WorldWideScience

Sample records for fetal skeletal formation

  1. Prenatal diagnosis of fetal skeletal dysplasia with 3D CT

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Osamu; Horiuchi, Tetsuya [National Center for Child Health and Development, Department of Radiology, Seatagaya-ku, Tokyo (Japan); Nishimura, Gen [Tokyo Metropolitan Children' s Medical Center, Department of Pediatric Imaging, Fuchu-shi, Tokyo (Japan); Sago, Haruhiko; Hayashi, Satoshi [National Center for Child Health and Development, Department of Perinatal Medicine and Maternal Care, Seatagaya-ku, Tokyo (Japan); Kosaki, Rika [National Center for Child Health and Development, Department of Strategic Medicine, Division of Clinical Genetics and Molecular Medicine, Seatagaya-ku, Tokyo (Japan)

    2012-07-15

    Clinical use of 3D CT for fetal skeletal malformations is controversial. The purpose of this study was to evaluate the efficacy of fetal 3D CT using three protocols with different radiation doses and through comparing findings between fetal CT and conventional postnatal radiographic skeletal survey. Seventeen fetuses underwent CT for suspected skeletal dysplasia. A relay of three CT protocols with stepwise dose-reduction were used over the study period. The concordance between the CT diagnosis and the final diagnosis was assessed. Ninety-three radiological findings identifiable on radiographs were compared with CT. Fetal CT provided the correct diagnosis in all 17 fetuses, the detectability rate of cardinal findings was 93.5 %. In 59 % of the fetuses an US-based diagnosis was changed prenatally due to CT findings. The estimated fetal radiation dose in the final protocol was 3.4 mSv (50 %) of the initial protocol, and this dose reduction did not result in degraded image quality. The capability of fetal CT to delineate the skeleton was almost the same as that of postnatal skeletal survey. The perinatal management was altered due to these more specific CT findings, which aided in counseling and in the management of the pregnancy. (orig.)

  2. Value of fetal skeletal radiographs in the diagnosis of fetal death

    Energy Technology Data Exchange (ETDEWEB)

    Bourliere-Najean, B.; Russel, A.S.; Petit, P.; Devred, P. [Department of Pediatric Radiology, CHU Timone, 264 rue St. Pierre, 13385 Marseille cedex 5 (France); Panuel, M. [Department of Radiology, Hopital Nord, chemin Bourrelys, 13915 Marseille cedex 20 (France); Piercecchi-Marti, M.D.; Fredouille, C. [Department of Pathology, CHU Timone, 264 rue St. Pierre, 13385 Marseille cedex 5 (France); Sigaudy, S.; Philip, N. [Department of Genetics, CHU Timone, 264 rue St. Pierre, 13385 Marseille cedex 5 (France)

    2003-05-01

    The aim of this study was to assess the value of fetal skeletal radiographs in determining the etiology of fetal death. A total of 1193 post-mortem fetal skeletal radiographs were analysed. Fetuses were classified into one of three groups (group I: abnormality diagnosed during pregnancy; group II: maternal pathology; group III: spontaneous abortion of pregnancy, IIIa before 26 weeks of gestation (WG), IIIb after 26 weeks of gestation). Face, supine and lateral skeletal views were performed. Skeletal abnormalities were detected in 33.9% of the fetuses, including 22.7% with minor abnormalities (abnormal rib number, no nasal bone ossification, amesophalangia or P2 hypoplasia of the fifth digit) and 14.5% with major abnormalities (other skeletal abnormalities). Among the fetuses with major abnormalities, 98.8% came from group I, 2.9% came from group II, 2.3% came from group IIIa and none came from group IIIb. Fetal skeletal radiographs are not useful in fetuses arising from spontaneous abortion of pregnancy without abnormality on ultrasound screening, abnormality clinical examination or in fetuses with prenatal diagnosis of chromosomal abnormality. This practice is valuable only if there is a multidisciplinary team, with all the participants (pathologists, radiologists, geneticists) knowledgeable about fetal pathology. In the absence of this multidisciplinary approach, it is easier to X-ray all fetuses to avoid misdiagnosis and the important consequences for genetic counselling. (orig.)

  3. Impact of placental insufficiency on fetal skeletal muscle growth.

    Science.gov (United States)

    Brown, Laura D; Hay, William W

    2016-11-01

    Intrauterine growth restriction (IUGR) caused by placental insufficiency is one of the most common and complex problems in perinatology, with no known cure. In pregnancies affected by placental insufficiency, a poorly functioning placenta restricts nutrient supply to the fetus and prevents normal fetal growth. Among other significant deficits in organ development, the IUGR fetus characteristically has less lean body and skeletal muscle mass than their appropriately-grown counterparts. Reduced skeletal muscle growth is not fully compensated after birth, as individuals who were born small for gestational age (SGA) from IUGR have persistent reductions in muscle mass and strength into adulthood. The consequences of restricted muscle growth and accelerated postnatal "catch-up" growth in the form of adiposity may contribute to the increased later life risk for visceral adiposity, peripheral insulin resistance, diabetes, and cardiovascular disease in individuals who were formerly IUGR. This review will discuss how an insufficient placenta results in impaired fetal skeletal muscle growth and how lifelong reductions in muscle mass might contribute to increased metabolic disease risk in this vulnerable population.

  4. Passive stiffness of rat skeletal muscle undernourished during fetal development

    Directory of Open Access Journals (Sweden)

    Ana Elisa Toscano

    2010-01-01

    Full Text Available OBJECTIVES: The aim of the study was to investigate the effect of fetal undernutrition on the passive mechanical properties of skeletal muscle of weaned and young adult rats. INTRODUCTION: A poor nutrition supply during fetal development affects physiological functions of the fetus. From a mechanical point of view, skeletal muscle can be also characterized by its resistance to passive stretch. METHODS: Male Wistar rats were divided into two groups according to their mother's diet during pregnancy: a control group (mothers fed a 17% protein diet and an isocaloric low-protein group (mothers fed a 7.8% protein diet. At birth, all mothers received a standardized meal ad libitum. At the age of 25 and 90 days, the soleus muscle and extensor digitorum longus (EDL muscles were removed in order to test the passive mechanical properties. A first mechanical test consisted of an incremental stepwise extension test using fast velocity stretching (500 mm/s enabling us to measure, for each extension stepwise, the dynamic stress (σd and the steady stress (σs. A second test consisted of a slow velocity stretch in order to calculate normalized stiffness and tangent modulus from the stress-strain relationship. RESULTS: The results for the mechanical properties showed an important increase in passive stiffness in both the soleus and EDL muscles in weaned rat. In contrast, no modification was observed in young adult rats. CONCLUSIONS: The increase in passive stiffness in skeletal muscle of weaned rat submitted to intrauterine undernutrition it is most likely due to changes in muscle passive stiffness.

  5. Fetal stem cells and skeletal muscle regeneration: a therapeutic approach

    Directory of Open Access Journals (Sweden)

    Michela ePozzobon

    2014-08-01

    Full Text Available More than 40% of the body mass is represented by muscle tissue, which possesses the innate ability to regenerate after damage through the activation of muscle specific stem cell, namely satellite cells. Muscle diseases, in particular chronic degenerative state of skeletal muscle such as dystrophies, lead to a perturbation of the regenerative process, which causes the premature exhaustion of satellite cell reservoir due to continue cycles of degeneration/regeneration. Nowadays, the research is focused on different therapeutic approaches, ranging from gene and cell to pharmacological therapy, but still there is not a definitive cure in particular for genetic muscle disease. Taking this in mind, in this article we will give special consideration to muscle diseases and the use of fetal derived stem cells as new approach for therapy. Cells of fetal origin, from cord blood to placenta and amniotic fluid, can be easily obtained without ethical concern, expanded and differentiated in culture, and possess immunemodulatory properties. The in vivo approach in animal models can be helpful to study the mechanism underneath the operating principle of the stem cell reservoir, namely the niche, which holds great potential to understand the onset of muscle pathologies.

  6. Formate metabolism in fetal and neonatal sheep

    OpenAIRE

    2015-01-01

    By virtue of its role in nucleotide synthesis, as well as the provision of methyl groups for vital methylation reactions, one-carbon metabolism plays a crucial role in growth and development. Formate, a critical albeit neglected component of one-carbon metabolism, occurs extracellularly and may provide insights into cellular events. We examined formate metabolism in chronically cannulated fetal sheep (gestation days 119–121, equivalent to mid-third trimester in humans) and in their mothers as...

  7. Low-dose fetal CT for evaluation of severe congenital skeletal anomalies: preliminary experience

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, Teresa; Epelman, Monica; Johnson, Ann M.; Kramer, Sandra; Jaramillo, Diego [Children' s Hospital of Philadelphia, Diagnostic Imaging, Philadelphia, PA (United States); Bebbington, Michael [Children' s Hospital of Philadelphia, Center for Fetal Diagnosis and Treatment, Philadelphia, PA (United States); Wilson, R.D. [University of Calgary, Obstetrics and Gynecology, Calgary (Canada)

    2012-01-15

    Congenital skeletal abnormalities compose a heterogeneous and complex group of conditions that affect bone growth and development and result in various anomalies in shape and size of the skeleton. Prenatal sonographic diagnosis of these anomalies is challenging because of the relative rarity of each skeletal dysplasia, the multitude of differential diagnoses encountered when the bony abnormalities are identified, lack of precise molecular diagnosis and the fact that many of these disorders have overlapping features and marked phenotypic variability. The following review is a preliminary summary of our experience at the Children's Hospital of Philadelphia (CHOP) using low-dose fetal CT in the evaluation of severe fetal osseous abnormalities. (orig.)

  8. Suspected fetal skeletal malformations or bone diseases: how to explore

    Energy Technology Data Exchange (ETDEWEB)

    Cassart, Marie [Erasme Hospital, Medical Imaging, Brussels (Belgium)

    2010-06-15

    Skeletal dysplasias are a heterogeneous and complex group of conditions that affect bone growth and development and result in various anomalies in shape and size of the skeleton. Although US has proved reliable for the prenatal detection of skeletal abnormalities, the precise diagnosis of a dysplasia is often difficult to make before birth (especially in the absence of a familial history) due to their various phenotypic presentations, the variability in the time at which they manifest and often, the lack of precise molecular diagnosis. In addition to the accuracy of the antenatal diagnosis, it is very important to establish a prognosis. This is a clinically relevant issue as skeletal dysplasias may be associated with severe disability and may even be lethal. We will therefore describe the respective role of two-dimensional (2-D) US, three-dimensional (3-D) US and CT in the antenatal assessment of skeletal malformations. (orig.)

  9. In utero glucocorticoid (GLC) exposure reduces fetal skeletal muscle growth in rats

    Science.gov (United States)

    Maternal undernutrition and stress expose the fetus to above normal levels of GLC and predispose to intrauterine growth restriction. The aim of this study was to determine if fetal GLC exposure impairs skeletal muscle growth independently of maternal undernutrition. Three groups (n=7/group) of timed...

  10. Effects of acute hyperinsulinemia on insulin signal transduction and glucose transporters in ovine fetal skeletal muscle.

    Science.gov (United States)

    Anderson, Marianne S; Thamotharan, M; Kao, Doris; Devaskar, Sherin U; Qiao, Liping; Friedman, Jacob E; Hay, William W

    2005-02-01

    To test the effects of acute fetal hyperinsulinemia on the pattern and time course of insulin signaling in ovine fetal skeletal muscle, we measured selected signal transduction proteins in the mitogenic, protein synthetic, and metabolic pathways in the skeletal muscle of normally growing fetal sheep in utero. In experiment 1, 4-h hyperinsulinemic-euglycemic clamps were conducted in anesthetized twin fetuses to produce selective fetal hyperinsulinemia-euglycemia in one twin and euinsulinemia-euglycemia in the other. Serial skeletal muscle biopsies were taken from each fetus during the clamp and assayed by Western blot for selected insulin signal transduction proteins. Tyrosine phosphorylation of the insulin receptor, insulin receptor substrate-1, and the p85 subunit of phosphatidylinositol 3-kinase doubled at 30 min and gradually returned to control values by 240 min. Phosphorylation of extracellular signal-regulated kinase 1,2 was increased fivefold through 120 min of insulin infusion and decreased to control concentration by 240 min. Protein kinase B phosphorylation doubled at 30 min and remained elevated throughout the study. Phosphorylation of p70 S6K increased fourfold at 30, 60, and 120 min. In the second experiment, a separate group of nonanesthetized singleton fetuses was clamped to intermediate and high hyperinsulinemic-euglycemic conditions for 1 h. GLUT4 increased fourfold in the plasma membrane at 1 h, and hindlimb glucose uptake increased significantly at the higher insulin concentration. These data demonstrate that an acute increase in fetal plasma insulin concentration stimulates a unique pattern of insulin signal transduction proteins in intact skeletal muscle, thereby increasing pathways for mRNA translation, glucose transport, and cell growth.

  11. Nationwide radiation dose survey of computed tomography for fetal skeletal dysplasias

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Osamu [National Center for Child Health and Development, Department of Radiology, Setagaya-ku, Tokyo (Japan); Sawai, Hideaki [Hyogo College of Medicine, Department of Obstetrics and Gynecology, Nishinomiya-shi, Hyogo (Japan); Murotsuki, Jun [Miyagi Children' s Hospital, Department of Maternal and Fetal Medicine, Sendai-shi, Miyagi (Japan); Tohoku University Graduate School of Medicine, Department of Advanced Fetal and Developmental Medicine, Sendai-shi, Miyagi (Japan); Nishimura, Gen [Tokyo Metropolitan Children' s Medical Center, Department of Pediatric Imaging, Fuchu-shi, Tokyo (Japan); Horiuchi, Tetsuya [National Center for Child Health and Development, Department of Radiology, Setagaya-ku, Tokyo (Japan); Osaka University, Department of Medical Physics and Engineering, Division of Medical Technology and Science, Course of Health Science, Graduate School of Medicine, Suita, Osaka (Japan)

    2014-08-15

    Recently, computed tomography (CT) has been used to diagnose fetal skeletal dysplasia. However, no surveys have been conducted to determine the radiation exposure dose and the diagnostic reference level (DRL). To collect CT dose index volume (CTDIvol) and dose length product (DLP) data from domestic hospitals implementing fetal skeletal 3-D CT and to establish DRLs for Japan. Scan data of 125 cases of 20 protocols from 16 hospitals were analyzed. The minimum, first-quartile, median, third-quartile and maximum values of CTDIvol and DLP were determined. The time-dependent change in radiation dose setting in hospitals with three or more cases with scans was also examined. The minimum, first-quartile, median, third-quartile and maximum CTDIvol values were 2.1, 3.7, 7.7, 11.3 and 23.1 mGy, respectively, and these values for DLP were 69.0, 122.3, 276.8, 382.6 and 1025.6 mGy.cm, respectively. Six of the 12 institutions reduced the dose setting during the implementation period. The DRLs of CTDIvol and DLP for fetal CT were 11.3 mGy and 382.6 mGy.cm, respectively. Institutions implementing fetal CT should use these established DRLs as the standard and make an effort to reduce radiation exposure by voluntarily decreasing the dose. (orig.)

  12. Fetal skeletal muscle progenitors have regenerative capacity after intramuscular engraftment in dystrophin deficient mice.

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakai

    Full Text Available Muscle satellite cells (SCs are stem cells that reside in skeletal muscles and contribute to regeneration upon muscle injury. SCs arise from skeletal muscle progenitors expressing transcription factors Pax3 and/or Pax7 during embryogenesis in mice. However, it is unclear whether these fetal progenitors possess regenerative ability when transplanted in adult muscle. Here we address this question by investigating whether fetal skeletal muscle progenitors (FMPs isolated from Pax3(GFP/+ embryos have the capacity to regenerate muscle after engraftment into Dystrophin-deficient mice, a model of Duchenne muscular dystrophy. The capacity of FMPs to engraft and enter the myogenic program in regenerating muscle was compared with that of SCs derived from adult Pax3(GFP/+ mice. Transplanted FMPs contributed to the reconstitution of damaged myofibers in Dystrophin-deficient mice. However, despite FMPs and SCs having similar myogenic ability in culture, the regenerative ability of FMPs was less than that of SCs in vivo. FMPs that had activated MyoD engrafted more efficiently to regenerate myofibers than MyoD-negative FMPs. Transcriptome and surface marker analyses of these cells suggest the importance of myogenic priming for the efficient myogenic engraftment. Our findings suggest the regenerative capability of FMPs in the context of muscle repair and cell therapy for degenerative muscle disease.

  13. Maternal obesity reduces oxidative capacity in fetal skeletal muscle of Japanese macaques

    Science.gov (United States)

    McCurdy, Carrie E.; Hetrick, Byron; Houck, Julie; Drew, Brian G.; Kaye, Spencer; Lashbrook, Melanie; Bergman, Bryan C.; Takahashi, Diana L.; Dean, Tyler A.; Gertsman, Ilya; Hansen, Kirk C.; Philp, Andrew; Hevener, Andrea L.; Chicco, Adam J.; Aagaard, Kjersti M.; Grove, Kevin L.; Friedman, Jacob E.

    2016-01-01

    Maternal obesity is proposed to alter the programming of metabolic systems in the offspring, increasing the risk for developing metabolic diseases; however, the cellular mechanisms remain poorly understood. Here, we used a nonhuman primate model to examine the impact of a maternal Western-style diet (WSD) alone, or in combination with obesity (Ob/WSD), on fetal skeletal muscle metabolism studied in the early third trimester. We find that fetal muscle responds to Ob/WSD by upregulating fatty acid metabolism, mitochondrial complex activity, and metabolic switches (CPT-1, PDK4) that promote lipid utilization over glucose oxidation. Ob/WSD fetuses also had reduced mitochondrial content, diminished oxidative capacity, and lower mitochondrial efficiency in muscle. The decrease in oxidative capacity and glucose metabolism was persistent in primary myotubes from Ob/WSD fetuses despite no additional lipid-induced stress. Switching obese mothers to a healthy diet prior to pregnancy did not improve fetal muscle mitochondrial function. Lastly, while maternal WSD alone led only to intermediary changes in fetal muscle metabolism, it was sufficient to increase oxidative damage and cellular stress. Our findings suggest that maternal obesity or WSD, alone or in combination, leads to programmed decreases in oxidative metabolism in offspring muscle. These alterations may have important implications for future health. PMID:27734025

  14. Paternal Low Protein Diet Programs Preimplantation Embryo Gene Expression, Fetal Growth and Skeletal Development in Mice.

    Science.gov (United States)

    Watkins, Adam J; Sirovica, Slobodan; Stokes, Ben; Isaacs, Mark; Addison, Owen; Martin, Richard A

    2017-02-08

    Defining the mechanisms underlying the programming of early life growth is fundamental for improving adult health and wellbeing. While the association between maternal diet, offspring growth and adult disease risk is well-established, the effect of father's diet on offspring development are largely unknown. Therefore, we fed male mice an imbalanced low protein diet (LPD) to determine the impact on post-fertilisation development and fetal growth. We observed that in preimplantation embryos derived from LPD fed males, expression of multiple genes within the central metabolic AMPK pathway was reduced. In late gestation, paternal LPD programmed increased fetal weight, however, placental weight was reduced, resulting in an elevated fetal:placental weight ratio. Analysis of gene expression patterns revealed increased levels of transporters for calcium, amino acids and glucose within LPD placentas. Furthermore, placental expression of the epigenetic regulators Dnmt1 and Dnmt3L were increased also, coinciding with altered patterns of maternal and paternal imprinted genes. More strikingly, we observed fetal skeletal development was perturbed in response to paternal LPD. Here, while offspring of LPD fed males possessed larger skeletons, their bones comprised lower volumes of high mineral density in combination with reduced maturity of bone apatite. These data offer new insight in the underlying programming mechanisms linking poor paternal diet at the time of conception with the development and growth of his offspring.

  15. Endocrine regulation of fetal skeletal muscle growth: impact on future metabolic health

    Science.gov (United States)

    Brown, Laura D.

    2014-01-01

    Establishing sufficient skeletal muscle mass is essential for lifelong metabolic health. The intrauterine environment is a major determinant of the muscle mass that is present for the life course of an individual, because muscle fiber number is set at the time of birth. Thus, a compromised intrauterine environment from maternal nutrient restriction or placental insufficiency that restricts development of muscle fiber number can have permanent effects on the amount of muscle an individual will live with. Reduced muscle mass due to fewer muscle fibers persists even after compensatory or “catch up” postnatal growth occurs. Furthermore, muscle hypertrophy can only partially compensate for this limitation in fiber number. Compelling associations link low birth weight and decreased muscle mass to future insulin resistance, which can drive the development of the metabolic syndrome and type 2 diabetes, and risk for cardiovascular events later in life. There are gaps in knowledge about the origins of reduced muscle growth at the cellular level and how these patterns are set during fetal development. By understanding the nutrient and endocrine regulation of fetal skeletal muscle growth and development, we can direct research efforts towards improving muscle growth early in life in order to prevent the development of chronic metabolic disease later in life. PMID:24532817

  16. Recovery Rates of Human Fetal Skeletal Remains Using Varying Mesh Sizes.

    Science.gov (United States)

    Pokines, James T; De La Paz, Jade S

    2016-01-01

    Human fetal skeletal elements of different gestational ages were screened with multiple mesh sizes (6.4 mm [1/4 inch], 3.2 mm [1/8 inch], 2.0 mm, and 1.0 mm) to determine their recovery rates. All remains were previously macerated, and no significantly damaged elements were used. The 6.4 mm mesh allowed a large loss of elements (63.2% overall), including diagnostic elements, while no diagnostic elements were lost when the 1 mm mesh (0.2%) was used. When using the 3.2 mm mesh, 16.2% of the bones were lost, including some diagnostic elements (primarily tooth crowns), while 7.5% were lost using the 2.0 mm mesh. The authors recommend that the potential loss of information incurred when utilizing larger mesh sizes be taken into consideration when planning recovery methods where fetal remains may be encountered and that a minimum of 1.0 mm mesh be utilized in recovery contexts known to include fetal remains. © 2015 American Academy of Forensic Sciences.

  17. In utero glucocorticoid exposure reduced fetal skeletal muscle mass in rats independent of effects on maternal nutrition

    Science.gov (United States)

    Maternal stress and undernutrition can occur together and expose the fetus to high glucocorticoid (GLC) levels during this vulnerable period. To determine the consequences of GLC exposure on fetal skeletal muscle independently of maternal food intake, groups of timed-pregnant Sprague-Dawley rats (n ...

  18. Antenatal Corticosteroids Alter Insulin Signaling Pathways in Fetal Baboon Skeletal Muscle

    Science.gov (United States)

    BLANCO, Cynthia L.; MOREIRA, Alvaro G.; McGILL, Lisa L.; ANZUETO, Diana G.; NATHANIELSZ, Peter; MUSI, Nicolas

    2015-01-01

    Objective We hypothesize that prenatal exposure to glucocorticoids (GCs) will negatively alter the insulin signal transduction pathway and has differing effects on the fetus according to gestational age at exposure. Methods Twenty-three fetal baboons were delivered from twenty-three healthy, non-diabetic mothers. Twelve preterm (0.67 gestational age) and eleven near term (0.95 gestational age) baboons were euthanized immediately after delivery. Half of the pregnant baboons at each gestation received two doses of intramuscular betamethasone 24-hours apart (170 μg.kg−1) before delivery, while the other half received no intervention. Vastus lateralis muscle was obtained from postnatal animals to measure protein content and gene expression of insulin receptor (IR)-β, IR-β Tyr 1361 phosphorylation (pIR-β), IR substate-1 (IRS-1), IRS-1 tyrosine phosphorylation (pIRS-1), p85 subunit of PI3-kinase (p85), Akt (Protein Kinase B), phospho-Akt Ser473 (pAkt), Akt-1, Akt-2, and glucose transporters (GLUT1 and GLUT4). Results Skeletal muscle from preterm baboons exposed to glucocorticoids had markedly reduced protein content of Akt and Akt-1 (respectively, 73% and 72% from 0.67 gestational age Control, P<0.001); IR-β and pIR-β were decreased (respectively, 94% and 85%, P<0.01) in the muscle of premature GC exposed fetuses, but not in term fetuses. GLUT1 and GLUT4 tended to increase with GC exposure in preterm animals (P=0.09), while GLUT4 increased 6.0 fold in term animals after GC exposure (P<0.05). Conclusion Exposure to a single course of antenatal GCs during fetal life alters the insulin-signaling pathway in fetal muscle in a manner dependent on the stage of gestation. PMID:24756099

  19. Effects of strenuous maternal exercise on fetal organ weights and skeletal muscle development in rats.

    Science.gov (United States)

    Mottola, M F; Bagnall, K M; Belcastro, A N

    1989-02-01

    The purpose of the present study was to observe the effects of strenuous maternal aerobic exercise throughout gestation on fetal outcome in the rat. The strenuous exercise intensity consisted of a treadmill speed of 30 m.min-1 on a 10 degrees incline, for 120 min.day-1, 5 days.week-1. The rats were conditioned to run on a motor-driven treadmill by following a progressive two-week exercise program, so that by the end of the two weeks the rats were capable of running comfortably at this strenuous intensity in the non-pregnant state. Following the two-week running programme, the rats were paired by weight and randomly assigned to either a pregnant group that continued the running program throughout gestation (pregnant runner), or a pregnant group that did not continue the running program throughout pregnancy (pregnant control). At birth the neonates born to the pregnant running group did not differ in average neonatal body weight values, number per litter or total litter weight values when compared to controls, nor were superficial gross abnormalities observed in neonates born to the pregnant control or pregnant running groups. The strenuous maternal exercise intensity did not alter neonatal organ weight values (brain, heart, liver, lung, kidney), nor neonatal skeletal muscle (gastrocnemius, sternomastoid, diaphragm) when compared to control values. It is suggested that maternal exercise of this intensity throughout gestation does not affect fetal outcome in the rat, and may be due to the animals accustomization to the strenuous exercise protocol prior to pregnancy.

  20. Up-Regulation of Toll-Like Receptor 4/Nuclear Factor-κB Signaling Is Associated with Enhanced Adipogenesis and Insulin Resistance in Fetal Skeletal Muscle of Obese Sheep at Late Gestation

    National Research Council Canada - National Science Library

    Yan, Xu; Zhu, Mei J; Xu, Wei; Tong, Jun F; Ford, Stephen P; Nathanielsz, Peter W; Du, Min

    2010-01-01

    .... The objective of this study was to evaluate effects of maternal obesity on adipogenesis, inflammatory signaling, and insulin pathways at late gestation when ovine fetal skeletal muscle matures...

  1. Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds

    Science.gov (United States)

    Sirivisoot, Sirinrath; Harrison, Benjamin S

    2011-01-01

    Background This study examined the effects of electrically conductive materials made from electrospun single- or multiwalled carbon nanotubes with polyurethane to promote myoblast differentiation into myotubes in the presence and absence of electrical stimulation. Methods and results After electrical stimulation, the number of multinucleated myotubes on the electrospun polyurethane carbon nanotube scaffolds was significantly larger than that on nonconductive electrospun polyurethane scaffolds (5% and 10% w/v polyurethane). In the absence of electrical stimulation, myoblasts also differentiated on the electrospun polyurethane carbon nanotube scaffolds, as evidenced by expression of Myf-5 and myosin heavy chains. The myotube number and length were significantly greater on the electrospun carbon nanotubes with 10% w/v polyurethane than on those with 5% w/v polyurethane. The results suggest that, in the absence of electrical stimulation, skeletal myotube formation is dependent on the morphology of the electrospun scaffolds, while with electrical stimulation it is dependent on the electrical conductivity of the scaffolds. Conclusion This study indicates that electrospun polyurethane carbon nanotubes can be used to modulate skeletal myotube formation with or without application of electrical stimulation. PMID:22072883

  2. Altered Fetal Skeletal Muscle Nutrient Metabolism Following an Adverse In Utero Environment and the Modulation of Later Life Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Kristyn Dunlop

    2015-02-01

    Full Text Available The importance of the in utero environment as a contributor to later life metabolic disease has been demonstrated in both human and animal studies. In this review, we consider how disruption of normal fetal growth may impact skeletal muscle metabolic development, ultimately leading to insulin resistance and decreased insulin sensitivity, a key precursor to later life metabolic disease. In cases of intrauterine growth restriction (IUGR associated with hypoxia, where the fetus fails to reach its full growth potential, low birth weight (LBW is often the outcome, and early in postnatal life, LBW individuals display modifications in the insulin-signaling pathway, a critical precursor to insulin resistance. In this review, we will present literature detailing the classical development of insulin resistance in IUGR, but also discuss how this impaired development, when challenged with a postnatal Western diet, may potentially contribute to the development of later life insulin resistance. Considering the important role of the skeletal muscle in insulin resistance pathogenesis, understanding the in utero programmed origins of skeletal muscle deficiencies in insulin sensitivity and how they may interact with an adverse postnatal environment, is an important step in highlighting potential therapeutic options for LBW offspring born of pregnancies characterized by placental insufficiency.

  3. Relationships between fetal body weight of Wistar rats at term and the extent of skeletal ossification

    Directory of Open Access Journals (Sweden)

    I. Chahoud

    2005-04-01

    Full Text Available We investigated the relationship between fetal body weight at term (pregnancy day 21 and the extent of ossification of sternum, metacarpus, metatarsus, phalanges (proximal, medial and distal of fore- and hindlimbs and cervical and coccygeal vertebrae in Wistar rats. The relationships between fetal body weight and sex, intrauterine position, uterine horn, horn size, and litter size were determined using historical control data (7594 fetuses; 769 litters of untreated rats. Relationships between body weight and degree of ossification were examined in a subset of 1484 historical control fetuses (154 litters which were subsequently cleared and stained with alizarin red S. Fetal weight was independent of horn size, uterine horn side (left or right or intrauterine position. Males were heavier than females and fetal weight decreased with increasing litter size. Evaluation of the skeleton showed that ossification of sternum, metacarpus and metatarsus was extensively complete and independent of fetal weight on pregnancy day 21. In contrast, the extent of ossification of fore- and hindlimb phalanges and of cervical and sacrococcygeal vertebrae was dependent on fetal body weight. The strongest correlation between body weight and degree of ossification was found for hindlimb, medial and proximal phalanges. Our data therefore suggest that, in full-term rat fetuses (day 21, reduced ossification of sternum, metacarpus and metatarsus results from a localized impairment of bone calcification (i.e., a malformation or variation rather than from general growth retardation and that ossification of hindlimb (medial and proximal phalanges is a good indicator of treatment-induced fetal growth retardation.

  4. Mechanisms of nascent fiber formation during avian skeletal muscle hypertrophy

    Science.gov (United States)

    McCormick, K. M.; Schultz, E.

    1992-01-01

    This study examined two putative mechanisms of new fiber formation in postnatal skeletal muscle, namely longitudinal fragmentation of existing fibers and de novo formation. The relative contributions of these two mechanisms to fiber formation in hypertrophying anterior latissimus dorsi (ALD) muscle were assessed by quantitative analysis of their nuclear populations. Muscle hypertrophy was induced by wing-weighting for 1 week. All nuclei formed during the weighting period were labeled by continuous infusion of 5-bromo-2'-deoxyuridine (BrdU), a thymidine analog, and embryonic-like fibers were identified using an antibody to ventricular-like embryonic (V-EMB) myosin. The number of BrdU-labeled and unlabeled nuclei in V-EMB-positive fibers were counted. Wing-weighting resulted in significant muscle enlargement and the appearance of many V-EMB+ fibers. The majority of V-EMB+ fibers were completely independent of mature fibers and had a nuclear density characteristics of developing fibers. Furthermore, nearly 100% of the nuclei in independent V-EMB+ fibers were labeled. These findings strongly suggest that most V-EMB+ fibers were nascent fibers formed de novo during the weighting period by satellite cell activation and fusion. Nascent fibers were found primarily in the space between fascicles where they formed a complex anastomosing network of fibers running at angles to one another. Although wing-weighting induced an increase in the number of branched fibers, there was no evidence that V-EMB+ fibers were formed by longitudinal fragmentation. The location of newly formed fibers in wing-weighted and regenerating ALD muscle was compared to determine whether satellite cells in the ALD muscle were unusual in that, if stimulated to divide, they would form fibers in the inter- and intrafascicular space. In contrast to wing-weighted muscle, nascent fibers were always found closely associated with necrotic fibers. These results suggest that wing-weighting is not simply another

  5. Mechanisms of nascent fiber formation during avian skeletal muscle hypertrophy

    Science.gov (United States)

    McCormick, K. M.; Schultz, E.

    1992-01-01

    This study examined two putative mechanisms of new fiber formation in postnatal skeletal muscle, namely longitudinal fragmentation of existing fibers and de novo formation. The relative contributions of these two mechanisms to fiber formation in hypertrophying anterior latissimus dorsi (ALD) muscle were assessed by quantitative analysis of their nuclear populations. Muscle hypertrophy was induced by wing-weighting for 1 week. All nuclei formed during the weighting period were labeled by continuous infusion of 5-bromo-2'-deoxyuridine (BrdU), a thymidine analog, and embryonic-like fibers were identified using an antibody to ventricular-like embryonic (V-EMB) myosin. The number of BrdU-labeled and unlabeled nuclei in V-EMB-positive fibers were counted. Wing-weighting resulted in significant muscle enlargement and the appearance of many V-EMB+ fibers. The majority of V-EMB+ fibers were completely independent of mature fibers and had a nuclear density characteristics of developing fibers. Furthermore, nearly 100% of the nuclei in independent V-EMB+ fibers were labeled. These findings strongly suggest that most V-EMB+ fibers were nascent fibers formed de novo during the weighting period by satellite cell activation and fusion. Nascent fibers were found primarily in the space between fascicles where they formed a complex anastomosing network of fibers running at angles to one another. Although wing-weighting induced an increase in the number of branched fibers, there was no evidence that V-EMB+ fibers were formed by longitudinal fragmentation. The location of newly formed fibers in wing-weighted and regenerating ALD muscle was compared to determine whether satellite cells in the ALD muscle were unusual in that, if stimulated to divide, they would form fibers in the inter- and intrafascicular space. In contrast to wing-weighted muscle, nascent fibers were always found closely associated with necrotic fibers. These results suggest that wing-weighting is not simply another

  6. Precocious glucocorticoid exposure reduces skeletal muscle satellite cells in the fetal rat

    Science.gov (United States)

    Perinatal skeletal muscle growth rates are a function of protein and myonuclear accretion. Precocious exposure of the fetus to glucocorticoids (GLC) in utero impairs muscle growth. Reduced muscle protein synthesis rates contribute to this response, but the consequences for myonuclear hyperplasia are...

  7. Fetal-onset severe skeletal muscle glycogenosis associated with phosphorylase-b kinase deficiency.

    Science.gov (United States)

    Bührer, C; van Landeghem, F; Brück, W; Felderhoff-Müser, U; Vorgerd, M; Obladen, M

    2000-04-01

    We report on a premature newborn girl delivered after 32 weeks of gestation by cesarean section after sparse limb movements, fetal tachycardia and late heart rate decelerations had suggested fetal distress. Following 1 day of mechanical ventilation, adequate pulmonary gas exchange was achieved by spontaneous breathing. Main symptoms were virtually complete absence of spontaneous movements, increased flexor tonus of the extremities, and hypotonia of the trunk. Inability to suck or swallow required nasogastric gavage feeding. There were no hypoglycemic episodes. Echocardiography revealed normal myocardial function. Creatine kinase was 237 U/I at 2 days of life, declining to normal values thereafter. Muscle biopsy revealed increased glycogen storage with subsarcolemmal glycogen deposits and low phosphorylase-a activity while total phosphorylase was normal after in vitro activation, suggestive of phosphorylase-b kinase deficiency. No mutation was detected in exon 1 of the myophosphorylase gene. No psychomotor development was observed, and the infant died of central apnea at 3 months of age.

  8. Expression and localization of VEGF receptors in human fetal skeletal tissues.

    Science.gov (United States)

    Marini, M; Sarchielli, E; Toce, M; Acocella, A; Bertolai, R; Ciulli, C; Orlando, C; Sgambati, E; Vannelli, G B

    2012-12-01

    During development the vertebrate skeleton is the product of deriving cells from distinct embryonic lineages. The craniofacial skeleton is formed by migrating cranial neural crest cells, whereas the axial and limb skeletons are derived from mesodermal cells. The Vascular Endothelial Growth Factors (VEGFs) / receptors (VEGFRs) system plays an important role in angiogenesis, as well as osteogenesis, during bone development, growth, and remodeling, attracting endothelial cells and osteoclasts and stimulating osteoblast differentiation. Recent evidence has shown that during development VEGFR-3 is also expressed in neural and glial precursors of forebrain and cerebellum, as well as in the eye. In this study, we found that VEGFR-1, VEGFR-2 and VEGFR-3 are expressed in human bone both in fetal and adult life. The gene expression levels were significantly higher in fetal samples especially in mandibles. In addition, higher levels of VEGFR-3 in orofacial district were confirmed by western blotting analysis. We also observed that in fetal mandibular samples VEGFRs colocalized in several osteoblasts, osteoclasts and osteoprogenitor cells. Furthermore, some cells coexpressed VEGFR-3 and ET-1, a marker of neural crest cells. The results demonstrated different expression of VEGFRs in human mandibular and femoral bones which could be correlated to their different structure, function and development during organogenesis. VEGFR-3 might represent a specific signal for ectomesenchymal lineage differentiation during early human development.

  9. Neurite-promoting activity from fetal skeletal muscle: partial purification of a high-molecular-weight form.

    Science.gov (United States)

    Steele, J G; Hoffman, H

    1986-01-01

    Neurite extension from sensory neuroblasts dissociated from chick embryo dorsal root ganglia can be stimulated by precoating the polylysine culture surface with extracts of skeletal muscle from bovine fetuses. The active factor(s) may be partially purified from cytosolic extracts of muscle by chromatography on Sepharose 6B and affinity chromatography on wheat germ agglutinin or Helix pomatia agglutinin columns. Extract concentrations of 10-50 micrograms protein per 1 ml were active in promoting neurite extension when the neurons were cultured without serum or nerve growth factor (beta NGF). However, levels of 1-10 micrograms/ml produced dramatic neurite extension when 10% (v/v) fetal or newborn calf serum or 0.5 ng/ml beta NGF was added to the medium. The biological activity was not blocked by antiserum that was raised against purified mouse laminin and that abolished the neurite-promoting activity of mouse laminin. The activity of the muscle extract was destroyed by trypsin or heparitinase, in contrast to the biological activity of purified mouse laminin, which was not abolished by heparitinase treatment. The activity could be resolved into two broad peaks on a Sepharose 2B column (apparent Mr between 2 X 10(6) and in 10 X 10(6) in native form). Treatment with dithiothreitol was necessary to dissociate the factor for electrophoresis in 4.25% polyacrylamide-SDS gels, revealing three major polypeptide bands at Mr = 160,000, 195,000 and 200,000. This preliminary characterization indicates that the neurite-promoting activity from bovine skeletal muscle tissue consists of a high-molecular-weight complex, one essential component of which is a heparan sulfate.

  10. Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions

    DEFF Research Database (Denmark)

    Silveira, Leonardo R.; Pereira-Da-Silva, Lucia; Juel, Carsten

    2003-01-01

    We examined intra- and extracellular H(2)O(2) and NO formation during contractions in primary rat skeletal muscle cell culture. The fluorescent probes DCFH-DA/DCFH (2,7-dichlorofluorescein-diacetate/2,7-dichlorofluorescein) and DAF-2-DA/DAF-2 (4,5-diaminofluorescein-diacetate/4,5-diaminofluoresce...

  11. Biofilm formation on surface characterized micro-implants for skeletal anchorage in orthodontics

    NARCIS (Netherlands)

    Chin, Yeen; Sandham, John; de Vries, Jacob; van der Mei, Henderina; Busscher, Hendrik

    Micro-implants are increasingly popular in clinical orthodontics to effect skeletal anchorage. However, biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these devices. The present study aimed to assess

  12. Biofilm formation on surface characterized micro-implants for skeletal anchorage in orthodontics

    NARCIS (Netherlands)

    Chin, Yeen; Sandham, John; de Vries, Jacob; van der Mei, Henderina; Busscher, Hendrik

    2007-01-01

    Micro-implants are increasingly popular in clinical orthodontics to effect skeletal anchorage. However, biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these devices. The present study aimed to assess biofil

  13. Intact fetal ovarian cord formation promotes mouse oocyte survival and development

    Directory of Open Access Journals (Sweden)

    Pera Renee

    2010-01-01

    Full Text Available Abstract Background Female reproductive potential, or the ability to propagate life, is limited in mammals with the majority of oocytes lost before birth. In mice, surviving perinatal oocytes are enclosed in ovarian follicles for subsequent oocyte development and function in the adult. Before birth, fetal germ cells of both sexes develop in clusters, or germline cysts, in the undifferentiated gonad. Upon sex determination of the fetal gonad, germ cell cysts become organized into testicular or ovarian cord-like structures and begin to interact with gonadal somatic cells. Although germline cysts and testicular cords are required for spermatogenesis, the role of cyst and ovarian cord formation in mammalian oocyte development and female fertility has not been determined. Results Here, we examine whether intact fetal ovarian germ and somatic cell cord structures are required for oocyte development using mouse gonad re-aggregation and transplantation to disrupt gonadal organization. We observed that germ cells from disrupted female gonad prior to embryonic day e13.5 completed prophase I of meiosis but did not survive following transplantation. Furthermore, re-aggregated ovaries from e13.5 to e15.5 developed with a reduced number of oocytes. Oocyte loss occurred before follicle formation and was associated with an absence of ovarian cord structure and ovary disorganization. However, disrupted ovaries from e16.5 or later were resistant to the re-aggregation impairment and supported robust oocyte survival and development in follicles. Conclusions Thus, we demonstrate a critical window of oocyte development from e13.5 to e16.5 in the intact fetal mouse ovary, corresponding to the establishment of ovarian cord structure, which promotes oocyte interaction with neighboring ovarian somatic granulosa cells before birth and imparts oocytes with competence to survive and develop in follicles. Because germline cyst and ovarian cord structures are conserved in the

  14. Impaired skeletal formation in mice overexpressing DMP1

    Directory of Open Access Journals (Sweden)

    Michael Albazzaz

    2009-09-01

    Full Text Available Michael Albazzaz, Karthikeyan Narayanan, Jianjun Hao, Roma Andheri, Amsaveni Ramachandran, Sriram Ravindran, Anne GeorgeBrodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, University of Illinois, Chicago, IL, USAAbstract: Dentin matrix protein 1 (DMP1 is a noncollagenous protein expressed in mineralized tissues such as bone, dentin, and cartilage. To investigate the role of DMP1 during bone formation, transgenic mice overexpressing DMP1 under the control of the CMV promoter were generated. These mice displayed an increased mineralization phenotype in bone. In addition, accelerated terminal differentiation of the epiphyseal growth plate chondrocytes were also observed. To investigate the potential role of DMP1 in osteoblast differentiation, bone marrow stem cells were stimulated with DMP1 and assayed for “early” and “late” markers for osteoblast differentiation. DMP1 treatment increased the expression of CBFA1, BMP2, COL1, and OCN within two days. An in vitro mineralized nodule formation assay demonstrated that the bone marrow stem cells could differentiate and form a mineralized matrix in the presence of DMP1. Together, these results support a model whereby DMP1 functions as a key regulatory molecule that is required for normal growth and development of bone and cartilage.Keywords: dentin matrix protein 1, mineralization, osteoblast, chondrocytes, transgenic mice

  15. Interstitial and plasma adenosine stimulate nitric oxide and prostacyclin formation in human skeletal muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Thaning, Pia;

    2010-01-01

    One major unresolved issue in muscle blood flow regulation is that of the role of circulating versus interstitial vasodilatory compounds. The present study determined adenosine-induced formation of NO and prostacyclin in the human muscle interstitium versus in femoral venous plasma to elucidate....... In young healthy humans, microdialysate was collected at rest, during arterial infusion of adenosine, and during interstitial infusion of adenosine through microdialysis probes inserted into musculus vastus lateralis. Muscle interstitial NO and prostacyclin increased with arterial and interstitial infusion...... levels. These findings provide novel insight into the role of adenosine in skeletal muscle blood flow regulation and vascular function by revealing that both interstitial and plasma adenosine have a stimulatory effect on NO and prostacyclin formation. In addition, both skeletal muscle and microvascular...

  16. T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases

    Directory of Open Access Journals (Sweden)

    Al-Qusairi Lama

    2011-07-01

    Full Text Available Abstract In skeletal muscle, the excitation-contraction (EC coupling machinery mediates the translation of the action potential transmitted by the nerve into intracellular calcium release and muscle contraction. EC coupling requires a highly specialized membranous structure, the triad, composed of a central T-tubule surrounded by two terminal cisternae from the sarcoplasmic reticulum. While several proteins located on these structures have been identified, mechanisms governing T-tubule biogenesis and triad formation remain largely unknown. Here, we provide a description of triad structure and plasticity and review the role of proteins that have been linked to T-tubule biogenesis and triad formation and/or maintenance specifically in skeletal muscle: caveolin 3, amphiphysin 2, dysferlin, mitsugumins, junctophilins, myotubularin, ryanodine receptor, and dihydhropyridine Receptor. The importance of these proteins in triad biogenesis and subsequently in muscle contraction is sustained by studies on animal models and by the direct implication of most of these proteins in human myopathies.

  17. TGF-βand BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease

    Institute of Scientific and Technical Information of China (English)

    Mengrui Wu; Guiqian Chen; and Yi-Ping Li

    2016-01-01

    Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-βand BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-βand BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-βand BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.

  18. The Effect of Skeletal Unloading on Bone Formation: Role of IGF-I

    Science.gov (United States)

    Bikle, D. D.; Kostenuik, P.; Holton, E. M.; Halloran, B. P.

    1999-01-01

    The best documented change in bone during space flight is the near cessation of bone formation. Space flight leads to a decrease in osteoblast number and activity, likely the result of altered differentiation of osteoblast precursors. The net result of these space flight induced changes is weaker bone. To understand the mechanism for these changes poses a challenge. Space flight studies must overcome enormous technical problems, and are necessarily limited in size and frequency. Therefore, ground based models have been developed to evaluate the effects of skeletal unloading. The hindlimb elevation (tail suspension) model simulates space flight better than other models because it reproduces the fluid shifts seen in space travel, is reversible, and is well tolerated by the animals with minimal evidence of stress as indicated by continued weight gain and normal levels and circadian rhythms of corticosterone. This is the model we have used for our experiments. Skeletal unloading by the hindlimb elevation method simulates a number of features of space flight in that bone formation, mineralization, and maturation are inhibited, osteoblast number is decreased, serum and skeletal osteocalcin levels fall, the ash content of bone decreases, and bone strength diminishes. We and others have shown that when osteoblasts or osteoprogenitor cells from the bones of the unloaded limbs are cultured in vitro they proliferate and differentiate more slowly, suggesting that skeletal unloading causes a persistent change in cell function which can be assessed in vitro. In contrast to the unweighted bones of the hindlimbs, no significant change in bone mass or bone formation is observed in the humeri, mandible, and cervical vertebrae during hindlimb elevation. The lack of effect of hindlimb elevation on bones like the humeri, mandible, and cervical vertebrae which are not unloaded by this procedure suggests that local factors rather than systemic effects dominate the response of bone to

  19. mTORC2 signaling promotes skeletal growth and bone formation in mice.

    Science.gov (United States)

    Chen, Jianquan; Holguin, Nilsson; Shi, Yu; Silva, Matthew J; Long, Fanxin

    2015-02-01

    Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase controlling many physiological processes in mammals. mTOR functions in two distinct protein complexes, namely mTORC1 and mTORC2. Compared to mTORC1, the specific roles of mTORC2 are less well understood. To investigate the potential contribution of mTORC2 to skeletal development and homeostasis, we have genetically deleted Rictor, an essential component of mTORC2, in the limb skeletogenic mesenchyme of the mouse embryo. Loss of Rictor leads to shorter and narrower skeletal elements in both embryos and postnatal mice. In the embryo, Rictor deletion reduces the width but not the length of the initial cartilage anlage. Subsequently, the embryonic skeletal elements are shortened due to a delay in chondrocyte hypertrophy, with no change in proliferation, apoptosis, cell size, or matrix production. Postnatally, Rictor-deficient mice exhibit impaired bone formation, resulting in thinner cortical bone, but the trabecular bone mass is relatively normal thanks to a concurrent decrease in bone resorption. Moreover, Rictor-deficient bones exhibit a lesser anabolic response to mechanical loading. Thus, mTORC2 signaling is necessary for optimal skeletal growth and bone anabolism. © 2014 American Society for Bone and Mineral Research.

  20. Matrix metalloproteinase-14 mediates formation of bile ducts and hepatic maturation of fetal hepatic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Satoshi [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Kakinuma, Sei, E-mail: skakinuma.gast@tmd.ac.jp [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Kamiya, Akihide [Institute of Innovative Science and Technology, Tokai University, Isehara (Japan); Goto, Fumio; Kaneko, Shun; Miyoshi, Masato; Tsunoda, Tomoyuki; Asano, Yu; Kawai-Kitahata, Fukiko; Nitta, Sayuri; Nakata, Toru; Okamoto, Ryuichi; Itsui, Yasuhiro; Nakagawa, Mina; Azuma, Seishin [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Asahina, Yasuhiro [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Yamaguchi, Tomoyuki [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Koshikawa, Naohiko [Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Seiki, Motoharu [Medical School, Kanazawa University, Kanazawa (Japan); Nakauchi, Hiromitsu [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); and others

    2016-01-22

    Fetal hepatic stem/progenitor cells, called hepatoblasts, play central roles in liver development; however, the molecular mechanisms regulating the phenotype of these cells have not been completely elucidated. Matrix metalloproteinase (MMP)-14 is a type I transmembrane proteinase regulating pericellular proteolysis of the extracellular matrix and is essential for the activation of several MMPs and cytokines. However, the physiological functions of MMP-14 in liver development are unknown. Here we describe a functional role for MMP-14 in hepatic and biliary differentiation of mouse hepatoblasts. MMP-14 was upregulated in cells around the portal vein in perinatal stage liver. Formation of bile duct-like structures in MMP-14–deficient livers was significantly delayed compared with wild-type livers in vivo. In vitro biliary differentiation assays showed that formation of cholangiocytic cysts derived from MMP-14–deficient hepatoblasts was completely impaired, and that overexpression of MMP-14 in hepatoblasts promoted the formation of bile duct-like cysts. In contrast, the expression of molecules associated with metabolic functions in hepatocytes, including hepatic nuclear factor 4α and tryptophan 2,3-dioxygenase, were significantly increased in MMP-14–deficient livers. Expression of the epidermal growth factor receptor and phosphorylation of mitogen-activated protein kinases were significantly upregulated in MMP-14–deficient livers. We demonstrate that MMP-14–mediated signaling in fetal hepatic progenitor cells promotes biliary luminal formation around the portal vein and negatively controls the maturation of hepatocytes. - Highlights: • Loss of MMP-14 delayed formation of bile duct-like structures in perinatal liver. • Overexpression of MMP-14 in hepatobalsts promoted the biliary formation in vitro. • Loss of MMP-14 promoted hepatocyte maturation of hepatoblasts in vivo. • MMP-14–mediated signaling regulates terminal differentiation of

  1. Proteomic Analysis of Fetal Ovaries Reveals That Primordial Follicle Formation and Transition Are Differentially Regulated.

    Science.gov (United States)

    Xu, Mengmeng; Che, Long; Yang, Zhenguo; Zhang, Pan; Shi, Jiankai; Li, Jian; Lin, Yan; Fang, Zhengfeng; Che, Lianqiang; Feng, Bin; Wu, De; Xu, Shengyu

    2017-01-01

    Primordial follicle formation represents a critical phase of the initiation of embryonic reproductive organ development, while the primordial follicle transition into primary follicle determines whether oestrus or ovulation will occur in female animals. To identify molecular mechanism of new proteins which are involved in ovarian development, we employed 2D-DIGE to compare the protein expression profiles of primordial follicles and primary follicles of fetal ovaries in pigs. Fetal ovaries were collected at distinct time-points of the gestation cycle (g55 and g90). The identified proteins at the g55 time-point are mainly involved in the development of anatomical structures [reticulocalbin-1 (RCN1), reticulocalbin-3 (RCN3)], cell differentiation (actin), and stress response [heterogeneous nuclear ribonucleoprotein K (HNRNPK)]. Meanwhile, at the g90 stage, the isolated proteins with altered expression levels were mainly associated with cell proliferation [major vault protein (MVP)] and stress response [heat shock-related 70 kDa protein 2 (HSPA2)]. In conclusion, our work revealed that primordial follicle formation is regulated by RCN1, RCN3, actin, and HNRNPK, while the primordial follicle transformation to primary follicle is regulated by MVP and HSPA2. Therefore, our results provide further information for the prospective understanding of the molecular mechanism(s) involved in the regulation of the ovarian follicle development.

  2. Impact of skeletal unloading on bone formation: Role of systemic and local factors

    Science.gov (United States)

    Bikle, Daniel D.; Halloran, Bernard P.; Morey-Holton, Emily

    We have developed a model of skeletal unloading using growing rats whose hindlimbs are unweighted by tail suspension. The bones in the hindlimbs undergo a transient cessation of bone growth; when reloaded bone formation is accelerated until bone mass is restored. These changes do not occur in the normally loaded bones of the forelimbs. Associated with the fall in bone formation is a fall in 1,25(OH) 2D 3 production and osteocalcin levels. In contrast, no changes in parathyroid hormone, calcium, or corticosterone levels are seen. To examine the role of locally produced growth factors, we have measured the mRNA and protein levels of insulin like growth factor-1 (IGF-1) in bone during tail suspension. Surprisingly, both the mRNA and protein levels of IGF-1 increase during tail suspension as bone formation is reduced. Furthermore, the bones in the hindlimbs of the suspended animals develop a resistance to the growth promoting effects of both growth hormone and IGF-1 when given parenterally. Thus, the cessation of bone growth with skeletal unloading is apparently associated with a resistance to rather than failure to produce local growth factors. The cause of this resistance remains under active investigation.

  3. Toward a mechanism-based understanding of skeletal formation: Toolbox for biomineralization past, present, and future

    Science.gov (United States)

    Dove, P. M.; Wallace, A. F.; Stephenson, A. E.; Wang, D. E.; Hamm, L.; de Yoreo, J. J.

    2008-05-01

    Since the onset of the Cambrian radiation (~540 Ma), organisms have developed the ability to control the nucleation and growth of amorphous and crystalline earth materials to form skeletal structures. Observations that similar skeletal materials are utilized across multiple branches on the eukaryotic tree of life are cited as evidence that biomineralization strategies evolved independently by similar biochemical pathways that developed early in evolutionary history (A. Knoll). An understanding of these relations is critical to deciphering earth history, yet until recently, studies of biomineral formation were primarily based upon descriptive approaches focused on morphology. Insights into mineralization processes were inferred largely from macroscopic experiments and structural characterizations. Over the last ten years, we have pursued the long-term goal of establishing a mechanistic understanding of biologically controlled mineralization. Through molecular-scale studies of calcium carbonate growth using in situ atomic force microscopy and computational methods, our approach has been to design simple model systems that link direct measurements of growth with the underlying chemical interactions. Recent additions to the toolbox of insights for mineral formation and compositional signatures include: 1) Shape is a kinetic effect of differential energy barriers to solute attachment/detachment and stereochemical relationships between crystal and growth modifier.; 2) From simple amino acids to peptides and full proteins, acidic biomolecules enhance mineralization rate up to 25X by a systematic relation. This suggests a functional role for aspartate- and glutamate-enriched macromolecules long-known to be associated with calcification.; 3) Acidic biomolecules promote uptake of impurities such as magnesium by 2-3 mol%. This enhancement corresponds to a temperature difference of 7- 14°C in proxy models that correlate Mg content with temperature. Anecdotal evidence suggests

  4. Maternal obesity down-regulates microRNA (miRNA) let-7g expression, a possible mechanism for enhanced adipogenesis during ovine fetal skeletal muscle development

    Science.gov (United States)

    Yan, Xu; Huang, Yan; Zhao, Jun-Xing; Rogers, Carl J.; Zhu, Mei-Jun; Ford, Stephen P.; Nathanielsz, Peter W.; Du, Min

    2014-01-01

    Background Obesity in women of childbearing age is increasing at an alarming rate. Growing evidence shows that maternal obesity induces detrimental effects on offspring health including pre-disposition to obesity. We have shown that maternal obesity increases fetal intramuscular adipogenesis at mid-gestation. However, the mechanisms are poorly understood. MicroRNAs (miRNAs) regulate mRNA stability. We hypothesized that maternal obesity alters fetal muscle miRNA expression, thereby influencing intramuscular adipogenesis. Methods Non-pregnant ewes received a control diet (Con, fed 100% of NRC recommendations, n = 6) or obesogenic diet (OB; 150% NRC recommendations, n = 6) from 60 days before to 75 days after conception when the fetal longissimus dorsi (LD) muscle was sampled and miRNA expression analyzed by miRNA microarray. One of miRNAs with differential expression between Con and OB fetal muscle, let-7g, was further tested for its role in adipogenesis and cell proliferation in C3H10T1/2 cells. Results A total of 155 miRNAs were found with a signal above 500, among which, 3 miRNAs, hsa-miR-381, hsa-let-7g and bta-miR-376d, were differentially expressed between Con and OB fetuses, and confirmed by QRT-PCR analyses. Reduced expression of miRNA let-7g, an abundantly expressed miRNA, in OB fetal muscle was correlated with higher expression of its target genes. Over-expression of let-7g in C3H10T1/2 cells reduced their proliferation rate. Expression of adipogenic markers decreased in cells over-expressing let-7g, and the formation of adipocytes was also reduced. Over-expression of let-7g decreased expression of inflammatory cytokines. Conclusion Fetal muscle miRNA expression was altered due to maternal obesity, and let-7g down-regulation may enhance intramuscular adipogenesis during fetal muscle development in the setting of maternal obesity. PMID:22614057

  5. 3D ultrasound in fetal spina bifida.

    Science.gov (United States)

    Schramm, T; Gloning, K-P; Minderer, S; Tutschek, B

    2008-12-01

    3D ultrasound can be used to study the fetal spine, but skeletal mode can be inconclusive for the diagnosis of fetal spina bifida. We illustrate a diagnostic approach using 2D and 3D ultrasound and indicate possible pitfalls.

  6. Phosphatidylinositol 4,5-bisphosphate formation in rabbit skeletal and heart muscle membranes.

    Science.gov (United States)

    Varsányi, M; Messer, M; Brandt, N R; Heilmeyer, L M

    1986-08-14

    Incubation of rabbit skeletal muscle microsomes or isolated triads with gamma 32P-ATP/Mg2+ in the absence and in the presence of added phosphatidylinositol resulted in the formation of phosphatidylinositol 4-phosphate catalyzed by phosphatidylinositol kinase. When phosphatidylinositol 4-phosphate was added as exogenous substrate, phosphatidylinositol 4,5-bisphosphate was also formed demonstrating the presence of a membrane bound phosphatidylinositol 4-phosphate kinase. Triads were broken mechanically in a French press and separated on a continuous sucrose gradient. Incubation of these fractions with gamma 32P-ATP/Mg2+ resulted in a rapid labeling of phospholipid in a membrane fraction banding between transverse tubules and the terminal cisternae. Partial triad breakage and triad reformation experiments indicated that this phosphatidylinositol kinase was associated with T-tubules. When exogenous phosphatidylinositol 4-phosphate was employed as substrate phosphatidylinositol 4,5-bisphosphate and phosphatidic acid were formed, indicating the presence of all the enzymes of the polyphosphoinositide signaling system in this special membrane fraction. In contrast, heart muscle microsomes or plasma membranes can catalyze this reaction sequence from endogenous formed phosphatidylinositol 4-phosphate.

  7. The p27 Pathway Modulates the Regulation of Skeletal Growth and Osteoblastic Bone Formation by Parathyroid Hormone-Related Peptide.

    Science.gov (United States)

    Zhu, Min; Zhang, Jing; Dong, Zhan; Zhang, Ying; Wang, Rong; Karaplis, Andrew; Goltzman, David; Miao, Dengshun

    2015-11-01

    Parathyroid hormone-related peptide (PTHrP) 1-84 knock-in mice (Pthrp KI) develop skeletal growth retardation and defective osteoblastic bone formation. To further examine the mechanisms underlying this phenotype, microarray analyses of differential gene expression profiles were performed in long bone extracts from Pthrp KI mice and their wild-type (WT) littermates. We found that the expression levels of p27, p16, and p53 were significantly upregulated in Pthrp KI mice relative to WT littermates. To determine whether p27 was involved in the regulation by PTHrP of skeletal growth and development in vivo, we generated compound mutant mice, which were homozygous for both p27 deletion and the Pthrp KI mutation (p27(-/-) Pthrp KI). We then compared p27(-/-) Pthrp KI mice with p27(-/-), Pthrp KI, and WT littermates. Deletion of p27 in Pthrp KI mice resulted in a longer lifespan, increased body weight, and improvement in skeletal growth. At 2 weeks of age, skeletal parameters, including length of long bones, size of epiphyses, numbers of proliferating cell nuclear antigen (PCNA)-positive chondrocytes, bone mineral density, trabecular bone volume, osteoblast numbers, and alkaline phosphatase (ALP)-, type I collagen-, and osteocalcin-positive bone areas were increased in p27(-/-) mice and reduced in both Pthrp KI and p27(-/-) Pthrp KI mice compared with WT mice; however, these parameters were increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. As well, protein expression levels of PTHR, IGF-1, and Bmi-1, and the numbers of total colony-forming unit fibroblastic (CFU-f) and ALP-positive CFU-f were similarly increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. Our results demonstrate that deletion of p27 in Pthrp KI mice can partially rescue defects in skeletal growth and osteoblastic bone formation by enhancing endochondral bone formation and osteogenesis. These studies, therefore, indicate that the p27 pathway may function downstream in the action

  8. LACK OF EXPRESSION OF EGF AND TGF-ALPHA IN THE FETAL MOUSE ALTERS FORMATION OF PROSTATIC EPITHELIAL BUDS AND INFLUENCES THE RESPONSE TO TCDD

    Science.gov (United States)

    Lack of Expression of EGF and TGF in the Fetal Mouse Alters Formation of Prostatic Epithelial Buds and Responsiveness to TCDD-Induced Impairment of Prostatic Bud Formation. Barbara D. Abbott, Tien-Min Lin, Nathan T. Rasmussen, Robert W. Moore,Ralph M. Albrecht, Judi...

  9. HIERARCHIC SKELETAL ORGANIZATION - A FACTOR REGULATING THE STRUCTURE OF FATIGUE INJURIES. PART II. HYPOTHETICAL MODEL OF FORMATION AND DISTRUPTION OF BONDS BETWEEN CRYSTALLITE ASSOCIATIONS

    Directory of Open Access Journals (Sweden)

    A. S. Avrunin

    2010-01-01

    Full Text Available The authors discuss the questions concerning local structural-temporal changes in skeletal mineralization degree, local hyper-mineralization, the role of the spatial gradient of skeletal mineralization in forces distribution during locomotion, microstructural distribution of crystallite associations, ultrastructural mineral matrix transformation in the process of its formation. Hypothetical mechanisms of joining crystallite associations into a unified mineral complex are suggested; a hypothetical spatial structure of junction formation between the nearest crystallite associations is described, as well as a supposed schema of mineral massif destruction and restoration of disrupted connections.

  10. Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration.

    Science.gov (United States)

    Sousa, Sara; Afonso, Nuno; Bensimon-Brito, Anabela; Fonseca, Mariana; Simões, Mariana; Leon, Joaquín; Roehl, Henry; Cancela, Maria Leonor; Jacinto, António

    2011-09-01

    The origin of cells that generate the blastema following appendage amputation has been a long-standing question in epimorphic regeneration studies. The blastema is thought to originate from either stem (or progenitor) cells or differentiated cells of various tissues that undergo dedifferentiation. Here, we investigate the origin of cells that contribute to the regeneration of zebrafish caudal fin skeletal elements. We provide evidence that the process of lepidotrichia (bony rays) regeneration is initiated as early as 24 hours post-amputation and that differentiated scleroblasts acquire a proliferative state, detach from the lepidotrichia surface, migrate distally, integrate into the blastema and dedifferentiate. These findings provide novel insights into the origin of cells in epimorphic appendage regeneration in zebrafish and suggest conservation of regeneration mechanisms between fish and amphibians.

  11. Fetal Circulation

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Fetal Circulation Updated:Oct 18,2016 click to enlarge The ... fetal heart. These two bypass pathways in the fetal circulation make it possible for most fetuses to survive ...

  12. A primary phosphorus-deficient skeletal phenotype in juvenile Atlantic salmon Salmo salar: the uncoupling of bone formation and mineralization.

    Science.gov (United States)

    Witten, P E; Owen, M A G; Fontanillas, R; Soenens, M; McGurk, C; Obach, A

    2016-02-01

    To understand the effect of low dietary phosphorus (P) intake on the vertebral column of Atlantic salmon Salmo salar, a primary P deficiency was induced in post-smolts. The dietary P provision was reduced by 50% for a period of 10 weeks under controlled conditions. The animal's skeleton was subsequently analysed by radiology, histological examination, histochemical detection of minerals in bones and scales and chemical mineral analysis. This is the first account of how a primary P deficiency affects the skeleton in S. salar at the cellular and at the micro-anatomical level. Animals that received the P-deficient diet displayed known signs of P deficiency including reduced growth and soft, pliable opercula. Bone and scale mineral content decreased by c. 50%. On radiographs, vertebral bodies appear small, undersized and with enlarged intervertebral spaces. Contrary to the X-ray-based diagnosis, the histological examination revealed that vertebral bodies had a regular size and regular internal bone structures; intervertebral spaces were not enlarged. Bone matrix formation was continuous and uninterrupted, albeit without traces of mineralization. Likewise, scale growth continues with regular annuli formation, but new scale matrix remains without minerals. The 10 week long experiment generated a homogeneous osteomalacia of vertebral bodies without apparent induction of skeletal malformations. The experiment shows that bone formation and bone mineralization are, to a large degree, independent processes in the fish examined. Therefore, a deficit in mineralization must not be the only cause of the alterations of the vertebral bone structure observed in farmed S. salar. It is discussed how the observed uncoupling of bone formation and mineralization helps to better diagnose, understand and prevent P deficiency-related malformations in farmed S. salar.

  13. Isolation and transfection of skeletal muscle satellite cells from Qinchuan fetal bovine%秦川牛胎儿骨骼肌卫星细胞的分离培养

    Institute of Scientific and Technical Information of China (English)

    何玉龙; 吴月红; 权富生; 刘琴; 张涌

    2012-01-01

    【目的】探索胎牛骨骼肌卫星细胞分离、培养、鉴定及基因转染的方法。【方法】分别采用Ⅰ型胶原酶消化、Ⅰ型胶原酶与胰蛋白酶二步消化及链霉蛋白酶消化法对胎牛骨骼肌卫星细胞进行培养,比较了3种不同分离方法所得细胞数及其存活率的差异;利用差速贴壁法和Percoll密度梯度离心相结合的方法纯化骨骼肌卫星细胞,对纯化后的细胞进行myostatin基因RT-PCR以及结蛋白(Desmin)免疫细胞化学染色鉴定,最后通过电转染法对纯化的骨骼肌卫星细胞进行EGFP基因转染研究。【结果】3种消化培养方法中,以链霉蛋白酶消化法分离得到的胎牛骨骼肌卫星细胞数显著高于其它2种方法(P〈0.05),但细胞存活率较低(P〈0.05);而采用Ⅰ型胶原酶与胰蛋白酶二步消化法可以得到相对较高的细胞数及存活率。利用差速贴壁和Percoll密度梯度离心相结合的方法可以得到纯化的骨骼肌卫星细胞;电转染法适用于骨骼肌卫星细胞的基因转染。【结论】建立了胎牛骨骼肌卫星细胞分离、培养、纯化、鉴定及基因转染的方法,为通过转基因方法改良秦川牛产肉性能研究奠定了基础。%【Objective】 The study was done to establish a stable method for isolation,purification and gene transfection of Qinchuan fetal bovine skeletal muscle satellite cells.【Method】 Fetal cattle muscle satellite cells were isolated from Semimembranosus muscle by digesting with collagenase Ⅰ,collagenase Ⅰ combined with trypsin(two-step methods) or pronase.The differences in cells number and survival rate were compared.The cells were purified by Percoll density gradient centrifugation combined with different adherent methods.The cells were characterized by RT-PCR for myostatin gene and immunocytochemistry for Desmin.Then EGFP gene was introduced by electric transfection method.【Result】 The results showed that the

  14. Fetal Research

    Science.gov (United States)

    Hansen, John T.; Sladek, John R.

    1989-11-01

    This article reviews some of the significant contributions of fetal research and fetal tissue research over the past 20 years. The benefits of fetal research include the development of vaccines, advances in prenatal diagnosis, detection of malformations, assessment of safe and effective medications, and the development of in utero surgical therapies. Fetal tissue research benefits vaccine development, assessment of risk factors and toxicity levels in drug production, development of cell lines, and provides a source of fetal cells for ongoing transplantation trials. Together, fetal research and fetal tissue research offer tremendous potential for the treatment of the fetus, neonate, and adult.

  15. Staufen1 impairs stress granule formation in skeletal muscle cells from myotonic dystrophy type 1 patients

    Science.gov (United States)

    Ravel-Chapuis, Aymeric; Klein Gunnewiek, Amanda; Bélanger, Guy; Crawford Parks, Tara E.; Côté, Jocelyn; Jasmin, Bernard J.

    2016-01-01

    Myotonic dystrophy (DM1) is caused by an expansion of CUG repeats (CUGexp) in the DMPK mRNA 3′UTR. CUGexp-containing mRNAs become toxic to cells by misregulating RNA-binding proteins. Here we investigated the consequence of this RNA toxicity on the cellular stress response. We report that cell stress efficiently triggers formation of stress granules (SGs) in proliferating, quiescent, and differentiated muscle cells, as shown by the appearance of distinct cytoplasmic TIA-1– and DDX3-containing foci. We show that Staufen1 is also dynamically recruited into these granules. Moreover, we discovered that DM1 myoblasts fail to properly form SGs in response to arsenite. This blockage was not observed in DM1 fibroblasts, demonstrating a cell type–specific defect. DM1 myoblasts display increased expression and sequestration of toxic CUGexp mRNAs compared with fibroblasts. Of importance, down-regulation of Staufen1 in DM1 myoblasts rescues SG formation. Together our data show that Staufen1 participates in the inhibition of SG formation in DM1 myoblasts. These results reveal that DM1 muscle cells fail to properly respond to stress, thereby likely contributing to the complex pathogenesis of DM1. PMID:27030674

  16. Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation.

    Science.gov (United States)

    Merrick, Deborah; Stadler, Lukas Kurt Josef; Larner, Dean; Smith, Janet

    2009-01-01

    Examination of embryonic myogenesis of two distinct, but functionally related, skeletal muscle dystrophy mutants (mdx and cav-3(-/-)) establishes for the first time that key elements of the pathology of Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophy type 1C (LGMD-1c) originate in the disruption of the embryonic cardiac and skeletal muscle patterning processes. Disruption of myogenesis occurs earlier in mdx mutants, which lack a functional form of dystrophin, than in cav-3(-/-) mutants, which lack the Cav3 gene that encodes the protein caveolin-3; this finding is consistent with the milder phenotype of LGMD-1c, a condition caused by mutations in Cav3, and the earlier [embryonic day (E)9.5] expression of dystrophin. Myogenesis is severely disrupted in mdx embryos, which display developmental delays; myotube morphology and displacement defects; and aberrant stem cell behaviour. In addition, the caveolin-3 protein is elevated in mdx embryos. Both cav-3(-/-) and mdx mutants (from E15.5 and E11.5, respectively) exhibit hyperproliferation and apoptosis of Myf5-positive embryonic myoblasts; attrition of Pax7-positive myoblasts in situ; and depletion of total Pax7 protein in late gestation. Furthermore, both cav-3(-/-) and mdx mutants have cardiac defects. In cav-3(-/-) mutants, there is a more restricted phenotype comprising hypaxial muscle defects, an excess of malformed hypertrophic myotubes, a twofold increase in myonuclei, and reduced fast myosin heavy chain (FMyHC) content. Several mdx mutant embryo pathologies, including myotube hypotrophy, reduced myotube numbers and increased FMyHC, have reciprocity with cav-3(-/-) mutants. In double mutant (mdxcav-3(+/-)) embryos that are deficient in dystrophin (mdx) and heterozygous for caveolin-3 (cav-3(+/-)), whereby caveolin-3 is reduced to 50% of wild-type (WT) levels, these phenotypes are severely exacerbated: intercostal muscle fibre density is reduced by 71%, and Pax7-positive cells are depleted

  17. Fetal syringomyelia.

    Science.gov (United States)

    Guo, Anne; Chitayat, David; Blaser, Susan; Keating, Sarah; Shannon, Patrick

    2014-08-06

    We explored the prevalence of syringomyelia in a series of 113 cases of fetal dysraphism and hindbrain crowding, of gestational age ranging from 17.5 to 34 weeks with the vast majority less than 26 weeks gestational age. We found syringomyelia in 13 cases of Chiari II malformations, 5 cases of Omphalocele/Exostrophy/Imperforate anus/Spinal abnormality (OEIS), 2 cases of Meckel Gruber syndrome and in a single pair of pyopagus conjoined twins. Secondary injury was not uncommon, with vernicomyelia in Chiari malformations, infarct like histology, or old hemorrhage in 8 cases of syringomyelia. Vernicomyelia did not occur in the absence of syrinx formation. The syringes extended from the sites of dysraphism, in ascending or descending patterns. The syringes were usually in a major proportion anatomically distinct from a dilated or denuded central canal and tended to be dorsal and paramedian or median. We suggest that fetal syringomyelia in Chiari II malformation and other dysraphic states is often established prior to midgestation, has contributions from the primary malformation as well as from secondary in utero injury and is anatomically and pathophysiologically distinct from post natal syringomyelia secondary to hindbrain crowding.

  18. L-Carnitine supplementation during suckling intensifies the early postnatal skeletal myofiber formation in piglets of low birth weight.

    Science.gov (United States)

    Lösel, D; Kalbe, C; Rehfeldt, C

    2009-07-01

    Piglets of low birth weight exhibit a reduced total number of skeletal myofibers at birth and throughout life compared with piglets of middle and heavy birth weight, which is associated with impaired (lean) growth and quality of carcass and meat at market weight. We investigated the effect of L-carnitine supplementation to suckling piglets of different birth weights on early postnatal myofiber formation, muscle growth, and body composition. A total of 48 piglets of low (LW) and middle (MDW) birth weight from 9 German Landrace gilts received 400 mg of L-carnitine (carnitine, n = 25) or a placebo (control, n = 23) once daily from d 7 to 27 of age and were slaughtered on d 28 of age (weaning). Carnitine-supplemented piglets deposited less fat as indicated by a reduced proportion of perirenal (P = 0.1) and intramuscular fat (P = 0.05). Circulating glucose concentrations tended to be greater in supplemented LW piglets (P = 0.13). The concentration of carnitine in semitendinosus (STN) muscle was approximately doubled (P supplementation, with emphasis on the proportion of esterified carnitine. The ratio of lactate dehydrogenase to isocitrate dehydrogenase tended (P = 0.12) to be smaller in STN muscle of supplemented piglets, indicating a more oxidative muscle metabolism. The total number of STN myofibers was increased by 13% (P = 0.02) in supplemented LW piglets, thereby reaching the unchanged level of MDW littermates. In addition, supplemented LW piglets displayed a 2.4-fold mRNA expression of the gene encoding the embryonic isoform of the myosin heavy chain in STN muscle than control piglets (P = 0.05), but there were no differences in the proportion of fibers positively staining for the embryonic myosin isoform. L-carnitine-supplemented piglets exhibited a greater DNA:protein ratio (P = 0.02) in STN muscle, which resulted from a greater DNA concentration (P = 0.04). However, the STN muscle of L-carnitine-supplemented piglets was not less mature as indicated by

  19. Vigilancia Fetal

    OpenAIRE

    SAONA UGARTE, Pedro

    2013-01-01

    La percepción de la actividad fetal por la madre es la técnica más antigua y menos costosa de controlar el bienestar fetal. Tradicionalmente se ha considerado la disminución o ausencia de movimientos fetales percibidos por la madre, como una señal de alarma, en especial cuando existe insuficiencia útero placentaria. Varios investigadores han descrito el valor del registro diario de movimientos fetales como un método para identificar el feto en peligrote morir. El poder discernir si el feto se...

  20. Platelet rich plasma promotes skeletal muscle cell migration in association with up-regulation of FAK, paxillin, and F-Actin formation.

    Science.gov (United States)

    Tsai, Wen-Chung; Yu, Tung-Yang; Lin, Li-Ping; Lin, Mioa-Sui; Tsai, Ting-Ta; Pang, Jong-Hwei S

    2017-02-24

    Platelet rich plasma (PRP) contains various cytokines and growth factors which may be beneficial to the healing process of injured muscle. The aim of this study was to investigate the effect and molecular mechanism of PRP on migration of skeletal muscle cells. Skeletal muscle cells intrinsic to Sprague-Dawley rats were treated with PRP. The cell migration was evaluated by transwell filter migration assay and electric cell-substrate impedance sensing. The spreading of cells was evaluated microscopically. The formation of filamentous actin (F-actin) cytoskeleton was assessed by immunofluorescence staining. The protein expressions of paxillin and focal adhesion kinase (FAK) were assessed by Western blot analysis. Transfection of paxillin small-interfering RNA (siRNAs) to muscle cells was performed to validate the role of paxillin in PRP-mediated promotion of cell migration. Dose-dependently PRP promotes migration of and spreading and muscle cells. Protein expressions of paxillin and FAK were up-regulated dose-dependently. F-actin formation was also enhanced by PRP treatment. Furthermore, the knockdown of paxillin expression impaired the effect of PRP to promote cell migration. It was concluded that PRP promoting migration of muscle cells is associated with up-regulation of proteins expression of paxillin and FAK as well as increasing F-actin formation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. The skeletal proteome of the brittle star Ophiothrix spiculata identifies C-type lectins and other proteins conserved in echinoderm skeleton formation

    Directory of Open Access Journals (Sweden)

    Brian T. Livingston

    2016-07-01

    Full Text Available Determining the identity and functional role of proteins involved in biomineralization and the formation of skeletons is critical to our understanding of the process. Proteomics has allowed rapid characterization of the proteins occluded within mineralized tissue, but the large numbers of proteins detected makes it difficult to assign the relative importance of each protein. We have taken a comparative approach, examining the skeletal proteome of different species of echinoderms in order to identify the proteins that are conserved and likely to be important. Our previous study comparing the skeletal proteome of the brittle star Ophiocoma wendtii to the published proteomes of the sea urchin Strongylocentrotus purpuratus revealed some conservation of proteins, but indicated that the C-type lectin domain-containing spicule matrix proteins abundant in the sea urchin skeletal proteome were not conserved in the brittle star. Here we examine the skeletal proteome of a different species of brittle star, Ophiothrix spiculata. We have isolated the proteins from the skeleton of O. spiculata and performed LC/MS/MS to identify peptides present. Comparison to transcriptome and genome databases revealed the proteins present in the O. spiculata proteome. Despite being diverged for several million years, the two brittle stars have very similar proteins in their skeletons. Included is a fibrinogen C-like lectin and several C-type lectins proteins, which we describe in detail. The unusual number of C-type lectins found in the S. purpuatus skeleton and the repetitive regions seen in those spicule matrix proteins are not present in O. spiculata.

  2. Pharmacological Inhibition of Protein Kinase G1 Enhances Bone Formation by Human Skeletal Stem Cells Through Activation of RhoA-Akt Signaling

    DEFF Research Database (Denmark)

    Jafari, Abbas; Siersbæk, Majken; Chen, Li;

    2015-01-01

    for several malignant and nonmalignant conditions. We screened a library of kinase inhibitors to identify small molecules that enhance bone formation by human skeletal (stromal or mesenchymal) stem cells (hMSC). We identified H-8 (known to inhibit protein kinases A, C, and G) as a potent enhancer of ex vivo......Development of novel approaches to enhance bone regeneration is needed for efficient treatment of bone defects. Protein kinases play a key role in regulation of intracellular signal transduction pathways, and pharmacological targeting of protein kinases has led to development of novel treatments...

  3. Fetal Macrosomia

    Science.gov (United States)

    ... might need special care in the hospital's neonatal intensive care unit. Keep in mind that your baby might ... References Copel JA, et al. Fetal macrosomia. In: Obstetric Imaging. Philadelphia, Pa.: Saunders Elsevier; 2012. http://www. ...

  4. Fetal Ultrasound

    Science.gov (United States)

    ... needle placement during certain prenatal tests, such as amniocentesis or chorionic villus sampling. Determine fetal position before ... home. Accessed Aug. 11, 2015. Ghidini A. Diagnostic amniocentesis. http://www.uptodate.com/home. Accessed Aug. 11, ...

  5. Fetal pain

    OpenAIRE

    Adama van Scheltema, Phebe

    2011-01-01

    Recent studies have suggested that the fetus is capable of exhibiting a stress response to intrauterine needling, resulting in alterations in fetal stress hormone levels. Intrauterine transfusions are performed by inserting a needle either in the umbilical cord root at the placental surface (PCI), or in the intrahepatic portion of the umbilical vein (IHV). Aim of our study was to test the hypothesis that fetal hormonal changes during intrauterine transfusion are more pronounced when the needl...

  6. Robust conversion of marrow cells to skeletal muscle with formation of marrow-derived muscle cell colonies: A multifactorial process

    Energy Technology Data Exchange (ETDEWEB)

    Abedi, Mehrdad; Greer, Deborah A.; Colvin, Gerald A.; Demers, Delia A.; Dooner, Mark S.; Harpel, Jasha A.; Weier, Heinz-Ulrich G.; Lambert, Jean-Francois; Quesenberry, Peter J.

    2004-01-10

    Murine marrow cells are capable of repopulating skeletal muscle fibers. A point of concern has been the robustness of such conversions. We have investigated the impact of type of cell delivery, muscle injury, nature of delivered cell, and stem cell mobilizations on marrow to muscle conversion. We transplanted GFP transgenic marrow into irradiated C57BL/6 mice and then injured anterior tibialis muscle by cardiotoxin. One month after injury, sections were analyzed by standard and deconvolutional microscopy for expression of muscle and hematopietic markers. Irradiation was essential to conversion although whether by injury or induction of chimerism is not clear. Cardiotoxin and to a lesser extent PBS injected muscles showed significant number of GFP+ muscle fibers while uninjected muscles showed only rare GFP+ cells. Marrow conversion to muscle was increased by two cycles of G-CSF mobilization and to a lesser extent with G-CSF and steel or GM-CSF. Transplantation of female GFP to male C57 BL/6 and GFP to Rosa26 mice showed fusion of donor cells to recipient muscle. High numbers of donor derived muscle colonies and up to12 percent GFP positive muscle cells were seen after mobilization or direct injection. These levels of donor muscle chimerism approach levels which could be clinically significant in developing strategies for the treatment of muscular dystrophies. In summary, the conversion of marrow to skeletal muscle cells is based on cell fusion and is critically dependent on injury. This conversion is also numerically significant and increases with mobilization.

  7. Piceatannol bolsteres fetal haemoglobin formation in K562 cells via p38 map kinase activation and ERK inactivation

    Directory of Open Access Journals (Sweden)

    AAYUSH KUKREJA

    2015-08-01

    Full Text Available Elevation of the level of fetal haemoglobin (HbF by pharmacological agents is a safe and a promising approach for treating beta thalassemia. In this study, the effect of piceatannol was studied in human erythroleukemic K562 cells for their role in gamma-globin mRNA and HbF induction. The role of p38 mitogen activated protein kinase (MAPK and extracellular regulated protein kinase (ERK signaling pathways were also examined. It was found that piceatannol significantly increased gamma-globin mRNA and HbF levels in dose and time dependent manner in K562 cells. This was determined by enzyme linked immunosorbent assay (ELISA and western blot analysis. Pretreatment with p38 MAPK inhibitor (SB203580 obstructed the stimulatory effect of piceatannol in total and HbF activation. In contrast, no change in HbF level was observed in K562 cells when treated with ERK inhibitor (PD98059. Moreover, piceatannol activated p38 MAPK and inhibited ERK signaling pathways in K562 cells as shown by western blot analysis. Besides, the inhibitor SB203580 inhibited p38 MAPK activation when cells were pre-treated with piceatannol. In summary, piceatannol was found to be a strong inducer of HbF production in K562 cells. The results mark the role of p38 MAPK and ERK signaling as molecular targets for stimulation of HbF synthesis upon treatment with piceatannol.

  8. [Fetal magnetocardiography].

    Science.gov (United States)

    van Leeuwen, P

    1997-09-01

    Fetal magnetocardiography is a new, alternative method for prenatal surveillance. The fetal magnetocardiogram (FMCG) registers the magnetic field produced by conduction currents in the fetal heart. Compared to the fetal electrocardiogram, the propagation of magnetic fields is relatively undisturbed by surrounding tissue. The FMCG thus has the advantage of a higher signal-to-noise ratio and can be acquired earlier pregnancy. Also, the high temporal resolution of the signal permits a significantly more precise determination of fetal heart rate parameters than fetal ultrasound. FMCG registration using a biomagnetometer is noninvasive and can be performed as of the second trimeter. It can be used to examine signal morphology, cardiac time intervals, heart rate variability as well as cardiac magnetic fields. To date, arrhythmic activity has been observed in the form of supraventricular and ventricular ectopies as well as atrial flutter, atrio-ventricular block, atrial tachycardia and Torsades de Pointes tachycardia. We also report here on the presence of short episodes of bradycardia in the second trimester of normal pregnancy. Measurement of the magnetic field strength at various locations above the abdomen has allowed the reconstruction of the fetal cardiac magnetic field and the determination of its relation to the position of the fetus. Signal averaging has permitted the precise examination of signal amplitude and cardiac time intervals and has shown that they increase in the course of pregnancy. Heart rate variability could be quantified in the time and frequency domain as well as using parameters of nonlinear dynamics. The results demonstrated an increase of variability and complexity over gestational age. Furthermore spectral analysis of fetal heart arte data could be associated with sympathetic and parasympathetic activity as well as, with respiration. Although the studies presenting these results have involved only limited numbers of observations, they

  9. Epo Is Relevant Neither for Microvascular Formation Nor for the New Formation and Maintenance of Mice Skeletal Muscle Fibres in Both Normoxia and Hypoxia

    OpenAIRE

    Luciana Hagström; Onnik Agbulut; Raja El-Hasnaoui-Saadani; Dominique Marchant; Fabrice Favret; Jean-Paul Richalet; Michèle Beaudry; Thierry Launay

    2010-01-01

    Erythropoietin (Epo) and vascular growth factor (VEGF) are known to be involved in the regulation of cellular activity when oxygen transport is reduced as in anaemia or hypoxic conditions. Because it has been suggested that Epo could play a role in skeletal muscle development, regeneration, and angiogenesis, we aimed to assess Epo deficiency in both normoxia and hypoxia by using an Epo-deficient transgenic mouse model ( E p o - T A g h ). Histoimmunology, ELISA and real time RT-PCR did not sh...

  10. Fetal pain

    NARCIS (Netherlands)

    Adama van Scheltema, Phebe

    2011-01-01

    Recent studies have suggested that the fetus is capable of exhibiting a stress response to intrauterine needling, resulting in alterations in fetal stress hormone levels. Intrauterine transfusions are performed by inserting a needle either in the umbilical cord root at the placental surface (PCI), o

  11. Antimicrobial efficacy against Pseudomonas aeruginosa biofilm formation in a three-dimensional lung epithelial model and the influence of fetal bovine serum

    Science.gov (United States)

    Crabbé, Aurélie; Liu, Yulong; Matthijs, Nele; Rigole, Petra; De La Fuente-Nùñez, César; Davis, Richard; Ledesma, Maria A.; Sarker, Shameema; Van Houdt, Rob; Hancock, Robert E. W.; Coenye, Tom; Nickerson, Cheryl A.

    2017-01-01

    In vitro models that mimic in vivo host-pathogen interactions are needed to evaluate candidate drugs that inhibit bacterial virulence traits. We established a new approach to study Pseudomonas aeruginosa biofilm susceptibility on biotic surfaces, using a three-dimensional (3-D) lung epithelial cell model. P. aeruginosa formed antibiotic resistant biofilms on 3-D cells without affecting cell viability. The biofilm-inhibitory activity of antibiotics and/or the anti-biofilm peptide DJK-5 were evaluated on 3-D cells compared to a plastic surface, in medium with and without fetal bovine serum (FBS). In both media, aminoglycosides were more efficacious in the 3-D cell model. In serum-free medium, most antibiotics (except polymyxins) showed enhanced efficacy when 3-D cells were present. In medium with FBS, colistin was less efficacious in the 3-D cell model. DJK-5 exerted potent inhibition of P. aeruginosa association with both substrates, only in serum-free medium. DJK-5 showed stronger inhibitory activity against P. aeruginosa associated with plastic compared to 3-D cells. The combined addition of tobramycin and DJK-5 exhibited more potent ability to inhibit P. aeruginosa association with both substrates. In conclusion, lung epithelial cells influence the efficacy of most antimicrobials against P. aeruginosa biofilm formation, which in turn depends on the presence or absence of FBS. PMID:28256611

  12. Pediatric aspects of skeletal dysplasia.

    Science.gov (United States)

    Ozono, Keiichi; Namba, Noriyuki; Kubota, Takuo; Kitaoka, Taichi; Miura, Kohji; Ohata, Yasuhisa; Fujiwara, Makoto; Miyoshi, Yoko; Michigami, Toshimi

    2012-10-01

    Skeletal dysplasia is a disorder of skeletal development characterized by abnormality in shape, length, a number and mineral density of the bone. Skeletal dysplasia is often associated with manifestation of other organs such as lung, brain and sensory systems. Skeletal dysplasias or dysostosis are classified with more than 400 different names. Enchondral bone formation is a coordinated event of chondrocyte proliferation, differentiation and exchange of terminally maturated chondrocyte with bone. Impaired enchondral bone formation will lead to skeletal dysplasia, especially associated with short long bones. Appropriate bone volume and mineral density are achieved by balance of bone formation and bone resorption and mineralization. The gene encoding fibroblast growth factor receptor 3 is responsible for achondroplasia, representative skeletal dysplasia with short stature. The treatment with growth hormone is approved for achondroplasia in Japan. Osteogenesis imperfecta is characterized by low bone mineral density and fragile bone. Data on the beneficial effect of bisphosphonate for osteogenesis imperfecta are accumulating. Osteopetrosis has high bone mineral density, but sometimes show bone fragility. In Japan as well as other countries, pediatrician treat larger numbers of patients with skeletal dysplasia with short stature and fragile bones compared to 20 years ago.

  13. Epo is relevant neither for microvascular formation nor for the new formation and maintenance of mice skeletal muscle fibres in both normoxia and hypoxia.

    Science.gov (United States)

    Hagström, Luciana; Agbulut, Onnik; El-Hasnaoui-Saadani, Raja; Marchant, Dominique; Favret, Fabrice; Richalet, Jean-Paul; Beaudry, Michèle; Launay, Thierry

    2010-01-01

    Erythropoietin (Epo) and vascular growth factor (VEGF) are known to be involved in the regulation of cellular activity when oxygen transport is reduced as in anaemia or hypoxic conditions. Because it has been suggested that Epo could play a role in skeletal muscle development, regeneration, and angiogenesis, we aimed to assess Epo deficiency in both normoxia and hypoxia by using an Epo-deficient transgenic mouse model (Epo-TAg(h)). Histoimmunology, ELISA and real time RT-PCR did not show any muscle fiber atrophy or accumulation of active HIF-1alpha but an improvement of microvessel network and an upregulation of VEGFR2 mRNA in Epo-deficient gastrocnemius compared with Wild-Type one. In hypoxia, both models exhibit an upregulation of VEGF120 and VEGFR2 mRNA but no accumulation of Epo protein. EpoR mRNA is not up-regulated in both Epo-deficient and hypoxic gastrocnemius. These results suggest that muscle deconditioning observed in patients suffering from renal failure is not due to Epo deficiency.

  14. Epo Is Relevant Neither for Microvascular Formation Nor for the New Formation and Maintenance of Mice Skeletal Muscle Fibres in Both Normoxia and Hypoxia

    Directory of Open Access Journals (Sweden)

    Luciana Hagström

    2010-01-01

    Full Text Available Erythropoietin (Epo and vascular growth factor (VEGF are known to be involved in the regulation of cellular activity when oxygen transport is reduced as in anaemia or hypoxic conditions. Because it has been suggested that Epo could play a role in skeletal muscle development, regeneration, and angiogenesis, we aimed to assess Epo deficiency in both normoxia and hypoxia by using an Epo-deficient transgenic mouse model (Epo-TAgh. Histoimmunology, ELISA and real time RT-PCR did not show any muscle fiber atrophy or accumulation of active HIF-1 but an improvement of microvessel network and an upregulation of VEGFR2 mRNA in Epo-deficient gastrocnemius compared with Wild-Type one. In hypoxia, both models exhibit an upregulation of VEGF120 and VEGFR2 mRNA but no accumulation of Epo protein. EpoR mRNA is not up-regulated in both Epo-deficient and hypoxic gastrocnemius. These results suggest that muscle deconditioning observed in patients suffering from renal failure is not due to Epo deficiency.

  15. Fetal magnetocardiography: Methods for rapid data reduction

    Science.gov (United States)

    Mosher, John C.; Flynn, Edward R.; Quinn, A.; Weir, A.; Shahani, U.; Bain, R. J. P.; Maas, P.; Donaldson, G. B.

    1997-03-01

    Fetal magnetocardigraphy (fMCG) provides a unique method for noninvasive observations of the fetal heart. Electrical currents generated by excitable tissues within the fetal heart yield measurable external magnetic fields. Measurements are performed with superconducting quantum interference devices inductively coupled to magnetometer or gradiometer coils, and the resulting signals are converted to digital form in the data acquisition system. The measured fields are usually contaminated by fetal and maternal movements (usually respiration), other physiological fields such as skeletal muscle contraction, the maternal cardiac signal, and environmental electromagnetic fields. Sensitivity to relatively distant sources, both physiological and environmental, is substantially reduced by the use of magnetic gradiometers. Other contaminants may be removed by proper signal conditioning which may be automatically applied using "black box" algorithms that are transparent to the user and highly efficient. These procedures can rapidly reduce the complex signal plus noise waveforms to the desired fMCG with minimal operator interference.

  16. Runx2-I isoform contributes to fetal bone formation even in the absence of specific N-terminal amino acids.

    Directory of Open Access Journals (Sweden)

    Hideaki Okura

    Full Text Available The Runt-related transcription factor 2 (Runx2 gene encodes the transcription factor Runx2, which is the master regulator of osteoblast development; insufficiency of this protein causes disorders of bone development such as cleidocranial dysplasia. Runx2 has two isoforms, Runx2-II and Runx2-I, and production of each isoform is controlled by a unique promoter: a distal promoter (P1 and a proximal promoter (P2, respectively. Although several studies have focused on differences and similarities between the two Runx2 isoforms, their individual roles in bone formation have not yet been determined conclusively, partly because a Runx2-I-targeted mouse model is not available. In this study, we established a novel Runx2-manipulated mouse model in which the first ATG of Runx2-I was replaced with TGA (a stop codon, and a neomycin-resistant gene (neo cassette was inserted at the first intron of Runx2-I. Homozygous Runx2-Ineo/neo mice showed severely reduced expression of Runx2-I, whereas Runx2-II expression was largely retained. Runx2-Ineo/neo mice showed neonatal lethality, and in these mice, intramembranous ossification was more severely defective than endochondral ossification, presumably because of the greater involvement of Runx2-I, compared with that of Runx2-II in intramembranous ossification. Interestingly, the depletion of neo rescued the above-described phenotypes, indicating that the isoform-specific N-terminal region of Runx2-I is not functionally essential for bone development. Taken together, our results provide a novel clue leading to a better understanding of the roles of Runx2 isoforms in osteoblast development.

  17. Skeletal callus formation is a nerve‐independent regenerative response to limb amputation in mice and Xenopus

    Science.gov (United States)

    Miura, Shinichirou; Takahashi, Yumiko; Satoh, Akira

    2015-01-01

    Abstract To clarify the mechanism of limb regeneration that differs between mammals (non‐regenerative) and amphibians (regenerative), responses to limb amputation and the accessory limb inducible surgery (accessory limb model, ALM) were compared between mice and Xenopus, focusing on the events leading to blastema formation. In both animals, cartilaginous calluses were formed around the cut edge of bones after limb amputation. They not only are morphologically similar but show other similarities, such as growth driven by undifferentiated cell proliferation and macrophage‐dependent and nerve‐independent induction. It appears that amputation callus formation is a common nerve‐independent regenerative response in mice and Xenopus. In contrast, the ALM revealed that the wound epithelium (WE) in Xenopus was innervated by many regenerating axons when a severed nerve ending was placed underneath it, whereas only a few axons were found within the WE in mice. Since nerves are involved in induction of the regeneration‐permissive WE in amphibians, whether or not nerves can interact with the WE might be one of the key processes separating successful nerve‐dependent blastema formation in Xenopus and failure in mice. PMID:27499875

  18. Chicken Fetal Liver DNA Damage and Adduct Formation by Activation-Dependent DNA-Reactive Carcinogens and Related Compounds of Several Structural Classes

    OpenAIRE

    2014-01-01

    The chicken egg genotoxicity assay (CEGA), which utilizes the liver of an intact and aseptic embryo-fetal test organism, was evaluated using four activation-dependent DNA-reactive carcinogens and four structurally related less potent carcinogens or non-carcinogens. In the assay, three daily doses of test substances were administered to eggs containing 9–11-day-old fetuses and the fetal livers were assessed for two endpoints, DNA breaks using the alkaline single cell gel electrophoresis (comet...

  19. Conformational changes at the highly reactive cystein and lysine regions of skeletal muscle myosin induced by formation of transition state analogues.

    Science.gov (United States)

    Maruta, S; Homma, K; Ohki, T

    1998-09-01

    Myosin forms stable ternary complexes with Mg2+-ADP and phosphate analogues of aluminum fluoride (AlF4-), beryllium fluoride (BeFn), and scandium fluoride (ScFn). These complexes are distinct from each other and may mimic different transient states in the ATPase cycle [Maruta et al. (1993) J. Biol. Chem. 268, 7093-7100]. Regions of skeletal muscle myosin containing the highly reactive residues Cys 707 (SH1), Cys 697 (SH2), and lysine 83 (RLR) dramatically alter their local conformation when myosin hydrolyzes ATP, and these changes may reflect formation of a series of transient intermediates during ATP hydrolysis. We used the fluorescent probes 4-fluoro-7-sulfamoylbezofurazan, 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid, and trinitrobenzene-sulfonate, which bind to SH1, SH2, and RLR, respectively, to examine differences in local conformations within myosin.ADP.phosphate analogue (BeFn, Vi, AlF4-, and ScFn) complexes. It was observed that the ternary complexes had SH1 conformations similar to those seen on S-1 in the presence of ATP. In contrast, local conformations in the SH2 and RLR regions of S-1.ADP.BeFn were different from those in corresponding regions of S-1.ADP.AlF4- or ScFn. These results suggest that SH1 and SH2 move distinctly during ATP hydrolysis and that the local conformations of the SH2 and RLR regions more sensitively reflect different transient states.

  20. Skeletal stem cells and their contribution to skeletal fragility

    DEFF Research Database (Denmark)

    Aldahmash, A.

    2016-01-01

    Age-related osteoporotic fractures are major health care problem worldwide and are the result of impaired bone formation, decreased bone mass and bone fragility. Bone formation is accomplished by skeletal stem cells (SSC) that are recruited to bone surfaces from bone marrow microenvironment. This...

  1. Restoration of dioxin-induced damage to fetal steroidogenesis and gonadotropin formation by maternal co-treatment with α-lipoic acid.

    Directory of Open Access Journals (Sweden)

    Takayuki Koga

    Full Text Available 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, an endocrine disruptor, causes reproductive and developmental toxic effects in pups following maternal exposure in a number of animal models. Our previous studies have demonstrated that TCDD imprints sexual immaturity by suppressing the expression of fetal pituitary gonadotropins, the regulators of gonadal steroidogenesis. In the present study, we discovered that all TCDD-produced damage to fetal production of pituitary gonadotropins as well as testicular steroidogenesis can be repaired by co-treating pregnant rats with α-lipoic acid (LA, an obligate co-factor for intermediary metabolism including energy production. While LA also acts as an anti-oxidant, other anti-oxidants; i.e., ascorbic acid, butylated hydroxyanisole and edaravone, failed to exhibit any beneficial effects. Neither wasting syndrome nor CYP1A1 induction in the fetal brain caused through the activation of aryl hydrocarbon receptor (AhR could be attenuated by LA. These lines of evidence suggest that oxidative stress makes only a minor contribution to the TCDD-induced disorder of fetal steroidogenesis, and LA has a restorative effect by targeting on mechanism(s other than AhR activation. Following a metabolomic analysis, it was found that TCDD caused a more marked change in the hypothalamus, a pituitary regulator, than in the pituitary itself. Although the components of the tricarboxylic acid cycle and the ATP content of the fetal hypothalamus were significantly changed by TCDD, all these changes were again rectified by exogenous LA. We also provided evidence that the fetal hypothalamic content of endogenous LA is significantly reduced following maternal exposure to TCDD. Thus, the data obtained strongly suggest that TCDD reduces the expression of fetal pituitary gonadotropins to imprint sexual immaturity or disturb development by suppressing the level of LA, one of the key players serving energy production.

  2. Skeletal muscle

    Science.gov (United States)

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  3. Medio ambiente fetal Fetal environment

    Directory of Open Access Journals (Sweden)

    César Bernardo Ospina Arcila

    1996-04-01

    Full Text Available Con base en el artículo clásico "Monte Everest in utero" se hace un análisis de la situación que afronta el feto con respecto a la disponibilidad de oxígeno; para una mejor comprensión del sufrimiento fetal se revisan los siguientes conceptos: presión barométrica, presión parcial del oxígeno atmosférico, presión parcial del oxígeno inspirado, presión barométrica intranasal, ecuación del gas alveolar y difusión de gases a través de la membrana alvéolo capilar. Based on the classical paper by Eastman "Mount Everest in utero" an analysis is made of the situation faced by the fetus with respect to the availability of oxygen; for a better under. standing of fetal distress the following concepts are reviewed: barometric pressure, partial pressure of atmosferic oxygen, partial pressure of inspired oxygen, barometric intranasal pressure, alveolar gas equation and gas diffusion through alveolo-capilar membrane.

  4. Fetal pain.

    Science.gov (United States)

    Rokyta, Richard

    2008-12-01

    The fetus reacts to nociceptive stimulations through different motor, autonomic, vegetative, hormonal, and metabolic changes relatively early in the gestation period. With respect to the fact that the modulatory system does not yet exist, the first reactions are purely reflexive and without connection to the type of stimulus. While the fetal nervous system is able to react through protective reflexes to potentially harmful stimuli, there is no accurate evidence concerning pain sensations in this early period. Cortical processes occur only after thalamocortical connections and pathways have been completed at the 26th gestational week. Harmful (painful) stimuli, especially in fetuses have an adverse effect on the development of humans regardless of the processes in brain. Moreover, pain activates a number of subcortical mechanisms and a wide spectrum of stress responses influence the maturation of thalamocortical pathways and other cortical activation which are very important in pain processing.

  5. Effects of Cremation on Fetal Bones.

    Science.gov (United States)

    Zana, Michela; Magli, Francesca; Mazzucchi, Alessandra; Castoldi, Elisa; Gibelli, Daniele; Caccia, Giulia; Cornacchia, Francesca; Gaudio, Daniel A; Mattia, Mirko; Cattaneo, Cristina

    2017-09-01

    The charring process is a weak point of anthropological analysis as it changes bone morphology and reduces information obtainable, specially in fetuses. This experiment aims at verifying the conservation of fetal bones after cremation. A total of 3138 fetuses of unknown sex and age were used, deriving from legal and therapeutic abortions from different hospitals of Milan. Cremations took place in modern crematoria. Nine cremation events were analyzed, each ranging from 57 to 915 simultaneously cremated fetuses. During the cremations, 4356 skeletal remains were recovered, 3756 of which (86.2%) were morphologically distinguishable. All types of fetal skeletal elements were found, with the exception of some cranial bones. Only 3.4% of individuals could be detected after the cremation process, because of the prevalence of abortions under 12 lunar weeks. All fire alterations were observed and the results were statistically analyzed. This pilot study confirmed the possibility of preservation of fetal skeletal elements after cremation. © 2017 American Academy of Forensic Sciences.

  6. Fetal pain?

    Science.gov (United States)

    Vanhatalo, S; van Nieuwenhuizen, O

    2000-05-01

    During the last few years a vivid debate, both scientifically and emotionally, has risen in the medical literature as to whether a fetus is able to feel pain during abortion or intrauterine surgery. This debate has mainly been inspired by the demonstration of various hormonal or motor reactions to noxious stimuli at very early stages of fetal development. The aims of this paper are to review the literature on development of the pain system in the fetus, and to speculate about the relationship between "sensing" as opposed to "feeling" pain and the number of reactions associated with painful stimuli. While a cortical processing of pain theoretically becomes possible after development of the thalamo-cortical connections in the 26th week of gestation, noxious stimuli may trigger complex reflex reactions much earlier. However, more important than possible painfulness is the fact that the noxious stimuli, by triggering stress responses, most likely affect the development of an individual at very early stages. Hence, it is not reasonable to speculate on the possible emotional experiences of pain in fetuses or premature babies. A clinically relevant aim is rather to avoid and/or treat any possibly noxious stimuli, and thereby prevent their potential adverse effects on the subsequent development.

  7. FETAL GESTATIONAL AGE ESTIMATION BY FETAL FOOT LENGTH MEASUREMENT AND FETAL FEMUR TO FOOT LENGTH RATIO IN INDIAN POPULATION - A PROSPECTIVE STUDY

    Directory of Open Access Journals (Sweden)

    Mukta

    2014-03-01

    Full Text Available BACKGROUND: Multiple parameters are in use for the accurate assessment of the gestational age by ultrasound, but the literature suggests that fetal foot length can be used to estimate gestational age, when other parameters are not available for measurement. Foetal femur/ foot length ratio can help in differentiating the foeti that have dysplastic limb reduction, from those whose limbs are short because of constitutional factors/IUGR. A prospective study was done to measure the fetal foot length for gestational age and to evaluate fetal femur to foot length ratio in pregnant women of 16-37 weeks gestation. MATERIALS & METHOD: One hundred and three normal singleton pregnant women of 16-37 weeks gestation were examined for routine obstetrics ultrasound. In these patients fetal foot length measurements were taken and the gestational age was assessed. In addition, fetal femur length to foot length ratio was calculated in each patient. RESULTS/OBSERVATION: Linear relationship between foot length and gestational age was present with a R2 value of 0.90 (p < than 0.001 and the fetal femur length/foot length ratio was found to be more than or equal to 0.92.The foot length can be a reliable parameter for use in assessment of gestational age and as most skeletal dysplasias spare the feet, the fetal femur length/foot length ratio can be used to detect most skeletal dysplasia. CONCLUSIONS: Foetal foot length is a reliable parameter for assessment of gestational age and femur length/foot length ratio is approximately 1 and a ratio of < 0.92 shall be useful in the detection of most skeletal dysplasia.

  8. Digital atlas of fetal brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Teresa; Weinberger, E. [Department of Radiology, Seattle Children' s Hospital, Seattle, WA (United States); Matesan, Manuela [University of Washington, Department of Radiology, Seattle, WA (United States); Bulas, Dorothy I. [Division of Diagnostic Imaging and Radiology, Children' s National Medical Center, Washington, DC (United States)

    2010-02-15

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download. Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development. (orig.)

  9. Acute supplementation of amino acids increases net protein accretion in IUGR fetal sheep.

    Science.gov (United States)

    Brown, Laura D; Rozance, Paul J; Thorn, Stephanie R; Friedman, Jacob E; Hay, William W

    2012-08-01

    Placental insufficiency decreases fetal amino acid uptake from the placenta, plasma insulin concentrations, and protein accretion, thus compromising normal fetal growth trajectory. We tested whether acute supplementation of amino acids or insulin into the fetus with intrauterine growth restriction (IUGR) would increase net fetal protein accretion rates. Late-gestation IUGR and control (CON) fetal sheep received acute, 3-h infusions of amino acids (with euinsulinemia), insulin (with euglycemia and euaminoacidemia), or saline. Fetal leucine metabolism was measured under steady-state conditions followed by a fetal muscle biopsy to quantify insulin signaling. In CON, increasing amino acid delivery rates to the fetus by 100% increased leucine oxidation rates by 100%. In IUGR, amino acid infusion completely suppressed fetal protein breakdown rates but increased leucine oxidation rate by only 25%, resulting in increased protein accretion rates by 150%. Acute insulin infusion, however, had very little effect on amino acid delivery rates, fetal leucine disposal rates, or fetal protein accretion rates in CON or IUGR fetuses despite robust signaling of the fetal skeletal muscle insulin-signaling cascade. These results indicate that, when amino acids are given directly into the fetal circulation independently of changes in insulin concentrations, IUGR fetal sheep have suppressed protein breakdown rates, thus increasing net fetal protein accretion.

  10. Challenge of Fetal Mortality

    Science.gov (United States)

    ... Reports from the National Medical Care Utilization and Expenditure Survey Clearinghouse on Health Indexes Statistical Notes for ... Fetal mortality is a major, but often overlooked, public health problem. Fetal mortality refers to spontaneous intrauterine ...

  11. Fetal behavioral teratology

    NARCIS (Netherlands)

    Visser, Gerard H. A.; Mulder, Eduard J. H.; Ververs, F. F. Tessa

    2010-01-01

    Ultrasound studies of fetal motor behavior provide direct - in vivo - insight in the functioning of the motor component of the fetal central nervous system. In this article, studies are reviewed showing changes in the first timetable of appearance of fetal movements, changes in quality and/or quanti

  12. multiple congenital skeletal malformations in a associated with ...

    African Journals Online (AJOL)

    There were multiple skeletal malformations which included brachygnathia, arthrogryposis and ... Dystocia was believed to be a result of fetal monstrosity resulting in abnormal posture. The cause ... subsequent pregnancies are envisaged. ... veterinarian to deliver a dead lamb that ... difficult to understand why only one of the.

  13. Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications

    Science.gov (United States)

    Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu

    2014-01-01

    Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined. PMID:24320971

  14. Hematopoietic potential cells in skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Atsushi Asakura

    2007-01-01

    @@ During mouse embryogenesis,the formation of primi-tive hematopoiesis begins in the yolk sac on embryonic day 7.5(E7.5).Thereafter,definitive hematopoietic stem cell(HSC)activity is first detectable in the aorta-gonad-mesonephros(AGM)region on E10,followed by fetal liver and yolk sac.Subsequently,the fetal liver by E12 becomes the main tissue for definitive hematopoiesis.At a later time,HSC population in the fetal liver migrates to the bone marrow,which becomes the maior site of he-matopoiesis throughout normal adult life[1].

  15. Fetal Health and Development

    Science.gov (United States)

    ... specific prenatal tests to monitor both the mother's health and fetal health during each trimester. With modern technology, health professionals can Detect birth defects Identify problems that ...

  16. ASCITIS FETAL AISLADA

    OpenAIRE

    2003-01-01

    La ascitis fetal aislada es una entidad asociada a múltiples patologías, el diagnostico se realiza usualmente cuando fueron descartados las otras causas de ascitis fetal. Se describe el diagnóstico prenatal de un paciente con ascitis fetal aislada compatible con atresia ileal y peritonitis meconial secundaria a perforación de ileon distal. La ascitis fetal se resolvió posterior a la cirugía al segundo día de vida. Este caso tiene un buen pronostico debido al control tanto prenatal como intra ...

  17. Epigenetic regulation of skeletal myogenesis

    OpenAIRE

    Saccone, Valentina; Puri, Pier Lorenzo

    2010-01-01

    During embryogenesis a timely and coordinated expression of different subsets of genes drives the formation of skeletal muscles in response to developmental cues. In this review, we will summarize the most recent advances on the “epigenetic network” that promotes the transcription of selective groups of genes in muscle progenitors, through the concerted action of chromatin-associated complexes that modify histone tails and microRNAs (miRNAs). These epigenetic players cooperate to establish fo...

  18. Accounting for Fetal Origins

    DEFF Research Database (Denmark)

    Dalgaard, Carl-Johan Lars; Hansen, Casper Worm; Strulik, Holger

    2017-01-01

    The Fetal Origins hypothesis has received considerable empirical support, both within epidemiology and economics. The present study compares the ability of two rival theoretical frameworks in accounting for the kind of path dependence implied by the Fetal Origins Hypothesis. We argue that while...

  19. Fetal Alcohol Spectrum Disorder

    Science.gov (United States)

    Caley, Linda M.; Kramer, Charlotte; Robinson, Luther K.

    2005-01-01

    Fetal alcohol spectrum disorder (FASD) is a serious and widespread problem in this country. Positioned within the community with links to children, families, and healthcare systems, school nurses are a critical element in the prevention and treatment of those affected by fetal alcohol spectrum disorder. Although most school nurses are familiar…

  20. Fetal scalp pH testing

    Science.gov (United States)

    Fetal scalp blood; Scalp pH testing; Fetal blood testing - scalp; Fetal distress - fetal scalp testing; Labor - fetal scalp testing ... a baby. In these cases, testing the scalp pH can help the doctor decide whether the fetus ...

  1. Fetal MR imaging of atelosteogenesis type II (AO-II)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Elka; Blaser, Susan; Miller, Stephen [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Keating, Sarah; Thompson, Megan [Mount Sinai Hospital, Department of Pathology, Toronto (Canada); Unger, Sheila [University of Freiburg, Institute for Human Genetics and Center for Pediatrics and Adolescent Medicine, Freiburg (Germany); Toi, Ants [Mount Sinai Hospital, Department of Medical Imaging, Toronto (Canada); Berger, Howard [St. Michael' s Hospital, Department of Obstetrics and Gynecology, Toronto (Canada); Chong, Karen [Mount Sinai Hospital, The Prenatal Diagnosis and Medical Genetics Program, Toronto (Canada)

    2008-12-15

    The diastrophic dysplasia family of osteochondrodysplasias comprises a spectrum of skeletal diseases characterized by abnormal growth and remodelling of cartilage and bone. They are caused by mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene. Different defects in this gene product give rise to the variety of phenotypes based on the level of residual transport capacity. We reported a case of a fetus with this spectrum, evaluated and diagnosed with fetal MRI. (orig.)

  2. Teratogenic effects of Gentamicin on skeletal system of rat fetuses

    Directory of Open Access Journals (Sweden)

    Marzban H

    1999-09-01

    Full Text Available Gentamicin was evaluated for developmental toxicity in pregnant Sprague-Dawley rat. Gentamicin was administered subcutaneously on days 6-15 gestation at dose of 100 mg/kg. On gestation day 21, all live fetuses were examined for external and skeletal malformations and variations. Increased resorptions and dead fetuses, and reduced fetal body weight were observed at dose of 100 mg/kg. Gentamicin caused severe skeletal anomalies, such as: wavy ribs, incomplete ossification of sternebrae, tail vertebra, metacarpus, metatarsus and calvaria. These results indicate the nature and extent of embryotoxicity and teratogenicity of gentamicin in Sprague-Dawley rats.

  3. Formats

    Directory of Open Access Journals (Sweden)

    Gehmann, Ulrich

    2012-03-01

    Full Text Available In the following, a new conceptual framework for investigating nowadays’ “technical” phenomena shall be introduced, that of formats. The thesis is that processes of formatting account for our recent conditions of life, and will do so in the very next future. It are processes whose foundations have been laid in modernity and which will further unfold for the time being. These processes are embedded in the format of the value chain, a circumstance making them resilient to change. In addition, they are resilient in themselves since forming interconnected systems of reciprocal causal circuits.Which leads to an overall situation that our entire “Lebenswelt” became formatted to an extent we don’t fully realize, even influencing our very percep-tion of it.

  4. Skeletally Dugundji spaces

    OpenAIRE

    2012-01-01

    We introduce and investigate the class of skeletally Dugundji spaces as a skeletal analogue of Dugundji space. The main result states that the following conditions are equivalent for a given space $X$: (i) $X$ is skeletally Dugundji; (ii) Every compactification of $X$ is co-absolute to a Dugundji space; (iii) Every $C^*$-embedding of the absolute $p(X)$ in another space is strongly $\\pi$-regular; (iv) $X$ has a multiplicative lattice in the sense of Shchepin \\cite{s76} consisting of skeletal ...

  5. Fetal and neonatal thyrotoxicosis

    Directory of Open Access Journals (Sweden)

    Chandar Mohan Batra

    2013-01-01

    Full Text Available Fetal thyrotoxicosis is a rare disease occurring in 1 out of 70 pregnancies with Grave′s disease or in 1 out of 4000-50,000 deliveries. The mortality is 12-20%, usually from heart failure, but other complications are tracheal compression, infections and thrombocytopenia. It results from transfer of thyroid stimulating immunoglobulins from mother to fetus through the placenta. This transplacental transfer begins around 20 th week of pregnancy and reaches its maximum by 30 th week. These autoantibodies bind to the fetal thyroid stimulating hormone (TSH receptors and increase the secretion of the thyroid hormones. The mother has an active autoimmune thyroid disease or has been treated for it in the past. She may be absolutely euthyroid due to past treatment by drugs, surgery or radioiodine ablation, but still have active TSH receptor stimulating autoantibodies, which can cause fetal thyrotoxicosis. The other features of this disease are fetal tachycardia, fetal goiter and history of spontaneous abortions and findings of goiter, ascites, craniosyntosis, fetal growth retardation, maceration and hydrops at fetal autopsy. If untreated, this disease can result in intrauterine death. The treatment for this disease consists of giving carbimazole to the mother, which is transferred through the placenta to the fetus. The dose of carbimazole is titrated with the fetal heart rate. If the mother becomes hypothyroid due to carbimazole, thyroxine is added taking advantage of the fact that very little of thyroxine is transferred across the placenta. Neonatal thyrotoxicosis patients are very sick and require emergency treatment. The goal of the treatment is to normalize thyroid functions as quickly as possible, to avoid iatrogenic hypothyroidism while providing management and supportive therapy for the infant′s specific signs and symptoms.

  6. Role of skeletal muscle in lung development.

    Science.gov (United States)

    Baguma-Nibasheka, Mark; Gugic, Dijana; Saraga-Babic, Mirna; Kablar, Boris

    2012-07-01

    Skeletal (striated) muscle is one of the four basic tissue types, together with the epithelium, connective and nervous tissues. Lungs, on the other hand, develop from the foregut and among various cell types contain smooth, but not skeletal muscle. Therefore, during earlier stages of development, it is unlikely that skeletal muscle and lung depend on each other. However, during the later stages of development, respiratory muscle, primarily the diaphragm and the intercostal muscles, execute so called fetal breathing-like movements (FBMs), that are essential for lung growth and cell differentiation. In fact, the absence of FBMs results in pulmonary hypoplasia, the most common cause of death in the first week of human neonatal life. Most knowledge on this topic arises from in vivo experiments on larger animals and from various in vitro experiments. In the current era of mouse mutagenesis and functional genomics, it was our goal to develop a mouse model for pulmonary hypoplasia. We employed various genetically engineered mice lacking different groups of respiratory muscles or lacking all the skeletal muscle and established the criteria for pulmonary hypoplasia in mice, and therefore established a mouse model for this disease. We followed up this discovery with systematic subtractive microarray analysis approach and revealed novel functions in lung development and disease for several molecules. We believe that our approach combines elements of both in vivo and in vitro approaches and allows us to study the function of a series of molecules in the context of lung development and disease and, simultaneously, in the context of lung's dependence on skeletal muscle-executed FBMs.

  7. Skeletal limb abnormalities

    Science.gov (United States)

    ... JA. Skeletal dysplasias. In: Herring JA, ed. Tachdjian's Pediatric Orthopaedics . 5th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap 40. Moore KL, Persaud V, Torchia MG. Skeletal system. In: Moore KL, Persaud V, Torchia MG, eds. ... Assistant Professor of Pediatrics, University of Washington School of Medicine, Seattle, WA. ...

  8. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul

    2016-01-01

    Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability...... of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence......, of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle...

  9. Magnesium and fetal growth

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, K.

    1988-01-01

    Fetal growth retardation and premature labor are major problems in perinatal medicine today and account for a great deal of the observed fetal morbidity. While the neonatal death rate has steadily declined over the past decade, there has been a lack of concommitant decrease in these two leading problems. Magnesium (Mg/sup ++/) plays a major role in both of these areas of concern. The fact that it is used as a treatment for premature labor has led investigators to look at low Mg/sup ++/ as a possible cause of this poorly understood phenomenon. The second major cause of small for gestational age infants is intrauterine growth retardation, a condition which may be of either fetal or maternal origin. In either case, Mg/sup ++/ may be implicated since it exerts a strong influence on the underlying pathophysiology of placental failure and maternal hypertension. Both of these conditions are mediated by vascular and platelet hyperactivity as well as by and increase in the ration of thromboxane to prostacyclin. Studies in both the human and animal species are beginning to show how Mg/sup ++/ interacts in these conditions to produce such a damaging fetal outcome. The recent use of Doppler velocimetry of the developing fetus has shown reduced fetal vascular and maternal uterine vascular compliance as early as 14 weeks of gestation in those who would be so affected.

  10. In skeletal muscle advanced glycation end products (AGEs) inhibit insulin action and induce the formation of multimolecular complexes including the receptor for AGEs.

    Science.gov (United States)

    Cassese, Angela; Esposito, Iolanda; Fiory, Francesca; Barbagallo, Alessia P M; Paturzo, Flora; Mirra, Paola; Ulianich, Luca; Giacco, Ferdinando; Iadicicco, Claudia; Lombardi, Angela; Oriente, Francesco; Van Obberghen, Emmanuel; Beguinot, Francesco; Formisano, Pietro; Miele, Claudia

    2008-12-26

    Chronic hyperglycemia promotes insulin resistance at least in part by increasing the formation of advanced glycation end products (AGEs). We have previously shown that in L6 myotubes human glycated albumin (HGA) induces insulin resistance by activating protein kinase Calpha (PKCalpha). Here we show that HGA-induced PKCalpha activation is mediated by Src. Coprecipitation experiments showed that Src interacts with both the receptor for AGE (RAGE) and PKCalpha in HGA-treated L6 cells. A direct interaction of PKCalpha with Src and insulin receptor substrate-1 (IRS-1) has also been detected. In addition, silencing of IRS-1 expression abolished HGA-induced RAGE-PKCalpha co-precipitation. AGEs were able to induce insulin resistance also in vivo, as insulin tolerance tests revealed a significant impairment of insulin sensitivity in C57/BL6 mice fed a high AGEs diet (HAD). In tibialis muscle of HAD-fed mice, insulin-induced glucose uptake and protein kinase B phosphorylation were reduced. This was paralleled by a 2.5-fold increase in PKCalpha activity. Similarly to in vitro observations, Src phosphorylation was increased in tibialis muscle of HAD-fed mice, and co-precipitation experiments showed that Src interacts with both RAGE and PKCalpha. These results indicate that AGEs impairment of insulin action in the muscle might be mediated by the formation of a multimolecular complex including RAGE/IRS-1/Src and PKCalpha.

  11. Glucose transporter expression in human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Beck-Nielsen, H

    2000-01-01

    amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation......, but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas...... after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle...

  12. Fetal Biophysical Profile Scoring

    Directory of Open Access Journals (Sweden)

    H.R. HaghighatKhah

    2009-01-01

    Full Text Available   "nFetal biophysical profile scoring is a sonographic-based method of fetal assessment first described by Manning and Platt in 1980. "nThe biophysical profile score was developed as a method to integrate real-time observations of the fetus and his/her intrauterine environment in order to more comprehensively assess the fetal condition. These findings must be evaluated in the context of maternal/fetal history (i.e., chronic hypertension, post-dates, intrauterine growth restriction, etc, fetal structural integrity (presence or absence of congenital anomalies, and the functionality of fetal support structures (placental and umbilical cord. For example, acute asphyxia due to placental abruption may result in an absence of the acute variables of the biophysical profile score (fetal breathing movements, fetal movement, fetal tone, and fetal heart rate reactivity with a normal amniotic fluid volume. With post maturity the asphyxial event may be intermittent and chronic resulting in a decrease in amniotic fluid volume, but with the acute variables remaining normal. "nWhile the 5 components of the biophysical profile score have remained unchanged since 1980 (Manning, 1980, the definitions of a normal and abnormal parameter have evolved with increasing experience. "nIn 1984 the definition of oligohydramnios was increased from < 1cm pocket of fluid to < 2.0 x 1.0 cm pocket. Oligohydramnios is now defined as a pocket of amniotic fluid < 2.0 x 2.0 cm (Manning, 1995a "nIf the four ultrasound variables are normal, the accuracy of the biophysical profile score was not found to be significantly improved by adding the non-stress test. As a result, in 1987 the profile score was modified to incorporate the non-stress test only when one of the ultrasound variables was abnormal (Manning 1987. Table 1 outlines the current definitions for quantifying a variable as present or absent. "nEach of the 5 components of the biophysical profile score does not have equal

  13. Plasticity of fetal cartilaginous cells

    OpenAIRE

    Quintin, Aurelie; Schizas, Constantin; Scaletta, Corinne; Jaccoud, Sandra; Applegate, Lee Ann; Pioletti, Dominique P.

    2010-01-01

    Tissue-specific stem cells found in adult tissues can participate to the repair process following injury. However adult tissues, such as articular cartilage and intervertebral disc, have low regeneration capacity, whereas fetal tissues, such as articular cartilage, show high regeneration ability. The presence of fetal stem cells in fetal cartilaginous tissues and their involvement in the regeneration of fetal cartilage is unknown. The aim of the study was to assess the chondrogenic differenti...

  14. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul

    2016-01-01

    Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability...... of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence...

  15. Fetal fluid and protein dynamics

    NARCIS (Netherlands)

    Pasman, Suzanne

    2010-01-01

    In this thesis fetal fluid and protein dynamics are investigated to gain insight in fetal (patho-)physiology. Studies were performed in fetuses with severe anemia and/or hydrops fetalis. Measurements were performed in fetal blood or amniotic fluid, obtained before or during intrauterine transfusion.

  16. Micronutrients and fetal growth.

    Science.gov (United States)

    Fall, Caroline H D; Yajnik, Chittaranjan S; Rao, Shobha; Davies, Anna A; Brown, Nick; Farrant, Hannah J W

    2003-05-01

    Fetal undernutrition affects large numbers of infants in developing countries, with adverse consequences for their immediate survival and lifelong health. It manifests as intrauterine growth retardation (IUGR), defined as birth weight fetus is nourished by a complex supply line that includes the mother's diet and absorption, endocrine status and metabolism, cardiovascular adaptations to pregnancy and placental function. Micronutrients are essential for growth, and maternal micronutrient deficiency, frequently multiple in developing countries, may be an important cause of IUGR. Supplementation of undernourished mothers with micronutrients has several benefits but there is little hard evidence of improved fetal growth. However, this has been inadequately tested. Most trials have only used single micronutrients and many were inconclusive because of methodological problems. Several food-based studies (some uncontrolled) suggest benefits from improving maternal dietary quality with micronutrient-dense foods. One trial of a multivitamin supplement (HIV-positive mothers, Tanzania) showed increased birth weight and fewer fetal deaths. Well-conducted randomized controlled trials of adequate sample size and including measures of effectiveness are needed in populations at high risk of micronutrient deficiency and IUGR and should include food-based interventions and better measurements of fetal growth, maternal metabolism, and long-term outcomes in the offspring.

  17. Skeletal muscle tissue engineering

    National Research Council Canada - National Science Library

    Bach, A. D; Beier, J. P; Stern‐Staeter, J; Horch, R. E

    2004-01-01

    The reconstruction of skeletal muscle tissue either lost by traumatic injury or tumor ablation or functional damage due to myopathies is hampered by the lack of availability of functional substitution...

  18. MRI of the Fetal Brain.

    Science.gov (United States)

    Weisstanner, C; Kasprian, G; Gruber, G M; Brugger, P C; Prayer, D

    2015-10-01

    The purpose of this article is to provide an overview of the possibilities for fetal magnetic resonance imaging (MRI) in the evaluation of the fetal brain. For brain pathologies, fetal MRI is usually performed when an abnormality is detected by previous prenatal ultrasound, and is, therefore, an important adjunct to ultrasound. The most commonly suspected brain pathologies referred to fetal MRI for further evaluation are ventriculomegaly, missing corpus callosum, and abnormalities of the posterior fossa. We will briefly discuss the most common indications for fetal brain MRI, as well as recent advances.

  19. Stillbirth and fetal growth restriction.

    Science.gov (United States)

    Bukowski, Radek

    2010-09-01

    The association between stillbirth and fetal growth restriction is strong and supported by a large body of evidence and clinically employed for the stillbirth prediction. However, although assessment of fetal growth is a basis of clinical practice, it is not trivial. Essentially, fetal growth is a result of the genetic growth potential of the fetus and placental function. The growth potential is the driving force of fetal growth, whereas the placenta as the sole source of nutrients and oxygen might become the rate limiting element of fetal growth if its function is impaired. Thus, placental dysfunction may prevent the fetus from reaching its full genetically determined growth potential. In this sense fetal growth and its aberration provides an insight into placental function. Fetal growth is a proxy for the test of the effectiveness of placenta, whose function is otherwise obscured during pregnancy.

  20. Fetal congenital lobar emphysema.

    Science.gov (United States)

    Chia, Chun-Chieh; Huang, Soon-Cen; Liu, Min-Chang; Se, Tung-Yi

    2007-03-01

    To report a rare fetal congenital lung anomaly characterized by over inflation of a pulmonary lobe. A 28-year-old systemic lupus erythematous mother, gravida 1 para 0, who had normal prenatal care in our department, was admitted for labor pain and an abnormal fetal heart location was noted incidentally during labor. The baby showed rib retraction in room air but no obvious cyanotic change after delivery. Both the fetus chest X-ray and ultrasound showed a hyperechogenic tumor in the left thoracic cavity with a right-side-shifted heart and trachea. Computed tomography showed a hypodense and multiseptal tumor in the left thoracic cavity with right-sided shift of the heart and trachea. It was a soft, solid tumor in the parenchyma of the left lung and the histopathology confirmed it to be benign congenital lobar emphysema. The favorable outcome in both asymptomatic and mildly symptomatic children suggests that a nonsurgical approach should be considered for these patients.

  1. Sonographic markers for early diagnosis of fetal malformations

    Institute of Scientific and Technical Information of China (English)

    Maria; Daniela; Renna; Paola; Pisani; Francesco; Conversano; Emanuele; Perrone; Ernesto; Casciaro; Gian; Carlo; Di; Renzo; Marco; Di; Paola; Antonio; Perrone; Sergio; Casciaro

    2013-01-01

    Fetal malformations are very frequent in industrialized countries.Although advanced maternal age may affect pregnancy outcome adversely,80%-90%of fetal malformations occur in the absence of a specific risk factor for parents.The only effective approach for prenatal screening is currently represented by an ultrasound scan.However,ultrasound methods present two important limitations:the substantial absence of quantitative parameters and the dependence on the sonographer experience.In recent years,together with the improvement in transducer technology,quantitative and objective sonographic markers highly predictive of fetal malformations have been developed.These markers can be detected at early gestation(11-14 wk)and generally are not pathological in themselves but have an increased incidence in abnormal fetuses.Thus,prenatal ultrasonography during the second trimester of gestation provides a"genetic sonogram",including,for instance,nuchal translucency,short humeral length,echogenic bowel,echogenic intracardiac focus and choroid plexus cyst,that is used to identify morphological features of fetal Down’s syndrome with a potential sensitivity of more than 90%.Other specific and sensitive markers can be seen in the case of cardiac defects and skeletal anomalies.In the future,sonographic markers could limit even more the use of invasive and dangerous techniques of prenatal diagnosis(amniocentesis,etc.).

  2. The fetal circulation.

    Science.gov (United States)

    Kiserud, Torvid; Acharya, Ganesh

    2004-12-30

    Accumulating data on the human fetal circulation shows the similarity to the experimental animal physiology, but with important differences. The human fetus seems to circulate less blood through the placenta, shunt less through the ductus venosus and foramen ovale, but direct more blood through the lungs than the fetal sheep. However, there are substantial individual variations and the pattern changes with gestational age. The normalised umbilical blood flow decreases with gestational age, and, at 28 to 32 weeks, a new level of development seems to be reached. At this stage, the shunting through the ductus venosus and the foramen ovale reaches a minimum, and the flow through the lungs a maximum. The ductus venosus and foramen ovale are functionally closely related and represent an important distributional unit for the venous return. The left portal branch represents a venous watershed, and, similarly, the isthmus aorta an arterial watershed. Thus, the fetal central circulation is a very flexible and adaptive circulatory system. The responses to increased afterload, hypoxaemia and acidaemia in the human fetus are equivalent to those found in animal studies: increased ductus venosus and foramen ovale shunting, increased impedance in the lungs, reduced impedance in the brain, increasingly reversed flow in the aortic isthmus and a more prominent coronary blood flow.

  3. Fetal vibroacoustic stimulation for facilitation of tests of fetal wellbeing.

    Science.gov (United States)

    Tan, Kelvin H; Smyth, Rebecca M D; Wei, Xing

    2013-12-07

    Acoustic stimulation of the fetus has been suggested to improve the efficiency of antepartum fetal heart rate testing. To assess the advantages and disadvantages of the use of fetal vibroacoustic stimulation in conjunction with tests of fetal wellbeing. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 September 2013). All published and unpublished randomised controlled trials assessing the merits of the use of fetal vibroacoustic stimulation in conjunction with tests of fetal wellbeing. All review authors independently extracted data and assessed trial quality. Authors of published and unpublished trials were contacted for further information. Altogether 12 trials with a total of 6822 participants were included. Fetal vibroacoustic stimulation reduced the incidence of non-reactive antenatal cardiotocography test (nine trials; average risk ratio (RR) 0.62, 95% confidence interval (CI) 0.48 to 0.81). Vibroacoustic stimulation compared with mock stimulation evoked significantly more fetal movements when used in conjunction with fetal heart rate testing (one trial, RR 0.23, 95% CI 0.18 to 0.29). Vibroacoustic stimulation offers benefits by decreasing the incidence of non-reactive cardiotocography and reducing the testing time. Further randomised trials should be encouraged to determine not only the optimum intensity, frequency, duration and position of the vibroacoustic stimulation, but also to evaluate the efficacy, predictive reliability, safety and perinatal outcome of these stimuli with cardiotocography and other tests of fetal wellbeing.

  4. Lipolysis in Skeletal Muscle

    DEFF Research Database (Denmark)

    Serup, Annette Karen Lundbeck

    and especially the energy sensor 5' adenosine monophosphate-activated protein kinase (AMPK), which is activated during exercise, has received increased attention. However, whether AMPK is an activator or inhibitor of lipolysis in skeletal muscle is not clear. Therefore, we in study I aimed to identify the role...... contraction. Accordingly, AMPK is suggested to be an important regulator of basal IMTG and lipid handling in skeletal muscle as well as an important activator of lipolysis by phosphorylation of ATGL and HSL during muscle contractions. Oversupply of energy and dietary fat leads to obesity and accumulation...... chemical structure of DAG. We took advantage of the fact that insulin sensitivity is increased after exercise, and that mice knocked out (KO) of HSL accumulate DAG after exercise, and measured insulin stimulated glucose uptake after treadmill running in skeletal muscle from HSL KO mice and wildtype control...

  5. Cirugía fetal

    Directory of Open Access Journals (Sweden)

    DR. B. Juan Luis Leiva

    2014-11-01

    Full Text Available El campo de la cirugía fetal es de reciente comienzo y rápida evolución. Con el avance en las herramientas de diagnóstico antenatal, la capacidad de diagnóstico de condiciones fetales susceptibles de ser tratadas in utero ha dado paso a una serie de procedimientos destinados a dar solución a situaciones que, de no ser por estas intervenciones, terminarían en un resultado adverso perinatal. Las técnicas descritas para la terapia fetal incluyen procedimientos percutáneos guiados por ultrasonido, cirugía fetal abierta y cirugía mínimamente invasiva. En este artículo se presentan las diversas condiciones fetales tributarias de cirugía fetal y se discuten las opciones terapéuticas actuales para cada una.

  6. Nutritional regulation of fetal growth.

    Science.gov (United States)

    Bloomfield, Frank H; Jaquiery, Anne L; Oliver, Mark H

    2013-01-01

    Fetal growth is largely regulated by nutritional supply. The placenta is responsible for fetal nutrient supply for much of pregnancy, but in early pregnancy nutrition is histiotrophic. Both placental size and efficiency, and fetal growth, may be affected by maternal nutritional state before and during very early pregnancy. In contrast, manipulating maternal nutrition during later stages of pregnancy has a smaller than expected effect on fetal growth. Maternal nutrition before and during early pregnancy also has a greater effect on gestation length than maternal nutrition later in pregnancy, suggesting that nutritional status may regulate both fetal growth trajectory and gestation length and that these two outcomes may be linked. Thus, determination of the nutritional factors regulating fetal growth, and potentially postnatal growth and body phenotype, may lie with the maternal nutritional status even before conception.

  7. MRI of the fetal spine

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Erin M. [Departement of Radiology, Children' s Hospital of Philadelphia, PA (United States)

    2004-09-01

    Magnetic resonance imaging of the fetal spine is a vital complement to fetal sonographic examination. Assessing the wide spectrum of spinal dysraphism, as well as spinal neoplasia, allows for more correct prenatal diagnoses, patient care planning, and patient counselling. Proper appraisal of the value of experimental procedures, such as fetal myelomeningocoele repair, requires a high level of diagnostic accuracy for the selection and follow-up of appropriate candidates. (orig.)

  8. Limited capacity for glucose oxidation in fetal sheep with intrauterine growth restriction

    Science.gov (United States)

    Brown, Laura D.; Rozance, Paul J.; Bruce, Jennifer L.; Friedman, Jacob E.; Hay, William W.

    2015-01-01

    Intrauterine growth-restricted (IUGR) fetal sheep, produced by placental insufficiency, have lower oxygen concentrations, higher lactate concentrations, and increased hepatic glucose production that is resistant to suppression by insulin. We hypothesized that increased lactate production in the IUGR fetus results from reduced glucose oxidation, during basal and maximal insulin-stimulated conditions, and is used to support glucose production. To test this, studies were performed in late-gestation control (CON) and IUGR fetal sheep under basal and hyperinsulinemic-clamp conditions. The basal glucose oxidation rate was similar and increased by 30–40% during insulin clamp in CON and IUGR fetuses (P fetal muscle and liver, mRNA expression of pyruvate dehydrogenase kinase (PDK4), an inhibitor of glucose oxidation, was increased over fourfold. In IUGR fetal liver, but not skeletal muscle, mRNA expression of lactate dehydrogenase A (LDHA) was increased nearly fivefold. Hepatic expression of the gluconeogenic genes, phosphoenolpyruvate carboxykinase (PCK)1, and PCK2, was correlated with expression of PDK4 and LDHA. Collectively, these in vivo and tissue data support limited capacity for glucose oxidation in the IUGR fetus via increased PDK4 in skeletal muscle and liver. We speculate that lactate production also is increased, which may supply carbon for glucose production in the IUGR fetal liver. PMID:26224688

  9. Fetal wound healing using a genetically modified murine model: the contribution of P-selectin

    Science.gov (United States)

    During early gestation, fetal wounds heal with paucity of inflammation and absent scar formation. P-selectin is an adhesion molecule that is important for leukocyte recruitment to injury sites. We used a murine fetal wound healing model to study the specific contribution of P-selectin to scarless wo...

  10. Malformation of the fetal brain in thanatophoric dysplasia: US and MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Fink, A.M. [The Royal Children' s Hospital, Department of Medical Imaging, Melbourne, Victoria (Australia); The Royal Women' s Hospital, Fetal Management Unit, Melbourne, Victoria (Australia); The University of Melbourne, Department of Radiology, Melbourne, Victoria (Australia); Hingston, Tania; Sampson, Amanda [The Royal Women' s Hospital, Fetal Management Unit, Melbourne, Victoria (Australia); Ng, Jessica [The Royal Children' s Hospital, Department of Anatomical Pathology, Melbourne, Victoria (Australia); The Royal Women' s Hospital, Department of Anatomical Pathology, Melbourne, Victoria (Australia); Palma-Dias, Ricardo [The Royal Women' s Hospital, Fetal Management Unit, Melbourne, Victoria (Australia); The University of Melbourne, Department of Obstetrics and Gynaecology, Melbourne (Australia)

    2010-12-15

    We present a case in which the unusual cerebral malformations of thanatophoric dysplasia (TD) were identified on a 21-week fetal US and confirmed by antenatal MRI, postmortem imaging and autopsy. TD is the most common lethal skeletal dysplasia and is characterized by short long bones, which are often bowed (type 1), a small thorax, and skull deformities. There is also a recognised constellation of abnormalities of the brain primarily affecting the temporal lobes that, although well described in the postmortem setting, are not widely recognized in fetal imaging. Familiarity with this appearance will facilitate accurate antenatal diagnosis. (orig.)

  11. Folate deficiency during early-mid pregnancy affects the skeletal muscle transcriptome of piglets from a reciprocal cross.

    Directory of Open Access Journals (Sweden)

    Yi Li

    Full Text Available Folate deficiency (FD during pregnancy can cause fetal intrauterine growth restriction in pigs, of which the skeletal dysplasia is a major manifestation. Factors influencing muscle development are very important in the formation of porcine meat quality trait. However, the effect of folate deficiency on skeletal muscle development and its molecular mechanisms are unknown. The objective of this study is to determine the effect of maternal folate deficiency on the skeletal muscle transcriptome of piglets from a reciprocal cross, in which full-sibling Landrace (LR and full-sibling Chinese local breed Laiwu (LW pigs were used for reciprocal cross matings, and sows were fed either a folate deficient or a normal diet during early-mid gestation. In addition, the difference in the responsiveness of the piglets to folate deficiency during early-mid pregnancy between reciprocal cross groups was investigated. Longissimus dorsi (LD muscle samples were collected from newborn piglets and a 4 × 44K Agilent porcine oligo microarray was used for transcriptome analysis of porcine LD muscle. The results showed that folate deficiency during early-mid pregnancy affected piglet body weight, LD muscle fiber number and content of intramuscular triglyceride. The microarray results indicated that 3154 genes were differentially expressed between folate deficient and normal piglets from the LR♂ × LW♀ cross, and 3885 differentially expressed genes (DEGs in the ones from the LW♂ × LR♀ cross. From functional analyses, sow folate deficiency affected almost all biological processes in the progeny. Lipid metabolism-related genes and associated metabolic pathways were regulated extensively by folate deficiency, especially in LR♂ × LW♀ cross piglets. Most of the genes that are regulated by folate deficiency in the LD muscle of piglets were different between LR♂ × LW♀ and LW♂ × LR♀ crosses, suggesting some epigenetic effects of FD exist in genes underlying

  12. Developmental programming in response to intrauterine growth restriction impairs myoblast function and skeletal muscle metabolism.

    Science.gov (United States)

    Yates, D T; Macko, A R; Nearing, M; Chen, X; Rhoads, R P; Limesand, S W

    2012-01-01

    Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR), skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization.

  13. Developmental Programming in Response to Intrauterine Growth Restriction Impairs Myoblast Function and Skeletal Muscle Metabolism

    Directory of Open Access Journals (Sweden)

    D. T. Yates

    2012-01-01

    Full Text Available Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR, skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization.

  14. Tissue engineering skeletal muscle for orthopaedic applications

    Science.gov (United States)

    Payumo, Francis C.; Kim, Hyun D.; Sherling, Michael A.; Smith, Lee P.; Powell, Courtney; Wang, Xiao; Keeping, Hugh S.; Valentini, Robert F.; Vandenburgh, Herman H.

    2002-01-01

    With current technology, tissue-engineered skeletal muscle analogues (bioartificial muscles) generate too little active force to be clinically useful in orthopaedic applications. They have been engineered genetically with numerous transgenes (growth hormone, insulinlike growth factor-1, erythropoietin, vascular endothelial growth factor), and have been shown to deliver these therapeutic proteins either locally or systemically for months in vivo. Bone morphogenetic proteins belonging to the transforming growth factor-beta superfamily are osteoinductive molecules that drive the differentiation pathway of mesenchymal cells toward the chondroblastic or osteoblastic lineage, and stimulate bone formation in vivo. To determine whether skeletal muscle cells endogenously expressing bone morphogenetic proteins might serve as a vehicle for systemic bone morphogenetic protein delivery in vivo, proliferating skeletal myoblasts (C2C12) were transduced with a replication defective retrovirus containing the gene for recombinant human bone morphogenetic protein-6 (C2BMP-6). The C2BMP-6 cells constitutively expressed recombinant human bone morphogenetic protein-6 and synthesized bioactive recombinant human bone morphogenetic protein-6, based on increased alkaline phosphatase activity in coincubated mesenchymal cells. C2BMP-6 cells did not secrete soluble, bioactive recombinant human bone morphogenetic protein-6, but retained the bioactivity in the cell layer. Therefore, genetically-engineered skeletal muscle cells might serve as a platform for long-term delivery of osteoinductive bone morphogenetic proteins locally.

  15. Ovine fetal necrobacillosis

    DEFF Research Database (Denmark)

    Agerholm, J.S.; Boye, Mette; Aalbæk, B.

    2007-01-01

    were found in several tissues. Histologically, placental lesions were characterized by locally diffuse infiltration of neutrophils, closely associated with abundant small Gram-negative and FISH-positive rods, thrombosis and necrosis. Lesions in the fetal-maternal interface were multifocal and consisted...... of villous necrosis and suppurative inflammation. Spread to the fetus from the placenta appeared to occur in two ways. Some fetuses had multifocal necrotizing hepatitis consistent with haematogenous spread through the umbilical vein; further dissemination to other organs occurred. Transplacental spread...

  16. Fetal cardiovascular physiology.

    Science.gov (United States)

    Rychik, J

    2004-01-01

    The cardiovascular system of the fetus is physiologically different than the adult, mature system. Unique characteristics of the myocardium and specific channels of blood flow differentitate the physiology of the fetus from the newborn. Conditions of increased preload and afterload in the fetus, such as sacrococcygeal teratoma and twin-twin transfusion syndrome, result in unique and complex pathophysiological states. Echocardiography has improved our understanding of human fetal cadiovasvular physiology in the normal and diseased states, and has expanded our capability to more effectively treat these disease processes.

  17. HEPATITIS ALOINMUNE FETAL

    Directory of Open Access Journals (Sweden)

    Fernando Álvarez C., Dr.

    2015-07-01

    Full Text Available La hepatitis aloinmune fetal, conocida anteriormente como hemocromatosis neonatal, ha demostrado en los últimos años ser una enfermedad completamente distinta a la hemocromatosis del adulto, tanto en su etiología como en su la fisiopatología. Este conocimiento abre nuevas perspectivas tanto en la prevención de la enfermedad en futuros embarazos, así como en el tratamiento con inmunoglobulina endovenosa en la madre durante el embarazo y eventualmente el tratamiento postnatal, en el que el trasplante de hígado juega un rol primordial.

  18. Clinical implications of fetal magnetocardiography

    NARCIS (Netherlands)

    Quartero, H.W.P.; Stinstra, J.G.; Golbach, E.G.M.; Meijboom, E.J.; Peters, M.J.

    2002-01-01

    Objectives To test the usefulness and reliability of fetal magnetocardiography as a diagnostic or screening tool, both for fetuses with arrhythmias as well as for fetuses with a congenital heart defect. Methods We describe 21 women with either a fetal arrhythmia or a congenital heart defect disc

  19. Restrictive dermopathy and fetal behaviour

    NARCIS (Netherlands)

    Mulder, EJH; Beemer, FA; Stoutenbeek, P

    2001-01-01

    We report three siblings from consecutive pregnancies affected with restrictive dermopathy (RD). During the second pregnancy, fetal behavioural development and growth were studied extensively using ultrasound at 1-4 week intervals. Dramatic and sudden changes occurred in fetal body movements and gro

  20. Feto-fetal transfusion syndrome

    Science.gov (United States)

    Galea, P; Scott, J M; Goel, K M

    1982-01-01

    Out of 42 pairs of liveborn monochorial twins there were 32 pairs with vascular anastomoses. Of these, 11 pairs had feto-fetal transfusion syndrome. There were another 8 pairs of stillborn twin fetuses with vascular communications and in these chronic feto-fetal transfusion syndrome might have resulted in intrauterine death. PMID:6890328

  1. Hormonal Control of Fetal Growth.

    Science.gov (United States)

    Cooke, Paul S.; Nicoll, Charles S.

    1983-01-01

    Summarizes recent research on hormonal control of fetal growth, presenting data obtained using a new method for studying the area. Effects of endocrine ablations and congenital deficiencies, studies of hormone/receptor levels, in-vitro techniques, hormones implicated in promoting fetal growth, problems with existing methodologies, and growth of…

  2. Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs.

    Science.gov (United States)

    McCusker, Catherine D; Diaz-Castillo, Carlos; Sosnik, Julian; Q Phan, Anne; Gardiner, David M

    2016-08-01

    The Mexican Axolotl is one of the few tetrapod species that is capable of regenerating complete skeletal elements in injured adult limbs. Whether the skeleton (bone and cartilage) plays a role in the patterning and contribution to the skeletal regenerate is currently unresolved. We tested the induction of pattern formation, the effect on cell proliferation, and contributions of skeletal tissues (cartilage, bone, and periosteum) to the regenerating axolotl limb. We found that bone tissue grafts from transgenic donors expressing GFP fail to induce pattern formation and do not contribute to the newly regenerated skeleton. Periosteum tissue grafts, on the other hand, have both of these activities. These observations reveal that skeletal tissue does not contribute to the regeneration of skeletal elements; rather, these structures are patterned by and derived from cells of non-skeletal connective tissue origin.

  3. Impact of fetal echocardiography

    Directory of Open Access Journals (Sweden)

    Simpson John

    2009-01-01

    Full Text Available Prenatal diagnosis of congenital heart disease is now well established for a wide range of cardiac anomalies. Diagnosis of congenital heart disease during fetal life not only identifies the cardiac lesion but may also lead to detection of associated abnormalities. This information allows a detailed discussion of the prognosis with parents. For continuing pregnancies, appropriate preparation can be made to optimize the postnatal outcome. Reduced morbidity and mortality, following antenatal diagnosis, has been reported for coarctation of the aorta, hypoplastic left heart syndrome, and transposition of the great arteries. With regard to screening policy, most affected fetuses are in the "low risk" population, emphasizing the importance of appropriate training for those who undertake such obstetric anomaly scans. As a minimum, the four chamber view of the fetal heart should be incorporated into midtrimester anomaly scans, and where feasible, views of the outflow tracts should also be included, to increase the diagnostic yield. Newer screening techniques, such as measurement of nuchal translucency, may contribute to identification of fetuses at high risk for congenital heart disease and prompt referral for detailed cardiac assessment.

  4. A critical review of benefits and limitations of magnetic resonance imaging as a complementary method in the diagnosis of fetal malformations

    Energy Technology Data Exchange (ETDEWEB)

    Ximenes, Renato Luis da Silveira; Ximenes, Andrea Regina da Silveira [Centrus - Centro de Ultra-Sonografia e Medicina Fetal de Campinas, Campinas, SP (Brazil); Szejnfeld, Jacob; Zanderigo, Valdir [Cura - Diagnostico e Imagem, Sao Paulo, SP (Brazil)

    2008-09-15

    Objective: The present study was aimed at evaluating by means of magnetic resonance imaging a series of fetuses with sonographic diagnosis of malformation, establishing the diagnostic benefits and limitations of fetal magnetic resonance imaging as compared with ultrasonography. Materials and methods: Forty women between 15-35 gestational weeks and previously diagnosed with fetal abnormality by ultrasonography were referred to undergo complementary fetal magnetic resonance imaging, particularly for evaluating abnormalities in the fetal central nervous system, thorax, abdomen, renal system, skeletal system, and tumors. The whole evaluation process included a review of the fetal ultrasonography and magnetic resonance images, postnatal follow-up, laboratory tests, imaging studies and necropsy. Results: The present study has demonstrated that complementary magnetic resonance imaging did provide further information in 60% of cases, with the following benefits: improved information on the fetus as a whole, with a large field of view, higher anatomic resolution provided by fast sequences, superior soft tissue contrast resolution, besides the fact that the visualization of the fetus is not significantly affected by maternal obesity or oligohydramnios. Limitations of the method include contraindication in the first gestational trimester and in cases of maternal claustrophobia, sensitivity to fetal motion, low sensitivity for detecting cardiovascular and skeletal malformations. Conclusion: Fetal magnetic resonance imaging plays a significant role as a complementary method for the diagnosis of fetal anomalies. (author)

  5. Fetal and Maternal Outcomes in Pregnancies Complicated with Fetal Macrosomia

    Science.gov (United States)

    Alsammani, Mohamed Alkahatim; Ahmed, Salah Roshdy

    2012-01-01

    Background: Fetal macrosomia remains a considerable challenge in current obstetrics due to the fetal and maternal complications associated with this condition. Aim: This study was designed to determine the prevalence of fetal macrosomia and associated fetal and maternal morbidity and mortality in the Al Qassim Region of Saudi Arabia. Materials and Methods: This register-based study was conducted from January 1, 2011 through December 30, 2011 at the Maternity and Child Hospital, Qassim, Saudi Arabia. Macrosomia was defined as birth weight of 4 kg or greater. Malformed babies and those born dead were excluded. Results: The total number of babies delivered was 9241; of these, 418 were macrosomic. Thus, the prevalence of fetal macrosomia was 4.5%. The most common maternal complications were postpartum hemorrhage (5 cases, 1.2%), perineal tear (7 cases, 1.7%), cervical lacerations (3 cases, 0.7%), and shoulder dystocia (40 cases, 9.6%) that resulted in 4 cases of Erb's palsy (0.96%), and 6 cases of bone fractures (1.4%). The rate of cesarean section among women delivering macrosomic babies was 47.6% (199), while 52.4% (219) delivered vaginally. Conclusion: Despite extensive efforts to reduce fetal and maternal complications associated with macrosomia, considerable fetal and maternal morbidity remain associated with this condition. PMID:22754881

  6. Fetal and maternal outcomes in pregnancies complicated with fetal macrosomia

    Directory of Open Access Journals (Sweden)

    Mohamed Alkhatim Alsammani

    2012-01-01

    Full Text Available Background: Fetal macrosomia remains a considerable challenge in current obstetrics due to the fetal and maternal complications associated with this condition. Aim: This study was designed to determine the prevalence of fetal macrosomia and associated fetal and maternal morbidity and mortality in the Al Qassim Region of Saudi Arabia. Materials and Methods: This register-based study was conducted from January 1, 2011 through December 30, 2011 at the Maternity and Child Hospital, Qassim, Saudi Arabia. Macrosomia was defined as birth weight of 4 kg or greater. Malformed babies and those born dead were excluded. Results: The total number of babies delivered was 9241; of these, 418 were macrosomic. Thus, the prevalence of fetal macrosomia was 4.5%. The most common maternal complications were postpartum hemorrhage (5 cases, 1.2%, perineal tear (7 cases, 1.7%, cervical lacerations (3 cases, 0.7%, and shoulder dystocia (40 cases, 9.6% that resulted in 4 cases of Erb′s palsy (0.96%, and 6 cases of bone fractures (1.4%. The rate of cesarean section among women delivering macrosomic babies was 47.6% (199, while 52.4% (219 delivered vaginally. Conclusion: Despite extensive efforts to reduce fetal and maternal complications associated with macrosomia, considerable fetal and maternal morbidity remain associated with this condition.

  7. Fetal acoustic stimulation test for early intrapartum fetal monitoring.

    Science.gov (United States)

    Goonewardene, M; Hanwellage, K

    2011-03-01

    The fetal acoustic stimulation test (FAST) is a simple cost effective screening test for antenatal fetal monitoring. The aim of the study was to evaluate the FAST as a screening test for early intrapartum fetal well being. An initial non stress test (NST) followed by a FAST using corometric model 146 was carried out in 486 participants in early labour with uncomplicated singleton pregnancies and > 32 weeks gestation. A repeat NST was recorded in the participants who had an initial non reactive NST. The results of the NST and FAST were compared with fetal outcome. Maternal perception of fetal movements after FAST, results of NST before and after FAST, and the babies' 5 minute APGAR scores were measured. Of the 486 participants 413 (85%) noticed fetal movements after FAST. Initial NST was non reactive in 203 (42%) but 149 (31%) became reactive after FAST. Compared to the NST, FAST had a better sensitivity (97% vs 62%, p fetal well being in early labour. It complements the NST and is better than the NST alone.

  8. Fetal akinesia-hypokinesia deformation sequence (FADS) in 2 siblings with congenital myotonic dystrophy

    DEFF Research Database (Denmark)

    Lidang Jensen, M; Rix, M; Schrøder, Henrik Daa

    1995-01-01

    Two premature siblings described herein had clinical features comparable to the fetal akinesia-hypokinesia deformation sequence (Pena-Shokeir syndrome) with polyhydramnios, intrauterine growth retardation, pulmonary hypoplasia, short umbilical cord and lethality. Autopsy revealed no thoracal...... or abdominal viscera anomalies and examination of the brain, spinal cord and peripheral nerves did not disclose any pathological changes. Light microscopy, immunohistochemistry and electron microscopy of skeletal muscles demonstrated immature muscles with some fibril disorganisation and abnormal...

  9. Essentials of skeletal radiology

    Energy Technology Data Exchange (ETDEWEB)

    Yochum, T.R.; Rowe, L.J.

    1987-01-01

    This book discusses the following topics of skeletal radiology: Positioning of patients for diagnostic radiology and normal anatomy; congenital malformations of skeleton; measurements in radiology; spondylolisthesis; metabolic and endocrine diseases of bone and their diagnostic aspects; image processing of vertebrae, skeleton, bone fractures evaluations and epidemiological and social aspects of some bone diseases. Various modalities as CT scanning, NMR imaging, ultrasonography and biomedical radiography are briefly discussed in relation to bone pathology.

  10. Skeletal (stromal) stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Kermani, Abbas Jafari; Zaher, Walid

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy....../preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone....

  11. Skeletal adaptations to bipedalism

    OpenAIRE

    Vasiljević Perica; Žabar Andrea; Aleksić Milena

    2014-01-01

    Bipedalism is the main characteristic of humans. During evolutin bipedalism emerged probably as an adaptation to a changing environment. Major changes in skeletal system included femur, pelvis, skull and spine. The significance of bipedal locomotion: Bipedalism freed the forelimbs for carrying objects, creation and usage of tools. In the upright position animals have a broader view of the environment and the early detection of predators is crucial for survival. Bipedal locomotion makes larger...

  12. MR evaluation of fetal demise

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, Teresa; Chauvin, Nancy Anne; Johnson, Ann M.; Kramer, Sandra Sue; Epelman, Monica [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Capilla, Elena [Hospital Universitario Clinico San Carlos de Madrid, Madrid (Spain)

    2011-07-15

    Fetal demise is an uncommon event encountered at MR imaging. When it occurs, recognition by the interpreting radiologist is important to initiate appropriate patient management. To identify MR findings of fetal demise. Following IRB approval, a retrospective search of the radiology fetal MR database was conducted searching the words ''fetal demise'' and ''fetal death.'' Fetuses with obvious maceration or no sonographic confirmation of death were excluded. Eleven cases formed the study group. These were matched randomly to live fetuses of similar gestational age. Images were reviewed independently by three pediatric radiologists. The deceased fetus demonstrates decreased MR soft-tissue contrast and definition of tissue planes, including loss of gray-white matter differentiation in the brain. The signal within the cardiac chambers, when visible, is bright on HASTE sequences from the stagnant blood; the heart is small. Pleural effusions and decreased lung volumes may be seen. Interestingly, the fetal orbits lose their anatomical round shape and become smaller and more elliptical; a dark, irregular rim resembling a mask may be seen. Although fetal demise is uncommonly encountered at MR imaging, radiologists should be aware of such imaging findings so prompt management can be instituted. (orig.)

  13. Fetal valproate syndrome

    Directory of Open Access Journals (Sweden)

    Parmarth G Chandane

    2014-01-01

    Full Text Available Antenatal use of anticonvulsant valproic acid can result in a well-recognized cluster of facial dysmorphism, congenital anomalies and neurodevelopmental retardation. In this report, we describe a case with typical features of fetal valproate syndrome (FVS. A 26-year-old female with epilepsy controlled on sodium valproate 800 mg/day since 3 years, gave birth to a male child with characteristic features of FVS. She also had 3 spontaneous first-trimester abortions during those 3 years. Sodium valproate, a widely used anticonvulsant and mood regulator, is a well-recognized teratogen that can result in facial dysmorphism, craniosynostosis, neural tube defects, and neurodevelopmental retardation. Therefore, we strongly recommend avoidance of valproic acid and supplementation of folic acid during pregnancy.

  14. Role of skeletal muscle proteoglycans during myogenesis.

    Science.gov (United States)

    Brandan, Enrique; Gutierrez, Jaime

    2013-08-08

    Skeletal muscle formation during development and the adult mammal consists of a highly organised and regulated the sequence of cellular processes intending to form or repair muscle tissue. This sequence includes, cell proliferation, migration, and differentiation. Proteoglycans (PGs), macromolecules formed by a core protein and glycosaminoglycan chains (GAGs) present a great diversity of functions explained by their capacity to interact with different ligands and receptors forming part of their signalling complex and/or protecting them from proteolytic cleavage. Particularly attractive is the function of the different types of PGs present at the neuromuscular junction (NMJ). This review is focussed on the advances reached to understand the role of PGs during myogenesis and skeletal muscular dystrophies.

  15. Fetal pain perception and pain management.

    Science.gov (United States)

    Van de Velde, Marc; Jani, Jacques; De Buck, Frederik; Deprest, J

    2006-08-01

    This paper gives an overview of current science related to the concept of fetal pain. We have answered three important questions: (1) does fetal pain exist? (2) does management of fetal pain benefit the unborn child? and (3) which techniques are available to provide good fetal analgesia?

  16. Skeletal sarcoidosis; Skelettsarkoidose

    Energy Technology Data Exchange (ETDEWEB)

    Freyschmidt, J. [Klinikum Bremen-Mitte, Beratungsstelle und Referenzzentrum fuer Osteoradiologie, Bremen (Germany); Freyschmidt, P. [Dermatologische Gemeinschaftspraxis, Schwalmstadt (Germany)

    2016-10-15

    Presentation of the etiology, pathology, clinical course, radiology and differential diagnostics of skeletal sarcoidosis. Noncaseating epithelioid cell granulomas can trigger solitary, multiple or disseminated osteolysis, reactive osteosclerosis and/or granulomatous synovitis. The incidence of sarcoidosis is 10-12 per 100,000 inhabitants per year. Skeletal involvement is approximately 14 %. Skeletal involvement occurs almost exclusively in the stage of lymph node and pulmonary manifestation. Most cases of skeletal involvement are clinically asymptomatic. In the case of synovial involvement, unspecific joint complaints (arthralgia) or less commonly arthritis can occur. Typical skin alterations can be diagnostically significant. Punch out lesions osteolysis, coarse destruction and osteosclerosis can occur, which are best visualized with projection radiography and/or computed tomography. Pure bone marrow foci without interaction with the bone can only be detected with magnetic resonance imaging (MRI) and more recently with positron emission tomography (PET), mostly as incidental findings. There is a predeliction for the hand and trunk skeleton. Skeletal tuberculosis, metastases, multiple myeloma, Langerhans cell histiocytosis and sarcoid-like reactions in solid tumors must be differentiated. The key factors for correct diagnosis are thorax radiography, thorax CT and dermatological manifestations. (orig.) [German] Darstellung von Aetiologie, Pathologie, Klinik, Radiologie und Differenzialdiagnose der Skelettsarkoidose. Nichtverkaesende Epitheloidzellgranulome koennen solitaere, multiple oder disseminierte Osteolysen, reaktive Osteosklerosen und/oder eine granulomatoese Synovialitis ausloesen. Inzidenz der Sarkoidose: 10-12/100.000 Einwohner/Jahr. Skelettbeteiligung ca. 14 %. Skelettbeteiligungen kommen fast ausschliesslich im Stadium einer Lymphknoten- und pulmonalen Manifestation vor. Die meisten Skelettbeteiligungen verlaufen klinisch stumm. Bei synovialer

  17. The Danish Fetal Medicine database

    DEFF Research Database (Denmark)

    Ekelund, Charlotte; Kopp, Tine Iskov; Tabor, Ann

    2016-01-01

    trimester ultrasound scan performed at all public hospitals in Denmark are registered in the database. Main variables/descriptive data: Data on maternal characteristics, ultrasonic, and biochemical variables are continuously sent from the fetal medicine units’Astraia databases to the central database via...... analyses are sent to the database. Conclusion: It has been possible to establish a fetal medicine database, which monitors first-trimester screening for chromosomal abnormalities and second-trimester screening for major fetal malformations with the input from already collected data. The database...

  18. Fetal and maternal analgesia/anesthesia for fetal procedures.

    Science.gov (United States)

    Van de Velde, Marc; De Buck, Frederik

    2012-01-01

    For many prenatally diagnosed conditions, treatment is possible before birth. These fetal procedures can range from minimal invasive punctions to full open fetal surgery. Providing anesthesia for these procedures is a challenge, where care has to be taken for both mother and fetus. There are specific physiologic changes that occur with pregnancy that have an impact on the anesthetic management of the mother. When providing maternal anesthesia, there is also an impact on the fetus, with concerns for potential negative side effects of the anesthetic regimen used. The question whether the fetus is capable of feeling pain is difficult to answer, but there are indications that nociceptive stimuli have a physiologic reaction. This nociceptive stimulation of the fetus also has the potential for longer-term effects, so there is a need for fetal analgesic treatment. The extent to which a fetus is influenced by the maternal anesthesia depends on the type of anesthesia, with different needs for extra fetal anesthesia or analgesia. When providing fetal anesthesia, the potential negative consequences have to be balanced against the intended benefits of blocking the physiologic fetal responses to nociceptive stimulation.

  19. Fetal laser therapy: applications in the management of fetal pathologies.

    Science.gov (United States)

    Mathis, Jérôme; Raio, Luigi; Baud, David

    2015-07-01

    Fetoscopic coagulation of placental anastomoses is the treatment of choice for severe twin-to-twin transfusion syndrome. In the present day, fetal laser therapy is also used to treat amniotic bands, chorioangiomas, sacrococcygeal teratomas, lower urinary tract obstructions and chest masses, all of which will be reviewed in this article. Amniotic band syndrome can cause limb amputation by impairing downstream blood flow. Large chorioangiomas (>4 cm), sacrococcygeal teratomas or fetal hyperechoic lung lesions can lead to fetal compromise and hydrops by vascular steal phenomenon or compression. Renal damage, bladder dysfunction and lastly death because of pulmonary hypolasia may be the result of megacystis caused by a posterior urethral valve. The prognosis of these pathologies can be dismal, and therapy options are limited, which has brought fetal laser therapy to the forefront. Management options discussed here are laser release of amniotic bands, laser coagulation of the placental or fetal tumor feeding vessels and laser therapy by fetal cystoscopy. This review, largely based on case reports, does not intend to provide a level of evidence supporting laser therapy over other treatment options. Centralized evaluation by specialists using strict selection criteria and long-term follow-up of these rare cases are now needed to prove the value of endoscopic or ultrasound-guided laser therapy.

  20. Does Fetal antigen 1 (FA1) identify cells with regenerative, endocrine and neuroendocrine potentials?

    DEFF Research Database (Denmark)

    Jensen, Charlotte Floridon; Jensen, Charlotte Harken; Thorsen, Poul

    2000-01-01

    in the subcellular localisation indicating differential post-translational/post-transcriptional modifications during fetal development. FA1 may be a new marker of cellular subtypes with a regenerative potential and of specific cells with endocrine or neuroendocrine functions. Udgivelsesdato: 2000-Aug......, the localisation of FA1/dlk was analysed in embryonic and fetal tissues between week 5 to 25 of gestation and related to germinal origin and development. FA1 was observed in endodermally derived hepatocytes, glandular cells of the pancreas anlage, and in respiratory epithelial cells. FA1 was also present...... in mesodermally derived cells of the renal proximal tubules, adrenal cortex, Leydig and Hilus cells of the testes and ovaries, fetal chondroblasts, and skeletal myotubes. Ectodermally derived neuro- and adenohypophysial cells, cells in the floor of the 3rd ventricle and plexus choroideus were also FA1 positive...

  1. Prenatal ultrasound and fetal MRI: The comparative value of each modality in prenatal diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Pugash, Denise [Department of Radiology, University of British Columbia, Vancouver (Canada)], E-mail: dpugash@cw.bc.ca; Brugger, Peter C. [Integrative Morphology Group, Centre of Anatomy and Cell Biology, Medical University of Vienna, Waehringerstrasse 13, 1090 Vienna (Austria); Bettelheim, Dieter [University Clinics of Obstetrics and Gynaecology, Medical University of Vienna, Waehringerguertel 18-20, 1090 Wien (Austria); Prayer, Daniela [University Clinics of Radiodiagnostics, Medical University of Vienna, Waehringerguertel 18-20, 1090 Wien (Austria)

    2008-11-15

    Fetal MRI is used with increasing frequency as an adjunct to ultrasound (US) in prenatal diagnosis. In this review, we discuss the relative value of both prenatal US and MRI in evaluating fetal and extra-fetal structures for a variety of clinical indications. Advantages and disadvantages of each imaging modality are addressed. In summary, MRI has advantages in demonstrating pathology of the brain, lungs, complex syndromes, and conditions associated with reduction of amniotic fluid. At present, US is the imaging method of choice during the first trimester, and in the diagnosis of cardiovascular abnormalities, as well as for screening. In some conditions, such as late gestational age, increased maternal body mass index, skeletal dysplasia, and metabolic disease, neither imaging method may provide sufficient diagnostic information.

  2. Extrasynaptic location of laminin beta 2 chain in developing and adult human skeletal muscle

    DEFF Research Database (Denmark)

    Wewer, U M; Thornell, L E; Loechel, F

    1997-01-01

    to the laminin beta 2 chain. We found that laminin beta 1 chain was detected at all times during development from 10 weeks of gestation. Laminin beta 2 chain was first detected in 15 to 22-week-old fetal skeletal muscle as distinct focal immunoreactivity in the sarcolemmal basement membrane area of some......We have investigated the distribution of the laminin beta 2 chain (previously s-laminin) in human fetal and adult skeletal muscle and compared it to the distribution of laminin beta 1. Immunoblotting and transfection assays were used to characterize a panel of monoclonal and polyclonal antibodies...... results demonstrate a prominent extrasynaptic localization of laminin beta 2 in the human muscle, suggesting that it may have an important function in the sarcolemmal basement membrane....

  3. Insulin is required for amino acid stimulation of dual pathways for translational control in skeletal muscle in the late-gestation ovine fetus

    OpenAIRE

    Brown, Laura D.; Rozance, Paul J.; Barry, James S.; Friedman, Jacob E.; Hay, William W.

    2008-01-01

    During late gestation, amino acids and insulin promote skeletal muscle protein synthesis. However, the independent effects of amino acids and insulin on the regulation of mRNA translation initiation in the fetus are relatively unknown. The purpose of this study was to determine whether acute amino acid infusion in the late-gestation ovine fetus, with and without a simultaneous increase in fetal insulin concentration, activates translation initiation pathway(s) in skeletal muscle. Fetuses rece...

  4. Fetal jaw movement affects condylar cartilage development.

    Science.gov (United States)

    Habib, H; Hatta, T; Udagawa, J; Zhang, L; Yoshimura, Y; Otani, H

    2005-05-01

    Using a mouse exo utero system to examine the effects of fetal jaw movement on the development of condylar cartilage, we assessed the effects of restraint of the animals' mouths from opening, by suture, at embryonic day (E)15.5. We hypothesized that pre-natal jaw movement is an important mechanical factor in endochondral bone formation of the mandibular condyle. Condylar cartilage was reduced in size, and the bone-cartilage margin was ill-defined in the sutured group at E18.5. Volume, total number of cells, and number of 5-bromo-2'-deoxyuridine-positive cells in the mesenchymal zone were lower in the sutured group than in the non-sutured group at E16.5 and E18.5. Hypertrophic chondrocytes were larger, whereas fewer apoptotic chondrocytes and osteoclasts were observed in the hypertrophic zone in the sutured group at E18.5. Analysis of our data revealed that restricted fetal TMJ movement influences the process of endochondral bone formation of condylar cartilage.

  5. Fetal MRI: techniques and protocols

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Neuroradiology, University Clinics of Radiodiagnostics, Medical University Vienna, Waehringerguertel 18-10, 1090, Vienna (Austria); Brugger, Peter Christian [Department of Anatomy, Integrative Morphology Group, Medical University Vienna (Austria); Prayer, Lucas [Diagnosezentrum Urania, Vienna (Austria)

    2004-09-01

    The development of ultrafast sequences has led to a significant improvement in fetal MRI. Imaging protocols have to be adjusted to the rapidly developing fetal central nervous system (CNS) and to the clinical question. Sequence parameters must be changed to cope with the respective developmental stage, to produce images free from motion artefacts and to provide optimum visualization of the region and focus of interest. In contrast to postnatal studies, every suspect fetal CNS abnormality requires examination of the whole fetus and the extrafetal intrauterine structures including the uterus. This approach covers both aspects of fetal CNS disorders: isolated and complex malformations and cerebral lesions arising from the impaired integrity of the feto-placental unit. (orig.)

  6. Fetal-maternal erythrocyte distribution

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003407.htm Fetal-maternal erythrocyte distribution To use the sharing features ... unborn baby is leaking into the mother's blood circulation. The more of the baby's cells there are, ...

  7. The Danish Fetal Medicine Database

    DEFF Research Database (Denmark)

    Ekelund, Charlotte K; Petersen, Olav Bjørn; Jørgensen, Finn S

    2015-01-01

    OBJECTIVE: To describe the establishment and organization of the Danish Fetal Medicine Database and to report national results of first-trimester combined screening for trisomy 21 in the 5-year period 2008-2012. DESIGN: National register study using prospectively collected first-trimester screening...... data from the Danish Fetal Medicine Database. POPULATION: Pregnant women in Denmark undergoing first-trimester screening for trisomy 21. METHODS: Data on maternal characteristics, biochemical and ultrasonic markers are continuously sent electronically from local fetal medicine databases (Astraia Gmbh......%. The national screen-positive rate increased from 3.6% in 2008 to 4.7% in 2012. The national detection rate of trisomy 21 was reported to be between 82 and 90% in the 5-year period. CONCLUSION: A national fetal medicine database has been successfully established in Denmark. Results from the database have shown...

  8. Retained Fetal Bone in Infertile Patients: Two Case Reports

    Directory of Open Access Journals (Sweden)

    Ensieh ShahrokhTehraninejad

    2009-01-01

    Full Text Available The prolonged retention of fetal bone structure is an uncommon condition after a previous abortion.We describe two cases with fetal bone fragment amongst 3589 hysteroscopies (0.05%, who hadno complaint other than secondary infertility. In both patients, hyperechogenic areas were foundthrough transvaginal ultrasound and the bones were removed by hysteroscopy. Despite meticulousevaluation during hysteroscopy, some bones were not observed and were stable during the nextsonography. According to the formation of fetal bones after 11 weeks of pregnancy; patientswith secondary infertility who have a history of abortion that progressed beyond this time andendometrial hyperechoic areas by transvaginal ultrasound should be evaluated for any retainedfetal bone. Hysteroscopy should be performed under abdominal ultrasonography guide to ensurefetal bone tissue is entirely removed during a single surgery.

  9. Expression of GDF-5 during Limb Skeletal Development of Mice and the effect of GDF-5 on bone marrow mesenchymal stem cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Yukun Zhang; Shuhua Yang; Li Sun; Cao Yang; Zhewei Ye; Dehao Fu

    2006-01-01

    Objective: To investigate the expression of growth differentiation factor 5 (GDF-5) during limb skeletal development of mice and the effect of GDF-5 on bone marrow mesenchymal stem cells in vitro. Methods: The expression of GDF-5 mRNA and protein in mouse fetal limb buds were detected in embryonic day 11.5-15.5 (El1.5-15.5) by RT-PCR and Western blotting respectively. Type Ⅱ collagen protein was examined with immunocytochemistry and the sulfate glycosaminoglycan was measured by Alcian blue. Results: During early stage of developmental skeletogenesis, the expression of GDF-5mRNA was constant and began with embryos E11.5, highlighted at embryos E12.5 and E13.5, subsequently dropped at embryos E14.5 and E15.5.There was very significant difference (P < 0.01) in average light density ratio of GDF-5/β-actin between E12.5-13.5 and the other three days. The expression of GDF-5 protein had a similar change with mRNA during limb skeletogenesis. Immunocytochemistry showed that GDF-5 could promote expression of Type Ⅱ collagen protein and histological staining of proteoglycan with Alcian blue revealed the deposition of typical cartilage extracellular matrix components. Conclusion: GDF-5 can enhance chondrogenic differentiation of mouse bone marrow mesenchymal stem cells in vitro, which plays an important role in limb skeletal development and joint formation.

  10. Prolonged infusion of amino acids increases leucine oxidation in fetal sheep

    Science.gov (United States)

    Maliszewski, Anne M.; Gadhia, Monika M.; O'Meara, Meghan C.; Thorn, Stephanie R.; Rozance, Paul J.

    2012-01-01

    Maternal high-protein supplements designed to increase birth weight have not been successful. We recently showed that maternal amino acid infusion into pregnant sheep resulted in competitive inhibition of amino acid transport across the placenta and did not increase fetal protein accretion rates. To bypass placental transport, singleton fetal sheep were intravenously infused with an amino acid mixture (AA, n = 8) or saline [control (Con), n = 10] for ∼12 days during late gestation. Fetal leucine oxidation rate increased in the AA group (3.1 ± 0.5 vs. 1.4 ± 0.6 μmol·min−1·kg−1, P Fetal protein accretion (2.6 ± 0.5 and 2.2 ± 0.6 μmol·min−1·kg−1 in AA and Con, respectively), synthesis (6.2 ± 0.8 and 7.0 ± 0.9 μmol·min−1·kg−1 in AA and Con, respectively), and degradation (3.6 ± 0.6 and 4.5 ± 1.0 μmol·min−1·kg−1 in AA and Con, respectively) rates were similar between groups. Net fetal glucose uptake decreased in the AA group (2.8 ± 0.4 vs. 3.9 ± 0.1 mg·kg−1·min−1, P Fetal insulin and IGF-I concentrations did not change. Fetal glucagon increased in the AA group (119 ± 24 vs. 59 ± 9 pg/ml, P fetal glucose uptake rates were inversely proportional to fetal glucagon (r2 = 0.38, P fetal skeletal muscle were similar between groups. In summary, prolonged infusion of amino acids directly into normally growing fetal sheep increased leucine oxidation. Amino acid-stimulated increases in fetal glucagon, cortisol, and NE may contribute to a shift in substrate oxidation by the fetus from glucose to amino acids. PMID:22454287

  11. Fetal ocular measurements by MRI.

    Science.gov (United States)

    Li, Xiao Bing; Kasprian, Gregor; Hodge, Jacqueline C; Jiang, Xiao Li; Bettelheim, Dieter; Brugger, Peter C; Prayer, Daniela

    2010-11-01

    To present fetal magnetic resonance imaging (MRI) ocular measurement ranges by gestational age (GA) in normal and growth-restricted fetuses. A total of 298 pregnant women from the 18th to the 39th week of gestation were imaged using MRI. Ocular measurements including binocular distance (BOD), interocular distance (IOD), transverse ocular diameter (OD) and anterior-posterior (AP) OD were measured. The curve estimation analyses for linear, logarithmic and quadratic models were performed. The ocular measurements of the fetuses with intrauterine growth restriction (IUGR) were compared with that of the normal fetuses. The fetal eye resembles an ellipsoid with significantly longer OD and shorter AP (t = - 22.07, p < 0.001). The quadratic model was the best model in predicting growth of the fetal BOD, IOD, OD and AP. The ocular measurements of the fetuses with IUGR were significantly different from that of the normal fetuses (BOD: t = 3.58, p < 0.001; IOD: t = 5.73, p < 0.001; OD: t = 3.52, p < 0.001; AP: t = 2.19, p < 0.05). Fetal ocular growth can be readily assessed by fetal MRI. Using the normative data provided in this study, fetal ocular anomalies may be detected. Ocular size is frequently reduced in the condition of IUGR, with potential pathologic impact on postnatal vision.

  12. Skeletal response to simulated weightlessness - A comparison of suspension techniques

    Science.gov (United States)

    Wronski, T. J.; Morey-Holton, E. R.

    1987-01-01

    Comparisons are made of the skeletal response of rats subjected to simulated weightlessness by back or tail suspension. In comparison to pair-fed control rats, back-suspended rats failed to gain weight whereas tail-suspended rats exhibited normal weight gain. Quantitative bone histomorphometry revealed marked skeletal abnormalities in the proximal tibial metaphysis of back-suspended rats. Loss of trabecular bone mass in these animals was due to a combination of depressed longitudinal bone growth, decreased bone formation, and increased bone resorption. In contrast, the proximal tibia of tail-suspended rats was relatively normal by these histologic criteria. However, a significant reduction trabecular bone volume occurred during 2 weeks of tail suspension, possibly due to a transient inhibition of bone formation. The findings indicate that tail suspension may be a more appropriate model for evaluating the effects of simulated weightlessness on skeletal homeostasis.

  13. Establishment of bipotent progenitor cell clone from rat skeletal muscle.

    Science.gov (United States)

    Murakami, Yousuke; Yada, Erica; Nakano, Shin-ichi; Miyagoe-Suzuki, Yuko; Hosoyama, Tohru; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2011-12-01

    The present study describes the isolation, cloning and characterization of adipogenic progenitor cells from rat skeletal muscle. Among the obtained 10 clones, the most highly adipogenic progenitor, 2G11 cells, were further characterized. In addition to their adipogenicity, 2G11 cells retain myogenic potential as revealed by formation of multinucleated myotubes when co-cultured with myoblasts. 2G11 cells were resistant to an inhibitory effect of basic fibroblast growth factor on adipogenesis, while adipogenesis of widely used preadipogenic cell line, 3T3-L1 cells, was suppressed almost completely by the same treatment. In vivo transplantation experiments revealed that 2G11 cells are able to possess both adipogenicity and myogenicity in vivo. These results indicate the presence of bipotent progenitor cells in rat skeletal muscle, and suggest that such cells may contribute to ectopic fat formation in skeletal muscle.

  14. Exogenous amino acids suppress glucose oxidation and potentiate hepatic glucose production in late gestation fetal sheep.

    Science.gov (United States)

    Brown, Laura D; Kohn, Jaden R; Rozance, Paul J; Hay, William W; Wesolowski, Stephanie R

    2017-02-08

    Acute amino acid (AA) infusion increases AA oxidation rates in normal late gestation fetal sheep. Because fetal oxygen consumption rate does not change with increased AA oxidation, we hypothesized that AA infusion would suppress glucose oxidation pathways and that the additional carbon supply from AA would activate hepatic glucose production. To test this, late gestation fetal sheep were infused intravenously for 3h with saline or exogenous AA (AA). Glucose tracer metabolic studies were performed and skeletal muscle and liver tissues samples were collected. AA infusion increased fetal arterial plasma branched chain AA, cortisol, and glucagon concentrations. Fetal glucose utilization rates were similar between basal and AA periods, yet the fraction of glucose oxidized and glucose oxidation rate were decreased by 40% in the AA period. AA infusion increased expression of PDK4, an inhibitor of glucose oxidation, nearly 2-fold in muscle and liver. In liver, AA infusion tended to increase PCK1 gluconeogenic gene and PCK1 correlated with plasma cortisol concentrations. AA infusion also increased liver mRNA expression of lactate transporter gene (MCT1), protein expression of GLUT2 and LDHA, and phosphorylation of AMPK, 4EBP1, and S6 proteins. In isolated fetal hepatocytes, AA supplementation increased glucose production and PCK1, LDHA, and MCT1 gene expression. These results demonstrate that AA infusion into fetal sheep competitively suppresses glucose oxidation and potentiates hepatic glucose production. These metabolic patterns support flexibility in fetal metabolism in response to increased nutrient substrate supply while maintaining a relatively stable rate of oxidative metabolism.

  15. Fetal fornix transection and gestation length in sheep.

    Science.gov (United States)

    McDonald, T J; Li, C; Vincent, S E; Nijland, M J

    2006-08-01

    Experiments in several species indicate that the hippocampus influences hypothalamo-pituitary-adrenal (HPA) axis function. In fetal sheep, simultaneous ACTH and cortisol rises over the last 30 days of gestation peak at term and are necessary for birth. We hypothesized that if the fetal hippocampal formation is functional in late gestation, loss of hippocampal input to the HPA axis following fetal fornix transection would change gestation length in comparison to controls. At 118-121 days of gestation (dG), stereotaxic technique was used in fetal sheep to sham transect (SHAM; n = 8) or transect (FXTX; n = 6) the dorsal fornix at the level of the hippocampal commissure. No differences were found between SHAM and FXTX fetuses in daily hormone profiles over the last week of gestation or in gestation length (148.0 +/- 1.2 vs. 149.0 +/- 0.4 dG, respectively). We conclude that the fetal hippocampus is immature in late gestation and we speculate that an immature hippocampus is necessary for the loss of negative feedback control that gives rise to the long term, simultaneous increases in ACTH and cortisol that are indispensable for labor and delivery at term in sheep.

  16. Skeletal adaptations to bipedalism

    Directory of Open Access Journals (Sweden)

    Vasiljević Perica

    2014-01-01

    Full Text Available Bipedalism is the main characteristic of humans. During evolutin bipedalism emerged probably as an adaptation to a changing environment. Major changes in skeletal system included femur, pelvis, skull and spine. The significance of bipedal locomotion: Bipedalism freed the forelimbs for carrying objects, creation and usage of tools. In the upright position animals have a broader view of the environment and the early detection of predators is crucial for survival. Bipedal locomotion makes larger distances easier to pass, which is very important in the migration of hominids.

  17. Skeletal Effects of Smoking.

    Science.gov (United States)

    Cusano, Natalie E

    2015-10-01

    Smoking is a leading cause of preventable death and disability. Smoking has long been identified as a risk factor for osteoporosis, with data showing that older smokers have decreased bone mineral density and increased fracture risk compared to nonsmokers, particularly at the hip. The increase in fracture risk in smokers is out of proportion to the effects on bone density, indicating deficits in bone quality. Advanced imaging techniques have demonstrated microarchitectural deterioration in smokers, particularly in the trabecular compartment. The mechanisms by which smoking affects skeletal health remain unclear, although multiple pathways have been proposed. Smoking cessation may at least partially reverse the adverse effects of smoking on the skeleton.

  18. MicroRNA transcriptome profiles during swine skeletal muscle development

    Directory of Open Access Journals (Sweden)

    Sonstegard Tad S

    2009-02-01

    Full Text Available Abstract Background MicroRNA (miR are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells, three stages of fetal growth, day-old neonate, and the adult. Results Twelve potential novel miR were detected that did not match previously reported sequences. In addition, a number of miR previously reported to be expressed in mammalian muscle were detected, having a variety of abundance patterns through muscle development. Muscle-specific miR-206 was nearly absent in proliferating satellite cells in culture, but was the highest abundant miR at other time points evaluated. In addition, miR-1 was moderately abundant throughout developmental stages with highest abundance in the adult. In contrast, miR-133 was moderately abundant in adult muscle and either not detectable or lowly abundant throughout fetal and neonate development. Changes in abundance of ubiquitously expressed miR were also observed. MiR-432 abundance was highest at the earliest stage of fetal development tested (60 day-old fetus and decreased throughout development to the adult. Conversely, miR-24 and miR-27 exhibited greatest abundance in proliferating satellite cells and the adult, while abundance of miR-368, miR-376, and miR-423-5p was greatest in the neonate. Conclusion These data present a complete set of transcriptome profiles to evaluate miR abundance at specific stages of skeletal muscle growth in swine. Identification of these miR provides an initial group of miR that may play a vital role in muscle development and growth.

  19. Skeletal muscle sodium channelopathies.

    Science.gov (United States)

    Nicole, Sophie; Fontaine, Bertrand

    2015-10-01

    This is an update on skeletal muscle sodium channelopathies since knowledge in the field have dramatically increased in the past years. The relationship between two phenotypes and SCN4A has been confirmed with additional cases that remain extremely rare: severe neonatal episodic laryngospasm mimicking encephalopathy, which should be actively searched for since patients respond well to sodium channel blockers; congenital myasthenic syndromes, which have the particularity to be the first recessive Nav1.4 channelopathy. Deep DNA sequencing suggests the contribution of other ion channels in the clinical expressivity of sodium channelopathies, which may be one of the factors modulating the latter. The increased knowledge of channel molecular structure, the quantity of sodium channel blockers, and the availability of preclinical models would permit a most personalized choice of medication for patients suffering from these debilitating neuromuscular diseases. Advances in the understanding of the molecular structure of voltage-gated sodium channels, as well as availability of preclinical models, would lead to improved medical care of patients suffering from skeletal muscle, as well as other sodium channelopathies.

  20. CLINICAL SIGNIFICANCE AND PROGNOSIS OF FETAL ARRHYTHMIAS

    Institute of Scientific and Technical Information of China (English)

    Qing-bo Fan; Ming-ying Gai; Jian-qiu Yang; Fei-fei Xing

    2004-01-01

    Objective To explore fetal arrhythmia clinical significance and its correlation with fetal prognosis.Methods Twenty-six cases of fetal arrhythmia detected among 12 799 pregnant women recorded over a ten-year period in Peking Uinon Medical College (PUMC) Hospital were reviewed retrospectively. Fetal arrhythmia was diagnosed by fetal auscultation, ultrasonography, electric fetal heart monitoring, and fetal echocardiography.Results Twenty-six fetuses were documented with fetal arrhythmia (3 tachycardia, 4 bradycardia, 19 normal heart rate with irregular fetal cardiac rhythm). The incidence of fetal arrhythmia in our hospital was 0.2%. They were diagnosed at the average of 35 weeks' gestation (15 to 41 weeks). Twenty-two cases were diagnosed by antenatal fetal auscultation, 1 case was diagnosed by ultrasonography, and 3 cases were diagnosed by electric fetal heart monitoring. Fetal echocardiograms were performed on 17 fetuses, 6 cases (35.3%) of which showed that ventricular premature beats with normal structure of fetal heart.All neonates survived postnatally and 24 of them (92.3%) were followed up. Echocardiograms were performed for 16 neonates and 2 of them were identified as atrial septal defects with normal heart rhythms. The results of follow-up showed that the two patients had no apparent clinical manifestation. The echocardiogram showed that atrial septal defect obliterated already.Conclusion The prognosis is well for most of the fetuses with arrhythmias, with low incidence of heart deformation.

  1. Skeletal malocclusion: a developmental disorder with a life-long morbidity.

    Science.gov (United States)

    Joshi, Nishitha; Hamdan, Ahmad M; Fakhouri, Walid D

    2014-12-01

    The likelihood of birth defects in orofacial tissues is high due to the structural and developmental complexity of the face and the susceptibility to intrinsic and extrinsic perturbations. Skeletal malocclusion is caused by the distortion of the proper mandibular and/or maxillary growth during fetal development. Patients with skeletal malocclusion may suffer from dental deformities, bruxism, teeth crowding, trismus, mastication difficulties, breathing obstruction and digestion disturbance if the problem is left untreated. In this review, we focused on skeletal malocclusion that affects 27.9% of the US population with different severity levels. We summarized the prevalence of class I, II and III of malocclusion in different ethnic groups and discussed the most frequent medical disorders associated with skeletal malocclusion. Dental anomalies that lead to malocclusion such as tooth agenesis, crowding, missing teeth and abnormal tooth size are not addressed in this review. We propose a modified version of malocclusion classification for research purposes to exhibit a clear distinction between skeletal vs. dental malocclusion in comparison to Angle's classification. In addition, we performed a cross-sectional analysis on orthodontic (malocclusion) data through the BigMouth Dental Data Repository to calculate potential association between malocclusion with other medical conditions. In conclusion, this review emphasizes the need to identify genetic and environmental factors that cause or contribute risk to skeletal malocclusion and the possible association with other medical conditions to improve assessment, prognosis and therapeutic approaches.

  2. Control of Vertebrate Skeletal Mineralization by Polyphosphates

    Science.gov (United States)

    Omelon, Sidney; Georgiou, John; Henneman, Zachary J.; Wise, Lisa M.; Sukhu, Balram; Hunt, Tanya; Wynnyckyj, Chrystia; Holmyard, Douglas; Bielecki, Ryszard; Grynpas, Marc D.

    2009-01-01

    Background Skeletons are formed in a wide variety of shapes, sizes, and compositions of organic and mineral components. Many invertebrate skeletons are constructed from carbonate or silicate minerals, whereas vertebrate skeletons are instead composed of a calcium phosphate mineral known as apatite. No one yet knows why the dynamic vertebrate skeleton, which is continually rebuilt, repaired, and resorbed during growth and normal remodeling, is composed of apatite. Nor is the control of bone and calcifying cartilage mineralization well understood, though it is thought to be associated with phosphate-cleaving proteins. Researchers have assumed that skeletal mineralization is also associated with non-crystalline, calcium- and phosphate-containing electron-dense granules that have been detected in vertebrate skeletal tissue prepared under non-aqueous conditions. Again, however, the role of these granules remains poorly understood. Here, we review bone and growth plate mineralization before showing that polymers of phosphate ions (polyphosphates: (PO3−)n) are co-located with mineralizing cartilage and resorbing bone. We propose that the electron-dense granules contain polyphosphates, and explain how these polyphosphates may play an important role in apatite biomineralization. Principal Findings/Methodology The enzymatic formation (condensation) and destruction (hydrolytic degradation) of polyphosphates offers a simple mechanism for enzymatic control of phosphate accumulation and the relative saturation of apatite. Under circumstances in which apatite mineral formation is undesirable, such as within cartilage tissue or during bone resorption, the production of polyphosphates reduces the free orthophosphate (PO43−) concentration while permitting the accumulation of a high total PO43− concentration. Sequestering calcium into amorphous calcium polyphosphate complexes can reduce the concentration of free calcium. The resulting reduction of both free PO43− and free

  3. Effects of cortisol and dexamethasone on insulin signalling pathways in skeletal muscle of the ovine fetus during late gestation.

    Science.gov (United States)

    Jellyman, Juanita K; Martin-Gronert, Malgorzata S; Cripps, Roselle L; Giussani, Dino A; Ozanne, Susan E; Shen, Qingwu W; Du, Min; Fowden, Abigail L; Forhead, Alison J

    2012-01-01

    Before birth, glucocorticoids retard growth, although the extent to which this is mediated by changes in insulin signalling pathways in the skeletal muscle of the fetus is unknown. The current study determined the effects of endogenous and synthetic glucocorticoid exposure on insulin signalling proteins in skeletal muscle of fetal sheep during late gestation. Experimental manipulation of fetal plasma glucocorticoid concentration was achieved by fetal cortisol infusion and maternal dexamethasone treatment. Cortisol infusion significantly increased muscle protein levels of Akt2 and phosphorylated Akt at Ser473, and decreased protein levels of phosphorylated forms of mTOR at Ser2448 and S6K at Thr389. Muscle GLUT4 protein expression was significantly higher in fetuses whose mothers were treated with dexamethasone compared to those treated with saline. There were no significant effects of glucocorticoid exposure on muscle protein abundance of IR-β, IGF-1R, PKCζ, Akt1, calpastatin or muscle glycogen content. The present study demonstrated that components of the insulin signalling pathway in skeletal muscle of the ovine fetus are influenced differentially by naturally occurring and synthetic glucocorticoids. These findings may provide a mechanism by which elevated concentrations of endogenous glucocorticoids retard fetal growth.

  4. Fetal privacy and confidentiality.

    Science.gov (United States)

    Botkin, J R

    1995-01-01

    With the advent of new and better contraceptive methods and the ability to facilitate and manipulate fertilization and gestation, couples will gain greater control over their fertility. Once a pregnancy has been established or an in vitro embryo created, the ability to evaluate the embryo and fetus will increase dramatically with progress in human genetic research. Preconception and preimplantation genetic testing and screening are now possible, and the technology to perform prenatal screening early in gestation is advancing rapidly. Nonsurgical methods facilitate induced abortion with a relatively lower degree of trauma upon the woman undergoing the procedure. These capabilities may all be used to enable and even encourage the genetic selection of future children. Despite the ethical concerns associated with prenatal testing and abortion, these services will continue to be an integral aspect of reproductive medicine. As technology advances, however, it will be possible to test and screen for conditions which do not produce serious defects. Genetic conditions which produce relatively mild impacts upon health will be identifiable in the embryo or fetus, while late-onset conditions and genetic factors which have only a probability of affecting health will also be located in the fetal genome. Prospective parents may therefore soon have the capability of selecting their most desirable embryo in vitro, or terminating all undesirable fetuses in vivo until the preferred child is delivered. The medical profession must take some responsibility for establishing guidelines on the use of reproductive technology. The standards of practice for the medical profession must reflect the results of a broad social debate over competing moral values. The author develops an argument for legal and ethical limitations on the application of prenatal testing and screening technology, suggesting that for some medical conditions, respect for the privacy and confidentiality of the fetus

  5. Fetal electrocardiogram (ECG) for fetal monitoring during labour.

    Science.gov (United States)

    Neilson, James P

    2015-12-21

    Hypoxaemia during labour can alter the shape of the fetal electrocardiogram (ECG) waveform, notably the relation of the PR to RR intervals, and elevation or depression of the ST segment. Technical systems have therefore been developed to monitor the fetal ECG during labour as an adjunct to continuous electronic fetal heart rate monitoring with the aim of improving fetal outcome and minimising unnecessary obstetric interference. To compare the effects of analysis of fetal ECG waveforms during labour with alternative methods of fetal monitoring. The Cochrane Pregnancy and Childbirth Group's Trials Register (latest search 23 September 2015) and reference lists of retrieved studies. Randomised trials comparing fetal ECG waveform analysis with alternative methods of fetal monitoring during labour. One review author independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. One review author assessed the quality of the evidence using the GRADE approach. Seven trials (27,403 women) were included: six trials of ST waveform analysis (26,446 women) and one trial of PR interval analysis (957 women). The trials were generally at low risk of bias for most domains and the quality of evidence for ST waveform analysis trials was graded moderate to high. In comparison to continuous electronic fetal heart rate monitoring alone, the use of adjunctive ST waveform analysis made no obvious difference to primary outcomes: births by caesarean section (risk ratio (RR) 1.02, 95% confidence interval (CI) 0.96 to 1.08; six trials, 26,446 women; high quality evidence); the number of babies with severe metabolic acidosis at birth (cord arterial pH less than 7.05 and base deficit greater than 12 mmol/L) (average RR 0.72, 95% CI 0.43 to 1.20; six trials, 25,682 babies; moderate quality evidence); or babies with neonatal encephalopathy (RR 0.61, 95% CI 0.30 to 1.22; six trials, 26,410 babies; high quality evidence). There were, however, on average

  6. Human fetal mesenchymal stem cells.

    Science.gov (United States)

    O'Donoghue, Keelin; Chan, Jerry

    2006-09-01

    Stem cells have been isolated at all stages of development from the early developing embryo to the post-reproductive adult organism. However, the fetal environment is unique as it is the only time in ontogeny that there is migration of stem cells in large numbers into different organ compartments. While fetal neural and haemopoietic stem cells (HSC) have been well characterised, only recently have mesenchymal stem cells from the human fetus been isolated and evaluated. Our group have characterised in human fetal blood, liver and bone marrow a population of non-haemopoietic, non-endothelial cells with an immunophenotype similar to adult bone marrow-derived mesenchymal stem cells (MSC). These cells, human fetal mesenchymal stem cells (hfMSC), are true multipotent stem cells with greater self-renewal and differentiation capacity than their adult counterparts. They circulate in first trimester fetal blood and have been found to traffic into the maternal circulation, engrafting in bone marrow, where they remain microchimeric for decades after pregnancy. Though fetal microchimerism has been implicated in the pathogenesis of autoimmune disease, the biological role of hfMSC microchimerism is unknown. Potential downstream applications of hfMSC include their use as a target cell for non-invasive pre-natal diagnosis from maternal blood, and for fetal cellular and gene therapy. Using hfMSC in fetal therapy offers the theoretical advantages of avoidance of immune rejection, increased engraftment, and treatment before disease pathology sets in. Aside from allogeneic hfMSC in utero transplantation, the use of autologous hfMSC has been brought a step forward with the development of early blood sampling techniques, efficient viral transduction and clonal expansion. Work is ongoing to determine hfMSC fate post-transplantation in murine models of genetic disease. In this review we will examine what is known about hfMSC biology, as well as discussing areas for future research. The

  7. Mitochondrial biogenesis is decreased in skeletal muscle of pig fetuses exposed to maternal high-energy diets.

    Science.gov (United States)

    Zou, T D; Yu, B; Yu, J; Mao, X B; Zheng, P; He, J; Huang, Z Q; He, D T; Chen, D W

    2017-01-01

    Mitochondria plays an important role in the regulation of energy homeostasis. Moreover, mitochondrial biogenesis accompanies skeletal myogenesis, and we previously reported that maternal high-energy diet repressed skeletal myogenesis in pig fetuses. Therefore, the aim of this study was to evaluate the effects of moderately increased maternal energy intake on skeletal muscle mitochondrial biogenesis and function of the pig fetuses. Primiparous purebred Large White sows were allocated to a normal energy intake group (NE) as recommended by the National Research Council (NRC) and a high energy intake group (HE, 110% of NRC recommendations). On day 90 of gestation, fetal umbilical vein blood and longissimus (LM) muscle were collected. Results showed that the weight gain of sows fed HE diet was higher than NE sows on day 90 of gestation (Penergy supply during gestation decreases mitochondrial biogenesis, function and antioxidative capacity in skeletal muscle of pig fetuses.

  8. Two cases of fetal goiter

    Directory of Open Access Journals (Sweden)

    Ashish Saini

    2012-01-01

    Full Text Available Introduction: Anterior fetal neck masses are rarely encountered. Careful routine ultrasound screening can reveal intrauterine fetal goiters (FGs. The incidence of goitrous hypothyroidism is 1 in 30,000-50,000 live births. The consequences of both FG and impaired thyroid function are serious. Aims and Objectives: To emphasize role of ultrasound in both invasive and non-invasive management of FG. Materials and Methods: Two pregnant patients, during second trimester, underwent routine antenatal ultrasound revealing FG, were investigated and managed. Results: Case 1: Revealed FG with fetal hypothyroidism. Intra-amniotic injection l-thyroxine given. Follow-up ultrasound confirmed the reduction of the goiter size. At birth, thyroid dyshormogenesis was suspected and neonate discharged on 50 mcg levothyroxine/day with normal growth and development so far. Case 2: Hypothyroid mother with twin pregnancy revealed FG, in twin 1, confirmed on magnetic resonance imaging (1.5 × 1.63 cm. The other twin had no thyroid swelling. Cordocentesis confirmed hypothyroidism in twin 1. Maternal thyroxine dose increased as per biochemical parameters leading to reduction in FG size. Mother delivered preterm and none of the twins had thyroid swelling. Fetal euthyroidism was confirmed on biochemical screening. Conclusion: FG during pregnancy should be thoroughly evaluated, diagnosed and immediately treated; although in utero options for fetal hypothyroidism management are available, emphasis should be laid on non-invasive procedures. Newer and better resolution techniques in ultrasonography are more specific and at the same time are less harmful.

  9. Fetal Programming and Cardiovascular Pathology

    Science.gov (United States)

    Alexander, Barbara T.; Dasinger, John Henry; Intapad, Suttira

    2016-01-01

    Low birth weight serves as a crude proxy for impaired growth during fetal life and indicates a failure for the fetus to achieve its full growth potential. Low birth weight can occur in response to numerous etiologies that include complications during pregnancy, poor prenatal care, parental smoking, maternal alcohol consumption or stress. Numerous epidemiological and experimental studies demonstrate that birth weight is inversely associated with blood pressure and coronary heart disease. Sex and age impact the developmental programming of hypertension. In addition, impaired growth during fetal life also programs enhanced vulnerability to a secondary insult. Macrosomia, which occurs in response to maternal obesity, diabetes and excessive weight gain during gestation, is also associated with increased cardiovascular risk. Yet, the exact mechanisms that permanently change the structure, physiology and endocrine health of an individual across their lifespan following altered growth during fetal life are not entirely clear. Transmission of increased risk from one generation to the next in the absence of an additional prenatal insult indicates an important role for epigenetic processes. Experimental studies also indicate that the sympathetic nervous system, the renin angiotensin system, increased production of oxidative stress and increased endothelin play an important role in the developmental programming of blood pressure in later life. Thus, this review will highlight how adverse influences during fetal life and early development program an increased risk for cardiovascular disease including high blood pressure and provide an overview of the underlying mechanisms that contribute to the fetal origins of cardiovascular pathology. PMID:25880521

  10. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.

    Science.gov (United States)

    Choi, Yeong-Jin; Kim, Taek Gyoung; Jeong, Jonghyeon; Yi, Hee-Gyeong; Park, Ji Won; Hwang, Woonbong; Cho, Dong-Woo

    2016-10-01

    Engineered skeletal muscle tissues that mimic the structure and function of native muscle have been considered as an alternative strategy for the treatment of various muscular diseases and injuries. Here, it is demonstrated that 3D cell-printing of decellularized skeletal muscle extracellular matrix (mdECM)-based bioink facilitates the fabrication of functional skeletal muscle constructs. The cellular alignment and the shape of the tissue constructs are controlled by 3D cell-printing technology. mdECM bioink provides the 3D cell-printed muscle constructs with a myogenic environment that supports high viability and contractility as well as myotube formation, differentiation, and maturation. More interestingly, the preservation of agrin is confirmed in the mdECM, and significant increases in the formation of acetylcholine receptor clusters are exhibited in the 3D cell-printed muscle constructs. In conclusion, mdECM bioink and 3D cell-printing technology facilitate the mimicking of both the structural and functional properties of native muscle and hold great promise for producing clinically relevant engineered muscle for the treatment of muscular injuries.

  11. Effects of a 4.7 T static magnetic field on fetal development in ICR mice

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Ryuji; Ootsuyama, Akira; Uchida, Soshi; Norimura, Toshiyuki [Univ. of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan). School of Medicine

    2001-09-01

    In order to determine the effects of a 4.7 T static magnetic field (SMF) on fetal development in mice, we evaluated fetal teratogenesis and endochondral ossification following exposure in utero. Pregnant ICR mice were exposed to a 4.7 T SMF from day 7.5 to 9.5 of gestation in a whole-body dose, and sacrificed on day 18.5 of gestation. We examined with incidence of prenatal death, external malformations and fetal skeletal malformations. There were no significant differences observed in the incidence of prenatal death and/or malformations between SMF-exposed mice and control mice. Further, we evaluated the immunoreactivity for the vascular endothelial growth factor (VEGF), which is implicated in angiogenesis and osteogenesis, in the sternum of fetal mice following magnetic exposure. Our studies also indicated that on day 16.5 of gestation following SMF exposure, the immunoreactivity for VEGF was increased compared to unexposed controls. However, it was decreased in the exposed group compared to the control group on day 18.5 of gestation. DNA and proteoglycan (PG) synthesis were also measured in rabbit costal growth plate chondrocytes in vitro. No significant differences were observed in DNA synthesis between the SMF exposed chondrocytes and the control chondrocytes; however, PG synthesis in SMF exposed chondrocytes increased compared to the controls. Based on these results, we suggest that while SMF exposure promoted the endochondral ossification of chondrocytes, it did not induce any harmful effects on fetal development in ICR mice. (author)

  12. Skeletal muscle connective tissue

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline

      The connective tissue content of skeletal muscle is believed to be the major factor responsible for defining the eating quality of different meat cuts, although attempts to correlate quantifications based on traditional histological methods have not as yet been able to prove this relation....... Collagen, being the major protein in connective tissue, has been extensively investigated with regard to its relation to meat tenderness, but the results have been rather conflicting. Meat from older animals is tougher than that from younger animals, and changes in the properties of the collagen due...... that collagen plays a significant role in determining the tenderness of meat. What are we missing? Therefore, fundamental aspects of connective tissue research have been the centre of attention throughout this thesis. A holistic view has been applied, glancing at this complex tissue which has many facets...

  13. Physiology of the fetal circulation.

    Science.gov (United States)

    Kiserud, Torvid

    2005-12-01

    Our understanding of fetal circulatory physiology is based on experimental animal data, and this continues to be an important source of new insight into developmental mechanisms. A growing number of human studies have investigated the human physiology, with results that are similar but not identical to those from animal studies. It is time to appreciate these differences and base more of our clinical approach on human physiology. Accordingly, the present review focuses on distributional patterns and adaptational mechanisms that were mainly discovered by human studies. These include cardiac output, pulmonary and placental circulation, fetal brain and liver, venous return to the heart, and the fetal shunts (ductus venosus, foramen ovale and ductus arteriosus). Placental compromise induces a set of adaptational and compensational mechanisms reflecting the plasticity of the developing circulation, with both short- and long-term implications. Some of these aspects have become part of the clinical physiology of today with consequences for surveillance and treatment.

  14. Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone

    Science.gov (United States)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Autry, C. P.; Currier, P. A.; Tanner, S.; Patterson-Buckendahl, P.; Morey-Holton, E.

    1995-01-01

    Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p bone formation. These results suggest that while GH can stimulate the overall accumulation of bone mineral in both weight bearing and non-weight bearing animals, skeletal unloading selectively impairs the response of trabecular bone and periosteal bone formation to the anabolic actions of GH.

  15. Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone

    Science.gov (United States)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Autry, C. P.; Currier, P. A.; Tanner, S.; Patterson-Buckendahl, P.; Morey-Holton, E.

    1995-01-01

    Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p < 0.002) of GH on periosteal bone formation. These results suggest that while GH can stimulate the overall accumulation of bone mineral in both weight bearing and non-weight bearing animals, skeletal unloading selectively impairs the response of trabecular bone and periosteal bone formation to the anabolic actions of GH.

  16. CORD PROLAPSE, ASSOCIATED FACTORS AND FETAL OUTCOME

    African Journals Online (AJOL)

    We conducted this study to determine profile of pregnancy ... Several factors predispose to cord prolapse, amongst which are breech ... no fetal heart tones and only 31.8% of the babies were alive after ... Fetal death was, more common with.

  17. Births and deaths including fetal deaths

    Data.gov (United States)

    U.S. Department of Health & Human Services — Access to a variety of United States birth and death files including fetal deaths: Birth Files, 1968-2009; 1995-2005; Fetal death file, 1982-2005; Mortality files,...

  18. Macrosomia - maternal and fetal risk factors

    African Journals Online (AJOL)

    group; 3 cases of second-degree perineal laceration. ,,; 160 cm ... In order to make the diagnosis of fetal macrosomia antenatally ... real-time ultrasonography gives the best estimate of fetal .... Oats IN, Abell OA, Seischer NA, Broomhart GR.

  19. Fetal scalp blood sampling during labor

    DEFF Research Database (Denmark)

    Chandraharan, Edwin; Wiberg, Nana

    2014-01-01

    and Clinical Excellence guideline considers that fetal scalp blood sampling decreases instrumental delivery without differences in other outcome variables. The fetal scalp is supplied by vessels outside the skull below the level of the cranial vault, which is likely to be compressed during contractions......Fetal cardiotocography is characterized by low specificity; therefore, in an attempt to ensure fetal well-being, fetal scalp blood sampling has been recommended by most obstetric societies in the case of a non-reassuring cardiotocography. The scientific agreement on the evidence for using fetal...... scalp blood sampling to decrease the rate of operative delivery for fetal distress is ambiguous. Based on the same studies, a Cochrane review states that fetal scalp blood sampling increases the rate of instrumental delivery while decreasing neonatal acidosis, whereas the National Institute of Health...

  20. Skeletal Muscle Na+ Channel Disorders

    Directory of Open Access Journals (Sweden)

    Dina eSimkin

    2011-10-01

    Full Text Available Five inherited human disorders affecting skeletal muscle contraction have been traced to mutations in the gene encoding the voltage-gated sodium channel Nav1.4. The main symptoms of these disorders are myotonia or periodic paralysis caused by changes in skeletal muscle fiber excitability. Symptoms of these disorders vary from mild or latent disease to incapacitating or even death in severe cases. As new human sodium channel mutations corresponding to disease states become discovered, the importance of understanding the role of the sodium channel in skeletal muscle function and disease state grows.

  1. Fetal/neonatal alloimmune thrombocytopenia.

    Science.gov (United States)

    Sachs, Ulrich J

    2013-01-01

    In fetal/neonatal alloimmune thrombocytopenia (FNAIT), antibodies against paternal antigens present on fetal platelets are produced by the mother. These antibodies will cross the placenta and can cause thrombocytopenia of the unborn. One severe consequence of thrombocytopenia is intracranial bleeding which may lead to death or severe sequelae. FNAIT index cases in one family are usually detected at birth only since antenatal screening programmes have not been installed so far. Subsequent pregnancies of immunized mothers may require special diagnostic and prophylactic interventions, and interdisciplinary counselling and treatment involving obstetricians, pediatricians and immunohematologists may prove useful for optimized care. This short review covers pathogenesis, clinical presentation, diagnostic, and therapeutic options in FNAIT.

  2. Fetal epigenetic programming of adipokines.

    Science.gov (United States)

    Houde, Andrée-Anne; Hivert, Marie-France; Bouchard, Luigi

    2013-01-01

    Epigenetics generates a considerable interest in the field of research on complex traits, including obesity and diabetes. Recently, we reported a number of epipolymorphisms in the placental leptin and adiponectin genes associated with maternal hyperglycemia during pregnancy. Our results suggest that DNA methylation could partly explain the link between early exposure to a detrimental fetal environment and an increased risk to develop obesity and diabetes later in life. This brief report discusses the potential importance of adipokine epigenetic changes in fetal metabolic programming. Additionally, preliminary data showing similarities between methylation variations of different tissues and cell types will be presented along with the challenges and future perspectives of this emerging field of research.

  3. Fetal and maternal metabolic responses to exercise during pregnancy.

    Science.gov (United States)

    Mottola, Michelle F; Artal, Raul

    2016-03-01

    Pregnancy is characterized by physiological, endocrine and metabolic adaptations creating a pseudo-diabetogenic state of progressive insulin resistance. These adaptations occur to sustain continuous fetal requirements for nutrients and oxygen. Insulin resistance develops at the level of the skeletal muscle, and maternal exercise, especially activity involving large muscle groups improve glucose tolerance and insulin sensitivity. We discuss the maternal hormonal and metabolic changes associated with a normal pregnancy, the metabolic dysregulation that may occur leading to gestational diabetes mellitus (GDM), and the consequences to mother and fetus. We will then examine the acute and chronic (training) responses to exercise in the non-pregnant state and relate these alterations to maternal exercise in a low-risk pregnancy, how exercise can be used to regulate glucose tolerance in women at risk for or diagnosed with GDM. Lastly, we present key exercise guidelines to help maintain maternal glucose regulation and suggest future research directions.

  4. Prediction of fetal acidemia in placental abruption

    OpenAIRE

    MATSUDA, Yoshio; OGAWA, Masaki; KONNO, Jun; MITANI, Minoru; MATSUI, Hideo

    2013-01-01

    Background To determine the major predictive factors for fetal acidemia in placental abruption. Methods A retrospective review of pregnancies with placental abruption was performed using a logistic regression model. Fetal acidemia was defined as a pH of less than 7.0 in umbilical artery. The severe abruption score, which was derived from a linear discriminant function, was calculated to determine the probability of fetal acidemia. Results Fetal acidemia was seen in 43 survivors (43/222, 19%)....

  5. Fetal MRI and ultrasound of congenital CNS anomalies; Fetales MRT und Ultraschall der angeborenen ZNS-Fehlbildungen

    Energy Technology Data Exchange (ETDEWEB)

    Pogledic, I.; Reith, W. [Universitaetsklinikum des Saarlandes, Homburg/Saar, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany); Meyberg-Solomayer, G. [Universitaetsklinikum des Saarlandes, Homburg/Saar, Klinik fuer Frauenheilkunde, Geburtsheilkunde und Reproduktionsmedizin, Homburg/Saar (Germany)

    2013-02-15

    In the last decade the newest technologies, fetal magnetic resonance imaging (MRI) and 3D ultrasound, have given an insight into the minute structures of the fetal brain. However, without knowledge of the basic developmental processes the imaging is futile. Knowledge of fetal neuroanatomy corresponding to the gestational week is necessary in order to recognize pathological structures. Furthermore, a modern neuroradiologist should be acquainted with the three steps in the formation of the cerebral cortex: proliferation, migration and differentiation of neurons in order to be in a position to suspect that there is a pathology and start recognizing and discovering the abnormalities. The fetal MRI has become an important complementary method to ultrasound especially in cortical malformations when confirmation of the prenatal diagnosis is needed and additional pathologies need to be diagnosed. In this manner these two methods help in parental counseling and treatment planning. (orig.) [German] Dank neuer Technologien (z. B. fetale MRT, 3-D-Sonographie) ist es moeglich, kleinste Hirnstrukturen darzustellen. Ohne Kenntnisse der grundlegenden Entwicklungsprozesse des Gehirns waere die Bildgebung jedoch sinnlos. Um pathologische Veraenderungen zu erkennen, ist es notwendig, den Stand der fetalen Neuroanatomie in der entsprechenden Schwangerschaftswoche zu kennen. Heutzutage sollte sich ein Neuroradiologe mit den 3 Schritten der kortikalen Entwicklung - Proliferation, Migration und Differenzierung der Neuronen - vertraut machen. Nur dann wird er in der Lage sein, pathologische Veraenderungen in Betracht zu ziehen, bzw. diese zu erkennen. Die fetale MRT ist besonders wichtig, ergaenzend zur zerebralen Sonographie, zur Diagnosebestaetigung bei kortikalen Veraenderungen und Nachweis weiterer Pathologien. In dieser Kombination ermoeglichen diese Methoden eine adaequate Beratung der Eltern und Planung der Behandlung. (orig.)

  6. Practice Bulletin No. 173: Fetal Macrosomia.

    Science.gov (United States)

    2016-11-01

    Suspected fetal macrosomia is encountered commonly in obstetric practice. As birth weight increases, the likelihood of labor abnormalities, shoulder dystocia, birth trauma, and permanent injury to the neonate increases. The purpose of this document is to quantify those risks, address the accuracy and limitations of methods for estimating fetal weight, and suggest clinical management for a pregnancy with suspected fetal macrosomia.

  7. Unilateral Huge Hydronephrosis Necessitating Fetal Interventions

    Directory of Open Access Journals (Sweden)

    Ayşenur Cerrah Celayir

    2013-04-01

    Full Text Available Fetal intervention for obstructive uropathy was first performed at the University of California, San Francisco in 1981. Since then diagnostic criteria for fetal intervention have been laid down to assist in proper patient selection. Unilateral fetal hydronephrosis doesn’t require prenatal intervention; but prenatal intervention might be required in selected cases, especially when hydronephrosis compresses adjacent organs.

  8. Isolation and Culture of Satellite Cells from Mouse Skeletal Muscle.

    Science.gov (United States)

    Musarò, Antonio; Carosio, Silvia

    2017-01-01

    Skeletal muscle tissue is characterized by a population of quiescent mononucleated myoblasts, localized between the basal lamina and sarcolemma of myofibers, known as satellite cells. Satellite cells play a pivotal role in muscle homeostasis and are the major source of myogenic precursors in mammalian muscle regeneration.This chapter describes protocols for isolation and culturing satellite cells isolated from mouse skeletal muscles. The classical procedure, which will be discussed extensively in this chapter, involves the enzymatic dissociation of skeletal muscles, while the alternative method involves isolation of satellite cells from isolated myofibers in which the satellite cells remain in their in situ position underneath the myofiber basal lamina.In particular, we discuss the technical aspect of satellite cell isolation, the methods necessary to enrich the satellite cell fraction and the culture conditions that optimize proliferation and myotube formation of mouse satellite cells.

  9. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population.

    Science.gov (United States)

    Morrison, Jamie I; Lööf, Sara; He, Pingping; Simon, András

    2006-01-30

    In contrast to mammals, salamanders can regenerate complex structures after injury, including entire limbs. A central question is whether the generation of progenitor cells during limb regeneration and mammalian tissue repair occur via separate or overlapping mechanisms. Limb regeneration depends on the formation of a blastema, from which the new appendage develops. Dedifferentiation of stump tissues, such as skeletal muscle, precedes blastema formation, but it was not known whether dedifferentiation involves stem cell activation. We describe a multipotent Pax7+ satellite cell population located within the skeletal muscle of the salamander limb. We demonstrate that skeletal muscle dedifferentiation involves satellite cell activation and that these cells can contribute to new limb tissues. Activation of salamander satellite cells occurs in an analogous manner to how the mammalian myofiber mobilizes stem cells during skeletal muscle tissue repair. Thus, limb regeneration and mammalian tissue repair share common cellular and molecular programs. Our findings also identify satellite cells as potential targets in promoting mammalian blastema formation.

  10. Neurology of endemic skeletal fluorosis

    Directory of Open Access Journals (Sweden)

    Reddy D

    2009-01-01

    Full Text Available Endemic skeletal fluorosis is widely prevalent in India and is a major public health problem. The first ever report of endemic skeletal fluorosis and neurological manifestation was from Prakasam district in Andhra Pradesh in the year 1937. Epidemiological and experimental studies in the endemic areas suggest the role of temperate climate, hard physical labor, nutritional status, presence of abnormal concentrations of trace elements like strontium, uranium, silica in water supplies, high fluoride levels in foods and presence of kidney disease in the development of skeletal fluorosis. Neurological complications of endemic skeletal fluorosis, namely radiculopathy, myelopathy or both are mechanical in nature and till date the evidence for direct neurotoxicity of fluoride is lacking. Prevention of the disease should be the aim, knowing the pathogenesis of fluorosis. Surgery has a limited role in alleviating the neurological disability and should be tailored to the individual based on the imaging findings.

  11. Simvastatin effects on skeletal muscle

    DEFF Research Database (Denmark)

    Larsen, Steen; Stride, Nis; Hey-Mogensen, Martin;

    2013-01-01

    Glucose tolerance and skeletal muscle coenzyme Q(10) (Q(10)) content, mitochondrial density, and mitochondrial oxidative phosphorylation (OXPHOS) capacity were measured in simvastatin-treated patients (n = 10) and in well-matched control subjects (n = 9).......Glucose tolerance and skeletal muscle coenzyme Q(10) (Q(10)) content, mitochondrial density, and mitochondrial oxidative phosphorylation (OXPHOS) capacity were measured in simvastatin-treated patients (n = 10) and in well-matched control subjects (n = 9)....

  12. Craniofacial skeletal dysplasia of opposite-sex dizygotic twins.

    Science.gov (United States)

    Chou, Szu-Ting; Tseng, Yu-Chuan; Pan, Chin-Yun; Chang, Jenny Zwei-Chieng; Chang, Hong-Po

    2011-05-01

    Craniofacial skeletal dysplasia can lead to different skeletal malocclusions. Both environmental factors and heredity contribute to the formation of malocclusions. There are strong familial tendencies in the development of Angle's Class II and III malocclusions. Cases such as opposite-typed (Class II and III) malocclusions with skeletal and dentoalveolar discordance in siblings or dizygotic (DZ) twins have seldom been reported. We describe the rare case of a pair of opposite-sex DZ twins with completely different skeletal malocclusions, and discuss the clinical considerations for treatment. The patients were twins aged 13 years and 4 months. The girl had mandibular prognathism and a Class III dentoskeletal relationship, whereas the boy had skeletal Class II with mandibular retrusion. Several morphological traits have been implicated with hormonal effect. However, there was no evidence of whether the masculinization effect had any impact on jaw size in the female fetus or whether this effect lasted into adolescence. We suggest that, although DZ twins share the same growth environment, genetic or other unknown extrinsic factors can result in discordance of characteristics of the craniofacial skeleton, dentition, and occlusion. Copyright © 2011 Formosan Medical Association & Elsevier. Published by Elsevier B.V. All rights reserved.

  13. Craniofacial Skeletal Dysplasia of Opposite-sex Dizygotic Twins

    Directory of Open Access Journals (Sweden)

    Szu-Ting Chou

    2011-05-01

    Full Text Available Craniofacial skeletal dysplasia can lead to different skeletal malocclusions. Both environmental factors and heredity contribute to the formation of malocclusions. There are strong familial tendencies in the development of Angle's Class II and III malocclusions. Cases such as opposite-typed (Class II and III malocclusions with skeletal and dentoalveolar discordance in siblings or dizygotic (DZ twins have seldom been reported. We describe the rare case of a pair of opposite-sex DZ twins with completely different skeletal malocclusions, and discuss the clinical considerations for treatment. The patients were twins aged 13 years and 4 months. The girl had mandibular prognathism and a Class III dentoskeletal relationship, whereas the boy had skeletal Class II with mandibular retrusion. Several morphological traits have been implicated with hormonal effect. However, there was no evidence of whether the masculinization effect had any impact on jaw size in the female fetus or whether this effect lasted into adolescence. We suggest that, although DZ twins share the same growth environment, genetic or other unknown extrinsic factors can result in discordance of characteristics of the craniofacial skeleton, dentition, and occlusion.

  14. Prolonged maternal amino acid infusion in late-gestation pregnant sheep increases fetal amino acid oxidation.

    Science.gov (United States)

    Rozance, Paul J; Crispo, Michelle M; Barry, James S; O'Meara, Meghan C; Frost, Mackenzie S; Hansen, Kent C; Hay, William W; Brown, Laura D

    2009-09-01

    Protein supplementation during human pregnancy does not improve fetal growth and may increase small-for-gestational-age birth rates and mortality. To define possible mechanisms, sheep with twin pregnancies were infused with amino acids (AA group, n = 7) or saline (C group, n = 4) for 4 days during late gestation. In the AA group, fetal plasma leucine, isoleucine, valine, and lysine concentrations were increased (P < 0.05), and threonine was decreased (P < 0.05). In the AA group, fetal arterial pH (7.365 +/- 0.007 day 0 vs. 7.336 +/- 0.012 day 4, P < 0.005), hemoglobin-oxygen saturation (46.2 +/- 2.6 vs. 37.8 +/- 3.6%, P < 0.005), and total oxygen content (3.17 +/- 0.17 vs. 2.49 +/- 0.20 mmol/l, P < 0.0001) were decreased on day 4 compared with day 0. Fetal leucine disposal did not change (9.22 +/- 0.73 vs. 8.09 +/- 0.63 micromol x min(-1) x kg(-1), AA vs. C), but the rate of leucine oxidation increased 43% in the AA group (2.63 +/- 0.16 vs. 1.84 +/- 0.24 micromol x min(-1) x kg(-1), P < 0.05). Fetal oxygen utilization tended to be increased in the AA group (327 +/- 23 vs. 250 +/- 29 micromol x min(-1) x kg(-1), P = 0.06). Rates of leucine incorporation into fetal protein (5.19 +/- 0.97 vs. 5.47 +/- 0.89 micromol x min(-1) x kg(-1), AA vs. C), release from protein breakdown (4.20 +/- 0.95 vs. 4.62 +/- 0.74 micromol x min(-1) x kg(-1)), and protein accretion (1.00 +/- 0.30 vs. 0.85 +/- 0.25 micromol x min(-1) x kg(-1)) did not change. Consistent with these data, there was no change in the fetal skeletal muscle ubiquitin ligases MaFBx1 or MuRF1 or in the protein synthesis regulators 4E-BP1, eEF2, eIF2alpha, and p70(S6K). Decreased concentrations of certain essential amino acids, increased amino acid oxidation, fetal acidosis, and fetal hypoxia are possible mechanisms to explain fetal toxicity during maternal amino acid supplementation.

  15. Fetal onset of general movements

    NARCIS (Netherlands)

    Luechinger, Annemarie B.; Hadders-Algra, Mijna; Van Kan, Colette M.; de Vries, JIP

    2008-01-01

    Perinatal qualitative assessment of general movements (GMs) is a tool to evaluate the integrity of the young nervous system. The aim of this investigation was to study the emergence of GMs. Fetal onset of GMs was studied sonographically in 18 fetuses during the first trimester of uncomplicated in vi

  16. Fetal deficiency of lin28 programs life-long aberrations in growth and glucose metabolism.

    Science.gov (United States)

    Shinoda, Gen; Shyh-Chang, Ng; Soysa, T Yvanka de; Zhu, Hao; Seligson, Marc T; Shah, Samar P; Abo-Sido, Nora; Yabuuchi, Akiko; Hagan, John P; Gregory, Richard I; Asara, John M; Cantley, Lewis C; Moss, Eric G; Daley, George Q

    2013-08-01

    LIN28A/B are RNA binding proteins implicated by genetic association studies in human growth and glucose metabolism. Mice with ectopic over-expression of Lin28a have shown related phenotypes. Here, we describe the first comprehensive analysis of the physiologic consequences of Lin28a and Lin28b deficiency in knockout (KO) mice. Lin28a/b-deficiency led to dwarfism starting at different ages, and compound gene deletions showed a cumulative dosage effect on organismal growth. Conditional gene deletion at specific developmental stages revealed that fetal but neither neonatal nor adult deficiency resulted in growth defects and aberrations in glucose metabolism. Tissue-specific KO mice implicated skeletal muscle-deficiency in the abnormal programming of adult growth and metabolism. The effects of Lin28b KO could be rescued by Tsc1 haplo-insufficiency in skeletal muscles. Our data implicate fetal expression of Lin28a/b in the regulation of life-long effects on metabolism and growth, and demonstrate that fetal Lin28b acts at least in part via mTORC1 signaling.

  17. Regulation of the skeletal muscle blood flow in humans

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Saltin, Bengt

    2014-01-01

    In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators including nitric oxide (NO) and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and very importantly can offset local...... sympathetic vasoconstriction. ATP is released into plasma from erythrocytes and endothelial cells and the plasma concentration increases in both the feeding artery and the vein draining the contracting skeletal muscle. Adenosine also stimulates the formation of NO and prostaglandins, but the plasma adenosine...... and endothelial cells. In the interstitium, both ATP and adenosine stimulate the formation of NO and prostaglandins, but ATP has also been suggested to induce vasoconstriction and stimulate afferent nerves that signal to increase sympathetic nerve activity. Adenosine has been shown to contribute to exercise...

  18. Chemokine Involvement in Fetal and Adult Wound Healing

    Science.gov (United States)

    Balaji, Swathi; Watson, Carey L.; Ranjan, Rajeev; King, Alice; Bollyky, Paul L.; Keswani, Sundeep G.

    2015-01-01

    Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets. PMID:26543680

  19. Fetal magnetic resonance imaging and human genetics

    Energy Technology Data Exchange (ETDEWEB)

    Hengstschlaeger, Markus [Medical Genetics, Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)]. E-mail: markus.hengstschlaeger@meduniwien.ac.at

    2006-02-15

    The use of fetal magnetic resonance imaging (MRI), in addition to prenatal genetic testing and sonography, has the potential to improve prenatal diagnosis of genetic disorders. MRI plays an important role in the evaluation of fetal abnormalities and malformations. Fetal MRI often enables a differential diagnosis, a determination of the extent of the disorder, the prognosis, and an improvement in therapeutic management. For counseling of parents, as well as to basically understand how genetic aberrations affect fetal development, it is of great importance to correlate different genotypes with fetal MRI data.

  20. Unsupervised fetal cortical surface parcellation

    Science.gov (United States)

    Dahdouh, Sonia; Limperopoulos, Catherine

    2016-03-01

    At the core of many neuro-imaging studies, atlas-based brain parcellations are used for example to study normal brain evolution across the lifespan. These atlases rely on the assumption that the same anatomical features are present on all subjects to be studied and that these features are stable enough to allow meaningful comparisons between different brain surfaces and structures These methods, however, often fail when applied to fetal MRI data, due to the lack of consistent anatomical features present across gestation. This paper presents a novel surface-based fetal cortical parcellation framework which attempts to circumvent the lack of consistent anatomical features by proposing a brain parcellation scheme that is based solely on learned geometrical features. A mesh signature incorporating both extrinsic and intrinsic geometrical features is proposed and used in a clustering scheme to define a parcellation of the fetal brain. This parcellation is then learned using a Random Forest (RF) based learning approach and then further refined in an alpha-expansion graph-cut scheme. Based on the votes obtained by the RF inference procedure, a probability map is computed and used as a data term in the graph-cut procedure. The smoothness term is defined by learning a transition matrix based on the dihedral angles of the faces. Qualitative and quantitative results on a cohort of both healthy and high-risk fetuses are presented. Both visual and quantitative assessments show good results demonstrating a reliable method for fetal brain data and the possibility of obtaining a parcellation of the fetal cortical surfaces using only geometrical features.

  1. Aneuploidy and Skeletal Health

    Science.gov (United States)

    Kamalakar, Archana; Harris, John R.; McKelvey, Kent D.; Suva, Larry J.

    2014-01-01

    The normal human chromosome complement consists of 46 chromosomes comprising 22 morphologically different pairs of autosomes and one pair of sex chromosomes. Variations in either chromosome number and/or structure frequently result in significant mental impairment, and/or a variety of other clinical problems, among them, altered bone mass and strength. Chromosomal syndromes associated with specific chromosomal abnormalities are classified as either numerical or structural and may involve more than one chromosome. Aneuploidy refers to the presence of an extra copy of a specific chromosome, or trisomy, as seen in Down’s syndrome (trisomy 21), or the absence of a single chromosome, or monosomy, as seen in Turner syndrome (a single X chromosome in females: 45, X). Aneuploidies have diverse phenotypic consequences, ranging from severe mental retardation and developmental abnormalities to increased susceptibility to various neoplasms and premature death. In fact, trisomy 21 is the prototypical aneuploidy in humans, is the most common genetic abnormality associated with longevity and is one of the most widespread genetic causes of intellectual disability. In this review, the impact of trisomy 21 on the bone mass, architecture, skeletal health and quality of life of people with Down syndrome will be discussed. PMID:24980541

  2. MicroRNAs and fetal brain development: Implications for ethanol teratology during the second trimester period of neurogenesis.

    Directory of Open Access Journals (Sweden)

    Rajesh eMiranda

    2012-05-01

    Full Text Available Maternal ethanol consumption during pregnancy can lead to a stereotypic cluster of fetal craniofacial, cardiovascular, skeletal and neurological deficits that are collectively termed the Fetal Alcohol Spectrum Disorder (FASD. Fetal ethanol exposure is a leading non-genetic cause of mental retardation. Mechanisms underlying the etiology of ethanol teratology are varied and complex. This review will focus on the developing brain as an important and vulnerable ethanol target. Near the end of the first trimester, and during the second trimester, fetal neural stem cells (NSCs produce most of the neurons of the adult brain, and ethanol has been shown to influence NSC renewal and maturation. We will discuss the neural developmental and teratological implications of the biogenesis and function of microRNAs (miRNAs, a class of small non-protein-coding RNAs that control the expression of gene networks by translation repression. A small but growing body of research has identified ethanol-sensitive miRNAs at different stages of NSC and brain maturation. While many microRNAs appear to be vulnerable to ethanol at specific developmental stages, a few, like the miR-9 family, appear to exhibit broad vulnerability to ethanol across multiple stages of NSC differentiation. An assessment of the regulation and function of these miRNAs provides important clues about the mechanisms that underlie fetal vulnerability to alterations in the maternal-fetal environment and yields insights into the genesis of FASD.

  3. Maternal vitamin D deficiency and fetal distress/birth asphyxia: a population-based nested case–control study

    Science.gov (United States)

    Lindqvist, Pelle G; Silva, Aldo T; Gustafsson, Sven A; Gidlöf, Sebastian

    2016-01-01

    Objective Vitamin D deficiency causes not only skeletal problems but also muscle weakness, including heart muscle. If the fetal heart is also affected, it might be more susceptible to fetal distress and birth asphyxia. In this pilot study, we hypothesised that low maternal vitamin D levels are over-represented in pregnancies with fetal distress/birth asphyxia. Design and setting A population-based nested case–control study. Patients Banked sera of 2496 women from the 12th week of pregnancy. Outcome measures Vitamin D levels were analysed using a direct competitive chemiluminescence immunoassay. Vitamin D levels in early gestation in women delivered by emergency caesarean section due to suspected fetal distress were compared to those in controls. Birth asphyxia was defined as Apgar caesarean section due to suspected fetal distress (n=53, 43.6±18 nmol/L) compared to controls (n=120, 48.6±19 nmol/L, p=0.04). Birth asphyxia was more common in women with vitamin D deficiency (n=95) in early pregnancy (OR 2.4, 95% CI 1.1 to 5.7). Conclusions Low vitamin D levels in early pregnancy may be associated with emergency caesarean section due to suspected fetal distress and birth asphyxia. If our findings are supported by further studies, preferably on severe birth asphyxia, vitamin D supplementation/sun exposure in pregnancy may lower the risk of subsequent birth asphyxia. PMID:27660312

  4. Effect of extraluminal ATP application on vascular tone and blood flow in skeletal muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Al-Khazraji, Baraa K; Mortensen, Stefan P

    2013-01-01

    During skeletal muscle contractions, the concentration of ATP increases in muscle interstitial fluid as measured by microdialysis probes. This increase is associated with the magnitude of blood flow, suggesting that interstitial ATP may be important for contraction-induced vasodilation. However......, interstitial ATP has solely been described to induce vasoconstriction in skeletal muscle. To examine whether interstitial ATP induces vasodilation in skeletal muscle and to what extent this vasoactive effect is mediated by formation of nitric oxide (NO) and prostanoids, three different experimental models were...... studied. The rat gluteus maximus skeletal muscle model was used to study changes in local skeletal muscle hemodynamics. Superfused ATP at concentrations found during muscle contractions (1-10 µM) increased blood flow by up to 400%. In this model, the underlying mechanism was also examined by inhibition...

  5. Insulin is required for amino acid stimulation of dual pathways for translational control in skeletal muscle in the late-gestation ovine fetus.

    Science.gov (United States)

    Brown, Laura D; Rozance, Paul J; Barry, James S; Friedman, Jacob E; Hay, William W

    2009-01-01

    During late gestation, amino acids and insulin promote skeletal muscle protein synthesis. However, the independent effects of amino acids and insulin on the regulation of mRNA translation initiation in the fetus are relatively unknown. The purpose of this study was to determine whether acute amino acid infusion in the late-gestation ovine fetus, with and without a simultaneous increase in fetal insulin concentration, activates translation initiation pathway(s) in skeletal muscle. Fetuses received saline (C), mixed amino acid infusion plus somatostatin infusion to suppress amino acid-stimulated fetal insulin secretion (AA+S), mixed amino acid infusion with concomitant physiological increase in fetal insulin (AA), or high-dose insulin infusion with euglycemia and euaminoacidemia (HI). After a 2-h infusion period, fetal skeletal muscle was harvested under in vivo steady-state conditions and frozen for quantification of proteins both upstream and downstream of mammalian target of rapamycin (mTOR). In the AA group, we found a threefold increase in ribosomal protein S6 kinase (p70(S6k)) and Erk1/2 phosphorylation; however, blocking the physiological rise in insulin with somatostatin in the AA+S group prevented this increase. In the HI group, Akt, Erk1/2, p70(S6k), and ribosomal protein S6 were highly phosphorylated and 4E-binding protein 1 (4E-BP1) associated with eukaryotic initiation factor (eIF)4E decreased by 30%. These data show that insulin is a significant regulator of intermediates involved in translation initiation in ovine fetal skeletal muscle. Furthermore, the effect of amino acids is dependent on a concomitant increase in fetal insulin concentrations, because amino acid infusion upregulates p70(S6k) and Erk only when amino acid-stimulated increase in insulin occurs.

  6. Antithyroid drug-induced fetal goitrous hypothyroidism

    DEFF Research Database (Denmark)

    Rasmussen, Ase Krogh; Sundberg, Karin; Brocks, Vibeke

    2011-01-01

    Maternal overtreatment with antithyroid drugs can induce fetal goitrous hypothyroidism. This condition can have a critical effect on pregnancy outcome, as well as on fetal growth and neurological development. The purpose of this Review is to clarify if and how fetal goitrous hypothyroidism can...... be prevented, and how to react when prevention has failed. Understanding the importance of pregnancy-related changes in maternal thyroid status when treating a pregnant woman is crucial to preventing fetal goitrous hypothyroidism. Maternal levels of free T(4) are the most consistent indication of maternal...... and fetal thyroid status. In patients with fetal goitrous hypothyroidism, intra-amniotic levothyroxine injections improve fetal outcome. The best way to avoid maternal overtreatment with antithyroid drugs is to monitor closely the maternal thyroid status, especially estimates of free T(4) levels....

  7. THE MATERNAL-FETAL MEDICINE: AN UPDATE

    Directory of Open Access Journals (Sweden)

    Vincenzo Berghella

    2013-12-01

    Full Text Available The development of Maternal-Fetal Medicine is contributing to an improvement of maternal well-being and of neonatal health, introducing a number of new and useful technologies. Advances in genomics in the field of prenatal screening and diagnosis allowed the discovery of fragments of cell-free fetal DNA in the maternal circulation and the use of chromosomal microarrays, which can test for microdeletions and microduplications in addition to aneuploidies. Color Doppler applications during pregnancy are expanding exponentially and Doppler flow velocity waveforms indices have provided important information from maternal, placental and fetal circulation with clinical implications. Ultrasound monitoring of fetal growth represents a fundamental tool to evaluate fetal wellbeing and several methods have been developed to improve fetal weight estimation accuracy. The combination of new biophysical and biochemical markers is enriching Maternal-Fetal Medicine and more research will allow to improve pregnancy outcome.

  8. Ex vivo culture of human fetal gonads

    DEFF Research Database (Denmark)

    Jørgensen, A; Nielsen, J.E.; Perlman, S

    2015-01-01

    STUDY QUESTION: What are the effects of experimentally manipulating meiosis signalling by addition of retinoic acid (RA) in cultured human fetal gonads? SUMMARY ANSWER: RA-treatment accelerated meiotic entry in cultured fetal ovary samples, while addition of RA resulted in a dysgenetic gonadal...... phenotype in fetal testis cultures. WHAT IS KNOWN ALREADY: One of the first manifestations of sex differentiation is the initiation of meiosis in fetal ovaries. In contrast, meiotic entry is actively prevented in the fetal testis at this developmental time-point. It has previously been shown that RA......-treatment mediates initiation of meiosis in human fetal ovary ex vivo. STUDY DESIGN, SIZE, DURATION: This was a controlled ex vivo study of human fetal gonads treated with RA in 'hanging-drop' tissue cultures. The applied experimental set-up preserves germ cell-somatic niche interactions and the investigated...

  9. Identification of CYP3A7 for Glyburide Metabolism in Human Fetal Livers

    Science.gov (United States)

    Shuster, Diana L.; Risler, Linda J.; Prasad, Bhagwat; Calamia, Justina C.; Voellinger, Jenna L.; Kelly, Edward J.; Unadkat, Jashvant D.; Hebert, Mary F.; Shen, Danny D.; Thummel, Kenneth E.; Mao, Qingcheng

    2014-01-01

    Glyburide is commonly prescribed for the treatment of gestational diabetes mellitus; however, fetal exposure to glyburide is not well understood and may have short- and long-term consequences for the health of the child. Glyburide can cross the placenta; fetal concentrations at term are nearly comparable to maternal levels. Whether or not glyburide is metabolized in the fetus and by what mechanisms has yet to be determined. In this study, we determined the kinetic parameters for glyburide depletion by CYP3A isoenzymes; characterized glyburide metabolism by human fetal liver tissues collected during the first or early second trimester of pregnancy; and identified the major enzyme responsible for glyburide metabolism in human fetal livers. CYP3A4 had the highest metabolic capacity towards glyburide, followed by CYP3A7 and CYP3A5 (Clint,u = 37.1, 13.0, and 8.7 ml/min/nmol P450, respectively). M5 was the predominant metabolite generated by CYP3A7 and human fetal liver microsomes (HFLMs) with approximately 96% relative abundance. M5 was also the dominant metabolite generated by CYP3A4, CYP3A5, and adult liver microsomes; however, M1-M4 were also present, with up to 15% relative abundance. CYP3A7 protein levels in HFLMs were highly correlated with glyburide Clint, 16α-OH DHEA formation, and 4′-OH midazolam formation. Likewise, glyburide Clint was highly correlated with 16α-OH DHEA formation. Fetal demographics as well as CYP3A5 and CYP3A7 genotype did not alter CYP3A7 protein levels or glyburide Clint. These results indicate that human fetal livers metabolize glyburide predominantly to M5 and that CYP3A7 is the major enzyme responsible for glyburide metabolism in human fetal livers. PMID:25450675

  10. Triennial Growth Symposium--A role for vitamin D in skeletal muscle development and growth.

    Science.gov (United States)

    Starkey, J D

    2014-03-01

    Although well known for its role in bone development and mineral homeostasis, there is emerging evidence that vitamin D is capable of functioning as a regulator of skeletal muscle development and hypertrophic growth. This review will focus on the relatively limited body of evidence regarding the impact of vitamin D on prenatal development and postnatal growth of skeletal muscle in meat animal species. Recent evidence indicating that improvement of maternal vitamin D status through dietary 25-hydroxycholecalciferol supplementation can positively affect fetal skeletal muscle fiber number and myoblast activity in swine as well as work demonstrating that posthatch vitamin D status enhancement stimulates a satellite cell-mediated skeletal muscle hypertrophy response in broiler chickens is discussed. The relative lack of information regarding how and when to best supply dietary vitamin D to promote optimal prenatal development and postnatal growth of skeletal muscle provides an exciting field of research. Expansion of knowledge in this area will ultimately improve our ability to efficiently and effectively produce the livestock required to meet the increasing worldwide demand for meat products.

  11. MT1-MMP and type II collagen specify skeletal stem cells and their bone and cartilage progeny

    DEFF Research Database (Denmark)

    Szabova, Ludmila; Yamada, Susan S; Wimer, Helen F

    2009-01-01

    Skeletal formation is dependent on timely recruitment of skeletal stem cells and their ensuing synthesis and remodeling of the major fibrillar collagens, type I collagen and type II collagen, in bone and cartilage tissues during development and postnatal growth. Loss of the major collagenolytic a...

  12. Management of fetal pain during invasive fetal procedures. A review.

    Science.gov (United States)

    Huang, W; Deprest, J; Missant, C; Van de Velde, M

    2004-01-01

    In recent years, fetal stress and analgesia draw more and more attention. Evidence that fetuses show a significant endocrinological and hemodynamical response to invasive stimuli, and that these responses can be blocked by analgesia, suggests that fetuses experience a stress response, even if this does not signify they experience "pain". Moreover, it is becoming increasingly clear that experiences of pain of a fetus will be "remembered" by the developing nervous system, perhaps for the entire life of the individual, which can probably lead to abnormal behavioural patterns or altered nociception. But up to now, the entire mechanism of fetal stress response and the optimal analgesic drug, dose and route of administration is not so clear.

  13. Connective tissue growth factor is required for skeletal development and postnatal skeletal homeostasis in male mice.

    Science.gov (United States)

    Canalis, Ernesto; Zanotti, Stefano; Beamer, Wesley G; Economides, Aris N; Smerdel-Ramoya, Anna

    2010-08-01

    Connective tissue growth factor (CTGF), a member of the cysteine-rich 61 (Cyr 61), CTGF, nephroblastoma overexpressed (NOV) (CCN) family of proteins, is synthesized by osteoblasts, and its overexpression inhibits osteoblastogenesis and causes osteopenia. The global inactivation of Ctgf leads to defective endochondral bone formation and perinatal lethality; therefore, the consequences of Ctgf inactivation on the postnatal skeleton are not known. To study the function of CTGF, we generated Ctgf(+/LacZ) heterozygous null mice and tissue-specific null Ctgf mice by mating Ctgf conditional mice, where Ctgf is flanked by lox sequences with mice expressing the Cre recombinase under the control of the paired-related homeobox gene 1 (Prx1) enhancer (Prx1-Cre) or the osteocalcin promoter (Oc-Cre). Ctgf(+/LacZ) heterozygous mice exhibited transient osteopenia at 1 month of age secondary to decreased trabecular number. A similar osteopenic phenotype was observed in 1-month-old Ctgf conditional null male mice generated with Prx1-Cre, suggesting that the decreased trabecular number was secondary to impaired endochondral bone formation. In contrast, when the conditional deletion of Ctgf was achieved by Oc-Cre, an osteopenic phenotype was observed only in 6-month-old male mice. Osteoblast and osteoclast number, bone formation, and eroded surface were not affected in Ctgf heterozygous or conditional null mice. In conclusion, CTGF is necessary for normal skeletal development but to a lesser extent for postnatal skeletal homeostasis.

  14. TCDD诱导的胎鼠腭发育过程中DNA甲基化变化%Global DNA methylation changes during palatal formation in fetal mice induced by 2,3,7,8-tetrachlrodibenzo-p-dioxin

    Institute of Scientific and Technical Information of China (English)

    王晨; 袁心刚; 傅跃先; 翟莎娜

    2016-01-01

    Objective To investigate global DNA methylation and DNA methyhransferases participation in the mechanism of cleft palate induced by maternal exposure to 2,3,7,8-tetrachlrodibenzo-p-dioxin (TCDD)in mice.Methods 40 pregnant C57BL/6J mice were randomly divided into 2 groups:the control group(n =20) and TCDD-exposure group(n =20).On gestation day 10.5 (GD10.5),the mice in TCDD-group were orally administrated with TCDD 28 μg/kg,while the mice in the control group received equivalent corn oil.The pregnant mice were sacrificed on GD13.5,GD14.5,GD15.5,GD16.5,GD17.5,fetal palates were collected for analysis.Global DNA methylation levels were detected by MethylampTM Global DNA Methylation Quantification Ultra Kit through an ELISA-like reaction.The expression levels of DNA methyltransferases were examined by quantitative real-time PC R(q-PCR).IBM SPSS 20.0 software was applied for statistical analysis.Kolmogorov-Smirnov test was used for normal distribution check,and the distribution was normal.Independent t-test was carried out among two groups.P < 0.05 was considered statistically significant.Results The global DNA methylation level in TCDD-exposure group was significantly higher than that in control group on GD13.5 (49.52% ±4.03% vs 33.42% ± 6.78%,P < 0.01),whilelower on GD14.5 (24.10% ±2.29% vs 30.12% ±3.92%,P <0.05) and on GD16.5 (32.77% ±0.98% vs 36.45% ± 3.27%,P < 0.05).The expression level of Dnmt1 mRNA in TCDD-exposure group was higher than that in control group on GD13.5(1.28±0.11 vs 1.01 ±0.10,P<0.05) and on GD16.5(1.04 ±0.05 vs 0.81 ±0.01,P <0.01).The expression level of Dnmt3a mRNA in TCDD-exposure group was higher than that in control group on GD13.5 (1.15 ±0.17 vs 0.81 ±0.02,P <0.05)and on GD16.5 (1.11 ± 0.06 vs 0.96 ± 0.06,P < 0.05).The expression level of Dnmt3b mRNA in TCDD-exposure group was higher than that in control group on GD14.5(0.97 ±0.06 vs 0.72 ±0.06,P <0.01).Conclusions It is supposed that

  15. Prenatal diagnosis of congenital fetal heart abnormalities and clinical analysis*

    OpenAIRE

    Li,Hui; Wei, Jun; Ma, Ying; Shang, Tao

    2005-01-01

    Objective: To study the value of detecting fetal congenital heart disease (CHD) using the five transverse planes technique of fetal echocardiography. Methods: Nine hundred and eighty-two high-risk pregnancies for fetal CHD were included in this study, the fetal heart was scanned with the five transverse planes technique of fetal echocardiography described by Yagel, autopsy was conducted when pregnancy was terminated. Blood from fetal heart was collected for fetal chromosome analysis. A close ...

  16. Expression and activation of caspase-6 in human fetal and adult tissues.

    Directory of Open Access Journals (Sweden)

    Nelly Godefroy

    Full Text Available Caspase-6 is an effector caspase that has not been investigated thoroughly despite the fact that Caspase-6 is strongly activated in Alzheimer disease brains. To understand the full physiological impact of Caspase-6 in humans, we investigated Caspase-6 expression. We performed western blot analyses to detect the pro-Caspase-6 and its active p20 subunit in fetal and adult lung, kidney, brain, spleen, muscle, stomach, colon, heart, liver, skin, and adrenals tissues. The levels were semi-quantitated by densitometry. The results show a ubiquitous expression of Caspase-6 in most fetal tissues with the lowest levels in the brain and the highest levels in the gastrointestinal system. Caspase-6 active p20 subunits were only detected in fetal stomach. Immunohistochemical analysis of a human fetal embryo showed active Caspase-6 positive apoptotic cells in the dorsal root ganglion, liver, lung, kidney, ovary, skeletal muscle and the intestine. In the adult tissues, the levels of Caspase-6 were lower than in fetal tissues but remained high in the colon, stomach, lung, kidney and liver. Immunohistological analyses revealed that active Caspase-6 was abundant in goblet cells and epithelial cells sloughing off the intestinal lining of the adult colon. These results suggest that Caspase-6 is likely important in most tissues during early development but is less involved in adult tissues. The low levels of Caspase-6 in fetal and adult brain indicate that increased expression as observed in Alzheimer Disease is a pathological condition. Lastly, the high levels of Caspase-6 in the gastrointestinal system indicate a potential specific function of Caspase-6 in these tissues.

  17. Examiner's finger-mounted fetal tissue oximetry

    Science.gov (United States)

    Kanayama, Naohiro; Niwayama, Masatsugu

    2014-06-01

    The best way to assess fetal condition is to observe the oxygen status of the fetus (as well as to assess the condition of infants, children, and adults). Previously, several fetal oximeters have been developed; however, no instrument has been utilized in clinical practice because of the low-capturing rate of the fetal oxygen saturation. To overcome the problem, we developed a doctor's finger-mounted fetal tissue oximeter, whose sensor volume is one hundredth of the conventional one. Additionally, we prepared transparent gloves. The calculation algorithm of the hemoglobin concentration was derived from the light propagation analysis based on the transport theory. We measured neonatal and fetal oxygen saturation (StO2) with the new tissue oximeter. Neonatal StO was measured at any position of the head regardless of amount of hair. Neonatal StO was found to be around 77%. Fetal StO was detected in every position of the fetal head during labor regardless of the presence of labor pain. Fetal StO without labor pain was around 70% in the first stage of labor and around 60% in the second stage of labor. We concluded that our new concept of fetal tissue oximetry would be useful for detecting fetal StO in any condition of the fetus.

  18. Fetal evaluation of spine dysraphism

    Energy Technology Data Exchange (ETDEWEB)

    Bulas, Dorothy [George Washington University Medical Center, Division of Diagnostic Imaging and Radiology, Children' s National Medical Center, Washington, DC (United States)

    2010-06-15

    Spinal dysraphism or neural tube defects (NTD) encompass a heterogeneous group of congenital spinal anomalies that result from the defective closure of the neural tube early in gestation with anomalous development of the caudal cell mass. Advances in ultrasound and MRI have dramatically improved the diagnosis and therapy of spinal dysraphism and caudal spinal anomalies both prenatally and postnatally. Advances in prenatal US including high frequency linear transducers and three dimensional imaging can provide detailed information concerning spinal anomalies. MR imaging is a complementary tool that can further elucidate spine abnormalities as well as associated central nervous system and non-CNS anomalies. Recent studies have suggested that 3-D CT can help further assess fetal spine anomalies in the third trimester. With the advent of fetal therapy including surgery, accurate prenatal diagnosis of open and closed spinal dysraphism becomes critical in appropriate counselling and perinatal management. (orig.)

  19. Fetal origin of vascular aging

    Directory of Open Access Journals (Sweden)

    Shailesh Pitale

    2011-01-01

    Full Text Available Aging is increasingly regarded as an independent risk factor for development of cardiovascular diseases such as atherosclerosis and hypertension and their complications (e.g. MI and Stroke. It is well known that vascular disease evolve over decades with progressive accumulation of cellular and extracellular materials and many inflammatory processes. Metabolic syndrome, obesity and diabetes are conventionally recognized as risk factors for development of coronary vascular disease (CVD. These conditions are known to accelerate ageing process in general and vascular ageing in particular. Adverse events during intrauterine life may programme organ growth and favour disease later in life, popularly known as, ′Barker′s Hypothesis′. The notion of fetal programming implies that during critical periods of prenatal growth, changes in the hormonal and nutritional milieu of the conceptus may alter the full expression of the fetal genome, leading to permanent effects on a range of physiological.

  20. Comparative analysis of mesenchymal stem cells from adult mouse adipose, muscle, and fetal muscle.

    Science.gov (United States)

    Lei, Hulong; Yu, Bing; Huang, Zhiqing; Yang, Xuerong; Liu, Zehui; Mao, Xiangbing; Tian, Gang; He, Jun; Han, Guoquan; Chen, Hong; Mao, Qian; Chen, Daiwen

    2013-02-01

    Recently, increasing evidence supports that adult stem cells are the part of a natural system for tissue growth and repair. This study focused on the differences of mesenchymal stem cells from adult adipose (ADSCs), skeletal muscle (MDSCs) and fetal muscle (FMSCs) in biological characteristics, which is the key to cell therapy success. Stem cell antigen 1 (Sca-1) expression of MDSCs and FMSCs at passage 3 was two times more than that at passage 1 (P cells (P fetal muscle expressed higher OCN and OPN than ADSCs after 28 days osteogenic induction (P cell source and developmental stage had great impacts on biological properties of mesenchymal stem cells, and proper consideration of all the issues is necessary.

  1. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yu; Cao, Hong; Cu, Fenglong [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Lei, Youying [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Tan, Yang [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China)

    2013-05-15

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.

  2. Fetal growth and developmental programming.

    Science.gov (United States)

    Galjaard, Sander; Devlieger, Roland; Van Assche, Frans A

    2013-01-01

    The environment in utero and in early neonatal life may induce a permanent response in the fetus and the newborn, leading to enhanced susceptibility to later diseases. This review concentrates on the role and mechanisms of events during the antenatal and immediate postnatal period resulting in later life diseases, concentrating on abnormal growth patterns of the fetus. Fetal overgrowth is related to exposure to a diabetic intra uterine environment, increasing the vulnerability to transgenerational obesity and hence an increased sensitivity to more diabetic mothers. This effect has been supported by animal data. Fetal growth restriction is complex due to malnutrition in utero, catch up growth due to a high caloric intake and low physical activity in later life. Metabolic changes and a transgenerational effect of intra uterine malnutrition has been supported by animal data. In recent years the discovery of alterations of the genome due to different influences during embryonic life, called epigenetics, has led to the phenomenon of fetal programming resulting in changing transgenerational metabolic effects.

  3. Fetal fibroblasts and keratinocytes with immunosuppressive properties for allogeneic cell-based wound therapy.

    Science.gov (United States)

    Zuliani, Thomas; Saiagh, Soraya; Knol, Anne-Chantal; Esbelin, Julie; Dréno, Brigitte

    2013-01-01

    Fetal skin heals rapidly without scar formation early in gestation, conferring to fetal skin cells a high and unique potential for tissue regeneration and scar management. In this study, we investigated the possibility of using fetal fibroblasts and keratinocytes to stimulate wound repair and regeneration for further allogeneic cell-based therapy development. From a single fetal skin sample, two clinical batches of keratinocytes and fibroblasts were manufactured and characterized. Tolerogenic properties of the fetal cells were investigated by allogeneic PBMC proliferation tests. In addition, the potential advantage of fibroblasts/keratinocytes co-application for wound healing stimulation has been examined in co-culture experiments with in vitro scratch assays and a multiplex cytokines array system. Based on keratin 14 and prolyl-4-hydroxylase expression analyses, purity of both clinical batches was found to be above 98% and neither melanocytes nor Langerhans cells could be detected. Both cell types demonstrated strong immunosuppressive properties as shown by the dramatic decrease in allogeneic PBMC proliferation when co-cultured with fibroblasts and/or keratinocytes. We further showed that the indoleamine 2,3 dioxygenase (IDO) activity is required for the immunoregulatory activity of fetal skin cells. Co-cultures experiments have also revealed that fibroblasts-keratinocytes interactions strongly enhanced fetal cells secretion of HGF, GM-CSF, IL-8 and to a lesser extent VEGF-A. Accordingly, in the in vitro scratch assays the fetal fibroblasts and keratinocytes co-culture accelerated the scratch closure compared to fibroblast or keratinocyte mono-cultures. In conclusion, our data suggest that the combination of fetal keratinocytes and fibroblasts could be of particular interest for the development of a new allogeneic skin substitute with immunomodulatory activity, acting as a reservoir for wound healing growth factors.

  4. Fetal Fibroblasts and Keratinocytes with Immunosuppressive Properties for Allogeneic Cell-Based Wound Therapy

    Science.gov (United States)

    Zuliani, Thomas; Saiagh, Soraya; Knol, Anne-Chantal; Esbelin, Julie; Dréno, Brigitte

    2013-01-01

    Fetal skin heals rapidly without scar formation early in gestation, conferring to fetal skin cells a high and unique potential for tissue regeneration and scar management. In this study, we investigated the possibility of using fetal fibroblasts and keratinocytes to stimulate wound repair and regeneration for further allogeneic cell-based therapy development. From a single fetal skin sample, two clinical batches of keratinocytes and fibroblasts were manufactured and characterized. Tolerogenic properties of the fetal cells were investigated by allogeneic PBMC proliferation tests. In addition, the potential advantage of fibroblasts/keratinocytes co-application for wound healing stimulation has been examined in co-culture experiments with in vitro scratch assays and a multiplex cytokines array system. Based on keratin 14 and prolyl-4-hydroxylase expression analyses, purity of both clinical batches was found to be above 98% and neither melanocytes nor Langerhans cells could be detected. Both cell types demonstrated strong immunosuppressive properties as shown by the dramatic decrease in allogeneic PBMC proliferation when co-cultured with fibroblasts and/or keratinocytes. We further showed that the indoleamine 2,3 dioxygenase (IDO) activity is required for the immunoregulatory activity of fetal skin cells. Co-cultures experiments have also revealed that fibroblasts-keratinocytes interactions strongly enhanced fetal cells secretion of HGF, GM-CSF, IL-8 and to a lesser extent VEGF-A. Accordingly, in the in vitro scratch assays the fetal fibroblasts and keratinocytes co-culture accelerated the scratch closure compared to fibroblast or keratinocyte mono-cultures. In conclusion, our data suggest that the combination of fetal keratinocytes and fibroblasts could be of particular interest for the development of a new allogeneic skin substitute with immunomodulatory activity, acting as a reservoir for wound healing growth factors. PMID:23894651

  5. Fetal fibroblasts and keratinocytes with immunosuppressive properties for allogeneic cell-based wound therapy.

    Directory of Open Access Journals (Sweden)

    Thomas Zuliani

    Full Text Available Fetal skin heals rapidly without scar formation early in gestation, conferring to fetal skin cells a high and unique potential for tissue regeneration and scar management. In this study, we investigated the possibility of using fetal fibroblasts and keratinocytes to stimulate wound repair and regeneration for further allogeneic cell-based therapy development. From a single fetal skin sample, two clinical batches of keratinocytes and fibroblasts were manufactured and characterized. Tolerogenic properties of the fetal cells were investigated by allogeneic PBMC proliferation tests. In addition, the potential advantage of fibroblasts/keratinocytes co-application for wound healing stimulation has been examined in co-culture experiments with in vitro scratch assays and a multiplex cytokines array system. Based on keratin 14 and prolyl-4-hydroxylase expression analyses, purity of both clinical batches was found to be above 98% and neither melanocytes nor Langerhans cells could be detected. Both cell types demonstrated strong immunosuppressive properties as shown by the dramatic decrease in allogeneic PBMC proliferation when co-cultured with fibroblasts and/or keratinocytes. We further showed that the indoleamine 2,3 dioxygenase (IDO activity is required for the immunoregulatory activity of fetal skin cells. Co-cultures experiments have also revealed that fibroblasts-keratinocytes interactions strongly enhanced fetal cells secretion of HGF, GM-CSF, IL-8 and to a lesser extent VEGF-A. Accordingly, in the in vitro scratch assays the fetal fibroblasts and keratinocytes co-culture accelerated the scratch closure compared to fibroblast or keratinocyte mono-cultures. In conclusion, our data suggest that the combination of fetal keratinocytes and fibroblasts could be of particular interest for the development of a new allogeneic skin substitute with immunomodulatory activity, acting as a reservoir for wound healing growth factors.

  6. Cerebro-Oculo-Facio-Skeletal Syndrome (COFS)

    Science.gov (United States)

    ... Information... You are here Home » Disorders » All Disorders Cerebro-Oculo-Facio-Skeletal Syndrome (COFS) Information Page Cerebro-Oculo-Facio-Skeletal Syndrome (COFS) Information Page Search ...

  7. Fetal magnetic resonance: technique applications and normal fetal anatomy; Resonance magnetica fetal: tecnica aplicaciones y anatomia normal del feto

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.; Darnell, A.; Duran, C.; Mellado, F.; Corona, M [Corporacio Sanitaria del Parc Tauli. Sabadell (Spain)

    2003-07-01

    Ultrasonography is the preferred diagnostic imaging technique for intrauterine fetal examination. Nevertheless, circumstances sometimes dictate the use of other techniques in order to analyze fetal structures. The advent of ultra rapid magnetic resonance (MR) sequencing has led to the possibility of doing MR fetal studies, since images are obtained in an extradordiarily short time and are not affected by either maternal or fetal movements. It does not employ ionizing radiations, it provides high-contrast images and it can obtain such images in any plane of space without being influenced by either the child bearer's physical characteristics of fetal position. MR provides good quality images of most fetal organs. It is extremely useful in analysing distinct structures, as well as permitting an evaluation of cervical structures, lungs, diaphragms, intra-abdominal and retroperitoneal structures, and fetal extremities. It can also provide useful information regarding the placenta,umbilical cord, amniotic fluid and uterus. The objective of this work is to describe MR technique as applied to intrauterine fetal examination, and to illustrate normal fetal anatomy as manifested by MR and its applications. (Author) 42 refs.

  8. Fetal Behavior and Heart Rate in Twin Pregnancy : A Review

    NARCIS (Netherlands)

    Tendais, Iva; Visser, Gerard H. A.; Figueiredo, Barbara; Montenegro, Nuno; Mulder, Eduard J. H.

    2013-01-01

    Fetal movements and fetal heart rate (FHR) are well-established markers of fetal well-being and maturation of the fetal central nervous system. The purpose of this paper is to review and discuss the available knowledge on fetal movements and heart rate patterns in twin pregnancies. There is some evi

  9. Maternal psychological impact of fetal echocardiography.

    Science.gov (United States)

    Sklansky, Mark; Tang, Alvin; Levy, Denis; Grossfeld, Paul; Kashani, Iraj; Shaughnessy, Robin; Rothman, Abraham

    2002-02-01

    The maternal psychological impact of fetal echocardiography may be deleterious in the face of newly diagnosed congenital heart disease. This questionnaire-based study prospectively examined the psychological impact of both normal and abnormal fetal echocardiography. Normal fetal echocardiography decreased maternal anxiety, increased happiness, and increased the closeness women felt toward their unborn children. In contrast, when fetal echocardiography detected congenital heart disease, maternal anxiety typically increased, and mothers commonly felt less happy about being pregnant. However, among women who had recently delivered infants with congenital heart disease, those who had had fetal echocardiography during the pregnancy felt less responsible for their infants' defects and tended to have improved their relationships with the infants' fathers after the prenatal diagnosis of congenital heart disease. Further study of the psychological and medical impact of fetal echocardiography will be necessary to define and optimize the clinical value of this powerful diagnostic tool.

  10. Successful delivery of fetus with fetal inherited thrombophilia after two fetal deaths.

    Science.gov (United States)

    Juras, Josip; Ivanisević, Marina; Oresković, Slavko; Mihaljević, Slobodan; Vujić, Goran; Delmis, Josip

    2013-12-01

    A pregnant woman with inherited thrombophilia (factor II mutation--20210A) had two late pregnancy losses. The first pregnancy was not well documented, but the second pregnancy was complicated by fetal thrombophilia and umbilical artery thrombosis, proven after fetal death. During the third pregnancy enoxaparine was introduced in the therapy and early amniocentesis was performed. Fetal thrombophilia was proven again. Early delivery was induced and performed with no complications, resulting in a live healthy infant. A history of miscarriages or recurrent fetal loss should raise suspicion of thrombophilia as a potential cause. It is debatable whether amniocentesis in pursuit of fetal thrombophilia should be performed and whether this will lead to a better perinatal outcome. When fetal thrombophilia is diagnosed, an earlier induction of delivery should be considered, taking into account the fetal extrauterine viability. The aforementioned approach of early delivery in cases of inherited fetal thrombophilia could be a possible solution for better perinatal outcomes.

  11. Fetal macrosomia as an important indicator of fetal malformation syndrome: ultrasonic findings of two cases

    NARCIS (Netherlands)

    PA de Jong; MD E.J.M. Wouters; EA Pley

    1989-01-01

    Two extraordinary cases of fetal macrosomia are presented. It is discussed that extreme fetal growth should raise the suspicion of a malformation syndrome and deserves thorough antenatal ultrasonographic examination.

  12. Monitoring of progressive collapse of skeletal structures

    Science.gov (United States)

    Swiercz, A.; Kolakowski, P.; Holnicki-Szulc, J.

    2011-07-01

    The authors propose an idea of monitoring the state of skeletal structures of high importance (e.g. roof structures over large area buildings) with the aim of identification of slowly-developing plastic zones. This is formulated as an inverse problem within the framework of the Virtual Distortion Method, which was used previously to identify stiffness/mass modifications in similar manner. Permanent plastic strains developed in a truss element can be modeled by an initial strain (virtual distortion) introduced to the structure. The formation of subsequent plastic zones in the structure is assumed to be slow. Consequently, the design variable (plastic strain) is time-independent, which makes the inverse analysis efficient. This article presents problem formulation and numerical algorithm for identification of the plastic strains int russ structures. The identification relies on gradient-based optimization. A numerical example is included to demonstrate the efficiency of th ealgorithm.

  13. Skeletal muscle dedifferentiation during salamander limb regeneration.

    Science.gov (United States)

    Wang, Heng; Simon, András

    2016-10-01

    Salamanders can regenerate entire limbs throughout their life. A critical step during limb regeneration is formation of a blastema, which gives rise to the new extremity. Salamander limb regeneration has historically been tightly linked to the term dedifferentiation, however, with refined research tools it is important to revisit the definition of dedifferentiation in the context. To what extent do differentiated cells revert their differentiated phenotypes? To what extent do progeny from differentiated cells cross lineage boundaries during regeneration? How do cell cycle plasticity and lineage plasticity relate to each other? What is the relationship between dedifferentiation of specialized cells and activation of tissue resident stem cells in terms of their contribution to the new limb? Here we highlight these problems through the case of skeletal muscle.

  14. Altered fetal growth, placental abnormalities, and stillbirth.

    Science.gov (United States)

    Bukowski, Radek; Hansen, Nellie I; Pinar, Halit; Willinger, Marian; Reddy, Uma M; Parker, Corette B; Silver, Robert M; Dudley, Donald J; Stoll, Barbara J; Saade, George R; Koch, Matthew A; Hogue, Carol; Varner, Michael W; Conway, Deborah L; Coustan, Donald; Goldenberg, Robert L

    2017-01-01

    Worldwide, stillbirth is one of the leading causes of death. Altered fetal growth and placental abnormalities are the strongest and most prevalent known risk factors for stillbirth. The aim of this study was to identify patterns of association between placental abnormalities, fetal growth, and stillbirth. Population-based case-control study of all stillbirths and a representative sample of live births in 59 hospitals in 5 geographic areas in the U.S. Fetal growth abnormalities were categorized as small (90th percentile) for gestational age at death (stillbirth) or delivery (live birth) using a published algorithm. Placental examination by perinatal pathologists was performed using a standardized protocol. Data were weighted to account for the sampling design. Among 319 singleton stillbirths and 1119 singleton live births at ≥24 weeks at death or delivery respectively, 25 placental findings were investigated. Fifteen findings were significantly associated with stillbirth. Ten of the 15 were also associated with fetal growth abnormalities (single umbilical artery; velamentous insertion; terminal villous immaturity; retroplacental hematoma; parenchymal infarction; intraparenchymal thrombus; avascular villi; placental edema; placental weight; ratio birth weight/placental weight) while 5 of the 15 associated with stillbirth were not associated with fetal growth abnormalities (acute chorioamnionitis of placental membranes; acute chorioamionitis of chorionic plate; chorionic plate vascular degenerative changes; perivillous, intervillous fibrin, fibrinoid deposition; fetal vascular thrombi in the chorionic plate). Five patterns were observed: placental findings associated with (1) stillbirth but not fetal growth abnormalities; (2) fetal growth abnormalities in stillbirths only; (3) fetal growth abnormalities in live births only; (4) fetal growth abnormalities in stillbirths and live births in a similar manner; (5) a different pattern of fetal growth abnormalities in

  15. Control of vertebrate skeletal mineralization by polyphosphates.

    Directory of Open Access Journals (Sweden)

    Sidney Omelon

    Full Text Available BACKGROUND: Skeletons are formed in a wide variety of shapes, sizes, and compositions of organic and mineral components. Many invertebrate skeletons are constructed from carbonate or silicate minerals, whereas vertebrate skeletons are instead composed of a calcium phosphate mineral known as apatite. No one yet knows why the dynamic vertebrate skeleton, which is continually rebuilt, repaired, and resorbed during growth and normal remodeling, is composed of apatite. Nor is the control of bone and calcifying cartilage mineralization well understood, though it is thought to be associated with phosphate-cleaving proteins. Researchers have assumed that skeletal mineralization is also associated with non-crystalline, calcium- and phosphate-containing electron-dense granules that have been detected in vertebrate skeletal tissue prepared under non-aqueous conditions. Again, however, the role of these granules remains poorly understood. Here, we review bone and growth plate mineralization before showing that polymers of phosphate ions (polyphosphates: (PO(3(-(n are co-located with mineralizing cartilage and resorbing bone. We propose that the electron-dense granules contain polyphosphates, and explain how these polyphosphates may play an important role in apatite biomineralization. PRINCIPAL FINDINGS/METHODOLOGY: The enzymatic formation (condensation and destruction (hydrolytic degradation of polyphosphates offers a simple mechanism for enzymatic control of phosphate accumulation and the relative saturation of apatite. Under circumstances in which apatite mineral formation is undesirable, such as within cartilage tissue or during bone resorption, the production of polyphosphates reduces the free orthophosphate (PO(4(3- concentration while permitting the accumulation of a high total PO(4(3- concentration. Sequestering calcium into amorphous calcium polyphosphate complexes can reduce the concentration of free calcium. The resulting reduction of both free PO

  16. Human fetal cardiac progenitors: The role of stem cells and progenitors in the fetal and adult heart.

    Science.gov (United States)

    Bulatovic, Ivana; Månsson-Broberg, Agneta; Sylvén, Christer; Grinnemo, Karl-Henrik

    2016-02-01

    The human fetal heart is formed early during embryogenesis as a result of cell migrations, differentiation, and formative blood flow. It begins to beat around gestation day 22. Progenitor cells are derived from mesoderm (endocardium and myocardium), proepicardium (epicardium and coronary vessels), and neural crest (heart valves, outflow tract septation, and parasympathetic innervation). A variety of molecular disturbances in the factors regulating the specification and differentiation of these cells can cause congenital heart disease. This review explores the contribution of different cardiac progenitors to the embryonic heart development; the pathways and transcription factors guiding their expansion, migration, and functional differentiation; and the endogenous regenerative capacity of the adult heart including the plasticity of cardiomyocytes. Unfolding these mechanisms will become the basis for understanding the dynamics of specific congenital heart disease as well as a means to develop therapy for fetal as well as postnatal cardiac defects and heart failure.

  17. Isolated Fetal Ascite Associated with Cardiac Diseases

    Directory of Open Access Journals (Sweden)

    Vehbi Doğan

    2014-12-01

    Full Text Available Fetal ascite is defined as fluid accumulation in peritoneal cavity. It can be seen as isolated disease or an early sign of hydrops fetalis. Once fetal ascite is detected, a careful examination for hydops fetalis and possible underlying disease is necessary, since its prognosis and treatment depends mostly on the cause. Non-immunologic fetal ascite is an uncommon problem occurring for many reasons, such as urinary tract obstruction, congenital infections, genetic and metabolic diseases, gastrointestinal diseases and cardiovascular diseases. Here in this report we present two isolated fetal ascite that occurred secondary to cardiac diseases.

  18. MR imaging of the fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, Orit A. [University of California, San Francisco, Department of Radiology, Neuroradiology Section, San Francisco, CA (United States)

    2010-01-15

    Fetal MRI is clinically performed to evaluate the brain in cases where an abnormality is detected by prenatal sonography. These most commonly include ventriculomegaly, abnormalities of the corpus callosum, and abnormalities of the posterior fossa. Fetal MRI is also increasingly performed to evaluate fetuses who have normal brain findings on prenatal sonogram but who are at increased risk for neurodevelopmental abnormalities, such as complicated monochorionic twin pregnancies. This paper will briefly discuss the common clinical conditions imaged by fetal MRI as well as recent advances in fetal MRI research. (orig.)

  19. Magnetic resonance methods in fetal neurology.

    Science.gov (United States)

    Mailath-Pokorny, M; Kasprian, G; Mitter, C; Schöpf, V; Nemec, U; Prayer, D

    2012-10-01

    Fetal magnetic resonance imaging (MRI) has become an established clinical adjunct for the in-vivo evaluation of human brain development. Normal fetal brain maturation can be studied with MRI from the 18th week of gestation to term and relies primarily on T2-weighted sequences. Recently diffusion-weighted sequences have gained importance in the structural assessment of the fetal brain. Diffusion-weighted imaging provides quantitative information about water motion and tissue microstructure and has applications for both developmental and destructive brain processes. Advanced magnetic resonance techniques, such as spectroscopy, might be used to demonstrate metabolites that are involved in brain maturation, though their development is still in the early stages. Using fetal MRI in addition to prenatal ultrasound, morphological, metabolic, and functional assessment of the fetus can be achieved. The latter is not only based on observation of fetal movements as an indirect sign of activity of the fetal brain but also on direct visualization of fetal brain activity, adding a new component to fetal neurology. This article provides an overview of the MRI methods used for fetal neurologic evaluation, focusing on normal and abnormal early brain development. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Sindrome de respuesta inflamatoria fetal : adaptacion cardiovascular

    National Research Council Canada - National Science Library

    Arreaza-Graterol, Mortimer; Rojas-Barrera, Juan Diego; Molina-Giraldo, Saulo

    2011-01-01

    Introduccion: el sindrome de respuesta inflamatoria fetal es una condicion caracterizada por reaccion inflamatoria sistemica acompanada de alteraciones bioquimicas como la elevacion de la interleucina 6 (IL-6...

  1. Fetal Alcohol Syndrome a Global Problem

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_163096.html Fetal Alcohol Syndrome a Global Problem: Report Countries with highest alcohol use during pregnancy include Belarus, Britain, Denmark, Ireland ...

  2. Choosing a skeletal muscle relaxant.

    Science.gov (United States)

    See, Sharon; Ginzburg, Regina

    2008-08-01

    Skeletal muscle relaxants are widely used in treating musculoskeletal conditions. However, evidence of their effectiveness consists mainly of studies with poor methodologic design. In addition, these drugs have not been proven to be superior to acetaminophen or nonsteroidal anti-inflammatory drugs for low back pain. Systematic reviews and meta-analyses support using skeletal muscle relaxants for short-term relief of acute low back pain when nonsteroidal anti-inflammatory drugs or acetaminophen are not effective or tolerated. Comparison studies have not shown one skeletal muscle relaxant to be superior to another. Cyclobenzaprine is the most heavily studied and has been shown to be effective for various musculoskeletal conditions. The sedative properties of tizanidine and cyclobenzaprine may benefit patients with insomnia caused by severe muscle spasms. Methocarbamol and metaxalone are less sedating, although effectiveness evidence is limited. Adverse effects, particularly dizziness and drowsiness, are consistently reported with all skeletal muscle relaxants. The potential adverse effects should be communicated clearly to the patient. Because of limited comparable effectiveness data, choice of agent should be based on side-effect profile, patient preference, abuse potential, and possible drug interactions.

  3. Placental fetal vascular thrombosis lesions and maternal thrombophilia

    NARCIS (Netherlands)

    Beeksma, F. A.; Erwich, J. J. H. M.; Khong, T. Y.

    Aims: Following intrauterine fetal death (IUFD), the placental fetal vessels undergo regressive changes. These changes are virtually indistinguishable from lesions that are the result of fetal vascular thrombosis (FVT). This study investigated the relation between these lesions and maternal

  4. Effect of Maternal ±Citalopram Exposure on P11 Expression and Neurogenesis in the Mouse Fetal Brain.

    Science.gov (United States)

    King, Jennifer R; Velasquez, Juan C; Torii, Masaaki; Bonnin, Alexandre

    2017-01-13

    Fetal exposure to selective serotonin reuptake inhibitors (SSRI) has been associated with increased risk of adverse neurodevelopmental outcomes. In the adult brain, SSRI therapy regulates p11 (s100a10) expression and alters neurogenesis. The protein p11 indirectly regulates 5-HT signaling through 5-HT1B/D receptors. In the fetal brain, signaling through these receptors modulates axonal circuit formation. We determined whether p11 is expressed in the fetal mouse brain, and whether maternal SSRI exposure affects fetal p11 expression and neurogenesis. The SSRI ± citalopram was administered to pregnant mice from gestational day 8 to 17. Results show that p11 is expressed in fetal thalamic neurons and thalamocortical axons. Furthermore, p11 protein expression is significantly decreased in the fetal thalamus after in utero ±citalopram exposure compared to untreated controls, and neurogenesis is significantly decreased in specific fetal brain regions. These findings reveal differential regulation of p11 expression and altered neurogenesis in the fetal brain as a result of maternal SSRI exposure.

  5. Skeletal dysplasia in ancient Egypt.

    Science.gov (United States)

    Kozma, Chahira

    2008-12-01

    The ancient Egyptian civilization lasted for over 3000 years and ended in 30 BCE. Many aspects of ancient Egyptian culture, including the existence of skeletal dysplasias, and in particular achondroplasia, are well known through the monuments and records that survived until modern times. The hot and dry climate in Egypt allowed for the preservation of bodies and skeletal anomalies. The oldest dwarf skeleton, the Badarian skeleton (4500 BCE), possibly represents an epiphyseal disorder. Among the remains of dwarfs with achondroplasia from ancient Egypt (2686-2190 BCE), exists a skeleton of a pregnant female, believed to have died during delivery with a baby's remains in situ. British museums have partial skeletons of dwarfs with achondroplasia, humeri probably affected with mucopolysaccharidoses, and a skeleton of a child with osteogenesis imperfecta. Skeletal dysplasia is also found among royal remains. The mummy of the pharaoh Siptah (1342-1197 BCE) shows a deformity of the left leg and foot. A mummified fetus, believed to be the daughter of king Tutankhamun, has scoliosis, spina bifida, and Sprengel deformity. In 2006 I reviewed the previously existing knowledge of dwarfism in ancient Egypt. The purpose of this second historical review is to add to that knowledge with an expanded contribution. The artistic documentation of people with skeletal dysplasia from ancient Egypt is plentiful including hundreds of amulets, statues, and drawing on tomb and temple walls. Examination of artistic reliefs provides a glance of the role of people with skeletal dysplasia and the societal attitudes toward them. Both artistic evidence and moral teachings in ancient Egypt reveal wide integration of individuals with disabilities into the society.

  6. Is there a relationship between fetal brain function and the fetal behavioral state? A fetal MEG-study.

    Science.gov (United States)

    Kiefer-Schmidt, Isabelle; Raufer, Julia; Brändle, Johanna; Münßinger, Jana; Abele, Harald; Wallwiener, Diethelm; Eswaran, Hari; Preissl, Hubert

    2013-09-01

    Fetal magnetography enables the recording of biomagnetic fetal signals, including fetal heart and fetal brain signals. These signals allow the determination of fetal behavioral states and functional brain signals with auditory evoked responses (AER). In the current study, we investigated how the behavioral state influences the AER and how stimulation affects fetal state. One hundred and four fetuses in three age groups (28-31 weeks, 32-35 weeks and 36-41 weeks) were recorded with and without auditory stimulation. Both sessions were scored for fetal states. The AER latency was determined for each state separately. Forty-five additional subjects were recorded with two sessions of 10 min without stimulation to investigate a possible time effect on state changes. The state distribution was significantly different between stimulation and no stimulation conditions. The AER latencies were significantly shorter in active sleep (P=0.013) and active wakefulness (P=0.004) compared to quiet sleep. Auditory stimulation has an effect on fetal states. The state information should be taken into account for the analysis of AER latencies.

  7. Fetal cardiac rhabdomyoma: case report

    Directory of Open Access Journals (Sweden)

    Seyed Mostafa Ghavami

    2016-07-01

    Full Text Available Background: The primary manifestation of cardiac tumors in embryonic period is a very rare condition. Cardiac rhabdomyomas most frequently arise in the ventricular myocardium, they may also occur in the atria and the epicardial surface. In spite of its benign nature, the critical location of the tumor inside the heart can lead to lethal arrhythmias and chamber obstruction. Multiple rhabdomyomas are strongly associated with tuberous sclerosis which is associated with mental retardation and epilepsy of variable severity. Ultrasonography as a part of routine prenatal screening, is the best method for the diagnosis of cardiac rhabdomyomas. In the review of articles published in Iran, fetal cardiac rhabdomyoma was not reported. Case presentation: We report a case of cardiac rhabdomyoma on a 24-year-old gravid 1, referred to Day Medical Imaging Center for routine evaluation of fetal abnormalities at 31 weeks of her gestational age. Ultrasonographic examination displayed a homogenous echogenic mass (13×9mm, originating from the left ventricle of the fetal heart. It was a normal pregnancy without any specific complications. Other organs of the fetus were found normal and no cardiac abnormalities were appeared. No Pericardial fluid effusion was found. The parents did not have consanguineous marriage. They did not also have any specific disease such as tuberous sclerosis. Conclusion: The clinical features of cardiac rhabdomyomas vary widely, depending on the location, size, and number of tumors in the heart. Although cardiac rhabdomyoma is a benign tumor in many affected fetuses, an early prenatal diagnosis of the tumor is of great significance in making efficient planning and providing adequate follow up visits of the patients and the complications such as, heart failure and outlet obstruction of cardiac chambers.

  8. Microtransplantation of acetylcholine receptors from normal or denervated rat skeletal muscles to frog oocytes

    Science.gov (United States)

    Bernareggi, Annalisa; Reyes-Ruiz, Jorge Mauricio; Lorenzon, Paola; Ruzzier, Fabio; Miledi, Ricardo

    2011-01-01

    Cell membranes, carrying neurotransmitter receptors and ion channels, can be ‘microtransplanted’ into frog oocytes. This technique allows a direct functional characterization of the original membrane proteins, together with any associated molecules they may have, still embedded in their natural lipid environment. This approach has been previously demonstrated to be very useful to study neurotransmitter receptors and ion channels contained in cell membranes isolated from human brains. Here, we examined the possibility of using the microtransplantation method to study acetylcholine receptors from normal and denervated rat skeletal muscles. We found that the muscle membranes, carrying their fetal or adult acetylcholine receptor isoforms, could be efficiently microtransplanted to the oocyte membrane, making the oocytes become sensitive to acetylcholine. These results show that oocytes injected with skeletal muscle membranes efficiently incorporate functional acetylcholine receptors, thus making the microtransplantation approach a valuable tool to further investigate receptors and ion channels of human muscle diseases. PMID:21224230

  9. Wnt-4 expression is increased in fibroblasts after TGF-beta1 stimulation and during fetal and postnatal wound repair.

    Science.gov (United States)

    Colwell, Amy S; Krummel, Thomas M; Longaker, Michael T; Lorenz, H Peter

    2006-06-01

    Wnt-4 is a mitogen expressed during postnatal repair and scar formation; however, its expression profile during scarless repair is unknown. Transforming growth factor (TGF)-beta1 has high expression during healing with scar formation. Whether TGF-beta1 directly influences Wnt-4 expression in fetal or postnatal fibroblasts has not been examined. Primary fetal and postnatal mouse fibroblasts were stimulated with TGF-beta1 and Wnt-4 expression quantitated by real-time polymerase chain reaction. Fetal E17 and postnatal mouse excisional wounds were also analyzed for Wnt-4 expression by real-time polymerase chain reaction. In E17 fibroblasts after TGF-beta1 stimulation, Wnt-4 expression increased 4-fold at 1 hour (p stimulation, but peak expression was larger and relatively delayed, with a 17-fold increase at 12 hours (p fetal skin, Wnt-4 expression was 3.5-fold greater compared with 3-week-old mice (p fetal scarless and postnatal scarring mouse wound repair. The authors' data suggest that TGF-beta directly increases Wnt-4 expression in fetal and postnatal fibroblasts and that Wnt-4 is increased in both fetal and postnatal repair.

  10. Nicotine acts on growth plate chondrocytes to delay skeletal growth through the alpha7 neuronal nicotinic acetylcholine receptor.

    Directory of Open Access Journals (Sweden)

    Atsuo Kawakita

    Full Text Available BACKGROUND: Cigarette smoking adversely affects endochondral ossification during the course of skeletal growth. Among a plethora of cigarette chemicals, nicotine is one of the primary candidate compounds responsible for the cause of smoking-induced delayed skeletal growth. However, the possible mechanism of delayed skeletal growth caused by nicotine remains unclarified. In the last decade, localization of neuronal nicotinic acetylcholine receptor (nAChR, a specific receptor of nicotine, has been widely detected in non-excitable cells. Therefore, we hypothesized that nicotine affect growth plate chondrocytes directly and specifically through nAChR to delay skeletal growth. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effect of nicotine on human growth plate chondrocytes, a major component of endochondral ossification. The chondrocytes were derived from extra human fingers. Nicotine inhibited matrix synthesis and hypertrophic differentiation in human growth plate chondrocytes in suspension culture in a concentration-dependent manner. Both human and murine growth plate chondrocytes expressed alpha7 nAChR, which constitutes functional homopentameric receptors. Methyllycaconitine (MLA, a specific antagonist of alpha7 nAChR, reversed the inhibition of matrix synthesis and functional calcium signal by nicotine in human growth plate chondrocytes in vitro. To study the effect of nicotine on growth plate in vivo, ovulation-controlled pregnant alpha7 nAChR +/- mice were given drinking water with or without nicotine during pregnancy, and skeletal growth of their fetuses was observed. Maternal nicotine exposure resulted in delayed skeletal growth of alpha7 nAChR +/+ fetuses but not in alpha7 nAChR -/- fetuses, implying that skeletal growth retardation by nicotine is specifically mediated via fetal alpha7 nAChR. CONCLUSIONS/SIGNIFICANCE: These results suggest that nicotine, from cigarette smoking, acts directly on growth plate chondrocytes to decrease

  11. Characteristics of children whose siblings have fetal alcohol syndrome or incomplete fetal alcohol syndrome.

    Science.gov (United States)

    Kvigne, Valborg L; Leonardson, Gary R; Borzelleca, Joseph; Neff-Smith, Martha; Welty, Thomas K

    2009-03-01

    To describe the clinical features of American Indian children born just before and just after a sibling with fetal alcohol syndrome or incomplete fetal alcohol syndrome. Two retrospective case-control studies were conducted of Northern Plains American Indian children with fetal alcohol syndrome or incomplete fetal alcohol syndrome identified from 1981 to 1993 by using International Classification of Diseases, Ninth Revision, Clinical Modification code 760.71. Compared with the controls, the 39 siblings born just before children with fetal alcohol syndrome (study 1) and 30 siblings born just before children with incomplete fetal alcohol syndrome (study 2) had more facial dysmorphology (23.1% and 16.7%, respectively), growth delay (38.5% and 10.0%), and central nervous system impairment (48.7% and 33.3%). The 20 siblings born just after children with fetal alcohol syndrome (study 1) and 22 siblings born just after children with incomplete fetal alcohol syndrome (study 2) had more facial dysmorphology (20.0% and 9.1%, respectively), growth delay (45.0% and 22.7%), and central nervous system impairment (50.0% and 31.8%) than the control siblings. The "before" siblings had characteristics of fetal alcohol syndrome that could have predicted that the next child was at risk for fetal alcohol syndrome. The "after" siblings had better outcomes than the previous siblings with fetal alcohol syndrome, a finding that was associated with a decrease in maternal alcohol consumption during the after-sibling pregnancy.

  12. Fetal deaths in Brazil: a systematic review

    Science.gov (United States)

    Barbeiro, Fernanda Morena dos Santos; Fonseca, Sandra Costa; Tauffer, Mariana Girão; Ferreira, Mariana de Souza Santos; da Silva, Fagner Paulo; Ventura, Patrícia Mendonça; Quadros, Jesirée Iglesias

    2015-01-01

    OBJECTIVE To review the frequency of and factors associated with fetal death in the Brazilian scientific literature. METHODS A systematic review of Brazilian studies on fetal deaths published between 2003 and 2013 was conducted. In total, 27 studies were analyzed; of these, 4 studies addressed the quality of data, 12 were descriptive studies, and 11 studies evaluated the factors associated with fetal death. The databases searched were PubMed and Lilacs, and data extraction and synthesis were independently performed by two or more examiners. RESULTS The level of completeness of fetal death certificates was deficient, both in the completion of variables, particularly sociodemographic variables, and in defining the underlying causes of death. Fetal deaths have decreased in Brazil; however, inequalities persist. Analysis of the causes of death indicated maternal morbidities that could be prevented and treated. The main factors associated with fetal deaths were absent or inadequate prenatal care, low education level, maternal morbidity, and adverse reproductive history. CONCLUSIONS Prenatal care should prioritize women that are most vulnerable (considering their social environment or their reproductive history and morbidities) with the aim of decreasing the fetal mortality rate in Brazil. Adequate completion of death certificates and investment in the committees that investigate fetal and infant deaths are necessary. PMID:25902565

  13. Fetal Pain, Abortion, Viability and the Constitution

    OpenAIRE

    Cohen, I. Glenn; Sayeed, Sadath Ali

    2011-01-01

    In early 2010, the Nebraska state legislature passed a new abortion restricting law asserting a new, compelling state interest in preventing fetal pain. In this article, we review existing constitutional abortion doctrine and note difficulties presented by persistent legal attention to a socially derived viability construct. We then offer a substantive biological, ethical, and legal critique of the new fetal pain rationale.

  14. Fetal pain, abortion, viability, and the Constitution.

    Science.gov (United States)

    Cohen, I Glenn; Sayeed, Sadath

    2011-01-01

    In early 2010, the Nebraska state legislature passed a new abortion restricting law asserting a new, compelling state interest in preventing fetal pain. In this article, we review existing constitutional abortion doctrine and note difficulties presented by persistent legal attention to a socially derived viability construct. We then offer a substantive biological, ethical, and legal critique of the new fetal pain rationale.

  15. Fetal Pain: Life in Troubled Waters

    OpenAIRE

    Johnson, Johnnye S.

    2007-01-01

    Maternal well-being is the key to fetal well-being. A fetus is highly vulnerable and sensitive to pain and stress, and exposure has the potential for negative developmental consequences. Childbirth educators can help raise parental awareness about the importance of the maternal environment for best outcomes in fetal development.

  16. Fetal behavior in normal dichorionic twin pregnancy

    NARCIS (Netherlands)

    Mulder, E. J. H.; Derks, J. B.; de Laat, M. W. M.; Visser, G. H. A.

    2012-01-01

    Objectives: A prospective study was performed to compare fetal behavioral development in healthy dichorionic twins and singletons, and identify twin intra-pair associations (synchrony) of fetal movements and rest-activity cycles using different criteria to define synchrony. Subjects and methods: Twe

  17. Fetal deaths in Brazil: a systematic review

    Directory of Open Access Journals (Sweden)

    Fernanda Morena dos Santos Barbeiro

    2015-01-01

    Full Text Available OBJECTIVE To review the frequency of and factors associated with fetal death in the Brazilian scientific literature. METHODS A systematic review of Brazilian studies on fetal deaths published between 2003 and 2013 was conducted. In total, 27 studies were analyzed; of these, 4 studies addressed the quality of data, 12 were descriptive studies, and 11 studies evaluated the factors associated with fetal death. The databases searched were PubMed and Lilacs, and data extraction and synthesis were independently performed by two or more examiners. RESULTS The level of completeness of fetal death certificates was deficient, both in the completion of variables, particularly sociodemographic variables, and in defining the underlying causes of death. Fetal deaths have decreased in Brazil; however, inequalities persist. Analysis of the causes of death indicated maternal morbidities that could be prevented and treated. The main factors associated with fetal deaths were absent or inadequate prenatal care, low education level, maternal morbidity, and adverse reproductive history. CONCLUSIONS Prenatal care should prioritize women that are most vulnerable (considering their social environment or their reproductive history and morbidities with the aim of decreasing the fetal mortality rate in Brazil. Adequate completion of death certificates and investment in the committees that investigate fetal and infant deaths are necessary.

  18. Fetal tissue transplant research: ethical dilemmas.

    Science.gov (United States)

    Farnam, C R

    1996-01-01

    The transplant of cells from fetal tissue shows promise as a therapy for certain diseases. The use and research of fetal tissue, and methods of obtaining the tissue, have raised ethical dilemmas. Consideration must be given concerning the mother, the fetus, and the tissue recipient.

  19. Expert systems for fetal assessment in labour

    NARCIS (Netherlands)

    Lutomski, J.E.; Meaney, S.; Greene, R.A.; Ryan, A.C.; Devane, D.

    2015-01-01

    BACKGROUND: Cardiotocography (CTG) records the fetal heart rate in relation to maternal uterine contractions and is one of the most common forms of fetal assessment during labour. Despite guidelines for CTG interpretation, substantial inter- and intra-observer variation in interpretation has been re

  20. Fetal stress hormone changes during intrauterine transfusions

    NARCIS (Netherlands)

    Adama van Scheltema, P.N.; Pasman, S.A.; Wolterbeek, R..; Deprest, J.A.; Oepkes, D.; Buck, F. De; Velde, M van de; Vandenbussche, F.P.H.A.

    2011-01-01

    OBJECTIVE: To document fetal stress hormone and Doppler changes after intrauterine transfusions (IUTs) in either the intrahepatic portion of the umbilical vein (IHV) or the placental cord insertion (PCI). METHOD: Pregnant women scheduled for IUT for fetal anemia (N = 25) were included prospectively.

  1. Fetal stress hormone changes during intrauterine transfusions

    NARCIS (Netherlands)

    Adama van Scheltema, P.N.; Pasman, S.A.; Wolterbeek, R..; Deprest, J.A.; Oepkes, D.; Buck, F. De; Velde, M van de; Vandenbussche, F.P.H.A.

    2011-01-01

    OBJECTIVE: To document fetal stress hormone and Doppler changes after intrauterine transfusions (IUTs) in either the intrahepatic portion of the umbilical vein (IHV) or the placental cord insertion (PCI). METHOD: Pregnant women scheduled for IUT for fetal anemia (N = 25) were included prospectively.

  2. Maternal diabetes and the fetal heart

    OpenAIRE

    Hornberger, L K

    2006-01-01

    Maternal diabetes mellitus significantly affects the fetal heart and fetal–placental circulation in both structure and function. The influence of pre‐conceptional diabetes begins during embryonic development in the first trimester, with altered cardiac morphogenesis and placental development. It continues to have an influence on the fetal circulation through the second and third trimesters and into the perinatal and neonatal period

  3. Fetal trauma from motor vehicle collisions.

    Science.gov (United States)

    Friese, Greg; Wojciehoski, Randal F

    2005-07-01

    To summarize: The best fetal protection is proper maternal use of seat belt restraints. All pregnant occupants in a motor vehicle crash require physician evaluation. Focus on maternal assessment. Maternal stability is the best indicator of fetal stability. Key treatments are high-flow oxygen, i.v. fluid loading and immobilizing in left lateral position. Evaluate the fetus after maternal stabilization.

  4. Aspects of Fetal Learning and Memory

    Science.gov (United States)

    Dirix, Chantal E. H.; Nijhuis, Jan G.; Jongsma, Henk W.; Hornstra, Gerard

    2009-01-01

    Ninety-three pregnant women were recruited to assess fetal learning and memory, based on habituation to repeated vibroacoustic stimulation of fetuses of 30-38 weeks gestational age (GA). Each habituation test was repeated 10 min later to estimate the fetal short-term memory. For Groups 30-36, both measurements were replicated in a second session…

  5. Expert systems for fetal assessment in labour

    NARCIS (Netherlands)

    Lutomski, J.E.; Meaney, S.; Greene, R.A.; Ryan, A.C.; Devane, D.

    2015-01-01

    BACKGROUND: Cardiotocography (CTG) records the fetal heart rate in relation to maternal uterine contractions and is one of the most common forms of fetal assessment during labour. Despite guidelines for CTG interpretation, substantial inter- and intra-observer variation in interpretation has been

  6. The World Health Organization Fetal Growth Charts

    DEFF Research Database (Denmark)

    Kiserud, Torvid; Piaggio, Gilda; Carroli, Guillermo

    2017-01-01

    BACKGROUND: Perinatal mortality and morbidity continue to be major global health challenges strongly associated with prematurity and reduced fetal growth, an issue of further interest given the mounting evidence that fetal growth in general is linked to degrees of risk of common noncommunicable d...

  7. Fetal goiter and bilateral ovarian cysts

    DEFF Research Database (Denmark)

    Lassen, Pernille; Sundberg, Karin; Juul, Anders

    2008-01-01

    A unique case of fetal goiter accompanied by bilateral ovarian cysts in a mother treated with methimazole for Graves'disease is reported. The abnormal findings were detected by ultrasound at 31 weeks of gestation. Umbilical fetal blood sampling revealed elevated serum TSH, normal concentrations o...

  8. Uniaxial cyclic strain enhances adipose-derived stem cell fusion with skeletal myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Jens Isak; Juhl, Morten; Nielsen, Thøger; Emmersen, Jeppe; Fink, Trine; Zachar, Vladimir; Pennisi, Cristian Pablo, E-mail: cpennisi@hst.aau.dk

    2014-07-25

    Highlights: • Uniaxial cyclic tensile strain (CTS) applied to ASCs alone or in coculture with myogenic precursors. • CTS promoted the formation of a highly ordered array of parallel ASCs. • Without biochemical supplements, CTS did not support advanced myogenic differentiation of ASCs. • Mechanical stimulation of cocultures boosted fusion of ASCs with skeletal myoblasts. - Abstract: Although adult muscle tissue possesses an exceptional capacity for regeneration, in the case of large defects, the restoration to original state is not possible. A well-known source for the de novo regeneration is the adipose-derived stem cells (ASCs), which can be readily isolated and have been shown to have a broad differentiation and regenerative potential. In this work, we employed uniaxial cyclic tensile strain (CTS), to mechanically stimulate human ASCs to participate in the formation skeletal myotubes in an in vitro model of myogenesis. The application of CTS for 48 h resulted in the formation of a highly ordered array of parallel ASCs, but failed to support skeletal muscle terminal differentiation. When the same stimulation paradigm was applied to cocultures with mouse skeletal muscle myoblasts, the percentage of ASCs contributing to the formation of myotubes significantly exceeded the levels reported in the literature hitherto. In perspective, the mechanical strain may be used to increase the efficiency of incorporation of ASCs in the skeletal muscles, which could be found useful in diverse traumatic or pathologic scenarios.

  9. Fetal sex and preterm birth.

    Science.gov (United States)

    Challis, J; Newnham, J; Petraglia, F; Yeganegi, M; Bocking, A

    2013-02-01

    Rates of preterm birth vary between different populations and ethnic groups. Epidemiologic studies have suggested that the incidence of preterm birth is also higher in pregnancies carrying a male fetus; the male:female difference is greater in earlier preterm pregnancy. Placental or chorion trophoblast cells from pregnancies with a male fetus produced more pro-inflammatory TNFα in response to LPS stimulation and less anti-inflammatory IL-10 and granulocyte colony stimulating factor (G-CSF) than cells from pregnancies with a female fetus, more prostaglandin synthase (PTGS-2) and less prostaglandin dehydrogenase (PGDH). These results suggest that in the presence of a male fetus the trophoblast has the potential to generate a more pro-inflammatory environment. Maturation of the fetal hypothalamic-pituitary-adrenal axis and expression of placental genes, particularly 11β hydroxysteroid dehydrogenase-2 are also expressed in a sex dependent manner, consistent with the sex-biasing influences on gene networks. Sex differences in these activities may affect clinical outcomes of pre- and post-dates pregnancies and fetal/newborn wellbeing. These factors need consideration in studies of placental function and in the development of personalized strategies for the diagnosis of preterm labor and postnatal health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Propofol Pharmacokinetics and Estimation of Fetal Propofol Exposure during Mid-Gestational Fetal Surgery: A Maternal-Fetal Sheep Model

    Science.gov (United States)

    Niu, Jing; Venkatasubramanian, Raja; Vinks, Alexander A.; Sadhasivam, Senthilkumar

    2016-01-01

    Background Measuring fetal drug concentrations is extremely difficult in humans. We conducted a study in pregnant sheep to simultaneously describe maternal and fetal concentrations of propofol, a common intravenous anesthetic agent used in humans. Compared to inhalational anesthesia, propofol supplemented anesthesia lowered the dose of desflurane required to provide adequate uterine relaxation during open fetal surgery. This resulted in better intraoperative fetal cardiac outcome. This study describes maternal and fetal propofol pharmacokinetics (PK) using a chronically instrumented maternal-fetal sheep model. Methods Fetal and maternal blood samples were simultaneously collected from eight mid-gestational pregnant ewes during general anesthesia with propofol, remifentanil and desflurane. Nonlinear mixed-effects modeling was performed by using NONMEM software. Total body weight, gestational age and hemodynamic parameters were tested in the covariate analysis. The final model was validated by bootstrapping and visual predictive check. Results A total of 160 propofol samples were collected. A 2-compartment maternal PK model with a third fetal compartment appropriately described the data. Mean population parameter estimates for maternal propofol clearance and central volume of distribution were 4.17 L/min and 37.7 L, respectively, in a typical ewe with a median heart rate of 135 beats/min. Increase in maternal heart rate significantly correlated with increase in propofol clearance. The estimated population maternal-fetal inter-compartment clearance was 0.0138 L/min and the volume of distribution of propofol in the fetus was 0.144 L. Fetal propofol clearance was found to be almost negligible compared to maternal clearance and could not be robustly estimated. Conclusions For the first time, a maternal-fetal PK model of propofol in pregnant ewes was successfully developed. This study narrows the gap in our knowledge in maternal-fetal PK model in human. Our study confirms

  11. Propofol Pharmacokinetics and Estimation of Fetal Propofol Exposure during Mid-Gestational Fetal Surgery: A Maternal-Fetal Sheep Model.

    Directory of Open Access Journals (Sweden)

    Pornswan Ngamprasertwong

    Full Text Available Measuring fetal drug concentrations is extremely difficult in humans. We conducted a study in pregnant sheep to simultaneously describe maternal and fetal concentrations of propofol, a common intravenous anesthetic agent used in humans. Compared to inhalational anesthesia, propofol supplemented anesthesia lowered the dose of desflurane required to provide adequate uterine relaxation during open fetal surgery. This resulted in better intraoperative fetal cardiac outcome. This study describes maternal and fetal propofol pharmacokinetics (PK using a chronically instrumented maternal-fetal sheep model.Fetal and maternal blood samples were simultaneously collected from eight mid-gestational pregnant ewes during general anesthesia with propofol, remifentanil and desflurane. Nonlinear mixed-effects modeling was performed by using NONMEM software. Total body weight, gestational age and hemodynamic parameters were tested in the covariate analysis. The final model was validated by bootstrapping and visual predictive check.A total of 160 propofol samples were collected. A 2-compartment maternal PK model with a third fetal compartment appropriately described the data. Mean population parameter estimates for maternal propofol clearance and central volume of distribution were 4.17 L/min and 37.7 L, respectively, in a typical ewe with a median heart rate of 135 beats/min. Increase in maternal heart rate significantly correlated with increase in propofol clearance. The estimated population maternal-fetal inter-compartment clearance was 0.0138 L/min and the volume of distribution of propofol in the fetus was 0.144 L. Fetal propofol clearance was found to be almost negligible compared to maternal clearance and could not be robustly estimated.For the first time, a maternal-fetal PK model of propofol in pregnant ewes was successfully developed. This study narrows the gap in our knowledge in maternal-fetal PK model in human. Our study confirms that maternal heart

  12. Fetal organ dosimetry for the Techa River and Ozyorsk offspring cohorts. Pt. 1. A Urals-based series of fetal computational phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Matthew R.; Bolch, Wesley E. [University of Florida, Advanced Laboratory for Radiation Dosimetry Studies (ALRADS), J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL (United States); Shagina, Natalia B.; Tolstykh, Evgenia I.; Degteva, Marina O. [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation); Fell, Tim P. [Public Health England, Centre for Radiation, Chemical and Environmental Health, Didcot, Chilton, Oxon (United Kingdom)

    2015-03-15

    The European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) project aims to improve understanding of cancer risks associated with chronic in utero radiation exposure. A comprehensive series of hybrid computational fetal phantoms was previously developed at the University of Florida in order to provide the SOLO project with the capability of computationally simulating and quantifying radiation exposures to individual fetal bones and soft tissue organs. To improve harmonization between the SOLO fetal biokinetic models and the computational phantoms, a subset of those phantoms was systematically modified to create a novel series of phantoms matching anatomical data representing Russian fetal biometry in the Southern Urals. Using previously established modeling techniques, eight computational Urals-based phantoms aged 8, 12, 18, 22, 26, 30, 34, and 38 weeks post-conception were constructed to match appropriate age-dependent femur lengths, biparietal diameters, individual bone masses and whole-body masses. Bone and soft tissue organ mass differences between the common ages of the subset of UF phantom series and the Urals-based phantom series illustrated the need for improved understanding of fetal bone densities as a critical parameter of computational phantom development. In anticipation for SOLO radiation dosimetry studies involving the developing fetus and pregnant female, the completed phantom series was successfully converted to a cuboidal voxel format easily interpreted by radiation transport software. (orig.)

  13. MT1-MMP and type II collagen specify skeletal stem cells and their bone and cartilage progeny

    DEFF Research Database (Denmark)

    Szabova, L.; Yamada, S.S.; Wimer, H.

    2009-01-01

    Skeletal formation is dependent on timely recruitment of skeletal stem cells and their ensuing synthesis and remodeling of the major fibrillar collagens, type I collagen and type II collagen, in bone and cartilage tissues during development and postnatal growth. Loss of the major collagenolytic...... activity associated with the membrane-type 1 matrix metalloproteinase (MT1-MMP) results in disrupted skeletal development and growth in both cartilage and bone, where MT1-MMP is required for pericellular collagen dissolution. We show here that reconstitution of MT1-MMP activity in the type II collagen......-expressing cells of the skeleton rescues not only diminished chondrocyte proliferation, but surprisingly, also results in amelioration of the severe skeletal dysplasia associated with MT1-MMP deficiency through enhanced bone formation. Consistent with this increased bone formation, type II collagen was identified...

  14. Relative IGF-1 and IGF-2 gene expression in maternal and fetal tissues from diabetic swine

    Energy Technology Data Exchange (ETDEWEB)

    Wolverton, C.K.; Leaman, D.W.; White, M.E.; Ramsay, T.G. (Ohio State Univ., Columbus (United States))

    1990-02-26

    Fourteen pregnant, crossbred gilts were utilized in this study. Seven gilts were injected with alloxan (50 mg/kg) at day 75 of gestation to induce diabetes. Gilts underwent caesarean section on day 105 of gestation. Samples were collected from maternal skeletal muscle, adipose tissue, uterus and endometrium; and from fetal skeletal muscle, adipose tissue, placenta, liver, lung, kidney, heart, brain and spleen. Tissues were frozen in liquid nitrogen for later analysis of IGF-1 and IGF-2 gene expression. Samples were pooled and total RNA was isolated using the guanidine isothiocynate method. Total mRNA was analyzed by dot blot hybridization. Blots were probed with {sup 32}P-cDNA for porcine IGF-1 and rat IGF-2. IGF-1 gene expression in maternal tissues was unaffected by diabetes. Maternal diabetes increased IGF-2 mRNA in maternal adipose tissue but exhibited no effect in muscle or uterus. Expression of IGF-2 by maternal endometrium was decreased by diabetes. Maternal diabetes induced an increase in IGF-1 gene expression in muscle and placenta while causing an increase in IGF-2 expression in fetal liver and placenta. IGF-2 mRNA was lower in lung from fetuses of diabetic mothers than in controls. These results suggest that maternal diabetes alters IGF-1 and IGF-2 gene expression in specific tissues and differential regulation of these genes appears to exist in the mother and developing fetus.

  15. Skeletal and body composition evaluation

    Science.gov (United States)

    Mazess, R. B.

    1983-01-01

    Research on radiation detectors for absorptiometry; analysis of errors affective single photon absorptiometry and development of instrumentation; analysis of errors affecting dual photon absorptiometry and development of instrumentation; comparison of skeletal measurements with other techniques; cooperation with NASA projects for skeletal evaluation in spaceflight (Experiment MO-78) and in laboratory studies with immobilized animals; studies of postmenopausal osteoporosis; organization of scientific meetings and workshops on absorptiometric measurement; and development of instrumentation for measurement of fluid shifts in the human body were performed. Instrumentation was developed that allows accurate and precise (2% error) measurements of mineral content in compact and trabecular bone and of the total skeleton. Instrumentation was also developed to measure fluid shifts in the extremities. Radiation exposure with those procedures is low (2-10 MREM). One hundred seventy three technical reports and one hundred and four published papers of studies from the University of Wisconsin Bone Mineral Lab are listed.

  16. Fetal malformation in a marmoset (Callithrix jacchus: case report

    Directory of Open Access Journals (Sweden)

    M.C. Ferraz

    2014-10-01

    Full Text Available Callithrix jacchus is a neotropical primate adaptable in captivity. Colonies can be easily established in a short time and at low cost compared to other species of larger primates, which are normally used in laboratory. Because they are phylogenetically similar to humans in situations that induce anxiety, these small primates are increasingly being used in research involving the stress response. Wild animals in captivity are subjected to a series of stressful events that depending on the duration and intensity can modify the organic homeostasis. Observed in this study, serious problems occurred with the formation in fetal offspring of Callithrix jacchus kept in an environment with a high degree of stress.

  17. Whole body and skeletal muscle protein turnover in recovery from burns.

    Science.gov (United States)

    Porter, Craig; Hurren, Nicholas M; Herndon, David N; Børsheim, Elisabet

    2013-01-01

    Trauma and critical illness are associated with a stress response that results in increased skeletal muscle protein catabolism, which is thought to facilitate the synthesis of acute phase proteins in the liver as well as proteins involved in immune function. What makes burn injury a unique form of trauma is the existence of vast skin lesions, where the majority of afflicted tissue is often surgically excised post injury. Thereafter, recovery is dependent on the formation of a significant quantity of new skin, meaning that the burned patient requires a large and sustained supply of amino acids to facilitate wound healing. Skeletal muscle has the capacity to store surplus glucose and fatty acids within glycogen and triacylglycerol depots respectively, where glycogen and fatty acids can be mobilized during prolonged periods of caloric restriction or heightened metabolic demand (e.g., exercise), to be catabolized in order to maintain cellular ATP availability. Amino acids, on the other hand, are not generally considered to be stored in such a manner within skeletal muscle, i.e., in a temporary pool independent of structural proteins and cellular organelles etc. Subsequently, in response to severe thermal trauma, skeletal muscle assumes the role of an amino acid reserve where muscle protein breakdown and amino acid release from skeletal muscle serves to buffer plasma amino acid concentrations. Interestingly, it seems like aggressive feeding of the severely burned patient may not necessarily supply amino acids in sufficient abundance to normalize skeletal muscle protein metabolism, suggesting that skeletal muscle becomes an essential store of protein in patients suffering from severe burn trauma. In this article, the effects of burn injury on whole body and skeletal muscle protein metabolism will be discussed in an attempt to distill the current understanding of the impact of this debilitating injury on the redistribution of skeletal muscle protein stores.

  18. Thyroxine inner ring monodeiodinating activity in fetal tissues of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Huang, T.S.; Chopra, I.J.; Boado, R.; Soloman, D.H.; Chua Teco, G.N.

    1988-02-01

    We studied thyroxine (T4) inner ring monodeiodinating activity (5-MA) in various tissues of fetal, maternal, and adult male rats. Tissue homogenates were incubated with 0.26 microM T4 in 0.1 M phosphate buffer (pH 7.4) containing 10 mM EDTA and 400 mM dithiothreitol (final volume 0.7 ml) for 10 min at 37 degrees C; the 3,3',5'-triiodothyronine (rT3) generated was measured by radioimmunoassay of ethanol extracts of incubation mixture and the result was corrected for rT3 degradation during incubation. Compared to maternal tissues, T4 to rT3 5-MA in the 14-day-old fetus was increased about 70 times in skeletal muscle (mean +/- SEM, velocity, 5.4 +/- 0.9 versus 0.08 +/- 0.01, pmol rT3/h/mg protein); approximately 8 times in intestine (0.72 +/- 0.17 versus 0.09 +/- 0.03);and approximately 4 times in cerebral cortex (19 +/- 0.5 versus 4.5 +/- 0.9), while it was similar in skin (3.2 +/- 0.48 versus 2.6 +/- 0.52). Hepatic T4 5-MA approximated 1.1 +/- 0.63 in the 14-day-old fetus; it could not be measured reliably in maternal or 19-day fetal tissue because of extensive (greater than 90%) degradation of rT3 during incubation. Relative to mother, T4 5-MA in 19-day fetal tissues was increased approximately 30-fold intestine, approximately 20-fold in skeletal muscle, and approximately 6-fold in cerebral cortex while it was similar in skin. The T4 5-MA in maternal rat tissues did not differ significantly from corresponding values in adult male rat, except skin, where it was lower in the mother rat (2.6 +/- 0.52 versus 4.6 +/- 0.61, p less than 0.05). In summary, relative to adult tissues T4 5-MA is exceedingly active in several fetal tissues, most notably in skeletal muscle followed by intestine and cerebral cortex.

  19. Comprehensive resource: Skeletal gene database.

    Science.gov (United States)

    Jia, L; Ho, N C; Park, S S; Powell, J; Francomano, C A

    2001-01-01

    The Skeletal Gene Database (SGD) is an integrated resource that provides comprehensive information about bone-related genes, mRNA, and proteins expressed in human and mouse, with rich links to numerous other electronic tools. SGD contains expressed sequence tag (EST) data from all the skeletal-related cDNA libraries that are available to the public. It supplies the query/data access analytic tools for users to search and compare each gene expressed in skeletal tissue(s). The results derived from EST tissue expression profiling will allow users to get the data on the mRNA copy numbers of each gene expressed in each tissue and its normalized value. From the SGD, researchers can obtain information regarding the name, symbol, size, exon/intron number, chromosomal location, LocusLink, and related disease (if any is known) of each gene. This electronic compendium also furnishes information on the protein of the corresponding gene including the protein size (amino acid number and molecular weight). It provides swift and ready access to other useful databases including OMIM, UniGene and PUBMED. The data will be updated regularly in step with current and future research, thereby providing what we hope will serve as a highly useful source of information and a powerful analytic tool to the scientific community.

  20. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T. [Department of Kinesiology, The University of Toledo, Toledo, OH (United States); Pierre, Philippe [Centre d’Immunologie de Marseille-Luminy U2M, Aix-Marseille Université, Marseille (France); INSERM U631, Institut National de la Santé et Recherche Médicale, Marseille (France); CNRS UMR6102, Centre National de la Recherche Scientifique, Marseille (France); Chadee, Deborah N. [Department of Biological Sciences, The University of Toledo, Toledo, OH (United States); Pizza, Francis X., E-mail: Francis.Pizza@utoledo.edu [Department of Kinesiology, The University of Toledo, Toledo, OH (United States)

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  1. MRI of fetal acquired brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Radiodiagnostics, Medical University of Vienna (Austria)]. E-mail: daniela.prayer@meduniwien.ac.at; Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna (Austria); Kasprian, Gregor [Department of Radiodiagnostics, Medical University of Vienna (Austria); Witzani, Linde [Department of Radiodiagnostics, Medical University of Vienna (Austria); Helmer, Hanns [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Dietrich, Wolfgang [Department of Neurosurgery, Medical University of Vienna (Austria); Eppel, Wolfgang [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Langer, Martin [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria)

    2006-02-15

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images.

  2. MRI of fetal acquired brain lesions.

    Science.gov (United States)

    Prayer, Daniela; Brugger, Peter C; Kasprian, Gregor; Witzani, Linde; Helmer, Hanns; Dietrich, Wolfgang; Eppel, Wolfgang; Langer, Martin

    2006-02-01

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images.

  3. Fetal Primary Cardiac Tumors During Perinatal Period

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    2017-06-01

    Full Text Available Fetal primary cardiac tumors are rare, but they may cause complications, which are sometimes life threatening, including arrhythmias, hydrops fetalis, ventricular outflow/inflow obstruction, cardiac failure, and even sudden death. Among fetal primary cardiac tumors, rhabdomyomas are most common, followed by teratomas, fibromas, hemangiomas, and myxomas. Everolimus, a mammalian target of rapamycin inhibitor, has been reported to be an effective drug to cause tumor remission in three neonates with multiple cardiac rhabdomyomas. Neonatal cardiac surgery for the resection of primary cardiac tumors found by fetal echocardiography has been reported sporadically. However, open fetal surgery for pericardial teratoma resection, which was performed successfully via a fetal median sternotomy in one case report, could be a promising intervention to rescue these patients with large pericardial effusions. These recent achievements undoubtedly encourage further development in early management of fetal cardiac tumors. Owing to the rarity of fetal primary cardiac tumors, relevant information in terms of prenatal diagnosis, treatment, and prognosis remains to be clarified.

  4. Fetal pain: an infantile debate.

    Science.gov (United States)

    Derbyshire, S W G

    2001-02-01

    The question of whether a fetus can experience pain is an immense challenge. The issue demands consideration of the physical and psychological basis of being and the relation between the two. At the center of this debate is the question of how it is that we are conscious, a question that has inspired the writing of some of our most brilliant contemporary philosophers and scientists, with one commentary suggesting surrender. In my earlier review I attempted to draw together the various strands of thinking that had attacked the question of fetal pain and relate them back to the bigger question of consciousness. In their vituperative response, Benatar and Benatar bite off my finger before looking to where I am pointing. I will examine each of their criticisms.

  5. Neurodevelopment after fetal growth restriction.

    Science.gov (United States)

    Baschat, Ahmet A

    2014-01-01

    Fetal growth restriction (FGR) can emerge as a complication of placental dysfunction and increases the risk for neurodevelopmental delay. Marked elevations of umbilical artery (UA) Doppler resistance that set the stage for cardiovascular and biophysical deterioration with subsequent preterm birth characterize early-onset FGR. Minimal, or absent UA Doppler abnormalities and isolated cerebral Doppler changes with subtle deterioration and a high risk for unanticipated term stillbirth are characteristic for late-onset FGR. Nutritional deficiency manifested in lagging head growth is the most powerful predictor of developmental delay in all forms of FGR. Extremes of blood flow resistance and cardiovascular deterioration, prematurity and intracranial hemorrhage increase the risks for psychomotor delay and cerebral palsy. In late-onset FGR, regional cerebral vascular redistribution correlates with abnormal behavioral domains. Irrespective of the phenotype of FGR, prenatal tests that provide precise and independent stratification of risks for adverse neurodevelopment have yet to be determined.

  6. The exercised skeletal muscle: a review

    Directory of Open Access Journals (Sweden)

    Marina Marini

    2010-09-01

    Full Text Available The skeletal muscle is the second more plastic tissue of the body - second to the nervous tissue only. In fact, both physical activity and inactivity contribute to modify the skeletal muscle, by continuous signaling through nerve impulses, mechanical stimuli and humoral clues. In turn, the skeletal muscle sends signals to the body, thus contributing to its homeostasis. We'll review here the contribute of physical exercise to the shaping of skeletal muscle, to the adaptation of its mass and function to the different needs imposed by different physical activities and to the attainment of the health benefits associated with active skeletal muscles. Focus will primarily be on the molecular pathways and on gene regulation that result in skeletal muscle adaptation to exercise.

  7. Fetal alcohol syndrome: neuropsychiatric phenomics.

    Science.gov (United States)

    Burd, Larry; Klug, Marilyn G; Martsolf, John T; Kerbeshian, Jacob

    2003-01-01

    Fetal alcohol syndrome (FAS) is a common developmental disorder with impairments in multiple neuropsychiatric spheres of varying severity. Few population-derived studies of the behavioral phenotype are available. The purpose of this study was to estimate the prevalence of neuropsychiatric disorders in three groups: subjects who met criteria for FAS (n=152); subjects who met criteria for partial FAS/ARND (n=150); and referred subjects who did not meet criteria for either FAS or partial FAS/ARND (n=86). Each subject had a standardized evaluation by a medical geneticist. All subjects were from North Dakota. We found increases in the prevalence rates of neuropsychiatric disorders in subjects with FAS compared to subjects with partial FAS/ARND and the lowest rates in the group that did not meet criteria for either FAS or partial FAS/ARND. Comorbid attention deficit hyperactivity disorder occurred in 73% of cases with FAS, in 72% cases with partial FAS/ARND, and in 36% subjects who did not meet criteria for either. For other neuropsychiatric disorders, a similar distribution of comorbidity was found. This study supports the concept of a continuum of impairment resulting from prenatal alcohol exposure. The presence of complex cognitive, behavioral, and physical symptomatology in the affected subjects with prenatal alcohol exposure would seem to fit well under the diagnostic rubric of fetal alcohol spectrum disorder (FASD). Diagnosis and long-term management will require increasing access to multidisciplinary child development teams including mental health professionals who treat children and adolescents. Adults will require care primarily from teams with expertise in mental health and developmental disabilities.

  8. The effects of Love Canal soil extracts on maternal health and fetal development in rats.

    Science.gov (United States)

    Silkworth, J B; Tumasonis, C; Briggs, R G; Narang, A S; Narang, R S; Rej, R; Stein, V; McMartin, D N; Kaminsky, L S

    1986-10-01

    The effects of a solvent extract of the surface soil of the Love Canal chemical dump site, Niagara Falls, New York, and of a natural extract, or leachate, which is drained from the canal for treatment, on the maternal health and fetal development were determined in rats. The solvent extract, which was contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2, 3,7,8-TCDD) at 170 ppb and numerous other chlorinated organic compounds with the primary identified components being the isomers of benzenehexachloride (BHC), was dissolved in corn oil and administered by gavage to pregnant rats at 0,25,75, or 150 mg crude extract/kg/day on Days 6-15 of gestation. A 67% mortality was observed at the highest dose. The rats were sacrificed on Day 20. Dose-related increases in relative liver weight accompanied by hepatocyte hypertrophy were observed at all dose levels. Fetal birthweight was decreased at 75 and 150 mg extract/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. Based on literature values for BHC, all of the observed toxicity could be accounted for by the BHC contaminants of the extract. The crude organic phase of the leachate was administered to pregnant rats at 0,10,100, or 250 mg/kg/day as described above. Maternal weight gain decreased at 100 and 250 mg/kg/day, accompanied by 5 and 14% maternal mortality, and 1 and 3 dead fetuses, respectively. Early resorptions and the percentage of dead implants increased whereas fetal birthweights were decreased at 250 mg/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. The primary components of the complex leachate by mass were tetrachloroethanes; however, 2,3,7,8-TCDD, which was present at 3 ppm, probably accounted for all the observed toxicity.

  9. Effects of Love Canal soil extracts on maternal health and fetal development in rats

    Energy Technology Data Exchange (ETDEWEB)

    Silkworth, J.B.; Tumasonis, C.; Briggs, R.G.; Narang, A.S.; Narang, R.S.; Rej, R.; Stein, V.; McMartin, D.N.; Kaminsky, L.S.

    1986-10-01

    The effects of a solvent extract of the surface soil of the Love Canal chemical dump site, Niagara Falls, New York, and of a natural extract, or leachate, which is drained from the canal for treatment, on the maternal health and fetal development were determined in rats. The solvent extract, which was contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2, 3,7,8-TCDD) at 170 ppb and numerous other chlorinated organic compounds with the primary identified components being the isomers of benzenehexachloride (BHC), was dissolved in corn oil and administered by gavage to pregnant rats at 0,25,75, or 150 mg crude extract/kg/day on Days 6-15 of gestation. A 67% mortality was observed at the highest dose. The rats were sacrificed on Day 20. Dose-related increases in relative liver weight accompanied by hepatocyte hypertrophy were observed at all dose levels. Fetal birthweight was decreased at 75 and 150 mg extract/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. Based on literature values for BHC, all of the observed toxicity could be accounted for by the BHC contaminants of the extract. The crude organic phase of the leachate was administered to pregnant rats at 0,10,100, or 250 mg/kg/day as described above. Maternal weight gain decreased at 100 and 250 mg/kg/day, accompanied by 5 and 14% maternal mortality, and 1 and 3 dead fetuses, respectively. Early resorptions and the percentage of dead implants increased whereas fetal birthweights were decreased at 250 mg/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. The primary components of the complex leachate by mass were tetrachloroethanes; however, 2,3,7,8-TCDD, which was present at 3 ppm, probably accounted for all the observed toxicity.

  10. 按摩抑制兔钝挫伤骨骼肌瘢痕形成的机制研究%How massage inhibits scar tissue formation in skeletal muscles after blunt injury

    Institute of Scientific and Technical Information of China (English)

    刘仁建; 唐成林; 邹敏; 郜婕; 谢辉; 陈晓琳

    2012-01-01

    目的 观察按摩对实验兔受损股四头肌转移生长因子(TGF-β1)及Ⅰ型胶原(COL-Ⅰ)mRNA表达的影响,以探讨按摩抑制瘢痕形成的相关机制.方法 共选取健康成年雄性新西兰大白兔40只,采用随机数字表法将其分为正常对照组(4只)、自然恢复组(20只)及按摩组(16只).正常对照组饲养期间未给予特殊处理,采用自制打击器将自然恢复组及按摩组实验兔制成兔右后肢股四头肌损伤模型.按摩组实验兔于制模后第5天时给予按摩治疗,自然恢复组制模后未给予按摩治疗.于制模后7d、11d、15d及19d时采用实时定量RT-PCR法检测各组实验兔TGF-β1,COL-Ⅰ mRNA表达情况.结果 在制模后第7天时,发现按摩组TGF-β1、COL-ImRNA表达量与自然恢复组间差异无统计学意义(P>0.05),在制模后第11,15及19天时,发现按摩组TGF-β1、COL-Ⅰ mRNA表达量均显著低于自然恢复组水平(P<0.05).结论 按摩能显著降低实验兔受损股四头肌TGF-β1及COL-Ⅰ mRNA表达,有助于抑制瘢痕过度形成,从而促进受损肌组织修复.%Objective To investigate the effect of massage on quadriceps femoris repair after injury by external force and the expression of transforming growth factor β1 (TGF-β1) and collagen-Ⅰ (COL-Ⅰ) mRNA.To explore the molecular mechanisms inhibiting scar tissue formation and promoting muscle repair.Methods Forty New Zealand white rabbits weighing (2.0 ±0.5) kg were randomly divided into a normal control group (A) (n =4),a selfrepair group (B) (n =20,further divided into the 3rd,7th,11th,15th and 19th day time points),and a massage group (C) (n =16,further divided as in group B).In group A the rabbits were not treated,as normal controls.In groups B and C rabbit models of quadriceps femoris injury were prepared using a self-made beater.In group B no massage therapy was given as a natural recovery control; in group C,massage therapy was given after 5 days.Realtime quantitative

  11. [Advanced MRI techniques of the fetal brain].

    Science.gov (United States)

    Schöpf, V; Dittrich, E; Berger-Kulemann, V; Kasprian, G; Kollndorfer, K; Prayer, D

    2013-02-01

    Evaluation of the normal and pathological fetal brain. Magnetic resonance imaging (MRI). Advanced MRI of the fetal brain. Diffusion tensor imaging (DTI) is used in clinical practice, all other methods are used at a research level. Serving as standard methods in the future. Combined structural and functional data for all gestational ages will allow more specific insight into the developmental processes of the fetal brain. This gain of information will help provide a common understanding of complex spatial and temporal procedures of early morphological features and their impact on cognitive and sensory abilities.

  12. The Roles of PPARs in the Fetal Origins of Metabolic Health and Disease

    Directory of Open Access Journals (Sweden)

    William D. Rees

    2008-01-01

    Full Text Available Beyond the short-term effects on fertility, there is increasing evidence that obesity or the consumption of an inappropriate diet by the mother during pregnancy adversely affects the long-term health of her offspring. PPAR and RXR isotypes are widely expressed in reproductive tissues and in the developing fetus. Through their interactions with fatty acids, they may mediate adaptive responses to the changes in the maternal diet. In the maturing follicle, PPAR-γ has an important role in the granulosa cells that surround the maturing oocyte. After fertilisation, PPAR-γ and PPAR-β/δ are essential regulators of placentation and the subsequent development of key metabolic tissues such as skeletal muscle and adipose cells. Activation of PPAR-γ and PPAR-β/δ during fetal development has the potential to modify the growth and development of these tissues. PPAR-α is expressed at low levels in the fetal liver, however, this expression may be important, as changes in the methylation of DNA in its promoter region are reported to take place during this period of development. This epigenetic modification then programmes subsequent expression. These findings suggest that two separate PPAR-dependent mechanisms may be involved in the fetal adaptations to the maternal diet, one, mediated by PPAR-γ and PPAR-β/δ, regulating cell growth and differentiation; and another adapting long-term lipid metabolism via epigenetic changes in PPAR-α to optimise postnatal survival.

  13. Influence of pregnancy course peculiarities on formation of fetal testicles

    OpenAIRE

    2013-01-01

    The review gives some of morphological, metrical, hormonal and biochemical parameters of antenatal ontogenesis of fetus testicles and newborns depending on pregnancy pathology and childbirth. Comparative analysis was carried out. Risk factors of development of morphological changes in fetus testicles and newborns from mothers with normal and pathological course of pregnancy were presented.

  14. Maternal obesity and the development of skeletal muscle in offspring – fetal origin of metabolic disorders

    Directory of Open Access Journals (Sweden)

    Kamil Grabiec

    2012-01-01

    Full Text Available Immune contact dermatitis is an inflammation of the skin resulting from exposure to allergens in the environment. The aim of this study was to compare the actions of lactoferrin (LF, a natural immunomodulator, on the elicitation phases of the cellular and humoral, cutaneous immune responses to oxazolone and toluene diisocyanate (TDI, respectively. LF was given i.v. in a 10 mg/mouse dose, together with the eliciting doses of the antigens. The ear edema and the number of lymphocytes in the draining lymph nodes were measured. In addition, the production of IL-2 in the cultures of lymph node cells and the content of IL-4 in lymph node cells were determined. LF had a profound inhibitory effect on the eliciting phase of the immune response to oxazolone as measured by the ear edema and lymph node cell number. The suppressive effect of LF on the effector phase of the immune response to TDI was moderate. LF had some stimulatory effect on the ex vivo content of IL-4 in lymphocytes in the immune response to TDI. On the other hand, it significantly inhibited IL-2 in vitro production in the immune response to oxazolone. The data strongly suggest that LF exerted differential actions on the activities of antigen-specific Th1 and Th2 cells involved in respective types of the cutaneous immune responses.

  15. The effects of the in utero glucocorticoid (GLC) exposure on fetal skeletal muscle growth in rats

    Science.gov (United States)

    Data from epidemiological studies suggest that adult muscle strength and lean body mass are related to birth weight and therefore, are influenced by the intra-uterine environment. The degree to which the effects on the musculature result from a nutrient deficit or its consequent exposure to above no...

  16. Effect of diet-induced maternal obesity on fetal skeletal development

    Science.gov (United States)

    The maternal environment, in particular nutritional status and diet composition during pregnancy, can alter the developmental trajectory of the fetus and change the risk for chronic disease processes such as cardiovascular disease, obesity, diabetes and cancer in the offspring. This knowledge suppor...

  17. Unusual florid skeletal manifestations of primary hyperparathyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Ashebu, Samuel D.; Dahniya, Mohamed H.; Muhtaseb, Sayeed A.; Aduh, Prosper [Department of Radiology, Al-Adan Hospital (Kuwait)

    2002-12-01

    We report a case of primary hyperparathyroidism (PHPT) with advanced and unusual skeletal manifestations - a rare occurrence in developed countries nowadays. The literature is briefly reviewed. (orig.)

  18. Decreased fetal movements at home were recorded by a newly developed fetal movement recorder in a case of a non-reassuring fetal status.

    Science.gov (United States)

    Ryo, Eiji; Kamata, Hideo; Seto, Michiharu

    2014-10-01

    A fetal movement acceleration measurement (FMAM) recorder was developed for home monitoring of fetal movements. We provided a 32-year-old pregnant woman with the FMAM recorder to home monitor fetal movements, thereby self-recording decreased fetal movements at 30 weeks' gestation. On routine checkup, a non-stress test revealed scant fetal heart rate accelerations. At 31 weeks' gestation, the woman underwent an emergent caesarean delivery because of a non-reassuring fetal heart rate pattern, and delivered a female neonate weighing 1312 g, whose umbilical cord was slightly narrowed at the umbilicus. Our experience with the present case suggests the usefulness of the FMAM recorder.

  19. Normalized spectral power of fetal heart rate variability is associated with fetal scalp blood pH

    NARCIS (Netherlands)

    van Laar, J. O.; Peters, C. H. L.; Houterman, S.; Wijn, P. F. F.; Kwee, A.; Oei, S. G.

    Background: Spectral power of fetal heart rate variability is related to fetal condition. Previous studies found an increased normalized low frequency power in case of severe fetal acidosis. Aims: To analyze whether absolute or normalized low or high frequency power of fetal heart rate variability

  20. Maternal and fetal effects after inhalation of the herbicide flumetralin

    Directory of Open Access Journals (Sweden)

    Priscila Boneventi

    2015-10-01

    Full Text Available Farm workers at Brazilian tobacco plantations are frequently exposed to toxic chemicals and eventually became contaminated with these products. Flumetralin is a inhibitor of axillary bud growth on tobacco and the effects of gestational exposure should be investigated since many pesticides cross the placental barrier and cause birth defects. The aim of this study was to investigate maternal and fetal effects caused by inhalation of Flumetralin. Pregnant Swiss mice inhaled Flumetralin for 10 or 20 minutes on the seventh day of pregnancy. On the 18th day, animals were euthanized and subjected to laparotomy for removal of the uterus and embryos. The uterus was weighed and the embryos were examined. Fetuses of both treatments showed visceral changes in the uterus, kidney and liver. Skeletal abnormalities included hydrocephalus and incomplete skull ossification in both groups. In addition, the treatment of 20 minutes exposure caused anomalies in the occipital bone and the 13rd rib besides internal bleeding. There was reduction in maternal weight gain and impaired intrauterine development of the fetus. The weight of heart, liver, kidneys and testicles of fetuses were significantly decreased. Inhalation of flumetralin proved to be potentially teratogenic in both treatments, with greater damage in the group treated for 20 minutes.

  1. Fetal magnetic resonance imaging: methods and techniques; Fetale Magnetresonanztomographie: Methoden und Technik

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, P.C. [Zentrum fuer Anatomie und Zellbiologie, Medizinische Universitaet Wien (Austria). Arbeitsgruppe Integrative Morphologie; Stuhr, F.; Lindner, C.; Prayer, D. [Medizinische Universitaet Wien (Austria). Klinik fuer Radiodiagnostik

    2006-02-15

    Since the introduction of fetal magnetic resonance imaging (MRI) into prenatal diagnostics, advances in coil technology and development of ultrafast sequences have further enhanced this technique. At present numerous sequences are available to visualize the whole fetus with high resolution and image quality, even in late stages of pregnancy. Taking into consideration the special circumstances of examination and adjusting sequence parameters to gestational age, fetal anatomy can be accurately depicted. The variety of sequences also allows further characterization of fetal tissues and pathologies. Fetal MRI not only supplies additional information to routine ultrasound studies, but also reveals fetal morphology and pathology in a way hitherto not possible. (orig.) [German] Seit Einfuehrung der fetalen Magnetresonanztomographie (MRT) in die praenatale Diagnostik wurde das Verfahren durch neue Spulentechniken und die Entwicklung ultraschneller Sequenzen kontinuierlich weiter entwickelt. Gegenwaertig steht eine Vielzahl von Sequenzen zur Verfuegung, die es erlauben, mit hoher Bildqualitaet und raeumlicher Aufloesung selbst in fortgeschrittenen Schwangerschaftsstadien den gesamten Feten darzustellen. Unter Beruecksichtigung der speziellen Untersuchungsbedingungen und des Schwangerschaftsalters kann so die fetale Anatomie genau abgebildet werden. Die Vielfalt an Sequenzen und deren gezielter Einsatz ermoeglichen es weiter, fetale Gewebe und Pathologien naeher zu charakterisierten. Auf diese Weise liefert die fetale MRT nicht nur Zusatzinformationen zur Routineultraschalluntersuchung, sie gibt auch Aufschluss ueber bestimmte fetale Morphologien und Pathologien, die bisher nicht darstellbar waren. (orig.)

  2. Fetal bowel anomalies - US and MR assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rubesova, Erika [Stanford University, Department of Radiology, Lucile Packard Children' s Hospital, Stanford, CA (United States)

    2012-01-15

    The technical quality of prenatal US and fetal MRI has significantly improved during the last decade and allows an accurate diagnosis of bowel pathology prenatally. Accurate diagnosis of bowel pathology in utero is important for parental counseling and postnatal management. It is essential to recognize the US presentation of bowel pathology in the fetus in order to refer the patient for further evaluation or follow-up. Fetal MRI has been shown to offer some advantages over US for specific bowel abnormalities. In this paper, we review the normal appearance of the fetal bowel on US and MRI as well as the typical presentations of bowel pathologies. We discuss more specifically the importance of recognizing on fetal MRI the abnormalities of size and T1-weighted signal of the meconium-filled distal bowel. (orig.)

  3. Changing patterns of fetal lung maturity testing

    National Research Council Canada - National Science Library

    McGinnis, K T; Brown, J A; Morrison, J C

    2008-01-01

    In our laboratory, a decrease in fetal lung maturity (FLM) testing on amniotic fluid occurred over a 10-year period, and we desired to determine if this was a national phenomenon and, if present, ascertain possible etiologies...

  4. Practice Bulletin No. 173: Fetal Macrosomia

    National Research Council Canada - National Science Library

    2016-01-01

    Suspected fetal macrosomia is encountered commonly in obstetric practice. As birth weight increases, the likelihood of labor abnormalities, shoulder dystocia, birth trauma, and permanent injury to the neonate increases...

  5. Practice Bulletin No. 173 Summary: Fetal Macrosomia

    National Research Council Canada - National Science Library

    2016-01-01

    Suspected fetal macrosomia is encountered commonly in obstetric practice. As birth weight increases, the likelihood of labor abnormalities, shoulder dystocia, birth trauma, and permanent injury to the neonate increases...

  6. Fetal diffusion imaging: pearls and solutions.

    Science.gov (United States)

    Kasprian, Gregor; Del Río, Maria; Prayer, Daniela

    2010-12-01

    Recently, diffusion-weighted (DWI) magnetic resonance imaging of the fetus has evolved from a basic research application to an important diagnostic imaging tool in fetal magnetic resonance imaging. Although technically challenging and still plagued with several sources of artifacts, DWI can add clinically important information, which cannot be provided by any other prenatal imaging modality. Its potential to noninvasively probe tissue structures on the basis of Brownian molecular motion enables the detection of early changes associated with acute fetal diseases, as well as structural alterations of functionally diverse compartments of different fetal organs. In this article, the current clinical applications of fetal brain and body DWI are outlined, as well as its current limitations.

  7. Diagnostic pitfalls in fetal brain MRI.

    Science.gov (United States)

    Al-Mukhtar, Ali; Kasprian, Gregor; Schmook, Maria T; Brugger, Peter C; Prayer, Daniela

    2009-08-01

    Recent technological advances in fetal magnetic resonance imaging (MRI) and increased reliability of MRI in depicting abnormalities and lesions, especially in the central nervous system, are increasingly bringing up challenging issues with regard to accurate diagnosis. There are also pitfalls not only attributable to image acquisition but also in clinical interpretation. The misinterpretation of findings because of insufficient knowledge about fetal brain development as visualized by MRI may also be regarded as an important limitation of fetal MRI. We provide an overview of the most common pitfalls experienced in fetal MRI in routine practice, demonstrate how to identify some of the factors that lead to imaging misinterpretation, and suggest ways to tackle these problems, with an emphasis on MR techniques and image calibration.

  8. [Effect of music on fetal behaviour].

    Science.gov (United States)

    Malinova, M; Malinova, M

    2004-01-01

    Antenatal music stimulation shown to elicit fetal heart rate and body movement responses, indicating that prenatal experience with music influences auditory functional development. The slower tempo resulted in less movement variation.

  9. Piracetam for fetal distress in labour.

    Science.gov (United States)

    Hofmeyr, G Justus; Kulier, Regina

    2012-06-13

    Piracetam is thought to promote the metabolism of brain cells when they are hypoxic. It has been used to prevent adverse effects of fetal distress. The objective of this review was to assess the effects of piracetam for suspected fetal distress in labour on method of delivery and perinatal morbidity. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (15 February 2012). Randomised trials of piracetam compared with placebo or no treatment for suspected fetal distress in labour. Both review authors assessed eligibility and trial quality. One study of 96 women was included. Piracetam compared with placebo was associated with a trend to reduced need for caesarean section (risk ratio 0.57, 95% confidence interval 0.32 to 1.03). There were no statistically significant differences between the piracetam and placebo group for neonatal morbidity (measured by neonatal respiratory distress) or Apgar score. There is not enough evidence to evaluate the use of piracetam for fetal distress in labour.

  10. Fetal echopsy (ultrasonographic autopsy of an acardius myelancephalus and its correlation with antenatal ultrasonographic findings

    Directory of Open Access Journals (Sweden)

    Balakumar Karippaliyil

    2015-01-01

    Full Text Available Aberrant transplacental arteriovenous shunts between the placental and cord vessels of monozygotic monoamniotic twins or triplets result in the formation of an acardius. The prenatal diagnosis of this condition has been reported occasionally in the literature. A subtype categorized as acardius myelancephalus was diagnosed at 32 weeks of gestation by ultrasonography (USG. The pregnancy was aborted because of poor prognostic predictors and the acardius was subjected to ultrasonographic autopsy (fetal echopsy. The antenatal USG features were correlated with echopsy findings for confirmation of the antenatal findings and for a better visual perception of the prenatal diagnostic features. The echopsy revealed more precise details. Fetal echopsy avoids the medicolegal problems concerned with parental consent for classical invasive fetal autopsy.

  11. Computational radiology in skeletal radiography

    Energy Technology Data Exchange (ETDEWEB)

    Peloschek, Ph.; Nemec, S. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Widhalm, P. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Pattern Recognition and Image Processing Group, Department of Computer Aided Automation, Vienna University of Technology, Wiedner Hauptstrasse 8-10/020, A-1040 Vienna (Austria); Donner, R. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Pattern Recognition and Image Processing Group, Department of Computer Aided Automation, Vienna University of Technology, Wiedner Hauptstrasse 8-10/020, A-1040 Vienna (Austria); Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, A-8010 Graz (Austria); Birngruber, E. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Thodberg, H.H. [Visiana Aps, Sollerodvej 57C, DK-2840 Holte (Denmark); Kainberger, F. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Langs, G. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)], E-mail: georg.langs@meduniwien.ac.at

    2009-11-15

    Recent years have brought rapid developments in computational image analysis in musculo-skeletal radiology. Meanwhile the algorithms have reached a maturity that makes initial clinical use feasible. Applications range from joint space measurement to erosion quantification, and from fracture detection to the assessment of alignment angles. Current results of computational image analysis in radiography are very promising, but some fundamental issues remain to be clarified, among which the definition of the optimal trade off between automatization and operator-dependency, the integration of these tools into clinical work flow and last not least the proof of incremental clinical benefit of these methods.

  12. Erythropoietin elevation in the chronically hyperglycemic fetal lamb

    Energy Technology Data Exchange (ETDEWEB)

    Philipps, A.F. (Univ. of Connecticut Health Center, Farmington) Widness, J.A.; Garcia, J.F.; Raye, J.R.; Swartz, R.

    1982-05-01

    The effects of chronic fetal glucose infusion upon fetal oxygenation and endogenous erythropoietin (Ep) production were studied using the chronically catheterized fetal lamb. Fetal glucose infusion at rates between 5 and 20 mg/kg/min resulted in sustained fetal hyperglycemia. During glucose infusion (maximal glucose concentration achieved = 55.4 +/- 3.7 mg/dl) fetal arterial oxygen contents fell from 5.8 +/- 0.9 to 4.2 +/- 1.0 ml/dl while no changes were observed in simultaneously sampled, noninfused twins. Although plasma insulin concentration rose in the infused fetuses, the elevations were inconstant and no relationship between fetal plasma insulin concentration and decrement in fetal oxygen content was evident. The changes in plasma Ep concentration were noted prior to any significant fetal metabolic acidosis (as evidence of tissue hypoxia) and no changes in plasma Ep concentration were observed in simultaneously sampled noninfused twins. No relationship was apparent between fetal arterial plasma insulin and Ep concentrations. Since neither fetal anemia nor hemodilution occurred in these preparations, glucose-induced fetal hyposemia is the likely mechanism behind elevated fetal Ep concentrations in these experiments. Similarities between this animal model and human fetuses and infants of diabetic mothers suggest that chronic in utero hypoxemia may be a common feature responsible for such diverse abnomalities as polycythemia, hyperbilirubinemia, and late fetal demise. The mechanism behind the glucose-induced fetal hypoxemia is not known.

  13. Fetal MR imaging of Kniest dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Yazici, Zeynep [Uludag University, Faculty of Medicine, Department of Radiology, Gorukle (Turkey); Kline-Fath, Beth M.; Laor, Tal [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Tinkle, Bradley T. [Cincinnati Children' s Hospital Medical Center, Division of Human Genetics, Cincinnati, OH (United States)

    2010-03-15

    We present a case of Kniest dysplasia, a rare form of the type II collagenopathies, with prenatal MRI. Sonography revealed only short limbs in the fetus. Fetal MRI findings included enlarged hyaline cartilaginous structures with abnormally high T2 signal intensity, delayed ossification of the pubic and ischial bones, and platyspondyly. By delineating the cartilaginous abnormalities, fetal MRI can contribute to the prenatal diagnosis of chondrodysplasias. (orig.)

  14. Impact of Oxidative Stress in Fetal Programming

    Directory of Open Access Journals (Sweden)

    Loren P. Thompson

    2012-01-01

    Full Text Available Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that protect against organ dysfunction in the programmed offspring.

  15. Emerging Roles of ER Stress and Unfolded Protein Response Pathways in Skeletal Muscle Health and Disease.

    Science.gov (United States)

    Bohnert, Kyle R; McMillan, Joseph D; Kumar, Ashok

    2017-02-08

    Skeletal muscle is the most abundant tissue in the human body and can adapt its mass as a consequence of physical activity, metabolism, growth factors, and disease conditions. Skeletal muscle contains an extensive network of endoplasmic reticulum (ER), called sarcoplasmic reticulum, which plays an important role in the regulation of proteostasis and calcium homeostasis. In many cell types, environmental and genetic factors that disrupt ER function cause an accumulation of misfolded and unfolded proteins in the ER lumen that ultimately leads to ER stress. To alleviate the stress and restore homeostasis, the ER activates a signaling network called the unfolded protein response (UPR). The UPR has three arms, which regulate protein synthesis and expression of many ER chaperone and regulatory proteins. However, the role of individual UPR pathways in skeletal muscle has just begun to be investigated. Recent studies suggest that UPR pathways play pivotal roles in muscle stem cell homeostasis, myogenic differentiation, and regeneration of injured skeletal muscle. Moreover, markers of ER stress and the UPR are activated in skeletal muscle in diverse conditions such as exercise, denervation, starvation, high fat diet, cancer cachexia, and aging. Accumulating evidence also suggests that ER stress may have important roles in the pathogenesis of inflammatory myopathies and genetic muscle disorders. The purpose of this review article is to discuss the role and potential mechanisms by which ER stress and the individual arms of the UPR regulate skeletal muscle formation, plasticity, and function in various physiological and pathophysiological conditions. This article is protected by copyright. All rights reserved.

  16. MT1-MMP and type II collagen specify skeletal stem cells and their bone and cartilage progeny

    DEFF Research Database (Denmark)

    Szabova, L.; Yamada, S.S.; Wimer, H.;

    2009-01-01

    Skeletal formation is dependent on timely recruitment of skeletal stem cells and their ensuing synthesis and remodeling of the major fibrillar collagens, type I collagen and type II collagen, in bone and cartilage tissues during development and postnatal growth. Loss of the major collagenolytic...... activity associated with the membrane-type 1 matrix metalloproteinase (MT1-MMP) results in disrupted skeletal development and growth in both cartilage and bone, where MT1-MMP is required for pericellular collagen dissolution. We show here that reconstitution of MT1-MMP activity in the type II collagen...

  17. Biomedical Instruments for Fetal and Neonatal Surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Rolfe, P [Oxford BioHorizons Ltd. (United Kingdom); Scopesi, F [Gaslini Institute, University of Genoa (Italy); Serra, G [Gaslini Institute, University of Genoa (Italy)

    2006-10-15

    Specialised instruments have been developed to aid the care of the fetus and the newborn baby. Miniature sensors using optical, electrical, chemical, mechanical and magnetic principles have been produced for capturing key measurands. These include temperature, pressure, flow and dimension, as well as several specific molecules such as glucose, oxygen and carbon dioxide. During pregnancy ultrasound imaging and blood flow techniques provide valuable information concerning fetal abnormalities, fetal growth, fetal breathing and fetal heart rate. Signal processing and pattern recognition can be useful for deriving indicators of fetal distress and clinical status, based on biopotentials as well as ultrasound signals. Fetal pH measurement is a critical requirement during labour and delivery. The intensive care of ill preterm babies involves provision of an optimal thermal environment and respiratory support. Monitoring of blood gas and acid-base status is essential, and this involves both blood sampling for in vitro analysis as well as the use of invasive or non-invasive sensors. For the future it will be vital that the technologies used are subjected to controlled trials to establish benefit or otherwise.

  18. The Use of Fetal Noninvasive Electrocardiography.

    Science.gov (United States)

    Lakhno, Igor

    2016-01-01

    Preeclampsia (PE) is one of the severe complications of pregnancy that leads to fetal deterioration. The aim was to survey the validity of fetal distress diagnostics in case of Doppler ultrasonic umbilical vein and arteries blood flow velocity investigation and ECG parameters analysis obtained from maternal abdominal signal before labor in preeclamptic patients. Fetal noninvasive ECG and umbilical arterial and venous Doppler investigation were performed in 120 patients at 34-40 weeks of gestation. And 30 of them had physiological gestation and were involved in Group I. In Group II 52 pregnant women with mild-moderate PE were observed. 38 patients with severe PE were monitored in Group III. The most considerable negative correlation was determined in pair Apgar score 1 versus T/QRS (R = -0.50; p < 0.05). So the increased T/QRS ratio was the most evident marker of fetal distress. Fetal noninvasive ECG showed sensitivity of 96.6% and specificity of 98.4% and, therefore, was determined as more accurate method for fetal monitoring.

  19. Fetal ventriculomegaly: Diagnosis, treatment, and future directions.

    Science.gov (United States)

    Pisapia, Jared M; Sinha, Saurabh; Zarnow, Deborah M; Johnson, Mark P; Heuer, Gregory G

    2017-07-01

    Fetal ventriculomegaly (VM) refers to the enlargement of the cerebral ventricles in utero. It is associated with the postnatal diagnosis of hydrocephalus. VM is clinically diagnosed on ultrasound and is defined as an atrial diameter greater than 10 mm. Because of the anatomic detailed seen with advanced imaging, VM is often further characterized by fetal magnetic resonance imaging (MRI). Fetal VM is a heterogeneous condition with various etiologies and a wide range of neurodevelopmental outcomes. These outcomes are heavily dependent on the presence or absence of associated anomalies and the direct cause of the ventriculomegaly rather than on the absolute degree of VM. In this review article, we discuss diagnosis, work-up, counseling, and management strategies as they relate to fetal VM. We then describe imaging-based research efforts aimed at using prenatal data to predict postnatal outcome. Finally, we review the early experience with fetal therapy such as in utero shunting, as well as the advances in prenatal diagnosis and fetal surgery that may begin to address the limitations of previous therapeutic efforts.

  20. Fetal growth potential and pregnancy outcome.

    Science.gov (United States)

    Bukowski, Radek

    2004-02-01

    Although the association of fetal growth restriction and adverse pregnancy outcomes is well known, lack of sensitivity limits its clinical value. To a large extent, this limitation is a result of traditionally used method to define growth restriction by comparing fetal or birth weight to population norms. The use of population norms, by virtue of their inability to fully consider individual variation, results in high false positive and negative rates. An alternative, calculating fetal individually optimal growth potential, based on physiological determinants of individual growth, is superior in predicting adverse outcomes of pregnancy. Impairment of fetal growth potential identifes some adverse pregnancy outcomes that are not associated with growth restrction defined by population norms. When compared with traditional population-based norms, fetal growth potential is a better predictor of several important adverse outcomes of pregnancy which include: stillbirth, neonatal mortality and morbidity, and long-term adverse neonatal outcomes like neonatal encephalopathy, cerebral palsy and cognitive abilities. Impairment of individual growth potential is also strongly associated with spontaneous preterm delivery. Although definitive interventional trials have not been conducted as yet to validate the clinical value of fetal growth potential, many observational studies, conducted in various populations, indicate its significant promise in this respect.

  1. The Use of Fetal Noninvasive Electrocardiography

    Directory of Open Access Journals (Sweden)

    Igor Lakhno

    2016-01-01

    Full Text Available Preeclampsia (PE is one of the severe complications of pregnancy that leads to fetal deterioration. The aim was to survey the validity of fetal distress diagnostics in case of Doppler ultrasonic umbilical vein and arteries blood flow velocity investigation and ECG parameters analysis obtained from maternal abdominal signal before labor in preeclamptic patients. Fetal noninvasive ECG and umbilical arterial and venous Doppler investigation were performed in 120 patients at 34–40 weeks of gestation. And 30 of them had physiological gestation and were involved in Group I. In Group II 52 pregnant women with mild-moderate PE were observed. 38 patients with severe PE were monitored in Group III. The most considerable negative correlation was determined in pair Apgar score 1 versus T/QRS (R=-0.50; p<0.05. So the increased T/QRS ratio was the most evident marker of fetal distress. Fetal noninvasive ECG showed sensitivity of 96.6% and specificity of 98.4% and, therefore, was determined as more accurate method for fetal monitoring.

  2. Maternal feeding controls fetal biological clock.

    Directory of Open Access Journals (Sweden)

    Hidenobu Ohta

    Full Text Available BACKGROUND: It is widely accepted that circadian physiological rhythms of the fetus are affected by oscillators in the maternal brain that are coupled to the environmental light-dark (LD cycle. METHODOLOGY/PRINCIPAL FINDINGS: To study the link between fetal and maternal biological clocks, we investigated the effects of cycles of maternal food availability on the rhythms of Per1 gene expression in the fetal suprachiasmatic nucleus (SCN and liver using a transgenic rat model whose tissues express luciferase in vitro. Although the maternal SCN remained phase-locked to the LD cycle, maternal restricted feeding phase-advanced the fetal SCN and liver by 5 and 7 hours respectively within the 22-day pregnancy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that maternal feeding entrains the fetal SCN and liver independently of both the maternal SCN and the LD cycle. This indicates that maternal-feeding signals can be more influential for the fetal SCN and particular organ oscillators than hormonal signals controlled by the maternal SCN, suggesting the importance of a regular maternal feeding schedule for appropriate fetal molecular clockwork during pregnancy.

  3. A mobile multi-agent information system for ubiquitous fetal monitoring.

    Science.gov (United States)

    Su, Chuan-Jun; Chu, Ta-Wei

    2014-01-02

    Electronic fetal monitoring (EFM) systems integrate many previously separate clinical activities related to fetal monitoring. Promoting the use of ubiquitous fetal monitoring services with real time status assessments requires a robust information platform equipped with an automatic diagnosis engine. This paper presents the design and development of a mobile multi-agent platform-based open information systems (IMAIS) with an automated diagnosis engine to support intensive and distributed ubiquitous fetal monitoring. The automatic diagnosis engine that we developed is capable of analyzing data in both traditional paper-based and digital formats. Issues related to interoperability, scalability, and openness in heterogeneous e-health environments are addressed through the adoption of a FIPA2000 standard compliant agent development platform-the Java Agent Development Environment (JADE). Integrating the IMAIS with light-weight, portable fetal monitor devices allows for continuous long-term monitoring without interfering with a patient's everyday activities and without restricting her mobility. The system architecture can be also applied to vast monitoring scenarios such as elder care and vital sign monitoring.

  4. Trop2 marks transient gastric fetal epithelium and adult regenerating cells after epithelial damage.

    Science.gov (United States)

    Fernandez Vallone, Valeria; Leprovots, Morgane; Strollo, Sandra; Vasile, Gabriela; Lefort, Anne; Libert, Frederick; Vassart, Gilbert; Garcia, Marie-Isabelle

    2016-05-01

    Mouse fetal intestinal progenitors lining the epithelium prior to villogenesis grow as spheroids when cultured ex vivo and express the transmembrane glycoprotein Trop2 as a marker. Here, we report the characterization of Trop2-expressing cells from fetal pre-glandular stomach, growing as immortal undifferentiated spheroids, and their relationship with gastric development and regeneration. Trop2(+) cells generating gastric spheroids differed from adult glandular Lgr5(+) stem cells, but appeared highly related to fetal intestinal spheroids. Although they shared a common spheroid signature, intestinal and gastric fetal spheroid-generating cells expressed organ-specific transcription factors and were committed to intestinal and glandular gastric differentiation, respectively. Trop2 expression was transient during glandular stomach development, being lost at the onset of gland formation, whereas it persisted in the squamous forestomach. Undetectable under homeostasis, Trop2 was strongly re-expressed in glands after acute Lgr5(+) stem cell ablation or following indomethacin-induced injury. These highly proliferative reactive adult Trop2(+) cells exhibited a transcriptome displaying similarity with that of gastric embryonic Trop2(+) cells, suggesting that epithelium regeneration in adult stomach glands involves the partial re-expression of a fetal genetic program.

  5. Structural equation modeling and nested ANOVA: Effects of lead exposure on maternal and fetal growth in rats

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, J.D. (Rohm and Haas Company, Spring House, PA (United States)); O' Flaherty, E.J.; Shukla, R.; Gartside, P.S. (Univ. of Cincinnati, OH (United States)); Ross, R. (Univ. of Cincinnati Medical Center, Cincinnati, OH (United States))

    1994-01-01

    This study provided an assessment of the effects of lead on early growth in rats based on structural equation modeling and nested analysis of variance (ANOVA). Structural equation modeling showed that lead in drinking water (250, 500, or 1000 ppm) had a direct negative effect on body weight and tail length (i.e., growth) in female rats during the first week of exposure. During the following 2 weeks of exposure, high correlation between growth measurements taken over time resulted in reduced early postnatal growth. By the fourth week of exposure, reduced growth was not evident. Mating began after 8 weeks of exposure, and exposure continued during gestation. Decreased fetal body weight was detected when the effects of litter size, intrauterine position, and sex were controlled in a nested ANOVA. Lead exposure did not appear to affect fetal skeletal development, possibly because lead did not alter maternal serum calcium and phosphorus levels. The effect of lead on individual fetal body weight suggests that additional studies are needed to examine the effect of maternal lead exposure on fetal development and early postnatal growth. 24 refs., 4 figs., 6 tabs.

  6. Globular adiponectin induces differentiation and fusion of skeletal muscle cells

    Institute of Scientific and Technical Information of China (English)

    Tania Fiaschi; Domenico Cirelli; Giuseppina Comito; Stefania Gelmini; Giampietro Ramponi; Maria Serio; Paola Chiarugi

    2009-01-01

    The growing interest in skeletal muscle regeneration is associated with the opening of new therapeutic strategies for muscle injury after trauma, as well as several muscular degenerative pathologies, including dystrophies, muscu-lar atrophy, and cachexia. Studies focused on the ability of extracellular factors to promote myogenesis are therefore highly promising. We now report that an adipocyte-derived factor, globular adiponectin (gAd), is able to induce mus-cle gene expression and cell differentiation, gAd, besides its well-known ability to regulate several metabolic func-tions in muscle, including glucose uptake and consumption and fatty acid catabolism, is able to block cell cycle entry of myoblasts, to induce the expression of specific skeletal muscle markers such as myosin heavy chain or eaveolin-3, as well as to provoke cell fusion into multinucleated syneytia and, finally, muscle fibre formation, gAd exerts its pro-differentiative activity through redox-dependent activation of p38, Akt and 5'-AMP-activated protein kinase path-ways. Interestingly, differentiating myoblasts are autocrine for adiponectiu, and the mimicking of pro-inflammatory settings or exposure to oxidative stress strongly increases the production of the hormone from differentiating cells. These data suggest a novel function of adiponectin, directly coordinating the myogenic differentiation program and serving an autocrine function during skeletal myogenesis.

  7. Diffuse idiopathic skeletal hyperostosis (D.I.S.H.

    Directory of Open Access Journals (Sweden)

    F. De Leonardis

    2011-09-01

    Full Text Available Diffuse idiopathic skeletal hyperostosis (D.I.S.H. is a common disorder of unknown aetiology characterized by exuberant hyperostosis of the antero-lateral aspect of the spinal column, that sometimes leads to bone ankilosis, and by ossification of extra-spinal entheses. This condition is often associated with the metabolic derangement of type 2 diabetes. Primary hypertension, its cardiovascular aftereffects and lithiasis are also often present in these patients. D.I.S.H. has to be distinguished from osteoarthritis, althought they often coexist in the same patient. The mean difference lies in the anatomical target of the pathological process, that is represented by articular cartilage in osteoarthritis and by entheses in diffuse idiopathic skeletal hyperostosis. The enthesopathy leads to the ossification of the anterior longitudinal ligament of the spine and causes the formation of flowing osteophytes, while intervertebral disc space is quite preserved in early phases of the disease. Symptoms of spine involvement are not typical of the disease and consist of pain and stiffness, usually worsened by inaction and damp. It has also been described the ossification of posterior longitudinal ligament which can lead to medullary canal stenosis. Appendicular skeleton is symmetrically involved in early phases of the disease, the most distinctive affected sites being feet, olecranus and patella. Hip involvement is also frequent and may lead to severe disability and represents an important cause of invalidity. The purpose of the present review is to remark on aetiopathogenetic and clinical aspects of diffuse idiopathic skeletal hyperostosis.

  8. Thoracic skeletal defects and cardiac malformations: a common epigenetic link?

    Science.gov (United States)

    Weston, Andrea D; Ozolins, Terence R S; Brown, Nigel A

    2006-12-01

    Congenital heart defects (CHDs) are the most common birth defects in humans. In addition, cardiac malformations represent the most frequently identified anomaly in teratogenicity experiments with laboratory animals. To explore the mechanisms of these drug-induced defects, we developed a model in which pregnant rats are treated with dimethadione, resulting in a high incidence of heart malformations. Interestingly, these heart defects were accompanied by thoracic skeletal malformations (cleft sternum, fused ribs, extra or missing ribs, and/or wavy ribs), which are characteristic of anterior-posterior (A/P) homeotic transformations and/or disruptions at one or more stages in somite development. A review of other teratogenicity studies suggests that the co-occurrence of these two disparate malformations is not unique to dimethadione, rather it may be a more general phenomenon caused by various structurally unrelated agents. The coexistence of cardiac and thoracic skeletal malformations has also presented clinically, suggesting a mechanistic link between cardiogenesis and skeletal development. Evidence from genetically modified mice reveals that several genes are common to heart development and to formation of the axial skeleton. Some of these genes are important in regulating chromatin architecture, while others are tightly controlled by chromatin-modifying proteins. This review focuses on the role of these epigenetic factors in development of the heart and axial skeleton, and examines the hypothesis that posttranslational modifications of core histones may be altered by some developmental toxicants.

  9. Diagnosis of the human fetal age based on the development of the normal kidney

    Directory of Open Access Journals (Sweden)

    Lizardo-Daudt Helena Maria

    2002-01-01

    Full Text Available Background and aims: The diagnosis of human fetal age is usually estimated based on the measurement of crown-rump length or crown-heel length and the weight of the fetus. However, this estimate is not totally accurate and sometimes is necessary to combine other data to determine the fetal age. An analysis of the normal embryological development of the kidney may assist in this determination. The histology of this process, although well described, lacks photographic documentation. We intend to fill this gap by providing histologists and pathologists, especially inexperienced ones, with information about the staging of the renal development through microphotography. The objective of the present study was to achieve greater accuracy for the diagnosis of human fetal age through the proposed classification and the photographic documentation presented. Material and methods: Normal embryological development of the human kidney was studied by light microscopy. The fetal period from 6 to 40 weeks of gestation was observed according the stage of maturity of glomeruli and tubules; localization of glomeruli, occurrence of nephrogenic tissue and cortico-medullary differentiation. At least 5 different exams were observed from each week of development. Two hundred four exams were analyzed in the whole study. The histological characteristics were quantified and the process was documented by microphotography. Results and final considerations: The fetal development of the kidney was divided into 8 stages, which was documented through microphotography. Nephron structural formation occurred until the 34th week of prenatal development. From the 35th week on, tubules and glomeruli continued to mature without the formation of new nephrons. The proposed classification intends to improve the accuracy of the fetal age diagnosis.

  10. Sympathetic actions on the skeletal muscle.

    Science.gov (United States)

    Roatta, Silvestro; Farina, Dario

    2010-01-01

    The sympathetic nervous system (SNS) modulates several functions in skeletal muscle fibers, including metabolism, ionic transport across the membrane, and contractility. These actions, together with the sympathetic control of other organ systems, support intense motor activity. However, some SNS actions on skeletal muscles may not always be functionally advantageous. Implications for motor control and sport performance are discussed.

  11. Skeletal stem cells in space and time

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Bianco, Paolo

    2015-01-01

    The nature, biological characteristics, and contribution to organ physiology of skeletal stem cells are not completely determined. Chan et al. and Worthley et al. demonstrate that a stem cell for skeletal tissues, and a system of more restricted, downstream progenitors, can be identified in mice...

  12. Expression of slow skeletal TnI in adult mouse hearts confers metabolic protection to ischemia

    Science.gov (United States)

    Pound, Kayla M.; Arteaga, Grace M.; Fasano, Mathew; Wilder, Tanganyika; Fischer, Susan K.; Warren, Chad M.; Wende, Adam R.; Farjah, Mariam; Abel, E. Dale; Solaro, R. John; Lewandowski, E. Douglas

    2011-01-01

    Changes in metabolic and myofilament phenotypes coincide in developing hearts. Posttranslational modification of sarcomere proteins influences contractility, affecting the energetic cost of contraction. However, metabolic adaptations to sarcomeric phenotypes are not well understood, particularly during pathophysiological stress. This study explored metabolic adaptations to expression of the fetal, slow skeletal muscle troponin I (ssTnI). Hearts expressing ssTnI exhibited no significant ATP loss during 5 minutes of global ischemia, while non-transgenic littermates (NTG) showed continual ATP loss. At 7 min ischemia TG-ssTnI hearts retained 80±12% of ATP vs. 49±6% in NTG (P<0.05). Hearts expressing ssTnI also had increased AMPK phosphorylation. The mechanism of ATP preservation was augmented glycolysis. Glycolytic end products (lactate and alanine) were 38% higher in TG-ssTnI than NTG at 2 min and 27% higher at 5 min. This additional glycolysis was supported exclusively by exogenous glucose, and not glycogen. Thus, expression of a fetal myofilament protein in adult mouse hearts induced elevated anaerobic ATP production during ischemia via metabolic adaptations consistent with the resistance to hypoxia of fetal hearts. The general findings hold important relevance to both our current understanding of the association between metabolic and contractile phenotypes and the potential for invoking cardioprotective mechanisms against ischemic stress. PMID:21640727

  13. Neurodevelopmental changes of fetal pain.

    Science.gov (United States)

    Lowery, Curtis L; Hardman, Mary P; Manning, Nirvana; Hall, R Whit; Anand, K J S; Clancy, Barbara

    2007-10-01

    Pain in the developing fetus is controversial because of the difficulty in measuring and interpreting pain during gestation. It has received increased attention lately because of recently introduced legislation that would require consideration of fetal pain during intentional termination of pregnancy. During development, sensory fibers are abundant by 20 weeks; a functional spinal reflex is present by 19 weeks; connections to the thalamus are present by 20 weeks; and connections to subplate neurons are present by 17 weeks with intensive differentiation by 25 weeks. These cells are important developmentally, but decline as a result of natural apoptosis. Mature thalamocortical projections are not present until 29 to 30 weeks, which has led many to believe the fetus does not experience emotional "pain" until then. Pain requires both nociception and emotional reaction or interpretation. Nociception causes physiologic stress, which in turn causes increases in catecholamines, cortisol, and other stress hormones. Physiological stress is different from the emotional pain felt by the more mature fetus or infant, and this stress is mitigated by pain medication such as opiates. The plasticity of the developing brain makes it vulnerable to the stressors that cause long-term developmental changes, ultimately leading to adverse neurological outcomes. Whereas evidence for conscious pain perception is indirect, evidence for the subconscious incorporation of pain into neurological development and plasticity is incontrovertible. Scientific data, not religious or political conviction, should guide the desperately needed research in this field. In the meantime, it seems prudent to avoid pain during gestation.

  14. Fetal and neonatal endocrine disruptors.

    Science.gov (United States)

    Unüvar, Tolga; Büyükgebiz, Atilla

    2012-06-01

    Endocrine disruptors are substances commonly encountered in every setting and condition in the modern world. It is virtually impossible to avoid the contact with these chemical compounds in our daily life. Molecules defined as endocrine disruptors constitute an extremely heterogeneous group and include synthetic chemicals used as industrial solvents/lubricants and their by-products. Natural chemicals found in human and animal food (phytoestrogens) also act as endocrine disruptors. Different from adults, children are not exposed only to chemical toxins in the environment but may also be exposed during their intrauterine life. Hundreds of toxic substances, which include neuro-immune and endocrine toxic chemical components that may influence the critical steps of hormonal, neurological and immunological development, may affect the fetus via the placental cord and these substances may be excreted in the meconium. Children and especially newborns are more sensitive to environmental toxins compared to adults. Metabolic pathways are immature, especially in the first months of life. The ability of the newborn to metabolize, detoxify and eliminate many toxins is different from that of the adults. Although exposures occur during fetal or neonatal period, their effects may sometimes be observed in later years. Further studies are needed to clarify the effects of these substances on the endocrine system and to provide evidence for preventive measures.

  15. Fetal echocardiography in ectopia cordis.

    Science.gov (United States)

    Repondek-Liberska, M; Janiak, K; Wloch, A

    2000-01-01

    Ectopia cordis is an extremely rare congenital abnormality occurring in 5.5 to 7.9 per 1 million live births with high lethality. Between January 1995 and October 1997 eight cases of ectopia cordis were diagnosed at our institute before birth. On the basis of echocardiography the fetal heart anatomy was categorized as either normal heart anatomy (NHA; n = 3) or congenital heart defect (CHD; n = 5). In the majority of cases (seven of eight) other abnormalities were present. Some reports have described ectopia cordis being diagnosed in the first trimester of pregnancy. In our study group the average gestational age at diagnosis was 26 weeks. The prenatal diagnosis of isolated ectopia cordis is easy; counseling the patient, the perinatal management including term, place, and method of delivery, and optimal care of the newborn are more difficult. Ectopia cordis is a malformation that pediatricians rarely encounter, even at pediatric cardiology centers. Much more frequently it is a problem for sonographers and obstetricians; however, pediatric cardiologists should be aware of diagnostic algorithm for such cases, especially when additional abnormalities are present.

  16. Human skeletal muscle releases leptin in vivo

    DEFF Research Database (Denmark)

    Wolsk, Emil; Grøndahl, Thomas Sahl; Pedersen, Bente Klarlund

    2012-01-01

    and adipose tissue leptin release in vivo. We recruited 16 healthy male human participants. Catheters were inserted into the femoral artery and vein draining skeletal muscle, as well as an epigastric vein draining the abdominal subcutaneous adipose tissue. By combining the veno-arterial differences in plasma......Leptin is considered an adipokine, however, cultured myocytes have also been found to release leptin. Therefore, as proof-of-concept we investigated if human skeletal muscle synthesized leptin by measuring leptin in skeletal muscle biopsies. Following this, we quantified human skeletal muscle...... leptin with measurements of blood flow, leptin release from both tissues was quantified. To induce changes in leptin, the participants were infused with either saline or adrenaline in normo-physiological concentrations. The presence of leptin in skeletal muscle was confirmed by western blotting. Leptin...

  17. Defective skeletal mineralization in pediatric CKD.

    Science.gov (United States)

    Wesseling-Perry, Katherine

    2015-04-01

    Although traditional diagnosis and treatment of renal osteodystrophy focused on changes in bone turnover, current data demonstrate that abnormalities in skeletal mineralization are also prevalent in pediatric chronic kidney disease (CKD) and likely contribute to skeletal morbidities that continue to plague this population. It is now clear that alterations in osteocyte biology, manifested by changes in osteocytic protein expression, occur in early CKD before abnormalities in traditional measures of mineral metabolism are apparent and may contribute to defective skeletal mineralization. Current treatment paradigms advocate the use of 1,25(OH)2vitamin D for the control of secondary hyperparathyroidism; however, these agents fail to correct defective skeletal mineralization and may exacerbate already altered osteocyte biology. Further studies are critically needed to identify the initial trigger for abnormalities of skeletal mineralization as well as the potential effects that current therapeutic options may have on osteocyte biology and bone mineralization.

  18. Continuous fetal tissue pH measurement in labor.

    Science.gov (United States)

    Young, B K; Noumoff, J; Klein, S A; Katz, M

    1978-11-01

    Fifty-one women in labor had continuous monitoring of fetal scalp tissue pH, fetal heart rate by ECG, and uterine contractions. A miniature pH electrode secured by a double spiral fetal ECG electrode was used for measurement of fetal pH every 15 seconds. The results were correlated with fetal scalp blood pH values obtained simultaneously. Fetal scalp sampling is intermittent, requires repeated scalp incisions, is subject to errors due to air mixing and coagulation of the blood sample, and is uncomfortable for the parturient. Placement of the tissue pH electrode allows continuous data recording with the minimum discomfort to the patient and the least number of fetal scalp incisions. Clinical use of the tissue pH electrode might be a practical alternative to fetal scalp samples, if the data obtained accurately reflect fetal status.

  19. Role of fetal monitoring in high risk pregnancy by fetal electrocardiogram

    Directory of Open Access Journals (Sweden)

    Somya Girish Goyal

    2014-08-01

    Full Text Available Background: Non-stress test is an external monitoring of fetal heart rate by electrocardiograph. Although intermittent auscultation of fetal heart rate is equivalent to continuous electronic fetal monitoring in detecting fetal compromise1 but continuous electronic fetal monitoring is indicated in high risk patients women whose foetuses are at high risk for neonatal encephalopathy or cerebral palsy.2 Objective of current study was to study the efficacy and diagnostic value of non-stress Test for surveillance and its usefulness to detect fetal distress at early stage which help to decide further management in mode of delivery. Methods: Design: prospective study. NST was done in 50 high risk patients for minimum of 20 minutes and in patients with non-reactive non stress test it was continued for 40 minutes. Maternal age, parity, complications during labour, and delivery, mode of delivery, indications of caesarean section and perinatal outcome were noted. Results: Out of total 50 cases studied patient delivered vaginally were 24 and Caesarean was done in 26 cases. Most LSCS were performed due to PIH (35% and related complications like IUGR, eclampsia (10%, fetal distress, previous caesarean pregnancy, IUGR, oligohydraminos and meconium stained liquor. 52% patients were delivered by caesarean and 48% by normal delivery. Conclusions: Routine use of electronic fetal heart monitoring helped in reduction of neonatal morbidity and mortality with increased rate of caesarean section. [Int J Reprod Contracept Obstet Gynecol 2014; 3(4.000: 893-897

  20. Evaluation of the fetal QT interval using non-invasive fetal ECG technology.

    Science.gov (United States)

    Behar, Joachim; Zhu, Tingting; Oster, Julien; Niksch, Alisa; Mah, Douglas Y; Chun, Terrence; Greenberg, James; Tanner, Cassandre; Harrop, Jessica; Sameni, Reza; Ward, Jay; Wolfberg, Adam J; Clifford, Gari D

    2016-09-01

    Non-invasive fetal electrocardiography (NI-FECG) is a promising alternative continuous fetal monitoring method that has the potential to allow morphological analysis of the FECG. However, there are a number of challenges associated with the evaluation of morphological parameters from the NI-FECG, including low signal to noise ratio of the NI-FECG and methodological challenges for getting reference annotations and evaluating the accuracy of segmentation algorithms. This work aims to validate the measurement of the fetal QT interval in term laboring women using a NI-FECG electrocardiogram monitor. Fetal electrocardiogram data were recorded from 22 laboring women at term using the NI-FECG and an invasive fetal scalp electrode simultaneously. A total of 105 one-minute epochs were selected for analysis. Three pediatric electrophysiologists independently annotated individual waveforms and averaged waveforms from each epoch. The intervals measured on the averaged cycles taken from the NI-FECG and the fetal scalp electrode showed a close agreement; the root mean square error between all corresponding averaged NI-FECG and fetal scalp electrode beats was 13.6 ms, which is lower than the lowest adult root mean square error of 16.1 ms observed in related adult QT studies. These results provide evidence that NI-FECG technology enables accurate extraction of the fetal QT interval.

  1. Comparative Study of Skeletal Stability between Postoperative Skeletal Intermaxillary Fixation and No Skeletal Fixation after Bilateral Sagittal Split Ramus Osteotomy

    DEFF Research Database (Denmark)

    Hartlev, Jens; Godtfredsen, Erik; Andersen, Niels Trolle

    2014-01-01

    . One group (n = 13) were treated postoperatively with skeletal elastic intermaxillary fixation (IMF) while the other group (n = 13) where threated without skeletal elastic IMF. RESULTS: The mean advancement at B-point and Pog in the skeletal elastic IMF group was 6.44 mm and 7.22 mm, respectively....... Relapse at follow-up at B-point was -0.74 mm and -0.29 mm at Pog. The mean advancement at B-point and Pog in the no skeletal elastic IMF group was 6.30 mm and 6.45 mm, respectively. Relapse at follow-up at B-point was -0.97 mm and -0.86 mm at Pog. There was no statistical significant (P > 0.05) difference...... between the skeletal IMF group and the no skeletal group regarding advancement nor relapse at B-point or Pog. CONCLUSIONS: Bilateral sagittal split osteotomy is characterized as a stable treatment to correct Class II malocclusion. This study demonstrated no difference of relapse between the skeletal...

  2. The number of fetal cells in maternal blood is associated to exercise and fetal gender

    DEFF Research Database (Denmark)

    Schlütter, Jacob Mørup; Kirkegaard, Ida; Christensen, Connie Britta;

    were then stained with a cocktail of fetal cell-specific antibodies, identified and counted. Results: Participants carrying male fetuses had higher median number of fcmbs per 30 mL blood than those carrying female fetuses (5 vs. 3, p=0.004). Exercise within 3 hours (1.5 vs. 4, p=0.02) and 24 hours (2......Introduction: We have established a robust method to specifically identify and isolate a placental fetal cell in maternal blood (fcmbs) at a gestational age of 12 weeks. The concentration of these cells, however, varies considerably among pregnant women (median 3 fcmbs/30 mL blood, range 0...... activity was obtained by a questionnaire and a structured interview. The number of fcmbs was assessed in 30 mL blood processed by a proprietary method developed in-house. Fetal cells in the blood, binding to fetal cell specific antibodies, were initially isolated by magnetic cell sorting. The fetal cells...

  3. FETAL ECHOCARDIOGRAPHY: A STUDY OF CLINICAL OUTCOME

    Directory of Open Access Journals (Sweden)

    Rajanish

    2014-01-01

    Full Text Available BACKGROUND : S tructural abnormalities of the heart and great vessels are fairly common congenital lab normalities with the incidenceof8 in 1000 live births. With the advent of real time scanners fetal cardia can atomy can be analyze d echocardiographically. The earlier diagnosis will make an impact on clinical management of fetus with congenital heart disease. It helps intimely triage and optimal management of specific congenital heart disease either structural , functional orarrhythmia . OBJECTIVES : This study was conducted to note the spectrum of congenital heart diseases detected on fetal echo in pregnant mothers referred with high risk for CHD sand to assess the outcome of prenatally detected congenital heart diseases. MATERIAL S AND METHODS : T he study is aprospective descriptive study conducted in a tertiary care pediatric hospital in Mumbai over period of one year . P regnant mothers were referred for fetal echo , where pregnancy was considered as high risk for CHDs due to maternal , fetalfactorsorabnormallevel 1 scan.Fetal echowas performed by a trained pediatric cardiologistat 18 to 20 week of gestation using HP sonos 2000 echocardiographicmachinewith3/3.5 Hz transducer. Cardiac lesionsandoutcome of pregnancy was noted by postnatal follow - up of patients. RESULTS : A total of 170 patients underwent fetal echo , 13 patients have not delivered and 48 were lost to follow - up. Fetal echo was normal in 130(76.4% and abnormalities were detected in 40(23.5%.Structural anomalies were seen in 24(14.1% , arrhythmia in 5(2.9% and functional abnormalities in 11(6.4%.On outcome analysis84 (77.1% arealive , IUD /terminationof pregnancyoccurred in 18(16.5% , neonatal death in 6 (5.5% , infant death in 1 (0.9%. CONCLUSIONS : All ranges of CHDs can be diagnosed by fetal echocardiography . O utcome of prenatally detected complex congenital heart disease is poor ; nonetheless earlier detection provides a n opportunity for early interventions and

  4. [Biomechanical characteristics of human fetal membranes. Preterm fetal membranes are stronger than term fetal membranes].

    Science.gov (United States)

    Rangaswamy, N; Abdelrahim, A; Moore, R M; Uyen, L; Mercer, B M; Mansour, J M; Kumar, D; Sawady, J; Moore, J J

    2011-06-01

    The purpose of this study was to determine the biomechanical characteristics of human fetal membranes (FM) throughout gestation. Biomechanical properties were determined for 115 FM of 23-41 weeks gestation using our previously described methodology. The areas of membrane immediately adjacent to the strongest and weakest tested spots were sampled for histomorphometric analysis. Clinical data on the patients whose FM were examined were also collected. FM less than 28 weeks gestation were associated with higher incidence of abruption and chorioamnionitis. Topographically FM at all gestations had heterogeneous biomechanical characteristics over their surfaces with distinct weak areas. The most premature membranes were the strongest. FM strength represented by rupture force and work to rupture decreased with increasing gestation in both weak and strong regions of FM. This decrease in FM strength was most dramatic at more than 38 weeks gestation. The FM component amnion-chorion sublayers were thinner in the weak areas compared to strong areas. Compared to term FM, preterm FM are stronger but have similar heterogeneous weak and strong areas. Following a gradual increase in FM weakness with increasing gestation, there is a major drop-off at term 38 weeks gestation. The FM weak areas are thinner than the stronger areas. Whether the difference in thickness is enough to account for the strength differences is unknown.

  5. Boy or Girl? Maternal Psychological Correlates of Knowing Fetal Sex.

    Science.gov (United States)

    Kotila, Letitia E; Schoppe-Sullivan, Sarah J; Kamp Dush, Claire M

    2014-10-01

    Ultrasound provides a reliable, convenient way to determine fetal sex, but not all expectant mothers pursue this knowledge. We used logistic regression to investigate whether maternal personality, parenting perfectionism, and gender role beliefs were associated with knowing fetal sex in a recent sample of first-time expectant mothers. We also tested whether conscientiousness and extraversion moderated the association between gender role beliefs and knowing fetal sex. Mothers who were more open to experience were less likely to know fetal sex, whereas mothers high in parenting perfectionism were more likely to know fetal sex. Conscientious mothers who espoused more egalitarian gender role beliefs were less likely to know fetal sex.

  6. Complex epithelial remodeling underlie the fusion event in early fetal development of the human penile urethra.

    Science.gov (United States)

    Shen, Joel; Overland, Maya; Sinclair, Adriane; Cao, Mei; Yue, Xuan; Cunha, Gerald; Baskin, Laurence

    We recently described a two-step process of urethral plate canalization and urethral fold fusion to form the human penile urethra. Canalization ("opening zipper") opens the solid urethral plate into a groove, and fusion ("closing zipper") closes the urethral groove to form the penile urethra. We hypothesize that failure of canalization and/or fusion during human urethral formation can lead to hypospadias. Herein, we use scanning electron microscopy (SEM) and analysis of transverse serial sections to better characterize development of the human fetal penile urethra as contrasted to the development of the human fetal clitoris. Eighteen 7-13 week human fetal external genitalia specimens were analyzed by SEM, and fifteen additional human fetal specimens were sectioned for histologic analysis. SEM images demonstrate canalization of the urethral/vestibular plate in the developing male and female external genitalia, respectively, followed by proximal to distal fusion of the urethral folds in males only. The fusion process during penile development occurs sequentially in multiple layers and through the interlacing of epidermal "cords". Complex epithelial organization is also noted at the site of active canalization. The demarcation between the epidermis of the shaft and the glans becomes distinct during development, and the epithelial tag at the distal tip of the penile and clitoral glans regresses as development progresses. In summary, SEM analysis of human fetal specimens supports the two-zipper hypothesis of formation of the penile urethra. The opening zipper progresses from proximal to distal along the shaft of the penis and clitoris into the glans in identical fashion in both sexes. The closing zipper mechanism is active only in males and is not a single process but rather a series of layered fusion events, uniquely different from the simple fusion of two epithelial surfaces as occurs in formation of the palate and neural tube. Copyright © 2016 International Society

  7. Complex epithelial remodeling underlie the fusion event in early fetal development of the human penile urethra

    Science.gov (United States)

    Sinclair, Adriane; Cao, Mei; Yue, Xuan; Cunha, Gerald; Baskin, Laurence

    2016-01-01

    We recently described a two-step process of urethral plate canalization and urethral fold fusion to form the human penile urethra. Canalization (“opening zipper”) opens the solid urethral plate into a groove, and fusion (“closing zipper”) closes the urethral groove to form the penile urethra. We hypothesize that failure of canalization and/or fusion during human urethral formation can lead to hypospadias. Herein, we use scanning electron microscopy (SEM) and analysis of transverse serial sections to better characterize development of the human fetal penile urethra as contrasted to the development of the human fetal clitoris. Eighteen 7-13 week human fetal external genitalia specimens were analyzed by SEM, and fifteen additional human fetal specimens were sectioned for histologic analysis. SEM images demonstrate canalization of the urethral/vestibular plate in the developing male and female external genitalia, respectively, followed by proximal to distal fusion of the urethral folds in males only. The fusion process during penile development occurs sequentially in multiple layers and through the interlacing of epidermal “cords”. Complex epithelial organization is also noted at the site of active canalization. The demarcation between the epidermis of the shaft and the glans becomes distinct during development, and the epithelial tag at the distal tip of the penile and clitoral glans regresses as development progresses. In summary, SEM analysis of human fetal specimens supports the two-zipper hypothesis of formation of the penile urethra. The opening zipper progresses from proximal to distal along the shaft of the penis and clitoris into the glans in identical fashion in both sexes. The closing zipper mechanism is active only in males and is not a single process but rather a series of layered fusion events, uniquely different from the simple fusion of two epithelial surfaces as occurs in formation of the palate and neural tube. PMID:27397682

  8. PDH regulation in skeletal muscle

    DEFF Research Database (Denmark)

    Kiilerich, Kristian

    is determined by the overall content / activity of the regulatory proteins PDH kinase (PDK), of which there are 4 isoforms, and PDH phosphatase (PDP), of which there are 2 isoforms. The overall aim of the PhD project was to elucidate 4 issues. 1: Role of muscle type in resting and exercise-induced PDH...... in arm than leg muscles during exercise in humans may be the result of lower PDH-E1? content and not a muscle type dependent difference in PDH regulation. Both low muscle glycogen and increased plasma FFA are associated with upregulation of PDK4 protein and less exercise-induced increase in PDHa activity...... in human skeletal muscle. It may be noted that the increased PDK4 protein associated with elevated plasma FFA occurs already 2 hours after different dietary intake. A week of physical inactivity (bed rest), leading to whole body glucose intolerance, does not affect muscle PDH-E1? content, or the exercise...

  9. [In vitro construction of skeletal muscle tissues.

    Science.gov (United States)

    Morimoto, Yuya; Takeuchi, Shoji

    In conventional culture methods using culture dishes, myotubes formed by fusion of myoblasts adhere to the surface of the culture dishes. Because the adherence causes interruption of myotube contractions and immobilization of myotubes from the culture dishes, the conventional culture methods have limitations to applications of the myotubes into drug developments and medical treatments. In order to avoid their adherence, many researchers have proposed in vitro construction of skeletal muscle tissues which both ends are fixed to anchors. The skeletal muscle tissues achieve their contractions freely according to electrical stimulations or optical stimulations, and transfer of them to other experimental setup by releasing them form the anchors. By combining the skeletal muscle tissues with force sensors, the skeletal muscle tissues are available to drug screening tests based on contractile force as a functional index. Furthermore, survival of the skeletal muscle tissues are demonstrated by implantation of them to animals. Thus, in vitro constructed skeletal muscle tissues is now recognized as attractive tools in medical fields. This review will summarize fabrication methods, properties and medical applicability of the skeletal muscle tissues.

  10. Adjustable fetal phantom for pulse oximetry

    Science.gov (United States)

    Stubán, Norbert; Niwayama, Masatsugu

    2009-05-01

    As the measuring head of a fetal pulse oximeter must be attached to the head of the fetus inside the mother's uterus during labor, testing, and developing of fetal pulse oximeters in real environment have several difficulties. A fetal phantom could enable evaluation of pulse oximeters in a simulated environment without the restrictions and difficultness of medical experiments in the labor room. Based on anatomic data we developed an adjustable fetal head phantom with three different tissue layers and artificial arteries. The phantom consisted of two arteries with an inner diameter of 0.2 and 0.4 mm. An electronically controlled pump produced pulse waves in the arteries. With the phantom we investigated the sensitivity of a custom-designed wireless pulse oximeter at different pulsation intensity and artery diameters. The results showed that the oximeter was capable of identifying 4% and 2% changes in diameter between the diastolic and systolic point in arteries of over 0.2 and 0.4 mm inner diameter, respectively. As the structure of the phantom is based on reported anatomic values, the results predict that the investigated custom-designed wireless pulse oximeter has sufficient sensitivity to detect the pulse waves and to calculate the R rate on the fetal head.

  11. Occupational lifting, fetal death and preterm birth

    DEFF Research Database (Denmark)

    Mocevic, Emina; Svendsen, Susanne Wulff; Jørgensen, Kristian Tore

    2014-01-01

    OBJECTIVE: We examined the association between occupational lifting during pregnancy and risk of fetal death and preterm birth using a job exposure matrix (JEM). METHODS: For 68,086 occupationally active women in the Danish National Birth Cohort, interview information on occupational lifting...... the JEM. We used Cox regression models with gestational age as underlying time variable and adjustment for covariates. RESULTS: We observed 2,717 fetal deaths and 3,128 preterm births within the study cohort. No exposure-response relation was observed for fetal death, but for women with a prior fetal...... death, we found a hazard ratio (HR) of 2.87 (95% CI 1.37, 6.01) for stillbirth (fetal death ≥22 completed gestational weeks) among those who lifted >200 kg/day. For preterm birth, we found an exposure-response relation for primigravid women, reaching a HR of 1.43 (95% CI 1.13, 1.80) for total loads >200...

  12. Recent advances in fetal gene therapy.

    Science.gov (United States)

    Buckley, Suzanne M K; Rahim, Ahad A; Chan, Jerry K Y; David, Anna L; Peebles, Donald M; Coutelle, Charles; Waddingtont, Simon N

    2011-04-01

    Over the first decade of this new millennium gene therapy has demonstrated clear clinical benefits in several diseases for which conventional medicine offers no treatment. Clinical trials of gene therapy for single gene disorders have recruited predominantly young patients since older subjects may have suffered irrevocablepathological changes or may not be available because the disease is lethal relatively early in life. The concept of fetal gene therapy is an extension of this principle in that diseases in which irreversible changes occur at or beforebirth can be prevented by gene supplementation or repair in the fetus or associated maternal tissues. This article ccnsiders the enthusiasm and skepticism held for fetal gene therapy and its potential for clinical application. It coversa spectrum of candidate diseases for fetal gene therapy including Pompe disease, Gaucher disease, thalassemia, congenital protein C deficiency and cystic fibrosis. It outlines successful and not-so-successful examples of fetal gene therapy in animal models. Finally the application and potential of fetal gene transfer as a fundamental research tool for developmental biology and generation of somatic transgenic animals is surveyed.

  13. Magnetocardiography in the diagnosis of fetal arrhythmia.

    Science.gov (United States)

    van Leeuwen, P; Hailer, B; Bader, W; Geissler, J; Trowitzsch, E; Grönemeyer, D H

    1999-11-01

    To examine the possible use of magnetocardiography in the diagnosis of fetal arrhythmias. Investigation of routinely examined pregnant women, as well as women referred because of arrhythmias or other reasons. Sixty-three women between the 13th and 42nd week of pregnancy. Recording of 189 fetal magnetocardiograms, of which 173 traces (92%) demonstrated sufficient fetal signal strength to permit evaluation. After digital subtraction of the maternal artefact, all fetal complexes were identified and the recording was examined for arrhythmic events. Short bradycardic episodes, not associated with any pathological condition, were found in 26% of all recordings, usually in mid-pregnancy. In 12 cases, isolated extrasystoles of no clinical importance could be identified. There were nine traces which revealed multiple arrhythmias including ventricular and supraventricular ectopic beats, bigeminy and trigeminy, sino-atrial block and atrio-ventricular conduction disturbances. Furthermore, two cases with tachycardia were found. Magnetocardiography offers a simple noninvasive method for examination of the fetal cardiac electrophysiological signal. It may thus be useful in the identification and classification of clinically relevant arrhythmia and aid in decisions concerning treatment.

  14. Skeletal abnormalities of acrogeria, a progeroid syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Ho, A.; White, S.J.; Rasmussen, J.E.

    1987-08-01

    We report the skeletal abnormalities in a 4 1/2-year-old boy with acrogeria, a progeroid syndrome of premature aging of the skin without the involvement of internal organs seen in Hutchinson-Gilford progeria syndrome. Acro-osteolysis of the distal phalanges, delayed cranial suture closure with wormian bones, linear lucent defects of the metaphyses, and antegonial notching of the mandible are the predominant skeletal features of the disorder. The skeletal features described in 21 other reported cases of acrogeria are summarized.

  15. [Pregnancy-associated hormones and fetal-maternal relations].

    Science.gov (United States)

    Gailly-Fabre, E; Kerlan, V; Christin-Maitre, S

    2015-10-01

    Pregnancy is an immunological paradox that implies that a semi-allogeneic fetus is not rejected by the maternal immune system, from implantation of the embryo to delivery. Progesterone (P4), estradiol (E2) and human chorionic gonadotropin (hCG), contribute to the transformation of immune cells in a transient tolerance state, necessary to the maintenance of pregnancy. The effects of pregnancy hormones depend probably of their maternal plasma level. hCG is dangerous at high concentrations because it can stimulate autoantibodies production, whereas in physiological concentrations, hCG, P4 and E2 upregulate immune response expanding regulatory T and B cells, allowing the fetus to grow within the maternal uterus in a protective environment. A second example of fetal-maternal relation found recently is the role of maternal nutrition on development of the fetal hypothalamic neurons. Experiments in mice fed on a high fat diet reveal a critical timing when altered maternal metabolism affect formation of hypothalamic neurocircuits of the offspring and predispose him to long-term metabolic disorders.

  16. Ontogeny of innervation of rat and ovine fetal adrenals.

    Science.gov (United States)

    Engeland, W C; Wotus, C; Rose, J C

    1998-01-01

    The formation of adrenocortical zonation occurs in rats during late gestation. Since adult cortical function is modulated by neural mediators, it is possible that the development of differentiated function is dependent on cortical innervation. The goal of this study was to compare the pattern and timing of rodent and ovine adrenal innervation during late organogenesis by staining with antibodies directed against the neuropeptides vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and neuropeptide tyrosine (NPY) and the catecholamine biosynthetic enzyme, tyrosine hydroxylase (TOH). Rat adrenals were collected from fetal days 17-21 (term=21 days) and ovine adrenals from fetal days 101-136 (term=145 days). Adrenals were fixed, cryosectioned at 100 microns and immunostained using Cy3-conjugated secondary antibodies. In both species, staining of VIP, CGRP, NPY and TOH fibers was observed in the capsule and subcapsular layers of the cortex during gestation. In late gestation, VIP- and NPY-positive ganglions cells were observed near the medulla extending processes toward the outer cortex; in ovine adrenals, fibers from ganglion cells appeared to surround nests of outer cortical (presumably, zona glomerulosa) cells. These data show that phenotypically distinct neural elements appear at different stages of adrenocortical development. The presence of neural elements in contact with adrenal cortical cells supports the possibility for neural control of adrenocortical development.

  17. Integration of multivariate empirical mode decomposition and independent component analysis for fetal ECG separation from abdominal signals.

    Science.gov (United States)

    Thanaraj, Palani; Roshini, Mable; Balasubramanian, Parvathavarthini

    2016-11-14

    The fetal electrocardiogram (FECG) signals are essential to monitor the health condition of the baby. Fetal heart rate (FHR) is commonly used for diagnosing certain abnormalities in the formation of the heart. Usually, non-invasive abdominal electrocardiogram (AbECG) signals are obtained by placing surface electrodes in the abdomen region of the pregnant woman. AbECG signals are often not suitable for the direct analysis of fetal heart activity. Moreover, the strength and magnitude of the FECG signals are low compared to the maternal electrocardiogram (MECG) signals. The MECG signals are often superimposed with the FECG signals that make the monitoring of FECG signals a difficult task. Primary goal of the paper is to separate the fetal electrocardiogram (FECG) signals from the unwanted maternal electrocardiogram (MECG) signals. A multivariate signal processing procedure is proposed here that combines the Multivariate Empirical Mode Decomposition (MEMD) and Independent Component Analysis (ICA). The proposed method is evaluated with clinical abdominal signals taken from three pregnant women (N= 3) recorded during the 38-41 weeks of the gestation period. The number of fetal R-wave detected (NEFQRS), the number of unwanted maternal peaks (NMQRS), the number of undetected fetal R-wave (NUFQRS) and the FHR detection accuracy quantifies the performance of our method. Clinical investigation with three test subjects shows an overall detection accuracy of 92.8%. Comparative analysis with benchmark signal processing method such as ICA suggests the noteworthy performance of our method.

  18. Automatic real-time tracking of fetal mouth in fetoscopic video sequence for supporting fetal surgeries

    Science.gov (United States)

    Xu, Rong; Xie, Tianliang; Ohya, Jun; Zhang, Bo; Sato, Yoshinobu; Fujie, Masakatsu G.

    2013-03-01

    Recently, a minimally invasive surgery (MIS) called fetoscopic tracheal occlusion (FETO) was developed to treat severe congenital diaphragmatic hernia (CDH) via fetoscopy, by which a detachable balloon is placed into the fetal trachea for preventing pulmonary hypoplasia through increasing the pressure of the chest cavity. This surgery is so dangerous that a supporting system for navigating surgeries is deemed necessary. In this paper, to guide a surgical tool to be inserted into the fetal trachea, an automatic approach is proposed to detect and track the fetal face and mouth via fetoscopic video sequencing. More specifically, the AdaBoost algorithm is utilized as a classifier to detect the fetal face based on Haarlike features, which calculate the difference between the sums of the pixel intensities in each adjacent region at a specific location in a detection window. Then, the CamShift algorithm based on an iterative search in a color histogram is applied to track the fetal face, and the fetal mouth is fitted by an ellipse detected via an improved iterative randomized Hough transform approach. The experimental results demonstrate that the proposed automatic approach can accurately detect and track the fetal face and mouth in real-time in a fetoscopic video sequence, as well as provide an effective and timely feedback to the robot control system of the surgical tool for FETO surgeries.

  19. The relationship between maternal and fetal vitamin D, insulin resistance, and fetal growth.

    LENUS (Irish Health Repository)

    Walsh, Jennifer M

    2013-05-01

    Evidence for a role of vitamin D in maintaining normal glucose homeostasis is inconclusive. We sought to clarify the relationship between maternal and fetal insulin resistance and vitamin D status. This is a prospective cohort study of 60 caucasian pregnant women. Concentrations of 25-hydroxyvitamin D (25-OHD), glucose, insulin, and leptin were measured in early pregnancy and at 28 weeks. Ultrasound at 34 weeks assessed fetal anthropometry including abdominal wall width, a marker of fetal adiposity. At delivery birth weight was recorded and fetal 25-OHD, glucose, C-peptide, and leptin measured in cord blood. Insulin resistance was calculated using the Homeostasis Model Assessment (HOMA) equation. We found that those with lower 25-OHD in early pregnancy had higher HOMA indices at 28 weeks, (r = -.32, P = .02). No significant relationship existed between maternal or fetal leptin and 25-OHD, or between maternal or fetal 25-OHD and fetal anthropometry or birth weight. The incidence of vitamin D deficiency was high at each time point (15%-45%). These findings lend support to routine antenatal supplementation with vitamin D in at risk populations.

  20. Teratogenic effects of Origanum Vulgare extract in mice fetals

    Directory of Open Access Journals (Sweden)

    Iraj Ragerdi Kashani

    2013-11-01

    Full Text Available Background: A number of studies on reproduction have mentioned Origanum Vulgare extract’s ability to reduce mortality rates and improve fertility rates. However, other studies have suggested that it is possible to use Origanum Vulgare extract to induce abortion. The aim of this study was to investigate the effect of different doses of Origanum Vulgare on embryo survival and macroscopic abnormalities in mice.Methods: In this study, 24 mice Balb/c female weighting approximately 25-30 g were divided into 4 groups. Origanum Vulgare extract was prepared; different concentrations (2.5, 12.5, and 25 mg in 0.25 ml distilled water were administered, by oral gavage, to three experimental groups of mice between day 6 (starting gastrulation until day 15 of pregnancy (end of organogenesis. The control group consisted of six mice that received 0.25 ml of distilled water daily. On day 16 of study, pregnant mice were anesthetized by chloroform and fetuses were removed and stained with Alcian Blue, Alizarin Red s and microwave irradiation. Morphological and skeletal abnormalities were investigated by light and stereomicroscopes.Results: The results of this study showed that high doses of the Origanum Vulgare extract significantly decreased the mean number of embryos (100.5, P>0.05, mean number of live embryos (70.5, P>0.05 in each mouse and resulted in significant reduction in mean weight(11848 mg, P>0.05 and crown-rump length(11.90.23 mm, P>0.05 and the overall size of fetuses compared to control group, whereas there was no significant difference between the groups receiving low dose of Origanum Vulgare extract with control group. In addition, under the effect of the Origanum Vulgare extract the subcutaneous bleeding seemed (20.1, P>0.05 significantly more frequent compared to the control group. Conclusion: Origanum Vulgare extract did not have any positive effect on fetal development; and high dosages led to an increased incidence rate of

  1. Embryotoxicity and fetal toxicity of nickel in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sunderman, F.W Jr.; Shen, S.K.; Mitchell, J.M.; Allpass, P.R.; Damjanov, I.

    1978-01-01

    Embryotoxicity and fetal toxicity of nickel chloride (NiCl/sub 2/) and nickel subsulfide (Ni/sub 3/S/sub 2/) were studied in Fischer rats. Injection of NiCl/sub 2/ (16 mg of Ni/kg, im) on Day 8 of gestation reduced the man number of live pups per dam and resulted in diminisehd body weights of fetuses on Day 20 of gestation and of weanlings at 4 to 8 weeks after birth. Injection of Ni/sub 2/S/sub 2/ (80 mg of Ni/kg, im) on Day 6 of gestation reduced the mean number of live pups per dam. No congenital anomalies were found in fetuses from any Ni-treated dams, including dams that recieved 10 im injections of NiCl/sub 2/ (2 mg of Ni/kg, twice daily, on Days 6 to 10 of gestation). /sup 63/NiCl/sub 2/ (12 mg of Ni/kg, im) was administered to a group of nonpregnant female rats and to groups of pregnant rats on Day 8 or 18 of gestation. After 24 hr, the relative concentrations of /sup 63/Ni in tissues were: kidney > serum > adrenal approx. = lung approx. = ovary > spleen approx. = heart approx. = liver > skeletal muscle. Pituitary /sup 63/Ni concentrations were much higher in pregnant rats than in non-pregnant females. /sup 63/Ni concentrations in products of conception (embryos and embryonic membranes) on Day 9 and in placentas on Day 19 were equivalent to /sup 63/Ni concentrations in adrenal, lung, and ovary tissues of the dams. Autoradiography of fetuses and placentas on Day 19 of gestation showed /sup 63/Ni localization in fetal urinary bladders and in the basal laminae and yolk sacs of the placentas. These studies show (a) that im injection of NiCl/sub 2/ and Ni/sub 3/S/sub 2/ during early gestation causes embryonic mortality at dosages that do not cause maternal mortality, and (b) that /sup 63/Ni(II) can cross the feto-maternal barriers and enter the fetuses during late gestation.

  2. New advances in fetal MR neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Garel, Catherine [Hopital Robert Debre, Department of Paediatric Imaging, Paris (France)

    2006-07-15

    MR is now routinely and widely used in fetal neuroimaging and has proven to be valuable in the detection of many cerebral lesions, either genetically determined or acquired in utero. However, its efficiency has certain limits in the detection of diffuse white-matter abnormalities, the evaluation of fibre development and the demonstration of metabolic disorders. Moreover, conventional fetal MR imaging provides only a morphological approach to the fetal brain. New techniques such as diffusion-weighted imaging, diffusion tensor imaging, proton MR spectroscopy and functional MR imaging are developing. The majority of these are not used routinely. The principles, aims, technical problems and possible applications of these techniques for imaging the fetus are discussed. (orig.)

  3. Mechanisms of Fetal Programming in Hypertension

    Directory of Open Access Journals (Sweden)

    John Edward Jones

    2012-01-01

    Full Text Available Events that occur in the early fetal environment have been linked to long-term health and lifespan consequences in the adult. Intrauterine growth restriction (IUGR, which may occur as a result of nutrient insufficiency, exposure to hormones, or disruptions in placental structure or function, may induce the fetus to alter its developmental program in order to adapt to the new conditions. IUGR may result in a decrease in the expression of genes that are responsible for nephrogenesis as nutrients are rerouted to the development of more essential organs. Fetal survival under these conditions often results in low birth weight and a deficit in nephron endowment, which are associated with hypertension in adults. Interestingly, male IUGR offspring appear to be more severely affected than females, suggesting that sex hormones may be involved. The processes of fetal programming of hypertension are complex, and we are only beginning to understand the underlying mechanisms.

  4. Rapidly Regressive Unilateral Fetal Pleural Effusion

    Directory of Open Access Journals (Sweden)

    Tuncay Yuce

    2015-03-01

    Full Text Available Intrauterine pleural effusion of fetal lungs rarely regresses without intervention. In our case we treated a women at 32th weeks of gestation. Her pregnancy was complicated with fetal pleural effusion and polyhydramniosis. A therapeutic thoracocentesis was planned and she received two courses of betamethasone prior to procedure. On the day of planned procedure, a substantial regression of pleural effusion was observed and procedure was postponed. During her antenatal follow-up a complete regression of pleural effusion was observed. After delivery pleural effusion did not relapse. These findings hint there may be a role of antenatal steroids in treatment of fetal pleural effusion, which is known to be resistant to treatment modalities both during antenatal and postnatal period. [Cukurova Med J 2015; 40(Suppl 1: 25-28

  5. Physiology of the fetal and transitional circulation.

    Science.gov (United States)

    Finnemore, Anna; Groves, Alan

    2015-08-01

    The fetal circulation is an entirely transient event, not replicated at any point in later life, and functionally distinct from the pediatric and adult circulations. Understanding of the physiology of the fetal circulation is vital for accurate interpretation of hemodynamic assessments in utero, but also for management of circulatory compromise in premature infants, who begin extrauterine life before the fetal circulation has finished its maturation. This review summarizes the key classical components of circulatory physiology, as well as some of the newer concepts of physiology that have been appreciated in recent years. The immature circulation has significantly altered function in all aspects of circulatory physiology. The mechanisms and significance of these differences are also discussed, as is the impact of these alterations on the circulatory transition of infants born prematurely.

  6. Effect of Placenta Previa on Fetal Growth

    Science.gov (United States)

    HARPER, Lorie M.; ODIBO, Anthony O.; MACONES, George A.; CRANE, James P.; CAHILL, Alison G.

    2011-01-01

    Objective To estimate the association between placenta previa and abnormal fetal growth. Study Design Retrospective cohort study of consecutive women undergoing ultrasound between 15–22 weeks. Groups were defined by the presence or absence of complete or partial placenta previa. The primary outcome was intrauterine growth restriction (IUGR), defined as a birth weight placenta previa on fetal growth restriction. Results Of 59,149 women, 724 (1.2%) were diagnosed with a complete or partial previa. After adjusting for significant confounding factors (black race, gestational diabetes, preeclampsia, and single umbilical artery,), the risk of IUGR remained similar (adjusted odds ratio 1.1, 95% CI 0.9–1.5). The presence of bleeding did not impact the risk of growth restriction. Conclusion Placenta previa is not associated with fetal growth restriction. Serial growth ultrasounds are not indicated in patients with placenta previa. PMID:20599185

  7. Re-patterning of skeletal muscle energy metabolism by fat storage-inducing transmembrane protein 2.

    Science.gov (United States)

    Miranda, Diego A; Koves, Timothy R; Gross, David A; Chadt, Alexandra; Al-Hasani, Hadi; Cline, Gary W; Schwartz, Gary J; Muoio, Deborah M; Silver, David L

    2011-12-09

    Triacylglyceride stored in cytosolic lipid droplets (LDs) constitutes a major energy reservoir in most eukaryotes. The regulated turnover of triacylglyceride in LDs provides fatty acids for mitochondrial β-oxidation and ATP generation in physiological states of high demand for energy. The mechanisms for the formation of LDs in conditions of energy excess are not entirely understood. Fat storage-inducing transmembrane protein 2 (FIT2/FITM2) is the anciently conserved member of the fat storage-inducing transmembrane family of proteins implicated to be important in the formation of LDs, but its role in energy metabolism has not been tested. Here, we report that expression of FIT2 in mouse skeletal muscle had profound effects on muscle energy metabolism. Mice with skeletal muscle-specific overexpression of FIT2 (CKF2) had significantly increased intramyocellular triacylglyceride and complete protection from high fat diet-induced weight gain due to increased energy expenditure. Mass spectrometry-based metabolite profiling suggested that CKF2 skeletal muscle had increased oxidation of branched chain amino acids but decreased oxidation of fatty acids. Glucose was primarily utilized in CKF2 muscle for synthesis of the glycerol backbone of triacylglyceride and not for glycogen production. CKF2 muscle was ATP-deficient and had activated AMP kinase. Together, these studies indicate that FIT2 expression in skeletal muscle plays an unexpected function in regulating muscle energy metabolism and indicates an important role for lipid droplet formation in this process.

  8. Role of fetal surgery in spinal dysraphism

    Directory of Open Access Journals (Sweden)

    A Martina Messing-Jünger

    2013-01-01

    Full Text Available Open spinal dysraphism is a common and clinically challenging organo-genetic malformation. Due to the well-known multi-organ affection with significant implication on the lives of patients and their families, abortion after prenatal diagnosis became reality in most parts of the world. After publication of the Management of Myelomeningocele Study (MOMS results fetal surgery seems to be a new option and a broad discussion arose regarding advantages and risks of in utero treatment of spina bifida. This paper tries to evaluate objectively the actual state of knowledge and experience. This review article gives a historical overview as well as the experimental and pathophysiological background of fetal surgery in open spinal dysraphism. Additionally clinical follow-up experience of foetoscopically treated patients are presented and discussed. After carefully outweighing all available information on fetal surgery for spina bifida, one has to conclude, in accordance with the MOMS investigators, that in utero surgery cannot be considered a standard option at present time. But there is clear evidence of the hypothesis that early closure of the spinal canal has a positive influence on spinal cord function and severity of Chiari malformation type II, has been proven. A persisting problem is the fetal risk of prematurity and the maternal risk of uterus damage. There is also evidence that due to technical restrictions, fetal closure of the spinal canal bears unsolved problems leading to a higher postnatal incidence of complication surgery. Finally, missing long-term results make a definite evaluation impossible so far. At the moment, fetal surgery in open spinal dysraphism is not a standard of care despite promising results regarding central nervous system protection due to early spinal canal closure. Many technical problems need to be solved in the future in order to make this option a safe and standard one.

  9. Fetal control of parturition in marsupials.

    Science.gov (United States)

    Shaw, G; Renfree, M B

    2001-01-01

    Among marsupials, the control of birth is best understood in the tammar wallaby. The young is tiny relative to the mother and is highly altricial. Adult female tammar wallabies weigh 5 kg, whereas the neonate weighs about 400 mg. However, despite this small size, there is clear evidence that the fetus provides the signal that sets the timing of birth through several mechanisms. A fetal signal activates a nitric oxide-guanylate cyclase system in the myometrium that may maintain myometrial inactivity, and this is down-regulated at term. There is also up-regulation of prostaglandin (PG) production in the gravid endometrium during the last two days of gestation that parallels increased placental PG synthesis, and a pregnancy-specific up-regulation of oxytocin receptors in the gravid myometrium that increases the responsiveness of the gravid uterus to mesotocin. These changes facilitate parturition, but an acute fetus-derived signal appears to trigger parturition. The fetal signal is probably related to glucocorticoid production. The fetal adrenal matures and is able to synthesize cortisol by Day 22 of the 26-day gestation. The fetal adrenals double in size between Day 24 and term, and their cortisol content increases over 10-fold. The pituitary of the neonate contains presumptive corticotrophs, and the adrenals increase cortisol production in response to adrenocorticotrophin. Prostaglandin E2, which is produced by the placenta, is also a potent stimulant of fetal adrenal cortisol synthesis. Treatment of tammars in late gestation with the cortisol agonist, dexamethasone, triggers birth around 23 h later. There is thus a strong case that fetal adrenal cortisol plays a key role in the preparation for birth and the timing of it. Further studies are in progress to more clearly define the mechanisms behind these actions of cortisol.

  10. Rheology of fetal and maternal blood.

    Science.gov (United States)

    Reinhart, W H; Danoff, S J; King, R G; Chien, S

    1985-01-01

    Rheological parameters were measured in 10 pairs of mothers and newborns. Whole blood viscosity was similar despite a higher fetal hematocrit (47.0 +/- 5.1 versus 35.5 +/- 12.0%, mean +/- SD, p less than 0.05). When the hematocrit of the suspension of red cells in plasma was adjusted to 45%, the viscosity was significantly lower in the fetal blood over a wide range of shear rates (0.52-208 S-1). The main reason for the lower viscosity in the fetal blood was the lower plasma viscosity as compared to the maternal blood (1.08 +/- 0.05 versus 1.37 +/- 0.08 centipoise, p less than 0.05); this in turn was attributable to a lower total plasma protein concentration (4.74 +/- 0.71 versus 6.47 +/- 0.64 g/dl, p less than 0.05). All protein fractions were lower in the fetal plasma. The assessment of red cell deformability by filtration through polycarbonate sieves revealed that the resistance of a fetal red cell was three times higher than that of a maternal red cell in a 2.6-micron pore, but there was no significant difference in resistance for these red cells in 6.9-micron pores. This higher filtration resistance of fetal red cells through the small pores was mainly due to their large volume (115.4 +/- 10.8 versus 93.5 +/- 5.9 fl, p less than 0.001). Measurements on membrane-free hemoglobin solutions indicated that the internal viscosity of these two types of red cells was not different.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. ACMG statement on noninvasive prenatal screening for fetal aneuploidy.

    Science.gov (United States)

    Gregg, Anthony R; Gross, S J; Best, R G; Monaghan, K G; Bajaj, K; Skotko, B G; Thompson, B H; Watson, M S

    2013-05-01

    Noninvasive assessment of the fetal genome is now possible using next-generation sequencing technologies. The isolation of fetal DNA fragments from maternal circulation in sufficient quantity and sizes, together with proprietary bioinformatics tools, now allows patients the option of noninvasive fetal aneuploidy screening. However, obstetric care providers must become familiar with the advantages and disadvantages of the utilization of this approach as analysis of cell-free fetal DNA moves into clinical practice. Once informed, clinicians can provide efficient pretest and posttest counseling with the goal of avoiding patient harm. It is in the public's best interest that test results contain key elements and that laboratories adhere to established quality control and proficiency testing standards. The analysis of cell-free fetal DNA in maternal circulation for fetal aneuploidy screening is likely the first of major steps toward the eventual application of whole fetal genome/whole fetal exome sequencing.

  12. Scientific and ethical perspectives of perinatal and fetal medicine

    National Research Council Canada - National Science Library

    Valdés R, Enrique; Soto-Chacón, Emiliano; Castillo T, Silvia

    2008-01-01

    ..., called Perinatal and Fetal Medicine. We discuss the possible role of fetal cells and DNA in the diagnosis and treatment of diseases in the intrauterine environment The associated bioethical issues associated to these medical actions...

  13. Fetal responses to induced maternal relaxation during pregnancy

    Science.gov (United States)

    DiPietro, Janet A.; Costigan, Kathleen A.; Nelson, Priscilla; Gurewitsch, Edith D.; Laudenslager, Mark L.

    2008-01-01

    Fetal responses to induced maternal relaxation during the 32nd week of pregnancy were recorded in 100 maternal-fetal pairs using a digitized data collection system. The 18-minute guided imagery relaxation manipulation generated significant changes in maternal heart rate, skin conductance, respiration period, and respiratory sinus arrhythmia. Significant alterations in fetal neurobehavior were observed, including decreased fetal heart rate (FHR), increased FHR variability, suppression of fetal motor activity (FM), and increased FM-FHR coupling. Attribution of the two fetal cardiac responses to the guided imagery procedure itself, as opposed to simple rest or recumbency, is tempered by the observed pattern of response. Evaluation of correspondence between changes within individual maternal-fetal pairs revealed significant associations between maternal autonomic measures and fetal cardiac patterns, lower umbilical and uterine artery resistance and increased FHR variability, and declining salivary cortisol and FM activity. Potential mechanisms that may mediate the observed results are discussed. PMID:17919804

  14. In utero MRI diagnosis of fetal malformations in oligohydramnios

    Directory of Open Access Journals (Sweden)

    Ahmed Hesham Said

    2016-12-01

    Conclusion: MRI is valuable in evaluating suspected fetal malformations especially those related to brain and urinary system when ultrasound is inconclusive owing to oligohydramnios. Fetal MRI can add findings that may modify prenatal diagnosis.

  15. [Fetal pain: immediate and long term consequences].

    Science.gov (United States)

    Houfflin Debarge, Véronique; Dutriez, Isabelle; Pusniak, Benoit; Delarue, Eléonore; Storme, Laurent

    2010-06-01

    Several situations are potentially painful for fetuses, such as malformations and invasive procedures. Nociceptive pathways are known to be functional at 26 weeks. Even if it is not possible to evaluate the fetal experience of pain, it is essential to examine its immediate and long-term consequences. As early as the beginning of the second trimester, hemodynamic and hormonal responses are observed following fetal nociceptive stimulation, In experimental studies, long-term changes have been noted in the corticotrop axis, subsequent responses to pain, and behavior after perinatal nociceptive stimulation.

  16. Tumours of the fetal body: a review

    Energy Technology Data Exchange (ETDEWEB)

    Avni, Fred E.; Massez, Anne; Cassart, Marie [University Clinics of Brussels - Erasme Hospital, Department of Medical Imaging, Brussels (Belgium)

    2009-11-15

    Tumours of the fetal body are rare, but lesions have been reported in all spaces, especially in the mediastinum, the pericardial space, the adrenals, the kidney, and the liver. Lymphangioma and teratoma are the commonest histological types encountered, followed by cardiac rhabdomyoma. Adrenal neuroblastoma is the commonest malignant tumour. Imaging plays an essential role in the detection and work-up of these tumours. In addition to assisting clinicians it also helps in counselling parents. Most tumours are detected by antenatal US, but fetal MRI is increasingly used as it brings significant additional information in terms of tumour extent, composition and complications. (orig.)

  17. Pontomedullary disconnection: fetal and neonatal considerations

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Emma; Sweeney, Elizabeth [Royal Liverpool Children' s Hospital, Department of Clinical Genetics, Liverpool (United Kingdom); Pilling, David [Royal Liverpool Children' s Hospital, Department of Paediatric Radiology, Liverpool (United Kingdom); Hesseling, Markus; Subhedar, Nim [Liverpool Women' s Hospital, Department of Neonatology, Liverpool (United Kingdom); Roberts, Devender [Liverpool Women' s Hospital, Department of Fetal Medicine, Liverpool (United Kingdom)

    2005-08-01

    The cerebellar and pontocerebellar hypoplasias present a unique challenge when detected in the developing fetus. A diverse aetiology and prognosis make counselling of these families difficult. Advances in fetal imaging allow for more accurate diagnosis and counselling, but postnatal MRI is still required. A case is presented in which cerebellar hypoplasia was detected at 20 weeks gestation. Later fetal imaging provided further information, but a diagnosis of pontomedullary disconnection was not made until the postnatal MRI scan. The clinical findings and possible causes of such pontocerebellar abnormalities are discussed. (orig.)

  18. Sonographic Findings in Fetal Renal Vein Thrombosis.

    Science.gov (United States)

    Gerber, Rebecca E; Bromley, Bryann; Benson, Carol B; Frates, Mary C

    2015-08-01

    We present the sonographic findings of fetal renal vein thrombosis in a series of 6 patients. The mean gestational age at diagnosis was 31.2 weeks. Four cases were unilateral, and 2 were bilateral. The most common findings were renal enlargement and intrarenal vascular calcifications, followed by increased renal parenchymal echogenicity. Inferior vena cava thrombosis was found in 4 patients and common iliac vein thrombosis in 2. Fetal renal vein thrombosis is an uncommon diagnosis with characteristic sonographic findings. The presence of these findings should prompt Doppler interrogation of the renal vein and inferior vena cava to confirm the diagnosis.

  19. New treatment of early fetal chylothorax

    DEFF Research Database (Denmark)

    Nygaard, Ulrikka; Sundberg, Karin; Nielsen, Henriette Svarre

    2007-01-01

    OBJECTIVE: To evaluate OK-432, a preparation of Streptococcus pyogenes, in the treatment of early fetal chylothorax. METHODS: A prospective study of all fetuses (n=7) with persistent early chylothorax (gestational ages 16-21 weeks) referred to the tertiary center of fetal medicine in Denmark in 2...... effusions, lung hypoplasia, or hydrops. CONCLUSION: Persistent early chylothorax is a condition with a high mortality rate and no established treatment option. Use of OK-432 is a promising therapy for selected fetuses with persistent chylothorax early in the second trimester....

  20. Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges.

    Science.gov (United States)

    Duffy, Rebecca M; Feinberg, Adam W

    2014-01-01

    Skeletal muscle is a scalable actuator system used throughout nature from the millimeter to meter length scales and over a wide range of frequencies and force regimes. This adaptability has spurred interest in using engineered skeletal muscle to power soft robotics devices and in biotechnology and medical applications. However, the challenges to doing this are similar to those facing the tissue engineering and regenerative medicine fields; specifically, how do we translate our understanding of myogenesis in vivo to the engineering of muscle constructs in vitro to achieve functional integration with devices. To do this researchers are developing a number of ways to engineer the cellular microenvironment to guide skeletal muscle tissue formation. This includes understanding the role of substrate stiffness and the mechanical environment, engineering the spatial organization of biochemical and physical cues to guide muscle alignment, and developing bioreactors for mechanical and electrical conditioning. Examples of engineered skeletal muscle that can potentially be used in soft robotics include 2D cantilever-based skeletal muscle actuators and 3D skeletal muscle tissues engineered using scaffolds or directed self-organization. Integration into devices has led to basic muscle-powered devices such as grippers and pumps as well as more sophisticated muscle-powered soft robots that walk and swim. Looking forward, current, and future challenges include identifying the best source of muscle precursor cells to expand and differentiate into myotubes, replacing cardiomyocytes with skeletal muscle tissue as the bio-actuator of choice for soft robots, and vascularization and innervation to enable control and nourishment of larger muscle tissue constructs.

  1. Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases.

    Science.gov (United States)

    Menezes-Rodrigues, Francisco Sandro; Pires-Oliveira, Marcelo; Duarte, Thiago; Paredes-Gamero, Edgar Julian; Chiavegatti, Tiago; Godinho, Rosely Oliveira

    2013-11-15

    Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses.

  2. Mature adipocyte-derived dedifferentiated fat cells can transdifferentiate into skeletal myocytes in vitro.

    Science.gov (United States)

    Kazama, Tomohiko; Fujie, Masaki; Endo, Tuyoshi; Kano, Koichiro

    2008-12-19

    We have previously reported the establishment of preadipocyte cell lines, termed dedifferentiated fat (DFAT) cells, from mature adipocytes of various animals. DFAT cells possess long-term viability and can redifferentiate into adipocytes both in vivo and in vitro. Furthermore, DFAT cells can transdifferentiate into osteoblasts and chondrocytes under appropriate culture conditions. However, it is unclear whether DFAT cells are capable of transdifferentiating into skeletal myocytes, which is common in the mesodermal lineage. Here, we show that DFAT cells can be induced to transdifferentiate into skeletal myocytes in vitro. Myogenic induction of DFAT cells resulted in the expression of MyoD and myogenin, followed by cell fusion and formation of multinucleated cells expressing sarcomeric myosin heavy chain. These results indicate that DFAT cells derived from mature adipocytes can transdifferentiate into skeletal myocytes in vitro.

  3. Effects of botulinum toxin type A on healing of injured skeletal muscles

    Directory of Open Access Journals (Sweden)

    Shokravi Ramin

    2007-01-01

    Full Text Available Objectives: (1 Evaluation of microscopic healing of skeletal muscle fibers after injuries, especially the arrangement of new muscle fibers and scar tissue diameter in the injury region. (2 Evaluation of alterations in microscopy of the healing procedure within skeletal muscles after injury following botulinum toxin type A (BTX -A induced muscle immobilization. Materials and Methods: The study was done on 12 white lab rabbits of either sex in a 6-month period. Results: The immobilization of skeletal muscle fibers as a result of the use of BTX-A after injury caused a qualitative increase in fibrous tissue formation in the area of injury, and the BTX-A-induced immobilization for a period of 6 months led to muscle atrophy.

  4. [Advances in the research of the relationship between calpains and post-burn skeletal muscle wasting].

    Science.gov (United States)

    Ma, Li; Chai, Jia-ke

    2013-06-01

    Calpains are intracellular nonlysosomal Ca(2+-) regulated cysteine proteases, widely located in the tissues of most mammals. Skeletal muscle tissue mainly expresses m-calpain, µ-caplain, n-calpain, and their endogenous inhibitor calpastatin. They are closely related to the cell apoptosis, cytoskeleton formation, cell cycles, etc. Calpains are also considered to be participating in the protein degradation process. Severe burns are typically followed by hypermetabolic responses that are characterized by hyperdynamic circulatory responses with increased proteolysis and cell apoptosis. Recently, overloading of Ca(2+) in skeletal muscle cells, which activates the calpains is observed after a serious burn. This paper aims to review the current research of the relationship between calpains and post-burn skeletal muscle wasting from the perspectives of structure, function, and physiological activities.

  5. [Diagnosis of fetal malformations with ultrasound--state of development].

    Science.gov (United States)

    Fendel, M; Fendel, H

    1983-01-01

    Ultrasonography is of great importance for the prenatal diagnosis of fetal malformations and abnormalities. An early diagnosis in the second trimester is of great interest for an intrauterine or an extrauterine therapy planning (the choice of the time and mode of delivery). Defects of the neural tube including hydrocephalus, malformations of the extremities, the gastrointestinal tract, omphaloceles, the urogenital and cardiac system are described. Four cases of fetal malformations are presented: fetal myelomeningocele, hydrocephalus, bilateral hydronephrosis and lymphangioma with fetal ascites.

  6. Lactate oxidation in human skeletal muscle mitochondria

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Meinild, Anne-Kristine; Nordsborg, Nikolai B

    2013-01-01

    Lactate is an important intermediate metabolite in human bioenergetics and is oxidized in many different tissues including the heart, brain, kidney, adipose tissue, liver, and skeletal muscle. The mechanism(s) explaining the metabolism of lactate in these tissues, however, remains unclear. Here, we...... analyze the ability of skeletal muscle to respire lactate by using an in situ mitochondrial preparation that leaves the native tubular reticulum and subcellular interactions of the organelle unaltered. Skeletal muscle biopsies were obtained from vastus lateralis muscle in 16 human subjects. Samples were...... of exogenous LDH failed to increase lactate-stimulated respiration (P = 1.0). The results further demonstrate that human skeletal muscle mitochondria cannot directly oxidize lactate within the mitochondrial matrix. Alternately, these data support previous claims that lactate is converted to pyruvate within...

  7. Pathogenesis of Insulin Resistance in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Muhammad A. Abdul-Ghani

    2010-01-01

    Full Text Available Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.

  8. Inflammation induced loss of skeletal muscle.

    Science.gov (United States)

    Londhe, Priya; Guttridge, Denis C

    2015-11-01

    Inflammation is an important contributor to the pathology of diseases implicated in skeletal muscle dysfunction. A number of diseases and disorders including inflammatory myopathies and Chronic Obstructive Pulmonary Disorder (COPD) are characterized by chronic inflammation or elevation of the inflammatory mediators. While these disease states exhibit different pathologies, all have in common the loss of skeletal muscle mass and a deregulated skeletal muscle physiology. Pro-inflammatory cytokines are key contributors to chronic inflammation found in many of these diseases. This section of the review focuses on some of the known inflammatory disorders like COPD, Rheumatoid Arthritis (RA) and inflammatory myopathies that display skeletal muscle atrophy and also provides the reader an overview of the mediators of inflammation, their signaling pathways, and mechanisms of action. This article is part of a Special Issue entitled "Muscle Bone Interactions".

  9. Animal cancer models of skeletal metastasis

    National Research Council Canada - National Science Library

    Hibberd, Catherine; Cossigny, Davina A F; Quan, Gerald M Y

    2013-01-01

    ... ability, and poorer quality of life. Animal cancer models of skeletal metastases are essential for better understanding of the molecular pathways behind metastatic spread and local growth and invasion of bone, to enable analysis of host...

  10. Skeletal muscle glucose uptake during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik A.

    2005-01-01

    The increase in skeletal muscle glucose uptake during exercise results from a coordinated increase in rates of glucose delivery (higher capillary perfusion), surface membrane glucose transport, and intracellular substrate flux through glycolysis. The mechanism behind the movement of GLUT4...

  11. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial function. Therefore, this study examined mitochondrial respiratory rates in the smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscle. Cardiac......, skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), psmooth muscle (222±13; 115±2; 48±2 umol•g(-1)•min(-1), p

  12. Advances and challenges in skeletal muscle angiogenesis

    DEFF Research Database (Denmark)

    Olfert, I Mark; Baum, Oliver; Hellsten, Ylva

    2016-01-01

    during health, but poorly controlled in disease - resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact...... on metabolism, endocrine function, and locomotion, and is tightly regulated at many different levels. Skeletal muscle is also high adaptable, and thus one of the few organ systems which can be experimentally manipulated (e.g. by exercise) to study physiologic regulation of angiogenesis. This review will focus...... on 1) the methodological concerns that have arisen in determining skeletal muscle capillarity, and 2) highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes and ultrastructural...

  13. [Molecular mechanisms of skeletal muscle hypertrophy].

    Science.gov (United States)

    Astratenkova, I V; Rogozkin, V A

    2014-06-01

    Enzymes Akt, AMPK, mTOR, S6K and PGC-1a coactivator take part in skeletal muscles in the regulation of synthesis of proteins. The expression of these proteins is regulated by growth factors, hormones, nutrients, mechanical loading and leads to an increase in muscle mass and skeletal muscle hypertrophy. The review presents the results of studies published in the past four years, which expand knowledge on the effects of various factors on protein synthesis in skeletal muscle. The attention is focused on the achievements that reveal and clarify the signaling pathways involved in the regulation of protein synthesis in skeletal muscle. The central place is taken by mTOR enzyme which controls and regulates the main stages of the cascade of reactions of muscle proteins providing synthesis in the conditions of human life. coactivator PGC-1a.

  14. [Neuro-skeletal biology and its importance for clinical osteology].

    Science.gov (United States)

    Zofková, I

    2012-01-01

    Bone remodeling is determined by function of two basic cell forms--bone resorbing osteoclasts and bone formation activating osteoblasts. Both cells are under control of a variety of endogenic and environmental factors, which ensure balance between bone resorption and bone formation. This article reviews the neuro-hormonal factors with osteoanabolic (central isoform of serotonin, melatonin, cannabinoids, beta 1 adrenergic system, oxytocin, ACTH and TSH) or osteocatabolic effects (neuropeptide Y, neuromedin U, beta2 adrenergic system). The dual effects of the beta-adrenergic system, serotonin and leptin are also discussed. The goal of studies focused on neuro-skeletal interaction is to synthesize new molecules, which can modify osteo-anabolic or osteo-catabolic pathways.

  15. AN EXPERIMENTAL STUDY OF INTRA- UTERINE HEALING OF FETAL RAT WOUNDS

    Institute of Scientific and Technical Information of China (English)

    崔磊; 张群; 钱云良

    2000-01-01

    Objective In order to investigate the fetal scarless wound healing, we developed an in vivo model to observe the process of wound healing occurring in SD-rat fetus. Methods SD-rat fetuses were given full-thickness incisional wounds in the upper lips under ether anesthesia. Wound specimens were removed successively 12,24,48,72h postwounding (PW) from fetus and 1,3,5,7d PW from adult rats for histological examination. Results In the fetus, re-epithelialization of the skin wound was completed by 24h PW, without apparent acute inflammatory response. Regenerated skin wound with normal architecture and elements was completed by 72h postoperation, indistinguishable from the surrounding normal skin. While in the adult rats, the wounds showed an acute inflammatory response resulting in thickened epithelia and scar formation. Conclusion Fetal wound is characterized by rapid and efficient healing without scar formation followed by real skin regeneration.

  16. Exercise Promotes Healthy Aging of Skeletal Muscle

    DEFF Research Database (Denmark)

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M

    2016-01-01

    caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial...... respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle....

  17. Skeletal Aging and Osteoporosis Biomechanics and Mechanobiology

    CERN Document Server

    2013-01-01

    The focus of this book is on mechanical aspects of skeletal fragility related to aging and osteoporosis. Topics include: Age-related changes in trabecular structure and strength; age-related changes in cortical material properties; age-related changes in whole-bone structure; predicting bone strength and fracture risk using image-based methods and finite element analysis; animal models of osteoporosis and aging; age-related changes in skeletal mechano responsiveness; exercise and physical interventions for osteoporosis.

  18. Satellite cells: the architects of skeletal muscle.

    Science.gov (United States)

    Chang, Natasha C; Rudnicki, Michael A

    2014-01-01

    The outstanding regenerative capacity of skeletal muscle is attributed to the resident muscle stem cell termed satellite cell. Satellite cells are essential for skeletal muscle regeneration as they ultimately provide the myogenic precursors that rebuild damaged muscle tissue. Satellite cells characteristically are a heterogeneous population of stem cells and committed progenitor cells. Delineation of cellular hierarchy and understanding how lineage fate choices are determined within the satellite cell population will be invaluable for the advancement of muscle regenerative therapies.

  19. Fetal Ascites and Second Trimester Maternal Hepatitis C Virus Infection

    Directory of Open Access Journals (Sweden)

    Pei-Ying Ling

    2006-09-01

    Conclusion: Second trimester perinatal HCV infection with possible CMV coinfection associated with fetal ascites is a rare event. Fetal therapy resulting in a successful outcome has not been reported. Prompt fetal therapy with paracentesis in this case led to the delivery of a healthy term liveborn baby with anti-HCV seropositivity.

  20. Agonist mediated fetal muscle-type nicotinic acetylcholine receptor desensitization

    Science.gov (United States)

    The exposure of a developing embryo or fetus to teratogenic alkaloids from plants has the potential to cause developmental defects in livestock due to the inhibition of fetal movement by alkaloids. The mechanism behind the inhibition of fetal movement is the desensitization of fetal muscle-type nico...

  1. Longitudinal study of computerized cardiotocography in early fetal growth restriction

    NARCIS (Netherlands)

    Wolf, H.; Arabin, B.; Lees, C. C.; Oepkes, D.; Prefumo, F.; Thilaganathan, B.; Todros, T.; Visser, G. H. A.; Bilardo, C. M.; Derks, J. B.; Diemert, A.; Duvekot, J. J.; Ferrazzi, E.; Frusca, T.; Hecher, K.; Marlow, N.; Martinelli, P.; Ostermayer, E.; Papageorghiou, A. T.; Scheepers, H. C. J.; Schlembach, D.; Schneider, K. T. M.; Valcamonico, A.; Van Wassenaer-Leemhuis, A.; Ganzevoort, W.

    Objectives: To explore whether, in early fetal growth restriction (FGR), the longitudinal pattern of fetal heart rate (FHR) short-term variation (STV) can be used to identify imminent fetal distress and whether abnormalities of FHR recordings are associated with 2-year infant outcome. Methods: The

  2. Oxidative Stress in Fetal Distress: Potential Prospects for Diagnosis

    Directory of Open Access Journals (Sweden)

    Saša Raicevic

    2010-01-01

    Full Text Available Our aim was to investigate the relation between fetal distress and oxidative stress. Fetal distress was associated with increased concentration of superoxide in the fetal blood and with significant increase of the level of H2O2 in both maternal and fetal blood. The activity of superoxide dismutase was increased roughly sixfold (p < 0.01 in the maternal [7330 ± 2240 U/g of hemoglobin in controls (C and 36811 ± 16862 U/g in fetal distress (FD] and fetal blood (C: 5930 ± 2641 U/g; FD: 41912 ± 17133 U/g. In contrast, fetal distress was related to a considerable decrease of catalase activity in both maternal (C: 26011 ± 8811 U/g; FD: 7212 ± 1270 U/g and fetal blood (C: 37194 ± 9191 U/g; FD: 6173 ± 1965 U/g. From this we concluded that in fetal distress, the maternal and fetal bloods are exposed to superoxide- and H2O2-mediated oxidative stress, which could be initiated by hypoxic conditions in the fetal blood and placenta. A tremendous increase/decrease of the activities of superoxide dismutase/catalase in the blood of women bearing a distressed fetus in comparison to healthy subjects implies that the assessment of superoxide dismutase/catalase activity could be of use for establishing a timely and accurate ante- or intrapartum diagnosis of fetal distress.

  3. Perspectives of fetal dystocia in cattle and buffalo

    Directory of Open Access Journals (Sweden)

    Govind Narayan Purohit

    2012-04-01

    Full Text Available We review the causes of fetal dystocia in cows and buffalo. Two fetal causes are distinct fetal oversize and fetal abnormalities. Fetal oversize is common in heifers, cows of beef cattle breeds, prolonged gestations, increased calf birth weight, male calves and perinatal fetal death with resultant emphysema. Fetal abnormalities include monsters, fetal diseases and fetal maldispositions, and it is difficult to deliver such fetuses because of their altered shape. Although monsters are rare in cattle, a large number of monstrosities have been reported in river buffalo; yet also here, overall incidence is low. Diseases of the fetus resulting in dystocia include hydrocephalus, ascites, anasarca and hydrothorax. The most common cause of dystocia in cattle seems to be fetal maldispositions, of which limb flexion and head deviation appear to be the most frequent. We provide a brief description of the management of dystocia from different causes in cattle and buffalo. A case analysis of 192 and 112 dystocia in cattle and buffalo, respectively, at our referral center revealed that dystocia is significantly higher (P<0.05 in first and second parity cows and buffalo, and that dystocia of fetal origin is common in cows (65.62% but less frequent (40.17% in buffalo. In buffalo, the single biggest cause of dystocia was uterine torsion (53.57%. Fetal survival was significantly (P<0.05 higher both in cows and buffalo when delivery was completed within 12 h of second stage of labor.

  4. 21 CFR 864.7455 - Fetal hemoglobin assay.

    Science.gov (United States)

    2010-04-01

    ... hemoglobin present. The assay may be used to detect fetal red cells in the maternal circulation or to detect... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal hemoglobin assay. 864.7455 Section 864.7455...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7455 Fetal...

  5. Fetal oxidative stress mechanisms of neurodevelopmental deficits and exacerbation by ethanol and methamphetamine.

    Science.gov (United States)

    Wells, Peter G; Bhatia, Shama; Drake, Danielle M; Miller-Pinsler, Lutfiya

    2016-06-01

    In utero exposure of mouse progeny to alcohol (ethanol, EtOH) and methamphetamine (METH) causes substantial postnatal neurodevelopmental deficits. One emerging pathogenic mechanism underlying these deficits involves fetal brain production of reactive oxygen species (ROS) that alter signal transduction, and/or oxidatively damage cellular macromolecules like lipids, proteins, and DNA, the latter leading to altered gene expression, likely via non-mutagenic mechanisms. Even physiological levels of fetal ROS production can be pathogenic in biochemically predisposed progeny, and ROS formation can be enhanced by drugs like EtOH and METH, via activation/induction of ROS-producing NADPH oxidases (NOX), drug bioactivation to free radical intermediates by prostaglandin H synthases (PHS), and other mechanisms. Antioxidative enzymes, like catalase in the fetal brain, while low, provide critical protection. Oxidatively damaged DNA is normally rapidly repaired, and fetal deficiencies in several DNA repair proteins, including oxoguanine glycosylase 1 (OGG1) and breast cancer protein 1 (BRCA1), enhance the risk of drug-initiated postnatal neurodevelopmental deficits, and in some cases deficits in untreated progeny, the latter of which may be relevant to conditions like autism spectrum disorders (ASD). Risk is further regulated by fetal nuclear factor erythroid 2-related factor 2 (Nrf2), a ROS-sensing protein that upregulates an array of proteins, including antioxidative enzymes and DNA repair proteins. Imbalances between conceptal pathways for ROS formation, versus those for ROS detoxification and DNA repair, are important determinants of risk. Birth Defects Research (Part C) 108:108-130, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Organization of organelles and VAMP-associated vesicular transport systems in differentiating skeletal muscle cells.

    Science.gov (United States)

    Tajika, Yuki; Takahashi, Maiko; Ueno, Hitoshi; Murakami, Tohru; Yorifuji, Hiroshi

    2015-01-01

    Vesicular transport plays an important role in the regulation of cellular function and differentiation of the cell, and intracellular vesicles play a role in the delivery of membrane components and in sorting membrane proteins to appropriate domains in organelles and the plasma membrane. Research on vesicular transport in differentiating cells has mostly focused on neurons and epithelial cells, and few such studies have been carried out on skeletal muscle cells. Skeletal muscle cells have specialized organelles and plasma membrane domains, including T-tubules, sarcoplasmic reticulum, neuromuscular junctions, and myotendinous junctions. The differentiation of skeletal muscle cells is achieved by multiple steps, i.e., proliferation of myoblasts, formation of myotubes by cell-cell fusion, and maturation of myotubes into myofibers. Systematic vesicular transport is expected to play a role in the maintenance and development of skeletal muscle cells. Here, we review a map of the vesicular transport system during the differentiation of skeletal muscle cells. The characteristics of organelle arrangement in myotubes are described according to morphological studies. Vesicular transport in myotubes is explained by the expression profiles of soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins.

  7. Epigenetic Reprogramming of Human Embryonic Stem Cells into Skeletal Muscle Cells and Generation of Contractile Myospheres

    Directory of Open Access Journals (Sweden)

    Sonia Albini

    2013-03-01

    Full Text Available Direct generation of a homogeneous population of skeletal myoblasts from human embryonic stem cells (hESCs and formation of three-dimensional contractile structures for disease modeling in vitro are current challenges in regenerative medicine. Previous studies reported on the generation of myoblasts from ESC-derived embryoid bodies (EB, but not from undifferentiated ESCs, indicating the requirement for mesodermal transition to promote skeletal myogenesis. Here, we show that selective absence of the SWI/SNF component BAF60C (encoded by SMARCD3 confers on hESCs resistance to MyoD-mediated activation of skeletal myogenesis. Forced expression of BAF60C enables MyoD to directly activate skeletal myogenesis in hESCs by instructing MyoD positioning and allowing chromatin remodeling at target genes. BAF60C/MyoD-expressing hESCs are epigenetically committed myogenic progenitors, which bypass the mesodermal requirement and, when cultured as floating clusters, give rise to contractile three-dimensional myospheres composed of skeletal myotubes. These results identify BAF60C as a key epigenetic determinant of hESC commitment to the myogenic lineage and establish the molecular basis for the generation of hESC-derived myospheres exploitable for “disease in a dish” models of muscular physiology and dysfunction.

  8. Histone deacetylases 1 and 2 regulate autophagy flux and skeletal muscle homeostasis in mice

    Science.gov (United States)

    Moresi, Viviana; Carrer, Michele; Grueter, Chad E.; Rifki, Oktay F.; Shelton, John M.; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2012-01-01

    Maintenance of skeletal muscle structure and function requires efficient and precise metabolic control. Autophagy plays a key role in metabolic homeostasis of diverse tissues by recycling cellular constituents, particularly under conditions of caloric restriction, thereby normalizing cellular metabolism. Here we show that histone deacetylases (HDACs) 1 and 2 control skeletal muscle homeostasis and autophagy flux in mice. Skeletal muscle-specific deletion of both HDAC1 and HDAC2 results in perinatal lethality of a subset of mice, accompanied by mitochondrial abnormalities and sarcomere degeneration. Mutant mice that survive the first day of life develop a progressive myopathy characterized by muscle degeneration and regeneration, and abnormal metabolism resulting from a blockade to autophagy. HDAC1 and HDAC2 regulate skeletal muscle autophagy by mediating the induction of autophagic gene expression and the formation of autophagosomes, such that myofibers of mice lacking these HDACs accumulate toxic autophagic intermediates. Strikingly, feeding HDAC1/2 mutant mice a high-fat diet from the weaning age releases the block in autophagy and prevents myopathy in adult mice. These findings reveal an unprecedented and essential role for HDAC1 and HDAC2 in maintenance of skeletal muscle structure and function and show that, at least in some pathological conditions, myopathy may be mitigated by dietary modifications. PMID:22307625

  9. Impaired skeletal muscle regeneration in the absence of fibrosis during hibernation in 13-lined ground squirrels.

    Directory of Open Access Journals (Sweden)

    Eva Andres-Mateos

    Full Text Available Skeletal muscle atrophy can occur as a consequence of immobilization and/or starvation in the majority of vertebrates studied. In contrast, hibernating mammals are protected against the loss of muscle mass despite long periods of inactivity and lack of food intake. Resident muscle-specific stem cells (satellite cells are known to be activated by muscle injury and their activation contributes to the regeneration of muscle, but whether satellite cells play a role in hibernation is unknown. In the hibernating 13-lined ground squirrel we show that muscles ablated of satellite cells were still protected against atrophy, demonstrating that satellite cells are not involved in the maintenance of skeletal muscle during hibernation. Additionally, hibernating skeletal muscle showed extremely slow regeneration in response to injury, due to repression of satellite cell activation and myoblast differentiation caused by a fine-tuned interplay of p21, myostatin, MAPK, and Wnt signaling pathways. Interestingly, despite long periods of inflammation and lack of efficient regeneration, injured skeletal muscle from hibernating animals did not develop fibrosis and was capable of complete recovery when animals emerged naturally from hibernation. We propose that hibernating squirrels represent a new model system that permits evaluation of impaired skeletal muscle remodeling in the absence of formation of tissue fibrosis.

  10. Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres.

    Science.gov (United States)

    Albini, Sonia; Coutinho, Paula; Malecova, Barbora; Giordani, Lorenzo; Savchenko, Alex; Forcales, Sonia Vanina; Puri, Pier Lorenzo

    2013-03-28

    Direct generation of a homogeneous population of skeletal myoblasts from human embryonic stem cells (hESCs) and formation of three-dimensional contractile structures for disease modeling in vitro are current challenges in regenerative medicine. Previous studies reported on the generation of myoblasts from ESC-derived embryoid bodies (EB), but not from undifferentiated ESCs, indicating the requirement for mesodermal transition to promote skeletal myogenesis. Here, we show that selective absence of the SWI/SNF component BAF60C (encoded by SMARCD3) confers on hESCs resistance to MyoD-mediated activation of skeletal myogenesis. Forced expression of BAF60C enables MyoD to directly activate skeletal myogenesis in hESCs by instructing MyoD positioning and allowing chromatin remodeling at target genes. BAF60C/MyoD-expressing hESCs are epigenetically committed myogenic progenitors, which bypass the mesodermal requirement and, when cultured as floating clusters, give rise to contractile three-dimensional myospheres composed of skeletal myotubes. These results identify BAF60C as a key epigenetic determinant of hESC commitment to the myogenic lineage and establish the molecular basis for the generation of hESC-derived myospheres exploitable for "disease in a dish" models of muscular physiology and dysfunction.

  11. Redox control of skeletal muscle atrophy.

    Science.gov (United States)

    Powers, Scott K; Morton, Aaron B; Ahn, Bumsoo; Smuder, Ashley J

    2016-09-01

    Skeletal muscles comprise the largest organ system in the body and play an essential role in body movement, breathing, and glucose homeostasis. Skeletal muscle is also an important endocrine organ that contributes to the health of numerous body organs. Therefore, maintaining healthy skeletal muscles is important to support overall health of the body. Prolonged periods of muscle inactivity (e.g., bed rest or limb immobilization) or chronic inflammatory diseases (i.e., cancer, kidney failure, etc.) result in skeletal muscle atrophy. An excessive loss of muscle mass is associated with a poor prognosis in several diseases and significant muscle weakness impairs the quality of life. The skeletal muscle atrophy that occurs in response to inflammatory diseases or prolonged inactivity is often associated with both oxidative and nitrosative stress. In this report, we critically review the experimental evidence that provides support for a causative link between oxidants and muscle atrophy. More specifically, this review will debate the sources of oxidant production in skeletal muscle undergoing atrophy as well as provide a detailed discussion on how reactive oxygen species and reactive nitrogen species modulate the signaling pathways that regulate both protein synthesis and protein breakdown.

  12. Trisomy 21 enhances human fetal erythro-megakaryocytic development

    Science.gov (United States)

    Chou, Stella T.; Opalinska, Joanna B.; Yao, Yu; Fernandes, Myriam A.; Kalota, Anna; Brooks, John S. J.; Choi, John K.; Gewirtz, Alan M.; Danet-Desnoyers, Gwenn-ael; Nemiroff, Richard L.

    2008-01-01

    Children with Down syndrome exhibit 2 related hematopoietic diseases: transient myeloproliferative disorder (TMD) and acute megakaryoblastic leukemia (AMKL). Both exhibit clonal expansion of blasts with biphenotypic erythroid and megakaryocytic features and contain somatic GATA1 mutations. While altered GATA1 inhibits erythro-megakaryocytic development, less is known about how trisomy 21 impacts blood formation, particularly in the human fetus where TMD and AMKL originate. We used in vitro and mouse transplantation assays to study hematopoiesis in trisomy 21 fetal livers with normal GATA1 alleles. Remarkably, trisomy 21 progenitors exhibited enhanced production of erythroid and megakaryocytic cells that proliferated excessively. Our findings indicate that trisomy 21 itself is associated with cell-autonomous expansion of erythro-megakaryocytic progenitors. This may predispose to TMD and AMKL by increasing the pool of cells susceptible to malignant transformation through acquired mutations in GATA1 and other cooperating genes. PMID:18812473

  13. Thoracic skeletal defects in myogenin- and MRF4-deficient mice correlate with early defects in myotome and intercostal musculature.

    Science.gov (United States)

    Vivian, J L; Olson, E N; Klein, W H

    2000-08-01

    Myogenin and MRF4 are skeletal muscle-specific bHLH transcription factors critical for muscle development. In addition to a variety of skeletal muscle defects, embryos homozygous for mutations in myogenin or MRF4 display phenotypes in the thoracic skeleton, including rib fusions and sternal defects. These skeletal defects are likely to be secondary because myogenin and MRF4 are not expressed in the rib cartilage or sternum. In this study, the requirement for myogenin and MRF4 in thoracic skeletal development was further examined. When a hypomorphic allele of myogenin and an MRF4-null mutation were placed together, the severity of the thoracic skeletal defects was greatly increased and included extensive rib cartilage fusion and fused sternebrae. Additionally, new rib defects were observed in myogenin/MRF4 compound mutants, including a failure of the rib cartilage to contact the sternum. These results suggested that myogenin and MRF4 share overlapping functions in thoracic skeletal formation. Spatial expression patterns of skeletal muscle-specific markers in myogenin- and MRF4-mutant embryos revealed early skeletal muscle defects not previously reported. MRF4-/- mice displayed abnormal intercostal muscle morphology, including bifurcation and fusion of adjacent intercostals. myogenin/MRF4-mutant combinations displayed ventral myotome defects, including a failure to express normal levels of myf5. The results suggested that the early muscle defects observed in myogenin and MRF4 mutants may cause subsequent thoracic skeletal defects, and that myogenin and MRF4 have overlapping functions in ventral myotome differentiation and intercostal muscle morphogenesis. Copyright 2000 Academic Press.

  14. Prenatal diagnosis of a placental infarction hematoma associated with fetal growth restriction, preeclampsia and fetal death: clinicopathological correlation.

    Science.gov (United States)

    Aurioles-Garibay, Alma; Hernandez-Andrade, Edgar; Romero, Roberto; Qureshi, Faisal; Ahn, Hyunyoung; Jacques, Suzanne M; Garcia, Maynor; Yeo, Lami; Hassan, Sonia S

    2014-01-01

    The lesion termed 'placental infarction hematoma' is associated with fetal death and adverse perinatal outcome. Such a lesion has been associated with a high risk of fetal death and abruption placentae. The fetal and placental hemodynamic changes associated with placental infarction hematoma have not been reported. This paper describes a case of early and severe growth restriction with preeclampsia, and progressive deterioration of the fetal and placental Doppler parameters in the presence of a placental infarction hematoma.

  15. MRI evaluation of fetal vitality and maturity; Avaliacao da vitalidade e maturidade fetal pela ressonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Rego, Salete J.F. [Instituto Nacional do Cancer, Rio de Janeiro, RJ (Brazil); Secaf, Eduardo [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina; Magalhaes, Alvaro Cebrian A. [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina, Dept. de Radiologia

    1995-05-01

    Assessment of fetal vitality is an essential part of feto-maternal medicine. In clinical practice, this is carried out by investigation of the fetal growth pattern and biochemical or biophysical tests of fetal heath. MRI has the ability of characterizing different soft tissues and is the only technique that can display in the uterus the process of physiological myelinization and may well present a noninvasive method to determine lung maturity. MRI is more powerful technique allowing more detailed visualization of the fetal brain, better images can be obtained of areas such as posterior fossa. The major advantage of MRI over imaging modalities is the potential for biochemical and metabolic studies and it will make an important contribution to obstetric research. (author)., 10 refs., 7 figs p.

  16. Fetal subjects and maternal objects: reproductive technology and the new fetal/maternal relation.

    Science.gov (United States)

    Squier, S

    1996-10-01

    This essay examines three tendencies nurtured in the practices of reproductive technology - tendencies with profoundly disturbing implications for us as individuals and as social beings. They are: 1) the increasing subjectification of the fetus (that is, the increasing tendency to posit a fetal subject), 2) the increasing objectification of the gestating woman, leading to her representation as interchangeable object rather than unique subject, and 3) the increasing tendency to conceive of the fetus and the mother as social, medical, and legal antagonists. Considering the construction of fetus, mother, and the fetal/maternal relation in earlier (Western) historical periods, a contemporary work of literature, a government report, and the popular press, I argue that as the fetus is increasingly being understood as a subject, the mother is increasingly being reduced to an antagonist, an obstacle to fetal health, and an object. The essay concludes by offering some tentative conclusions about the general process of fetal subjectification in the United States and Europe.

  17. [Prenatal imaging of the fetal brain--indications and developmental implications of fetal MRI].

    Science.gov (United States)

    Ben Sira, Liat; Garel, Catherine; Leitner, Yael; Gross-Tsur, Varda

    2008-01-01

    Cerebral anomalies at birth account for approximately 9% of all isolated anomalies and are present in 15.9% of babies with multiple malformations and, thereby, warrant concern in antenatal diagnosis. Ultrasonography is the basic screening examination for the pregnant woman due to its efficiency, availability, low cost and real time capability. Many of the major anomalies can be diagnosed by ultrasound during the first trimester of pregnancy. However subtle abnormalities can be missed by ultrasonography or detected only in later stages of pregnancy. Fetal MRI has proved itself to be an effective adjuvant imaging tool and is indicated whenever there is a diagnostic query on ultrasound or a need to define a suspected brain anomaly. The information obtained from fetal MRI has significant implications for parental counseling regarding both the type of malformation as well as the neurological and developmental prognosis. Current indications for fetal MRI, focusing on various common fetal cerebral pathologies, will be addressed in this review.

  18. Aspects of skeletal muscle modelling.

    Science.gov (United States)

    Epstein, Marcelo; Herzog, Walter

    2003-09-29

    The modelling of skeletal muscle raises a number of philosophical questions, particularly in the realm of the relationship between different possible levels of representation and explanation. After a brief incursion into this area, a list of desiderata is proposed as a guiding principle for the construction of a viable model, including: comprehensiveness, soundness, experimental consistency, predictive ability and refinability. Each of these principles is illustrated by means of simple examples. The presence of internal constraints, such as incompressibility, may lead to counterintuitive results. A one-panel example is exploited to advocate the use of the principle of virtual work as the ideal tool to deal with these situations. The question of stability in the descending limb of the force-length relation is addressed and a purely mechanical analogue is suggested. New experimental results confirm the assumption that fibre stiffness is positive even in the descending limb. The indeterminacy of the force-sharing problem is traditionally resolved by optimizing a, presumably, physically meaningful target function. After presenting some new results in this area, based on a separation theorem, it is suggested that a more fundamental approach to the problem is the abandoning of optimization criteria in favour of an explicit implementation of activation criteria.

  19. Skeletal development in Acropora cervicornis

    Science.gov (United States)

    Gladfelter, Elizabeth H.

    1984-08-01

    Monthly linear extension and calcium carbonate accretion were measured over a year in the Caribbean staghorn coral, Acropora cervicornis. X-radiographs were made of cross sections of branches to analyze radial growth. Correlations were made between parameters of skeletal growth and four environmental parameters monitored over the same sampling periods: temperature, daylight hours, sun hours, plankton abundance. The results indicate that linear extension does not change during the year with the possible exception of April. It is suggested that temperatures outside an optimal range (ca. 26° 29°C for staghorn Acroporas) might cause a decrease in linear extension, however. Specific accretion (mg. mm-1) does show significant variations through the year. Calcium carbonate accretion (mean specific accretion times mean linear extension, mg. tip-1) is most strongly correlated with number of sun hours. A comparison is made between diel patterns of extension and accretion and longer term measurements. It is suggested that the accretion process is probably most influenced by some activity influenced by light. There are no annual growth bands in X-radiographs of cross-sections of the branches of A. cervicornis. This may result from secondary infilling in the skeleton.

  20. Channelopathies of skeletal muscle excitability

    Science.gov (United States)

    Cannon, Stephen C.

    2016-01-01

    Familial disorders of skeletal muscle excitability were initially described early in the last century and are now known to be caused by mutations of voltage-gated ion channels. The clinical manifestations are often striking, with an inability to relax after voluntary contraction (myotonia) or transient attacks of severe weakness (periodic paralysis). An essential feature of these disorders is fluctuation of symptoms that are strongly impacted by environmental triggers such as exercise, temperature, or serum K+ levels. These phenomena have intrigued physiologists for decades, and in the past 25 years the molecular lesions underlying these disorders have been identified and mechanistic studies are providing insights for therapeutic strategies of disease modification. These familial disorders of muscle fiber excitability are “channelopathies” caused by mutations of a chloride channel (ClC-1), sodium channel (NaV1.4), calcium channel (CaV1.1) and several potassium channels (Kir2.1, Kir2.6, Kir3.4). This review provides a synthesis of the mechanistic connections between functional defects of mutant ion channels, their impact on muscle excitability, how these changes cause clinical phenotypes, and approaches toward therapeutics. PMID:25880512

  1. Diagnosis of skeletal muscle channelopathies.

    Science.gov (United States)

    Spillane, Jennifer; Fialho, Doreen; Hanna, Michael G

    2013-11-01

    Skeletal muscle channelopathies are rare disorders of muscle membrane excitability. Their episodic nature may result in diagnostic difficulty and delays in diagnosis. Advances in diagnostic clinical electrophysiology combined with DNA-based diagnosis have improved diagnostic accuracy and efficiency. Ascribing pathogenic status to identified genetic variants in muscle channel genes may be complex and functional analysis, including molecular expression, may help with this. Accurate clinical and genetic diagnosis enables genetic counselling, advice regarding prognosis and aids treatment selection. An approach to accurate and efficient diagnosis is outlined. The importance of detailed clinical evaluation including careful history, examination and family history is emphasised. The role of specialised electrodiagnostics combined with DNA testing and molecular expression is considered. New potential biomarkers including muscle MRI using MRC Centre protocols are discussed. A combined diagnostic approach using careful clinical assessment, specialised neurophysiology and DNA testing will now achieve a clear diagnosis in most patients with muscle channelopathies. An accurate diagnosis enables genetic counselling and provides information regarding prognosis and treatment selection. Genetic analysis often identifies new variants of uncertain significance. In this situation, functional expression studies as part of a diagnostic service will enable determination of pathogenic status of novel genetic variants.

  2. Channelopathies of skeletal muscle excitability.

    Science.gov (United States)

    Cannon, Stephen C

    2015-04-01

    Familial disorders of skeletal muscle excitability were initially described early in the last century and are now known to be caused by mutations of voltage-gated ion channels. The clinical manifestations are often striking, with an inability to relax after voluntary contraction (myotonia) or transient attacks of severe weakness (periodic paralysis). An essential feature of these disorders is fluctuation of symptoms that are strongly impacted by environmental triggers such as exercise, temperature, or serum K(+) levels. These phenomena have intrigued physiologists for decades, and in the past 25 years the molecular lesions underlying these disorders have been identified and mechanistic studies are providing insights for therapeutic strategies of disease modification. These familial disorders of muscle fiber excitability are "channelopathies" caused by mutations of a chloride channel (ClC-1), sodium channel (NaV1.4), calcium channel (CaV1.1), and several potassium channels (Kir2.1, Kir2.6, and Kir3.4). This review provides a synthesis of the mechanistic connections between functional defects of mutant ion channels, their impact on muscle excitability, how these changes cause clinical phenotypes, and approaches toward therapeutics. © 2015 American Physiological Society.

  3. Approaches for skeletal gene therapy.

    Science.gov (United States)

    Niyibizi, Christopher; Wallach, Corey J; Mi, Zhibao; Robbins, Paul D

    2002-01-01

    The role of gene therapy in the treatment of musculoskeletal disorders continues to be an active area of research. As the etiology of many musculoskeletal diseases becomes increasingly understood, advances in cellular and gene therapy maybe applied to their potential treatment This review focuses on current investigational strategies to treat osteogenesis imperfecta (OI). OI is a varied group of genetic disorders that result in the diminished integrity of connective tissues as a result of alterations in the genes that encode for either the pro alpha1 or pro alpha2 component of type I collagen. Because most forms of OI result from dominant negative mutations, isolated gene replacement therapy is not a logical treatment option. The combined use of genetic manipulation and cellular transplantation, however, may provide a means to overcome this obstacle. This article describes the recent laboratory and clinical advances in cell therapy, highlights potential techniques being investigated to suppress the expression of the mutant allele with antisense gene therapy, and attempts to deliver collagen genes to bone cells. The challenges that the investigators face in their quest for the skeletal gene therapy are also discussed.

  4. Fetal bladder wall regeneration with a collagen biomatrix and histological evaluation of bladder exstrophy in a fetal sheep model

    NARCIS (Netherlands)

    Roelofs, Luc A. J.; Eggink, Alex J.; de Kaa, Christina A. Hulsbergen-van; Wijnen, Rene M. H.; van Kuppevelt, Toin H.; van Moerkerk, Herman T. B.; Crevels, A. Jane; Hanssen, Alex; Lotgering, Fred K.; van den Berg, Paul P.; Feitz, Wout F. J.

    2008-01-01

    Objectives: To evaluate histological changes in an animal model for bladder exstrophy and fetal repair of the bladder defect with a molecular-defined dual-layer collagen biomatrix to induce fetal bladder wall regeneration. Methods: In 12 fetal lambs the abdominal wall and bladder were opened by a mi

  5. Fetal goiter and bilateral ovarian cysts

    DEFF Research Database (Denmark)

    Lassen, Pernille; Sundberg, Karin; Juul, Anders

    2008-01-01

    by each injection and followed by a gradual reduction of fetal goiter as well as the left ovarian cyst. The right cyst ruptured spontaneously. At 36 weeks + 4 days, the patient underwent elective caesarean section and gave birth to a female, weighing 2,880 g with 1- and 5-min Apgar scores of 10...

  6. Reduced fetal telomere length in gestational diabetes.

    Directory of Open Access Journals (Sweden)

    Jian Xu

    Full Text Available Gestational diabetes mellitus (GDM is an important complication of pregnancy that poses significant threats to women and their offspring. Telomere length shortens as cellular damage increases and is associated with metabolic diseases. Telomere length in fetal leucocytes was determined in 82 infants of women with GDM (N = 82 and 65 normal pregnant women (N = 65. Women with preeclampsia (N = 45 and gestational hypertension (N = 23 were also studied. In the GDM group, telomere length was significantly shorter than normal pregnancy (P = 0.028, but there were no significant differences in fetal telomere length between preeclampsia and normal pregnancy (P = 0.841 and between gestational hypertension and normal pregnancy (P = 0.561. Regression analysis revealed that fetal telomere length was significantly associated with intrauterine exposure to GDM (P = 0.027 after adjustment for maternal age, gestational age at delivery, birth weight and fetal gender. Shortened telomere length may increase the risk of metabolic diseases in adulthood of GDM offspring.

  7. Special Tests for Monitoring Fetal Health

    Science.gov (United States)

    ... growth problems, Rh sensitization , or high blood pressure • Decreased movement of the fetus • Pregnancy that goes past ... on how far along you are in your pregnancy, you may have another BPP within the next ... BPP performed? The fetal heart rate is monitored in the same way it is ...

  8. REFLECTANCE PULSE OXIMETRY IN FETAL LAMBS

    NARCIS (Netherlands)

    DASSEL, AC; GRAAFF, R; AARNOUDSE, JG; ELSTRODT, JM; HEIDA, P; KOELINK, MH; DEMUL, FF; GREVE, J

    1992-01-01

    Transmission pulse oximetry is used for monitoring in many clinical settings. However, for fetal monitoring during labor and in situations with poor peripheral perfusion, transmission pulse oximetry cannot be used. Therefore, we developed a reflectance pulse oximeter, which uses the relative intensi

  9. Ultrasound assessment of fetal cardiac function

    Science.gov (United States)

    Crispi, Fàtima; Valenzuela‐Alcaraz, Brenda; Cruz‐Lemini, Monica

    2015-01-01

    Abstract Introduction: Fetal heart evaluation with US is feasible and reproducible, although challenging due to the smallness of the heart, the high heart rate and limited access to the fetus. However, some cardiac parameters have already shown a strong correlation with outcomes and may soon be incorporated into clinical practice. Materials and Methods: Cardiac function assessment has proven utility in the differential diagnosis of cardiomyopathies or prediction of perinatal mortality in congenital heart disease. In addition, some cardiac parameters with high sensitivity such as MPI or annular peak velocities have shown promising results in monitoring and predicting outcome in intrauterine growth restriction or congenital diaphragmatic hernia. Conclusion: Cardiac function can be adequately evaluated in most fetuses when appropriate expertise, equipment and time are available. Fetal cardiac function assessment is a promising tool that may soon be incorporated into clinical practice to diagnose, monitor or predict outcome in some fetal conditions. Thus, more research is warranted to further define specific protocols for each fetal condition that may affect cardiac function. PMID:28191192

  10. MATERNO-FETAL IMMUNOTOLERANCE: AN EVOLUTIONARY VIEW

    Directory of Open Access Journals (Sweden)

    Luana Paulesu

    2013-12-01

    Full Text Available Since Medawar (1953, much attention has been given to the immunological paradox of the survival and growth of the semi-allogeneic fetus in the maternal uterus. Numerous studies, mainly on the human placenta, have established fundamental mechanisms of this phenomenon; however, many aspects are still unclear and the complex process has yet to be completely defined. One of the accepted principles is that the secretion and action of mediators, i.e. cytokines, at the materno-fetal interface have a central role. Focusing on the cytokine Interleukin-1 (IL-1 the review highlights the importance of a physiological approach based on evolutionary studies in animals using similar or different reproductive strategies. Data on IL-1 in viviparity and oviparity, two reproductive strategies in which female reproductive tissues have to deal with paternal-derived antigens on sperm, fertilized eggs, and embryo, will be presented and discussed in the light of materno-fetal immuntolerance. Ovuliparity, a reproductive modality in which the eggs are released from the female reproductive tract and fertilization and embryonic development take place in the external environment will also be extensively reported as a negative control in the studies on materno-fetal immunotolerance. The evidence shown reveals that non-mammalian vertebrates with different reproductive strategies represent a good model to understand biological mechanisms allowing fetal acceptance and growth in the maternal tissues.

  11. Imaging of the fetal central nervous system

    NARCIS (Netherlands)

    Pistorius, L.R.

    2008-01-01

    Introduction : Ultrasound and MR imaging of the fetal central nervous system (CNS) develop at an ever-increasing rate. Theoretically, the two modalities should be synergistic, but a literature review revealed the difficulties of determining the merit of either technique and revealed gaps in our know

  12. Anestesia para cirugía fetal

    National Research Council Canada - National Science Library

    Vasco Ramírez, Mauricio

    2012-01-01

    ...). El objetivo de este articulo es realizar una revision narrativa de la anestesia para la cirugia fetal. Metodologia Se realizo una busqueda no sistematica de publicaciones en bases de datos medicas que incluyeron MEDLINE, SciELO y EMBASE, utilizando los terminos > y restringida a los siguientes tipo...

  13. Fetal Alcohol Syndrome: A Behavioral Teratology.

    Science.gov (United States)

    Kavale, Kenneth A.; Karge, Belinda D.

    1986-01-01

    The review examines the literature on the behaviorally teratogenic aspects of Fetal Alcohol Syndrome, including: (1) prevalence of alcohol abuse among women, (2) acute and chronic effects of alcohol on the fetus, (3) genetic susceptibility, (4) neuropathology, (5) correlative conditions, and (6) animal studies. (Author/DB)

  14. Fetal programming of appetite and obesity.

    Science.gov (United States)

    Breier, B H; Vickers, M H; Ikenasio, B A; Chan, K Y; Wong, W P

    2001-12-20

    Obesity and related metabolic disorders are prevalent health issues in modern society and are commonly attributed to lifestyle and dietary factors. However, the mechanisms by which environmental factors modulate the physiological systems that control weight regulation and the aetiology of metabolic disorders, which manifest in adult life, may have their roots before birth. The 'fetal origins' or 'fetal programming' paradigm is based on the observation that environmental changes can reset the developmental path during intrauterine development leading to obesity and cardiovascular and metabolic disorders later in life. The pathogenesis is not based on genetic defects but on altered genetic expression as a consequence of an adaptation to environmental changes during fetal development. While many endocrine systems can be affected by fetal programming recent experimental studies suggest that leptin and insulin resistance are critical endocrine defects in the pathogenesis of programming-induced obesity and metabolic disorders. However, it remains to be determined whether postnatal obesity is a consequence of programming of appetite regulation and whether hyperphagia is the main underlying cause of the increased adiposity and the development of metabolic disorders.

  15. Neuroimaging and Fetal Alcohol Spectrum Disorders

    Science.gov (United States)

    Norman, Andria L.; Crocker, Nicole; Mattson, Sarah N.; Riley, Edward P.

    2009-01-01

    The detrimental effects of prenatal alcohol exposure on the developing brain include structural brain anomalies as well as cognitive and behavioral deficits. Initial neuroimaging studies of fetal alcohol spectrum disorders (FASD) using magnetic resonance imaging (MRI) confirmed previous autopsy reports of overall reduction in brain volume and…

  16. Fetal hydantoin syndrome: A case report

    National Research Council Canada - National Science Library

    Singh, A; Bhatia, HP; Mohan, A; Sharma, N

    2016-01-01

    ... it becomes mandatory to take anticonvulsants on regular basis during pregnancy. Fetal hydantoin syndrome (FHS) is a fetopathy likely to occur when a pregnant women takes hydantoin for epileptic seizures. Hanson and Smith in 1975 coined the term FHS. [4] Its classical features include growth and developmental delay, craniofacial anomalies, varying ...

  17. Jaundice during pregnancy: maternal and fetal outcome

    Directory of Open Access Journals (Sweden)

    Jayanthi Krishnamoorthy

    2016-08-01

    Conclusions: Jaundice in pregnancy has adverse fetomaternal outcome. Improvement in health awareness, education and regular antenatal checkups, early referrals result in early diagnosis and treatment of jaundice during pregnancy thus reducing maternal and fetal mortality and morbidity. [Int J Reprod Contracept Obstet Gynecol 2016; 5(8.000: 2541-2545

  18. Noninvasive fetal RhD genotyping

    DEFF Research Database (Denmark)

    Clausen, Frederik Banch; Damkjær, Merete Berthu; Dziegiel, Morten Hanefeld

    2014-01-01

    Immunization against RhD is the major cause of hemolytic disease of the fetus and newborn (HDFN), which causes fetal or neonatal death. The introduction of postnatal immune prophylaxis in the 1960s drastically reduced immunization incidents in pregnant, D-negative women. In several countries...

  19. Possible fetal determinants of male infertility

    DEFF Research Database (Denmark)

    Juul, Anders; Almstrup, Kristian; Andersson, Anna-Maria

    2014-01-01

    Although common reproductive problems, such as male infertility and testicular cancer, present in adult life, strong evidence exists that these reproductive disorders might have a fetal origin. The evidence is derived not only from large epidemiological studies that show birth-cohort effects...

  20. Fetal movements and placental lactogen levels for fetal-placental evaluation. A preliminary report.

    Science.gov (United States)

    Spellacy, W N; Cruz, A C; Gelman, S R; Buhi, W C

    1977-01-01

    Fetal movements were measured by 37 pregnant women during a 10-minute period while they were lying on their left side at various times during the day with the highest rates in the evening. Preliminary assessments of fetal movement and serum hPL levels in pregnant women suggest that the two tests might complement each other in providing more information about the status of the placenta and fetus.

  1. Fetal cardiac time intervals in healthy pregnancies - an observational study by fetal ECG (Monica Healthcare System).

    Science.gov (United States)

    Wacker-Gussmann, Annette; Plankl, Cordula; Sewald, Maria; Schneider, Karl-Theo Maria; Oberhoffer, Renate; Lobmaier, Silvia M

    2017-04-28

    Fetal electrocardiogram (fECG) can detect QRS signals in fetuses from as early as 17 weeks' gestation; however, the technique is limited by the minute size of the fetal signal relative to noise ratio. The aim of this study was to evaluate precise fetal cardiac time intervals (fCTIs) with the help of a newly developed fetal ECG device (Monica Healthcare System). In a prospective manner we included 15-18 healthy fetuses per gestational week from 32 weeks onwards. The small and wearable Monica AN24 monitoring system uses standard ECG electrodes placed on the maternal abdomen to monitor fECG, maternal ECG and uterine electromyogram (EMG). Fetal CTIs were estimated on 1000 averaged fetal heart beats. Detection was deemed successful if there was a global signal loss of less than 30% and an analysis loss of the Monica AN24 signal separation analysis of less than 50%. Fetal CTIs were determined visually by three independent measurements. A total of 149 fECGs were performed. After applying the requirements 117 fECGs remained for CTI analysis. While the onset and termination of P-wave and QRS-complex could be easily identified in most ECG patterns (97% for P-wave, PQ and PR interval and 100% for QRS-complex), the T-wave was detectable in only 41% of the datasets. The CTI results were comparable to other available methods such as fetal magnetocardiography (fMCG). Although limited and preclinical in its use, fECG (Monica Healthcare System) could be an additional useful tool to detect precise fCTIs from 32 weeks' gestational age onwards.

  2. Fetal Intracranial Hemorrhage (Fetal Stroke: Report of Four Antenatally Diagnosed Casesand Review of the Literature

    Directory of Open Access Journals (Sweden)

    Ying-Fen Huang

    2006-06-01

    Conclusion: This small series demonstrate that an antenatal diagnosis of fetal stroke with intraventricular hemorrhage Grades III and IV or with brain parenchymal involvement appears to be associated with poor neurologic outcome. Due to the significant neonatal neurologic impairment and potential medicolegal implications of antepartum fetal ICH, it follows that obstetricians and sonographers should be familiar with predisposing factors and typical diagnostic imaging findings of rare in utero ICH events.

  3. Automatic classification of squamosal abnormality in micro-CT images for the evaluation of rabbit fetal skull defects using active shape models

    Science.gov (United States)

    Chen, Antong; Dogdas, Belma; Mehta, Saurin; Bagchi, Ansuman; Wise, L. David; Winkelmann, Christopher

    2014-03-01

    High-throughput micro-CT imaging has been used in our laboratory to evaluate fetal skeletal morphology in developmental toxicology studies. Currently, the volume-rendered skeletal images are visually inspected and observed abnormalities are reported for compounds in development. To improve the efficiency and reduce human error of the evaluation, we implemented a framework to automate the evaluation process. The framework starts by dividing the skull into regions of interest and then measuring various geometrical characteristics. Normal/abnormal classification on the bone segments is performed based on identifying statistical outliers. In pilot experiments using rabbit fetal skulls, the majority of the skeletal abnormalities can be detected successfully in this manner. However, there are shape-based abnormalities that are relatively subtle and thereby difficult to identify using the geometrical features. To address this problem, we introduced a model-based approach and applied this strategy on the squamosal bone. We will provide details on this active shape model (ASM) strategy for the identification of squamosal abnormalities and show that this method improved the sensitivity of detecting squamosal-related abnormalities from 0.48 to 0.92.

  4. The "Fetal Reserve Index": Re-Engineering the Interpretation and Responses to Fetal Heart Rate Patterns.

    Science.gov (United States)

    Eden, Robert D; Evans, Mark I; Evans, Shara M; Schifrin, Barry S

    2017-06-08

    Electronic fetal monitoring (EFM) correlates poorly with neonatal outcome. We present a new metric: the "Fetal Reserve Index" (FRI), formally incorporating EFM with maternal, obstetrical, fetal risk factors, and excessive uterine activity for assessment of risk for cerebral palsy (CP). We performed a retrospective, case-control series of 50 term CP cases with apparent intrapartum neurological injury and 200 controls. All were deemed neurologically normal on admission. We compared the FRI against ACOG Category (I-III) system and long-term outcome parameters against ACOG monograph (NEACP) requirements for labor-induced fetal neurological injury. Abnormal FRI's identified 100% of CP cases and did so hours before injury. ACOG Category III identified only 44% and much later. Retrospective ACOG monograph criteria were found in at most 30% of intrapartum-acquired CP patients; only 27% had umbilical or neonatal pH <7.0. In this initial, retrospective trial, an abnormal FRI identified all cases of labor-related neurological injury more reliably and earlier than Category III, which may allow fetal therapy by intrauterine resuscitation. The combination of traditional EFM with maternal, obstetrical, and fetal risk factors creating the FRI performed much better as a screening test than EFM alone. Our quantified screening system needs further evaluation in prospective trials. © 2017 S. Karger AG, Basel.

  5. The alarmin HMGB-1 influences healing outcomes in fetal skin wounds.

    Science.gov (United States)

    Dardenne, Adrienne D; Wulff, Brian C; Wilgus, Traci A

    2013-01-01

    In mice, cutaneous wounds generated early in development (embryonic day 15, E15) heal scarlessly, while wounds generated late in gestation (embryonic day 18, E18) heal with scar formation. Even though both types of wounds are generated in the same sterile uterine environment, scarless fetal wounds heal without inflammation, but a strong inflammatory response is observed in scar-forming fetal wounds. We hypothesized that altered release of alarmins, endogenous molecules that trigger inflammation in response to damage, may be responsible for the age-related changes in inflammation and healing outcomes in fetal skin. The purpose of this study was to determine whether the alarmin high-mobility group box-1 (HMGB-1) is involved in fetal wound repair. Immunohistochemical analysis showed that in unwounded skin, E18 keratinocytes expressed higher levels of HMGB-1 compared with E15 keratinocytes. After injury, HMGB-1 was released to a greater extent from keratinocytes at the margin of scar-forming E18 wounds, compared with scarless E15 wounds. Furthermore, instead of healing scarlessly, E15 wounds healed with scars when treated with HMGB-1. HMGB-1-injected wounds also had more fibroblasts, blood vessels, and macrophages compared with control wounds. Together, these data suggest that extracellular HMGB-1 levels influence the quality of healing in cutaneous wounds. © 2013 by the Wound Healing Society.

  6. Prenatally engineered autologous amniotic fluid stem cell-based heart valves in the fetal circulation.

    Science.gov (United States)

    Weber, Benedikt; Emmert, Maximilian Y; Behr, Luc; Schoenauer, Roman; Brokopp, Chad; Drögemüller, Cord; Modregger, Peter; Stampanoni, Marco; Vats, Divya; Rudin, Markus; Bürzle, Wilfried; Farine, Marc; Mazza, Edoardo; Frauenfelder, Thomas; Zannettino, Andrew C; Zünd, Gregor; Kretschmar, Oliver; Falk, Volkmar; Hoerstrup, Simon P

    2012-06-01

    Prenatal heart valve interventions aiming at the early and systematic correction of congenital cardiac malformations represent a promising treatment option in maternal-fetal care. However, definite fetal valve replacements require growing implants adaptive to fetal and postnatal development. The presented study investigates the fetal implantation of prenatally engineered living autologous cell-based heart valves. Autologous amniotic fluid cells (AFCs) were isolated from pregnant sheep between 122 and 128 days of gestation via transuterine sonographic sampling. Stented trileaflet heart valves were fabricated from biodegradable PGA-P4HB composite matrices (n = 9) and seeded with AFCs in vitro. Within the same intervention, tissue engineered heart valves (TEHVs) and unseeded controls were implanted orthotopically into the pulmonary position using an in-utero closed-heart hybrid approach. The transapical valve deployments were successful in all animals with acute survival of 77.8% of fetuses. TEHV in-vivo functionality was assessed using echocardiography as well as angiography. Fetuses were harvested up to 1 week after implantation representing a birth-relevant gestational age. TEHVs showed in vivo functionality with intact valvular integrity and absence of thrombus formation. The presented approach may serve as an experimental basis for future human prenatal cardiac interventions using fully biodegradable autologous cell-based living materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A review of fetal volumetry: the need for standardization and definitions in measurement methodology.

    Science.gov (United States)

    Ioannou, C; Sarris, I; Salomon, L J; Papageorghiou, A T

    2011-12-01

    Volume charts of fetal organs and structures vary considerably among studies. This review identified 42 studies reporting normal volumes, namely for fetal brain (n = 3), cerebellum (n = 4), liver (n = 6), femur (n = 2), lungs (n = 15), kidneys (n = 3) and first-trimester embryo (n = 9). The differences among median volumes were expressed both in percentage form and as standard deviation scores. Wide discrepancies in reported normal volumes make it extremely difficult to diagnose pathological organ growth reliably. Given its magnitude, this variation is likely to be due to inconsistencies in volumetric methodology, rather than population differences. Complicating factors include the absence of clearly defined anatomical landmarks for measurement; inadequate assessment and reporting of method repeatability; the inherent difficulty in validating fetal measurements in vivo against a reference standard; and a multitude of mutually incompatible three-dimensional (3D) imaging formats and software measuring tools. An attempt to standardize these factors would improve intra- and inter-researcher agreement concerning reported volumetric measures, would allow generalization of reference data across different populations and different ultrasound systems, and would allow quality assurance in 3D fetal biometry. Failure to ensure a quality control process may hamper the wide use of 3D ultrasound. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  8. Toxicity of bryostatin-1 on the embryo-fetal development of Sprague-Dawley rats.

    Science.gov (United States)

    Jiangbo, Zhu; Xuying, Wan; Yuping, Zhu; Xili, Ma; Yiwen, Zheng; Tianbao, Zhang

    2010-06-01

    Bryostatin-1, a highly oxygenated marine macrolide with a unique polyacetate backbone isolated from the marine animal Bugula neritina (Linnaeus), is now being developed as an anti-cancer drug for treating malignancy. In the present study, developmental toxicity of bryostatin-1 was evaluated in Sprague-Dawley rats. Bryostatin-1 was intravenously administered to rats on gestation days 6-15 at 4.0, 8.0, and 16.0 microg/kg on a daily basis. Then the reproductive parameters were determined in animals, and fetuses were examined for external, visceral, and skeletal malformations. The total weight gains were significantly different in animals between the control group and 8.0 and 16.0 microg/kg bryostatin-1 groups during and after treatment. The resorption and death fetus rates were significantly different between the bryostatin-1 group (16 microg/kg) and the control group. The fetal weight and fetal crown-rump length in the bryostatin-1 groups were significantly lower than that in the control group. Our results indicated that maternal toxicity occurred when the dose of bryostatin-1 was at 8.0 microg/kg, embryotoxicity at 16.0 microg/kg, and fetotoxicity at 4.0 microg/kg; but bryostatin-1 showed no teratogenic effect in rats. In light of our findings, bryostatin-1 should be used with caution in pregnant women with cancer, if they would like to continue the pregnancy.

  9. Growth in Inuit children exposed to polychlorinated biphenyls and lead during fetal development and childhood.

    Science.gov (United States)

    Dallaire, Renée; Dewailly, Éric; Ayotte, Pierre; Forget-Dubois, Nadine; Jacobson, Sandra W; Jacobson, Joseph L; Muckle, Gina

    2014-10-01

    Because of their geographical location and traditional lifestyle, Canadian Inuit children are highly exposed to polychlorinated biphenyls (PCBs) and lead (Pb), environmental contaminants that are thought to affect fetal and child growth. We examined the associations of these exposures with the fetal and postnatal growth of Inuit children. We conducted a prospective cohort study among Inuit from Nunavik (Arctic Québec). Mothers were recruited at their first prenatal visit; children (n=290) were evaluated at birth and at 8-14 years of age. Concentrations of PCB 153 and Pb were determined in umbilical cord and child blood. Weight, height and head circumference were measured at birth and during childhood. Cord blood PCB 153 concentrations were not associated with anthropometric measurements at birth or school age, but child blood PCB 153 concentrations were associated with reduced weight, height and head circumference during childhood. There was no association between cord Pb levels and anthropometric outcomes at birth, but cord blood Pb was related to smaller height and shows a tendency of a smaller head circumference during childhood. Our results suggest that chronic exposure to PCBs during childhood is negatively associated with skeletal growth and weight, while prenatal Pb exposure is related to reduced growth during childhood. This study is the first to link prenatal Pb exposure to poorer growth in school-age children. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Detection of fetal QRS-complexes by external methods.

    Science.gov (United States)

    Ahopelto, J; Hukkinen, K; Katila, T E; Laine, H; Kariniemi, V

    1975-01-01

    A new method is presented for detection of the QRS complexes and the fetal heart rate from the fetal magnetocardiogram and from the fetal electrocardiogram. In the method, the amplitude, the polarity and the shape of the QRS complex are tested. By using the described equipment it is possible to detect all consecutive heart beat intervals from a fetal electrocardiogram with less than 1% error in timing. When an external fetal electrocardiogram was used for testing, generally slightly over 10% of the QRS complexes were lost since they were simultaneous with the maternal complexes. In addition, complexes were also lost due to noise.

  11. Fetal eye movements on magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Ramona Woitek

    Full Text Available OBJECTIVES: Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. METHODS: Dynamic SSFP sequences were acquired in 72 singleton fetuses (17-40 GW, three age groups [17-23 GW, 24-32 GW, 33-40 GW]. Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981: Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. RESULTS: In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%. Significant differences between the age groups were found for Type I (p = 0.03, Type Ia (p = 0.031, and Type IV eye movements (p = 0.033. Consistently parallel bulbs were found in 27.3-45%. CONCLUSIONS: In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations.

  12. Fetal eye movements on magnetic resonance imaging.

    Science.gov (United States)

    Woitek, Ramona; Kasprian, Gregor; Lindner, Christian; Stuhr, Fritz; Weber, Michael; Schöpf, Veronika; Brugger, Peter C; Asenbaum, Ulrika; Furtner, Julia; Bettelheim, Dieter; Seidl, Rainer; Prayer, Daniela

    2013-01-01

    Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. Dynamic SSFP sequences were acquired in 72 singleton fetuses (17-40 GW, three age groups [17-23 GW, 24-32 GW, 33-40 GW]). Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981): Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%). Significant differences between the age groups were found for Type I (p = 0.03), Type Ia (p = 0.031), and Type IV eye movements (p = 0.033). Consistently parallel bulbs were found in 27.3-45%. In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations.

  13. MRI of normal fetal brain development.

    Science.gov (United States)

    Prayer, Daniela; Kasprian, Gregor; Krampl, Elisabeth; Ulm, Barbara; Witzani, Linde; Prayer, Lucas; Brugger, Peter C

    2006-02-01

    Normal fetal brain maturation can be studied by in vivo magnetic resonance imaging (MRI) from the 18th gestational week (GW) to term, and relies primarily on T2-weighted and diffusion-weighted (DW) sequences. These maturational changes must be interpreted with a knowledge of the histological background and the temporal course of the respective developmental steps. In addition, MR presentation of developing and transient structures must be considered. Signal changes associated with maturational processes can mainly be ascribed to the following changes in tissue composition and organization, which occur at the histological level: (1) a decrease in water content and increasing cell-density can be recognized as a shortening of T1- and T2-relaxation times, leading to increased T1-weighted and decreased T2-weighted intensity, respectively; (2) the arrangement of microanatomical structures to create a symmetrical or asymmetrical environment, leading to structural differences that may be demonstrated by DW-anisotropy; (3) changes in non-structural qualities, such as the onset of a membrane potential in premyelinating axons. The latter process also influences the appearance of a structure on DW sequences. Thus, we will review the in vivo MR appearance of different maturational states of the fetal brain and relate these maturational states to anatomical, histological, and in vitro MRI data. Then, the development of the cerebral cortex, white matter, temporal lobe, and cerebellum will be reviewed, and the MR appearance of transient structures of the fetal brain will be shown. Emphasis will be placed on the appearance of the different structures with the various sequences. In addition, the possible utility of dynamic fetal sequences in assessing spontaneous fetal movements is discussed.

  14. MRI of normal fetal brain development

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Radiodiagnostics, Medical University of Vienna, Vienna (Austria)]. E-mail: Daniela.prayer@meduniwien.ac.at; Kasprian, Gregor [Department of Radiodiagnostics, Medical University of Vienna, Vienna (Austria); Krampl, Elisabeth [Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna (Austria); Ulm, Barbara [Department of Prenatal Diagnosis, Medical University of Vienna, Vienna (Austria); Witzani, Linde [Department of Radiodiagnostics, Medical University of Vienna, Vienna (Austria); Prayer, Lucas [Diagnosezentrum Urania, Vienna (Austria); Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna (Austria)

    2006-02-15

    Normal fetal brain maturation can be studied by in vivo magnetic resonance imaging (MRI) from the 18th gestational week (GW) to term, and relies primarily on T2-weighted and diffusion-weighted (DW) sequences. These maturational changes must be interpreted with a knowledge of the histological background and the temporal course of the respective developmental steps. In addition, MR presentation of developing and transient structures must be considered. Signal changes associated with maturational processes can mainly be ascribed to the following changes in tissue composition and organization, which occur at the histological level: (1) a decrease in water content and increasing cell-density can be recognized as a shortening of T1- and T2-relaxation times, leading to increased T1-weighted and decreased T2-weighted intensity, respectively; (2) the arrangement of microanatomical structures to create a symmetrical or asymmetrical environment, leading to structural differences that may be demonstrated by DW-anisotropy; (3) changes in non-structural qualities, such as the onset of a membrane potential in premyelinating axons. The latter process also influences the appearance of a structure on DW sequences. Thus, we will review the in vivo MR appearance of different maturational states of the fetal brain and relate these maturational states to anatomical, histological, and in vitro MRI data. Then, the development of the cerebral cortex, white matter, temporal lobe, and cerebellum will be reviewed, and the MR appearance of transient structures of the fetal brain will be shown. Emphasis will be placed on the appearance of the different structures with the various sequences. In addition, the possible utility of dynamic fetal sequences in assessing spontaneous fetal movements is discussed.

  15. Fetal Eye Movements on Magnetic Resonance Imaging

    Science.gov (United States)

    Woitek, Ramona; Kasprian, Gregor; Lindner, Christian; Stuhr, Fritz; Weber, Michael; Schöpf, Veronika; Brugger, Peter C.; Asenbaum, Ulrika; Furtner, Julia; Bettelheim, Dieter; Seidl, Rainer; Prayer, Daniela

    2013-01-01

    Objectives Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. Methods Dynamic SSFP sequences were acquired in 72 singleton fetuses (17–40 GW, three age groups [17–23 GW, 24–32 GW, 33–40 GW]). Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981): Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. Results In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%). Significant differences between the age groups were found for Type I (p = 0.03), Type Ia (p = 0.031), and Type IV eye movements (p = 0.033). Consistently parallel bulbs were found in 27.3–45%. Conclusions In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations. PMID:24194885

  16. Effects of curcumin on the skeletal system in rats.

    Science.gov (United States)

    Folwarczna, Joanna; Zych, Maria; Trzeciak, Henryk I

    2010-01-01

    There is increasing interest in the discovery of natural compounds that could favorably affect the skeletal system. Curcumin is a constituent of turmeric, a plant which has been used for centuries as a dietary spice and a traditional Indian medicine. Curcumin has been reported to affect differentiation, activity and the lifespan of osteoblasts and osteoclasts in vitro. The aim of the present study was to investigate the effects of curcumin on the skeletal system of rats in vivo. Curcumin (10 mg/kg, po daily) was administered for four weeks to normal (non-ovariectomized) and bilaterally ovariectomized (estrogen-deficient) three-month-old female Wistar Cmd:(WI)WU rats. Ovariectomy was performed seven days before the start of curcumin administration. Bone mass, mineral and calcium content, macrometric and histomorphometric parameters, as well as the mechanical properties of the bone, were examined. Serum total cholesterol and estradiol levels were also determined. In rats with normal estrogen levels, curcumin decreased serum estradiol level and slightly increased cancellous bone formation, along with decreased mineralization. Estrogen deficiency induced osteoporotic changes in the skeletal system of the ovariectomized control rats. In ovariectomized rats, curcumin decreased body mass gain and serum total cholesterol level, slightly improved some bone histomorphometric parameters impaired by estrogen deficiency, but did not improve bone mineralization or mechanical properties. In conclusion, the results of the present in vivo study in rats did not support the hypothesis that curcumin, at doses that are readily achievable through dietary intake, could be useful for the prevention or treatment of osteoporosis.

  17. Fetal Growth and Timing of Parturition in Humans

    Science.gov (United States)

    Sundaram, Rajeshwari; Sun, Wenyu; Troendle, James

    2008-01-01

    Animal studies indicate that either the fetus or the intrauterine environment, both of which set the pattern for fetal growth, may affect the timing of parturition. The authors examined the association between fetal growth and timing of spontaneous onset of labor in humans among low-risk white US women with singleton pregnancies (1987–1991). They restricted the data to pregnancies which had a reliable date of the last menstrual period, normal fetal growth in the first half of pregnancy, and no history of or current pregnancy complications that might have impaired fetal growth (n = 3,360). Subjects received ultrasound examinations at 15–22 and 31–35 weeks’ gestation. Fetal growth was adjusted for parity, fetal sex, and maternal prepregnancy weight and height. Results showed that slower or faster fetal growth in the second half of pregnancy resulted in substantially lower or higher birth weight, respectively. However, fetal growth in the second half of pregnancy, even at extremes (2 standard deviations below or above the mean), did not have a meaningful impact on the timing of parturition; neither did fetal growth acceleration or deceleration in late pregnancy. Thus, in low-risk pregnancies where fetal growth is normal in early gestation, fetal growth in the second half of pregnancy does not affect the timing of normal parturition. PMID:18775925

  18. Fetal growth and timing of parturition in humans.

    Science.gov (United States)

    Zhang, Jun; Sundaram, Rajeshwari; Sun, Wenyu; Troendle, James

    2008-10-15

    Animal studies indicate that either the fetus or the intrauterine environment, both of which set the pattern for fetal growth, may affect the timing of parturition. The authors examined the association between fetal growth and timing of spontaneous onset of labor in humans among low-risk white US women with singleton pregnancies (1987-1991). They restricted the data to pregnancies which had a reliable date of the last menstrual period, normal fetal growth in the first half of pregnancy, and no history of or current pregnancy complications that might have impaired fetal growth (n = 3,360). Subjects received ultrasound examinations at 15-22 and 31-35 weeks' gestation. Fetal growth was adjusted for parity, fetal sex, and maternal prepregnancy weight and height. Results showed that slower or faster fetal growth in the second half of pregnancy resulted in substantially lower or higher birth weight, respectively. However, fetal growth in the second half of pregnancy, even at extremes (2 standard deviations below or above the mean), did not have a meaningful impact on the timing of parturition; neither did fetal growth acceleration or deceleration in late pregnancy. Thus, in low-risk pregnancies where fetal growth is normal in early gestation, fetal growth in the second half of pregnancy does not affect the timing of normal parturition.

  19. Identification of the gene-regulatory landscape in skeletal development and potential links to skeletal regeneration

    Directory of Open Access Journals (Sweden)

    Hironori Hojo

    2017-06-01

    Full Text Available A class of gene-regulatory elements called enhancers are the main mediators controlling quantitative, temporal and spatial gene expressions. In the course of evolution, the enhancer landscape of higher organisms such as mammals has become quite complex, exerting biological functions precisely and coordinately. In mammalian skeletal development, the master transcription factors Sox9, Runx2 and Sp7/Osterix function primarily through enhancers on the genome to achieve specification and differentiation of skeletal cells. Recently developed genome-scale analyses have shed light on multiple layers of gene regulations, uncovering not only the primary mode of actions of these transcription factors on skeletal enhancers, but also the relation of the epigenetic landscape to three-dimensional chromatin architecture. Here, we review findings on the emerging framework of gene-regulatory networks involved in skeletal development. We further discuss the power of genome-scale analyses to provide new insights into genetic diseases and regenerative medicine in skeletal tissues.

  20. Identification of circulating fetal cell markers by microarray analysis

    DEFF Research Database (Denmark)

    Brinch, Marie; Hatt, Lotte; Singh, Ripudaman

    2012-01-01

    identified by XY fluorescence in situ hybridization and confirmed by reverse-color fluorescence in situ hybridization were shot off microscope slides by laser capture microdissection. The expression pattern of a subset of expressed genes was compared between fetal cells and maternal blood cells using stem......OBJECTIVE: Different fetal cell types have been found in the maternal blood during pregnancy in the past, but fetal cells are scarce, and the proportions of the different cell types are unclear. The objective of the present study was to identify specific fetal cell markers from fetal cells found...... in the maternal blood circulation at the end of the first trimester. METHOD: Twenty-three fetal cells were isolated from maternal blood by removing the red blood cells by lysis or combining this with removal of large proportions of maternal white blood cells by magnetic-activated cell sorting. Fetal cells...

  1. Recent advances in fetal near-infrared spectroscopy

    Science.gov (United States)

    D'Antona, Donato; Aldrich, Clive J.; O'Brien, Patrick; Lawrence, Sally; Delpy, David T.; Wyatt, John S.

    1997-01-01

    Fetal brain injury resulting from hypoxia and ischemia during labor remains an important cause of death and long- term disability. However, little is known about fetal brain oxygenation and hemodynamics. There are currently no satisfactory clinical techniques for fetal monitoring and there remains a need for a new method to assess brain oxygenation. Fetal near infrared spectroscopy (NIRS) is a new technique that allows noninvasive observation of changes in the cerebral concentrations of oxyhemoglobin and deoxyhemoglobin to be made during labor. A specially designed optical probe is inserted through the dilated cervix and placed against the fetal head. It is then possible to compare changes in NIRS data with other observations of fetal conditions, such as fetal heart rate and acid-base status.

  2. How sex hormones promote skeletal muscle regeneration.

    Science.gov (United States)

    Velders, Martina; Diel, Patrick

    2013-11-01

    Skeletal muscle regeneration efficiency declines with age for both men and women. This decline impacts on functional capabilities in the elderly and limits their ability to engage in regular physical activity and to maintain independence. Aging is associated with a decline in sex hormone production. Therefore, elucidating the effects of sex hormone substitution on skeletal muscle homeostasis and regeneration after injury or disuse is highly relevant for the aging population, where sarcopenia affects more than 30 % of individuals over 60 years of age. While the anabolic effects of androgens are well known, the effects of estrogens on skeletal muscle anabolism have only been uncovered in recent times. Hence, the purpose of this review is to provide a mechanistic insight into the regulation of skeletal muscle regenerative processes by both androgens and estrogens. Animal studies using estrogen receptor (ER) antagonists and receptor subtype selective agonists have revealed that estrogens act through both genomic and non-genomic pathways to reduce leukocyte invasion and increase satellite cell numbers in regenerating skeletal muscle tissue. Although animal studies have been more conclusive than human studies in establishing a role for sex hormones in the attenuation of muscle damage, data from a number of recent well controlled human studies is presented to support the notion that hormonal therapies and exercise induce added positive effects on functional measures and lean tissue mass. Based on the fact that aging human skeletal muscle retains the ability to adapt to exercise with enhanced satellite cell activation, combining sex hormone therapies with exercise may induce additive effects on satellite cell accretion. There is evidence to suggest that there is a 'window of opportunity' after the onset of a hypogonadal state such as menopause, to initiate a hormonal therapy in order to achieve maximal benefits for skeletal muscle health. Novel receptor subtype selective

  3. Evaluation of non-reassuring fetal heart rate patterns with fetal pulse oximetry combined with vibratory acoustic stimulation.

    Science.gov (United States)

    Salamalekis, E; Vitoratos, N; Loghis, C; Kassanos, D; Salloum, I; Batalias, L; Creatsas, G

    2003-02-01

    To determine the value of fetal pulse oximetry and vibratory acoustic stimulation in the presence of non-reassuring fetal heart rate patterns during labor. Prospective study in women monitored by cardiotocography and fetal pulse oximetry during labor. During a period of 18 months, 907 consecutive parturients in labor were monitored by cardiotocography. Out of these women, 63 were selected on the basis of a non-reassuring fetal heart rate tracing during the first stage of labor. In these cases, fetal pulse oximetry was applied. Vibratory acoustic stimulation was applied in fetuses without spontaneous reactivity in order to evaluate the fetal status. Our cases were classified into three groups, according to the lower fetal oxygen saturation levels, from the time of oximetry application until delivery. Group A consisted of 29 cases where fetal oxygen saturation levels were > or = 41%, group B (20 cases) with fetal oxygen saturation of 31-40% and group C (14 cases) with levels of fetal oxygen saturation levels. The mean umbilical artery pH levels were 7.29 +/- 0.051 in group A, 7.21 +/- 0.057 in group B and 7.04 +/- 0.05 in group C. Fetal pulse oximetry should be indicated not only in fetuses without any reactivity but also in those with induced reactivity, after the application of vibratory acoustic stimulation.

  4. Lip prints: The barcode of skeletal malocclusion

    Directory of Open Access Journals (Sweden)

    Pradeep Raghav

    2013-01-01

    Full Text Available Introduction: In orthodontics, apart from essential diagnostic aids, there are so many soft tissue analyses in which lips are major part of concern. However, lip prints have never been used in orthodontics as diagnostic aid or forensic tool. Therefore, this study was designed to explore the possible association of lip prints with skeletal malocclusion. Materials and Methods: A sample of 114 subjects in the age group of 18-30 years, from North Indian adult population were selected on the basis of skeletal class I, class II and class III malocclusion, each comprising of 38 subjects with equal number of males and females. Lip prints of all the individuals were recorded and digital soft copies of lateral cephalograms were taken. Lip prints were compared between different skeletal malocclusions. Results: It was found that branched lip pattern was most common in North Indian adult population with no sexual dimorphism. The Z-test for proportion showed that the prevalence of vertical lip pattern was significantly higher in subjects having skeletal class III malocclusion. Conclusion: A definite co-relation of vertical lip patterns with skeletal class III malocclusion was revealed.

  5. Online Detection of Fetal Acidemia during Labour by Testing Synchronization of EEG and Heart Rate: A Prospective Study in Fetal Sheep

    OpenAIRE

    2014-01-01

    Severe fetal acidemia during labour can result in life-lasting neurological deficits, but the timely detection of this condition is often not possible. This is because the positive predictive value (PPV) of fetal heart rate (FHR) monitoring, the mainstay of fetal health surveillance during labour, to detect concerning fetal acidemia is around 50%. In fetal sheep model of human labour, we reported that severe fetal acidemia (pH

  6. Fetal vs adult mesenchymal stem cells achieve greater geneexpression, but less osteoinduction

    Institute of Scientific and Technical Information of China (English)

    Juan E Santiago-Torres; Rebecca Lovasz; Alicia L Bertone

    2015-01-01

    AIM To investigate adenoviral transduction inmesenchymal stem cells (MSCs) and effects onstemness in vitro and function as a cell therapy in vivo .METHODS: Bone marrow-derived adult and fetal MSCwere isolated from an equine source and expandedin monolayer tissue culture. Polyethylenimine (PEI)-mediated transfection of pcDNA3-eGFP or adenoviraltransduction of green fluorescent protein (GFP)was evaluated in fetal MSCs. Adenoviral-mediatedtransduction was chosen for subsequent experiments. Allexperiments were carried out at least in triplicate unlessotherwise noted. Outcome assessment was obtained byflow cytometry or immunohystochemistry and includedtransduction efficiency, cell viability, stemness (i.e. ,cell proliferation, osteogenic and chondrogenic celldifferentiation), and quantification of GFP expression.Fetal and adult MSCs were then transduced with anadenoviral vector containing the gene for the bonemorphogenic protein 2 (BMP2). In vitro BMP2 expressionwas assessed by enzyme linked immunosorbent assay.In addition, MSC-mediated gene delivery of BMP2 wasevaluated in vivo in an osteoinduction nude mousequadriceps model. New bone formation was evaluated bymicroradiography and histology.RESULTS: PEI provided greater transfection andviability in fetal MSCs than other commercial chemicalreagents. Adenoviral transduction efficiency wassuperior to PEI-mediated transfection of GFP in fetalMSCs (81.3% ± 1.3% vs 35.0% ± 1.6%, P 〈 0.05) andwas similar in adult MSCs (78.1% ± 1.9%). Adenoviraltransduction provided significantly greater expressionof GFP in fetal than adult MSCs (7.4 ± 0.1 vs 4.4 ± 0.3millions of mean fluorescence intensity units, P 〈 0.01)as well as significantly greater in vitro BMP2 expression(0.16 pg/cell-day vs 0.10 pg/cell-day, P 〈 0.01). Fractionof fetal MSC GFP positive cells decreased significantlyfaster than adult MSCs (1.15% ± 0.05% vs 11.4% ±2.1% GFP positive at 2 wk post-transduction, P 〈 0

  7. The role of phosphatases in the initiation of skeletal mineralization.

    Science.gov (United States)

    Millán, José Luis

    2013-10-01

    Endochondral ossification is a carefully orchestrated process mediated by promoters and inhibitors of mineralization. Phosphatases are implicated, but their identities and functions remain unclear. Mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene cause hypophosphatasia, a heritable form of rickets and osteomalacia, caused by an arrest in the propagation of hydroxyapatite (HA) crystals onto the collagenous extracellular matrix due to accumulation of extracellular inorganic pyrophosphate (PPi), a physiological TNAP substrate and a potent calcification inhibitor. However, TNAP knockout (Alpl(-/-)) mice are born with a mineralized skeleton and have HA crystals in their chondrocyte- and osteoblast-derived matrix vesicles (MVs). We have shown that PHOSPHO1, a soluble phosphatase with specificity for two molecules present in MVs, phosphoethanolamine and phosphocholine, is responsible for initiating HA crystal formation inside MVs and that PHOSPHO1 and TNAP have nonredundant functional roles during endochondral ossification. Double ablation of PHOSPHO1 and TNAP function leads to the complete absence of skeletal mineralization and perinatal lethality, despite normal systemic phosphate and calcium levels. This strongly suggests that the Pi needed for initiation of MV-mediated mineralization is produced locally in the perivesicular space. As both TNAP and nucleoside pyrophosphohydrolase-1 (NPP1) behave as potent ATPases and pyrophosphatases in the MV compartment, our current model of the mechanisms of skeletal mineralization implicate intravesicular PHOSPHO1 function and Pi influx into MVs in the initiation of mineralization and the functions of TNAP and NPP1 in the extravesicular progression of mineralization.

  8. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  9. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  10. [Systemic production of cytokines and growth factors in various forms of syndrome of delayed fetal growth].

    Science.gov (United States)

    Makarenko, M V

    2014-11-01

    The syndrome of delayed fetal growth (SDFG) is one of the most wide-spread pathological conditions while course of pregnancy; it is characterized by disorder of the feto-placental system function. Its incidence is from 3 to 8%. The studying of peculiarities of the system and local immune disorders, coinciding with SDFG, would permit to establish the immune mechanisms of its formation. Revealing of immunoregulation disorders on systemic and local levels would promote the creation of a concept, depicting participation of the immune system in formation of asymmetrical and symmetrical forms of SDFG, to elaborate new approaches for prognosis and diagnosis.

  11. Cell-free fetal DNA and cell-free total DNA levels in spontaneous abortion with fetal chromosomal aneuploidy.

    Directory of Open Access Journals (Sweden)

    Ji Hyae Lim

    Full Text Available BACKGROUND: Cell-free fetal DNA and cell-free total DNA in maternal circulation have been proposed as potential markers for noninvasive monitoring of the placental condition during the pregnancy. However, the correlation of and change in cell-free fetal DNA and cell-free total DNA in spontaneous abortion (SA with fetal chromosomal aneuploidy have not yet been reported. Therefore, we investigated cell-free fetal DNA and cell-free total DNA levels in SA women with fetal chromosomal aneuploidy. METHODOLOGY/PRINCIPAL FINDINGS: A nested case-control study was conducted with maternal plasma collected from 268 women in their first trimester of pregnancy. Subjects included 41 SA with normal fetal karyotype, 26 SA with fetal chromosomal aneuploidy, and 201 normal controls. The unmethylated PDE9A gene was used to measure the maternal plasma levels of cell-free fetal DNA. The GAPDH gene was used to measure the maternal plasma levels of cell-free total DNA. The diagnostic accuracy was measured using receiver-operating characteristic (ROC curves. Levels of cell-free fetal DNA and cell-free total DNA were significantly higher in both SA women with normal fetal karyotype and SA women with fetal chromosomal aneuploidy in comparison with the normal controls (P<0.001 in both. The correlation between cell-free fetal DNA and cell-free total DNA levels was stronger in the normal controls (r = 0.843, P<0.001 than in SA women with normal karyotype (r = 0.465, P = 0.002 and SA women with fetal chromosomal aneuploidy (r = 0.412, P = 0.037. The area under the ROC curve for cell-free fetal DNA and cell-free total DNA was 0.898 (95% CI, 0.852-0.945 and 0.939 (95% CI, 0.903-0.975, respectively. CONCLUSIONS: Significantly high levels of cell-free fetal DNA and cell-free total DNA were found in SA women with fetal chromosomal aneuploidy. Our findings suggest that cell-free fetal DNA and cell-free total DNA may be useful biomarkers for the prediction of SA

  12. Bone Is a Major Target of PTH/PTHrP Receptor Signaling in Regulation of Fetal Blood Calcium Homeostasis.

    Science.gov (United States)

    Hirai, Takao; Kobayashi, Tatsuya; Nishimori, Shigeki; Karaplis, Andrew C; Goltzman, David; Kronenberg, Henry M

    2015-08-01

    The blood calcium concentration during fetal life is tightly regulated within a narrow range by highly interactive homeostatic mechanisms that include transport of calcium across the placenta and fluxes in and out of bone; the mechanisms of this regulation are poorly understood. Our findings that endochondral bone-specific PTH/PTHrP receptor (PPR) knockout (KO) mice showed significant reduction of fetal blood calcium concentration compared with that of control littermates at embryonic day 18.5 led us to focus on bone as a possibly major determinant of fetal calcium homeostasis. We found that the fetal calcium concentration of Runx2 KO mice was significantly higher than that of control littermates, suggesting that calcium flux into bone had a considerable influence on the circulating calcium concentration. Moreover, Runx2:PTH double mutant fetuses showed calcium levels similar to those of Runx2 KO mice, suggesting that part of the fetal hypocalcemia in PTH KO mice was caused by the increment of the mineralized bone mass allowed by the formation of osteoblasts. Finally, Rank:PTH double mutant mice had a blood calcium concentration even lower than that of the either Rank KO or PTH KO mice alone at embryonic day 18.5. These observations in our genetic models suggest that PTH/PTHrP receptor signaling in bones has a significant role of the regulation of fetal blood calcium concentration and that both placental transport and osteoclast activation contribute to PTH's hypercalcemic action. They also show that PTH-independent deposition of calcium in bone is the major controller of fetal blood calcium level.

  13. Comparative study on influence of fetal bovine serum and serum of adult rat on cultivation of newborn rat neural cells

    Directory of Open Access Journals (Sweden)

    Sukach A. N.

    2014-09-01

    Full Text Available Aim. To study the influence of fetal bovine serum and serum of adult rats on behavior of newborn rat isolated neural cells during their cultivation in vitro. Methods. The isolation of neural cells from neonatal rat brain. The determination of the dynamics of cellular monolayer formation. Immunocytochemical staining of cells for β-tubulin III, nestin and vimentin. Results. It has been determined that the addition of serum of adult rats to the cultivation medium creates more favorable conditions for survival, attachment and spread of differentiated, and proliferation of the stem/progenitor neural cells of newborn rats during cultivation in vitro compared with the fetal bovine serum. Conclusions. Using the serum of adult rats is preferable for the cultivation of isolated neural cells of newborn rats compared with the fetal bovine serum.

  14. Fetal stromal niches enhance human embryonic stem cell-derived hematopoietic differentiation and globin switch.

    Science.gov (United States)

    Lee, King Yiu; Fong, Benny Shu Pan; Tsang, Kam Sze; Lau, Tze Kin; Ng, Pak Cheung; Lam, Audrey Carmen; Chan, Kathy Yuen Yee; Wang, Chi Chiu; Kung, Hsiang Fu; Li, Chi Kong; Li, Karen

    2011-01-01

    Hematopoiesis during mammalian embryonic development has been perceived as a migratory phenomenon, from the yolk sac blood island to the aorta-gonad-mesonephros (AGM) region, fetal liver (FL), and subsequently, the fetal bone marrow. In this study, we investigated the effects of primary stromal cells from fetal hematopoietic niches and their conditioned media (CM), applied singly or in sequential orders, on induction of human embryonic stem cells, H1, H9, and H14 lines, to hematopoietic cells. Our results demonstrated that stromal support of FL, AGM + FL, and AGM + FL + fetal bone marrow significantly increased the proliferation of embryoid bodies (EB) at day 18 of hematopoietic induction in the presence of thrombopoietin, stem cell factor, and Flt-3 ligand. AGM + FL also increased hematopoietic colony-forming unit (CFU) formation. CM did not enhance EB proliferation but CM of FL and AGM + FL significantly increased the density of total CFU and early erythroid (burst-forming unit) progenitors. Increased commitment to the hematopoietic lineage was demonstrated by enhanced expressions of CD45, alpha-, beta-, and gamma-globins in CFU at day 32, compared with EB at day 18. CM of FL significantly increased these globin expressions, indicating enhanced switches from embryonic to fetal and adult erythropoiesis. Over 50% and 10% of cells derived from CFU expressed CD45 and beta-globin proteins, respectively. Expressions of hematopoietic regulatory genes (Bmi-1, β-Catenin, Hox B4, GATA-1) were increased in EB or CFU cultures supported by FL or sequential CM. Our study has provided a strategy for derivation of hematopoietic cells from embryonic stem cells under the influence of primary hematopoietic niches and CM, particularly the FL.

  15. Skeletal muscle regeneration in cancer cachexia.

    Science.gov (United States)

    Bossola, Maurizio; Marzetti, Emanuele; Rosa, Fausto; Pacelli, Fabio

    2016-05-01

    Muscle wasting is the most important phenotypic and clinical feature of cancer cachexia, and the principal cause of impaired physical function, fatigue, and respiratory complications. Muscle loss has been attributed to a variable combination of reduced nutritional intake and an imbalance between anabolic and catabolic processes. It has been suggested that defective skeletal muscle regeneration may also contribute to muscle wasting in cancer patients. However, there is little in vitro or in vivo data available, in either animals or in humans, regarding skeletal muscle regeneration in cancer wasting. The aim of the present review is to define the role of skeletal muscle regeneration in the muscle wasting of cancer patients and to determine possible therapeutic implications.

  16. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  17. The Human Skeletal Muscle Proteome Project

    DEFF Research Database (Denmark)

    Gonzalez-Freire, Marta; Semba, Richard D.; Ubaida-Mohien, Ceereena

    2017-01-01

    Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of ‘sarcopenia’, a condition that impairs mobility, challenges autonomy, and is a risk...... factor for mortality. The mechanisms leading to sarcopenia as well as myopathies are still little understood. The Human Skeletal Muscle Proteome Project was initiated with the aim to characterize muscle proteins and how they change with ageing and disease. We conducted an extensive review...... of the literature and analysed publically available protein databases. A systematic search of peer-reviewed studies was performed using PubMed. Search terms included ‘human’, ‘skeletal muscle’, ‘proteome’, ‘proteomic(s)’, and ‘mass spectrometry’, ‘liquid chromatography-mass spectrometry (LC-MS/MS)’. A catalogue...

  18. Skeletal muscle as an immunogenic organ

    DEFF Research Database (Denmark)

    Nielsen, Søren; Pedersen, Bente Klarlund

    2008-01-01

    During the past few years, a possible link between skeletal muscle contractile activity and immune changes has been established. This concept is based on the finding that exercise provokes an increase in a number of cytokines. We have suggested that cytokines and other peptides that are produced......; expressed and released by muscle fibers and exert either paracrine or endocrine effects should be classified as 'myokines'. Human skeletal muscle has the capacity to express several myokines belonging to distinct different cytokine classes and contractile activity plays a role in regulating the expression...... of cytokines in skeletal muscle. In the present review, we focus on the myokines interleukin (IL)-6, IL-8 and IL-15 and their possible anti-inflammatory, immunoregulatory and metabolic roles....

  19. Genetic engineering for skeletal regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  20. The benefits of coffee on skeletal muscle.

    Science.gov (United States)

    Dirks-Naylor, Amie J

    2015-12-15

    Coffee is consumed worldwide with greater than a billion cups of coffee ingested every day. Epidemiological studies have revealed an association of coffee consumption with reduced incidence of a variety of chronic diseases as well as all-cause mortality. Current research has primarily focused on the effects of coffee or its components on various organ systems such as the cardiovascular system, with relatively little attention on skeletal muscle. Summary of current literature suggests that coffee has beneficial effects on skeletal muscle. Coffee has been shown to induce autophagy, improve insulin sensitivity, stimulate glucose uptake, slow the progression of sarcopenia, and promote the regeneration of injured muscle. Much more research is needed to reveal the full scope of benefits that coffee consumption may exert on skeletal muscle structure and function.