Dresden-Rossendorf, Dresden (Germany)

    2010-07-01

    We present a systematic investigation of ultra-short pulse laser acceleration of protons yielding unprecedented maximum proton energies of 17 MeV using the Ti:Sapphire lased high power laser of 100 TW Draco at the Research Centre Dresden-Rossendorf. For plain few micron thick foil targets a linear scaling of the maximum proton energy with laser power is observed and attributed to the short acceleration period close to the target rear surface. Although excellent laser pulse contrast was available slight deformations of the target rear were found to lead to a predictable shift of the direction of the energetic proton emission away from target normal towards the laser direction. The change of the emission characteristics are compared to analytical modelling and 2D PIC simulations.

  20. Drop shaping by laser-pulse impact

    CERN Document Server

    Klein, Alexander L; Visser, Claas Willem; Lhuissier, Henri; Sun, Chao; Snoeijer, Jacco H; Villermaux, Emmanuel; Lohse, Detlef; Gelderblom, Hanneke

    2015-01-01

    We study the hydrodynamic response of a falling drop hit by a laser pulse. Combining high-speed with stroboscopic imaging we report that a millimeter-sized dyed water drop hit by a milli-Joule nanosecond laser-pulse deforms and propels forward at several meters per second, until it eventually fragments. We show that the drop motion results from the recoil momentum imparted at the drop surface by water vaporization. We measure the propulsion speed and the time-deformation law of the drop, complemented by boundary integral simulations. We explain the drop propulsion and shaping in terms of the laser pulse energy and drop surface tension. These findings are crucial for the generation of extreme ultraviolet (EUV) light in lithography machines.

  1. Pulsed laser illumination of photovoltaic cells

    Science.gov (United States)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  2. Ceramic dentures manufactured with ultrashort laser pulses

    Science.gov (United States)

    Werelius, Kristian; Weigl, Paul

    2004-06-01

    Conventional manufacturing of individual ceramic dental prosthesis implies a handmade metallic framework, which is then veneered with ceramic layers. In order to manufacture all-ceramic dental prosthesis a CAD/CAM system is necessary due to the three dimensional shaping of high strength ceramics. Most CAD/CAM systems presently grind blocks of ceramic after the construction process in order to create the prosthesis. Using high-strength ceramics, such as Hot Isostatic Pressed (HIP)-zirconia, this is limited to copings. Anatomically shaped fixed dentures have a sculptured surface with small details, which can't be created by existing grinding tools. This procedure is also time consuming and subject to significant loss in mechanical strength and thus reduced survival rate once inserted. Ultra-short laser pulses offer a possibility in machining highly complex sculptured surfaces out of high-strength ceramic with negligible damage to the surface and bulk of the ceramic. In order to determine efficiency, quality and damage, several laser ablation parameters such as pulse duration, pulse energy and ablation strategies were studied. The maximum ablation rate was found using 400 fs at high pulse energies. High pulse energies such as 200μJ were used with low damage in mechanical strength compared to grinding. Due to the limitation of available laser systems in pulse repetition rates and power, the use of special ablation strategies provide a possibility to manufacture fully ceramic dental prosthesis efficiently.

  3. Ionization of Atoms by Intense Laser Pulses

    CERN Document Server

    Froehlich, Juerg; Schlein, Benjamin

    2010-01-01

    The process of ionization of a hydrogen atom by a short infrared laser pulse is studied in the regime of very large pulse intensity, in the dipole approximation. Let $A$ denote the integral of the electric field of the pulse over time at the location of the atomic nucleus. It is shown that, in the limit where $|A| \\to \\infty$, the ionization probability approaches unity and the electron is ejected into a cone opening in the direction of $-A$ and of arbitrarily small opening angle. Asymptotics of various physical quantities in $|A|^{-1}$ is studied carefully. Our results are in qualitative agreement with experimental data reported in \\cite{1,2}.

  4. Lasers and Intense Pulsed Light Hidradenitis Suppurativa.

    Science.gov (United States)

    Saunte, Ditte M; Lapins, Jan

    2016-01-01

    Lasers and intense pulsed light (IPL) treatment are useful for the treatment of hidradenitis suppurativa (HS). Carbon dioxide lasers are used for cutting or vaporization of the affected area. It is a effective therapy for the management of severe and recalcitrant HS with persistent sinus tract and scarring, and can be performed under local anesthesia. HS has a follicular pathogenesis. Lasers and IPL targeting the hair have been found useful in treating HS by reducing the numbers of hairs in areas with HS. The methods have few side effects, but the studies are preliminary and need to be repeated.

  5. Modulated Pulsed Laser Sources for Imaging Lidars

    Science.gov (United States)

    2007-10-01

    manufactured by QPC. This C-mount device has a monolithic semiconductor amplifier allowing the package to output up to 1.5 Watts at 1064 nm with linewidths ɘ.1...pulsed driver based on the avalanche transistor circuit being used for gain switching, a 1064 nm DFB laser manufactured by QPC and a DBR -style laser...available now that may provide the needed power. An example of such a laser is the QPC C-mount monolithic oscillator/amplifier which can output 1.5

  6. Electron photodetachment by short laser pulse

    NARCIS (Netherlands)

    Golovinski, P. A.; Drobyshev, A. A.

    2012-01-01

    Expressions are derived for calculations of the total probabilities and electron spectra for the photodetachment of electrons from negative ions with filled valence s shells by ultrashort laser pulses. Particular calculations have been performed for two negative ions (H- and Li-) and titanium-sapphi

  7. Electron photodetachment by short laser pulse

    NARCIS (Netherlands)

    Golovinski, P. A.; Drobyshev, A. A.

    2012-01-01

    Expressions are derived for calculations of the total probabilities and electron spectra for the photodetachment of electrons from negative ions with filled valence s shells by ultrashort laser pulses. Particular calculations have been performed for two negative ions (H- and Li-) and titanium-sapphi

  8. Ultrashort Pulse (USP) Laser-Matter Interactions

    Science.gov (United States)

    2013-03-05

    unlimited 2D electron wavepacket quantum simulation Source: Luis Plaja, U Salamanca 31 Direct Frequency Comb Spectroscopy in the Extreme...intensity short pulse laser interacting with structured targets yields an enhancement in the number and energy of hot electron. • Monte Carlo

  9. Pulsed laser deposition: Prospects for commercial deposition of epitaxial films

    Energy Technology Data Exchange (ETDEWEB)

    Muenchausen, R.E.

    1999-03-01

    Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique for the deposition of thin films. The vapor source is induced by the flash evaporation that occurs when a laser pulse of sufficient intensity (about 100 MW/cm{sup 2}) is absorbed by a target. In this paper the author briefly defines pulsed laser deposition, current applications, research directed at gaining a better understanding of the pulsed laser deposition process, and suggests some future directions to enable commercial applications.

  10. Spatially modulated laser pulses for printing electronics.

    Science.gov (United States)

    Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto

    2015-11-01

    The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse.

  11. Single-shot laser pulse reconstruction based on self-phase modulated spectra measurements

    Science.gov (United States)

    Anashkina, Elena A.; Ginzburg, Vladislav N.; Kochetkov, Anton A.; Yakovlev, Ivan V.; Kim, Arkady V.; Khazanov, Efim A.

    2016-09-01

    We report a method for ultrashort pulse reconstruction based only on the pulse spectrum and two self-phase modulated (SPM) spectra measured after pulse propagation through thin media with a Kerr nonlinearity. The advantage of this method is that it is a simple and very effective tool for characterization of complex signals. We have developed a new retrieval algorithm that was verified by reconstructing numerically generated fields, such as a complex electric field of double pulses and few-cycle pulses with noises, pedestals and dips down to zero spectral intensity, which is challenging for commonly used techniques. We have also demonstrated a single-shot implementation of the technique for the reconstruction of experimentally obtained pulses. This method can be used for high power laser systems operating in a single-shot mode in the optical, near- and mid-IR spectral ranges. The method is robust, low cost, stable to noise, does not require a priori information, and has no ambiguity related to time direction.

  12. Dynamics of laser-induced electroconvection pulses.

    Science.gov (United States)

    Giebink, N C; Johnson, E R; Saucedo, S R; Miles, E W; Vardanyan, K K; Spiegel, D R; Allen, C C

    2004-06-01

    We first report that, for planar nematic 4-methoxy-benzilidene-4-butylaniline (MBBA), the electroconvection threshold voltage has a nonmonotonic temperature dependence, with a well-defined minimum, and a slope of about -0.12 V/degrees C near room temperature at 70 Hz. Motivated by this observation, we have designed an experiment in which a weak continuous-wave absorbed laser beam with a diameter comparable to the pattern wavelength generates a locally supercritical region, or pulse, in dye-doped MBBA. Working 10-20 % below the laser-free threshold voltage, we observe a steady-state pulse shaped as an ellipse with the semimajor axis oriented parallel to the nematic director, with a typical size of several wavelengths. The pulse is robust, persisting even when spatially extended rolls develop in the surrounding region, and displays rolls that counterpropagate along the director at frequencies of tenths of Hz, with the rolls on the left (right) side of the ellipse moving to the right (left). Systematic measurements of the sample-voltage dependence of the pulse amplitude, spatial extent, and frequency show a saturation or decrease when the control parameter (evaluated at the center of the pulse) approaches approximately 0.3. We propose that the model for these pulses should be based on the theory of control-parameter ramps, supplemented with new terms to account for the advection of heat away from the pulse when the surrounding state becomes linearly unstable. The advection creates a negative feedback between the pulse size and the efficiency of heat transport, which we argue is responsible for the attenuation of the pulse at larger control-parameter values.

  13. High power parallel ultrashort pulse laser processing

    Science.gov (United States)

    Gillner, Arnold; Gretzki, Patrick; Büsing, Lasse

    2016-03-01

    The class of ultra-short-pulse (USP) laser sources are used, whenever high precession and high quality material processing is demanded. These laser sources deliver pulse duration in the range of ps to fs and are characterized with high peak intensities leading to a direct vaporization of the material with a minimum thermal damage. With the availability of industrial laser source with an average power of up to 1000W, the main challenge consist of the effective energy distribution and disposition. Using lasers with high repetition rates in the MHz region can cause thermal issues like overheating, melt production and low ablation quality. In this paper, we will discuss different approaches for multibeam processing for utilization of high pulse energies. The combination of diffractive optics and conventional galvometer scanner can be used for high throughput laser ablation, but are limited in the optical qualities. We will show which applications can benefit from this hybrid optic and which improvements in productivity are expected. In addition, the optical limitations of the system will be compiled, in order to evaluate the suitability of this approach for any given application.

  14. Group velocity and pulse lengthening of mismatched laser pulses in plasma channels

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim

    2011-07-07

    Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in aplasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatchedpropagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of amismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance andsignificantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage isexamined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown tobe in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasmachannel diagnostics are discussed.

  15. Phase Noise Comparision of Short Pulse Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  16. Theoretical analysis of pulse modulation of semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Xu Baoxi; Zhan Yushu; Guo Siji

    1987-05-01

    Rate equations of Gaussian shape pulse modulated semiconductor lasers are solved by Runge--Kutta method, and the results are analyzed. The formulae for calculating the delay time, pulse width of laser pulse and maximum bit-rate of Gaussian shape pulse modulation are derived. The experimental results of modulation pattern effects are given.

  17. Generation of intense attosecond x-ray pulses using ultraviolet laser induced microbunching in electron beams

    Directory of Open Access Journals (Sweden)

    D. Xiang

    2009-06-01

    Full Text Available We propose a scheme that combines the echo-enabled harmonic generation technique with the bunch compression and allows one to generate harmonic numbers of a few hundred in a microbunched beam through up-conversion of the frequency of an ultraviolet seed laser. A few-cycle intense laser is used to generate the required energy chirp in the beam for bunch compression and for selection of an attosecond x-ray pulse. Sending this beam through a short undulator results in an intense isolated attosecond x-ray pulse. Using a representative realistic set of parameters, we show that 1 nm x-ray pulse with peak power of a few hundred MW and duration as short as 20 attoseconds (FWHM can be generated from a 200 nm ultraviolet seed laser. The proposed scheme may enable the study of electronic dynamics with a resolution beyond the atomic unit of time (∼24 attoseconds and may open a new regime of ultrafast sciences.

  18. Double nanosecond pulses generation in ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, V. P.; Samokhvalov, A. A., E-mail: samokhvalov.itmo@gmail.com; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N. [Saint-Petersburg State University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, Saint Petersburg (Russian Federation); Lednev, V. N. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskyave., 4, Moscow (Russian Federation); Pershin, S. M. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation)

    2016-06-15

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential “opening” radio pulses with a delay of 0.2–1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  19. Pulsed Power for Solid-State Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  20. Selective laser melting of copper using ultrashort laser pulses

    Science.gov (United States)

    Kaden, Lisa; Matthäus, Gabor; Ullsperger, Tobias; Engelhardt, Hannes; Rettenmayr, Markus; Tünnermann, Andreas; Nolte, Stefan

    2017-09-01

    Within the field of laser-assisted additive manufacturing, the application of ultrashort pulse lasers for selective laser melting came into focus recently. In contrast to conventional lasers, these systems provide extremely high peak power at ultrashort interaction times and offer the potential to control the thermal impact at the vicinity of the processed region by tailoring the pulse repetition rate. Consequently, materials with extremely high melting points such as tungsten or special composites such as AlSi40 can be processed. In this paper, we present the selective laser melting of copper using 500 fs laser pulses at MHz repetition rates emitted at a center wavelength of about 1030 nm. To identify an appropriate processing window, a detailed parameter study was performed. We demonstrate the fabrication of bulk copper parts as well as the realization of thin-wall structures featuring thicknesses below 100 {μ }m. With respect to the extraordinary high thermal conductivity of copper which in general prevents the additive manufacturing of elements with micrometer resolution, this work demonstrates the potential for sophisticated copper products that can be applied in a wide field of applications extending from microelectronics functionality to complex cooling structures.

  1. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of

  2. Fragmentation Control of a Polyatomic Molecule by fully determined Laser-Fields

    Directory of Open Access Journals (Sweden)

    Varga K.

    2013-03-01

    Full Text Available Strong-field control of acetylene fragmentation by fully determined few-cycle laser pulses is demonstrated. The control mechanism is shown to be based on electron recollision and inelastic ionization from inner-valence molecular orbitals.

  3. Laser-driven hydrothermal process studied with excimer laser pulses

    Science.gov (United States)

    Mariella, Raymond; Rubenchik, Alexander; Fong, Erika; Norton, Mary; Hollingsworth, William; Clarkson, James; Johnsen, Howard; Osborn, David L.

    2017-08-01

    Previously, we discovered [Mariella et al., J. Appl. Phys. 114, 014904 (2013)] that modest-fluence/modest-intensity 351-nm laser pulses, with insufficient fluence/intensity to ablate rock, mineral, or concrete samples via surface vaporization, still removed the surface material from water-submerged target samples with confinement of the removed material, and then dispersed at least some of the removed material into the water as a long-lived suspension of nanoparticles. We called this new process, which appears to include the generation of larger colorless particles, "laser-driven hydrothermal processing" (LDHP) [Mariella et al., J. Appl. Phys. 114, 014904 (2013)]. We, now, report that we have studied this process using 248-nm and 193-nm laser light on submerged concrete, quartzite, and obsidian, and, even though light at these wavelengths is more strongly absorbed than at 351 nm, we found that the overall efficiency of LDHP, in terms of the mass of the target removed per Joule of laser-pulse energy, is lower with 248-nm and 193-nm laser pulses than with 351-nm laser pulses. Given that stronger absorption creates higher peak surface temperatures for comparable laser fluence and intensity, it was surprising to observe reduced efficiencies for material removal. We also measured the nascent particle-size distributions that LDHP creates in the submerging water and found that they do not display the long tail towards larger particle sizes that we had observed when there had been a multi-week delay between experiments and the date of measuring the size distributions. This is consistent with transient dissolution of the solid surface, followed by diffusion-limited kinetics of nucleation and growth of particles from the resulting thin layer of supersaturated solution at the sample surface.

  4. High speed sampling circuit design for pulse laser ranging

    Science.gov (United States)

    Qian, Rui-hai; Gao, Xuan-yi; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Guo, Xiao-kang; He, Shi-jie

    2016-10-01

    In recent years, with the rapid development of digital chip, high speed sampling rate analog to digital conversion chip can be used to sample narrow laser pulse echo. Moreover, high speed processor is widely applied to achieve digital laser echo signal processing algorithm. The development of digital chip greatly improved the laser ranging detection accuracy. High speed sampling and processing circuit used in the laser ranging detection system has gradually been a research hotspot. In this paper, a pulse laser echo data logging and digital signal processing circuit system is studied based on the high speed sampling. This circuit consists of two parts: the pulse laser echo data processing circuit and the data transmission circuit. The pulse laser echo data processing circuit includes a laser diode, a laser detector and a high sample rate data logging circuit. The data transmission circuit receives the processed data from the pulse laser echo data processing circuit. The sample data is transmitted to the computer through USB2.0 interface. Finally, a PC interface is designed using C# language, in which the sampling laser pulse echo signal is demonstrated and the processed laser pulse is plotted. Finally, the laser ranging experiment is carried out to test the pulse laser echo data logging and digital signal processing circuit system. The experiment result demonstrates that the laser ranging hardware system achieved high speed data logging, high speed processing and high speed sampling data transmission.

  5. Laser absorption via QED cascades in counter propagating laser pulses

    CERN Document Server

    Grismayer, Thomas; Martins, Joana L; Fonseca, Ricardo A; Silva, Luis O

    2015-01-01

    A model for laser light absorption in electron-positron plasmas self-consistently created via QED cascades is described. The laser energy is mainly absorbed due to hard photon emission via nonlinear Compton scattering. The degree of absorption depends on the laser intensity and the pulse duration. The QED cascades are studied with multi-dimensional particle-in-cell simulations complemented by a QED module and a macro-particle merging algorithm that allows to handle the exponential growth of the number of particles. Results range from moderate-intensity regimes ($\\sim$ 10 PW) where the laser absorption is negligible, to extreme intensities (> 100 PW) where the degree of absorption reaches 80%. Our study demonstrates good agreement between the analytical model and simulations. The expected properties of the hard photon emission and the generated pair-plasma are investigated, and the experimental signatures for near-future laser facilities are discussed.

  6. Interaction of femtosecond laser pulses with metal photocathode

    Institute of Scientific and Technical Information of China (English)

    Liu Yun-Quan; Zhang Jie; Liang Wen-Xi

    2005-01-01

    The features of interaction of femtosecond laser pulses with photocathode are studied theoretically in this paper.The surface temperature of the metal cathode film while femtosecond laser pulses irradiation is studied with twotemperature model. With a simple photoelectric model we obtain the optimum metal film thickness for the backilluminated photocathode. The generated ultrashort photocurrent pulses are strongly dependent on the temperature of the electron gas and the lattice during the femtosecond laser pulse irradiation on the photocathode.

  7. Plasma generated during underwater pulsed laser processing

    Science.gov (United States)

    Hoffman, Jacek; Chrzanowska, Justyna; Moscicki, Tomasz; Radziejewska, Joanna; Stobinski, Leszek; Szymanski, Zygmunt

    2017-09-01

    The plasma induced during underwater pulsed laser ablation of graphite is studied both experimentally and theoretically. The results of the experiment show that the maximum plasma temperature of 25000 K is reached 20 ns from the beginning of the laser pulse and decreases to 6500 K after 1000 ns. The observed OH absorption band shows that the plasma plume is surrounded by the thin layer of dissociated water vapour at a temperature around 5500 K. The hydrodynamic model applied shows similar maximum plasma temperature at delay times between 14 ns and 30 ns. The calculations show also that already at 14th ns, the plasma electron density reaches 0.97·1027 m-3, which is the critical density for 1064 nm radiation. At the same time the plasma pressure is 2 GPa, which is consisted with earlier measurements of the peak pressure exerted on a target in similar conditions.

  8. Laser Pulse Heating of Spherical Metal Particles

    Science.gov (United States)

    Tribelsky, Michael I.; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Luk'Yanchuk, Boris S.; Khokhlov, Alexei R.

    2011-10-01

    We consider the general problem of laser pulse heating of spherical metal particles with the sizes ranging from nanometers to millimeters. We employ the exact Mie solution of the diffraction problem and solve the heat-transfer equation to determine the maximum temperature rise at the particle surface as a function of optical and thermometric parameters of the problem. Primary attention is paid to the case when the thermal diffusivity of the particle is much larger than that of the environment, as it is in the case of metal particles in fluids. We show that, in this case, for any given duration of the laser pulse, the maximum temperature rise as a function of the particle size reaches a maximum at a certain finite size of the particle. We suggest simple approximate analytical expressions for this dependence, which cover the entire parameter range of the problem and agree well with direct numerical simulations.

  9. Theoretical Studies of the Output Pulse with Variation of the Pumping Pulse for RF Excited CO2 Pulsed Waveguide Laser

    Institute of Scientific and Technical Information of China (English)

    A Rauf; ZHOU Wei; XIN Jian-guo

    2006-01-01

    The behavior of a RF-excited waveguide CO2 laser in the pulse regime is studied theoretically. The output pulse evolution is studied by applying three types of pulses namely the square, sine and the triangular ones as the excitation pulses. The frequency dependence behavior of the output pulse is also presented.

  10. Designing quadratic nonlinear photonic crystal fibers for soliton compression to few-cycle pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Moses, Jeffrey; Lægsgaard, Jesper

    2007-01-01

    Second-harmonic generation (SHG) in the limit of large phase mismatch, given by Deltabeta=beta2-2beta1 effectively induces a Kerr-like nonlinear phase shift on the fundamental wave (FW). The phase mismatch determines the sign and magnitude of the effective Kerr nonlinearity, making large negative...

  11. Soliton compression to few-cycle pulses using quadratic nonlinear photonic crystal fibers: A design study

    DEFF Research Database (Denmark)

    Bache, Morten; Moses, Jeffrey; Lægsgaard, Jesper;

    2007-01-01

    We show theoretically that high-quality soliton compression from ~500 fs to ~10 fs is possible in poled silica photonic crystal fibers using cascaded (2):(2) nonlinearities. A moderate group-velocity mismatch optimizes the compression.......We show theoretically that high-quality soliton compression from ~500 fs to ~10 fs is possible in poled silica photonic crystal fibers using cascaded (2):(2) nonlinearities. A moderate group-velocity mismatch optimizes the compression....

  12. Few-cycle nonlinear mid-IR pulse generated with cascaded quadratic nonlinearities

    DEFF Research Database (Denmark)

    Bache, Morten; Liu, Xing; Zhou, Binbin

    change Δn = ncascI, where ncase ∝ −d2eff/Δk, and deff is the effective quadratic nonlinearity. Due to competing material nonlinearities nKerr the total nonlinear refractive is ncubic = ncasc + nKerr. Interestingly ncubic can become negative (self-defocusing), elegantly avoiding self-focusing problems...

  13. Pulsed laser deposition of metal films and nanoparticles in vacuum using subnanosecond laser pulses.

    Science.gov (United States)

    Ganeev, R A; Chakravarty, U; Naik, P A; Srivastava, H; Mukherjee, C; Tiwari, M K; Nandedkar, R V; Gupta, P D

    2007-03-10

    A study of silver, chromium, stainless-steel, and indium thin films prepared by subnanosecond laser deposition in vacuum is reported. We compare the laser ablation in vacuum at the weak- and tight-focusing conditions of a Ti:sapphire laser beam and analyze the nanoparticles synthesized in the latter case using absorption spectroscopy, x-ray fluorescence, atomic force microscopy, and scanning electron microscopy. Our results show that the nanoparticle formation can be accomplished using long laser pulses under tight-focusing conditions.

  14. Picosecond pulse measurements using the active laser medium

    Science.gov (United States)

    Bernardin, James P.; Lawandy, N. M.

    1990-01-01

    A simple method for measuring the pulse lengths of synchronously pumped dye lasers which does not require the use of an external nonlinear medium, such as a doubling crystal or two-photon fluorescence cell, to autocorrelate the pulses is discussed. The technique involves feeding the laser pulses back into the dye jet, thus correlating the output pulses with the intracavity pulses to obtain pulse length signatures in the resulting time-averaged laser power. Experimental measurements were performed using a rhodamine 6G dye laser pumped by a mode-locked frequency-doubled Nd:YAG laser. The results agree well with numerical computations, and the method proves effective in determining lengths of picosecond laser pulses.

  15. Heavy ion acceleration using femtosecond laser pulses

    CERN Document Server

    Petrov, G M; Thomas, A G R; Krushelnick, K; Beg, F N

    2015-01-01

    Theoretical study of heavy ion acceleration from ultrathin (<200 nm) gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations the time history of the laser bullet is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity , duration 32 fs, focal spot size 5 mkm and energy 27 Joules the calculated reflection, transmission and coupling coefficients from a 20 nm foil are 80 %, 5 % and 15 %, respectively. The conversion efficiency into gold ions is 8 %. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon and flux . Analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the Radiation Pressure Acceleration regime and the onset of the Target Normal Sheath Acceleratio...

  16. Pulsed laser deposition of rare earth compounds

    CERN Document Server

    Stone, L A

    2001-01-01

    Magnetostrictive thin films have been deposited using various techniques such as sputtering and evaporation but the use of laser deposition has been limited. This research presents the results from pulsed laser deposition (PLD) of TbFe sub 2 , DyFe sub 2 and Terfenol-D thin films using an infra red Transversely Excited Atmospheric (TEA) CO sub 2 laser at lambda approx 10.6 mu m and an ultra violet Argon-Fluoride (ArF) excimer laser at lambda approx 193 nm. Results have showed that the TEA CO sub 2 laser under the range of conditions studied is not suitable for the production of magnetostrictive films. The problems experienced are a mixture of mostly fracture debris at low fluences (F approx 20 Jcm sup - sup 2) and melt droplets at high fluences (F approx 60 Jcm sup - sup 2). In all cases the destruction of the target is a major problem, with the Terfenol-D targets being the worst affected. Thin films produced were all iron rich. The use of an excimer laser has proved more successful in providing stoichiometri...

  17. Pulsed Nd-YAG laser in endodontics

    Science.gov (United States)

    Ragot-Roy, Brigitte; Severin, Claude; Maquin, Michel

    1994-12-01

    The purpose of this study was to establish an operative method in endodontics. The effect of a pulsed Nd:YAG laser on root canal dentin has been examined with a scanning electron microscope. Our first experimentation was to observe the impacts carried out perpendicularly to root canal surface with a 200 micrometers fiber optic in the presence of dye. Secondarily, the optical fiber was used as an endodontic instrument with black dye. The irradiation was performed after root canal preparation (15/100 file or 40/100 file) or directly into the canal. Adverse effects are observed. The results show that laser irradiation on root canal dentin surfaces induces a nonhomogeneous modified dentin layer, melted and resolidified dentin closed partially dentinal tubules. The removal of debris is not efficient enough. The laser treatment seems to be indicated only for endodontic and periapical spaces sterilization after conventional root canal preparation.

  18. Numerical simulation of copper ablation by ultrashort laser pulses

    CERN Document Server

    Ding, PengJi; Li, YuHong

    2011-01-01

    Using a modified self-consistent one-dimensional hydrodynamic lagrangian fluid code, laser ablation of solid copper by ultrashort laser pulses in vacuum was simulated to study fundamental mechanisms and to provide a guide for drilling periodic microholes or microgratings on the metal surface. The simulated laser ablation threshold is a approximate constancy in femtosecond regime and increases as the square root of pulse duration in picosecond regime. The ablation depth as a function of pulse duration shows four different regimes and a minimum for a pulse duration of ~ 12ps for various laser fluences. The influence of laser-induced plasma shielding on ablation depth is also studied.

  19. Twin-Pulse Soliton Operation of a Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    W.; S.; Man; H.; Y.; Tam

    2003-01-01

    We report on the experimental observation of a novel type of twin-pulse soliton in a passively mode-locked fiber ring laser. Twin-pulse soliton interaction in the laser cavity are also experimentally investigated and compared with those of the single pulse soliton.

  20. Drilling of Copper Using a Dual-Pulse Femtosecond Laser

    Directory of Open Access Journals (Sweden)

    Chung-Wei Cheng

    2016-02-01

    Full Text Available The drilling of copper using a dual-pulse femtosecond laser with wavelength of 800 nm, pulse duration of 120 fs and a variable pulse separation time (0.1–150 ps is investigated theoretically. A one-dimensional two-temperature model with temperature-dependent material properties is considered, including dynamic optical properties and the thermal-physical properties. Rapid phase change and phase explosion models are incorporated to simulate the material ablation process. Numerical results show that under the same total laser fluence of 4 J/cm2, a dual-pulse femtosecond laser with a pulse separation time of 30–150 ps can increase the ablation depth, compared to the single pulse. The optimum pulse separation time is 85 ps. It is also demonstrated that a dual pulse with a suitable pulse separation time for different laser fluences can enhance the ablation rate by about 1.6 times.

  1. Wavelength stabilisation during current pulsing of tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin

    2009-01-01

    The use of external feedback to stabilise the frequency of a tapered laser during current pulsing is reported. Using this technique more than 20 W of peak power in 60 ns pulses from the tapered laser is obtained and owing to the external feedback, the laser is tunable in the 778-808 nm range....... The spectral width of the tapered laser is significantly narrowed compared to the freely running laser....

  2. Drop deformation by laser-pulse impact

    CERN Document Server

    Gelderblom, Hanneke; Klein, Alexander L; Bouwhuis, Wilco; Lohse, Detlef; Villermaux, Emmanuel; Snoeijer, Jacco H

    2015-01-01

    A free-falling absorbing liquid drop hit by a nanosecond laser-pulse experiences a strong recoil-pressure kick. As a consequence, the drop propels forward and deforms into a thin sheet which eventually fragments. We study how the drop deformation depends on the pulse shape and drop properties. We first derive the velocity field inside the drop on the timescale of the pressure pulse, when the drop is still spherical. This yields the kinetic-energy partition inside the drop, which precisely measures the deformation rate with respect to the propulsion rate, before surface tension comes into play. On the timescale where surface tension is important the drop has evolved into a thin sheet. Its expansion dynamics is described with a slender-slope model, which uses the impulsive energy-partition as an initial condition. Completed with boundary integral simulations, this two-stage model explains the entire drop dynamics and its dependance on the pulse shape: for a given propulsion, a tightly focused pulse results in a...

  3. Theory of Self-pulsing in Photonic Crystal Fano Lasers

    DEFF Research Database (Denmark)

    Rasmussen, Thorsten Svend; Yu, Yi; Mørk, Jesper

    2017-01-01

    Laser self-pulsing was a phenomenon exclusive to macroscopic lasers until recently, where self-starting laser pulsation in a microscopic photonic crystal Fano laser was reported. In this paper a theoretical model is developed to describe the Fano laser, including descriptions of the highly......-dispersive Fano mirror, the laser frequency and the threshold gain. The model is based upon a combination of conventional laser rate equations and coupled-mode theory. The dynamical model is used to demonstrate how the laser has two regimes of operation, continuous-wave output and self-pulsing, and these regimes...

  4. Amplification of Short Pulse High Power UV Laser

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    At recent year, with the development of CPA and other amplification technology, laser intensity achieves great increase and laser power can be high to PW(105) now, this ultrashort pulse lasers offer scientists a route to investigate laser-matter interaction in an absolute new regime.So far the researches on ultrashort pulse laser-matter interaction concentrated on infrared regime, yet ultraviolet laser has the advantage in intense field physics and ICF researches for its short wavelength and less nonlinear effects. KrF excimer is the best medium in UV ultrashort pulse amplification for its small saturation energy and high contrast ratio accessible.

  5. The Electron Trajectory in a Relativistic Femtosecond Laser Pulse

    Institute of Scientific and Technical Information of China (English)

    He Feng; Yu Wei; Lu Peixiang; Xu Han; Shen Baifei; Li Ruxin; Xu Zhizhan

    2005-01-01

    In this report, we start from Lagrange equation and analyze theoretically the electron dynamics in electromagnetic field. By solving the relativistic government equations of electron,the trajectories of an electron in plane laser pulse, focused laser pulse have been given for different initial conditions. The electron trajectory is determined by its initial momentum, the amplitude,spot size and polarization of the laser pulse. The optimum initial momentum of the electron for LSS (laser synchrotron source) is obtained. Linear polarized laser is more advantaged than circular polarized laser for generating harmonic radiation.

  6. Pulse shape control in a dual cavity laser: numerical modeling

    Science.gov (United States)

    Yashkir, Yuri

    2006-04-01

    We present a numerical model of the laser system for generating a special shape of the pulse: a steep peak at the beginning followed by a long pulse tail. Laser pulses of this nature are required for various applications (laser material processing, optical breakdown spectroscopy, etc.). The laser system consists of two "overlapped" cavities with different round-trip times. The laser crystal, the Q-switching element, the back mirror, and the output coupler are shared. A shorter pulse is generated in a short cavity. A small fraction of this pulse is injected into the long cavity as a seed. It triggers generation of the longer pulse. The output emission from this hybrid laser produces a required pulse shape. Parameters of the laser pulse (ratios of durations and energies of short- and long- pulse components) can be controlled through cavity length and the output coupler reflection. Modelling of the laser system is based on a set of coupled rate equations for dynamic variables of the system: the inverse population in an active laser media and photon densities in coupled cavities. Numerical experiments were provided with typical parameters of a Nd:YAG laser to study the system behaviour for different combinations of parameters.

  7. Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes

    Energy Technology Data Exchange (ETDEWEB)

    Velikanov, S D; Zaretskiy, N A; Zotov, E A; Maneshkin, A A; Chuvatkin, R S; Yutkin, I M [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation); Kozlovsky, V I; Korostelin, Yu V; Krokhin, O N; Podmar' kov, Yu P; Savinova, S A; Skasyrsky, Ya K; Frolov, M P [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-01-31

    The characteristics of a Fe:ZnSe laser pumped by a single-pulse free-running Er : YAG laser and a repetitively pulsed HF laser are presented. An output energy of 4.9 J is achieved in the case of liquid-nitrogen cooling of the Fe{sup 2+}:ZnSe active laser element longitudinally pumped by an Er:YAG laser with a pulse duration of 1 ms and an energy up to 15 J. The laser efficiency with respect to the absorbed energy is 47%. The output pulse energy at room temperature is 53 mJ. The decrease in the output energy is explained by a strong temperature dependence of the upper laser level lifetime and by pulsed heating of the active element. The temperature dependence of the upper laser level lifetime is used to determine the pump parameters needed to achieve high pulse energies at room temperature. Stable repetitively-pulsed operation of the Fe{sup 2+}:ZnSe laser at room temperature with an average power of 2.4 W and a maximum pulse energy of 14 mJ is achieved upon pumping by a 1-s train of 100-ns HF laser pulses with a repetition rate of 200 Hz. (lasers)

  8. Propagation of λ3 Laser Pulses in Underdense Plasma

    Science.gov (United States)

    Zhidkov, Alexei; Nemoto, Koshichi; Nayuki, Takuya; Oishi, Yuji; Fujii, Takashi

    2008-06-01

    We study the interaction of λ3 laser pulses with underdense plasma by means of real geometry particle-in-cell simulation. Underdense plasma irradiated by even low energy λ3 laser pulses can be an efficient source of multi-MeV electrons, ˜50 nC/J. The electron acceleration driven by low energy λ3 and λ2 laser pulses is monitored by means of fully relativistic 3D particle-in- cell simulation. Strong transverse wave-breaking in the vicinity of the laser focus is found to give rise to an immense electron charge injected to the acceleration phase of laser wake field. While the acceleration by λ2 pulses runs in usual way, strong blowout regime is found for λ3 pulses. Details of laser pulse self-guiding are discussed.

  9. Optodynamic analysis of pulsed-laser processing with a Nd:YAG laser

    OpenAIRE

    Strgar, Simon; Možina, Janez

    2015-01-01

    Laser drilling and laser marking of metals with a pulsed Nd:YAG laser are discussed. Some characteristics of pulsed-laser processing and the possibilities of process optodynamic analysis are presented for the laser-drilling of aluminium. The optodynamic analysis is based on observation of generated shock waves, which propagate in the material as well as in the surrounding air during laser processing. For the detection of laser-induced shock waves in the air and for measurements of their chara...

  10. Design of nanosecond pulse laser micromachining system based on PMAC

    Science.gov (United States)

    Liu, Mingyan; Fu, Xing; Xu, Linyan; Lin, Qian; Gu, Shuang

    2012-10-01

    Pulse laser micromachining technology, as a branch of laser processing technology, has been widely used in MEMS device processing, aviation, instruments fabrication, circuit board design etc.. In this paper, a novel nanosecond pulse laser micromachining system is presented, which consists of nanosecond pulse LASER, optical path mechanical structure, transmission system, motion control system. Nanosecond pulse UV laser, with 355 nm wavelength and 40ns pulse width, is chosen as the light source. Optical path mechanical structure is designed to get ideal result of laser focusing. Motion control system, combining PMAC card with the PC software, can control the 3-D motion platform and complete microstructure processing. By CCD monitoring system, researchers can get real-time detection on the effect of laser beam focusing and processing process.

  11. Features of femtosecond laser pulses interaction with laser nanoceramics

    Science.gov (United States)

    Pestryakov, E. V.; Petrov, V. V.; Trunov, V. I.; Kirpichnikov, A. V.; Merzliakov, M. A.; Laptev, A. V.

    2007-06-01

    In this work we have performed the experimental researches of features for the generation of supercontinuum in laser materials with identical chemical composition: Yb:YAG crystal and Yb:YAG laser nanoceramics. Dependence of width of supercontinuum spectrum in 515-1100 nm spectral range on femtosecond radiation intensity was investigated. At laser intensity ~1.2•10 14 W/cm2 the short-wave wing of a spectrum for nanoceramics has greater intensity and more flat shape in comparison with crystal. Experiments were made at lens focusing of the Ti:Sapphire femtosecond laser system radiation with energy up to 0.5 mJ in explored sample that was inside of integrating optical sphere. Also we investigated the interaction of femtosecond laser pulses and the generation of supercontinuum in Nd:Y IIO 3 nanoceramics. The maximum value of laser intensity in experiments was restricted by optical breakdown on target output surface, i.e. was below threshold of ablation of sample substance.

  12. Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes

    Science.gov (United States)

    Velikanov, S. D.; Zaretskiy, N. A.; Zotov, E. A.; Kozlovsky, V. I.; Korostelin, Yu V.; Krokhin, O. N.; Maneshkin, A. A.; Podmar'kov, Yu P.; Savinova, S. A.; Skasyrsky, Ya K.; Frolov, M. P.; Chuvatkin, R. S.; Yutkin, I. M.

    2015-01-01

    The characteristics of a Fe:ZnSe laser pumped by a single-pulse free-running Er : YAG laser and a repetitively pulsed HF laser are presented. An output energy of 4.9 J is achieved in the case of liquid-nitrogen cooling of the Fe2+:ZnSe active laser element longitudinally pumped by an Er:YAG laser with a pulse duration of 1 ms and an energy up to 15 J. The laser efficiency with respect to the absorbed energy is 47%. The output pulse energy at room temperature is 53 mJ. The decrease in the output energy is explained by a strong temperature dependence of the upper laser level lifetime and by pulsed heating of the active element. The temperature dependence of the upper laser level lifetime is used to determine the pump parameters needed to achieve high pulse energies at room temperature. Stable repetitively-pulsed operation of the Fe2+:ZnSe laser at room temperature with an average power of 2.4 W and a maximum pulse energy of 14 mJ is achieved upon pumping by a 1-s train of 100-ns HF laser pulses with a repetition rate of 200 Hz.

  13. Femtosecond laser ablation of Au film around single pulse threshold

    Institute of Scientific and Technical Information of China (English)

    Xiaochang Ni; Ching-Yue Wang; Yinzhong Wu; Li Yang; Wei Jia; Lu Chai

    2006-01-01

    @@ Ablation process of 1-kHz femtosecond lasers (pulse duration of 148 fs, wavelength of 775 nm) of Au film on silica substrates is studied. The thresholds for single and multi pulses can be obtained directly from the relation between the squared diameter D2 of the ablated craters and the laser fluence φo. From the plot of the accumulated laser fluence Nφth(N) and the number of laser pulses N, incubation coefficient of Au film is obtained to be 0.765. Some experimental data obtained around the single pulse threshold are in good agreement with the theoretical calculation.

  14. Improved pulse laser ranging algorithm based on high speed sampling

    Science.gov (United States)

    Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang

    2016-10-01

    Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.

  15. Pulsed laser deposition of nanostructured Ag films

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Tony [School of Physics, Trinity College, Dublin 2 (Ireland); Doggett, Brendan [School of Physics, Trinity College, Dublin 2 (Ireland); Lunney, James G. [School of Physics, Trinity College, Dublin 2 (Ireland)]. E-mail: jlunney@tcd.ie

    2006-04-30

    Ultra-thin (0.5-5 nm) films of Ag have been prepared by pulsed laser deposition in vacuum using a 26 ns KrF excimer laser at 1 J cm{sup -2}. The deposition was controlled using a Langmuir ion probe and a quartz crystal thickness monitor. Transmission electron microscopy showed that the films are not continuous, but are structured on nanometer size scales. Optical absorption spectra showed the expected surface plasmon resonance feature, which shifted to longer wavelength and increased in strength as the equivalent film thickness was increased. It is shown that Maxwell Garnett effective medium theory can be used to calculate the main features of optical absorption spectra.

  16. Laser Pulsing in Linear Compton Scattering

    CERN Document Server

    Krafft, Geoffrey; Deitrick, Kirsten; Terzic, Balsa; Kelmar, R; Hodges, Todd; Melnitchouk, W; Delayen, Jean

    2016-01-01

    Previous work on calculating energy spectra from Compton scattering events has either neglected considering the pulsed structure of the incident laser beam, or has calculated these effects in an approximate way subject to criticism. In this paper, this problem has been reconsidered within a linear plane wave model for the incident laser beam. By performing the proper Lorentz transformation of the Klein-Nishina scattering cross section, a spectrum calculation can be created which allows the electron beam energy spread and emittance effects on the spectrum to be accurately calculated, essentially by summing over the emission of each individual electron. Such an approach has the obvious advantage that it is easily integrated with a particle distribution generated by particle tracking, allowing precise calculations of spectra for realistic particle distributions in collision. The method is used to predict the energy spectrum of radiation passing through an aperture for the proposed Old Dominion University inverse...

  17. Pulse power for lasers II; Proceedings of the Meeting, Los Angeles, CA, Jan. 19, 20, 1989

    Science.gov (United States)

    Burkes, Tom R.; McDuff, Glen

    Various papers on pulse power for lasers are presented. Individual topics addressed include: preionization techniques for discharge lasers, X-ray preionization technology for high-pressure gas-discharge lasers, weight and volume scaling of pulse power for laser systems, method for rapidly terminating the current pulses applied to recombination lasers, high dV/dt spiker pulse generation using magnetic pulse sharpening techniques, multigap thyratrons for future laser applications, high-power thyratron-type switch for laser applications, model for the optically triggered pseudospark thyratron using local field and beam-bulk methods, capacitors for repetitively pulsed laser, fast pulse transformers in laser pulse power circuits, pulsed power topologies for laser applications, pulse power for the CHIRP XeCl laser, line type pulser for gas laser pumping, engineering aspects of long-pulse CO2 lasers using plasma discharge electrodes, high-pressure pulsed radial glow discharge CO2 laser.

  18. Long pulse chemical laser. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R. [and others] [Boeing Aerospace Co., Seattle, WA (United States)

    1989-02-01

    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  19. 25 years of pulsed laser deposition

    Science.gov (United States)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  20. PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  1. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...

  2. Generation of Intense THz Pulsed Lasers Pumped Strongly by CO2 Pulsed Lasers

    Institute of Scientific and Technical Information of China (English)

    QI Chun-Chao; CHENG Zu-Hai

    2009-01-01

    A theoretical method dealing with two intense laser fields interacting with a three-level molecular system is proposed.A discussion is presented on the properties of the solutions for time-independent and time-dependent absorption coefficients and gain coemcient on resonance for strong laser fields,based on analytic evaluation of the rate equations for a homogeneously broadened,three-level molecular system.The pump intensity range can be estimated according to the analytic expression of pump saturation intensity.The effects of pulse width,gas pressure and path length on the energy absorbed from pump light are studied theoretically.The results can be applied to the analysis of pulsed,optically pumped terahertz lasers.

  3. Photoionization-induced emission of tunable few-cycle mid-IR dispersive waves in gas-filled hollow-core photonic crystal fiber

    CERN Document Server

    Novoa, David; Travers, John C; Russell, Philip St J

    2015-01-01

    We propose a scheme for the emission of few-cycle dispersive waves in the mid-infrared using hollow-core photonic crystal fibers filled with noble gas. The underlying mechanism is the formation of a plasma cloud by a self-compressed, sub-cycle pump pulse. The resulting free-electron population modifies the fiber dispersion, allowing phase-matched access to dispersive waves at otherwise inaccessible frequencies, well into the mid-IR. Remarkably, the pulses generated turn out to have durations of the order of two optical cycles. In addition, this ultrafast emission, which occurs even in the absence of a zero dispersion point between pump and mid-IR wavelengths, is tunable over a wide frequency range simply by adjusting the gas pressure. These theoretical results pave the way to a new generation of compact, fiber-based sources of few-cycle mid-IR radiation.

  4. Photoionization-Induced Emission of Tunable Few-Cycle Midinfrared Dispersive Waves in Gas-Filled Hollow-Core Photonic Crystal Fibers.

    Science.gov (United States)

    Novoa, D; Cassataro, M; Travers, J C; Russell, P St J

    2015-07-17

    We propose a scheme for the emission of few-cycle dispersive waves in the midinfrared using hollow-core photonic crystal fibers filled with noble gas. The underlying mechanism is the formation of a plasma cloud by a self-compressed, subcycle pump pulse. The resulting free-electron population modifies the fiber dispersion, allowing phase-matched access to dispersive waves at otherwise inaccessible frequencies, well into the midinfrared. Remarkably, the pulses generated turn out to have durations of the order of two optical cycles. In addition, this ultrafast emission, which occurs even in the absence of a zero dispersion point between pump and midinfrared wavelengths, is tunable over a wide frequency range simply by adjusting the gas pressure. These theoretical results pave the way to a new generation of compact, fiber-based sources of few-cycle midinfrared radiation.

  5. Subpicosecond pulse generation from an all solid-state laser

    Science.gov (United States)

    Keen, S. J.; Ferguson, A. I.

    1989-11-01

    An all-solid-state (holosteric) laser source which produces subpicosecond pulses at 1.4 microns is described. The system consists of a diode laser pumped Nd:YAG laser which is frequency-modulated (FM) mode-locked and Q-switched at 1.32 microns. In continuous wave operation the laser produces pulses of 19 ps while simultaneous Q-switching and mode-locking result in 30 ps pulses being contained in a Q-switched envelope of energy 2.1 microJ. The output of the laser, when passed through a 1 km single-mode optical fiber, produces a spectrally broad Raman signal with its peak at 1.4 microns and the overall conversion efficiency at 12 percent. The pulse duration at 1.4 microns has been measured to be 280 fs. This is the first time that subpicosecond light pulses have been generated by an all-solid-state laser system.

  6. Pulsed laser deposition of pepsin thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kecskemeti, G. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: kega@physx.u-szeged.hu; Kresz, N. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Smausz, T. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Hopp, B. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Nogradi, A. [Department of Ophthalmology, University of Szeged, H-6720, Szeged, Koranyi fasor 10-11 (Hungary)

    2005-07-15

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ({lambda} = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm{sup 2}. The pressure in the PLD chamber was 2.7 x 10{sup -3} Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm{sup 2}. The protein digesting capacity of the transferred pepsin was tested by adapting a modified 'protein cube' method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  7. Nanosecond pulsed laser texturing of optical diffusers

    Science.gov (United States)

    Alqurashi, Tawfiq; Sabouri, Aydin; Yetisen, Ali K.; Butt, Haider

    2017-02-01

    High-quality optical glass diffusers have applications in aerospace, displays, imaging systems, medical devices, and optical sensors. The development of rapid and accurate fabrication techniques is highly desirable for their production. Here, a micropatterning method for the fast fabrication of optical diffusers by means of nanosecond pulsed laser ablation is demonstrated (λ=1064 nm, power=7.02, 9.36 and 11.7 W and scanning speed=200 and 800 mm s-1). The experiments were carried out by point-to-point texturing of a glass surface in spiral shape. The laser machining parameters, the number of pulses and their power had significant effect on surface features. The optical characteristics of the diffusers were characterized at different scattering angles. The features of the microscale structures influenced average roughness from 0.8 μm to 1.97 μm. The glass diffusers scattered light at angles up to 20° and their transmission efficiency were measured up to ˜97% across the visible spectrum. The produced optical devices diffuse light less but do so with less scattering and energy losses as compared to opal diffusing glass. The presented fabrication method can be applied to any other transparent material to create optical diffusers. It is anticipated that the optical diffusers presented in this work will have applications in the production of LED spotlights and imaging devices.

  8. Microstructuring of silicon with femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Waldemar; Richters, Jan P.; Voss, Tobias; Gutowski, Juergen [Institute of Solid State Physics, Semiconductor Optics Group, University of Bremen (Germany)

    2011-07-01

    Silicon structured with ultrashort laser pulses which is called ''black silicon'' due to its dark appearance has been a field of intense studies in recent years. It exhibits a nearly uniform absorptivity beyond 90% in the whole visible to near-infrared spectral region. Therefore, it is a promising material for applications in solar cells and photo diodes. In this talk a brief introduction of microstructuring of silicon with ultrashort laser pulses will be given. Structuring is carried out in a sulfurhexafluoride (SF{sub 6}) atmosphere, which simultaneously allows doping of the silicon with sulfur far above the solubility limit. The structuring leads to a specific quasiperiodic surface morphology at which incident light is reflected multiple times. Thus light absorption in the silicon is considerably enhanced. The extremely high doping with sulfur results in the formation of a distinct defect band which is the origin of high absorptance in the near infrared. Furthermore, sulfur acts as a donor in silicon. Hence, microstructuring of p-doped silicon in SF{sub 6} atmosphere leads to the formation of a p-n{sup +} junction. This is an important step towards the fabrication of efficient solar cells and photo diodes with increased infrared sensitivity on base of easy-to-produce black silicon.

  9. Generation of Low Jitter Laser Diode Pulse With External Pulse Injection

    Institute of Scientific and Technical Information of China (English)

    Wang Yuncai; Olaf Reimann; Dieter Huhse; Dieter Bimberg

    2003-01-01

    One gain-switched laser diode(LD) was used as external injection seeding source, to reduce the timing jitter of another gain-switched LD, This technique can generate low jitter, frequency-free and wavelength tunable laser pulse.

  10. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    Science.gov (United States)

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C.

  11. Analysis on the characteristics of pulsed laser proximity fuze's echo

    Science.gov (United States)

    Wang, Kun; Chen, Huimin

    2011-06-01

    With the rapid development of semiconductor technology and laser technology, a kind of proximity fuze named pulsed laser proximity fuze has been applied. Compared with other fuzes, pulsed laser proximity fuze has high ranging precision and strong resistance to artificial active interference. It is an important development tendency of proximity fuze. The paper analyze the characteristic of target echo of laser signal, and then make theoretical analysis and calculation on the laser signal transmission in the smog. Firstly, use the pulse width of 10ns semiconductor laser fuze to do typical targets experiment, to get the echo information of target distance is 5m; then to do smog interference experiment, by comparing the pulse width amplitude and backscattering signal amplitude of laser fuze in simulation and experiment, analyzing the effect of anti-clutter, providing the evidence for the subsequent of circuit of signal amplification and processing.

  12. Pulsed laser ablation of solids basics, theory and applications

    CERN Document Server

    Stafe, Mihai; Puscas, Niculae N

    2014-01-01

    The book introduces ‘the state of the art' of pulsed laser ablation and its applications. It is based on recent theoretical and experimental studies. The book reaches from the basics to advanced topics of pulsed laser ablation. Theoretical and experimental fundamental phenomena involved in pulsed laser ablation are discussed with respect to material properties, laser wavelength, fluence and intensity regime of the light absorbed linearly or non-linearly in the target material. The energy absorbed by the electrons leads to atom/molecule excitation, ionization and/or direct chemical bond breaking and is also transferred to the lattice leading to material heating and phase transitions. Experimental  non-invasive optical methods for analyzing these phenomena in real time are described. Theoretical models for pulsed laser ablation and phase transitions induced by laser beams and laser-vapour/plasma interaction during the plume expansion above the target are also presented. Calculations of the ablation speed and...

  13. Narrow band tuning with small long pulse excimer lasers

    Energy Technology Data Exchange (ETDEWEB)

    Sze, R.C.; Kurnit, N.; Watkins, D.; Bigio, I.

    1985-12-01

    We discuss frequency narrowing and tuning with simple dispersion elements with small long-pulse excimer lasers. The improved performance over short-pulse lasers is discussed and attributed to the increased number of round trips. A physical model of the dynamics of line narrowing is presented.

  14. Clutter discrimination algorithm simulation in pulse laser radar imaging

    Science.gov (United States)

    Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Su, Xuan; Zhu, Fule

    2015-10-01

    Pulse laser radar imaging performance is greatly influenced by different kinds of clutter. Various algorithms are developed to mitigate clutter. However, estimating performance of a new algorithm is difficult. Here, a simulation model for estimating clutter discrimination algorithms is presented. This model consists of laser pulse emission, clutter jamming, laser pulse reception and target image producing. Additionally, a hardware platform is set up gathering clutter data reflected by ground and trees. The data logging is as clutter jamming input in the simulation model. The hardware platform includes a laser diode, a laser detector and a high sample rate data logging circuit. The laser diode transmits short laser pulses (40ns FWHM) at 12.5 kilohertz pulse rate and at 905nm wavelength. An analog-to-digital converter chip integrated in the sample circuit works at 250 mega samples per second. The simulation model and the hardware platform contribute to a clutter discrimination algorithm simulation system. Using this system, after analyzing clutter data logging, a new compound pulse detection algorithm is developed. This new algorithm combines matched filter algorithm and constant fraction discrimination (CFD) algorithm. Firstly, laser echo pulse signal is processed by matched filter algorithm. After the first step, CFD algorithm comes next. Finally, clutter jamming from ground and trees is discriminated and target image is produced. Laser radar images are simulated using CFD algorithm, matched filter algorithm and the new algorithm respectively. Simulation result demonstrates that the new algorithm achieves the best target imaging effect of mitigating clutter reflected by ground and trees.

  15. Spectral compression of single-photon-level laser pulse

    Science.gov (United States)

    Li, Yuanhua; Xiang, Tong; Nie, Yiyou; Sang, Minghuang; Chen, Xianfeng

    2017-01-01

    We experimentally demonstrate that the bandwidth of single photons laser pulse is compressed by a factor of 58 in a periodically poled lithium niobate (PPLN) waveguide chip. A positively chirped single photons laser pulse and a negatively chirped classical laser pulse are employed to produce a narrowband single photon pulse with new frequency through sum-frequency generation. In our experiment, the frequency and bandwidth of single photons at 1550 nm are simultaneously converted. Our results mark a critical step towards the realization of coherent photonic interface between quantum communication at 1550 nm and quantum memory in the near-visible window. PMID:28240245

  16. Pair production in short laser pulses near threshold

    Energy Technology Data Exchange (ETDEWEB)

    Nousch, T. [Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, 01062 Dresden (Germany); Seipt, D., E-mail: d.seipt@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, 01062 Dresden (Germany); Kaempfer, B. [Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, 01062 Dresden (Germany); Titov, A.I. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna 141980 (Russian Federation)

    2012-08-29

    The e{sup +}e{sup -} pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold {radical}(s)=2m a similar enhancement of the pair production rate as for circular polarization. The strong enhancement below the weak-field threshold is traced back to the finite bandwidth of the laser pulse. A folding model is developed which accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.

  17. Pair production in short laser pulses near threshold

    Science.gov (United States)

    Nousch, T.; Seipt, D.; Kämpfer, B.; Titov, A. I.

    2012-08-01

    The e+e- pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold √{ s} = 2 m a similar enhancement of the pair production rate as for circular polarization. The strong enhancement below the weak-field threshold is traced back to the finite bandwidth of the laser pulse. A folding model is developed which accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.

  18. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    Science.gov (United States)

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.

  19. Single-grating laser pulse stretcher and compressor.

    Science.gov (United States)

    Lai, M; Lai, S T; Swinger, C

    1994-10-20

    Stretching and compressing of laser pulses is demonstrated with a single-grating apparatus. A laser pulse of 110 fs is stretched to 250 ps and then recompressed to 115 fs. The apparatus exploits a two-level structure: one level for stretching and the other for compressing. This single-grating configuration shows significant simplification in structure and alignment over existing multiple-grating systems. Such a stretcher-compressor is particularly suitable for use with chirped-pulse amplification in which laser wavelength tuning is desirable. Only one rotational adjustment is rquired to restore the alignment of the entire stretcher and compressor when the laser wavelength is changed.

  20. Generation And Measurement Of High Contrast Ultrashort Intense Laser Pulses

    CERN Document Server

    Konoplev, O A

    2000-01-01

    In this thesis, the generation and measurement of high contrast, intense, ultrashort pulses have been studied. Various factors affecting the contrast and pulse shape of ultrashort light pulses from a chirped pulse amplification (CPA) laser system are identified. The level of contrast resulting from influence of these factors is estimated. Methods for improving and controlling the pulse shape and increasing the contrast are discussed. Ultrahigh contrast, 1-ps pulses were generated from a CPA system with no temporal structure up to eleven orders of magnitude. This is eight orders of magnitude higher contrast than the original pulse. This contrast boost was achieved using two techniques. One is the optical pulse cleaning based on the nonlinear birefringence of the chirping fiber and applied to the pulses before amplification. The other is the fast saturable absorber. The fast saturable absorber was placed after amplification and compression of the pulse. The measurements of high-contrast, ultrashort pulse with h...

  1. Nanosecond pulsed laser welding of high carbon steels

    Science.gov (United States)

    Ascari, Alessandro; Fortunato, Alessandro

    2014-03-01

    The present paper deals with the possibility to exploit low-cost, near infra-red, nanosecond pulsed laser sources in welding of high carbon content thin sheets. The exploitation of these very common sources allows to achieve sound weld beads with a good depth-to-width ratio and very small heat affected zones when the proper process parameters are involved. In particular the role of pulse frequency, pulse duration, peak power and welding speed on the characteristics of the weld beads is studied and the advantage of the application of short-pulse laser sources over traditional long-pulse or continuous wave one is assessed.

  2. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild

    1997-01-01

    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...... different regimes and the transition between them are characterized experimentally and the behavior is explained on the basis of our model for the CPM laser dynamics. (C) 1997 American Institute of Physics....

  3. High energy protons generation by two sequential laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofeng; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  4. Nonlinear laser pulse response in a crystalline lens.

    Science.gov (United States)

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated.

  5. Metal cathode patterning for OLED by nanosecond pulsed laser ablation

    Institute of Scientific and Technical Information of China (English)

    LIU Chen; ZHU Guang-xi; LIU De-ming

    2006-01-01

    In this paper,nanosecond pulsed laser is introduced to selectively ablate away indium tin oxide film and metal film without destroying the underlying layers for fabricating organic light-emitting diodes. By varying density of energy, pulse number and width of the laser, the influence on morphology of the laser trenches of indium tin oxide and metal films are investigated. It is presented that uniform ablation trench can be obtained with 16 laser pulses at 0.15 J/cm2 for aluminum film and 10 laser pulses at 0.65 J/cm2 for indium tin oxide film. It is found that the characteristics of the organic light-emitting diodes prepared with laser ablation are almost the same as those of that prepared with conventional patterning method.

  6. Ultra-short pulsed laser engineered metal-glass nanocomposites

    CERN Document Server

    Stalmashonak, Andrei; Abdolvand, Amin

    2013-01-01

    Glasses containing metallic nanoparticles exhibit very promising linear and nonlinear optical properties, mainly due to the surface plasmon resonances (SPRs) of the nanoparticles. The spectral position in the visible and near-infrared range and polarization dependence of the SPR are characteristically determined by the nanoparticles’ shapes. The focus of Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites is the interaction of intense ultra-short laser pulses with glass containing silver nanoparticles embedded in soda-lime glass, and nanostructural modifications in metal-glass nanocomposites induced by such laser pulses. In order to provide a comprehensive physical picture of the processes leading to laser-induced persistent shape transformation of the nanoparticles, series of experimental results investigating the dependences of laser assisted shape modifications of nanoparticles with laser pulse intensity, excitation wavelength, temperature are considered. In addition, the resulting local opti...

  7. Computer Modeling of Pulsed Chemical Lasers.

    Science.gov (United States)

    1983-12-31

    laser pulse was by photolysis of molecular fluorine using flashlamps. The initiation reaction pro- ceeded as: F2 + hvP = 2F (1.4) with Vp being an... MEN a~ji -U-O--- C C, ca. 04 ( i’ c4 CL viM m0 LA 04 016 166 Elm1 E FI ozF LA- 10 --- - -6’~ 167 =VE 0.ik 0ww 1 68 -wl MAIN t...# r Al w YVfaia we. a...0m NoJ IS-90I IRA -. OEM 179 180 MIN im, IUAINNE Ililm MINE 17i mmm mums NOW1911mmoImm, man .AKE-# 0 ON1 INA 0 Suffillan Ellmmm MEN IFIRM 0 W-mv- um I

  8. Characteristics and Applications of Spatiotemporally Focused Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Chenrui Jing

    2016-12-01

    Full Text Available Simultaneous spatial and temporal focusing (SSTF of femtosecond laser pulses gives rise to strong suppression of nonlinear self-focusing during the propagation of the femtosecond laser beam. In this paper, we begin with an introduction of the principle of SSTF, followed by a review of our recent experimental results on the characterization and application of the spatiotemporally focused pulses for femtosecond laser micromachining. Finally, we summarize all of the results and give a future perspective of this technique.

  9. Laser pulse heating of surfaces and thermal stress analysis

    CERN Document Server

    Yilbas, Bekir S; Al-Aqeeli, Nasser; Al-Qahtani, Hussain M

    2013-01-01

    This book introduces laser pulse heating and thermal stress analysis in materials surface. Analytical temperature treatments and stress developed in the surface region are also explored. The book will help the reader analyze the laser induced stress in the irradiated region and presents solutions for the stress field. Detailed thermal stress analysis in different laser pulse heating situations and different boundary conditions are also presented. Written for surface engineers.

  10. Ultrashort-pulse lasers based on the Sagnac interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Bezrodnyi, V.I.; Prokhorenko, V.I.; Tikhonov, E.A.; Shpak, M.T.; Iatskiv, D.IA.

    1988-01-01

    Results of experimental studies carried out on passively mode-locked and synchronously pumped ultrashort-pulse lasers with cavities based on the Sagnac interferometer are reported. It is shown that the use of the interferometer makes it possible to substantially improve the principal parameters of the ultrashort-pulse laser, such as repeatability, stability, spatial-angular characteristics, and the frequency tuning range. In particular, results are presented for YAG:Nd(3+) and dye lasers with Sagnac interferometers. 10 references.

  11. Concave pulse shaping of a circularly polarized laser pulse from non-uniform overdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Min Sup [School of Natural Science, UNIST, BanYeon-Ri 100, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Kulagin, Victor V. [Sternberg Astronomical Institute, Moscow State University, Universitetsky prosp. 13, Moscow, 119992 (Russian Federation); Suk, Hyyong, E-mail: hysuk@gist.ac.kr [Department of Physics and Photon Science, GIST, 123 Cheomdan-gwangiro, Buk-gu, Gwangju, 500-712 (Korea, Republic of)

    2015-03-20

    Pulse shaping of circularly polarized laser pulses in nonuniform overdense plasmas are investigated numerically. Specifically we show by two-dimensional particle-in-cell simulations the generation of a concave pulse front of a circularly polarized, a few tens of petawatt laser pulse from a density-tapered, overdense plasma slab. The concept used for the transverse-directional shaping is the differential transmittance depending on the plasma density, and the laser intensity. For suitable selection of the slab parameters for the concave pulse shaping, we studied numerically the pulse transmittance, which can be used for further parameter design of the pulse shaping. The concavely shaped circularly polarized pulse is expected to add more freedom in controlling the ion-beam characteristics in the RPDA regime. - Highlights: • Laser pulse shaping for a concave front by non-uniform overdense plasma was studied. • Particle-in-cell (PIC) simulations were used for the investigation. • A laser pulse can be shaped by a density-tapered overdense plasma. • The concave and sharp pulse front are useful in many laser–plasma applications. • They are important for ion acceleration, especially in the radiation pressure dominant regime.

  12. Dielectric breakdown induced by picosecond laser pulses

    Science.gov (United States)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1976-01-01

    The damage thresholds of transparent optical materials were investigated. Single picosecond pulses at 1.06 microns, 0.53 microns and 0.35 microns were obtained from a mode locked Nd-YAG oscillator-amplifier-frequency multiplier system. The pulses were Gaussian in space and time and permitted the determination of breakdown thresholds with a reproducibility of 15%. It was shown that the breakdown thresholds are characteristic of the bulk material, which included nine alkali halides, five different laser host materials, KDP, quartz, sapphire and calcium fluoride. The extension of the damage data to the ultraviolet is significant, because some indication was obtained that two- and three-photon absorption processes begin to play a role in determining the threshold. Throughout the visible region of the spectrum the threshold is still an increasing function of frequency, indicating that avalanche ionization is the dominant factor in determining the breakdown threshold. This was confirmed by a detailed study of the damage morphology with a high resolution microscope just above the threshold. The influence of self focusing is discussed, and evidence for beam distortion below the power threshold for complete self focusing is presented, confirming the theory of Marburger.

  13. Laser ablation of borosilicate glass with high power shaped UV nanosecond laser pulses

    Science.gov (United States)

    von Witzendorff, Philipp; Bordin, Andrea; Suttmann, Oliver; Patel, Rajesh S.; Bovatsek, James; Overmeyer, Ludger

    2016-03-01

    The application of thin borosilicate glass as interposer material requires methods for separation and drilling of this material. Laser processing with short and ultra-short laser pulses have proven to enable high quality cuts by either direct ablation or internal glass modification and cleavage. A recently developed high power UV nanosecond laser source allows for pulse shaping of individual laser pulses. Thus, the pulse duration, pulse bursts and the repetition rate can be set individually at a maximum output power of up to 60 W. This opens a completely new process window, which could not be entered with conventional Q-switched pulsed laser sources. In this study, the novel pulsed UV laser system was used to study the laser ablation process on 400 μm thin borosilicate glass at different pulse durations ranging from 2 - 10 ns and a pulse burst with two 10 ns laser pulses with a separation of 10 ns. Single line scan experiments were performed to correlate the process parameters and the laser pulse shape with the ablation depth and cutting edge chipping. Increasing the pulse duration within the single pulse experiments from 2 ns to longer pulse durations led to a moderate increase in ablation depth and a significant increase in chipping. The highest material removal was achieved with the 2x10 ns pulse burst. Experimental data also suggest that chipping could be reduced, while maintaining a high ablation depth by selecting an adequate pulse overlap. We also demonstrate that real-time combination of different pulse patterns during drilling a thin borosilicate glass produced holes with low overall chipping at a high throughput rate.

  14. The mechanism for SEU simulation by pulsed laser

    Institute of Scientific and Technical Information of China (English)

    HUANG Jianguo; HAN Jianwei

    2004-01-01

    To simulate single event effect (SEE) by pulsed laser is a new approach in ground-based simulation of SEE in recent years. In this paper the way in which picosecond pulsed laser interacts with semiconductor and the mechanism of SEE inducement are analyzed. Additionally, associated calculations are made in the case of Nd:YAG and Ti:Sapphire lasers generally used in experiments and silicon device, with comparisons made between the two lasers. In the meantime, the fundamental principle for determining laser parameters and their typical ranges of values are provided according to the results.

  15. Laser pulsing in linear Compton scattering

    Science.gov (United States)

    Krafft, G. A.; Johnson, E.; Deitrick, K.; Terzić, B.; Kelmar, R.; Hodges, T.; Melnitchouk, W.; Delayen, J. R.

    2016-12-01

    Previous work on calculating energy spectra from Compton scattering events has either neglected considering the pulsed structure of the incident laser beam, or has calculated these effects in an approximate way subject to criticism. In this paper, this problem has been reconsidered within a linear plane wave model for the incident laser beam. By performing the proper Lorentz transformation of the Klein-Nishina scattering cross section, a spectrum calculation can be created which allows the electron beam energy spread and emittance effects on the spectrum to be accurately calculated, essentially by summing over the emission of each individual electron. Such an approach has the obvious advantage that it is easily integrated with a particle distribution generated by particle tracking, allowing precise calculations of spectra for realistic particle distributions "in collision." The method is used to predict the energy spectrum of radiation passing through an aperture for the proposed Old Dominion University inverse Compton source. Many of the results allow easy scaling estimates to be made of the expected spectrum.

  16. Pulsed laser deposition of tantalum pentoxide film

    Science.gov (United States)

    Zhang, J.-Y.; Boyd, I. W.

    We report thin tantalum pentoxide (Ta2O5) films grown on quartz and silicon substrates by the pulsed laser deposition (PLD) technique employing a Nd:YAG laser (wavelength λ=532 nm) in various O2 gas environments. The effect of oxygen pressure, substrate temperature, and annealing under UV irradiation using a 172-nm excimer lamp on the properties of the grown films has been studied. The optical properties determined by UV spectrophotometry were also found to be a sensitive function of oxygen pressure in the chamber. At an O2 pressure of 0.2 mbar and deposition temperatures between 400 and 500 °C, the refractive index of the films was around 2.18 which is very close to the bulk Ta2O5 value of 2.2, and an optical transmittance around 90% in the visible region of the spectrum was obtained. X-ray diffraction measurements showed that the as-deposited films were amorphous at temperatures below 500 °C and possessed an orthorhombic (β-Ta2O5) crystal structure at temperatures above 600 °C. The most significant result of the present study was that oxygen pressure could be used to control the composition and modulate optical band gap of the films. It was also found that UV annealing can significantly improve the optical and electrical properties of the films deposited at low oxygen pressures (<0.1 mbar).

  17. Ablation of steel using picosecond laser pulses in burst mode

    Science.gov (United States)

    Lickschat, Peter; Demba, Alexander; Weissmantel, Steffen

    2017-02-01

    Results obtained in picosecond laser processing of steel applying the burst mode are presented. Using the burst mode, pulse trains, i.e., bursts, consisting of a number of picosecond pulses with an inter-pulse delay of 12.5 ns and 10 ps pulse duration are applied for material processing. Small cavities with sizes in the range of the laser beam diameter made by single-burst ablation are compared to quadratic cavities of 0.5 × 0.5 mm² produced by multiburst ablation and simultaneous scanning of the laser beam across the steel sample surface. The ablated volume per pulse within the burst was calculated either from the ablated volume per burst or from the ablation depth of the quadratic cavities. With the second to fourth pulses in the bursts, a reduction of the ablated volume per pulse in comparison with the first pulse in the bursts (i.e., to the use of single pulses) was found for both single- and multiburst ablation, which is assumed to be due to plasma shielding. By contrast, the ablated volume per pulse within the bursts increases for the fifth to eighth pulses. Heat accumulation effect and the influence of the heated plasma can be assumed to be the reason for these higher ablation rates. SEM micrographs also show that there is a higher melt ejection out of the laser processed area. This is indicated by the formation of bulges about the ablated area.

  18. Bismuth thin films obtained by pulsed laser deposition

    Science.gov (United States)

    Flores, Teresa; Arronte, Miguel; Rodriguez, Eugenio; Ponce, Luis; Alonso, J. C.; Garcia, C.; Fernandez, M.; Haro, E.

    1999-07-01

    In the present work Bi thin films were obtained by Pulsed Laser Deposition, using Nd:YAG lasers. The films were characterized by optical microscopy. Raman spectroscopy and X-rays diffraction. It was accomplished the real time spectral emission characterization of the plasma generated during the laser evaporation process. Highly oriented thin films were obtained.

  19. Explosive Nucleosynthesis Study Using Laser Driven γ-ray Pulses

    Directory of Open Access Journals (Sweden)

    Takehito Hayakawa

    2017-03-01

    Full Text Available We propose nuclear experiments using γ-ray pulses provided from high field plasma generated by high peak power laser. These γ-ray pulses have the excellent features of extremely short pulse, high intensity, and continuous energy distribution. These features are suitable for the study of explosive nucleosyntheses in novae and supernovae, such as the γ process and ν process. We discuss how to generate suitable γ-ray pulses and the nuclear astrophysics involved.

  20. A laser spectrometer and wavemeter for pulsed lasers

    Science.gov (United States)

    Mckay, J. A.; Laufer, P. M.; Cotnoir, L. J.

    1989-01-01

    The design, construction, calibration, and evaluation of a pulsed laser wavemeter and spectral analyzer are described. This instrument, called the Laserscope for its oscilloscope-like display of laser spectral structure, was delivered to NASA Langley Research Center as a prototype of a laboratory instrument. The key component is a multibeam Fizeau wedge interferometer, providing high (0.2 pm) spectral resolution and a linear dispersion of spectral information, ideally suited to linear array photodiode detectors. Even operating alone, with the classic order-number ambiguity of interferometers unresolved, this optical element will provide a fast, real-time display of the spectral structure of a laser output. If precise wavelength information is also desired then additional stages must be provided to obtain a wavelength measurement within the order-number uncertainty, i.e., within the free spectral range of the Fizeau wedge interferometer. A Snyder (single-beam Fizeau) wedge is included to provide this initial wavelength measurement. Difficulties in achieving the required wide-spectrum calibration limit the usefulness of this function.

  1. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    Science.gov (United States)

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.

  2. Pair production in short intense laser pulses near threshold

    Energy Technology Data Exchange (ETDEWEB)

    Nousch, Tobias; Seipt, Daniel; Kaempfer, Burkhart [Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, 01062 Dresden (Germany); Titov, Alexander I. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna 141980 (Russian Federation)

    2013-07-01

    We study finite-size effects in the process of e{sup +}e{sup -} pair production via the non-linear Breit-Wheeler process in ultra short laser pulses. Based on the Nikishov-Ritus method we use laser dressed electron and positron wave functions to derive the differential and total pair production cross section, focusing on the effects of a finite pulse duration. For short laser pulses with very few oscillations of the electromagnetic field we find an increase of the pair production rate below the perturbative weak-field threshold. The strong enhancement below the weak-field threshold is traced back to the finite bandwidth of the laser pulse. A folding model accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.

  3. Recent progress in picosecond pulse generation from semiconductor lasers

    Science.gov (United States)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    This paper reviews the recent progress in producing picosecond optical pulses from semiconductor laser diodes. The discussion concentrates on the mode-locking of a semiconductor laser diode in an external resonator. Transform-limited optical pulses ranging from several picoseconds to subpicosecond durations have been observed with active and passive mode-locking. Even though continuing research on the influence of impurities and defects on the mode-locking process is still needed, this technique has good promise for being utilized in fiber-optic communication systems. Alternative methods of direct electrical and optical excitation to produce ultrashort laser pulses are also described. They can generate pulses of similar widths to those obtained by mode-locking. The pulses generated will find applications in laser ranging and detector response measurement.

  4. Short-pulse laser interactions with disordered materials and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L. [Univ. of California, Berkeley, CA (United States)

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  5. Laser induced breakdown spectroscopy with picosecond pulse train

    Science.gov (United States)

    Lednev, Vasily N.; Pershin, Sergey M.; Sdvizhenskii, Pavel A.; Grishin, Mikhail Ya; Davydov, Mikhail A.; Stavertiy, Anton Ya; Tretyakov, Roman S.

    2017-02-01

    Picosecond pulse train and nanosecond pulse were compared for laser ablation and laser induced breakdown spectroscopy (LIBS) measurements. A detailed study revealed that the picosecond pulse train ablation improved the quality of laser craters (symmetric crater walls and the absence of large redeposited droplets), which was explained by a smaller heat affected zone and suppression of melt splash. Greater plasma dimensions and brighter plasma emission were observed by gated imaging for picosecond pulse train compared to nanosecond pulse ablation. Increased intensity of atomic and ionic lines in gated and time integrated spectra provided better signal-to-noise ratio for picosecond pulse train sampling. Higher temperature and electron density were detected during first microsecond for the plasma induced by the picosecond pulse train. Improved shot-to-shot reproducibility for atomic/ionic line intensity in the case of picosecond pulse train LIBS was explained by more effective atomization of target material in plasma and better quality of laser craters. Improved precision and limits of detections were determined for picosecond pulse train LIBS due to better reproducibility of laser sampling and increased signal-to-noise ratio.

  6. Laser pulse spectral shaping based on electro-optic modulation

    Institute of Scientific and Technical Information of China (English)

    Yanhai Wang; Jiangfeng Wang; You'en Jiang; Yan Bao; Xuechun Li; Zunqi Lin

    2008-01-01

    A new spectrum shaping method, based on electro-optic modulation, to alleviate gain narrowing in chirped pulse amplification (CPA) system, is described and numerically simulated. Near-Fourier transform-limited seed laser pulse is chirped linearly through optical stretcher. Then the chirped laser pulse is coupled into integrated waveguide electro-optic modulator driven by an aperture-coupled-stripline (ACSL) electricalwaveform generator, and the pulse shape and amplitude are shaped in time domain. Because of the directrelationship between frequency interval and time interval of the linearly chirped pulse, the laser pulse spectrum is shaped correspondingly. Spectrum-shaping examples are modeled numerically to determine the spectral resolution of this technique. The phase error introduced in this method is also discussed.

  7. Synchronous pulse generation in a multicavity fiber laser system

    Science.gov (United States)

    Gómez-Pavón, L. C.; Martí-Panameño, E.; Gómez-de la Fuente, O.; Luis-Ramos, A.

    2006-09-01

    We report the experimental synchronous pulse generation in a multicavity fiber laser system with two Erbium-doped fiber laser cavities. We have demonstrated that through the evanescent fields interaction between one cavity with active modulation and other one in continuous wave it is possible to generate more intense pulses in both cavities. Moreover, the synchronous pulse generation between cavities is achieved with an appropriate selection of pump intensity, modulation frequency and coupling ratio. We found that the pulse intensity is 2.5 times greater and the pulse duration lowers than a single Erbium-doper fiber laser. Furthermore, by means of the synchronous diagram we determined the synchronization strength in temporal pulse emission between cavities.

  8. Non-Contact Cardiac Activity Monitoring using Pulsed Laser Vibrometer

    Directory of Open Access Journals (Sweden)

    Chen Chia WANG

    2014-01-01

    Full Text Available We demonstrate experimentally the detection of detailed human cardiac mechanical activity in a remote, non-contacting, and non-ionizing manner using a pulsed laser vibrometer. The highly sensitive pulsed laser vibrometer allows the detection of the temporally-phased mechanical events occurring in individual cardiac cycles even from the surface of clothing-covered extremities of the subjects. Fine structures of the detected cardiac traces are identified with their meanings assigned and corroborated using accelerometer and electrocardiogram measurements obtained concurrently with the pulsed laser vibrometer studies.

  9. Propagation of Complex Laser Pulses in Optically Dense Media

    Science.gov (United States)

    Fetterman, M. R.; Davis, J. C.; Goswami, D.; Yang, W.; Warren, W. S.

    1999-05-01

    Ultrafast laser pulses with complex envelopes (amplitude and frequency modulated) are used to excite an optically dense column of rubidium vapor. Pulse reshaping, stimulated emission dynamics, and residual electronic excitation in the Rb vapor are all shown to depend strongly on the laser pulse shape. Pulses that produce adiabatic passage in the optically thin limit exhibit more complex behavior in optically thick samples, including an unexpected dependence on the sign of the frequency sweep. Numerical solutions of the Maxwell-Bloch equations are shown to account for our results.

  10. Quantum-mechanical analysis of pulse reconstruction for a narrow bandwidth attosecond x-ray pulse

    Institute of Scientific and Technical Information of China (English)

    Ge Yu-Cheng

    2009-01-01

    The photoelectron energy spectra(PESs)excited by narrow bandwidth attosecond x-ray pulses in the presence of a few-cycle laser are quantum-mechanically calculated.Transfer equations are used to reconstruct the detailed temporal structure of an attosecond x-ray pulse directly from a measured PES.Theoretical analysis shows that the temporal uncertainties of the pulse reconstruction depend on the x-ray bandwidth.The procedure of pulse reconstruction is direct and simple without making any previous pulse assumption,data fitting analysis and time-resolved measurement of PESs.The temporal measurement range is half of a laser optical cycle.

  11. Optically pumped terahertz lasers with high pulse repetition frequency: theory and design

    Institute of Scientific and Technical Information of China (English)

    Yude Sun; Shiyou Fu; Jing Wang; Zhenghe Sun; Yanchao Zhang; Zhaoshuo Tian; Qi Wang

    2009-01-01

    Optically pumped terahertz (THz) lasers with high pulse repetition frequency are designed. Such a laser includes two parts: the optically pumping laser and the THz laser. The structures of the laser are described and analyzed. The rate equations for the pulsed THz laser are given. The kinetic process and laser pulse waveform for this kind of laser are numerically calculated based on the theory of rate equations. The theoretical results give a helpful guide to the research of such lasers.

  12. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...... and discuss the efficacy and human safety implications of home-use devices....

  13. Generation of elliptically polarized nitrogen-ion laser fields using two-color femtosecond laser pulses

    CERN Document Server

    Li, Ziting; Chu, Wei; Xie, Hongqiang; Yao, Jinping; Li, Guihua; Qiao, Lingling; Wang, Zhanshan; Cheng, Ya

    2015-01-01

    We experimentally investigate generation of molecular nitrogen-ion lasers with two femtosecond laser pulses at different wavelengths. The first pulse serves as the pump which ionizes the nitrogen molecules and excites the molecular ions to excited electronic states. The second pulse serves as the probe which leads to stimulated emission from the excited molecular ions. We observe that changing the angle between the polarization directions of the two pulses gives rise to elliptically polarized molecular nitrogen-ion laser fields, which is interpreted as a result of strong birefringence of the gain medium near the wavelengths of the molecular nitrogen-ion laser.

  14. Optimization and control of electron beams from laser wakefield accelerations using asymmetric laser pulses

    Science.gov (United States)

    Gopal, K.; Gupta, D. N.

    2017-10-01

    Optimization and control of electron beam quality in laser wakefield acceleration are explored by using a temporally asymmetric laser pulse of the sharp rising front portion. The temporally asymmetric laser pulse imparts stronger ponderomotive force on the ambient plasma electrons. The stronger ponderomotive force associated with the asymmetric pulse significantly affects the injection of electrons into the wakefield and consequently the quality of the injected bunch in terms of injected charge, mean energy, and emittance. Based on particle-in-cell simulations, we report to generate a monoenergetic electron beam with reduced emittance and enhanced charge in laser wakefield acceleration using an asymmetric pulse of duration 30 fs.

  15. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    Science.gov (United States)

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  16. Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser

    Science.gov (United States)

    Zheng, Lihe; Taira, Takunori

    2016-03-01

    A sub-nanosecond green laser with laser head sized 35 × 35 × 35 mm3 was developed from a giant pulsed microchip laser for laser processing on organic superconducting transistor with a flexible substrate. A composite monolithic Y3Al5O12 (YAG) /Nd:YAG/Cr4+:YAG/YAG crystal was designed for generating giant pulsed 1064 nm laser. A fibercoupled 30 W laser diode centered at 808 nm was used with pump pulse duration of 245 μs. The 532 nm green laser was obtained from a LiB3O5 (LBO) crystal with output energy of 150 μJ and pulse duration of 268 ps. The sub-nanosecond green laser is interesting for 2-D ablation patterns.

  17. Threshold Determination and Analysis of Laser Pulse Range Finder

    Institute of Scientific and Technical Information of China (English)

    殷聪; 韩绍坤; 刘巽亮; 张化朋; 赵跃进

    2003-01-01

    Under different conditions, the highest detection probability should be acquired while receiving laser echo during laser pulse range finding. The threshold voltage of the signal detection can be set corresponding to different conditions by using resistor network. As a feedback loop, automatic noise threshold circuit could change the threshold voltage following the noise level. The threshold can track the noise closely, rapidly and accurately by adopting this combination. Therefore, the receiving capability of laser echo receiving system will be maximized, and it can detect weaker laser pulse from noise.

  18. LONGITUDINAL DISCH. CO2 LASER WITH PULSED PRE-IONIZATION

    Institute of Scientific and Technical Information of China (English)

    Yu Yanning; Wan Chongyi

    2002-01-01

    A novel pre-ionization scheme of helical transverse-pulsed pre-ionization in a longitudinal discharge CO2 laser is presented. The laser tube is made of glass with inner diameter of 7.5mm and discharge length of 50cm. The laser performance characteristics as functions of parameters, such as pressure, charging capacitance and applied voltage, are investigated. Compared with the same laser structure without pre-ionization, the maximum pulse energy improves by 23%, the optimum electro-optical efficiency increases by 31%, and the specific output energy reaches 26 J/(L·atm).

  19. Parabolic similariton Yb-fiber laser with triangular pulse evolution

    Science.gov (United States)

    Wang, Sijia; Wang, Lei

    2016-04-01

    We propose a novel mode-locked fiber laser design which features a passive nonlinear triangular pulse formation and self-similar parabolic pulse amplification intra cavity. Attribute to the nonlinear reshaping progress in the passive fiber, a triangular-profiled pulse with negative-chirp is generated and paved the way for rapid and efficient self-similar parabolic evolution in a following short-length high-gain fiber. In the meanwhile, the accompanied significantly compressed narrow spectrum from this passive nonlinear reshaping also gives the promise of pulse stabilization and gain-shaping robustness without strong filtering. The resulting short average intra-cavity pulse duration, low amplified spontaneous emission (ASE) and low intra-cavity power loss are essential for the low-noise operation. Simulations predict this modelocked fiber laser allows for high-energy ultra-short transform-limited pulse generation exceeding the gain bandwidth. The output pulse has a de-chirped duration (full-width at half maximum, FWHM) of 27 fs. In addition to the ultrafast laser applications, the proposed fiber laser scheme can support low-noise parabolic and triangular pulse trains at the same time, which are also attractive in optical pulse shaping, all-optical signal processing and high-speed communication applications.

  20. Energetic sub-2-cycle laser with 216  W average power.

    Science.gov (United States)

    Hädrich, Steffen; Kienel, Marco; Müller, Michael; Klenke, Arno; Rothhardt, Jan; Klas, Robert; Gottschall, Thomas; Eidam, Tino; Drozdy, András; Jójárt, Péter; Várallyay, Zoltán; Cormier, Eric; Osvay, Károly; Tünnermann, Andreas; Limpert, Jens

    2016-09-15

    Few-cycle lasers are essential for many research areas such as attosecond physics that promise to address fundamental questions in science and technology. Therefore, further advancements are connected to significant progress in the underlying laser technology. Here, two-stage nonlinear compression of a 660 W femtosecond fiber laser system is utilized to achieve unprecedented average power levels of energetic ultrashort or even few-cycle laser pulses. In a first compression step, 408 W, 320 μJ, 30 fs pulses are achieved, which can be further compressed to 216 W, 170 μJ, 6.3 fs pulses in a second compression stage. To the best of our knowledge, this is the highest average power few-cycle laser system presented so far. It is expected to significantly advance the fields of high harmonic generation and attosecond science.

  1. Modulation of ionization on laser frequency in ultra-short pulse intense laser-gas-target

    Institute of Scientific and Technical Information of China (English)

    Hu Qiang-Lin; Liu Shi-Bing

    2006-01-01

    Based on the dispersion relation of intense laser pulse propagating in gradually ionized plasma, this paper discusses the frequency modulation induced by ionization of an ultra-short intense laser pulse interacting with a gas target.The relationship between the frequency modulation and the ionization rate, the plasmas frequency variation, and the polarization of atoms (ions) is analysed. The numerical results indicate that, at high frequency, the polarization of atoms (ions) plays a more important role than plasma frequency variation in modulating the laser frequency, and the laser frequency variation is different at different positions of the laser pulse.

  2. Ultrashort-pulse laser irradiation of metal films: the effect of a double-peak laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Rosandi, Yudi [Universitaet Kaiserslautern, Fachbereich Physik und Forschungszentrum OPTIMAS, Kaiserslautern (Germany); Universitas Padjadjaran, Department of Physics, Sumedang (Indonesia); Urbassek, Herbert M. [Universitaet Kaiserslautern, Fachbereich Physik und Forschungszentrum OPTIMAS, Kaiserslautern (Germany)

    2010-11-15

    Using molecular-dynamics simulation coupled to a homogeneous model for the electron gas, we study the response of an Al thin film on short-pulse laser irradiation. Laser pulses are considered to have a double-peak structure consisting of two Gaussian pulses; the time delay between the two pulses is varied. The temporal dependence of the energy transfer from the electronic system to the lattice is considered in detail. The effect on the temperature and pressure inside the material, as well as on melting, void nucleation and spallation (ablation) are studied. (orig.)

  3. Hollow-fiber compression of visible, 200 fs laser pulses to 40 fs pulse duration.

    Science.gov (United States)

    Procino, I; Velotta, R; Altucci, C; Amoruso, S; Bruzzese, R; Wang, X; Tosa, V; Sansone, G; Vozzi, C; Nisoli, M

    2007-07-01

    We demonstrate the use of a very simple, compact, and versatile method, based on the hollow-fiber compression technique, to shorten the temporal length of visible laser pulses of 100-300 fs to pulse durations shorter than approximately 50 fs. In particular, 200 fs, frequency-doubled, Nd:glass laser pulses (527 nm) were spectrally broadened to final bandwidths as large as 25 nm by nonlinear propagation through an Ar-filled hollow fiber. A compact, dispersive, prism-pair compressor was then used to produce as short as 40 fs, 150 microJ pulses. A very satisfactory agreement between numerical simulations and measurements is found.

  4. Pulse-shaping mechanism in colliding-pulse mode-locked laser diodes

    DEFF Research Database (Denmark)

    Bischoff, Svend; Sørensen, Mads Peter; Mørk, J.;

    1995-01-01

    The large signal dynamics of passively colliding pulse mode-locked laser diodes is studied. We derive a model which explains modelocking via the interplay of gain and loss dynamics; no bandwidth limiting element is necessary for pulse formation. It is found necessary to have both fast and slow...... absorber dynamics to achieve mode-locking. Significant chirp is predicted for pulses emitted from long lasers, in agreement with experiment. The pulse width shows a strong dependence on both cavity and saturable absorber length. (C) 1995 American Institute of Physics....

  5. Fundamental studies of pulsed laser ablation

    CERN Document Server

    Claeyssens, F

    2001-01-01

    dopant) have resulted in a coherent view of the resulting plume, which exhibits a multi-component structure correlated with different regimes of ablation, which are attributed to ejection from ZnO and ablation from a Zn melt. OES measurements show that the emitting Zn component within the plume accelerates during expansion in vacuum - an observation attributable to the presence of hot, fast electrons in the plume. The same acceleration behaviour is observed in the case of Al atomic emissions resulting from ablation of an Al target in vacuum. Deposition conditions, substrate temperature and background gas pressure were all varied in a quest for optimally aligned, high quality ZnO thin films. Initial ab initio calculations were performed also, to aid in understanding the stability of these c-axis aligned films. The pulsed ultraviolet (lambda = 193, 248 nm) laser ablation of graphite, polycrystalline diamond and ZnO targets has been investigated. Characteristics of the resulting plumes of ablated material have b...

  6. Pulsed laser deposition of ferroelectric thin films

    Science.gov (United States)

    Sengupta, Somnath; McKnight, Steven H.; Sengupta, Louise C.

    1997-05-01

    It has been shown that in bulk ceramic form, the barium to strontium ratio in barium strontium titanium oxide (Ba1- xSrxTiO3, BSTO) affects the voltage tunability and electronic dissipation factor in an inverse fashion; increasing the strontium content reduces the dissipation factor at the expense of lower voltage tunability. However, the oxide composites of BSTO developed at the Army Research Laboratory still maintain low electronic loss factors for all compositions examined. The intent of this study is to determine whether such effects can be observed in the thin film form of the oxide composites. The pulsed laser deposition (PLD) method has been used to deposit the thin films. The different compositions of the compound (with 1 wt% of the oxide additive) chosen were: Ba0.3Sr0.7TiO3, Ba0.4Sr0.6TiO3, Ba0.5Sr0.5TiO3, Ba0.6Sr0.4TiO3, and Ba0.7Sr0.3TiO3. The electronic properties investigated in this study were the dielectric constant and the voltage tunability. The morphology of the thin films were examined using the atomic force microscopy. Fourier transform Raman spectroscopy was also utilized for optical characterization of the thin films. The electronic and optical properties of the thin films and the bulk ceramics were compared. The results of these investigations are discussed.

  7. Miniature, Rugged, Pulsed Laser Source for LIDAR Application Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Princeton Optronics proposes to develop a high energy pulsed laser source based on a novel approach. The approach consists of a technique to combine a large number...

  8. Power Enhancement Cavity for Burst-Mode Laser Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun [ORNL

    2015-01-01

    We demonstrate a novel optical cavity scheme and locking method that can realize the power enhancement of picosecond UV laser pulses operating at a burst mode with arbitrary burst (macropulse) lengths and repetition rates.

  9. 20 W High Efficiency 1550 nm Pulsed Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High peak power short pulsed lasers have been considered to be an enabling technology to build high power transmitters for future deep space high rate space...

  10. Pulse laser assisted optical tweezers for biomedical applications.

    Science.gov (United States)

    Sugiura, Tadao; Maeda, Saki; Honda, Ayae

    2012-01-01

    Optical tweezers which enables to trap micron to nanometer sized objects by radiation pressure force is utilized for manipulation of particles under a microscope and for measurement of forces between biomolecules. Weak force of optical tweezers causes some limitations such as particle adhesion or steric barrier like lipid membrane in a cell prevent further movement of objects. For biomedical applications we need to overcome these difficulties. We have developed a technique to exert strong instantaneous force by use of a pulse laser beam and to assist conventional optical tweezers. A pulse laser beam has huge instantaneous laser power of more than 1000 times as strong as a conventional continuous-wave laser beam so that the instantaneous force is strong enough to break chemical bonding and molecular force between objects and obstacles. We derive suitable pulse duration for pulse assist of optical tweezers and demonstrate particle manipulation in difficult situations through an experiment of particle removal from sticky surface of glass substrate.

  11. Alignment of symmetric top molecules by short laser pulses

    DEFF Research Database (Denmark)

    Hamilton, Edward; Seideman, Tamar; Ejdrup, Tine

    2005-01-01

    Nonadiabatic alignment of symmetric top molecules induced by a linearly polarized, moderately intense picosecond laser pulse is studied theoretically and experimentally. Our studies are based on the combination of a nonperturbative solution of the Schrodinger equation with femtosecond time...

  12. Ramsey-comb spectroscopy with intense ultrashort laser pulses

    CERN Document Server

    Morgenweg, Jonas; Eikema, Kjeld S E

    2014-01-01

    Optical frequency combs based on mode-locked lasers have revolutionised the field of metrology and precision spectroscopy by providing precisely calibrated optical frequencies and coherent pulse trains. Amplification of the pulsed output from these lasers is very desirable, as nonlinear processes can then be employed to cover a much wider range of transitions and wavelengths for ultra-high precision, direct frequency comb spectroscopy. Therefore full repetition rate laser amplifiers and enhancement resonators have been employed to produce up to microjoule-level pulse energies. Here we show that the full frequency comb accuracy and resolution can be obtained by using only two frequency comb pulses amplified to the millijoule pulse energy level, orders of magnitude more energetic than what has previously been possible. The novel properties of this approach, such as cancellation of optical light-shift effects, is demonstrated on weak two-photon transitions in atomic rubidium and caesium, thereby improving the fr...

  13. Chirped pulse inverse free-electron laser vacuum accelerator

    Science.gov (United States)

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  14. Prompt pre-thermal laser ion sheath acceleration with ultra-short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zeil, Karl; Bussmann, Michael; Cowan, Thomas; Kluge, Thomas; Kraft, Stephan; Metzkes, Josefine; Schramm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2013-07-01

    Recent laser-ion acceleration experiments performed at the 150 TW Draco laser in Dresden, Germany, have demonstrated the importance of a precise understanding of the electron dynamics in solids on an ultra-short time scale. For example, with ultra-short laser pulses a description based purely on the evolution of a thermal electron ensemble, as in standard TNSA models, is not sufficient anymore. Rather, non-thermal effects during the ultra-short intra-pulse phase of laser-electron interaction in solids become important for the acceleration of ions when the laser pulse duration is in the order of only a few tens of femtoseconds. While the established maximum ion energy scaling in the TNSA regime goes with the square root of the laser intensity, for such ultra short pulse durations the maximum ion energy is found to scale linear with laser intensity, motivating the interest in such laser systems. Investigating the influence of laser pulse contrast, laser polarization and laser incidence angle on the proton maximum energy and angular distribution, we present recent advances in the description of the laser interaction with solids, focusing on the implications of intra-pulse non-thermal phenomena on the ion acceleration.

  15. Reduction of the pulse duration of the ultrafast laser pulses of the Two-Photon Laser Scanning Microscopy (2PLSM

    Directory of Open Access Journals (Sweden)

    Reshak Ali

    2008-07-01

    Full Text Available Abstract Background We provide an update of our two-photon laser scanning microscope by compressing or reducing the broadening of the pulse width of ultrafast laser pulses for dispersion precompensation, to enable the pulses to penetrate deeply inside the sample. Findings The broadening comes as the pulses pass through the optical elements. We enhanced and modified the quality and the sharpness of images by enhancing the resolution using special polarizer namely Glan Laser polarizer GL10. This polarizer consists of two prisms separated by air space. This air separation between the two prisms uses to delay the red wavelength when the light leaves the first prism to the air then to second prism. We note a considerable enhancing with using the GL polarizer, and we can see the details of the leaf structure in early stages when we trying to get focus through z-stacks of images in comparison to exactly the same measurements without using GL polarizer. Hence, with this modification we able to reduce the time of exposure the sample to the laser radiation thereby we will reduce the probability of photobleaching and phototoxicity. When the pulse width reduced, the average power of the laser pulses maintained at a constant level. Significant enhancement is found between the two kinds of images of the Two-Photon Excitation Fluorescence (TPEF. Conclusion In summary reduction the laser pulse width allowed to collect more diffraction orders which will used to form the images. The more diffraction orders the higher resolution images.

  16. Effect of pulse duty cycle on Inconel 718 laser welds

    Science.gov (United States)

    McCay, M. H.; McCay, T. D.; Dahotre, N. B.; Sharp, C. M.; Sedghinasab, A.; Gopinathan, S.

    1989-01-01

    Crack sensitive Inconel 718 was laser pulse welded using a 3.0 kW CO2 laser. Weld shape, structure, and porosity were recorded as a function of the pulse duty cycle. Within the matrix studied, the welds were found to be optimized at a high (17 ms on, 7 ms off) duty cycle. These welds were superior in appearance and lack of porosity to both low duty cycle and CW welds.

  17. Phase and Frequency Control of Laser Arrays for Pulse Synthesis

    Science.gov (United States)

    2015-01-02

    SUBJECT TERMS Pulse synthesis, coherent combining, spectral combining, pulsed lasers, fast optical feedback, diode lasers 16. SECURITY...On classified documents, enter the title classification in parentheses. 5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the...accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top

  18. Thermal Processes Using Attosecond Laser Pulses When Time Matters

    CERN Document Server

    Kozłowski, Mirosław

    2006-01-01

    This book contains a study of the thermal processes initiated by attosecond laser pulses. Considering the existence of the experimental evidence for the trains of the attosecond laser pulses, we developed the theoretical framework for attophysics, i.e. physics of phenomena with time duration in the attosecond domain. This time domain is concerned with phenomena whose duration is much shorter than the relaxation time for atomic, molecular and nanoparticles scales.

  19. Laser pulse modulation instabilities in partially stripped plasma

    Institute of Scientific and Technical Information of China (English)

    Hu Qiang-Lin; Liu Shi-Bing; Jiang Yi-Jian

    2005-01-01

    The laser pulse modulation instabilities in partially stripped plasma were discussed based on the phase and group velocities of the laser pulse and the two processes that modulation instabilities excited. The excitation condition and growth rate of the modulation instability were obtained. It was found that the positive chirp and competition between normal and abnormal dispersions play important roles in the modulation instability. In the partially stripped plasma,the increased positive chirp enhances the modulation instability, and the dispersion competition reduces it.

  20. Optimization of the output power of a pulsed gas laser by using magnetic pulse compression

    Science.gov (United States)

    Louhibi, D.; Ghobrini, Mourad; Bourai, K.

    1999-12-01

    In pulsed gas lasers, the excitation of the active medium is produced through the discharge of a storage capacitor. Performances of these lasers were essentially linked to the type of switch used and also to its mode of operation. Thyratrons are the most common switches. Nevertheless, their technological limitations do not allow a high repetition rate, necessary for optimization of the output power of this type of laser. These limitations can be surpassed by combining the thyratron to a one stage of a magnetic pulse compression circuit. The mpc driver can improve the laser excitation pulse rise time and increase the repetition rate, increasing the laser output power of pulsed gas laser such as; nitrogen, excimer and copper vapor lasers. We have proposed in this paper a new configuration of magnetic pulse compression, the magnetic switch is place in our case in the charge circuit, and while in the typical utilization of magnetic pulse compression, it is placed in the discharge circuit. In this paper, we are more particularly interested in the design and the modeling of a saturate inductance that represents the magnetic switch in the proposed configuration of a thyratron - mpc circuit combination.

  1. Pulsed Laser Centre (CLPU). The Salamanca peta watt laser; Centro de Laseres Pulsados (CLPU). El laser de Petavatio de Salamanca

    Energy Technology Data Exchange (ETDEWEB)

    Franco, L. R.

    2016-08-01

    With pulses lasting 30 photo seconds, the CLPU VEGA laser is capable of generating a peak power level of one peta watt, this making it one of the worlds most powerful lasers. When focussed it can reach extreme intensities. The way in which a pulse of this nature interacts with an atom or what its applications might be are among the questions answered by this article. (Author)

  2. Supression of laser breakdown by pulsed nonequilibrium ns discharge

    Science.gov (United States)

    Starikovskiy, A. Y.; Semenov, I. E.; Shneider, M. N.

    2016-10-01

    The avalanche ionization induced by infrared laser pulses was investigated in a pre-ionized argon gas. Pre-ionization was created by a high-voltage pulsed nanosecond discharge developed in the form of a fast ionization wave. Then, behind the front of ionization wave additional avalanche ionization was initiated by the focused Nd-YAG laser pulse. It was shown that the gas pre-ionization inhibits the laser spark generation. It was demonstrated that the suppression of laser spark development in the case of strong gas pre-ionization is because of fast electron energy transfer from the laser beam focal region. The main mechanism of this energy transfer is free electrons diffusion.

  3. Ultrashort Laser Pulse Heating of Nanoparticles: Comparison of Theoretical Approaches

    Directory of Open Access Journals (Sweden)

    Renat R. Letfullin

    2008-01-01

    Full Text Available The interaction between nanoparticles and ultrashort laser pulses holds great interest in laser nanomedicine, introducing such possibilities as selective cell targeting to create highly localized cell damage. Two models are studied to describe the laser pulse interaction with nanoparticles in the femtosecond, picosecond, and nanosecond regimes. The first is a two-temperature model using two coupled diffusion equations: one describing the heat conduction of electrons, and the other that of the lattice. The second model is a one-temperature model utilizing a heat diffusion equation for the phonon subsystem and applying a uniform heating approximation throughout the particle volume. A comparison of the two modeling strategies shows that the two-temperature model gives a good approximation for the femtosecond mode, but fails to accurately describe the laser heating for longer pulses. On the contrary, the simpler one-temperature model provides an adequate description of the laser heating of nanoparticles in the femtosecond, picosecond, and nanosecond modes.

  4. Dephasing time of a positron accelerated by a laser pulse

    Institute of Scientific and Technical Information of China (English)

    杜春光; 李师群

    2002-01-01

    The dephasing time of a positron in the total field associated with a laser pulse in a plasma is studied numerically.It is shown that the dynamics of the positron is quite different from that of an electron due to the electrostatic potential in the body of the pulse. The dephasing time of the positron increases with the pulse length and decreases with the pulse intensity nonlinearly. In the long pulse case (L> λp) the dephasing time is proportional to the pulse length. These results provide a scientific basis for experiments to observe the positron acceleration scheme, and may be important to the physics of laser-particle interactions in multi-component plasmas.

  5. Long-pulsed dye laser vs. intense pulsed light for the treatment of facial telangiectasias: a randomized controlled trial

    DEFF Research Database (Denmark)

    Nymann, Peter; Hedelund, Lene; Haedersdal, M

    2010-01-01

    This study aims to compare the efficacy and adverse effects of long-pulsed dye laser (LPDL) and intense pulsed light (IPL) in the treatment of facial telangiectasias.......This study aims to compare the efficacy and adverse effects of long-pulsed dye laser (LPDL) and intense pulsed light (IPL) in the treatment of facial telangiectasias....

  6. Imposed layer by layer growth by pulsed laser interval deposition

    NARCIS (Netherlands)

    Koster, Gertjan; Rijnders, Guus J.H.M.; Blank, Dave H.A.; Rogalla, Horst

    1999-01-01

    Pulsed laser deposition has become an important technique to fabricate novel materials. Although there is the general impression that, due to the pulsed deposition, the growth mechanism differs partially from continuous physical and chemical deposition techniques, it has hardly been used. Here, we w

  7. Thin film surface processing by ultrashort laser pulses (USLP)

    NARCIS (Netherlands)

    Scorticati, D.; Skolski, J.Z.P.; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert; Workum, M.; Theelen, M.; Zeman, M.; Wehrspohn, R.; Gombert, A.

    2012-01-01

    In this work, we studied the feasibility of surface texturing of thin molybdenum layers on a borosilicate glass substrate with Ultra-Short Laser Pulses (USLP). Large areas of regular diffraction gratings were produced consisting of Laserinduced periodic surface structures (LIPSS). A short pulsed las

  8. Modification of Cu surface with picosecond laser pulses

    NARCIS (Netherlands)

    Obona, J. Vincenc; Ocelik, V.; Rao, J. C.; Skolski, J. Z. P.; Romer, G. R. B. E.; in't Veld, A. J. Huis; de Hosson, Jeff

    2014-01-01

    High purity, mirror-polished polycrystalline Cu surface was treated with single picosecond laser pulses at fluence levels close to the single-pulse modification threshold. The induced surface topography and sub-surface changes were examined with scanning and transmission electron microscopy, respect

  9. Thin film surface processing by ultrashort laser pulses (USLP)

    NARCIS (Netherlands)

    Scorticati, D.; Skolski, J.Z.P.; Romer, G.R.B.E.; Huis in 't Veld, A.J.; Workum, M.J.; Theelen, M.J.; Zeman, M.

    2012-01-01

    In this work, we studied the feasibility of surface texturing of thin molybdenum layers on a borosilicate glass substrate with Ultra-Short Laser Pulses (USLP). Large areas of regular diffraction gratings were produced consisting of Laserinduced periodic surface structures (LIPSS). A short pulsed las

  10. Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output.

    Science.gov (United States)

    Wei, Kaihua; Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Wu, Bo; Shen, Yonghang

    2013-10-21

    We report a novel quasi-synchronously pumped PPMgLN-based high power mid-infrared (MIR) laser with picosecond pulse bunch output. The pump laser is a linearly polarized MOPA structured all fiberized Yb fiber laser with picosecond pulse bunch output. The output from a mode-locked seed fiber laser was directed to pass through a FBG reflector via a circulator to narrow the pulse duration from 800 ps to less than 50 ps and the spectral FWHM from 9 nm to 0.15 nm. The narrowed pulses were further directed to pass through a novel pulse multiplier through which each pulse was made to become a pulse bunch composing of 13 sub-pulses with pulse to pulse time interval of 1.26 ns. The pulses were then amplified via two stage Yb fiber amplifiers to obtain a linearly polarized high average power output up to 85 W, which were then directed to pass through an isolator and to pump a PPMgLN-based optical parametric oscillator via quasi-synchronization pump scheme for ps pulse bunch MIR output. High MIR output with average power up to 4 W was obtained at 3.45 micron showing the feasibility of such pump scheme for ps pulse bunch MIR output.

  11. Synchronization of Sub-Picosecond Electron and Laser Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J.B.; Le Sage G.P.

    2000-08-15

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is subpicosecond, with tens of femtosecond synchronization implied for next-generation experiments. Typically, an RF electron accelerator is synchronized to a short pulse laser system by detecting the repetition signal of a laser oscillator, adjusted to an exact subharmonic of the linac RF frequency, and multiplying or phase locking this signal to produce the master RF clock. Pulse-to-pulse jitter characteristic of self-mode-locked laser oscillators represents a direct contribution to the ultimate timing jitter between a high intensity laser focus and electron beam at the interaction point, or a photocathode drive laser in an RF photoinjector. This timing jitter problem has been addressed most seriously in the context of the RF photoinjector, where the electron beam properties are sensitive functions of relative timing jitter. The timing jitter achieved in synchronized photocathode drive laser systems is near, or slightly below one picosecond. The ultimate time of arrival jitter of the beam at the photoinjector exit is typically a bit smaller than the photocathode drive-laser jitter due to velocity compression effects in the first RF cell of the gun. This tendency of the timing of the electron beam arrival at a given spatial point to lock to the RF lock is strongly reinforced by use of magnetic compression.

  12. Femtosecond and nanosecond pulsed laser deposition of silicon and germanium

    Energy Technology Data Exchange (ETDEWEB)

    Reenaas, Turid Worren [Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Lee, Yen Sian [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chowdhury, Fatema Rezwana; Gupta, Manisha; Tsui, Ying Yin [Department of Electrical and Computer Engineering, University of Alberta (Canada); Tou, Teck Yong [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Ling [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kok, Soon Yie [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Shan, E-mail: seongshan@gmail.com [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-11-01

    Highlights: • Ge and Si were deposited by fs and ns laser at room temperature and at vacuum. • Ion of 10{sup 4} ms{sup −1} and 30–200 eV was obtained for ns ablation for Ge and Si. • Highly energetic ions of 10{sup 5} ms{sup −1} with 2–7 KeV were produced in fs laser ablation. • Nanocrystalline Si and Ge were deposited by using fs laser. • Nanoparticles < 10 nm haven been obtained by fs laser. - Abstract: 150 fs Ti:Sapphire laser pulsed laser deposition of Si and Ge were compared to a nanosecond KrF laser (25 ns). The ablation thresholds for ns lasers were about 2.5 J cm{sup −2} for Si and 2.1 J cm{sup −2} for Ge. The values were about 5–10 times lower when fs laser were used. The power densities were 10{sup 8}–10{sup 9} W cm{sup −2} for ns but 10{sup 12} W cm{sup −2} for fs. By using an ion probe, the ions emission at different fluence were measured where the emitting ions achieving the velocity in the range of 7–40 km s{sup −1} and kinetic energy in the range of 30–200 eV for ns laser. The ion produced by fs laser was measured to be highly energetic, 90–200 km s{sup −1}, 2–10 KeV. Two ion peaks were detected above specific laser fluence for both ns and fs laser ablation. Under fs laser ablation, the films were dominated by nano-sized crystalline particles, drastically different from nanosecond pulsed laser deposition where amorphous films were obtained. The ions characteristics and effects of pulse length on the properties of the deposited films were discussed.

  13. Theory and simulation of ultra-short pulse laser interactions

    Energy Technology Data Exchange (ETDEWEB)

    More, R.; Walling, R.; Price, D.; Guethlein, G.; Stewart, R.; Libby, S.; Graziani, F.; Levatin, J. [Lawrence Livermore National Lab., Livermore, CA (United States)

    1998-03-01

    This paper describes recent Livermore work aimed at building computational tools to describe ultra-short pulse laser plasmas. We discuss calculations of laser absorption, atomic data for high-charge ions, and a new idea for linear-response treatment of non-equilibrium phenomena near LTE. (author)

  14. Resonant infrared pulsed laser deposition of thin biodegradable polymer films

    DEFF Research Database (Denmark)

    Bubb, D.M.; Toftmann, B.; Haglund Jr., R.F.

    2002-01-01

    Thin films of the biodegradable polymer poly(DL-lactide-co-glycolide) (PLGA) were deposited using resonant infrared pulsed laser deposition (RIR-PLD). The output of a free-electron laser was focused onto a solid target of the polymer, and the films were deposited using 2.90 (resonant with O-H str...

  15. Modelling colliding-pulse mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Bischoff, Svend

    or to determine the optimum operation conditions. The purpose of this thesis is to elucidate some of the physics of interest in the field of semiconductor laser modelling, semiconductor optics and fiber optics. To be more specific we will investigate: The Colliding-Pulse Mode-Locked (CPM) Quantum Well (QW) laser...

  16. Relaxation oscillations in long-pulsed random lasers

    NARCIS (Netherlands)

    Molen, van der Karen L.; Mosk, Allard P.; Lagendijk, Ad

    2009-01-01

    We have measured the evolution of the intensity emitted by a random laser during a pump pulse that is comparable in duration to the spontaneous emission decay time. The time traces of our random laser, consisting of titanium dioxide particles and sulforhodamine B dye, show clear relaxation oscillati

  17. DEVICE FOR INVESTIGATION OF MAGNETRON AND PULSED-LASER PLASMA

    Directory of Open Access Journals (Sweden)

    A. P. Burmakov

    2012-01-01

    Full Text Available Various modifications of complex pulsed laser and magnetron deposition thin-film structures unit are presented. They include joint and separate variants of layer deposition. Unit realizes the plasma parameters control and enhances the possibility of laser-plasma and magnetron methods of coatings deposition.

  18. Intense two-cycle laser pulses induce time-dependent bond hardening in a polyatomic molecule.

    Science.gov (United States)

    Dota, K; Garg, M; Tiwari, A K; Dharmadhikari, J A; Dharmadhikari, A K; Mathur, D

    2012-02-17

    A time-dependent bond-hardening process is discovered in a polyatomic molecule (tetramethyl silane, TMS) using few-cycle pulses of intense 800 nm light. In conventional mass spectrometry, symmetrical molecules such as TMS do not exhibit a prominent molecular ion (TMS(+)) as unimolecular dissociation into [Si(CH(3))(3)](+) proceeds very fast. Under a strong field and few-cycle conditions, this dissociation channel is defeated by time-dependent bond hardening: a field-induced potential well is created in the TMS(+) potential energy curve that effectively traps a wave packet. The time dependence of this bond-hardening process is verified using longer-duration (≥100 fs) pulses; the relatively slower falloff of optical field in such pulses allows the initially trapped wave packet to leak out, thereby rendering TMS(+) unstable once again.

  19. Precision machining of pig intestine using ultrafast laser pulses

    Science.gov (United States)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  20. Femtosecond laser pulse train interaction with dielectric materials

    CERN Document Server

    Caulier, O Dematteo; Chimier, B; Skupin, S; Bourgeade, A; Léger, C Javaux; Kling, R; Hönninger, C; Lopez, J; Tikhonchuk, V; Duchateau, G

    2015-01-01

    We investigate the interaction of trains of femtosecond microjoule laser pulses with dielectric materials by means of a multi-scale model. Our theoretical predictions are directly confronted with experimental observations in soda-lime glass. We show that due to the low heat conductivity, a significant fraction of the laser energy can be accumulated in the absorption region. Depending on the pulse repetition rate, the material can be heated to high temperatures even though the single pulse energy is too low to induce a significant material modification. Regions heated above the glass transition temperature in our simulations correspond very well to zones of permanent material modifications observed in the experiments.

  1. Stoichiometric magnetite grown by infrared nanosecond pulsed laser deposition

    OpenAIRE

    Sanz, Mikel; Oujja, M.; Rebollar, Esther; Marco, J.F.; Figuera, Juan de la; Monti, Matteo; Bollero, A.; Camarero, J.; Pedrosa, Francisco J.; García-Hernández, M; Castillejo, Marta

    2013-01-01

    Pulsed laser deposition (PLD) is a versatile technique for the fabrication of nanostructures due to the possibilities it offers to control size and shape of nanostructured deposits by varying the laser parameters. Magnetite nanostructures are currently promising materials to be used in computing, electronic devices and spintronic applications. For all these uses the fabrication of uniform nanostructured pure magnetite thin films is highly advantageous. In PLD of magnetite, the laser irradiati...

  2. Photodissociation of Cycloketones by Ultraintense Femtosecond Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Photodissociation of cyclopentanone (C5H8O) and cyclohexanone (C6H10O) was studied with 800nm, 50fs laser pulse at intensities of 5.0-13.0×1013 W/cm2. A time of flight mass spectrometer was employed to detect the ion signals. Parent ions dominated at lower laser intensities. Fragmentation of the parent ions increases with increasing laser intensity and molecular size. The fragmentation mechanism was discussed.

  3. Short pulse generation by laser slicing at NSLSII

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.; Blednykh, A.; Guo, W.; Krinsky, S.; Li, Y.; Shaftan, T.; Tchoubar, O.; Wang, G.; Willeke, F.; Yang, L.

    2011-03-28

    We discuss an upgrade R&D project for NSLSII to generate sub-pico-second short x-ray pulses using laser slicing. We discuss its basic parameters and present a specific example for a viable design and its performance. Since the installation of the laser slicing system into the storage ring will break the symmetry of the lattice, we demonstrate it is possible to recover the dynamical aperture to the original design goal of the ring. There is a rapid growth of ultrafast user community interested in science using sub-pico-second x-ray pulses. In BNL's Short Pulse Workshop, the discussion from users shows clearly the need for a sub-pico-second pulse source using laser slicing method. In the proposal submitted following this workshop, NSLS team proposed both hard x-ray and soft x-ray beamlines using laser slicing pulses. Hence there is clearly a need to consider the R&D efforts of laser slicing short pulse generation at NSLSII to meet these goals.

  4. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    Science.gov (United States)

    Kemp, A J; Divol, L

    2012-11-09

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.

  5. Transforming graphite to nanoscale diamonds by a femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Nueske, R.; Jurgilaitis, A.; Enquist, H.; Harb, M.; Larsson, J. [Atomic Physics Division, Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden); Fang, Y.; Haakanson, U. [Division of Solid State Physics/Nanometer Structure Consortium at Lund University, P.O. Box 118, S-221 00 Lund (Sweden); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603-146, 100190 Beijing (China)

    2012-01-23

    Formation of cubic diamond from graphite following irradiation by a single, intense, ultra-short laser pulse has been observed. Highly oriented pyrolytic graphite (HOPG) samples were irradiated by a 100 fs pulse with a center wavelength of 800 nm. Following laser exposure, the HOPG samples were studied using Raman spectroscopy of the sample surface. In the laser-irradiated areas, nanoscale cubic diamond crystals have been formed. The exposed areas were also studied using grazing incidence x-ray powder diffraction showing a restacking of planes from hexagonal graphite to rhombohedral graphite.

  6. Development of pulse laser processing for mounting fiber Bragg grating

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umebidai Kidugawa Kyoto 619-0215 (Japan); Applied Laser Technology Institute, Tsuruga Head Office, Japan Atomic Energy Agency, 65-20 Kizaki Tsuruga Fukui 914-8585 (Japan); Technical Research and Development Institute, Kumagai Gumi Co., Ltd., 2-1 Tsukudo, Shinjuku Tokyo 162-8557 (Japan)

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  7. Development of pulse laser processing for mounting fiber Bragg grating

    Science.gov (United States)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-01

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  8. Determining Optimum Propellants, Pulse Lengths, and Laser Intensity for Ablative Laser Propulsion Using the Pals Laser

    Science.gov (United States)

    Boody, Frederick P.

    2004-10-01

    Ablative Laser Propulsion (ALP) can potentially reduce the cost of launching payloads into near earth orbit by a factor of 100. Preliminary experiments have demonstrated high efficiency, coupling coefficient, and specific impulse that would be suitable for applications. These experiments, however, were performed at wavelengths not usable in the atmosphere and at pulse energies and spot sizes much smaller than will be required for application. The parameters of the Prague Asterix Laser System (PALS) high-energy iodine laser, other than wavelength: pulse energy, pulse length, and beam diameter, are equal to those required for application. While its wavelength is a little shorter than required, it is closer than any other laser available and, due to PALS' 2ω and 3ω capability, the wavelength dependence can be studied and the results extrapolated to application values. In fact, PALS is probably the only laser in the world with parameters suitable for definitive ALP studies. PALS also has a suitable infrastructure for measuring plasma parameters already and only an instrument for measuring momentum transfer, such as a ballistic pendulum, would have to be added.

  9. A unified model in the pulsed laser ablation process

    Institute of Scientific and Technical Information of China (English)

    HU De-zhi

    2008-01-01

    In this unified model, we introduce the electron-phonon coupling time (t) and laser pulse width (t). For long pulses, it can substitute for the traditional thermal conduction model; while for ultrashort pulses, it can substitute for the standard two-temperature model. As an example of the gold target, we get the dependence of the electron and ion temperature evolvement on the time and position by solving the thermal conduction equation using the finite-difference time-domain (FDTD) method.It is in good agreement with experimental data. We obtain the critical temperature of the onset of ablation using the Saha equation and then obtain the theoretical value of the laser ablation threshold when the laser pulse width ranges from nanosecond to femtosecond timescale, which consists well with the experimental data.

  10. The efficiency of photovoltaic cells exposed to pulsed laser light

    Science.gov (United States)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  11. Pulsed delivery of laser energy in experimental thermal retinal photocoagulation

    Science.gov (United States)

    Pankratov, Michail M.

    1990-06-01

    Retinal lesions produced with a pulsed laser beam of 1-20 kHz frequency and 10-100% duty cycle were compared with lesions produced with a continuous wave (cw) laser of the same peak power and total energy. Photocoagulation was applied to the retina of three black pigmented rabbits using krypton red laser (647.1 nm) equipped with an acousto-optical modulator to convert cw laser emission to a pulsating beam. An optical fiber fed the laser beam into an optical system delivering a collimated beam of predetermined divergence; the animal's eye focused this beam to a 50-pm spot on the retina. Peak power was kept constant at 0.2 W, and energy was kept constant at 20 mJ. After 7 months the animals were sacrificed and retinal tissue examined by light microscopy. The central section of each lesion was identified and photographed. For lesions with the same energy per pulse and the same pulse duration, the most influential factor, in the frequency range of 1-20 kHz, appeared to be the duty cycle: the smaller the duty cycle, the smaller the lesion, and vice versa. In other words, the shorter the time interval between consecutive pulses, the larger were the pulsed laser lesions.

  12. Ablation of silicon with bursts of femtosecond laser pulses

    Science.gov (United States)

    Gaudiuso, Caterina; Kämmer, Helena; Dreisow, Felix; Ancona, Antonio; Tünnermann, Andreas; Nolte, Stefan

    2016-03-01

    We report on an experimental investigation of ultrafast laser ablation of silicon with bursts of pulses. The pristine 1030nm-wavelength 200-fs pulses were split into bursts of up to 16 sub-pulses with time separation ranging from 0.5ps to 4080ps. The total ablation threshold fluence was measured depending on the burst features, finding that it strongly increases with the number of sub-pulses for longer sub-pulse delays, while a slowly increasing trend is observed for shorter separation time. The ablation depth per burst follows two different trends according to the time separation between the sub-pulses, as well as the total threshold fluence. For delays shorter than 4ps it decreases with the number of pulses, while for time separations longer than 510ps, deeper craters were achieved by increasing the number of subpulses in the burst, probably due to a change of the effective penetration depth.

  13. Bringing Pulsed Laser Welding into Production

    DEFF Research Database (Denmark)

    Olsen, Flemmming Ove

    1996-01-01

    -nationally the group is mostly known for its contri-butions to the development of the laser cutting process, but further it has been active within laser welding, both in assisting industry in bringing laser welding into production in several cases and in performing fundamental R & D. In this paper some research...... activities concerning the weldability of high alloyed austenitic stainless steels for mass production industry applying industrial lasers for fine welding will be described. Studies on hot cracking sensitivity of high alloyed austenitic stainless steel applying both ND-YAG-lasers and CO2-lasers has been...... performed and is currently in progress in collaboration with a major Danish company, who currently is applying laser welding in several production lines. Furthermore some case stories from development work on laser welding for industri-al production will be described. One case story describes a current...

  14. The interaction of intense subpicosecond laser pulses with underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Coverdale, C.A.

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10{sup 16} W/cm{sup 2} laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L{sub plasma} {ge} 2L{sub Rayleigh} > c{tau}. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n{sub o} {le} 0.05n{sub cr}). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in {omega}-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  15. The interaction of intense subpicosecond laser pulses with underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Coverdale, Christine Ann [Univ. of California, Davis, CA (United States)

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  16. Property improvement of pulsed laser deposited boron carbide films by pulse shortening

    Energy Technology Data Exchange (ETDEWEB)

    Csako, T. [Department of Optics and Quantum Electronics, University of Szeged, P.O. Box 406, H-6701 Szeged (Hungary); Budai, J. [Department of Optics and Quantum Electronics, University of Szeged, P.O. Box 406, H-6701 Szeged (Hungary); Szoerenyi, T. [Research Group on Laser Physics of the Hungarian Academy of Sciences, University of Szeged, P.O. Box 406, H-6701 Szeged (Hungary)]. E-mail: t.szorenyi@physx.u-szeged.hu

    2006-04-30

    Growth characteristics and surface morphology of boron carbide films fabricated by ablating a B{sub 4}C target in high vacuum with a traditional KrF excimer laser and a high brightness hybrid dye/excimer laser system emitting at the same wavelength while delivering 700 fs pulses are compared. The ultrashort pulse processing is highly effective. Energy densities between 0.25 and 2 J cm{sup -2} result in apparent growth rates ranging from 0.017 to 0.085 nm/pulse. Ablation with nanosecond pulses of one order of magnitude higher energy densities yields smaller growth rates, the figures increase from 0.002 to 0.016 nm/pulse within the 2-14.3 J cm{sup -2} fluence window. 2D thickness maps derived from variable angle spectroscopic ellipsometry reveal that, when ablating with sub-ps pulses, the spot size rather than the energy density determines both the deposition rate and the angular distribution of film material. Pulse shortening leads to significant improvement in surface morphology, as well. While droplets with number densities ranging from 1 x 10{sup 4} to 7 x 10{sup 4} mm{sup -2} deteriorate the surface of the films deposited by the KrF excimer laser, sub-ps pulses produce practically droplet-free films. The absence of droplets has also a beneficial effect on the stoichiometry and homogeneity of the films fabricated by ultrashort pulses.

  17. Vacuum heating of solid target irradiated by femtosecond laser pulses

    Institute of Scientific and Technical Information of China (English)

    DONG; Quanli(董全力); ZHANG; Jie(张杰)

    2003-01-01

    The interaction of femtosecond laser pulses with solid targets was studied through experiments and particle-in-cell (PIC) simulations. It is proved that the vacuum heating and the inverse bremsstralung process are the main mechanisms of the laser pulse absorption under such conditions. The distribution of hot electrons and that of X-ray are found to have double-temperature structure, which is confirmed by PIC simulations. While the lower temperature is attributed to the resonant absorption, the higher one, however, is caused by the laser-induced electric field in the target normal direction. The time-integrated spectra ofthe reflected laser pulse shows that the mechanism of electron acceleration is determined by the plasma density profile.

  18. Medical applications of ultra-short pulse lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment community perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.

  19. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology

    Science.gov (United States)

    Mohanraj, J.; Velmurugan, V.; Sivabalan, S.

    2016-10-01

    Ultrashort pulsed laser is an indispensable tool for the evolution of photonic technology in the present and future. This laser has been progressing tremendously with new pulse regimes and incorporating novel devices inside its cavity. Recently, a nanomaterial based saturable absorber (SA) was used in ultrafast laser that has improved the lasing performance and caused a reduction in the physical dimension when compared to conventional SAs. To date, the nanomaterials that are exploited for the development of SA devices are carbon nanotubes, graphene, topological insulators, transition metal dichalcogenides (TMDs) and black phosphorous. These materials have unique advantages such as high nonlinear optical response, fiber compatibility and ease of fabrication. In these, TMDs are prominent and an emerging two-dimensional nanomaterial for photonics and optoelectronics applications. Therefore, we review the reports of Q-switched and mode-locked pulsed lasers using TMDs (specifically MoS2, MoSe2, WS2 and WSe2) based SAs.

  20. Synthesis of selenium nanoparticles by pulsed laser ablation

    Science.gov (United States)

    Quintana, M.; Haro-Poniatowski, E.; Morales, J.; Batina, N.

    2002-07-01

    The synthesis of selenium nanoparticles by pulsed laser ablation using a YAG laser at 532 nm is reported. The nanoparticles were deposited on three different substrates: metallic gold films, silicon wafers and glass, and subsequently visualized and characterized by atomic force microscopy (AFM). It was found that the size, shape and population of the selenium nanoparticles are strongly dependent on the experimental conditions during the ablation process; in particular on the energy density, number of laser pulses and the nature of the substrate. Atomic force microscopy imaging allows recognition, quantitative and qualitative characterization of individual selenium nanoparticles and their aggregates as well. In most of the experiments just a few laser pulses (up to five), were sufficient to produce a noticeable amount of nanoparticles on the substrate surface.

  1. Complex Spectra Structure of an Attosecond Pulse Train Driven by Sub-5-fs Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    YUN Chen-Xia; TENG Hao; ZHANG Wei; WANG Li-Feng; ZHAN Min-Jie; HE Xin-Kui; WANG Bing-Bing; WEI Zhi-Yi

    2011-01-01

    We present the observation of the additional spectral components between the odd order harmonics in the harmonic spectrum generated from argon gas driven by sub-5-fs laser pulses.The theoretical analysis shows that the asymmetric laser field in both spatial and temporal domains leads to this complicated spectrum structure of high order harmonics.

  2. A Novel Femtosecond Laser System for Attosecond Pulse Generation

    Directory of Open Access Journals (Sweden)

    Jianqiang Zhu

    2012-01-01

    Full Text Available We report a novel ultrabroadband high-energy femtosecond laser to be built in our laboratory. A 7-femtosecond pulse is firstly stretched by an eight-pass offner stretcher with a chirp rate 15 ps/nm, and then energy-amplified by a two-stage optical parametric chirped pulse amplification (OPCPA. The first stage as preamplification with three pieces of BBO crystals provides the majority of the energy gain. At the second stage, a YCOB crystal with the aperture of ~50 mm is used instead of the KDP crystal as the gain medium to ensure the shortest pulse. After the completion, the laser will deliver about 8 J with pulse duration of about 10 femtoseconds, which should be beneficial to the attosecond pulse generation and other ultrafast experiments.

  3. CTS and CZTS for solar cells made by pulsed laser deposition and pulsed electron deposition

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt

    , which make them promising alternatives to the commercially successful solar cell material copper indium gallium diselenide (CIGS). Complementing our group's work on pulsed laser deposition of CZTS, we collaborated with IMEM-CNR in Parma, Italy, to deposit CZTS by pulsed electron deposition for the first...... time. We compared the results of CZTS deposition by PLD at DTU in Denmark to CZTS made by PED at IMEM-CNR, where CIGS solar cells have successfully been fabricated at very low processing temperatures. The main results of this work were as follows: Monoclinic-phase CTS films were made by pulsed laser...

  4. Pulsed Single Frequency MOPA Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Latest advances in semiconductor optoelectronics makes it possible to develop compact light weight robust sources of coherent optical pulses, demanded for numerous...

  5. Pulse properties of external cavity mode locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Kroh, Marcel; Mørk, Jesper

    2006-01-01

    The performance of an external-cavity mode-locked semiconductor laser is investigated both theoretically and experimentally. The optimization analysis focuses on the regimes of stable mode locking and the generation of sub-picosecond optical pulses. We demonstrate stable output pulses down to one...... picosecond duration with more than 30 dB trailing pulse suppression. The limiting factors to the device performance are investigated on the basis of a fully-distributed time-domain model.We find that ultrafast gain dynamics effectively reduce the pulse-shaping strength and inhibit the generation...

  6. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, Chad M. (Honeywell FM& T, Kansas City, MO); Perricone, Matthew J. (R.J. Lee Group, Inc., Monroeville, PA); Faraone, Kevin M. (BWX Technologies, Inc., Lynchburg, VA); Norris, Jerome T.

    2007-10-01

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  7. Double-pulse laser ablation sampling: Enhancement of analyte emission by a second laser pulse at 213 nm

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Bruno Yue [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Mao, Xianglei [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Hou, Huaming [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Ocean University of China, Qingdao (China); Zorba, Vassilia; Russo, Richard E. [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Cheung, Nai-Ho, E-mail: nhcheung@hkbu.edu.hk [Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China)

    2015-08-01

    For the purpose of devising methods for minimally destructive multi-element analysis, we compare the performance of a 266 nm–213 nm double-pulse scheme against that of the single 266 nm pulse scheme. The first laser pulse at 266 nm ablates a mica sample. Ten ns later, the second pulse at 213 nm and 64 mJ cm{sup −2} orthogonally intercepts the gas plume to enhance the analyte signal. Emissions from aluminum, silicon, magnesium and sodium are simultaneously observed. At low 266 nm laser fluence when only sub-ng of sample mass is removed, the signal enhancement by the 213 nm pulse is especially apparent. The minimum detectable amount of aluminum is about 24 fmol; it will be a hundred times higher if the sample is analyzed by the 266 nm pulse alone. The minimum detectable mass for the other analytes is also reduced by about two orders of magnitude when the second pulse at 213 nm is introduced. The spectral and temporal properties of the enhanced signal are consistent with the mechanism of ultra-violet laser excited atomic fluorescence of dense plumes. - Highlights: • We devise a two-laser-pulse scheme to analyze the elemental composition of mica as test samples. • We compare the analytical performance of the single 266 nm pulse scheme against the 266 nm – 213 nm two pulse scheme. • The two pulse scheme improves the absolute LODs of the analytes by about a hundred times. • The spectral and temporal properties of the enhanced signal are consistent with the mechanism.

  8. Laser cleaning of pulsed laser deposited rhodium films for fusion diagnostic mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Uccello, A., E-mail: andrea.uccello@mail.polimi.it [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Maffini, A., E-mail: alessandro.maffini@mail.polimi.it [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Dellasega, D., E-mail: david.dellasega@polimi.it [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Milan (Italy); Passoni, M., E-mail: matteo.passoni@polimi.it [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Milan (Italy)

    2013-10-15

    Highlights: ► Pulsed laser deposition is exploited to produce Rh films for first mirrors. ► Pulsed laser deposition is exploited to produce tokamak-like C contaminants. ► Rh laser damage threshold has been evaluated for infrared pulses. ► Laser cleaning of C contaminated Rh films gives promising results. -- Abstract: In this paper an experimental investigation on the laser cleaning process of rhodium films, potentially candidates to be used as tokamak first mirrors (FMs), from redeposited carbon contaminants is presented. A relevant issue that lowers mirror's performance during tokamak operations is the redeposition of sputtered material from the first wall on their surface. Among all the possible techniques, laser cleaning, in which a train of laser pulses is launched to the surface that has to be treated, is a method to potentially mitigate this problem. The same laser system (Q-switched Nd:YAG laser with a fundamental wavelength of 1064-nm and 7-ns pulses) has been employed with three aims: (i) production by pulsed laser deposition (PLD) of Rh film mirrors, (ii) production by PLD of C deposits with controlled morphology, and (iii) investigation of the laser cleaning method onto C contaminated Rh samples. The evaluation of Rh films laser damage threshold, as a function of fluence and number of pulses, is discussed. Then, the C/Rh films have been cleaned by the laser beam. The exposed zones have been characterized by visual inspection and scanning electron microscopy (SEM), showing promising results.

  9. Timing control of an intense picosecond pulse laser to the SPring-8 synchrotron radiation pulses

    Science.gov (United States)

    Tanaka, Yoshihito; Hara, Toru; Kitamura, Hideo; Ishikawa, Tetsuya

    2000-03-01

    We have developed a control system to synchronize intense picosecond laser pulses to the hard x-ray synchrotron radiation (SR) pulses of SPring-8. A regeneratively amplified mode-locked Ti:sapphire laser is synchronized to 40 ps SR pulses by locking the laser to the radio frequency of the ring. The synchronization of the pulses is monitored by detecting both beams simultaneously on a gold photocathode of a streak camera. This method enabled us to make a precise measurement of the time interval between the beams, even if the trigger of the streak camera drifts. Synchronization between the laser and the SR pulses has been achieved with a precision of ±2 ps for some hours. The stable timing control ensures the possibility of making two-photon excitation and pump-probe experiments with time resolution of a few tens of ps (limited by the pulse duration of the SR). We have used this system to show that closing undulator gaps in the storage ring shifts the arrival time of the SR pulses, in accord with expectations for the increased power loss.

  10. Generation of high harmonics and attosecond pulses with ultrashort laser pulse filaments and conical waves

    Indian Academy of Sciences (India)

    A Couairon; A Lotti; D Faccio; P Di Trapani; D S Steingrube; E Schulz; T Binhammer; U Morgner; M Kovacev; M B Gaarde

    2014-08-01

    Results illustrating the nonlinear dynamics of ultrashort laser pulse filamentation in gases are presented, with particular emphasis on the filament properties useful for developing attosecond light sources. Two aspects of ultrashort pulse filaments are specifically discussed: (i) numerical simulation results on pulse self-compression by filamentation in a gas cell filled with noble gas. Measurements of high harmonics generated by the pulse extracted from the filament allows for the detection of intensity spikes and subcycle pulses generated within the filament. (ii) Simulation results on the spontaneous formation of conical wavepackets during filamentation in gases, which in turn can be used as efficient driving pulses for the generation of high harmonics and isolated attosecond pulses.

  11. Nanosecond pulsed laser generation of holographic structures on metals

    Science.gov (United States)

    Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.

    2016-03-01

    A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.

  12. Wavelength dependence of soft tissue ablation by using pulsed lasers

    Institute of Scientific and Technical Information of China (English)

    Xianzeng Zhang; Shusen Xie; Qing Ye; Zhenlin Zhan

    2007-01-01

    Pulsed laser ablation of soft biological tissue was studied at 10.6-, 2.94-, and 2.08-μm wavelengths. The ablation effects were assessed by means of optical microscope, the ablation crater depths were measured with reading microscope. It was shown that Er:YAG laser produced the highest quality ablation with clear,sharp cuts following closely the patial contour of the incident beam and the lowest fluence threshold. The pulsed CO2 laser presented the moderate quality ablation with the highest ablation efficiency. The craters drilled with Ho:YAG laser were generally larger than the incident laser beam spot, irregular in shape, and clearly dependent on the local morphology of biotissue. The blation characteristics, including fluence threshold and ablation efficiency, varied substantially with wavelength. It is not evident that water is the only dominant chromophore in tissue.

  13. Experimental investigation of a unique airbreathing pulsed laser propulsion concept

    Science.gov (United States)

    Myrabo, L. N.; Nagamatsu, H. T.; Manka, C.; Lyons, P. W.; Jones, R. A.

    1991-01-01

    Investigations were conducted into unique methods of converting pulsed laser energy into propulsive thrust across a flat impulse surface under atmospheric conditions. The propulsion experiments were performed with a 1-micron neodymium-glass laser at the Space Plasma Branch of the Naval Research Laboratory. Laser-induced impulse was measured dynamically by ballistic pendulums and statically using piezoelectric pressure transducers on a stationary impulse surface. The principal goal was to explore methods for increasing the impulse coupling performance of airbreathing laser-propulsion engines. A magnetohydrodynamic thrust augmentation effect was discovered when a tesla-level magnetic field was applied perpendicular to the impulse surface. The impulse coupling coefficient performance doubled and continued to improve with increasing laser-pulse energies. The resultant performance of 180 to 200 N-s/MJ was found to be comparable to that of the earliest afterburning turbojets.

  14. COMPLIS: COllinear spectroscopy Measurements using a Pulsed Laser Ion Source

    CERN Multimedia

    2002-01-01

    A Pulsed Laser spectroscopy experiment has been installed for the study of hyperfine structure and isotope shift of refractory and daughter elements from ISOLDE beams. It includes decelerated ion-implantation, element-selective laser ionization, magnetic and time-of-flight mass separation. The laser spectroscopy has been performed on the desorbed atoms in a set-up at ISOLDE-3 but later on high resolution laser collinear spectroscopy with the secondary pulsed ion beam is planned for the Booster ISOLDE set-up. During the first operation time of ISOLDE-3 we restricted our experiments to Doppler-limited resonant ionization laser and $\\gamma$-$\\gamma$ nuclear spectroscopy on neutron deficient platinum isotopes of even mass number down to A~=~186 and A~=~179 respectively. These isotopes have been produced by implantation of radioactive Hg and their subsequent $\\beta$-decay.

  15. Study of laser die release by Q-switched Nd:YAG laser pulses

    NARCIS (Netherlands)

    Karlitskaya, N.; de Lange, D.F.; Meijer, J.; Sanders, Rene; Phipps, Claude R.

    2004-01-01

    A new laser-assisted process called "Laser Die Transfer" is developed for high speed assembling of miniature electronic components. Silicon dies, fabricated on an optically transparent carrier are released using a laser pulse. This process has the potential to offer major advantages compared to

  16. Components for monolithic fiber chirped pulse amplification laser systems

    Science.gov (United States)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  17. NOTE: Modelling multiple laser pulses for port wine stain treatment

    Science.gov (United States)

    Verkruysse, Wim; van Gemert, Martin J. C.; Smithies, Derek J.; Nelson, J. Stuart

    2000-12-01

    Many port wine stains (PWS) are still resistant to pulsed dye laser treatment. However, anecdotal information suggests that multiple-pulse laser irradiation improves patient outcome. Our aims in this note are to explain the underlying mechanism and estimate the possible thermal effects of multiple pulses in vascular structures typical of PWS. Based on linear response theory, the linear combination of two thermal contributions is responsible for the total increase in temperature in laser irradiated blood vessels: direct light absorption by blood and direct bilateral thermal heat conduction from adjacent blood vessels. The latter contribution to the increase in temperature in the targeted vessel can be significant, particularly if some adjacent vessels are in close proximity, such as in cases of optical shielding of the targeted vessel, or if the vessels are relatively distant but many in number. We present evidence that multiple-pulse laser irradiation targets blood vessels that are optically shielded by other vessels. Therefore, it may be a means of enhancing PWS therapy for lesions that fail to respond to single-pulse dye laser treatment.

  18. Investigation of Early Plasma Evolution Induced by Ultrashort Laser Pulses

    Science.gov (United States)

    Hu, Wenqian; Shin, Yung C.; King, Galen B.

    2012-01-01

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment1-11. Early plasma evolution has been captured through pump-probe shadowgraphy1-3 and interferometry1,4-7. However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 1014 W/cm2. Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions12. The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. 12 to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators. PMID:22806170

  19. Plasma mediated ablation of biological tissues with ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Oraevsky, A.A. [Lawrence Livermore National Lab., CA (United States)]|[Rice Univ., Houston, TX (United States). Dept. of Electrical Engineering; DaSilva, L.B.; Feit, M.D. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-03-08

    Plasma mediated ablation of collagen gels and porcine cornea was studied at various laser pulse durations in the range from 350 fs to 1 ns at 1,053 nm wavelength. A time resolved stress detection technique was employed to measure transient stress profiles and amplitudes. Optical microscopy was used to characterize ablation craters qualitatively, while a wide band acoustic transducer helped to quantify tissue mechanical response and the ablation threshold. The ablation threshold was measured as a function of laser pulse duration and linear absorption coefficient. For nanosecond pulses the ablation threshold was found to have a strong dependence on the linear absorption coefficient of the material. As the pulse length decreased into the subpicosecond regime the ablation threshold became insensitive to the linear absorption coefficient. The ablation efficiency was found to be insensitive to both the laser pulse duration and the linear absorption coefficient. High quality ablation craters with no thermal or mechanical damage to surrounding material were obtained with 350 fs laser pulses. The mechanism of optical breakdown at the tissue surface was theoretically investigated. In the nanosecond regime, optical breakdown proceeds as an electron collisional avalanche ionization initiated by thermal seed electrons. These seed electrons are created by heating of the tissue by linear absorption. In the ultrashort pulse range, optical breakdown is initiated by the multiphoton ionization of the irradiated medium (6 photons in case of tissue irradiated at 1,053 nm wavelength), and becomes less sensitive to the linear absorption coefficient. The energy deposition profile is insensitive to both the laser pulse duration and the linear absorption coefficient.

  20. Irradiation of the amorphous carbon films by picosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Marcinauskas, L., E-mail: liutauras.marcinauskas@ktu.lt [Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania); Grigonis, A. [Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania); Račiukaitis, G.; Gedvilas, M. [Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius (Lithuania); Vinciūnaitė, V. [Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania)

    2015-10-30

    The effect of a picosecond laser irradiation on structure modification of diamond-like carbon (DLC) and graphite-like carbon (GLC) films was analyzed in this work. The DLC films were irradiated by Nd:YVO{sub 4} laser operating at the 532 nm wavelength with the picosecond (10 ps) pulse duration at the fluence in the range of (0.08–0.76) J/cm{sup 2}. The GLC films were irradiated only at the fluence of 0.76 J/cm{sup 2}. The different pulse number (1, 10, and 100) was used for irradiation the films. The micro-Raman spectroscopy measurements indicated that the laser irradiation led to rearrangement of the sp{sup 3} C–C bonds to the sp{sup 2} C=C bonds in the DLC films. The formation of silicon carbide (SiC) was found in the irradiated spot after 10 and 100 pulses. Modifications in the structure of the DLC film took place even in the areas with low intensity of the Gaussian beam wings (heat affected areas). The increase in the oxygen concentration up to ten times was detected in the heat affected areas after 100 pulses. Opposite to that, the laser irradiation decreased the oxygen concentration and smoothened the surface microrelief of the GLC films. The bonding type remained unchanged in the GLC films even after irradiation with 100 pulses per spot. - Highlights: • The picosecond laser irradiation led to the rearrangement of sp{sup 3} C-C to the sp{sup 2} C = C bonds in the diamond-like carbon film. • The ps-laser irradiation of the DLC films stipulates appearance of the aromatic carbon structures. • The bonding type of the graphite-like carbon films remained unchanged even after ps laser irradiation with 100 pulses.

  1. Towards manipulating relativistic laser pulses with 3D printed materials

    CERN Document Server

    Ji, L L; Pukhov, A; Freeman, R R; Akli, K U

    2015-01-01

    Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities >10^23Wcm^(-2) could be achieved with current tabletop lasers coupled to 3D printed plasma lenses. We show that these plasma optical elements act not only as a lens to focus laser light, but also as an electromagnetic guide for secondary particle beams. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities.

  2. Diode-Pumped Nanosecond Pulsed Laser with Pulse-Transmission-Mode Q-Switch

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei; HUO Yu-Jing; HE Shu-Fang; FENG Li-Chun

    2001-01-01

    Q-switched pulses at 1.064μm with a peak power of 5.02kW and a pulse width of2.8ns were obtained which were pumped by a 1 W laser diode on the Nd:YVO4 microchip at the 1 kHz repetition rate. These values were achieved by combining the techniques of aconsto-optic Q-switching and electro-optic pulse-transmission-mode Q-switching. The temporal characteristics of the pulses were analysed numerically. The experimental results are shown to be in good agreement with theoretical predictions.

  3. Free space optical communication based on pulsed lasers

    Science.gov (United States)

    Drozd, Tadeusz; Mierczyk, Zygmunt; Zygmunt, Marek; Wojtanowski, Jacek

    2016-12-01

    Most of the current optical data transmission systems are based on continuous wave (cw) lasers. It results from the tendency to increase data transmission speed, and from the simplicity in implementation (straightforward modulation). Pulsed lasers, which find many applications in a variety of industrial, medical and military systems, in this field are not common. Depending on the type, pulsed lasers can generate instantaneous power which is many times greater when compared with cw lasers. As such, they seem to be very attractive to be used in data transmission technology, especially due to the potentially larger ranges of transmission, or in adverse atmospheric conditions where low power cw-lasersbased transmission is no longer feasible. It is also a very practical idea to implement data transmission capability in the pulsed laser devices that have been around and already used, increasing the functionality of this type of equipment. At the Institute of Optoelectronics at Military University of Technology, a unique method of data transmission based on pulsed laser radiation has been developed. This method is discussed in the paper in terms of both data transmission speed and transmission range. Additionally, in order to verify the theoretical assumptions, modules for voice and data transmission were developed and practically tested which is also reported, including the measurements of Bit Error Rate (BER) and performance vs. range analysis.

  4. Interaction of pulsed CO2 laser radiation with optical materials

    Science.gov (United States)

    Schmitt, Ruediger; Hugenschmidt, Manfred; Geiss, L.; Stechele, E.

    1995-03-01

    Pulsed high power CO2-laser irradiation can cause damage to optical materials. Some results obtained at ISL with a repetitively pulsed CO2-laser with pulse energies up to 24 J are presented in this paper. In production facilities with CO2-lasers, optics transmitting in the visible spectral range like glass or PMMA are used as protection windows against scattered light. These materials have small skin depths for electromagnetic waves at 10,6 micrometers , typically in the order of some micrometers , so the interaction takes place in thin surface layers. Under high power laser radiation the transparency of the optics is lowered. On the other hand infrared transmitting optics like KCl or ZnSe show a low intrinsic absorption for CO2-laser radiation. Theoretical estimations matching with the experimental observations showed, however, that strong heating occurs, if a thin layer of inhomogeneities, typically some micrometers thick, is included in the surrounding material with slightly higher absorption than the surrounding lowless material. Under these assumptions the thermally induced stress inside the materials can explain the experimentally observed mechanical damage. Besides these thermal damage effects mechanical momenta are transferred by pulsed laser radiation to the optics. Experimental results as obtained by a ballistic pendulum are reported.

  5. Laser Thomson scattering in a pulsed atmospheric arc discharge

    Science.gov (United States)

    Sommers, Bradley; Adams, Steven

    2015-09-01

    Laser scattering measurements, including Rayleigh, Raman, and Thomson scattering have been performed on an atmospheric pulsed arc discharge. Such laser scattering techniques offer a non-invasive diagnostic to measure gas temperature, electron temperature, and electron density in atmospheric plasma sources, particularly those with feature sizes approaching 1 mm. The pulsed discharge is ignited in a pin to pin electrode geometry using a 6 kV pulse with 10 ns duration. The electrodes are housed in a glass vacuum chamber filled with argon gas. The laser signal is produced by a Nd:Yag laser supply, repetitively pulsed at 10 Hz and frequency quadrupled to operate at 266 nm. The scattered laser signal is imaged onto a triple grating spectrometer, which is used to suppress the Rayleigh scatter signal in order to measure the low amplitude Thomson and Raman signals. Preliminary results include measurements of electron temperature and electron density in the plasma column taken during the evolution of the discharge. The laser system is also used to measure the Rayleigh scattering signal, which provides space and time resolved measurements of gas temperature in the arc discharge.

  6. Single molecule imaging with longer x-ray laser pulses

    CERN Document Server

    Martin, Andrew V; Caleman, Carl; Quiney, Harry M

    2015-01-01

    In serial femtosecond crystallography, x-ray laser pulses do not need to outrun all radiation damage processes because Bragg diffraction exceeds the damage-induced background scattering for longer pulses ($\\sim$ 50--100 fs). This is due to a "self-gating pulse" effect whereby damage terminates Bragg diffraction prior to the pulse completing its passage through the sample, as if that diffraction were produced by a shorter pulse of equal fluence. We show here that a similar gating effect applies to single molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of average structure separately to the diffraction from statistical fluctuations of the structure due to damage ("damage noise"). Our results suggest that sub-nanometer single molecule imaging with longer pulses, like those produced at currently operating facilities, should not yet be ruled out. The...

  7. Applications of ultra-short pulsed laser ablation: thin films deposition and fs/ns dual-pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Teghil, R; De Bonis, A; Galasso, A [Dipartimento di Chimica, Universita della Basilicata, Via N. Sauro 85, 85100 Potenza (Italy); Santagata, A; Albano, G; Villani, P; Spera, D; Parisi, G P [CNR-IMIP, Unita di Potenza, Via S. Loja, 85050 Tito Scalo (Italy)], E-mail: roberto.teghil@unibas.it

    2008-10-15

    In this paper, we report a survey of two of the large number of possible practical applications of the laser ablation performed by an ultra-short pulse laser, namely pulsed laser deposition (PLD) and fs/ns dual-pulse laser-induced breakdown spectroscopy (DP-LIBS). These applications differ from those using just longer pulsed lasers as a consequence of the distinctive characteristics of the plasma produced by ultra-short laser beams. The most important feature of this plasma is the large presence of particles with nanometric size which plays a fundamental role in both applications.

  8. The effect of laser pulse width on laser-induced damage at K9 and UBK7 components surface

    Science.gov (United States)

    Zhou, Xinda; Ba, Rongsheng; Zheng, Yinbo; Yuan, Jing; Li, Wenhong; Chen, Bo

    2015-07-01

    In this paper, we investigated the effects of laser pulse width on laser-induced damage. We measured the damage threshold of K9 glass and UBK7 glass optical components at different pulse width, then analysis pulse-width dependence of damage threshold. It is shown that damage threshold at different pulse width conforms to thermal restriction mechanism, Because of cm size laser beam, defect on the optical component surface leads to laser-induced threshold decreased.

  9. Controlled electron bunch generation in the few-cycle ultra-intense laser–solid interaction scenario

    Energy Technology Data Exchange (ETDEWEB)

    Kluge, T., E-mail: t.kluge@hzdr.de; Bussmann, M.; Cowan, T.E.; Schramm, U.

    2016-09-01

    The generation of Maxwellian or exponentially decaying spectra in the interaction of ultra-intense ultra-short laser pulses with solid foils is very general observation both in experiments and simulations. Yet, the physical origin of this observation is not well understood. For a very idealized situation of plane wave, plane and cold target interaction, we show that both randomization between individual electron bunches accelerated by the laser through the plasma as well as randomization during a single bunch are not observable in particle-in-cell simulations. Hence they are not accountable for the apparent thermalization (exponential spectrum).

  10. Short Pulse UV-Visible Waveguide Laser.

    Science.gov (United States)

    1980-07-01

    millimeters of the capillary tube ends. 7 A perimetric study of the laser operation was conducted in which the gas pressure, gas mixture, applied voltage, gas...removal rate through an increase in the V-T vibrational relaxation rate. When the dye laser was adjusted to the red side of the blue transition

  11. Boosting laser-ion acceleration with multi-picosecond pulses

    Science.gov (United States)

    Yogo, A.; Mima, K.; Iwata, N.; Tosaki, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Johzaki, T.; Sentoku, Y.; Nishimura, H.; Sagisaka, A.; Matsuo, K.; Kamitsukasa, N.; Kojima, S.; Nagatomo, H.; Nakai, M.; Shiraga, H.; Murakami, M.; Tokita, S.; Kawanaka, J.; Miyanaga, N.; Yamanoi, K.; Norimatsu, T.; Sakagami, H.; Bulanov, S. V.; Kondo, K.; Azechi, H.

    2017-01-01

    Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm−2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines. PMID:28211913

  12. Energy deposition from focused terawatt laser pulses in air

    CERN Document Server

    Point, Guillaume; Mysyrowicz, André; Houard, Aurélien

    2015-01-01

    Laser filamentation is responsible for the deposition of a significant part of the laser pulse energy in the propagation medium. We found that using terawatt laser pulses and relatively tight focusing conditions in air, resulting in a bundle of co-propagating multifilaments, more than 50 % of the pulses energy is transferred to the medium, eventually degrading into heat. This results in a strong hydrodynamic reaction of air with the generation of shock waves and associated underdense channels for each short-scale filament. In the focal zone, where filaments are close to each other, these discrete channels eventually merge to form a single cylindrical low-density tube over a $\\sim 1~ \\mu\\mathrm{s}$ timescale. We measured the maximum lineic deposited energy to be more than 1 J/m.

  13. Boosting laser-ion acceleration with multi-picosecond pulses

    Science.gov (United States)

    Yogo, A.; Mima, K.; Iwata, N.; Tosaki, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Johzaki, T.; Sentoku, Y.; Nishimura, H.; Sagisaka, A.; Matsuo, K.; Kamitsukasa, N.; Kojima, S.; Nagatomo, H.; Nakai, M.; Shiraga, H.; Murakami, M.; Tokita, S.; Kawanaka, J.; Miyanaga, N.; Yamanoi, K.; Norimatsu, T.; Sakagami, H.; Bulanov, S. V.; Kondo, K.; Azechi, H.

    2017-02-01

    Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm‑2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines.

  14. Plasma shape control by pulsed solenoid on laser ion source

    Science.gov (United States)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  15. Plasma shape control by pulsed solenoid on laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Ikeda, S. [Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Romanelli, M. [Cornell University, Ithaca, NY 14850 (United States); Kumaki, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Waseda University, Shinjuku, Tokyo 169-0072 (Japan); Fuwa, Y. [RIKEN, Wako, Saitama 351-0198 (Japan); Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanesue, T. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hayashizaki, N. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); Lambiase, R. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Okamura, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-09-21

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  16. Laser short pulse heating of metal nano-wires

    Science.gov (United States)

    Yilbas, B. S.; Al-Dweik, A. Y.

    2012-11-01

    Non-equilibrium energy transfer takes place in a solid substrate during a short-pulse laser irradiation and temperature field can be obtained analytically in the irradiated region. In the present study, laser short-pulse heating of metal nano-wire is considered and the analytical solution for two-dimensional axisymmetric nano-wire is presented. Since the absorption of the incident beam takes place in the skin of the irradiated surface, a volumetric heat source resembling the absorption process is incorporated in the analysis. Three different nano-wire materials are introduced in the analysis for the comparison reason. These include silver, chromium, and copper. It is found that temperature decay is gradual on the surface vicinity and temporal variation of the surface temperature follows almost the laser pulse intensity profile at the irradiated center.

  17. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  18. Laser pulse-shape dependence of Compton scattering

    CERN Document Server

    Titov, Alexander I; Shibata, Takuya; Hosaka, Atsushi; Takabe, Hideaki

    2014-01-01

    Compton scattering of short and ultra short (sub-cycle) laser pulses off mildly relativistic electrons is considered within a QED framework. The temporal shape of the pulse is essential for the differential cross section as a function of the energy of the scattered photon at fixed observation angle. The partly integrated cross section is sensitive to the non-linear dynamics resulting in a large enhancement of the cross section for short and, in particular, for ultra-short flat-top pulse envelopes which can reach several orders of magnitude, as compared with the case of a long pulse. Such effects can be studied experimentally and must be taken into account in Monte-Carlo/transport simulations of %$e^+e^-$ pair production in the interaction of electrons and photons in a strong laser field.

  19. Spectrotemporal shaping of seeded free-electron laser pulses.

    Science.gov (United States)

    Gauthier, David; Ribič, Primož Rebernik; De Ninno, Giovanni; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Mahieu, Benoît; Penco, Giuseppe

    2015-09-11

    We demonstrate the ability to control and shape the spectrotemporal content of extreme-ultraviolet (XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectrotemporal properties of XUV light was achieved by precisely manipulating the linear frequency chirp of the seed laser. Our results agree with existing theory, which allows us to retrieve the temporal properties (amplitude and phase) of the FEL pulse from measurements of the spectra as a function of the FEL operating parameters. Furthermore, we show the first direct evidence of the full temporal coherence of FEL light and generate Fourier limited pulses by fine-tuning the FEL temporal phase. The possibility of tailoring the spectrotemporal content of intense short-wavelength pulses represents the first step towards efficient nonlinear optics in the XUV to x-ray spectral region and will enable precise manipulation of core-electron excitations using the methods of coherent quantum control.

  20. Long-pulse-width narrow-bandwidth solid state laser

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.

    1997-11-18

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.

  1. Flexible pulses from carbon nanotubes mode-locked fiber laser

    Science.gov (United States)

    Yang, Ling-Zhen; Yang, Yi; Wang, Juan-Fen

    2016-12-01

    We demonstrate a flexible erbium-doped pulsed fiber laser which achieves the wavelength and pulse width tuning by adjusting an intracavity filter. The intracavity filter is flexible to achieve any of the different wavelengths and bandwidths in the tuning range. The wavelength and width of pulse can be tuned in a range of ˜ 20 nm and from ˜ 0.8 ps to 87 ps, respectively. The flexible pulsed fiber laser can be accurately controlled, which is insensitive to environmental disturbance. Project supported by the National Natural Science Foundation of China (Grant No. 61575137) and the Program on Social Development by Department of Science and Technology of Shanxi Province, China (Grant No. 20140313023-3).

  2. The effect of laser pulse tailored welding of Inconel 718

    Science.gov (United States)

    Mccay, T. Dwayne; Mccay, Mary Helen; Sharp, C. Michael; Womack, Michael G.

    1990-01-01

    Pulse tailored laser welding has been applied to wrought, wrought grain grown, and cast Inconel 718 using a CO2 laser. Prior to welding, the material was characterized metallographically and the solid state transformation regions were identified using Differential Scanning Calorimetry and high temperature x-ray diffraction. Bead on plate welds (restrained and unrestrained) were then produced using a matrix of pulse duty cycles and pulsed average power. Subsequent characterization included heat affected zone width, penetration and underbead width, the presence of cracks, microfissures and porosity, fusion zone curvature, and precipitation and liquated region width. Pedigree welding on three selected processing conditions was shown by microstructural and dye penetrant analysis to produce no microfissures, a result which strongly indicates the viability of pulse tailored welding for microfissure free IN 718.

  3. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.

    Science.gov (United States)

    Sun, Mingying; Eppelt, Urs; Russ, Simone; Hartmann, Claudia; Siebert, Christof; Zhu, Jianqiang; Schulz, Wolfgang

    2013-04-08

    This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

  4. Cooling of rubidium atoms in pulsed diffuse laser light

    Institute of Scientific and Technical Information of China (English)

    Cheng Hua-Dong; Wang Xu-Cheng; Xiao Ling; Zhang Wen-Zhuo; Liu Liang; Wang Yu-Zhu

    2011-01-01

    This paper reports an experiment on laser cooling of 87Rb atoms in pulsed diffuse light, which is the key step towards a compact cold atom clock. It deduces an empirical formula to simulate the pulse cooling process based on the loading of cold atoms in cooling time and the loss in the dead time, which is in agreement with the experimental data. The formula gives a reference to select the parameters for the cold atom clock.

  5. Pulsed laser ablation and deposition of niobium carbide

    Science.gov (United States)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J. V.; Galasso, A.; Teghil, R.

    2016-06-01

    NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation-deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  6. Pulsed Laser Nonlinear Thomson Scattering for General Scattering Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Geoffrey Krafft; A. Doyuran; James Rosenzweig

    2005-05-01

    In a recent paper it has been shown that single electron Thomson backscatter calculations can be performed including the effects of pulsed high intensity lasers. In this paper we present a more detailed treatment of the problem and present results for more general scattering geometries. In particular, we present new results for 90 degree Thomson scattering. Such geometries have been increasingly studied as X-ray sources of short-pulse radiation. Also, we present a clearer physical basis for these different cases.

  7. VUV SOURCE FROM PULSED-LASER GENERATED PLASMA

    OpenAIRE

    Laporte, P.; Damany, N.; Damany, H.

    1987-01-01

    We describe a pulsed vacuum ultraviolet (VUV) source consisting of a plasma created by focusing a NdYAG laser beam into rare gases under moderate pressure, and we report on spectral and time properties of that source. Main features are : continuum emission in a large spectral range, with only few lines superimposed, good time characteristics of the pulses, stability, cleanliness, and relatively high repetition rate (20 Hz).

  8. Application of laser pulse stretching scheme for efficiently delivering laser energy in photoacoustic imaging

    Science.gov (United States)

    Wang, Tianheng; Kumavor, Patrick D.; Zhu, Quing

    2012-06-01

    High-energy and short-duration laser pulses are desirable to improve the photoacoustic image quality when imaging deeply seated lesions. In many clinical applications, the high-energy pulses are coupled to tissue using optical fibers. These pulses can damage fibers if the damage threshold is exceeded. While keeping the total energy under the Food and Drug Administration limit for avoiding tissue damage, it is necessary to reduce the peak intensity and increase the pulse duration for minimizing fiber damage and delivering sufficient light for imaging. We use laser-pulse-stretching to address this problem. An initial 17-ns pulse was stretched to 27 and 37 ns by a ring-cavity laser-pulse-stretching system. The peak power of the 37-ns stretched pulse reduced to 42% of the original, while the fiber damage threshold was increased by 1.5-fold. Three ultrasound transducers centered at 1.3-, 3.5-, and 6-MHz frequencies were simulated, and the results showed that the photoacoustic signal of a 0.5-mm-diameter target obtained with 37-ns pulse was about 98, 91, and 80%, respectively, using the same energy as the 17-ns pulse. Simulations were validated using a broadband hydrophone. Quantitative comparisons of photoacoustic images obtained with three corresponding transducers showed that the image quality was not affected by stretching the pulse.

  9. Pulsed UV laser technologies for ophthalmic surgery

    Science.gov (United States)

    Razhev, A. M.; Chernykh, V. V.; Bagayev, S. N.; Churkin, D. S.; Kargapol’tsev, E. S.; Iskakov, I. A.; Ermakova, O. V.

    2017-01-01

    The paper provides an overview of the results of multiyear joint researches of team of collaborators of Institute of Laser Physics SB RAS together with NF IRTC “Eye Microsurgery” for the period from 1988 to the present, in which were first proposed and experimentally realized laser medical technologies for correction of refractive errors of known today as LASIK, the treatment of ophthalmic herpes and open-angle glaucoma. It is proposed to carry out operations for the correction of refractive errors the use of UV excimer KrCl laser with a wavelength of 222 nm. The same laser emission is the most suitable for the treatment of ophthalmic herpes, because it has a high clinical effect, combined with many years of absence of recrudescence. A minimally invasive technique of glaucoma operations using excimer XeCl laser (λ=308 nm) is developed. Its wavelength allows perform all stages of glaucoma operations, while the laser head itself has high stability and lifetime, will significantly reduce operating costs, compared with other types of lasers.

  10. Pulsed-Laser Irradiation Space Weathering Of A Carbonaceous Chondrite

    Science.gov (United States)

    Thompson, M. S.; Keller, L. P.; Christoffersen, R.; Loeffler, M. J.; Morris, R. V.; Graff, T. G.; Rahman, Z.

    2017-01-01

    Grains on the surfaces of airless bodies experience irradiation from solar energetic particles and melting, vaporization and recondensation processes associated with micrometeorite impacts. Collectively, these processes are known as space weathering and they affect the spectral properties, composition, and microstructure of material on the surfaces of airless bodies, e.g. Recent efforts have focused on space weathering of carbonaceous materials which will be critical for interpreting results from the OSIRIS-REx and Hayabusa2 missions targeting primitive, organic-rich asteroids. In addition to returned sample analyses, space weathering processes are quantified through laboratory experiments. For example, the short-duration thermal pulse from hypervelocity micrometeorite impacts have been simulated using pulsed-laser irradiation of target material e.g. Recent work however, has shown that pulsed-laser irradiation has variable effects on the spectral properties and microstructure of carbonaceous chondrite samples. Here we investigate the spectral characteristics of pulsed-laser irradiated CM2 carbonaceous chondrite, Murchison, including the vaporized component. We also report the chemical and structural characteristics of specific mineral phases within the meteorite as a result of pulsed-laser irradiation.

  11. Plasma and cavitation dynamics during pulsed laser microsurgery in vivo

    CERN Document Server

    Hutson, M Shane

    2007-01-01

    We compare the plasma and cavitation dynamics underlying pulsed laser microsurgery in water and in fruit fly embryos (in vivo) - specifically for nanosecond pulses at 355 and 532 nm. We find two key differences. First, the plasma-formation thresholds are lower in vivo - especially at 355 nm - due to the presence of endogenous chromophores that serve as additional sources for plasma seed electrons. Second, the biological matrix constrains the growth of laser-induced cavitation bubbles. Both effects reduce the disrupted region in vivo when compared to extrapolations from measurements in water.

  12. Pulse laser machining and particulate separation from high impact polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Saira; Kautek, Wolfgang, E-mail: wolfgang.kautek@univie.ac.at

    2014-01-01

    Opaque high impact polystyrene (HIPS) contaminated with graphite particles and poly(styrene-co-divinyl benzene) spheres can only be removed efficiently with nanosecond-pulsed laser radiation of 532 nm while the substrate is preserved. The destruction thresholds are 1–2 orders of magnitude lower than that of other common technical polymers. The inhomogeneously distributed polybutadiene composite component led to enhanced light scattering in the polystyrene matrix so that increased light absorption and energy density causes a comparatively low ablation threshold. Due to this fact there is advantageous potential for pulse laser machining at comparatively low fluences.

  13. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    Science.gov (United States)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-05-01

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10-6%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon-acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  14. Pulse operation of semiconductor laser with nonlinear optical feedback

    Science.gov (United States)

    Guignard, Celine; Besnard, Pascal; Mihaescu, Adrian; MacDonald, K. F.; Pochon, Sebastien; Zheludev, Nikolay I.

    2004-09-01

    A semiconductor laser coupled to a gallium-made non linear mirror may exhibit pulse regime. In order to better understand this coupled cavity, stationary solutions and dynamics are described following the standard Lang and Kobayashi equations for a semiconductor laser submitted to nonlinear optical feedback. It is shown that the nonlinearity distorts the ellipse on which lied the stationary solutions, with a ``higher'' part corresponding to lower reflectivity and a ``lower'' part to higher reflectivity. Bifurcation diagrams and nonlinear analysis are presented while the conditions for pulsed operation are discussed.

  15. Quantum quenching of radiation losses in short laser pulses

    CERN Document Server

    Harvey, Chris; Ilderton, Anton; Marklund, Mattias

    2016-01-01

    Accelerated charges radiate, and therefore must lose energy. The impact of this energy loss on particle motion, called radiation reaction, becomes significant in intense-laser matter interactions, where it can reduce collision energies, hinder particle acceleration schemes, and is seemingly unavoidable. Here we show that this common belief breaks down in short laser pulses, and that energy losses and radiation reaction can be controlled and effectively switched off by appropriate tuning of the pulse length. This "quenching" of emission is impossible in classical physics, but becomes possible in QED due to the discrete nature of quantum emissions.

  16. Two-photon Compton process in pulsed intense laser fields

    CERN Document Server

    Seipt, D

    2012-01-01

    Based on strong-field QED in the Furry picture we use the Dirac-Volkov propagator to derive a compact expression for the differential emission probability of the two-photon Compton process in a pulsed intense laser field. The relation of real and virtual intermediate states is discussed, and the natural regularization of the on-shell contributions due to the finite laser pulse is highlighted. The inclusive two-photon spectrum is two orders of magnitude stronger than expected from a perturbative estimate.

  17. Absorption of a laser light pulse in a dense plasma.

    Science.gov (United States)

    Mehlman-Balloffet, G.

    1973-01-01

    An experimental study of the absorption of a laser light pulse in a transient, high-density, high-temperature plasma is presented. The plasma is generated around a metallic anode tip by a fast capacitive discharge occurring in vacuum. The amount of transmitted light is measured for plasmas made of different metallic ions in the regions of the discharge of high electronic density. Variation of the transmission during the laser pulse is also recorded. Plasma electrons are considered responsible for the very high absorption observed.

  18. Detection of early dental caries with short pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Nahoko; Goto, Shigeru [Osada Research Inst., Ltd., Tokyo (Japan); Tanaka, Hiroshi; Ohzu, Akira; Arisawa, Takashi [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Kyoto (Japan)

    2002-07-01

    Differences in the optical properties of polarization and photoluminescence between caries lesion and noncaries (sound) enamel have been investigated by focusing a pulsed Nd:YAG laser of 532 nm on the surface of teeth. Significant difference in the polarization property of the scattered light from the surface can be observed with some carious samples. For photoluminescence spectral lines which appear at around 650 nm, the intensity of caries lesion has been approximately two times higher than that of sound one. A discussion is presented in which early are potentially detectable by the pulsed laser. (author)

  19. Nanosecond laser-induced phase transitions in pulsed laser deposition-deposited GeTe films

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xinxing, E-mail: xinxing.sun@iom-leipzig.de; Thelander, Erik; Lorenz, Pierre; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd [Leibniz Institute of Surface Modification, Permoserstr. 15, D-04318, Leipzig (Germany)

    2014-10-07

    Phase transformations between amorphous and crystalline states induced by irradiation of pulsed laser deposition grown GeTe thin films with nanosecond laser pulses at 248 nm and pulse duration of 20 ns are studied. Structural and optical properties of the Ge-Te phase-change films were studied by X-ray diffraction and optical reflectivity measurements as a function of the number of laser pulses between 0 and 30 pulses and of the laser fluence up to 195 mJ/cm². A reversible phase transition by using pulse numbers ≥ 5 at a fluence above the threshold fluence between 11 and 14 mJ/cm² for crystallization and single pulses at a fluence between 162 and 182 mJ/cm² for amorphization could be proved. For laser fluences from 36 up to 130 mJ/cm², a high optical contrast of 14.7% between the amorphous and crystalline state is measured. A simple model is used that allows the discussion on the distribution of temperature in dependency on the laser fluence.

  20. Curing of Epoxy Resin Induced by Femtosecond Laser Pulse

    Institute of Scientific and Technical Information of China (English)

    LI Yubin; ZHANG Zuoguang

    2005-01-01

    The possibility of curing of epoxy resin induced by femtosecond laser beam was explored through choosing different initiators . Absorption spectroscopy, infrared spectroscopy (IR), stereomicroscopy and scanning electron microscopy (SEM) were applied to analyze the structure of epoxy resin systems after irradiation with a femtosecond laser beam. The experimental results show that the epoxy resin systems containing diaryliodonium salts can be cured by irradiation of Jemtosecond laser pulse, while the systems containing benzoin can not be cured. It is found that diaryliodonium salts decompose under the irradiation of femtosecond laser pulse through multi ( two ) -photon absorption, initiating the ring-opening polymerization of epoxy resin. And the appearance of cured area has a sheet structure consisting of many tiny lamellar structures.

  1. Multiple quantum wells for passive ultra short laser pulse generation

    CERN Document Server

    Quintero-Torres, R; Rodriguez-Rodriguez, E; Stintz, Andreas; Diels, Jean-Claude

    2007-01-01

    Solid state lasers are demanding independent control in the gain media and cavity loss to achieve ultra short laser pulses using passive mode-locking. Recently, laser mode-locking is achieved with a MBE structure with multiple quantum wells, designed to achieve two functions; Bragg mirror and changes in absorption to control the cavity dynamics. The use of an AlGaAs/AlAs Bragg mirror with a 15 nm GaAs saturable absorber used in a Cr:LiSAF tuneable laser proved to be effective to produce femtosecond pulses. The use of saturable absorbers thus far is a trial and error procedure that is changing due to the correlation with more predictive procedures.

  2. Droplet deformation and fragmentation by ultra-short laser pulses

    CERN Document Server

    Krivokorytov, M S; Sidelnikov, Yu V; Krivtsun, V M; Medvedev, V V; Kompanets, V O; Lash, A A; Koshelev, K N

    2016-01-01

    We report on the experimental studies of the deformation and fragmentation of liquid metal droplets by picosecond and subpicosecond laser pulses. The experiments were performed with laser irradiance varying in 10E13-10E15 W/cm^2 range. The observed evolution of the droplet shape upon the impact dramatically differs from the previously reported for nanosecond laser pulses. Instead of flattening the droplet undergoes rapid asymmetric expansion and transforms into a complex shape which can be interpreted as two conjunct spheroid shells and finally fragments. We explain the described hydrodynamic response to the ultra-short impact as a result of the propagation of the laser-induced convergent shockwave through the volume of droplet.

  3. Electron heating enhancement by frequency-chirped laser pulses

    Science.gov (United States)

    Yazdani, E.; Sadighi-Bonabi, R.; Afarideh, H.; Riazi, Z.; Hora, H.

    2014-09-01

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a0 = 5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about ne ≈ 6nc, where nc is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  4. Electron heating enhancement by frequency-chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, E.; Afarideh, H., E-mail: hafarideh@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Riazi, Z. [Physics and Accelerator School, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  5. Cooling of relativistic electron beams in chirped laser pulses

    CERN Document Server

    Yoffe, Samuel R; Kravets, Yevgen; Jaroszynski, Dino A

    2015-01-01

    The next few years will see next-generation high-power laser facilities (such as the Extreme Light Infrastructure) become operational, for which it is important to understand how interaction with intense laser pulses affects the bulk properties of a relativistic electron beam. At such high field intensities, we expect both radiation reaction and quantum effects to play a significant role in the beam dynamics. The resulting reduction in relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of radiation reaction depends only on the energy of the laser pulse. Quantum effects suppress this cooling, with the dynamics additionally sensitive to the distribution of energy within the pulse. Since chirps occur in both the production of high-intensity pulses (CPA) and the propagation of pulses in media, the effect of using chirps to modify the pulse shape has been investigated using a semi-classical extension to the Landau--Lifshitz theory. Results indicate that even la...

  6. Demonstration of a self-pulsing photonic crystal Fano laser

    CERN Document Server

    Yu, Yi; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper

    2016-01-01

    Semiconductor lasers in use today rely on mirrors based on the reflection at a cleaved facet or Bragg reflection from a periodic stack of layers. Here, we demonstrate an ultra-small laser with a mirror based on the Fano resonance between a continuum of waveguide modes and the discrete resonance of a nanocavity. The Fano resonance leads to unique laser characteristics. Since the Fano mirror is very narrow-band compared to conventional lasers, the laser is single-mode and in particular, it can be modulated via the mirror. We show, experimentally and theoretically, that nonlinearities in the mirror may even promote the generation of a self-sustained train of pulses at gigahertz frequencies, an effect that was previously only observed in macroscopic lasers. Such a source is of interest for a number of applications within integrated photonics.

  7. Efficient potassium diode pumped alkali laser operating in pulsed mode.

    Science.gov (United States)

    Zhdanov, Boris V; Rotondaro, Matthew D; Shaffer, Michael K; Knize, Randall J

    2014-07-14

    This paper presents the results of our experiments on the development of an efficient hydrocarbon free diode pumped alkali laser based on potassium vapor buffered by He gas at 600 Torr. A slope efficiency of more than 50% was demonstrated with a total optical conversion efficiency of 30%. This result was achieved by using a narrowband diode laser stack as the pump source. The stack was operated in pulsed mode to avoid limiting thermal effects and ionization.

  8. Pulsed Laser Processing of Paper Materials

    Science.gov (United States)

    Schechtel, Florian; Reg, Yvonne; Zimmermann, Maik; Stocker, Thomas; Knorr, Fabian; Mann, Vincent; Roth, Stephan; Schmidt, Michael

    At present the trends in paper and packaging industries are the personalization of products and the use of novel high-tech materials. Laser processes as non-contact and flexible techniques seem to be the obvious choice to address those developments. In this paper we present a basic understanding of the occurring mechanisms of laser based engraving of different paper and paperboard materials, using a picosecond laser source at 1064 nm. The influences on the beam-paper-interaction of grammage, the composition of the paper matrix, as well as the paper inherent cellulose fibers were investigated. Here the ablation threshold of commercially available paper was determined and a matrix ablation effect under the 1064 nm radiation observed. These results were characterized and qualified mainly by means of laser scanning microscope (LSM) micrographs in combination with color-space analytics.

  9. Influence of laser pulse frequency on the microstructure of aluminum nitride thin films synthesized by pulsed laser deposition

    Science.gov (United States)

    Antonova, K.; Duta, L.; Szekeres, A.; Stan, G. E.; Mihailescu, I. N.; Anastasescu, M.; Stroescu, H.; Gartner, M.

    2017-02-01

    Aluminum Nitride (AlN) thin films were synthesized on Si (100) wafers at 450 °C by pulsed laser deposition. A polycrystalline AlN target was multipulsed irradiated in a nitrogen ambient, at different laser pulse repetition rate. Grazing Incidence X-Ray Diffraction and Atomic Force Microscopy analyses evidenced nanocrystallites with a hexagonal lattice in the amorphous AlN matrix. The thickness and optical constants of the layers were determined by infrared spectroscopic ellipsometry. The optical properties were studied by Fourier Transform Infrared reflectance spectroscopy in polarised oblique incidence radiation. Berreman effect was observed around the longitudinal phonon modes of the crystalline AlN component. Angular dependence of the A1LO mode frequency was analysed and connected to the orientation of the particles' optical axis to the substrate surface normal. The role of the laser pulse frequency on the layers' properties is discussed on this basis.

  10. Filamentation of ultrashort laser pulses of different wavelengths in argon

    Indian Academy of Sciences (India)

    XIEXING QI; WENBIN LIN

    2017-02-01

    We investigate the filaments formed by the ultrashort laser pulses with different wavelengths of 400 nm, 586 nm and 800 nm propagating in argon. Numerical results show that, when the input power or the ratio of the input power to the critical power is given, the pulse with 400 nm wavelength has the largest on-axis intensity, as well as the narrowest filament and the most stable beam radius. These results indicate that the pulse with shorter wavelength is more suitable for the long-range propagation in argon.

  11. A spectrograph for studying pulsed infrared laser spectra

    Energy Technology Data Exchange (ETDEWEB)

    Gorlin, G.B.; Filippov, V.N.; Komissarova, I.I.; Ostrobskii, U.I.; Ostrovskaya, G.V.; Paritskii, L.G.; Shevova, E.N.

    1982-01-01

    A spectrograph used to record the pulsed infrared spectra in a wavelength range which exceeds the sensitivity limits of standard photographic materials is described. The spectrograph is built using a standard scheme with mirror optics (f = 60 centimeters) and a diffraction grating 50 lines per millimeter. The recording process involves exposing the photomaterial to a pulsed emission source which is synchronized with a reference infrared emission source created using a purple relief photomaterial. The recording sensitivity is 10exp-2 joules per square centimeter. An interlaced pulsed CO2 laser emission spectrum is derived using the spectrograph.

  12. Modeling of ultrafast laser pulse propagation

    Science.gov (United States)

    Kolesik, Miroslav; Brown, Jeffrey; Bahl, Anand

    2016-05-01

    Computer simulations of ultrafast optical pulses face multiple challenges. This requires one to construct a propagation model to reduce the Maxwell system so that it can be efficiently simulated at the temporal and spatial scales relevant to experiments. The second problem concerns the light-matter interactions, demanding novel approaches for gaseous and condensed media alike. As the nonlinear optics pushes into new regimes, the need to honor the first principles is ever greater, and requires striking a balance between computational complexity and physical fidelity of the model. With the emphasis on the dynamics in intense optical pulses, this paper discusses some recent developments and promising directions in the field of ultrashort pulse modeling.

  13. Characterization of polymer thin films obtained by pulsed laser deposition

    Science.gov (United States)

    Palla-Papavlu, A.; Dinca, V.; Ion, V.; Moldovan, A.; Mitu, B.; Luculescu, C.; Dinescu, M.

    2011-04-01

    The development of laser techniques for the deposition of polymer and biomaterial thin films on solid surfaces in a controlled manner has attracted great attention during the last few years. Here we report the deposition of thin polymer films, namely Polyepichlorhydrin by pulsed laser deposition. Polyepichlorhydrin polymer was deposited on flat substrate (i.e. silicon) using an NdYAG laser (266 nm, 5 ns pulse duration and 10 Hz repetition rate). The obtained thin films have been characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and spectroscopic ellipsometry. It was found that for laser fluences up to 1.5 J/cm 2 the chemical structure of the deposited polyepichlorhydrin polymer thin layers resembles to the native polymer, whilst by increasing the laser fluence above 1.5 J/cm 2 the polyepichlorohydrin films present deviations from the bulk polymer. Morphological investigations (atomic force microscopy and scanning electron microscopy) reveal continuous polyepichlorhydrin thin films for a relatively narrow range of fluences (1-1.5 J/cm 2). The wavelength dependence of the refractive index and extinction coefficient was determined by ellipsometry studies which lead to new insights about the material. The obtained results indicate that pulsed laser deposition method is potentially useful for the fabrication of polymer thin films to be used in applications including electronics, microsensor or bioengineering industries.

  14. Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser

    Science.gov (United States)

    Sun, Mingying; Zhu, Jianqiang; Lin, Zunqi

    2017-01-01

    We present a numerical model of plasma formation in ultrafast laser ablation on the dielectrics surface. Ablation threshold dependence on pulse duration is predicted with the model and the numerical results for water agrees well with the experimental data for pulse duration from 140 fs to 10 ps. Influences of parameters and approximations of photo- and avalanche-ionization on the ablation threshold prediction are analyzed in detail for various pulse lengths. The calculated ablation threshold is strongly dependent on electron collision time for all the pulse durations. The complete photoionization model is preferred for pulses shorter than 1 ps rather than the multiphoton ionization approximations. The transition time of inverse bremsstrahlung absorption needs to be considered when pulses are shorter than 5 ps and it can also ensure the avalanche ionization (AI) coefficient consistent with that in multiple rate equations (MREs) for pulses shorter than 300 fs. The threshold electron density for AI is only crucial for longer pulses. It is reasonable to ignore the recombination loss for pulses shorter than 100 fs. In addition to thermal transport and hydrodynamics, neglecting the threshold density for AI and recombination could also contribute to the disagreements between the numerical and the experimental results for longer pulses.

  15. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement.

    Science.gov (United States)

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; Long, Cary; Huang, Chunning; Takeda, Yasuhiro; Liu, Yun

    2014-11-01

    A compact multifunctional optical correlator system for pulse width measurement of ultrashort ultraviolet (UV) pulses has been designed and experimentally demonstrated. Both autocorrelation and cross-correlation functions are measured using a single nonlinear crystal, and the switching between two measurements requires no adjustment of phase matching and detector. The system can measure UV pulse widths from sub-picoseconds to 100 ps, and it involves no auxiliary pulse in the measurement. The measurement results on a burst-mode picosecond UV laser show a high-quality performance on speed, accuracy, resolution, and dynamic range. The proposed correlator can be applied to measure any ultrashort UV pulses produced through sum-frequency generation or second-harmonic generation.

  16. Temporal laser pulse manipulation using multiple optical ring-cavities

    Science.gov (United States)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)

    2010-01-01

    An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.

  17. Thrust Measurement of Laser Detonation Thruster with a Pulsed Glass Laser

    Science.gov (United States)

    Wang, Bin; Han, Taro; Michigami, Keisuke; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2011-11-01

    Experimental studies were carried out for measuring the laser propulsion thrust with using of a Q-switched Nd:Glass laser. In the tests, a laser beam with 33 ns FWHM pulse width was focused to generate breakdown in the cone-shaped nozzle of aluminum thrusters which were fixed at the end of a ballistic pendulum. The pulse energy used was 1.0 J and the focusing number is 6.27, which gave the highest energy conversion efficiency from laser energy to that of induced blast wave as found in previous research. The momentum coupling coefficient Cm dependency on nozzle apex angles, 30°, 45° and 60°, were investigated with carefully controlling of the laser ignition positions. Results show that, solid-state laser could be a candidate to suffice laser propulsion missions in term of Cm it can achieve.

  18. A power ramped pulsed mode laser piercing technique for improved CO 2 laser profile cutting

    Science.gov (United States)

    Tirumala Rao, B.; Ittoop, M. O.; Kukreja, L. M.

    2009-11-01

    Laser piercing is one of the inevitable requirements of laser profile cutting process and it has a direct bearing on the quality of the laser cut profiles. We have developed a novel power ramped pulsed mode (PRPM) laser piercing technique to produce much finer pierced holes and to achieve a better control on the process parameters compared to the existing methodology based on normal pulsed mode (NPM). Experiments were carried out with both PRPM and NPM laser piercing on 1.5-mm-thick mild steel using an in-house developed high-power transverse flow continuous wave (CW)-CO 2 laser. Significant improvements in the spatter, circularity of the pierced hole and reproducibility were achieved through the PRPM technique. We studied, in detail, the dynamics of processes involved in PRPM laser piercing and compared that with those of the NPM piercing.

  19. Spatiotemporal vector pulse shaping of femtosecond laser pulses with a multi-pass two-dimensional spatial light modulator.

    Science.gov (United States)

    Esumi, Y; Kabir, M D; Kannari, F

    2009-10-12

    A novel non-interferometric vector pulse-shaping scheme is developed for femtosecond laser pulses using a two-dimensional spatial light modulator (2D-SLM). By utilizing spatiotemporal pulse shaping obtainable by the 2D-SLM, we demonstrate spatiotemporal vector pulse shaping for the first time.

  20. Polycrystalline ZnTe thin film on silicon synthesized by pulsed laser deposition and subsequent pulsed laser melting

    Science.gov (United States)

    Xu, Menglei; Gao, Kun; Wu, Jiada; Cai, Hua; Yuan, Ye; Prucnal, S.; Hübner, R.; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2016-03-01

    ZnTe thin films on Si substrates have been prepared by pulsed laser deposition and subsequent pulsed laser melting (PLM) treatment. The crystallization during PLM is confirmed by Raman scattering, x-ray diffraction and room temperature photoluminescence (PL) measurements. The PL results show a broad peak at 574 nm (2.16 eV), which can be assigned to the transitions from the conduction band to the acceptor level located at 0.145 eV above the valence band induced by zinc-vacancy ionization. Our work provides an applicable approach to low temperature preparation of crystalline ZnTe thin films.

  1. A Study of Pulse by Pulse Microscale Patch Transfer Using Picosecond Laser

    Directory of Open Access Journals (Sweden)

    Yung KL

    2016-09-01

    Full Text Available The shape restoring capability of Ti/Ni has potential to overcome the shrinkage of polymer in mould cavity, which has potential of solving the demoulding problems and helps dimension accuracy in micro/nano injection molding. However, the deposition of Ti/Ni film precisely and securely on specific location of the micro mould cavity present difficulties with conventional deposition methods. In this paper, the use of photonic impact forward transfer method to deposit Ti/Ni film patches on specific locations of a substrate is demonstrate using a picosecond laser. Pulse by pulse deposition control parameters affecting position accuracy and spot size were studied in this paper. It was found that although laser power, and distance between donor films and the substrate all influence the spot sizes of pulse by pulse deposited patches, adjusting spot size by changing laser power is better than changing distance due to separated particles being found around the deposited film patches. Results of this study proved the feasibility of depositing Ti/Ni film patches on specific location using pico-second laser with high position accuracy. The potential of using photonic impact forward transfer as a complementing method to laser powder 3D printing of difficult to process material to produce better surface quality microproducts such as micro moulds for micro-injection molding is tremendous.

  2. New laser glass for short pulsed laser applications: the BLG80 (Conference Presentation)

    Science.gov (United States)

    George, Simi A.

    2017-03-01

    For achieving highest peak powers in a solid state laser (SSL) system, significant energy output and short pulses are necessary. For mode-locked lasers, it is well-known from the Fourier theorem that the largest gain bandwidths produce the narrowest pulse-widths; thus are transform limited. For an inhomogeneously broadened line width of a laser medium, if the intensity of pulses follow a Gaussian function, then the resulting mode-locked pulse will have a Gaussian shape with the emission bandwidth/pulse duration relationship of pulse ≥ 0.44?02/c. Thus, for high peak power SSL systems, laser designers incorporate gain materials capable of broad emission bandwidths. Available energy outputs from a phosphate glass host doped with rare-earth ions are unparalleled. Unfortunately, the emission bandwidths achievable from glass based gain materials are typically many factors smaller when compared to the Ti:Sapphire crystal. In order to overcome this limitation, a hybrid "mixed" laser glass amplifier - OPCPA approach was developed. The Texas petawatt laser that is currently in operation at the University of Texas-Austin and producing high peak powers uses this hybrid architecture. In this mixed-glass laser design, a phosphate and a silicate glass is used in series to achieve a broader bandwidth required before compression. Though proven, this technology is still insufficient for the future compact petawatt and exawatt systems capable of producing high energies and shorter pulse durations. New glasses with bandwidths that are two and three times larger than what is now available from glass hosts is needed if there is to be an alternative to Ti:Sapphire for laser designers. In this paper, we present new materials that may meet the necessary characteristics and demonstrate the laser and emission characteristics these through the internal and external studies.

  3. Tissue tearing caused by pulsed laser-induced ablation pressure.

    Science.gov (United States)

    Cummings, J P; Walsh, J T

    1993-02-01

    Pressure induced by ablative pulses of laser radiation is shown to correlate with the mechanical disruption of tissue. The ablation pressure induced during Er:YSGG laser irradiation of skin, liver, and aorta was calculated from a ballistic pendulum-based measurement of recoil momentum. The ejected material and ablation crater were examined grossly and microscopically after ablation. A gas-dynamic model of laser-induced vaporization was used to understand the measured pressures. The results show that mechanical disruption of tissue occurs when the ablation pressure exceeds the strength of the irradiated tissue at sites of intrinsic weakness.

  4. Matrix-Assisted Pulsed Laser Evaporation of polythiophene films

    Energy Technology Data Exchange (ETDEWEB)

    Bloisi, F. [CNR-INFM Coherentia, Napoli, Dip. Scienze Fisiche, Univ. Napoli ' Federico II' , P.le V.Tecchio, 80, 80125 Naples (Italy)], E-mail: bloisi@na.infn.it; Cassinese, A.; Papa, R.; Vicari, L. [CNR-INFM Coherentia, Napoli, Dip. Scienze Fisiche, Univ. Napoli ' Federico II' , P.le V.Tecchio, 80, 80125 Naples (Italy); Califano, V. [Dip. Scienze Fisiche, Univ. Napoli ' Federico II' , P.le V.Tecchio, 80, 80125 Naples (Italy)

    2008-02-15

    Organic poly-conjugated systems have recently attracted great interest as semi-conducting materials and, among poly-conjugated systems, substituted polythiophenes have given relevant results in PVs applications. The high conductivity required is affected by both the polymer conjugation length and the chain packing. Thus, highly region-regular polymers must be used and deposited as thin films with some technique which favours orientation and crystallization of the polymer chains. A deposition technique often used for its flexibility and high control over film characteristics is Pulsed Laser Deposition (PLD). In PLD, largely applied for inorganic thin film deposition, the material is ablated from a solid target by a focused pulsed laser beam and is deposited on the substrate placed at a small distance. Although some addition polymers have been successfully deposited the deposition seems to proceed via a 'depolymerization-monomer ablation-repolymerization' mechanism, this is clearly not possible in general for organic molecules and condensation polymers. On the contrary MAPLE (Matrix-Assisted Pulsed Laser Evaporation) is a recently developed PLD based thin film deposition technique, particularly well suited for organic/polymer thin film deposition. Up to now MAPLE depositions have been carried out mainly by means of modified PLD systems, using excimer lasers operating in UV, but use of less energetic radiations can minimize the photochemical decomposition of the polymer molecules. We have used a deposition system explicitly designed for MAPLE technique connected to a Q-switched Ng:YAG pulsed laser which can be operated at different wavelength ranging from IR to UV in order to evaluate the effect of the choice of laser radiation on the deposition of POOPT thin films. From DRIFT-IR spectroscopy, all deposited films showed structural order; it was determined that the better wavelength for POOPT deposition is 532 nm. With this value of the laser wavelength the

  5. Optimised design of fibre-based pulse compressor for gain-switched DFB laser pulses at 1.5 µm

    OpenAIRE

    Barry, Liam P.; Thomsen, Benn C.; Dudley, John M.; Harvey, John D.

    1999-01-01

    An optical-fibre based pulse compressor for gain-switched DFB laser pulses has been optimised using a systematic procedure based on the initial complete characterisation of the laser pulses, followed by numerical simulations of the pulse propagation in different types of fibre to determine the required lengths for optimum compression. Using both linear and nonlinear compression techniques, an optimum compression factor of 12 is achieved.

  6. A compact field-portable double-pulse laser system to enhance laser induced breakdown spectroscopy

    Science.gov (United States)

    Li, Shuo; Liu, Lei; Yan, Aidong; Huang, Sheng; Huang, Xi; Chen, Rongzhang; Lu, Yongfeng; Chen, Kevin

    2017-02-01

    This paper reports the development of a compact double-pulse laser system to enhance laser induced breakdown spectroscopy (LIBS) for field applications. Pumped by high-power vertical-surface emitting lasers, the laser system that produces 16 ns pulse at 12 mJ/pulse with total weight less than 10 kg is developed. The inter-pulse delay can be adjusted from 0 μ s with 0.5 μ s increment. Several LIBS experiments were carried out on NIST standard aluminum alloy samples. Comparing with the single-pulse LIBS, up to 9 times enhancement in atomic emission line was achieved with continuum background emission reduced by 70%. This has led to up to 10 times improvement in the limit of detection. Signal stability was also improved by 128% indicating that a more robust and accurate LIBS measurement can be achieved using a compact double-pulse laser system. This paper presents a viable and field deployable laser tool to dramatically improve the sensitivity and applicability of LIBS for a wide array of applications.

  7. Nitridation of Nb surface by nanosecond and femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Farha, Ashraf Hassan [Department of Electrical and Computer Engineering and the Applied Research Center, Old Dominion University, Norfolk, VA 23529 (United States); Department of Physics, Faculty of Science, Ain Shams University, Cairo 11566 (Egypt); Ozkendir, Osman Murat [Tarsus Technology Faculty, Mersin University, Tarsus 33480 (Turkey); Koroglu, Ulas; Ufuktepe, Yüksel [Department of Physics, Cukurova University, Adana 01330 (Turkey); Elsayed-Ali, Hani E., E-mail: helsayed@odu.edu [Department of Electrical and Computer Engineering and the Applied Research Center, Old Dominion University, Norfolk, VA 23529 (United States)

    2015-01-05

    Highlights: • Laser nitridation of niobium is performed with nanosecond and femtosecond pulses. • Formation of NbN{sub x} with mixed α, β and δ phases was observed. • For femtosecond laser processed samples, laser induced ripple patterns oriented parallel to the beam polarization were formed. • X-ray absorption near edge structure show formation of Nb{sub 2}O{sub 5} on the surface of the samples. - Abstract: Niobium nitride samples were prepared by laser nitridation in a reactive nitrogen gas environment at room temperature using a Q-switched Nd:YAG nanosecond laser and a Ti:sapphire femtosecond laser. The effects of laser fluence on the formed phase, surface morphology, and electronic properties of the NbN{sub x} were investigated. The samples were prepared at different nanosecond laser fluences up to 5.0 ± 0.8 J/cm{sup 2} at fixed nitrogen pressure of ∼2.7 × 10{sup 4} Pa formed NbN{sub x} with mainly the cubic δ-NbN phase. Femtosecond laser nitrided samples were prepared using laser fluences up to 1.3 ± 0.3 mJ/cm{sup 2} at ∼4.0 × 10{sup 4} Pa nitrogen pressure. Laser induced ripple patterns oriented parallel to the beam polarization were formed with spacing that increases with the laser fluence. To achieve a laser-nitrided surface with desired crystal orientation the laser fulence is an important parameter that needs to be properly adjusted.

  8. Numeric modeling of synchronous laser pulsing and voltage pulsing field evaporation

    CERN Document Server

    Zhao, L; Houard, J; Blum, I; Delaroche, F; Vurpillot, F

    2016-01-01

    We have recently proposed an atom probe design based on a femtosecond time-resolved pump-probe setup. This setup unlocks the limitation of voltage pulsed mode atom probe thanks to the occurrence of local photoconductive switching effect . In this paper, we have used a numerical model to simulate the field evaporation process triggered by the synchronous two pulses. The model takes into account the local photoconductive effect and the temperature rise caused by the laser application and the voltage pulse distortion due to the RC effect.

  9. Pulsed pump: Thermal effects in solid state lasers under super-Gaussian pulses

    Indian Academy of Sciences (India)

    H Nadgaran; M Sabaian

    2006-12-01

    Solid state laser (SSL) powers can be realistically scaled when pumped by a real, efficient and multimode pulse. In this work, a fourth-order super-Gaussian pulse was assumed as a pump for SSL's and a complete analytical expression for the thermal phase shift is given. Moreover, the focal length of thermal lens in paraxial ray approximation regime was studied. The results when applied to a Ti : sapphire crystal show an appreciable correction for abberation compared to a top-hat pulse.

  10. Epitaxial thin films grown by pulsed laser deposition

    NARCIS (Netherlands)

    Blank, D.H.A.

    2005-01-01

    In this paper, we present the pulsed laser deposition (PLD) technique to control the growth of metal oxide materials at atomic level using high-pressure reflective high-energy electron diffraction and ellipsometry. These developments have helped to make PLD a grown-up technique to fabricate complex

  11. Electromagnetic pulses produced by expanding laser-produced Au plasma

    Directory of Open Access Journals (Sweden)

    De Marco Massimo

    2015-06-01

    Full Text Available The interaction of an intense laser pulse with a solid target produces large number of fast free electrons. This emission gives rise to two distinct sources of the electromagnetic pulse (EMP: the pulsed return current through the holder of the target and the outflow of electrons into the vacuum. A relation between the characteristics of laser-produced plasma, the target return current and the EMP emission are presented in the case of a massive Au target irradiated with the intensity of up to 3 × 1016 W/cm2. The emission of the EMP was recorded using a 12 cm diameter Moebius loop antennas, and the target return current was measured using a new type of inductive target probe (T-probe. The simultaneous use of the inductive target probe and the Moebius loop antenna represents a new useful way of diagnosing the laser–matter interaction, which was employed to distinguish between laser-generated ion sources driven by low and high contrast laser pulses.

  12. Melting of copper surface by ultrashort laser pulses

    NARCIS (Netherlands)

    Oboňa, J.V.; Ocelík, V.; Hosson, J.T.M. de; Skolski, J.Z.P.; Mitko, V.S.; Römer, G.R.B.E.; Huis in 't Veld, A.J.

    2011-01-01

    The main advantage of ultrashort laser pulses in manufacturing technology is their very high removal rate of material and high quality of microstructures with the smallest dimensions at 1 μm level. The accuracy is mainly due to an almost absence of thermal diffusion into bulk material. In this paper

  13. Surface melting of copper by ultrashort laser pulses

    NARCIS (Netherlands)

    Oboňa, J.V.; Ocelík, V.; De Hosson, J.T.M.; Skolski, J.Z.P.; Mitko, V.S.; Römer, G.R.B.E.; Huis in 't Veld, A.J.

    2011-01-01

    The main advantage of ultrashort laser pulses in manufacturing technology is their very high removal rate of material and high quality of microstructures with the smallest dimensions at 1 μm level. The accuracy is mainly due to an almost absence of thermal diffusion into bulk material. In this paper

  14. Stoichiometry controlled oxide thin film growth by pulsed laser deposition

    NARCIS (Netherlands)

    Groenen, Rik; Smit, Jasper; Orsel, Kasper; Vailionis, Arturas; Bastiaens, Bert; Huijben, Mark; Boller, Klaus; Rijnders, Guus; Koster, Gertjan

    2015-01-01

    The oxidation of species in the plasma plume during pulsed laser deposition controls both the stoichiometry as well as the growth kinetics of the deposited SrTiO3 thin films, instead of the commonly assumed mass distribution in the plasma plume and the kinetic energy of the arriving species. It was

  15. Ultra-short pulsed millimeter-wave laser

    Science.gov (United States)

    Wilson, Thomas

    2000-10-01

    High peak power pulses of 1.22-mm wavelength radiation have recently been obtained from a novel cavity-dumped far-infrared optically-pumped laser^1. Smooth reproducible pulses with the following characteristics have been routinely obtained: peak power=25-kW, pulsewidth (FWHM)=5-ns, repetition rate=10 pps. (This compares favorably to typical far-infrared, cavity-dumped output - 11-kW, 30-ns, 1 pps - available from the University of California - Santa Barbara Free Electron Laser). The pumping laser is a grating-tuned, hybrid TEA CO2 laser providing 1J / pulse at the 9P32 transition. The far-infrared gain medium is isotopic (C^13) methyl flouride. Experiments are underway for using the novel source to resonantly excite coherent pulses of 250-GHz longitudinal acoustic phonons in silicon doping superlattices. ^1 Thomas E. Wilson, "Modeling the high-speed switching of far-infrared radiation by photoionization in a semiconductor", Phys. Rev. B 59 (20), 12996 (1999).

  16. Two-pulse laser control of nuclear and electronic motion

    DEFF Research Database (Denmark)

    Grønager, Michael; Henriksen, Niels Engholm

    1997-01-01

    We discuss an explicitly time-dependent two-pulse laser scheme for controlling where nuclei and electrons are going in unimolecular reactions. We focus on electronic motion and show, with HD+ as an example, that one can find non-stationary states where the electron (with some probability) oscilla...

  17. Surface melting of copper by ultrashort laser pulses

    NARCIS (Netherlands)

    Oboňa, J.V.; Ocelík, V.; De Hosson, J.T.M.; Skolski, J.Z.P.; Mitko, V.S.; Römer, G.R.B.E.; Huis in 't Veld, A.J.

    2011-01-01

    The main advantage of ultrashort laser pulses in manufacturing technology is their very high removal rate of material and high quality of microstructures with the smallest dimensions at 1 μm level. The accuracy is mainly due to an almost absence of thermal diffusion into bulk material. In this paper

  18. Transparent conducting oxides on polymeric substrates by pulsed laser deposition

    NARCIS (Netherlands)

    Dekkers, Jan Matthijn

    2007-01-01

    This thesis describes the research on thin films of transparent conducting oxides (TCOs) on polymeric substrates manufactured by pulsed laser deposition (PLD). TCOs are an indispensable part in optoelectronic applications such as displays, solar cells, light-emitting diodes, etc. At present, in many

  19. Ultrashort pulse laser microsurgery system with plasma luminescence feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.M.; Feit, M.D.; Rubenchik, A.M.; Gold, D.M.; Darrow, C.B.; Da Silva, L.B.

    1997-11-10

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue during ultrashort pulse laser (USPL) micro-spinal surgery. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so that only bone tissue can be selectively ablated while preserving the spinal cord.

  20. Detection of diamond in ore using pulsed laser Raman spectroscopy

    CSIR Research Space (South Africa)

    Lamprecht, GH

    2007-10-01

    Full Text Available The viability of using pulsed laser excited Raman spectroscopy as a method for diamond detection from ore, has been investigated. In this method the spontaneous Stokes Raman signal is used as indicator of diamond, and a dual channel system...

  1. RHEED study of titanium dioxide with pulsed laser deposition

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Pryds, Nini; Schou, Jørgen

    2009-01-01

    Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target...

  2. Optical Multichannel Imaging of Pulsed Laser Deposition of ZnO (PostPrint)

    Science.gov (United States)

    2014-08-01

    AFRL-RX-WP-JA-2014-0186 OPTICAL MULTICHANNEL IMAGING OF PULSED LASER DEPOSITION OF ZNO (POSTPRINT) John G. Jones AFRL/RXAN...PULSED LASER DEPOSITION OF ZNO (POSTPRINT) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S...Optical Multichannel Imaging of Pulsed Laser Deposition of ZnO John G. Jones, Lirong Sun, Neil R. Murphy, and Rachel Jakubiak Abstract— Pulsed laser

  3. Pulse temporal compression by two-stage stimulated Brillouin scattering and laser-induced breakdown

    Science.gov (United States)

    Liu, Zhaohong; Wang, Yulei; Wang, Hongli; Bai, Zhenxu; Li, Sensen; Zhang, Hengkang; Wang, Yirui; He, Weiming; Lin, Dianyang; Lu, Zhiwei

    2017-06-01

    A laser pulse temporal compression technique combining stimulated Brillouin scattering (SBS) and laser-induced breakdown (LIB) is proposed in which the leading edge of the laser pulse is compressed using SBS, and the low intensity trailing edge of the laser pulse is truncated by LIB. The feasibility of the proposed scheme is demonstrated by experiments in which a pulse duration of 8 ns is compressed to 170 ps. Higher compression ratios and higher efficiency are expected under optimal experimental conditions.

  4. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    Science.gov (United States)

    Hansson, M.; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma.

  5. Ultra-short pulsed ytterbium-doped fiber laser and amplifier

    Institute of Scientific and Technical Information of China (English)

    Guanglei Ding; Xin Zhao; Yishan Wang; Wei Zhao; Guofu Chen

    2006-01-01

    @@ This paper investigates a high power all fiber ultrashort pulse laser system. This system consists of a modelocking laser oscillator, a multi-stage amplifier, a pulse selector, and a paired grating pulse compressor.With pulse energy of 12 μJ at repetition rate of 30 kHz, the laser at center wavelength of 1.05 μm was obtained. Pulse width of 525 fs was achieved after the grating pair compressor.

  6. A frequency-doubled, pulsed laser system for rubidium manipulation

    CERN Document Server

    Dingjan, J; Beugnon, J; Jones, M P A; Bergamini, S; Messin, G; Browaeys, A; Grangier, P

    2005-01-01

    We have constructed a pulsed laser system for the manipulation of cold Rb atoms. The system combines optical telecommunications components and frequency doubling to generate light at 780 nm. Using a fast, fibre-coupled intensity modulator, output from a continuous laser diode is sliced into pulses with a length between 1.3 and 6.1 ns and a repetition frequency of 5 MHz. These pulses are amplified using an erbium-doped fibre amplifier, and frequency-doubled in a periodically poled lithium niobate crystal, yielding a peak power up to 12 W. Using the resulting light at 780 nm, we demonstrate Rabi oscillations on the F = 2 F=3-transition of a single 87Rb atom.

  7. Pulsed laser ablation and deposition of niobium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Sansone, M.; De Bonis, A. [Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza (Italy); Santagata, A. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, UOS Tito Scalo, C.da Santa Loja, 85010 Tito, PZ (Italy); Rau, J.V. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100, 00133 Rome (Italy); Galasso, A. [Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza (Italy); Teghil, R., E-mail: roberto.teghil@unibas.it [Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza (Italy)

    2016-06-30

    Highlights: • We have deposited in vacuum niobium carbide films by fs and ns PLD. • We have compared PLD performed by ultra-short and short laser pulses. • The films deposited by fs PLD of NbC are formed by nanoparticles. • The structure of the films produced by fs PLD at 500 °C corresponds to NbC. - Abstract: NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation–deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  8. Efficient self-sustained pulsed CO laser

    NARCIS (Netherlands)

    Peters, P.J.M.

    1978-01-01

    In this paper a simple sealed-off TEA CO laser is described with a self-sustained discharge without an external UV preionization source. At 77 K this system yields more than 600 mJ from a lasing volume of about 60 cm3 CO-N2-He mixture (45 J/ℓ atm. with 15.6% efficiency).

  9. Precision resection of intestine using ultrashort laser pulses

    Science.gov (United States)

    Beck, Rainer J.; Gora, Wojciech S.; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2016-03-01

    Endoscopic resection of early colorectal neoplasms typically employs electrocautery tools, which lack precision and run the risk of full thickness thermal injury to the bowel wall with subsequent perforation. We present a means of endoluminal colonic ablation using picosecond laser pulses as a potential alternative to mitigate these limitations. High intensity ultrashort laser pulses enable nonlinear absorption processes, plasma generation, and as a consequence a predominantly non-thermal ablation regimen. Robust process parameters for the laser resection are demonstrated using fresh ex vivo pig intestine samples. Square cavities with comparable thickness to early colorectal neoplasms are removed for a wavelength of 1030 nm and 515 nm using a picosecond laser system. The corresponding histology sections exhibit in both cases only minimal collateral damage to the surrounding tissue. The ablation depth can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers for the resection of intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional electrocautery.

  10. Fluorescence of silicon nanoparticles prepared by nanosecond pulsed laser

    Directory of Open Access Journals (Sweden)

    Chunyang Liu

    2014-03-01

    Full Text Available A pulsed laser fabrication method is used to prepare fluorescent microstructures on silicon substrates in this paper. A 355 nm nanosecond pulsed laser micromachining system was designed, and the performance was verified and optimized. Fluorescence microscopy was used to analyze the photoluminescence of the microstructures which were formed using the pulsed laser processing technique. Photoluminescence spectra of the microstructure reveal a peak emission around 500 nm, from 370 nm laser irradiation. The light intensity also shows an exponential decay with irradiation time, which is similar to attenuation processes seen in porous silicon. The surface morphology and chemical composition of the microstructure in the fabricated region was also analyzed with multifunction scanning electron microscopy. Spherical particles are produced with diameters around 100 nm. The structure is compared with porous silicon. It is likely that these nanoparticles act as luminescence recombination centers on the silicon surface. The small diameter of the particles modifies the band gap of silicon by quantum confinement effects. Electron-hole pairs recombine and the fluorescence emission shifts into the visible range. The chemical elements of the processed region are also changed during the interaction between laser and silicon. Oxidation and carbonization play an important role in the enhancement of fluorescence emission.

  11. Fluorescence of silicon nanoparticles prepared by nanosecond pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunyang, E-mail: chunyangliu@126.com; Sui, Xin; Yang, Fang; Ma, Wei; Li, Jishun; Xue, Yujun [Henan University of Science and Technology, Luoyang, 471003 (China); Fu, Xing [Tianjin University, Tianjin, 300072 (China)

    2014-03-15

    A pulsed laser fabrication method is used to prepare fluorescent microstructures on silicon substrates in this paper. A 355 nm nanosecond pulsed laser micromachining system was designed, and the performance was verified and optimized. Fluorescence microscopy was used to analyze the photoluminescence of the microstructures which were formed using the pulsed laser processing technique. Photoluminescence spectra of the microstructure reveal a peak emission around 500 nm, from 370 nm laser irradiation. The light intensity also shows an exponential decay with irradiation time, which is similar to attenuation processes seen in porous silicon. The surface morphology and chemical composition of the microstructure in the fabricated region was also analyzed with multifunction scanning electron microscopy. Spherical particles are produced with diameters around 100 nm. The structure is compared with porous silicon. It is likely that these nanoparticles act as luminescence recombination centers on the silicon surface. The small diameter of the particles modifies the band gap of silicon by quantum confinement effects. Electron-hole pairs recombine and the fluorescence emission shifts into the visible range. The chemical elements of the processed region are also changed during the interaction between laser and silicon. Oxidation and carbonization play an important role in the enhancement of fluorescence emission.

  12. Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

    2009-08-24

    This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

  13. DISAPPEARANCE OF TWO-PLASMON DECAY INSTABILITY IN PLASMAS PRODUCED BY ULTRASHORT LASER PULSES

    Institute of Scientific and Technical Information of China (English)

    CHEN LI-MING; ZHANG JIE; LIN HAI; LI YU-TONG; ZHAO LI-ZENG; JIANG WEN-MIAN

    2001-01-01

    Harmonic emission was studied from a plasma produced by ultrashort laser pulses. Unlike the harmonics from plasmas created by long (ns) laser pulses, the 3/2 harmonic emission was not observed in the interaction between plasmas and ultrashort laser pulses. A simple model is proposed to explain this phenomenon.

  14. Diode-pumped solid state laser. (Part V). ; Short pulse laser oscillation. Handotai laser reiki kotai laser. 5. ; Tan pulse hasshin

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, M.; Bando, N. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-12-25

    A semiconductor laser (LD) excited solid state laser using an LD as an excited light source is under discussion for its practical applications to measurements, processing, communications, office automation, and medical areas. This paper describes the discussions given on the short pulse transmission using AOQ switching elements in the LD excited solid state laser with a long wave length band (1.3{mu}m), which is expected of its application in the communications and measurements area. Based on a possibility of raising a measurements resolution by making the pluses in the LD excited solid state laser, and experiments were performed using Nd:YLF as a laser host. as a results, it was found that the smaller the effective mode volume V {sub eff},the smaller the pulse width, and that the ratio of number of initial inversion distribution (N{sub i}/N{sub t}), an important parameter to determine pulse widths, can be obtained from the ratio of the LD exciting light to the input power (P{sub in}/P{sub t}). 7 refs., 14 figs., 2 tabs.

  15. Laboratory Transferability of Optimally Shaped Laser Pulses for Quantum Control

    CERN Document Server

    Tibbetts, Katharine Moore; Rabitz, Herschel

    2013-01-01

    Optimal control experiments can readily identify effective shaped laser pulses, or "photonic reagents", that achieve a wide variety of objectives. For many practical applications, an important criterion is that a particular photonic reagent prescription still produce a good, if not optimal, target objective yield when transferred to a different system or laboratory, {even if the same shaped pulse profile cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments.} First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found...

  16. Medical and biological applications for ultrafast laser pulses

    Science.gov (United States)

    Lubatschowski, Holger; Heisterkamp, Alexander; Will, Fabian; Singh, Ajoy I.; Serbin, Jesper; Ostendorf, Andreas; Kermani, Omid; Heermann, R.; Welling, Herbert; Ertmer, Wolfgang

    2003-02-01

    Due to the low energy threshold of photodisruption with fs laser pulses, thermal and mechanical side effects are limited to the sub μm range. The neglection of side effects enables the use of ultrashort laser pulses in a broad field of medical applications. Moreover, the interaction process based on nonlinear absorption offers the opportunity to process transparent tissue three dimensionally inside the bulk. We demonstrate the feasibility of surgical procedures in different fields of medical interest: In ophthalmology intrastromal cutting and preparing of corneal flaps for refractive surgery in living animals is presented. Besides, the very low mechanical side effects enables the use of fs-laser in otoralyngology to treat ocecular bones. Moreover, the precise cutting quality can be used in fields of cardiovascular surgery for the treatment of arteriosclerosis as well as in dentistry to remove caries from dental hard tissue.

  17. Pulsed laser excitation of phosphate stabilised silver nanoparticles

    Indian Academy of Sciences (India)

    Jyotirmayee Mohanty; Dipak K Palit; Laxminarayan V Shastri; Avinash V Sapre

    2000-02-01

    Laser flash photolysis studies were carried out on two types of silver nanoparticles prepared by -radiolysis of Ag+ solutions in the presence of polyphosphate as the stabiliser. Type I silver nanoparticles displayed a surface plasmon band at 390 nm. Type II silver nanoparticles showed a 390 nm surface plasmon band with a shoulder at 550 nm. On photoexcitation in the surface plasmon band region, using 35 picosecond laser pulses at 355 nm and 532 nm, the type II solutions showed transient bleaching and absorption signals in the 450-900 nm region, which did not decay appreciably up to 5 nanoseconds. These transient changes were found to get annealed in the interval where 5 ns < < 100 ns. Extended photolysis of the nanoparticle solutions with repetitive laser pulses resulted in a decrease in the values of the average particle size which were measured by employing the dynamic light scattering technique.

  18. Thomson scattering in high-intensity chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Holkundkar, Amol R., E-mail: amol.holkundkar@pilani.bits-pilani.ac.in [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan 333031 (India); Harvey, Chris, E-mail: christopher.harvey@chalmers.se; Marklund, Mattias, E-mail: mattias.marklund@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-10-15

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion of its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.

  19. Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter

    Science.gov (United States)

    Hugenschmidt, Manfred

    1986-10-01

    The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.

  20. Raman forward scattering of high-intensity chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.

    2002-06-23

    Raman forward scattering of a high-intensity, short-duration, frequency-chirped laser pulse propagating in an underdense plasma is examined. The growth of the direct forward scattered light is calculated for a laser pulse with a linear frequency chirp in various spatio-temporal regimes. This includes a previously undescribed regime of strongly-coupled four-wave nonresonant interaction, which is important for relativistic laser intensities. In all regimes of forward scattering, it is shown that the growth rate increases (decreases) for positive (negative) frequency chirp. The effect of chirp on the growth rate is relatively minor, i.e., a few percent chirp yields few percent changes in the growth rates. Relation of these results to recent experiments is discussed.

  1. Shadowgraphic imaging of material removal during laser drilling with a long pulse eximer laser

    NARCIS (Netherlands)

    Schoonderbeek, A.; Biesheuvel, C.A.; Hofstra, R.M.; Boller, Klaus J.; Meijer, J.

    2005-01-01

    After the development of a novel XeCl excimer laser with a nearly diffraction-limited beam and 175 ns pulse length, research was done on different industrial applications of this laser. Hole drilling, one of these applications, was studied extensively. A better understanding of the drilling process

  2. Laser surface and subsurface modification of sapphire using femtosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, G., E-mail: eberle@iwf.mavt.ethz.ch [Institute of Machine Tools and Manufacturing, ETH Zurich, Leonhardstrasse 21, 8092 Zurich (Switzerland); Schmidt, M. [Chair of Photonic Technologies, University of Erlangen-Nuremberg, Konrad-Zuse-Strasse 3-5, 91052 Erlangen (Germany); Pude, F. [Inspire AG, Technoparkstrasse 1, 8005 Zurich (Switzerland); Wegener, K. [Institute of Machine Tools and Manufacturing, ETH Zurich, Leonhardstrasse 21, 8092 Zurich (Switzerland); Inspire AG, Technoparkstrasse 1, 8005 Zurich (Switzerland)

    2016-08-15

    Highlights: • Single and multipulse ablation threshold of aluminium oxide is determined. • Laser ablation, and in-volume modification followed by wet etching are demonstrated. • Quality following laser processing and laser-material interactions are studied. - Abstract: Two methods to process sapphire using femtosecond laser pulses are demonstrated, namely ablation (surface), and in-volume laser modification followed by wet etching (subsurface). Firstly, the single and multipulse ablation threshold is determined and compared with previous literature results. A unique application of ablation is demonstrated by modifying the entrance aperture of water jet orifices. Laser ablation exhibits advantages in terms of geometric flexibility and resolution, however, defects in the form of edge outbreaks and poor surface quality are evident. Secondly, the role of material transformation, polarisation state and formation of multi-focus structures after in-volume laser modification is investigated in order to explain their influence during the wet etching process. Laser scanning and electron microscopy as well as electron backscatter diffraction measurements supported by ion beam polishing are used to better understand quality and laser-material interactions of the two demonstrated methods of processing.

  3. Extending ultra-short pulse laser texturing over large area

    Energy Technology Data Exchange (ETDEWEB)

    Mincuzzi, G., E-mail: girolamo.mincuzzi@alphanov.com; Gemini, L.; Faucon, M.; Kling, R.

    2016-11-15

    Highlights: • We carried out metal surface texturing (Ripples, micro grooves, Spikes) using a high power, high repetition rate, industrial, Ultra-short pulses laser. • Extremely Fast processing is shown (Laser Scan speed as high as 90 m/s) with a polygon scanner head. • Stainless steel surface blackening with Ultra-short pulses laser has been obtained with unprecedented scanspeed. • Full SEM surface characterization was carried out for all the different structures obtained. • Reflectance measurements were carried out to characterize surface reflectance. - Abstract: Surface texturing by Ultra-Short Pulses Laser (UPL) for industrial applications passes through the use of both fast beam scanning systems and high repetition rate, high average power P, UPL. Nevertheless unwanted thermal effects are expected when P exceeds some tens of W. An interesting strategy for a reliable heat management would consists in texturing with a low fluence values (slightly higher than the ablation threshold) and utilising a Polygon Scanner Heads delivering laser pulses with unrepeated speed. Here we show for the first time that with relatively low fluence it is possible over stainless steel, to obtain surface texturing by utilising a 2 MHz femtosecond laser jointly with a polygonal scanner head in a relatively low fluence regime (0.11 J cm{sup −2}). Different surface textures (Ripples, micro grooves and spikes) can be obtained varying the scan speed from 90 m s{sup −1} to 25 m s{sup −1}. In particular, spikes formation process has been shown and optimised at 25 m s{sup −1} and a full morphology characterization by SEM has been carried out. Reflectance measurements with integrating sphere are presented to compare reference surface with high scan rate textures. In the best case we show a black surface with reflectance value < 5%.

  4. Analysis of Thermal Effects in Laser Rod Pumped by Repetitively Pulsed Laser Diode Array

    Institute of Scientific and Technical Information of China (English)

    DAI Qin; LI Xin-zhong; WU Ri-na; WANG Xi-jun

    2007-01-01

    Based on some assumptions, the numerical model of thermal distribution in solid state laser crystal pumped by pulsed laser diode is set up due to the pumped intensity distribution. Taking into account the property of YAG materials that varies with temperature, the transient temperature distribution of the laser crystal is calculated using finite element method on condition that K is a constant and a function of temperature. Then, the influence of the pumping parameters on the thermal effect in laser crystal is also discussed. This study is helpful to optimize the design of the diode side pumped solid state lasers.

  5. Analyses of the short pulse laser pumped transient collisional excited X-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, A.; Utsumi, T.; Moribayashi, K.; Zhidkov, A.; Kado, M.; Tanaka, M.; Hasegawa, N.; Kawachi, T. [Japan Atomic Energy Research Inst., Osaka (Japan). Advanced Photon Research Center

    2001-07-01

    The soft X-ray gain of the transient collisional excited (TCE) Ni-like Ag laser is investigated using the plasma hydrodynamics and atomic kinetics codes. The gain is calculated for a plasma produced from two 100ps laser irradiated solid target to show qualitative agreement with the experiment. The calculation shows significant improvement of the gain using a thin foil target pumped by two short laser pulses, because of a better coupling of the pump laser energy into the gain region of the plasma. The codes will provide performance prediction as well as optimization of the experimental studies of the TCE X-ray lasers. (orig.)

  6. Numerical simulation of different pulse width of long pulsed laser on aluminum alloy

    Science.gov (United States)

    Li, Mingxin; Jin, Guangyong; Zhang, Wei; Chen, Guibo; Bi, Juan

    2015-03-01

    Established a physical model to simulate the melt ejection induced by long pulsed laser on aluminum alloy and use the finite element method to simulate the whole process. This simulation is based on the interaction between single pulsed laser with different pulse width and different peak energy and aluminum alloy material. By comparing the theoretical simulation data and the actual test data, we discover that: the theoretical simulation curve is well consistent with the actual experimental curve, this two-dimensional model is with high reliability; when the temperature at the center of aluminum alloy surface increases and evaporation happens after the surface temperature at the center of aluminum alloy surface reaches boiling point and later the aluminum alloy material sustains in the status of equilibrium vaporization; the keyhole appears on the surface of the target, an increment of the keyhole, the maximum temperature at the center of aluminum alloy surface gradually moves inwardly. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  7. Interaction of Clusters with Intense, Few-Cycle, Long Wavelength Fields

    Science.gov (United States)

    2015-11-05

    spectral region. We have finished the construction of TOF spectrometer cluster beam machine by which several intriguing phenomena have been observed. The...intense laser in the mid-infrared spectral region (1-4.5 micron). Applications are in the perspective included the production of highly charged, energetic...title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses. 5a

  8. Manufacturing of Er:ZBLAN ridge waveguides by pulsed laser deposition and ultrafast laser micromachining for green integrated lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gottmann, Jens [Lehrstuhl fuer Lasertechnik, RWTH Aachen University, Steinbachstr. 15, 52074 Aachen (Germany)], E-mail: jens.gottmann@llt.rwth-aachen.de; Moiseev, Leonid; Vasilief, Ion; Wortmann, Dirk [Lehrstuhl fuer Lasertechnik, RWTH Aachen University, Steinbachstr. 15, 52074 Aachen (Germany)

    2008-01-15

    Laser radiation is used both for the deposition of the laser active thin films and for the microstructuring to define wave guiding structures for the fabrication of waveguide lasers. Thin films of Er:ZBLAN (a fluoride glass consisting of ZrF{sub 4}, BaF{sub 2}, LaF{sub 3}, AlF{sub 3}, NaF, ErF{sub 3}) for green up-conversion lasers (545 nm) are produced by pulsed laser deposition using ArF excimer laser radiation (wavelength 193 nm). Manufacturing of the laser active waveguides by microstructuring is done using fs-laser ablation of the deposited films. The structural and optical properties of the films and the damping losses of the structured waveguides are determined in view of the design and the fabrication of compact and efficient diode pumped waveguide lasers. The resulting waveguides are polished, provided with resonator mirrors, pumped using diode lasers and characterized.

  9. Circularly Polarized MHOHG with Bichromatic Circularly Polarized Laser Pulses

    Science.gov (United States)

    Bandrauk, Andre D.; Mauger, Francois; Uzer, Turgay

    2016-05-01

    Circularly polarized MHOHG-Molecular High Order Harmonic Generation is shown to occur efficiently with intense ultrashort bichromatic circularly polarized pulses due to frequent electron-parent -ion recollision with co-or counter-rotating incident circular pulses as predicted in 1995. We show in this context that molecules offer a very robust and efficient frameworkfor the production of circularly polarized harmonics for the generation of single circularly polarized ``attosecond'' pulses. The efficiency of such new MHOHG is shown to depend on the compatibility of the symmetry of the molecular medium with the net electric field generated by the combination of the laser pulses.Using a time-dependent symmetry analysis with concrete examples such as H 2 + vs H 3 + we show how all the features(harmonic order and ∧ polarization) of MHOHG can be explained and predicted.

  10. Pulsed Raman fiber laser and multispectral imaging in three dimensions

    DEFF Research Database (Denmark)

    Andersen, Joachim F.; Busck, Jens; Heiselberg, Henning

    2006-01-01

    Raman scattering in single-mode optical fibers is exploited to generate multispectral light from a green nanolaser with high pulse repetition rate. Each pulse triggers a picosecond camera and measures the distance by time-of-flight in each of the 0.5 Mpixels. Three-dimensional images are then con......Raman scattering in single-mode optical fibers is exploited to generate multispectral light from a green nanolaser with high pulse repetition rate. Each pulse triggers a picosecond camera and measures the distance by time-of-flight in each of the 0.5 Mpixels. Three-dimensional images...... are then constructed with submillimeter accuracy for all visible colors. The generation of a series of Stokes peaks by Raman scattering in a Si fiber is discussed in detail and the laser radar technique is demonstrated. The data recording takes only a few seconds, and the high accuracy 3D color imaging works at ranges...

  11. Atmospheric propagation of two CO2 laser pulses

    Science.gov (United States)

    Autric, M.; Caressa, J.-P.; Dufresne, D.; Bournot, Ph.

    1984-01-01

    At the intensity and fluence levels reached in an experimental investigation of high-energy laser beam propagation, air breakdown occurs through the interaction of the intense radiation with aerosol particles naturally suspended in the path of the beam. The air plasma created is found to expand rapidly and have a detrimental effect on energy propagation. It is determined that the energy transmitted through the breakdown plasma as a function of the incident average energy density is less than 15 percent for fluences greater than 300 J/sq cm, and that incident energy transmission may be increased through the generation of a precursor pulse as a function of double pulse separation times ranging from a few microsec to 0.1 sec. Maximum effects have been obtained at pulse separation intervals of 100-200 microsec, and these are ascribed to the vaporization of aerosol particles by the first pulse.

  12. Pulsed photothermal depth profiling of tattoos undergoing laser removal treatment

    Science.gov (United States)

    Milanic, Matija; Majaron, Boris

    2012-02-01

    Pulsed photothermal radiometry (PPTR) allows noninvasive determination of temperature depth profiles induced by pulsed laser irradiation of strongly scattering biological tissues and organs, including human skin. In present study, we evaluate the potential of this technique for investigational characterization and possibly quantitative evaluation of laser tattoo removal. The study involved 5 healthy volunteers (3 males, 2 females), age 20-30 years, undergoing tattoo removal treatment using a Q-switched Nd:YAG laser. There were four measurement and treatment sessions in total, separated by 2-3 months. Prior to each treatment, PPTR measurements were performed on several tattoo sites and one nearby healthy site in each patient, using a 5 ms Nd:YAG laser at low radiant exposure values and a dedicated radiometric setup. The laser-induced temperature profiles were then reconstructed by applying a custom numerical code. In addition, each tatoo site was documented with a digital camera and measured with a custom colorimetric system (in tristimulus color space), providing an objective evaluation of the therapeutic efficacy to be correlated with our PPTR results. The results show that the laser-induced temperature profile in untreated tattoos is invariably located at a subsurface depth of 300 μm. In tattoo sites that responded well to laser therapy, a significant drop of the temperature peak was observed in the profiles obtained from PPTR record. In several sites that appeared less responsive, as evidenced by colorimetric data, a progressive shift of the temperature profile deeper into the dermis was observed over the course of consecutive laser treatments, indicating that the laser tattoo removal was efficient.

  13. Pulse power for lasers; Proceedings of the Meeting, Los Angeles, CA, Jan. 13, 14, 1987

    Science.gov (United States)

    Burkes, Tommy R.

    Papers are presented on high energy lasers which use advanced thyratron switches; pulsed power for repetitively pulsed high power discharge lasers; Nova pulse power design and operation; the power oscillator circuit modeling and redesign of the particle beam fusion accelerator II switch trigger laser; and a compact, efficient, solid-state flashlamp modulator. Topics discussed include the effects of laser discharge impedance on circuit designs; pulsed power for high power electron-beam pumped lasers; a pulse forming network of low inductance and large energy storage density; an integrated high efficiency switched mode laser power supply; and a parallel thyratron pulser with magnetic sharpening for large NgBr lasers. Consideration is given to the gating of thyristors; high repetition rate pseudospark switches for laser applications; the use of the molecular photoelectron-detachment and photodissociation process to switch electron conduction current; electron beam and optical control of bulk semiconductor switches; and scaling pulse generators for lasers.

  14. Real-time energy measurement of high repetition rate ultrashort laser pulses using pulse integration and FPGA processing.

    Science.gov (United States)

    Tang, Qi-Jie; Yang, Dong-Xu; Wang, Jian; Feng, Yi; Zhang, Hong-Fei; Chen, Teng-Yun

    2016-11-01

    Real-time energy measurement using pulse integration method for high repetition rate ultrashort laser pulses based on FPGA (Field-Programmable Gate Array) and high-speed pipeline ADC (Analog-to-Digital Convertor) is introduced in this paper. There are two parts contained in this method: pulse integration and real-time data processing. The pulse integration circuit will convert the pulse to the step type signals which are linear to the laser pulse energy. Through the real-time data processing part, the amplitude of the step signals will be obtained by ADC sampling and conducting calculation in real time in FPGA. The test result shows that the method with good linearity (4.770%) and without pulse measurement missing is suitable for ultrashort laser pulses with high repetition rate up to 100 MHz.

  15. Real-time energy measurement of high repetition rate ultrashort laser pulses using pulse integration and FPGA processing

    Science.gov (United States)

    Tang, Qi-jie; Yang, Dong-xu; Wang, Jian; Feng, Yi; Zhang, Hong-fei; Chen, Teng-yun

    2016-11-01

    Real-time energy measurement using pulse integration method for high repetition rate ultrashort laser pulses based on FPGA (Field-Programmable Gate Array) and high-speed pipeline ADC (Analog-to-Digital Convertor) is introduced in this paper. There are two parts contained in this method: pulse integration and real-time data processing. The pulse integration circuit will convert the pulse to the step type signals which are linear to the laser pulse energy. Through the real-time data processing part, the amplitude of the step signals will be obtained by ADC sampling and conducting calculation in real time in FPGA. The test result shows that the method with good linearity (4.770%) and without pulse measurement missing is suitable for ultrashort laser pulses with high repetition rate up to 100 MHz.

  16. Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.; Li, M. H.; Li, Y. F.; Wang, J. G.; Tao, M. Z.; Han, Y. J.; Zhao, J. R.; Huang, K.; Yan, W. C.; Ma, J. L.; Li, Y. T. [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Chen, L. M., E-mail: lmchen@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, D. Z. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Chen, Z. Y. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621999 (China); Sheng, Z. M. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zhang, J. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-08-15

    By adjusting the focus geometry of a spatially structured laser pulse, single, double, and treble quasi-monoenergetic electron beams were generated, respectively, in laser-wakefield acceleration. Single electron beam was produced as focusing the laser pulse to a single spot. While focusing the laser pulse to two spots that are approximately equal in energy and size and intense enough to form their own filaments, two electron beams were produced. Moreover, with a proper distance between those two focal spots, three electron beams emerged with a certain probability owing to the superposition of the diffractions of those two spots. The energy spectra of the multiple electron beams are quasi-monoenergetic, which are different from that of the large energy spread beams produced due to the longitudinal multiple-injection in the single bubble.

  17. Laser pulse spatial-temporal inversion technology for ICF laser facility

    Science.gov (United States)

    Zhang, Ying; Geng, Yuanchao; Chen, Lin; Huang, Wanqing; Zhao, Junpu; Wang, Wenyi; Liu, Lanqin; Zheng, Kuixing; Zhu, Qihua; Wei, Xiaofeng

    2017-05-01

    The laser pulse should be shaped to satisfy the ICF physical requirement and the profile should be flattened to increase the extraction efficiency of the disk amplifiers and to ensure system safety in ICF laser facility. The spatial-temporal distribution of the laser pulse is affected by the gain saturation, uniformity gain profile of the amplifiers, and the frequency conversion process. The pulse spatial-temporal distribution can't be described by simply analytic expression, so new iteration algorithms are needed. We propose new inversion method and iteration algorithms in this paper. All of these algorithms have been integrated in SG99 software and the validity has been demonstrated. The result could guide the design of the ICF laser facility in the future.

  18. Laser ablation of enamel and composite using 355-nm laser pulses: influence of fluoride and laser treatment on adhesion

    Science.gov (United States)

    Larson, Michael D.; Gardner, Andrew K.; Staninec, Michal; Fried, Daniel

    2006-02-01

    Previous studies have demonstrated that Q-switched 355-nm laser pulses can be used to remove composite sealants and restorations from tooth surfaces without significant damage to sound tooth surfaces and have also shown that 355-nm lasers pulses can also be used to selectively etch the interprismatic protein of enamel to increase the effectiveness of topical fluoride for inhibiting decay and increase the bond strength to restorative materials without acid-etching. The first aim of this study was to test the hypothesis that topical fluoride can be applied after laser irradiation before composite resin placement without significantly reducing the bond-strength. The second aim was to test the hypothesis that thermal damage to existing composite due to laser irradiation does not compromise the adhesion of newly applied composite. There was a slight but significant reduction in the magnitude of the shear-bond strength of laser-treated surfaces with and without fluoride application. There was no significant difference in the magnitude of the bond strength between laser irradiated and non-laser irradiated aged composite to newly applied composite. These results suggest that after composite removal with 355-nm laser pulses fluoride can be subsequently applied to inhibit secondary caries before placement of composite restorative materials and that 355-nm laser pulses can be used for the repair of existing restorations.

  19. Longitudinally excited CO2 laser with short laser pulse operating at high repetition rate

    Science.gov (United States)

    Li, Jianhui; Uno, Kazuyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2016-11-01

    A short-pulse longitudinally excited CO2 laser operating at a high repetition rate was developed. The discharge tube was made of a 45 cm-long or 60 cm-long dielectric tube with an inner diameter of 16 mm and two metallic electrodes at the ends of the tube. The optical cavity was formed by a ZnSe output coupler with a reflectivity of 85% and a high-reflection mirror. Mixed gas (CO2:N2:He = 1:1:2) was flowed into the discharge tube. A high voltage of about 33 kV with a rise time of about 200 ns was applied to the discharge tube. At a repetition rate of 300 Hz and a gas pressure of 3.4 kPa, the 45 cm-long discharge tube produced a short laser pulse with a laser pulse energy of 17.5 mJ, a spike pulse energy of 0.2 mJ, a spike width of 153 ns, and a pulse tail length of 90 μs. The output power was 5.3 W. The laser pulse waveform did not depend on the repetition rate, but the laser beam profile did. At a low repetition rate of less than 50 Hz, the laser beam had a doughnut-like shape. However, at a high repetition rate of more than 150 Hz, the discharge concentrated at the center of the discharge tube, and the intensity at the center of the laser beam was higher. The laser beam profile depended on the distribution of the discharge. An output power of 7.0 W was achieved by using the 60 cm-long tube.

  20. On the Role of Laser Pulses on Spallation of Granite

    Science.gov (United States)

    Ndeda, Rehema; Sebusang, Sebusang E. M.; Marumo, Rapelang; Ogur, Erich O.

    2017-06-01

    Laser spallation is one of the thermal methods under study as an alternative to mechanical drilling mainly due to high power capabilities and non-contact nature. Spallation has been attributed to stress generated on the rock due to large temperature gradient and thermal expansion of the rock. It is necessary to determine the effect of pulsing of the laser as well as convective cooling on spallation, in a bid to increase the efficiency of laser spallation. In this paper, analysis of thermal stresses during pulsed laser spallation of granite is carried out. The effect of convective cooling at the end of the heating period on stress and crack propagation is also examined. A two dimensional finite element model is developed. It is observed that on cooling, tensile stresses generated during heating are inverted to compressive stresses, increasing the rate of spallation. Results also indicate that residual stresses on the rock due to pulsing are much higher. Finally, increased rate of crack propagation is observed when the rock is subjected to sudden cooling.

  1. Ultrashort pulse laser slicing of semiconductor crystal

    Science.gov (United States)

    Kim, Eunho; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka

    2016-07-01

    Meanwhile, by the convention wire-saw technique, it is difficult to slice off a thin wafer from bulk SiC crystal without the reserving space for cutting. In this study, we have achieved exfoliation of 4H-SiC single crystal by femtosecond laser induced slicing method. By using this, the exfoliated surface with the root-mean-square roughness of 3 μm and the cutting-loss thickness smaller than 30 μm was successfully demonstrated. We have also observed the nanostructure on the exfoliated surface in SiC crystal.

  2. Picosecond lasers: the next generation of short-pulsed lasers.

    Science.gov (United States)

    Freedman, Joshua R; Kaufman, Joely; Metelitsa, Andrea I; Green, Jeremy B

    2014-12-01

    Selective photothermolysis, first discussed in the context of targeted microsurgery in 1983, proposed that the optimal parameters for specific thermal damage rely critically on the duration over which energy is delivered to the tissue. At that time, nonspecific thermal damage had been an intrinsic limitation of all commercially available lasers, despite efforts to mitigate this by a variety of compensatory cooling mechanisms. Fifteen years later, experimental picosecond lasers were first reported in the dermatological literature to demonstrate greater efficacy over their nanosecond predecessors in the context of targeted destruction of tattoo ink. Within the last 4 years, more than a decade after those experiments, the first commercially available cutaneous picosecond laser unit became available (Cynosure, Westford, Massachusetts), and several pilot studies have demonstrated its utility in tattoo removal. An experimental picosecond infrared laser has also recently demonstrated a nonthermal tissue ablative capability in soft tissue, bone, and dentin. In this article, we review the published data pertaining to dermatology on picosecond lasers from their initial reports to the present as well as discuss forthcoming technology.

  3. Microencapsulation of silicon cavities using a pulsed excimer laser

    KAUST Repository

    Sedky, Sherif M.

    2012-06-07

    This work presents a novel low thermal-budget technique for sealing micromachined cavities in silicon. Cavities are sealed without deposition, similar to the silicon surface-migration sealing process. In contrast to the 1100°C furnace anneal required for the migration process, the proposed technique uses short excimer laser pulses (24ns), focused onto an area of 23mm 2, to locally heat the top few microns of the substrate, while the bulk substrate remains near ambient temperature. The treatment can be applied to selected regions of the substrate, without the need for special surface treatments or a controlled environment. This work investigates the effect of varying the laser pulse energy from 400 mJ cm 2to 800 mJ cm 2, the pulse rate from 1Hz to 50Hz and the pulse count from 200 to 3000 pulses on sealing microfabricated cavities in silicon. An analytical model for the effect of holes on the surface temperature distribution is derived, which shows that much higher temperatures can be achieved by increasing the hole density. A mechanism for sealing the cavities is proposed, which indicates how complete sealing is feasible. © 2012 IOP Publishing Ltd.

  4. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, M., E-mail: martin.hansson@fysik.lth.se; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma. - Highlights: • Compact colliding pulse injection set-up used to produce low energy spread e-beams. • Beam charge controlled by rotating the polarization of injection pulse. • Peak energy controlled by point of collision to vary the acceleration length.

  5. Ionization of molecular hydrogen in ultrashort intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Vanne, Yulian V.

    2010-03-18

    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H{sub 2} performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H{sub 2} and D{sub 2} in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  6. Microstructuring of Steel and Hard Metal using Femtosecond Laser Pulses

    Science.gov (United States)

    Pfeiffer, Manuel; Engel, Andy; Weißmantel, Steffen; Scholze, Stefan; Reisse, Guenter

    New results on three-dimensional micro-structuring of tungsten carbide hard metal and steel using femtosecond laser pulses will be presented. For the investigations, a largely automated high-precision fs-laser micromachining station was used. The fs-laser beam is focused onto the sample surface using different objectives. The investigations of the ablation behaviour of the various materials in dependence of the laser processing parameters will be presented. In the second part, complex 3D microstructures with a variety of geometries and resolutions down to a few micrometers will be presented. On of the Goal of these investigations was to create defined microstructures in tooling equipments such as cutting inserts.

  7. Quantum coherent control of ultra short laser pulses

    Institute of Scientific and Technical Information of China (English)

    ZHOU JianYing; ZENG JianHua; LI JunTao

    2008-01-01

    The effective photonic control is one of the key issues in photo-physics. Significant advancement in photonic crystals, quantum optics, ultrafast optics as well as micro-nano-optics gives rise to new op-portunities to manipulate the emission and propagation in optical fields, leading to a number of new and interesting discoveries, e.g., ultrashort light pulse storage and efficient energy conversion. This paper reviews the latest research progress in storage, release and energy conversion for ultrashort laser pulses in periodical arrays of absorbing medium. Techniques to fabricate such devices are also presented.

  8. A high current, high gradient, laser excited, pulsed electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, K.; Farrell, J.P.; Dudnikova, G. [Brookhaven Technology Group, Inc., Stony Brook, NY (United States); Ben-Zvi, I.; Srinivasan-Rao, T.; Smedley, J.; Yakimenko, V. [Brookhaven National Lab., Upton, NY (United States)

    1998-06-01

    This paper describes a pulsed electron gun that can be used as an FEL, as an injector for electron linear accelerators or for rf power generation. It comprises a 1 to 5 MeV, 1 to 2 ns pulsed power supply feeding a single diode, photoexcited acceleration gap. Beam quality of a {approximately}1nC charge in {approximately}1 GV/m field was studied. Computations of the beam parameters as a function of electrode configuration and peak electron current are presented together with descriptions of the power supply, laser and beam diagnostics systems.

  9. Materials processing with a tightly focused femtosecond laser vortex pulse.

    Science.gov (United States)

    Hnatovsky, Cyril; Shvedov, Vladlen G; Krolikowski, Wieslaw; Rode, Andrei V

    2010-10-15

    In this Letter we present the first (to our knowledge) demonstration of material modification using tightly focused single femtosecond laser vortex pulses. Double-charge femtosecond vortices were synthesized with a polarization-singularity beam converter based on light propagation in a uniaxial anisotropic medium and then focused using moderate- and high-NA optics (viz., NA=0.45 and 0.9) to ablate fused silica and soda-lime glass. By controlling the pulse energy, we consistently machine micrometer-size ring-shaped structures with <100nm uniform groove thickness.

  10. Studying the mechanism of micromachining by short pulsed laser

    Science.gov (United States)

    Gadag, Shiva

    The semiconductor materials like Si and the transparent dielectric materials like glass and quartz are extensively used in optoelectronics, microelectronics, and microelectromechanical systems (MEMS) industries. The combination of these materials often go hand in hand for applications in MEMS such as in chips for pressure sensors, charge coupled devices (CCD), and photovoltaic (PV) cells for solar energy generation. The transparent negative terminal of the solar cell is made of glass on one surface of the PV cell. The positive terminal (cathode) on the other surface of the solar cell is made of silicon with a glass negative terminal (anode). The digital watches and cell phones, LEDs, micro-lens, optical components, and laser optics are other examples for the application of silicon and or glass. The Si and quartz are materials extensively used in CCD and LED for digital cameras and CD players respectively. Hence, three materials: (1) a semiconductor silicon and transparent dielectrics,- (2) glass, and (3) quartz are chosen for laser micromachining as they have wide spread applications in microelectronics industry. The Q-switched, nanosecond pulsed lasers are most extensively used for micro-machining. The nanosecond type of short pulsed laser is less expensive for the end users than the second type, pico or femto, ultra-short pulsed lasers. The majority of the research work done on these materials (Si, SiO 2, and glass) is based on the ultra-short pulsed lasers. This is because of the cut quality, pin point precision of the drilled holes, formation of the nanometer size microstructures and fine features, and minimally invasive heat affected zone. However, there are many applications such as large surface area dicing, cutting, surface cleaning of Si wafers by ablation, and drilling of relatively large-sized holes where some associated heat affected zone due to melting can be tolerated. In such applications the nanosecond pulsed laser ablation of materials is very

  11. Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses

    CERN Document Server

    Yao, Jinping; Zeng, Bin; Chu, Wei; Li, Guihua; Ni, Jielei; Zhang, Haisu; Jing, Chenrui; Zhang, Chaojin; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2015-01-01

    We experimentally demonstrate ultrafast dynamic of generation of a strong 337-nm nitrogen laser by injecting an external seed pulse into a femtosecond laser filament pumped by a circularly polarized laser pulse. In the pump-probe scheme, it is revealed that the population inversion between the excited and ground states of N2 for the free-space 337-nm laser is firstly built up on the timescale of several picoseconds, followed by a relatively slow decay on the timescale of tens of picoseconds, depending on the nitrogen gas pressure. By measuring the intensities of 337-nm signal from nitrogen gas mixed with different concentrations of oxygen gas, it is also found that oxygen molecules have a significant quenching effect on the nitrogen laser signal. Our experimental observations agree with the picture of electron-impact excitation.

  12. The Effect of Chirped Intense Femtosecond Laser Pulses on the Argon Cluster

    Directory of Open Access Journals (Sweden)

    H. Ghaforyan

    2016-01-01

    Full Text Available The interaction of intense femtosecond laser pulses with atomic Argon clusters has been investigated by using nanoplasma model. Based on the dynamic simulations, ionization process, heating, and expansion of a cluster after irradiation by femtosecond laser pulses at intensities up to 2 × 1017 Wcm−2 are studied. The analytical calculation provides ionization rate for different mechanisms and time evolution of the density of electrons for different pulse shapes. In this approach, the strong dependence of laser intensity, pulse duration, and laser shape on the electron energy, the electron density, and the cluster size is presented using the intense chirped laser pulses. Based on the presented theoretical modifications, the effect of chirped laser pulse on the complex dynamical process of the interaction is studied. It is found that the energy of electrons and the radius of cluster for the negatively chirped pulses are improved up to 20% in comparison to the unchirped and positively chirped pulses.

  13. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong [Multimedia University, Centre for Advanced Devices and Systems (CADS), Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yong, Thian-Khok [Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Setapak, Kuala Lumpur (Malaysia); Yap, Seong-Shan [Norwegian University of Science and Technology, Institute of Physics, Trondheim (Norway)

    2010-08-15

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm{sup 2} to 8 J/cm{sup 2}. The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  14. INTERACTION OF LASER RADIATION WITH MATTER: Influence of a target on operation of a pulsed CO2 laser emitting microsecond pulses

    Science.gov (United States)

    Baranov, V. Yu; Dolgov, V. A.; Malyuta, D. D.; Mezhevov, V. S.; Semak, V. V.

    1987-12-01

    The profile of pulses emitted by a TEA CO2 laser with an unstable resonator changed as a result of interaction of laser radiation with the surface of a metal in the presence of a breakdown plasma. This influence of a target on laser operation and its possible applications in laser processing of materials are analyzed.

  15. Tunable CO2 laser system with subnanosecond-pulse-train output

    Science.gov (United States)

    Kimura, W. D.

    2017-02-01

    A CO2 laser system has been demonstrated that generates a train of subnanosecond pulses tunable over the P and R branches of the CO2 laser spectrum at 9-11 μm. It utilizes optical free induction decay to generate a single 100-ps laser pulse from a tunable transverse-excited-atmospheric CO2 laser. This laser pulse is injection-seeded into a high-pressure CO2 oscillator whose output consists of a train of amplified 100-ps pulses with maximum pulse energy of 30 mJ, corresponding to a peak power of 300 MW. The 100-ps, tunable, infrared laser pulses are needed for a new technique to remotely detect atmospheric gaseous molecules, which relies on the train of CO2 laser pulses selectively exciting the target molecules whose presence is then revealed using a separate terahertz probe beam.

  16. Pulse radiolysis of liquid water using picosecond electron pulses produced by a table-top terawatt laser system

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Ned [Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099 (United States); Flippo, Kirk [Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099 (United States); Nemoto, Koshichi [Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099 (United States); Umstadter, Donald [Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099 (United States); Crowell, Robert A. [Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Jonah, Charles D. [Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Trifunac, Alexander D. [Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2000-06-01

    A laser based electron generator is shown, for the first time, to produce sufficient charge to conduct time resolved investigations of radiation induced chemical events. Electron pulses generated by focussing terawatt laser pulses into a supersonic helium gas jet are used to ionize liquid water. The decay of the hydrated electrons produced by the ionizing electron pulses is monitored with 0.3 {mu}s time resolution. Hydrated electron concentrations as high as 22 {mu}M were generated. The results show that terawatt lasers offer both an alternative to linear accelerators and a means to achieve subpicosecond time resolution for pulse radiolysis studies. (c) 2000 American Institute of Physics.

  17. High-speed drilling of metals with a long-pulse XeCl excimer laser

    NARCIS (Netherlands)

    Schoonderbeek, A.; Biesheuvel, C.A.; Hofstra, R.M.; Boller, Klaus J.; Meijer, J.; Phipps, Claude R.

    2002-01-01

    Studies of the influence of pulse length on material processing with different lasers have shown that a long pulse is beneficial for processing speed. In this paper a technique of pulse length variation is used in which the pulse length is the only varied parameter. Pulses between 5 and 150 ns lengt

  18. Pulsed laser deposition of niobium nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Farha, Ashraf Hassan, E-mail: ahass006@odu.edu; Elsayed-Ali, Hani E., E-mail: helsayed@odu.edu [Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States); Applied Research Center, Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Department of Physics, Faculty of Science, Ain Shams University, Cairo 11566 (Egypt); Ufuktepe, Yüksel, E-mail: ufuk@cu.edu.tr [Department of Physics, University of Cukurova, 01330 Adana (Turkey); Myneni, Ganapati, E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2015-12-04

    Niobium nitride (NbN{sub x}) films were grown on Nb and Si(100) substrates using pulsed laser deposition. NbN{sub x} films were deposited on Nb substrates using PLD with a Q-switched Nd:YAG laser (λ = 1064 nm, ∼40 ns pulse width, and 10 Hz repetition rate) at different laser fluences, nitrogen background pressures and deposition substrate temperatures. When all the fabrication parameters are fixed, except for the laser fluence, the surface roughness, nitrogen content, and grain size increase with increasing laser fluence. Increasing nitrogen background pressure leads to a change in the phase structure of the NbN{sub x} films from mixed β-Nb{sub 2}N and cubic δ-NbN phases to single hexagonal β-Nb{sub 2}N. The substrate temperature affects the preferred orientation of the crystal structure. The structural and electronic, properties of NbN{sub x} deposited on Si(100) were also investigated. The NbN{sub x} films exhibited a cubic δ-NbN with a strong (111) orientation. A correlation between surface morphology, electronic, and superconducting properties was found. The observations establish guidelines for adjusting the deposition parameters to achieve the desired NbN{sub x} film morphology and phase.

  19. Two-pulse laser control of bond-selective fragmentation

    DEFF Research Database (Denmark)

    Amstrup, Bjarne; Henriksen, Niels Engholm

    1996-01-01

    consider an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18. It is shown that asymmetric bond stretching can be created in simple (intense) laser fields. We predict that an alternating high selectivity between the channels O-16+(OO)-O-16-O-18 and (OO)-O-16-O-16+ O-18 can...... be obtained when such a non-stationary vibrating ozone molecule is photodissociated with short laser pulses (similar to 10-15 fs) with a time delay corresponding to half a vibrational period (similar to 17 fs). (C) 1996 American Institute of Physics....

  20. Short-Pulse Laser-Matter Computational Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Town, R; Tabak, M

    2004-11-02

    For three days at the end of August 2004, 55 plasma scientists met at the Four Points by Sheraton in Pleasanton to discuss some of the critical issues associated with the computational aspects of the interaction of short-pulse high-intensity lasers with matter. The workshop was organized around the following six key areas: (1) Laser propagation/interaction through various density plasmas: micro scale; (2) Anomalous electron transport effects: From micro to meso scale; (3) Electron transport through plasmas: From meso to macro scale; (4) Ion beam generation, transport, and focusing; (5) ''Atomic-scale'' electron and proton stopping powers; and (6) K{alpha} diagnostics.