WorldWideScience

Sample records for fetal lung development

  1. MRI of normal and pathological fetal lung development

    International Nuclear Information System (INIS)

    Kasprian, Gregor; Balassy, Csilla; Brugger, Peter C.; Prayer, Daniela

    2006-01-01

    Normal fetal lung development is a complex process influenced by mechanical and many biochemical factors. In addition to ultrasound, fetal magnetic resonance imaging (MRI) constitutes a new method to investigate this process in vivo during the second and third trimester. The techniques of MRI volumetry, assessment of signal intensities, and MRI spectroscopy of the fetal lung have been used to analyze this process and have already been applied clinically to identify abnormal fetal lung growth. Particularly in conditions such as oligohydramnios and congenital diaphragmatic hernia (CDH), pulmonary hypoplasia may be the cause of neonatal death. A precise diagnosis and quantification of compromised fetal lung development may improve post- and perinatal management. The main events in fetal lung development are reviewed and MR volumetric data from 106 normal fetuses, as well as different examples of pathological lung growth, are provided

  2. MRI of normal and pathological fetal lung development

    Energy Technology Data Exchange (ETDEWEB)

    Kasprian, Gregor [University Clinic of Radiodiagnostics, Medical University of Vienna (Austria)]. E-mail: gregor.kasprian@meduniwien.ac.at; Balassy, Csilla [University Clinic of Radiodiagnostics, Medical University of Vienna (Austria); Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna (Austria); Prayer, Daniela [University Clinic of Radiodiagnostics, Medical University of Vienna (Austria)

    2006-02-15

    Normal fetal lung development is a complex process influenced by mechanical and many biochemical factors. In addition to ultrasound, fetal magnetic resonance imaging (MRI) constitutes a new method to investigate this process in vivo during the second and third trimester. The techniques of MRI volumetry, assessment of signal intensities, and MRI spectroscopy of the fetal lung have been used to analyze this process and have already been applied clinically to identify abnormal fetal lung growth. Particularly in conditions such as oligohydramnios and congenital diaphragmatic hernia (CDH), pulmonary hypoplasia may be the cause of neonatal death. A precise diagnosis and quantification of compromised fetal lung development may improve post- and perinatal management. The main events in fetal lung development are reviewed and MR volumetric data from 106 normal fetuses, as well as different examples of pathological lung growth, are provided.

  3. Lung-derived growth factors: possible paracrine effectors of fetal lung development

    International Nuclear Information System (INIS)

    Montes, A.M.

    1985-01-01

    A potential role for paracrine secretions in lung organogenesis has been hypothesized (Alescio and Piperno, 1957). These studies present direct support for the paracrine model by demonstrating the presence of locally produced mitogenic/maturational factors in fetal rat lung tissue. Conditioned serum free medium (CSFM) from nineteen-day fetal rat lung cultures was shown to contain several bioactive peptides as detected by 3 H-Thymidine incorporation into chick embryo and rat lung fibroblasts, as well as 14 C-choline incorporation into surfactant in mixed cell cultures. Using ion-exchange chromatography and Sephadex gel filtration, a partially purified mitogen, 11-III, was obtained. The partially purified 11-III stimulates mitosis in chick embryo fibroblasts and post-natal rat lung fibroblasts. Multiplication in fetal rat lung fibroblasts cultures is stimulated only when these are pre-incubated with a competence factor or unprocessed CSFM. This suggests the existence of an endogenously produced competence factor important in the regulation of fetal lung growth. Preparation 11-III does not possess surfactant stimulating activity as assessed by 3 H-choline incorporation into lipids in predominantly type-II cell cultures. These data demonstrate the presence of a maturational/mitogenic factor, influencing type-II mixed cell cultures. In addition, 11-III had been shown to play an autocrine role stimulating the proliferation of fetal lung fibroblasts. Finally, these data suggest the existence of a local produced competence factor

  4. N-Methyl-D-aspartate Receptor Excessive Activation Inhibited Fetal Rat Lung Development In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Zhengchang Liao

    2016-01-01

    Full Text Available Background. Intrauterine hypoxia is a common cause of fetal growth and lung development restriction. Although N-methyl-D-aspartate receptors (NMDARs are distributed in the postnatal lung and play a role in lung injury, little is known about NMDAR’s expression and role in fetal lung development. Methods. Real-time PCR and western blotting analysis were performed to detect NMDARs between embryonic days (E 15.5 and E21.5 in fetal rat lungs. NMDAR antagonist MK-801’s influence on intrauterine hypoxia-induced retardation of fetal lung development was tested in vivo, and NMDA’s direct effect on fetal lung development was observed using fetal lung organ culture in vitro. Results. All seven NMDARs are expressed in fetal rat lungs. Intrauterine hypoxia upregulated NMDARs expression in fetal lungs and decreased fetal body weight, lung weight, lung-weight-to-body-weight ratio, and radial alveolar count, whereas MK-801 alleviated this damage in vivo. In vitro experiments showed that NMDA decreased saccular circumference and area per unit and downregulated thyroid transcription factor-1 and surfactant protein-C mRNA expression. Conclusions. The excessive activation of NMDARs contributed to hypoxia-induced fetal lung development retardation and appropriate blockade of NMDAR might be a novel therapeutic strategy for minimizing the negative outcomes of prenatal hypoxia on lung development.

  5. Prenatal stress challenge impairs fetal lung development and asthma severity sex-specifically in mice.

    Science.gov (United States)

    Zazara, Dimitra E; Perani, Clara V; Solano, María E; Arck, Petra C

    2018-02-01

    Allergic asthma is an increasing health problem worldwide. Interestingly, prenatal challenges such as stress have been associated with an increased risk for asthma during childhood. The underlying pathogenesis of how prenatal stress increases the risk for asthma still remains unclear. Potential targets could be that the fetal immune ontogeny or fetal lung development are compromised by prenatal challenges. Here, we aimed to identify whether prenatal stress challenge affects fetal lung development in mice. C57BL/6 pregnant mice were challenged with sound stress and fetal lung development was assessed histologically. Whilst prenatal stress challenge did not profoundly affect lung development in male fetuses, it resulted in less extensive terminal sacs, surrounded by thicker mesenchymal tissue in female fetuses. Thus, prenatal stress disrupted fetal lung development sex-specifically. Interestingly, upon prenatal stress challenge, the airway hyperresponsiveness and eosinophilic inflammation- two hallmarks of asthma - were significantly increased in adult female offspring, whilst regulatory CD4+ T cells were reduced. These findings strongly underpin the sex-specific association between s challenged fetal development and a sex-specific altered severity of asthma in adult offspring. Our model now allows to identify maternal markers through which the risk for asthma and possible other diseases is vertically transferred before birth in response to challenges. Such identification then opens avenues for primary disease prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Leukemia inhibitory factor in rat fetal lung development: expression and functional studies.

    Directory of Open Access Journals (Sweden)

    Cristina Nogueira-Silva

    Full Text Available BACKGROUND: Leukemia inhibitory factor (LIF and interleukin-6 (IL-6 are members of the family of the glycoprotein 130 (gp130-type cytokines. These cytokines share gp130 as a common signal transducer, which explains why they show some functional redundancy. Recently, it was demonstrated that IL-6 promotes fetal lung branching. Additionally, LIF has been implicated in developmental processes of some branching organs. Thus, in this study LIF expression pattern and its effects on fetal rat lung morphogenesis were assessed. METHODOLOGY/PRINCIPAL FINDINGS: LIF and its subunit receptor LIFRα expression levels were evaluated by immunohistochemistry and western blot in fetal rat lungs of different gestational ages, ranging from 13.5 to 21.5 days post-conception. Throughout all gestational ages studied, LIF was constitutively expressed in pulmonary epithelium, whereas LIFRα was first mainly expressed in the mesenchyme, but after pseudoglandular stage it was also observed in epithelial cells. These results point to a LIF epithelium-mesenchyme cross-talk, which is known to be important for lung branching process. Regarding functional studies, fetal lung explants were cultured with increasing doses of LIF or LIF neutralizing antibodies during 4 days. MAPK, AKT, and STAT3 phosphorylation in the treated lung explants was analyzed. LIF supplementation significantly inhibited lung growth in spite of an increase in p44/42 phosphorylation. On the other hand, LIF inhibition significantly stimulated lung growth via p38 and Akt pathways. CONCLUSIONS/SIGNIFICANCE: The present study describes that LIF and its subunit receptor LIFRα are constitutively expressed during fetal lung development and that they have an inhibitory physiological role on fetal lung branching.

  7. Lung regeneration by fetal lung tissue implantation in a mouse pulmonary emphysema model.

    Science.gov (United States)

    Uyama, Koh; Sakiyama, Shoji; Yoshida, Mitsuteru; Kenzaki, Koichiro; Toba, Hiroaki; Kawakami, Yukikiyo; Okumura, Kazumasa; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira

    2016-01-01

    The mortality and morbidity of chronic obstructive pulmonary disease are high. However, no radical therapy has been developed to date. The purpose of this study was to evaluate whether fetal mouse lung tissue can grow and differentiate in the emphysematous lung. Fetal lung tissue from green fluorescent protein C57BL/6 mice at 16 days' gestation was used as donor material. Twelve-month-old pallid mice were used as recipients. Donor lungs were cut into small pieces and implanted into the recipient left lung by performing thoracotomy under anesthesia. The recipient mice were sacrificed at day 7, 14, and 28 after implantation and used for histological examination. Well-developed spontaneous pulmonary emphysema was seen in 12-month-old pallid mice. Smooth and continuous connection between implanted fetal lung tissue and recipient lung was recognized. Air space expansion and donor tissue differentiation were observed over time. We could clearly distinguish the border zones between injected tissue and native tissue by the green fluorescence of grafts. Fetal mouse lung fragments survived and differentiated in the emphysematous lung of pallid mice. Implantation of fetal lung tissue in pallid mice might lead to further lung regeneration research from the perspective of respiratory and exercise function. J. Med. Invest. 63: 182-186, August, 2016.

  8. Fetal lung development on MRI. Normal course and impairment due to premature rupture of membranes

    International Nuclear Information System (INIS)

    Kasprian, G.; Zentrum fuer Anatomie und Zellbiologie der Medizinischen Universitaet Wien; Brugger, P.C.; Helmer, H.; Langer, M.; Balassy, C.; Prayer, D.

    2006-01-01

    A well-organized interplay between many molecular factors as well as mechanical forces influence fetal lung development. At the end of this complex process a sufficiently sized and structurally mature organ should ensure the postnatal survival of the newborn. Besides prenatal ultrasonography, magnetic resonance imaging (MRI) can now be used to investigate normal and pathological human lung growth in utero. Oligohydramnios, due to premature rupture of membranes (PROM), is an important risk factor for compromised fetal lung growth. In these situations MR volumetry can be used to measure the size of the fetal lung quite accurately. Together with the evaluation of lung signal intensities on T2-weighted sequences, fetuses with pulmonary hypoplasia can be readily detected. (orig.) [de

  9. Amniocentesis for fetal lung maturity: will it become obsolete?

    Science.gov (United States)

    Varner, Stephen; Sherman, Craig; Lewis, David; Owens, Sheri; Bodie, Frankie; McCathran, C Eric; Holliday, Nicolette

    2013-01-01

    AMNIOCENTESIS FOR FETAL LUNG MATURITY HAS HISTORICALLY BEEN PERFORMED FOR MANY REASONS: uterine and placental complications, maternal comorbidities, fetal issues, and even obstetric problems. Even though the risks associated with third trimester amniocentesis are extremely low, complications have been documented, including preterm labor, placental abruptions, intrauterine rupture, maternal sepsis, fetal heart rate abnormalities, and fetal-maternal hemorrhage. This review presents the types of tests for fetal lung maturity, presents the indications and tests utilized, and discusses recommendations for when amniocentesis for fetal lung maturity may be appropriate.

  10. Choriodecidual infection downregulates angiogenesis and morphogenesis pathways in fetal lungs from Macaca nemestrina.

    Directory of Open Access Journals (Sweden)

    Ryan M McAdams

    Full Text Available Intrauterine exposure to amniotic fluid (AF cytokines is thought to predispose to bronchopulmonary dysplasia (BPD. We evaluated the effects of GBS exposure on RNA expression in fetal lung tissue to determine early molecular pathways associated with fetal lung injury that may progress to BPD.Ten chronically catheterized pregnant monkeys (Macaca nemestrina at 118-125 days gestation (term = 172 days received choriodecidual inoculation of either: 1 Group B Streptococcus (n = 5 or 2 saline (n = 5. Cesarean section and fetal necropsy was performed in the first week after GBS or saline inoculation regardless of labor. RNA was extracted from fetal lungs and profiled by microarray. Results were analyzed using single gene, Gene Set, and Ingenuity Pathway Analysis. Validation was by RT-PCR and immunohistochemistry.Despite uterine quiescence in most cases, fetal lung injury occurred in four GBS cases (intra-alveolar neutrophils, interstitial thickening and one control (peri-mortem hemorrhage. Significant elevations of AF cytokines (TNF-α, IL-8, IL-1β, IL-6 were detected in GBS versus controls (p<0.05. Lung injury was not directly caused by GBS, because GBS was undetectable by culture and PCR in the AF and fetal lungs. A total of 335 genes were differentially expressed greater than 1.5 fold (p<0.05 with GBS exposure associated with a striking upregulation of genes in innate and adaptive immunity and downregulation of pathways for angiogenesis, morphogenesis, and cellular growth and development.A transient choriodecidual infection may induce fetal lung injury with profound alterations in the genetic program of the fetal lung before signs of preterm labor. Our results provide a window for the first time into early molecular pathways disrupting fetal lung angiogenesis and morphogenesis before preterm labor occurs, which may set the stage for BPD. A strategy to prevent BPD should target the fetus in utero to attenuate alterations in the fetal lung

  11. Contribution of Fetal, but Not Adult, Pulmonary Mesothelium to Mesenchymal Lineages in Lung Homeostasis and Fibrosis.

    Science.gov (United States)

    von Gise, Alexander; Stevens, Sean M; Honor, Leah B; Oh, Jin Hee; Gao, Chi; Zhou, Bin; Pu, William T

    2016-02-01

    The lung is enveloped by a layer of specialized epithelium, the pulmonary mesothelium. In other organs, mesothelial cells undergo epithelial-mesenchymal transition and contribute to organ stromal cells. The contribution of pulmonary mesothelial cells (PMCs) to the developing lung has been evaluated with differing conclusions. PMCs have also been indirectly implicated in lung fibrosis in the progressive, fatal lung disease idiopathic pulmonary fibrosis. We used fetal or postnatal genetic pulse labeling of PMCs to assess their fate in murine development, normal lung homeostasis, and models of pulmonary fibrosis. We found that most fetal PMC-derived mesenchymal cells (PMCDCs) expressed markers of pericytes and fibroblasts, only a small minority expressed smooth muscle markers, and none expressed endothelial cell markers. Postnatal PMCs did not contribute to lung mesenchyme during normal lung homeostasis or in models of lung fibrosis. However, fetal PMCDCs were abundant and actively proliferating within fibrotic regions in lung fibrosis models, suggesting that they actively participate in the fibrotic process. These data clarify the role of fetal and postnatal PMCDCs in lung development and disease.

  12. Fetal lung development on MRI. Normal course and impairment due to premature rupture of membranes; Fetale Lungenentwicklung in der MRT. Normaler Verlauf und Beeintraechtigung durch vorzeitigen Blasensprung

    Energy Technology Data Exchange (ETDEWEB)

    Kasprian, G. [Medizinische Universitaet Wien (Austria). Klinik fuer Radiodiagnostik; Zentrum fuer Anatomie und Zellbiologie der Medizinischen Universitaet Wien (Austria). Arbeitsgruppe Integrative Morphologie; Brugger, P.C. [Zentrum fuer Anatomie und Zellbiologie der Medizinischen Universitaet Wien (Austria). Arbeitsgruppe Integrative Morphologie; Helmer, H.; Langer, M. [Medizinische Universitaet Wien (Austria). Klinik fuer Frauenheilkunde; Balassy, C.; Prayer, D. [Medizinische Universitaet Wien (Austria). Klinik fuer Radiodiagnostik

    2006-02-15

    A well-organized interplay between many molecular factors as well as mechanical forces influence fetal lung development. At the end of this complex process a sufficiently sized and structurally mature organ should ensure the postnatal survival of the newborn. Besides prenatal ultrasonography, magnetic resonance imaging (MRI) can now be used to investigate normal and pathological human lung growth in utero. Oligohydramnios, due to premature rupture of membranes (PROM), is an important risk factor for compromised fetal lung growth. In these situations MR volumetry can be used to measure the size of the fetal lung quite accurately. Together with the evaluation of lung signal intensities on T2-weighted sequences, fetuses with pulmonary hypoplasia can be readily detected. (orig.) [German] Die fetale Lungenentwicklung wird einerseits durch eine Vielzahl molekularer Faktoren und andererseits durch mechanisch-physiologische Kraefte beeinflusst. Ein geordnetes Zusammenspiel dieser Mechanismen fuehrt zu einem ausreichend grossen und strukturell reifen Organ, das sofort nach der Geburt das Ueberleben des Neugeborenen sicherstellt. Neben der praenatalen Ultraschalluntersuchung bietet nun auch die Magnetresonanztomographie (MRT) die Moeglichkeit, die normale und pathologische fetale Lungenentwicklung zu untersuchen. Ein wesentlicher Risikofaktor fuer eine Beeintraechtigung der Lungenentwicklung ist die verminderte Fruchtwassermenge nach vorzeitigem Blasensprung. In diesen Faellen kann die MR-Volumetrie dazu eingesetzt werden, die Groesse der fetalen Lungen relativ genau zu bestimmen. Gemeinsam mit der Beurteilung der MR-Signalintensitaeten des Lungengewebes auf T2-gewichteten Sequenzen koennen Feten mit hypoplastischen Lungen mit zunehmender Sicherheit bereits praenatal identifiziert werden. (orig.)

  13. Fetal lung volume measurement by MRI with high-speed imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Osada, Hisao; Kaku, Kenshi [Chiba Univ. (Japan). Hospital

    2002-08-01

    Although ultrasonography is widely used for fetal morphologic observation, magnetic resonance imaging (MRI) has gained popularity as a new prenatal diagnostic method with recent introduction of high-speed imaging systems. Infants with lung hypoplasia affecting respiratory function require intensive management starting immediately after birth. Therefore, accurate prenatal differential diagnosis and severity evaluation are extremely important for these fetuses. The aim of this study is to measure fetal lung volume using a computer-based, three-dimensional MRI imaging system and to evaluate the possibility of clinical applications of this procedure. A total of 96 fetuses were evaluated, all were morphologically abnormal, and MRI was done for advanced assessment from 24 to 39 weeks gestation. Three-directional views of fetal chest were imaged by Signa Horizon, 1.5 Tesla, version 5.6 (General Electronics) with the following conditions; coil: TORSO coil, sequence: SSFSE (single shot fast spin echo), slice thickness: 5 mm, and imaging speed: 2 seconds/slice. To calculate the lung volume and create three-dimensional image, the lung area in each slice was traced out, then multiplied using computer image processing. Simultaneously, the volumes of all slices were summed to give the volume of each lung. Linear regression analysis and analysis of covariance (ANCOVA) were used for statistical analyses. In all cases, clear images were obtained, and were adequate for three-dimensional evaluation of the fetal lung. Thirty-five fetuses had poor outcomes, such as intrauterine fetal death, neonatal death, and intensive respiratory care. Regression lines of lung volume versus gestational week were calculated for these fetuses with poor outcome and 61 other fetuses with good outcome. ANCOVA, with gestational week as a covariant, revealed a significant intergroup difference in the lung volume (p<0.001). Similarly, regression lines of lung volume versus fetal body weight estimated by

  14. Diffusion-weighted MR imaging of the normal fetal lung

    International Nuclear Information System (INIS)

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Hoermann, Marcus; Bankier, Alexander; Herold, Christian J.; Prayer, Daniela; Brugger, Peter C.; Csapo, Bence; Bammer, Roland

    2008-01-01

    To quantify apparent diffusion coefficient (ADC) changes in fetuses with normal lungs and to determine whether ADC can be used in the assessment of fetal lung development. In 53 pregnancies (20-37th weeks of gestation), we measured ADC on diffusion-weighted imaging (DWI) in the apical, middle, and basal thirds of the right lung. ADCs were correlated with gestational age. Differences between the ADCs were assessed. Fetal lung volumes were measured on T2-weighted sequences and correlated with ADCs and with age. ADCs were 2.13 ± 0.44 μm 2 /ms (mean ± SD) in the apex, 1.99 ± 0.42 μm 2 /ms (mean ± SD) in the middle third, and 1.91 ± 0.41 μm 2 /ms (mean ± SD) in the lung base. Neither the individual ADC values nor average ADC values showed a significant correlation with gestational age or with lung volumes. Average ADCs decreased significantly from the lung apex toward the base. Individual ADCs showed little absolute change and heterogeneity. Lung volumes increased significantly during gestation. We have not been able to identify a pattern of changes in the ADC values that correlate with lung maturation. Furthermore, the individual, gravity-related ADC changes are subject to substantial variability and show nonuniform behavior. ADC can therefore not be used as an indicator of lung maturity. (orig.)

  15. Diffusion-weighted MR imaging of the normal fetal lung

    Energy Technology Data Exchange (ETDEWEB)

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Hoermann, Marcus; Bankier, Alexander; Herold, Christian J.; Prayer, Daniela [Medical University of Vienna, Department of Radiology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Center of Anatomy and Cell Biology, Vienna (Austria); Csapo, Bence [Medical University of Vienna, Department of Obstetrics and Gyneocology, Vienna (Austria); Bammer, Roland [University of Stanford, Department of Radiology, Stanford, CA (United States)

    2008-04-15

    To quantify apparent diffusion coefficient (ADC) changes in fetuses with normal lungs and to determine whether ADC can be used in the assessment of fetal lung development. In 53 pregnancies (20-37th weeks of gestation), we measured ADC on diffusion-weighted imaging (DWI) in the apical, middle, and basal thirds of the right lung. ADCs were correlated with gestational age. Differences between the ADCs were assessed. Fetal lung volumes were measured on T2-weighted sequences and correlated with ADCs and with age. ADCs were 2.13 {+-} 0.44 {mu}m{sup 2}/ms (mean {+-} SD) in the apex, 1.99 {+-} 0.42 {mu}m{sup 2}/ms (mean {+-} SD) in the middle third, and 1.91 {+-} 0.41 {mu}m{sup 2}/ms (mean {+-} SD) in the lung base. Neither the individual ADC values nor average ADC values showed a significant correlation with gestational age or with lung volumes. Average ADCs decreased significantly from the lung apex toward the base. Individual ADCs showed little absolute change and heterogeneity. Lung volumes increased significantly during gestation. We have not been able to identify a pattern of changes in the ADC values that correlate with lung maturation. Furthermore, the individual, gravity-related ADC changes are subject to substantial variability and show nonuniform behavior. ADC can therefore not be used as an indicator of lung maturity. (orig.)

  16. Peroxisome proliferator-activated receptor ligands regulate lipid content, metabolism, and composition in fetal lungs of diabetic rats.

    Science.gov (United States)

    Kurtz, M; Capobianco, E; Careaga, V; Martinez, N; Mazzucco, M B; Maier, M; Jawerbaum, A

    2014-03-01

    Maternal diabetes impairs fetal lung development. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors relevant in lipid homeostasis and lung development. This study aims to evaluate the effect of in vivo activation of PPARs on lipid homeostasis in fetal lungs of diabetic rats. To this end, we studied lipid concentrations, expression of lipid metabolizing enzymes and fatty acid composition in fetal lungs of control and diabetic rats i) after injections of the fetuses with Leukotriene B4 (LTB4, PPARα ligand) or 15deoxyΔ(12,14)prostaglandin J2 (15dPGJ2, PPARγ ligand) and ii) fed during pregnancy with 6% olive oil- or 6% safflower oil-supplemented diets, enriched with PPAR ligands were studied. Maternal diabetes increased triglyceride concentrations and decreased expression of lipid-oxidizing enzymes in fetal lungs of diabetic rats, an expression further decreased by LTB4 and partially restored by 15dPGJ2 in lungs of male fetuses in the diabetic group. In lungs of female fetuses in the diabetic group, maternal diets enriched with olive oil increased triglyceride concentrations and fatty acid synthase expression, while those enriched with safflower oil increased triglyceride concentrations and fatty acid transporter expression. Both olive oil- and safflower oil-supplemented diets decreased cholesterol and cholesteryl ester concentrations and increased the expression of the reverse cholesterol transporter ATP-binding cassette A1 in fetal lungs of female fetuses of diabetic rats. In fetal lungs of control and diabetic rats, the proportion of polyunsaturated fatty acids increased with the maternal diets enriched with olive and safflower oils. Our results revealed important changes in lipid metabolism in fetal lungs of diabetic rats, and in the ability of PPAR ligands to modulate the composition of lipid species relevant in the lung during the perinatal period.

  17. Tricuspid valve dysplasia with severe tricuspid regurgitation: fetal pulmonary artery size predicts lung viability in the presence of small lung volumes.

    Science.gov (United States)

    Nathan, A T; Marino, B S; Dominguez, T; Tabbutt, S; Nicolson, S; Donaghue, D D; Spray, T L; Rychik, J

    2010-01-01

    Congenital tricuspid valve disease (Ebstein's anomaly, tricuspid valve dysplasia) with severe tricuspid regurgitation and cardiomegaly is associated with poor prognosis. Fetal echocardiography can accurately measure right atrial enlargement, which is associated with a poor prognosis in the fetus with tricuspid valve disease. Fetal lung volumetric assessments have been used in an attempt to predict viability of fetuses using ultrasonogram and prenatal MRI. We describe a fetus with tricuspid dysplasia, severe tricuspid regurgitation, right atrial enlargement and markedly reduced lung volumes. The early gestational onset of cardiomegaly with bilateral lung compression raised the possibility of severe lung hypoplasia with decreased broncho-alveolar development. Use of fetal echocardiography with measurement of pulmonary artery size combined with prenatal MRI scanning of lung volumes resulted in an improved understanding of this anomaly and directed the management strategy towards a successful Fontan circulation. 2010 S. Karger AG, Basel.

  18. Prenatal diagnosis of fetal lung maturity by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Itoh, Hitoshi; Kakizaki, Dai; Nagai, Atsushi; Akutagawa, Osamu; Itokazu, Isao; Iso, Kazuo; Abe, Kimihiko; Takayama, Masaomi; Nohira, Tomoyoshi

    2003-01-01

    The objective of this study was to evaluate the usefulness of magnetic resonance imaging (MRI) for prenatal diagnosis of fetal lung maturity. The subjects comprised 28 singleton fetuses, and underwent MRI in the third trimester (32.71±3.00 wks). After obtaining axial and coronal scout images of the whole pelvis, we obtained a transverse image, a coronal image and a sagittal image of fetuses with a half-Fourier acquisition single-shot turbo-spin-echo (HASTE) sequence, determined the intensity level of the fetal lung (right lung intensity level: RL, left lung intensity level: LL). The intensity level of background outside of the maternal body was obtained as the control intensity level (CL). The contrast value (CV) of each fetal lung was calculated by the numerical formula; CV=(RL or LL-CL)/CL. We evaluated the changes of CV during the third trimester and relationship between CV and gestational weeks. There was no significant correlation between gestational weeks and RL (P=.3887), LL (P=.2367). There was a significant increase in both right and left CV (RCV=(RL-CL)/CL: P=.0108, LCV=(LL-CL)/CL: P=.0165) with gestational age. It was suggested that the fetal lung maturation could be diagnosed with HASTE using the CV formula. (author)

  19. Prenatal diagnosis of fetal lung maturity by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Hitoshi; Kakizaki, Dai; Nagai, Atsushi; Akutagawa, Osamu; Itokazu, Isao; Iso, Kazuo; Abe, Kimihiko; Takayama, Masaomi [Tokyo Medical Coll. (Japan); Nohira, Tomoyoshi [Tokyo Medical Coll. (Japan). Hachioji Medical Center

    2003-04-01

    The objective of this study was to evaluate the usefulness of magnetic resonance imaging (MRI) for prenatal diagnosis of fetal lung maturity. The subjects comprised 28 singleton fetuses, and underwent MRI in the third trimester (32.71{+-}3.00 wks). After obtaining axial and coronal scout images of the whole pelvis, we obtained a transverse image, a coronal image and a sagittal image of fetuses with a half-Fourier acquisition single-shot turbo-spin-echo (HASTE) sequence, determined the intensity level of the fetal lung (right lung intensity level: RL, left lung intensity level: LL). The intensity level of background outside of the maternal body was obtained as the control intensity level (CL). The contrast value (CV) of each fetal lung was calculated by the numerical formula; CV=(RL or LL-CL)/CL. We evaluated the changes of CV during the third trimester and relationship between CV and gestational weeks. There was no significant correlation between gestational weeks and RL (P=.3887), LL (P=.2367). There was a significant increase in both right and left CV (RCV=(RL-CL)/CL: P=.0108, LCV=(LL-CL)/CL: P=.0165) with gestational age. It was suggested that the fetal lung maturation could be diagnosed with HASTE using the CV formula. (author)

  20. Fetal lung interstitial tumor: the first Japanese case report and a comparison with fetal lung tissue and congenital cystic adenomatoid malformation/congenital pulmonary airway malformation type 3.

    Science.gov (United States)

    Yoshida, Mariko; Tanaka, Mio; Gomi, Kiyoshi; Iwanaka, Tadashi; Dehner, Louis P; Tanaka, Yukichi

    2013-10-01

    Fetal lung interstitial tumor, a newly recognized lung lesion in infants, was first reported in 2010. Here, we report the first Japanese case of fetal lung interstitial tumor which was originally diagnosed as atypical congenital cystic adenomatoid malformation/congenital pulmonary airway malformation type 3. A 7-day-old girl was referred to our hospital with respiratory distress and a left lung mass and she subsequently underwent left lower lobectomy. The specimen showed a 5 cm solid mass with a fibrous capsule. Histological examination revealed immature airspaces and interstitium, containing bronchioles and cartilage. The epithelial and interstitial cells contained abundant glycogen granules. Immunohistochemistry showed nuclear/cytoplasmic expression of β-catenin in the epithelial and interstitial cells. β-catenin gene mutations and trisomy 8 were not detected, so a neoplastic origin could not be confirmed. The histological findings were partly consistent with normal fetal lung at the canalicular stage, pulmonary interstitial glycogenosis, and congenital cystic adenomatoid malformation/congenital pulmonary airway malformation type 3. In this report, we compare the above conditions and discuss the pathogenesis of fetal lung interstitial tumor. © 2013 The Authors. Pathology International © 2013 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd.

  1. The tap test- an accurate First-line test for fetal lung maturity testing ...

    African Journals Online (AJOL)

    Objective. To determine the accuracy of near-patient and laboratory- based fetal lung maturity tests in predicting the need for neonatal ventilation. Design. A prospective descriptive study. Subjects. One hundred high-risk obstetric patients where confirmation of fetal lung maturity would initiate delivery. Methods. Fetal weight ...

  2. Choriodecidual group B streptococcal inoculation induces fetal lung injury without intra-amniotic infection and preterm labor in Macaca nemestrina.

    Directory of Open Access Journals (Sweden)

    Kristina M Adams Waldorf

    Full Text Available BACKGROUND: Early events leading to intrauterine infection and fetal lung injury remain poorly defined, but may hold the key to preventing neonatal and adult chronic lung disease. Our objective was to establish a nonhuman primate model of an early stage of chorioamnionitis in order to determine the time course and mechanisms of fetal lung injury in utero. METHODOLOGY/PRINCIPAL FINDINGS: Ten chronically catheterized pregnant monkeys (Macaca nemestrina at 118-125 days gestation (term=172 days received one of two treatments: 1 choriodecidual and intra-amniotic saline (n=5, or 2 choriodecidual inoculation of Group B Streptococcus (GBS 1×10(6 colony forming units (n=5. Cesarean section was performed regardless of labor 4 days after GBS or 7 days after saline infusion to collect fetal and placental tissues. Only two GBS animals developed early labor with no cervical change in the remaining animals. Despite uterine quiescence in most cases, blinded review found histopathological evidence of fetal lung injury in four GBS animals characterized by intra-alveolar neutrophils and interstitial thickening, which was absent in controls. Significant elevations of cytokines in amniotic fluid (TNF-α, IL-8, IL-1β, IL-6 and fetal plasma (IL-8 were detected in GBS animals and correlated with lung injury (p<0.05. Lung injury was not directly caused by GBS, because GBS was undetectable in amniotic fluid (~10 samples tested/animal, maternal and fetal blood by culture and polymerase chain reaction. In only two cases was GBS cultured from the inoculation site in low numbers. Chorioamnionitis occurred in two GBS animals with lung injury, but two others with lung injury had normal placental histology. CONCLUSIONS/SIGNIFICANCE: A transient choriodecidual infection can induce cytokine production, which is associated with fetal lung injury without overt infection of amniotic fluid, chorioamnionitis or preterm labor. Fetal lung injury may, thus, occur silently without

  3. Why do we need more data on MR volumetric measurements of the fetal lung?

    Energy Technology Data Exchange (ETDEWEB)

    Rubesova, Erika [Stanford University, Pediatric Radiology, Lucile Packard Children' s Hospital at Stanford, Stanford, CA (United States)

    2016-02-15

    Fetal lung hypoplasia is associated with a series of congenital anomalies, particularly the congenital diaphragmatic hernia. Evaluation of the severity of the lung hypoplasia is important for parental counseling, assessment of prognosis and planning of postnatal management. Although a large number of studies have been performed to measure fetal lung volumes in order to predict outcome, there are little data on fetuses younger than 24 weeks of gestation, the age when parental counseling is crucial if termination is considered. Few studies have evaluated prognosis of lung hypoplasia in fetuses with congenital chest anomalies other than congenital diaphragmatic hernia. We review the studies on measurements of the fetal lung volumes by MRI. (orig.)

  4. Why do we need more data on MR volumetric measurements of the fetal lung?

    International Nuclear Information System (INIS)

    Rubesova, Erika

    2016-01-01

    Fetal lung hypoplasia is associated with a series of congenital anomalies, particularly the congenital diaphragmatic hernia. Evaluation of the severity of the lung hypoplasia is important for parental counseling, assessment of prognosis and planning of postnatal management. Although a large number of studies have been performed to measure fetal lung volumes in order to predict outcome, there are little data on fetuses younger than 24 weeks of gestation, the age when parental counseling is crucial if termination is considered. Few studies have evaluated prognosis of lung hypoplasia in fetuses with congenital chest anomalies other than congenital diaphragmatic hernia. We review the studies on measurements of the fetal lung volumes by MRI. (orig.)

  5. The impact of vitamin D on fetal and neonatal lung maturation

    DEFF Research Database (Denmark)

    Lykkedegn, Sine; Sorensen, Grith Lykke; Beck-Nielsen, Signe Sparre

    2015-01-01

    Respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD) are major complications to preterm birth. Hypovitaminosis D is prevalent in pregnancy. We systematically reviewed the evidence of the impact of vitamin D on lung development, surfactant synthesis, RDS and BPD searching Pub......Med, Embase and Cochrane databases with the terms vitamin D AND (surfactant OR lung maturation OR lung development OR respiratory distress syndrome OR fetal lung OR prematurity OR bronchopulmonary dysplasia). Three human studies, ten animal studies, two laboratory studies and one combined animal...... and laboratory study were included. Human evidence was sparse allowing no conclusions. BPD was not associated with vitamin D receptor (VDR) polymorphism in a fully adjusted analysis. Animal and laboratory studies showed substantial positive effects of vitamin D on the ATII cell, fibroblast proliferation...

  6. Influence of Infection During Pregnancy on Fetal Development

    Science.gov (United States)

    Adams Waldorf, Kristina M.; McAdams, Ryan M.

    2014-01-01

    Infection by bacteria, viruses and parasites may lead to fetal death, organ injury or limited sequelae depending on the pathogen. Here we consider the role of infection during pregnancy on fetal development including placental development and function, which can lead to fetal growth restriction. The classic group of teratogenic pathogens are referred to as “TORCH” (Toxoplasma gondii, Others like Treponema pallidum, Rubella virus, Cytomegalovirus, Herpes simplex virus), but should include a much broader group of pathogens including Parvovirus B19, Varicella zoster virus, and Plasmodium falciparum to name a few. In this review, we describe the influence of different infections in utero on fetal development and the short- and long-term outcomes for the neonate. In some cases, the mechanisms used by these pathogens to disrupt fetal development are well known. Bacterial infection of the developing fetal lungs and brain begins with inflammatory cascade resulting in cytokine injury and oxidative stress. For some pathogens like P. falciparum, the mechanisms involve oxidative stress and apoptosis to disrupt placental and fetal growth. An in utero infection may also impact the long-term health of the infant; in many cases, a viral infection in utero increases the risk of developing Type 1 diabetes in childhood. Understanding the varied mechanisms employed by these pathogens may enable therapies to attenuate changes in fetal development, decrease preterm birth, and improve survival. PMID:23884862

  7. Well-differentiated fetal adenocarcinoma: A very uncommon malignant lung tumor

    Directory of Open Access Journals (Sweden)

    H. El Ouazzani

    2012-01-01

    Full Text Available Well-differentiated fetal adenocarcinoma (WDFA is a very uncommon malignant tumor originating in the lung. This report describes the case of a 38-year-old woman with a WDFA treated by surgery. The malignancy is low grade and associated with a good prognosis, and so it is important for clinicians to be aware of and to identify this rare variant of adenocarcinoma. Resumo: O adenocarcinoma fetal bem diferenciado (WDFA, de acordo com a sigla em inglês é um tumor maligno no pulmão muito invulgar que tem origem no pulmão. Este relatório descreve o caso de uma mulher de 38 anos com WDFA tratada através de cirurgia. A malignidade é de baixo grau e está associada a um bom prognóstico e, por isso, é importante que os clínicos estejam atentos e identifiquem esta variante rara de adenocarcinoma. Keywords: Well-differentiated fetal adenocarcinoma, Lung, Good prognosis, Palavras-chave: Adenocarcinoma fetal bem diferenciado, pulmão, bom prognóstico

  8. Lung growth and development.

    Science.gov (United States)

    Joshi, Suchita; Kotecha, Sailesh

    2007-12-01

    Human lung growth starts as a primitive lung bud in early embryonic life and undergoes several morphological stages which continue into postnatal life. Each stage of lung growth is a result of complex and tightly regulated events governed by physical, environmental, hormonal and genetic factors. Fetal lung liquid and fetal breathing movements are by far the most important determinants of lung growth. Although timing of the stages of lung growth in animals do not mimic that of human, numerous animal studies, mainly on sheep and rat, have given us a better understanding of the regulators of lung growth. Insight into the genetic basis of lung growth has helped us understand and improve management of complex life threatening congenital abnormalities such as congenital diaphragmatic hernia and pulmonary hypoplasia. Although advances in perinatal medicine have improved survival of preterm infants, premature birth is perhaps still the most important factor for adverse lung growth.

  9. Overexpression of transforming growth factor-β1 in fetal monkey lung results in prenatal pulmonary fibrosis

    Science.gov (United States)

    Tarantal, A.F.; Chen, H.; Shi, T.T.; Lu, C-H.; Fang, A.B.; Buckley, S.; Kolb, M.; Gauldie, J.; Warburton, D.; Shi, W.

    2011-01-01

    Altered transforming growth factor (TGF)-β expression levels have been linked to a variety of human respiratory diseases, including bronchopulmonary dysplasia and pulmonary fibrosis. However, a causative role for aberrant TGF-β in neonatal lung diseases has not been defined in primates. Exogenous and transient TGF-β1 overexpression in fetal monkey lung was achieved by transabdominal ultrasound-guided fetal intrapulmonary injection of adenoviral vector expressing TGF-β1 at the second or third trimester of pregnancy. The lungs were then harvested near term, and fixed for histology and immunohistochemistry. Lung hypoplasia was observed where TGF-β1 was overexpressed during the second trimester. The most clearly marked phenotype consisted of severe pulmonary and pleural fibrosis, which was independent of the gestational time point when TGF-β1 was overexpressed. Increased cell proliferation, particularly in α-smooth muscle actin-positive myofibroblasts, was detected within the fibrotic foci. But epithelium to mesenchyme transdifferentiation was not detected. Massive collagen fibres were deposited on the inner and outer sides of the pleural membrane, with an intact elastin layer in the middle. This induced fibrotic pathology persisted even after adenoviral-mediated TGF-β1 overexpression was no longer evident. Therefore, overexpression of TGF-β1 within developing fetal monkey lung results in severe and progressive fibrosis in lung parenchyma and pleural membrane, in addition to pulmonary hypoplasia. PMID:20351039

  10. In vivo (1)H magnetic resonance spectroscopy of amniotic fluid and fetal lung at 1.5 T: technical challenges.

    Science.gov (United States)

    Kim, Dong-Hyun; Vahidi, Kiarash; Caughey, Aaron B; Coakley, Fergus V; Vigneron, Daniel B; Kurhanewicz, John; Mow, Ben; Joe, Bonnie N

    2008-10-01

    To identify the major technical challenges associated with in utero single-voxel proton spectroscopy of amniotic fluid and fetal lung and to evaluate the feasibility of performing in utero fetal spectroscopy for fetal lung maturity testing. Fetal magnetic resonance (MR) spectroscopy of amniotic fluid and fetal lung were performed at 1.5 T in 8 near-term pregnant women. Presence/absence of lactate and choline peaks was tabulated. Ex vivo spectra were obtained from amniotic fluid samples to investigate and refine sequence parameters. Spectroscopy failed in 3 of 8 cases due to maternal discomfort (n = 1) or fetal gastroschisis (n = 2). Both fetal motion and low signal-to-noise ratio were limiting factors for the remaining 5 clinical in vivo studies at 1.5 T. Ex vivo and in vivo studies suggested feasibility for detecting lactate from amniotic fluid within a reasonable clinical scan time (4-5 minutes). Lactate was detected in 3 of 5 patients. Choline detection was limited and was detected in 1 patient. Minor motion effects can be overcome but continuous fetal motion is problematic. Lactate detection seems clinically feasible, but choline detection requires additional technical development and, potentially, further imaging at a higher field strength because of the low signal-to-noise ratio at 1.5 T. (c) 2008 Wiley-Liss, Inc.

  11. Expression of genes related to the hypothalamic-pituitary-adrenal axis in murine fetal lungs in late gestation

    Directory of Open Access Journals (Sweden)

    Côté Mélissa

    2010-11-01

    Full Text Available Abstract Background Lung maturation is modulated by several factors, including glucocorticoids. Expression of hypothalamic-pituitary-adrenal (HPA axis-related components, with proposed or described local regulatory systems analogous to the HPA axis, was reported in peripheral tissues. Here, HPA axis-related genes were studied in the mouse developing lung during a period overlapping the surge of surfactant production. Methods Expression of genes encoding for corticotropin-releasing hormone (CRH, CRH receptors (CRHR 1 and 2beta, CRH-binding protein, proopiomelanocortin (POMC, melanocortin receptor 2 (MC2R, and glucocorticoid receptor was quantified by real-time PCR and localized by in situ hydridization in fetal lungs at gestational days (GD 15.5, 16.5, and 17.5, and was also quantified in primary mesenchymal- and epithelial cell-enriched cultures. In addition, the capability of CRH and adrenocorticotropic hormone (ACTH to stimulate pulmonary expression of enzymes involved in the adrenal pathway of glucocorticoid synthesis was addressed, as well as the glucocorticoid production by fetal lung explants. Results We report that all the studied genes are expressed in fetal lungs according to different patterns. On GD 15.5, Mc2r showed peaks in expression in samples that have previously presented high mRNA levels for glucocorticoid synthesizing enzymes, including 11beta-hydroxylase (Cyp11b1. Crhr1 mRNA co-localized with Pomc mRNA in cells surrounding the proximal epithelium on GD 15.5 and 16.5. A transition in expression sites toward distal epithelial cells was observed between GD 15.5 and 17.5 for all the studied genes. CRH or ACTH stimulation of genes involved in the adrenal pathway of glucocorticoid synthesis was not observed in lung explants on GD 15.5, whereas CRH significantly increased expression of 21-hydroxylase (Cyp21a1 on GD 17.5. A deoxycorticosterone production by fetal lung explants was observed. Conclusions Temporal and spatial

  12. The fetal MR appearance of 'nutmeg lung': findings in 8 cases linked to pulmonary lymphangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, Teresa [The Children' s Hospital of Philadelphia, Radiology Department, Center for Fetal Diagnosis and Treatment, Philadelphia, PA (United States); Andronikou, Savvas [University of the Witwatersrand, Department of Radiology, Faculty of Health Sciences, Cape Town (South Africa)

    2014-10-15

    A pattern of abnormal signal at fetal MRI may be seen in the setting of primary or secondary congenital lymphangiectasia, manifested as a heterogeneous appearance of the lung parenchyma and the presence of subtle T2-hyperintense branching tubular structures that emanate from the hila. We have named this pattern the nutmeg lung. We describe the nutmeg lung appearance seen in fetal MRI scans, with discussion of possible etiologies and outcomes in a series of eight fetuses. We retrospectively reviewed imaging from a database of patients demonstrating features of nutmeg lung on fetal MRI. Medical records were used to determine the postnatal diagnosis, clinical course and outcome. Among the eight fetal cases of nutmeg lung, two had postnatal confirmation of primary lymphangiectasia and the remaining six had secondary lymphangiectasia, presumably secondary to congenital cardiac anomalies. There were various-size pleural effusions in all cases. Only one of the cases demonstrated hydrops fetalis. We present the description of the nutmeg lung sign on fetal MRI as T2-hyperintense heterogeneous lungs with fluid-filled, serpiginous branching structures that extend from the pulmonary hila to the periphery of the lung, often accompanied by pleural effusions. The sign denotes findings of primary or secondary lymphangiectasia. Findings of secondary lymphangiectasia in our series were a result of cardiac insufficiency. Recognizing this sign might be helpful in the diagnostic algorithm of the fetus with abnormal lung parenchyma. (orig.)

  13. The innate immune response in fetal lung mesenchymal cells targets VEGFR2 expression and activity.

    Science.gov (United States)

    Medal, Rachel M; Im, Amanda M; Yamamoto, Yasutoshi; Lakhdari, Omar; Blackwell, Timothy S; Hoffman, Hal M; Sahoo, Debashis; Prince, Lawrence S

    2017-06-01

    In preterm infants, soluble inflammatory mediators target lung mesenchymal cells, disrupting airway and alveolar morphogenesis. However, how mesenchymal cells respond directly to microbial stimuli remains poorly characterized. Our objective was to measure the genome-wide innate immune response in fetal lung mesenchymal cells exposed to the bacterial endotoxin lipopolysaccharide (LPS). With the use of Affymetrix MoGene 1.0st arrays, we showed that LPS induced expression of unique innate immune transcripts heavily weighted toward CC and CXC family chemokines. The transcriptional response was different between cells from E11, E15, and E18 mouse lungs. In all cells tested, LPS inhibited expression of a small core group of genes including the VEGF receptor Vegfr2 Although best characterized in vascular endothelial populations, we demonstrated here that fetal mouse lung mesenchymal cells express Vegfr2 and respond to VEGF-A stimulation. In mesenchymal cells, VEGF-A increased cell migration, activated the ERK/AKT pathway, and promoted FOXO3A nuclear exclusion. With the use of an experimental coculture model of epithelial-mesenchymal interactions, we also showed that VEGFR2 inhibition prevented formation of three-dimensional structures. Both LPS and tyrosine kinase inhibition reduced three-dimensional structure formation. Our data suggest a novel mechanism for inflammation-mediated defects in lung development involving reduced VEGF signaling in lung mesenchyme. Copyright © 2017 the American Physiological Society.

  14. Retained fetal lung fluid in two neonates with congenital absence of the pulmonary valve and tetralogy of fallot

    International Nuclear Information System (INIS)

    Strife, J.L.; Towbin, R.B.; Francis, P.; Kuhn, J.P.

    1981-01-01

    Chest radiographs obtained at birth in two neonates with absent pulmonary valve and tetralogy of Fallot demonstrated asymmetrical lung aeration. This finding was attributed to delay in resorption of fetal lung fluid. It is postulated that in the initial hours of life, the dilated pulmonary artery compressed the bronchus and delayed egress of fetal lung fluid. Over a 24-hour interval, the fluid was resorbed, resulting in the more typical pattern of hyperinflated lung and markedly dilated pulmonay artery. These cases are presumably the first of their kind to be reported

  15. Retained fetal lung fluid in two neonates with congenital absence of the pulmonary valve and tetralogy of fallot

    Energy Technology Data Exchange (ETDEWEB)

    Strife, J.L.; Towbin, R.B.; Francis, P.; Kuhn, J.P.

    1981-12-01

    Chest radiographs obtained at birth in two neonates with absent pulmonary valve and tetralogy of Fallot demonstrated asymmetrical lung aeration. This finding was attributed to delay in resorption of fetal lung fluid. It is postulated that in the initial hours of life, the dilated pulmonary artery compressed the bronchus and delayed egress of fetal lung fluid. Over a 24-hour interval, the fluid was resorbed, resulting in the more typical pattern of hyperinflated lung and markedly dilated pulmonay artery. These cases are presumably the first of their kind to be reported.

  16. Maternal Azithromycin Therapy for Ureaplasma Intra-Amniotic Infection Delays Preterm Delivery and Reduces Fetal Lung Injury in a Primate Model

    Science.gov (United States)

    Grigsby, Peta L.; Novy, Miles J.; Sadowsky, Drew W.; Morgan, Terry K.; Long, Mary; Acosta, Ed; Duffy, Lynn B; Waites, Ken B.

    2012-01-01

    Objective We assessed the efficacy of a maternal multi–dose azithromycin (AZI) regimen, with and without anti–inflammatory agents to delay preterm birth and to mitigate fetal lung injury associated with Ureaplasma parvum intra–amniotic infection (IAI). Study Design Long–term catheterized rhesus monkeys (n=16) received intra–amniotic inoculation of U. parvum (107 CFU/ml, serovar 1). After contraction onset, rhesus monkeys received either no treatment (n=6); AZI (12.5mg/kg, q12h, IV for 10 days; n=5); or AZI plus dexamethasone (DEX) and indomethacin (INDO; n=5). Outcomes included amniotic fluid pro–inflammatory mediators, U. parvum cultures & PCR, AZI pharmacokinetics and the extent of fetal lung inflammation. Results Maternal AZI therapy eradicated U. parvum IAI from the amniotic fluid within 4 days. Placenta and fetal tissues were 90% culture negative at delivery. AZI therapy significantly delayed preterm delivery and prevented advanced fetal lung injury, although residual acute chorioamnionitis persisted. Conclusions Specific maternal antibiotic therapy can eradicate U. parvum from the amniotic fluid and key fetal organs, with subsequent prolongation of pregnancy which provides a therapeutic window of opportunity to effectively reduce the severity of fetal lung injury. PMID:23111115

  17. Assessment of lung development in isolated congenital diaphragmatic hernia using signal intensity ratios on fetal MR imaging

    International Nuclear Information System (INIS)

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Herold, Christian; Prayer, Daniela; Brugger, Peter C.; Csapo, Bence

    2010-01-01

    To investigate developmental changes in the apparently unaffected contralateral lung by using signal intensity ratios (SIR) and lung volumes (LV), and to search for correlation with clinical outcome. Twenty-five fetuses (22-37 weeks' gestation) were examined. Lung/liver signal intensity ratios (LLSIR) were assessed on T1-weighted and T2-weighted sequences for both lungs, then together with LV compared with age-matched controls of 91 fetuses by using the U test. Differences in LLSIRs and lung volumes were correlated with neonatal outcomes. LLSIRs in fetuses with congenital diaphragmatic hernia (CDH) were significantly higher in both lungs on T1-weighted images and significantly lower on T2-weighted images, compared with normals (p < 0.05), increasing on T2-weighted imaging and decreasing on T1-weighted imaging during gestation. Total LV were significantly smaller in the CDH group than in controls (p < 0.05). No significant differences in LLSIR of the two lungs were found. Outcomes correlated significantly with total LV, but not with LLSIR. Changes in LLSIR seem to reflect developmental impairment in CDH; however, they provide no additional information in predicting outcome. LV remains the best indicator on fetal MR imaging of neonatal survival in isolated, left-sided CDH. (orig.)

  18. Assessment of lung development in isolated congenital diaphragmatic hernia using signal intensity ratios on fetal MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Herold, Christian; Prayer, Daniela [Medical University of Vienna, Department of Radiology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Centre of Anatomy and Cell Biology, Vienna (Austria); Csapo, Bence [Medical University of Vienna, Department of Obstetrics and Gyneocology, Vienna (Austria)

    2010-04-15

    To investigate developmental changes in the apparently unaffected contralateral lung by using signal intensity ratios (SIR) and lung volumes (LV), and to search for correlation with clinical outcome. Twenty-five fetuses (22-37 weeks' gestation) were examined. Lung/liver signal intensity ratios (LLSIR) were assessed on T1-weighted and T2-weighted sequences for both lungs, then together with LV compared with age-matched controls of 91 fetuses by using the U test. Differences in LLSIRs and lung volumes were correlated with neonatal outcomes. LLSIRs in fetuses with congenital diaphragmatic hernia (CDH) were significantly higher in both lungs on T1-weighted images and significantly lower on T2-weighted images, compared with normals (p < 0.05), increasing on T2-weighted imaging and decreasing on T1-weighted imaging during gestation. Total LV were significantly smaller in the CDH group than in controls (p < 0.05). No significant differences in LLSIR of the two lungs were found. Outcomes correlated significantly with total LV, but not with LLSIR. Changes in LLSIR seem to reflect developmental impairment in CDH; however, they provide no additional information in predicting outcome. LV remains the best indicator on fetal MR imaging of neonatal survival in isolated, left-sided CDH. (orig.)

  19. Growth Patterns of Fetal Lung Volumes in Healthy Fetuses and Fetuses With Isolated Left-Sided Congenital Diaphragmatic Hernia.

    Science.gov (United States)

    Ruano, Rodrigo; Britto, Ingrid Schwach Werneck; Sananes, Nicolas; Lee, Wesley; Sangi-Haghpeykar, Haleh; Deter, Russell L

    2016-06-01

    To evaluate fetal lung growth using 3-dimensional sonography in healthy fetuses and those with congenital diaphragmatic hernia (CDH). Right and total lung volumes were serially evaluated by 3-dimensional sonography in 66 healthy fetuses and 52 fetuses with left-sided CDH between 20 and 37 weeks' menstrual age. Functions fitted to these parameters were compared for 2 groups: (1) healthy versus those with CDH; and (2) fetuses with CHD who survived versus those who died. Fetal right and total lung volumes as well as fetal observed-to-expected right and total lung volume ratios were significantly lower in fetuses with CDH than healthy fetuses (Pvolume ratios did not vary with menstrual age in healthy fetuses or in those with CDH (independent of outcome). Lung volume rates were lower in fetuses with left-sided CDH compared to healthy fetuses, as well as in fetuses with CDH who died compared to those who survived. The observed-to-expected right and total lung volume ratios were relatively constant throughout menstrual age in fetuses with left-sided CDH, suggesting that the origin of their lung growth abnormalities occurred before 20 weeks and did not progress. The observed-to-expected ratios may be useful in predicting the outcome in fetuses with CDH independent of menstrual age. © 2016 by the American Institute of Ultrasound in Medicine.

  20. Caspase 3 activity in isolated fetal rat lung fibroblasts and rat periodontal ligament fibroblasts: cigarette smoke-induced alterations

    Directory of Open Access Journals (Sweden)

    James Elliot Scott

    2016-03-01

    Full Text Available Background Cigarette smoking is the leading cause of preventable death in the world. It has been implicated in the pathogenesis of pulmonary, oral and systemic diseases. Smoking during pregnancy is clearly a risk factor for the developing fetus and may be a major cause of infant mortality. Moreover, the oral cavity is the first site of exposure to cigarette smoke and may be a possible source for the spread of toxins to other organs of the body. Fibroblasts in general are morphologically heterogeneous connective tissue cells with diverse functions. Apoptosis or programmed cell death is a crucial process during embryogenesis and for the maintenance of homeostasis throughout life. Deregulation of apoptosis has been implicated in abnormal lung development in the fetus and disease progression in adults. Caspases, are proteases which belong to the family of cysteine aspartic acid proteases and are the key components for the downstream amplification of intra-cellular apoptotic signals. Of the 14 caspases known, caspase-3 is the key executioner of apoptosis. Fetal rat lung fibroblasts but not PDL viability is reduced by exposure to CSE. In addition Caspase 3 activity is elevated after CSE exposure in fetal lung fibroblasts but not in PDLs. Expression of caspase 3 is induced in CSE exposed lung fibroblasts but not in PDLs. Caspase 3 was localized to the cytoplasm in both cell types.

  1. Automated Image Analysis of Lung Branching Morphogenesis from Microscopic Images of Fetal Rat Explants

    Science.gov (United States)

    Rodrigues, Pedro L.; Rodrigues, Nuno F.; Duque, Duarte; Granja, Sara; Correia-Pinto, Jorge; Vilaça, João L.

    2014-01-01

    Background. Regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. This work presents a new methodology to accurately quantify the epithelial, outer contour, and peripheral airway buds of lung explants during cellular development from microscopic images. Methods. The outer contour was defined using an adaptive and multiscale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelium was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds was counted as the skeleton branched ends from a skeletonized image of the lung inner epithelia. Results. The time for lung branching morphometric analysis was reduced in 98% in contrast to the manual method. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Nonsignificant differences were found between the automatic and manual results in all culture days. Conclusions. The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lighting characteristics and allowing a reliable comparison between different researchers. PMID:25250057

  2. Automated Image Analysis of Lung Branching Morphogenesis from Microscopic Images of Fetal Rat Explants

    Directory of Open Access Journals (Sweden)

    Pedro L. Rodrigues

    2014-01-01

    Full Text Available Background. Regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. This work presents a new methodology to accurately quantify the epithelial, outer contour, and peripheral airway buds of lung explants during cellular development from microscopic images. Methods. The outer contour was defined using an adaptive and multiscale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelium was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds was counted as the skeleton branched ends from a skeletonized image of the lung inner epithelia. Results. The time for lung branching morphometric analysis was reduced in 98% in contrast to the manual method. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Nonsignificant differences were found between the automatic and manual results in all culture days. Conclusions. The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lighting characteristics and allowing a reliable comparison between different researchers.

  3. MRI investigation of normal fetal lung maturation using signal intensities on different imaging sequences

    International Nuclear Information System (INIS)

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Hoermann, Marcus; Prayer, Daniela; Brugger, Peter C.; Csapo, Bence; Mittermayer, Christoph

    2007-01-01

    To purpose of this paper is to study the relation between normal lung maturation signal and changes in intensity ratios (SIR) and to determine which magnetic resonance imaging sequence provides the strongest correlation of normal lung SIs with gestational age. 126 normal singleton pregnancies (20-37 weeks) were examined with a 1.5 Tesla unit. Mean SIs for lungs, liver, and gastric fluid were assessed on six different sequences, and SIRs of lung/liver (LLSIR) and lung/gastric fluid (LGSIR) were correlated with gestational age for each sequence. To evaluate the feasibility of SIRs in the prediction of the state of the lung maturity, accuracy of the predicted SIRs (D*) was measured by calculating relative residuals (D*-D)/D for each sequence. LLSIRs showed significant changes in every sequence (p<0.05), while LGSIRs only on two sequences. Significant differences were shown for the mean of absolute residuals for both LLSIRs (p<0.001) and for LGSIRs (p=0.003). Relative residuals of LLSIRs were significantly smaller on T1-weighted sequence, whereas they were significantly higher for LGSIRs on FLAIR sequence. Fetal liver seems to be adequate reference for the investigation of lung maturation. T1-weighted sequence was the most accurate for the measurement of the lung SIs; thus, we propose to determine LLSIR on T1-weighted sequence when evaluating lung development. (orig.)

  4. MRI investigation of normal fetal lung maturation using signal intensities on different imaging sequences

    Energy Technology Data Exchange (ETDEWEB)

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Hoermann, Marcus; Prayer, Daniela [Medical University of Vienna, Department of Radiology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Center of Anatomy and Cell Biology, Vienna (Austria); Csapo, Bence [Medical University of Vienna, Department of Obstetrics and Gyneocology, Vienna (Austria); Mittermayer, Christoph [Medical University of Vienna, Department of Pediatrics, Vienna (Austria)

    2007-03-15

    To purpose of this paper is to study the relation between normal lung maturation signal and changes in intensity ratios (SIR) and to determine which magnetic resonance imaging sequence provides the strongest correlation of normal lung SIs with gestational age. 126 normal singleton pregnancies (20-37 weeks) were examined with a 1.5 Tesla unit. Mean SIs for lungs, liver, and gastric fluid were assessed on six different sequences, and SIRs of lung/liver (LLSIR) and lung/gastric fluid (LGSIR) were correlated with gestational age for each sequence. To evaluate the feasibility of SIRs in the prediction of the state of the lung maturity, accuracy of the predicted SIRs (D*) was measured by calculating relative residuals (D*-D)/D for each sequence. LLSIRs showed significant changes in every sequence (p<0.05), while LGSIRs only on two sequences. Significant differences were shown for the mean of absolute residuals for both LLSIRs (p<0.001) and for LGSIRs (p=0.003). Relative residuals of LLSIRs were significantly smaller on T1-weighted sequence, whereas they were significantly higher for LGSIRs on FLAIR sequence. Fetal liver seems to be adequate reference for the investigation of lung maturation. T1-weighted sequence was the most accurate for the measurement of the lung SIs; thus, we propose to determine LLSIR on T1-weighted sequence when evaluating lung development. (orig.)

  5. Thyroid hormone stimulation of phosphatidylcholine synthesis in cultured fetal rabbit lung.

    OpenAIRE

    Ballard, P L; Hovey, M L; Gonzales, L K

    1984-01-01

    To investigate the mechanism of thyroid hormone action on pulmonary surfactant synthesis, we characterized the effect of triiodothyronine on phosphatidylcholine synthesis in cultured fetal rabbit lung. Since glucocorticoids stimulate surfactant synthesis and reduce the incidence of Respiratory Distress Syndrome in premature infants, we also examined the interaction of triiodothyronine and dexamethasone. The rate of choline incorporation into phosphatidylcholine was determined in organ culture...

  6. Prenatal MRI fetal lung volumes and percent liver herniation predict pulmonary morbidity in congenital diaphragmatic hernia (CDH).

    Science.gov (United States)

    Zamora, Irving J; Olutoye, Oluyinka O; Cass, Darrell L; Fallon, Sara C; Lazar, David A; Cassady, Christopher I; Mehollin-Ray, Amy R; Welty, Stephen E; Ruano, Rodrigo; Belfort, Michael A; Lee, Timothy C

    2014-05-01

    The purpose of this study was to determine whether prenatal imaging parameters are predictive of postnatal CDH-associated pulmonary morbidity. The records of all neonates with CDH treated from 2004 to 2012 were reviewed. Patients requiring supplemental oxygen at 30 days of life (DOL) were classified as having chronic lung disease (CLD). Fetal MRI-measured observed/expected total fetal lung volume (O/E-TFLV) and percent liver herniation (%LH) were recorded. Receiver operating characteristic (ROC) curves and multivariate regression were applied to assess the prognostic value of O/E-TFLV and %LH for development of CLD. Of 172 neonates with CDH, 108 had fetal MRIs, and survival was 76%. 82% (89/108) were alive at DOL 30, 46 (52%) of whom had CLD. Neonates with CLD had lower mean O/E-TFLV (30 vs.42%; p=0.001) and higher %LH (21.3±2.8 vs.7.1±1.8%; p20% (AUC=0.78; p20% were highly associated with indicators of long-term pulmonary sequelae. On multivariate analysis, %LH was the strongest predictor of CLD in patients with CDH (OR: 10.96, 95%CI: 2.5-48.9, p=0.002). Prenatal measurement of O/E-TFLV and %LH is predictive of CDH pulmonary morbidity and can aid in establishing parental expectations of postnatal outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The effects of Fetal Surgery on Retinopathy of Prematurity Development

    Directory of Open Access Journals (Sweden)

    Sudha Nallasamy

    2009-01-01

    Full Text Available Background Fetal surgery is selectively offered for severe or life-threatening fetal malformations. These infants are often born prematurely and are thus at risk for retinopathy of prematurity (ROP. It is not known whether fetal surgery confers an increased risk of developing severe ROP relative to published rates in standard premature populations ≤37 weeks of age grouped by birth weight (<1500 grams or ≥1500 grams. Design This is a retrospective chart review. Methods We reviewed the charts of 137 patients who underwent open fetal/fetoscopic surgery from 1996–2004. Surgical indications included twin-twin transfusion syndrome (TTTS, myelomeningocele (MMC, congenital diaphragmatic hernia (CDH, sacrococcygeal teratoma (SCT, cystic adenomatoid malformation of the lung (CCAM, and twin reversed arterial perfusion sequence (TRAP. Of these, 17 patients had local ROP examination data. Binomial tests were performed to assess whether rates of ROP in our fetal/fetoscopic surgery cohort were significantly different from published rates. Results There were 5 patients each with an underlying diagnosis of TTTS and MMC, 2 patients each with CDH and TRAP, and 1 patient each with SCT, CCAM, and mediastinal teratoma. The mean gestational age at surgery was 23 4 / 7 ± 2 3 / 7 weeks, mean gestational age at birth was 30 ± 2 5 / 7 weeks, and mean birth weight was 1449 ± 510 grams (610–2485. Compared to published rates of ROP and threshold ROP, our fetal surgery patients had significantly higher rates of ROP and threshold ROP in both the <1500 grams and the ≥1500 grams group (all p-values <0.05. Conclusions Fetal/fetoscopic surgery appears to significantly increase the rate of ROP and threshold ROP development. Greater numbers are needed to confirm these observations.

  8. Effects of exogenous fatty acids and inhibition of de novo fatty acid synthesis on disaturated phosphatidylcholine production by fetal lung cells and adult type II cells.

    Science.gov (United States)

    Maniscalco, W M; Finkelstein, J N; Parkhurst, A B

    1989-05-01

    De novo fatty acid synthesis may be an important source of saturated fatty acids for fetal lung disaturated phosphatidylcholine (DSPC) production. To investigate the roles of de novo fatty acid synthesis and exogenous fatty acids, we incubated dispersed fetal lung cells and freshly isolated adult type II cells with exogenous palmitate and oleate and measured DSPC synthesis. Unlike adult type II cells, fetal lung cells did not increase DSPC synthesis when exogenous palmitate was available; adult type II cells increased DSPC synthesis by 70% in the presence of palmitate. Exogenous oleate decreased DSPC synthesis by 48% in fetal cells but not in adult type II cells. Incubation of fetal lung cells with TOFA [2-furancarboxylate, 5-(tetradecyloxy)-sodium], a metabolic inhibitor of fatty acid synthesis, decreased fatty acid synthesis by 65%. There was a simultaneous 56% inhibition of DSPC production, but no effect on protein, DNA, or glyceride-glycerol production, measured by precursor incorporation. The inhibition of DSPC synthesis associated with TOFA was partially prevented by exogenous palmitate but not oleate. Fetal cells prepared from explants that had been cultured in dexamethasone also had TOFA-associated inhibition of DSPC synthesis that was similar to non-dexamethasone-exposed cells. These studies suggest that under baseline conditions of low fatty acid availability, such as in the fetus, de novo fatty acid synthesis in fetal cells, but not in adult type II cells, provides sufficient saturated fatty acids to support maximal DSPC production. Inhibition of de novo fatty acid synthesis resulting in decreased DSPC production in fetal lung cells in conditions of low fatty acid availability suggests that fatty acid synthesis may be central to maintain DSPC synthesis in the fetus.

  9. Role of skeletal muscle in lung development.

    Science.gov (United States)

    Baguma-Nibasheka, Mark; Gugic, Dijana; Saraga-Babic, Mirna; Kablar, Boris

    2012-07-01

    Skeletal (striated) muscle is one of the four basic tissue types, together with the epithelium, connective and nervous tissues. Lungs, on the other hand, develop from the foregut and among various cell types contain smooth, but not skeletal muscle. Therefore, during earlier stages of development, it is unlikely that skeletal muscle and lung depend on each other. However, during the later stages of development, respiratory muscle, primarily the diaphragm and the intercostal muscles, execute so called fetal breathing-like movements (FBMs), that are essential for lung growth and cell differentiation. In fact, the absence of FBMs results in pulmonary hypoplasia, the most common cause of death in the first week of human neonatal life. Most knowledge on this topic arises from in vivo experiments on larger animals and from various in vitro experiments. In the current era of mouse mutagenesis and functional genomics, it was our goal to develop a mouse model for pulmonary hypoplasia. We employed various genetically engineered mice lacking different groups of respiratory muscles or lacking all the skeletal muscle and established the criteria for pulmonary hypoplasia in mice, and therefore established a mouse model for this disease. We followed up this discovery with systematic subtractive microarray analysis approach and revealed novel functions in lung development and disease for several molecules. We believe that our approach combines elements of both in vivo and in vitro approaches and allows us to study the function of a series of molecules in the context of lung development and disease and, simultaneously, in the context of lung's dependence on skeletal muscle-executed FBMs.

  10. Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases: An NHLBI Resource for the Gene Therapy Community

    Science.gov (United States)

    Skarlatos, Sonia I.

    2012-01-01

    Abstract The goals of the National Heart, Lung, and Blood Institute (NHLBI) Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases are to conduct gene transfer studies in monkeys to evaluate safety and efficiency; and to provide NHLBI-supported investigators with expertise, resources, and services to actively pursue gene transfer approaches in monkeys in their research programs. NHLBI-supported projects span investigators throughout the United States and have addressed novel approaches to gene delivery; “proof-of-principle”; assessed whether findings in small-animal models could be demonstrated in a primate species; or were conducted to enable new grant or IND submissions. The Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases successfully aids the gene therapy community in addressing regulatory barriers, and serves as an effective vehicle for advancing the field. PMID:22974119

  11. Fetal lung volume in congenital diaphragmatic hernia: association of prenatal MR imaging findings with postnatal chronic lung disease.

    Science.gov (United States)

    Debus, Angelika; Hagelstein, Claudia; Kilian, A Kristina; Weiss, Christel; Schönberg, Stefan O; Schaible, Thomas; Neff, K Wolfgang; Büsing, Karen A

    2013-03-01

    To assess whether chronic lung disease (CLD) in surviving infants with congenital diaphragmatic hernia (CDH) is associated with lung hypoplasia on the basis of the results of antenatal observed-to-expected fetal lung volume (FLV) ratio measurement at magnetic resonance (MR) imaging. The study received approval from the institutional review board, with waiver of informed consent for this retrospective review from patients who had previously given informed consent for prospective studies. The ratio of observed to expected FLV at MR imaging was calculated in 172 fetuses with CDH. At postpartum day 28, the need for supplemental oxygen implicated the diagnosis of CLD. At day 56, patients with CLD were assigned to one of three groups-those with mild, moderate, or severe CLD-according to their demand for oxygen. Logistic regression analysis was used to assess the prognostic value of the individual observed-to-expected FLV ratio for association with postnatal development of CLD. Children with CLD were found to have significantly smaller observed-to-expected FLV ratios at MR imaging than infants without CLD (P CLD revealed significant differences in observed-to-expected FLV ratio between patients with mild CLD and those with moderate (P = .012) or severe (P = .007) CLD. For an observed-to-expected FLV ratio of 5%, 99% of patients with CDH developed CLD, compared with less than 5% of fetuses with an observed-to-expected FLV ratio of 50%. Perinatally, development and grade of CLD were further influenced by the need for extracorporeal membrane oxygenation (ECMO) (P CLD in surviving infants with CDH is associated with the prenatally determined observed-to-expected FLV ratio. Early neonatal therapeutic decisions can additionally be based on this ratio. Perinatally, ECMO requirement and gestational age at delivery are useful in further improving the estimated probability of CLD.

  12. Fetal MRI in experimental tracheal occlusion

    Energy Technology Data Exchange (ETDEWEB)

    Wedegaertner, Ulrike [Department of Diagnostic and Interventional Radiology, Universitaetsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg (Germany)]. E-mail: wedegaer@uke.uni-hamburg.de; Schroeder, Hobe J. [Experimental Gynecology, Department of Obstetrics and Prenatal Medicine, Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany); Adam, Gerhard [Department of Diagnostic and Interventional Radiology, Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany)

    2006-02-15

    Congenital diaphragmatic hernia (CDH) is associated with a high mortality, which is mainly due to pulmonary hypoplasia and secondary pulmonary hypertension. In severely affected fetuses, tracheal occlusion (TO) is performed prenatally to reverse pulmonary hypoplasia, because TO leads to accelerated lung growth. Prenatal imaging is important to identify fetuses with pulmonary hypoplasia, to diagnose high-risk fetuses who would benefit from TO, and to monitor the effect of TO after surgery. In fetal imaging, ultrasound (US) is the method of choice, because it is widely available, less expensive, and less time-consuming to perform than magnetic resonance imaging (MRI). However, there are some limitations for US in the evaluation of CDH fetuses. In those cases, MRI is helpful because of a better tissue contrast between liver and lung, which enables evaluation of liver herniation for the diagnosis of a high-risk fetus. MRI provides the ability to determine absolute lung volumes to detect lung hypoplasia. In fetal sheep with normal and hyperplastic lungs after TO, lung growth was assessed on the basis of cross-sectional US measurements, after initial lung volume determination by MRI. To monitor fetal lung growth after prenatal TO, both MRI and US seem to be useful methods.

  13. Fetal magnetic resonance: technique applications and normal fetal anatomy

    International Nuclear Information System (INIS)

    Martin, C.; Darnell, A.; Duran, C.; Mellado, F.; Corona, M

    2003-01-01

    Ultrasonography is the preferred diagnostic imaging technique for intrauterine fetal examination. Nevertheless, circumstances sometimes dictate the use of other techniques in order to analyze fetal structures. The advent of ultra rapid magnetic resonance (MR) sequencing has led to the possibility of doing MR fetal studies, since images are obtained in an extradordiarily short time and are not affected by either maternal or fetal movements. It does not employ ionizing radiations, it provides high-contrast images and it can obtain such images in any plane of space without being influenced by either the child bearer's physical characteristics of fetal position. MR provides good quality images of most fetal organs. It is extremely useful in analysing distinct structures, as well as permitting an evaluation of cervical structures, lungs, diaphragms, intra-abdominal and retroperitoneal structures, and fetal extremities. It can also provide useful information regarding the placenta,umbilical cord, amniotic fluid and uterus. The objective of this work is to describe MR technique as applied to intrauterine fetal examination, and to illustrate normal fetal anatomy as manifested by MR and its applications. (Author) 42 refs

  14. Fetal MRI for prediction of neonatal mortality following preterm premature rupture of the fetal membranes

    International Nuclear Information System (INIS)

    Messerschmidt, Agnes; Sauer, Alexandra; Pollak, Arnold; Pataraia, Anna; Kasprian, Gregor; Weber, Michael; Prayer, Daniela; Helmer, Hanns; Brugger, Peter C.

    2011-01-01

    Lung MRI volumetrics may be valuable for fetal assessment following early preterm premature rupture of the foetal membranes (pPROM). To evaluate the predictive value of MRI lung volumetrics after pPROM. Retrospective cohort study of 40 fetuses after pPROM in a large, tertiary, perinatal referral center. Fetuses underwent MRI lung volumetrics. Estimated lung volume was expressed as percentage of expected lung volume (our own normal references). Primary outcome was neonatal mortality due to respiratory distress before discharge from hospital. Gestational age range was 16-27 weeks. Estimated-to-expected lung volume was 73% in non-survivors and 102% in survivors (P < 0.05). There were no survivors with a lung volume less than 60% of expected. By logistic regression, mortality could be predicted with a sensitivity of 80%, specificity of 86% and accuracy of 85%. Fetal MR lung volumetrics may be useful for predicting mortality due to respiratory distress in children with early gestational pPROM. (orig.)

  15. Fetal MRI for prediction of neonatal mortality following preterm premature rupture of the fetal membranes

    Energy Technology Data Exchange (ETDEWEB)

    Messerschmidt, Agnes; Sauer, Alexandra; Pollak, Arnold [Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna (Austria); Pataraia, Anna; Kasprian, Gregor; Weber, Michael; Prayer, Daniela [Medical University of Vienna, Department of Radiology, Vienna (Austria); Helmer, Hanns [Medical University of Vienna, Department of Obstetrics and Maternal-Fetal Medicine, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Center of Anatomy and Cell Biology, Vienna (Austria)

    2011-11-15

    Lung MRI volumetrics may be valuable for fetal assessment following early preterm premature rupture of the foetal membranes (pPROM). To evaluate the predictive value of MRI lung volumetrics after pPROM. Retrospective cohort study of 40 fetuses after pPROM in a large, tertiary, perinatal referral center. Fetuses underwent MRI lung volumetrics. Estimated lung volume was expressed as percentage of expected lung volume (our own normal references). Primary outcome was neonatal mortality due to respiratory distress before discharge from hospital. Gestational age range was 16-27 weeks. Estimated-to-expected lung volume was 73% in non-survivors and 102% in survivors (P < 0.05). There were no survivors with a lung volume less than 60% of expected. By logistic regression, mortality could be predicted with a sensitivity of 80%, specificity of 86% and accuracy of 85%. Fetal MR lung volumetrics may be useful for predicting mortality due to respiratory distress in children with early gestational pPROM. (orig.)

  16. Dihydrotestosterone Potentiates EGF-Induced ERK Activation by Inducing SRC in Fetal Lung Fibroblasts

    Science.gov (United States)

    Smith, Susan M.; Murray, Sandy; Pham, Lucia D.; Minoo, Parviz; Nielsen, Heber C.

    2014-01-01

    Lung maturation is regulated by interactions between mesenchymal and epithelial cells, and is delayed by androgens. Fibroblast–Type II cell communications are dependent on extracellular signal-regulated kinases (ERK) 1/2 activation by the ErbB receptor ligands epidermal growth factor (EGF), transforming growth factor (TGF)-α, and neuregulin (Nrg). In other tissues, dihydrotestosterone (DHT) has been shown to activate SRC by a novel nontranscriptional mechanism, which phosphorylates EGF receptors to potentiate EGF-induced ERK1/2 activation. This study sought to determine if DHT potentiates EGFR signaling by a nontranscriptional mechanism. Embryonic day (E)17 fetal lung cells were isolated from dams treated with or without DHT since E12. Cells were exposed to 30 ng/ml DHT for periods of 30 minutes to 3 days before being stimulated with 100 ng/ml EGF, TGF-α, or Nrg for up to 30 minutes. Lysates were immunoblotted for ErbB and SRC pathway signaling intermediates. DHT increased ERK1/2 activation by EGF, TGF-α, and Nrg in fibroblasts and Type II cells. Characterization in fibroblasts showed that potentiation of the EGF pathway was significant after 60 minutes of DHT exposure and persisted in the presence of the translational inhibitor cycloheximide. SRC and EGF receptor phosphorylation was increased by DHT, as was EGF-induced SHC1 phosphorylation and subsequent association with GRB2. Finally, SRC silencing, SRC inhibition with PP2, and overexpression of a dominant-negative SRC each prevented DHT from increasing EGF-induced ERK1/2 phosphorylation. These results suggest that DHT activates SRC to potentiate the signaling pathway leading from the EGF receptor to ERK activation in primary fetal lung fibroblasts. PMID:24484548

  17. Antioxidant defenses in the preterm lung: role for hypoxia-inducible factors in BPD?

    International Nuclear Information System (INIS)

    Asikainen, Tiina M.; White, Carl W.

    2005-01-01

    Pulmonary antioxidants and their therapeutic implications have been extensively studied during past decades. The purpose of this review is to briefly summarize the key findings of these studies as well as to elaborate on some novel approaches with respect to potential preventive treatments for neonatal chronic lung disease bronchopulmonary dysplasia (BPD). Such new ideas include, for example, modification of transcription factors governing the hypoxic response pathways, important in angiogenesis, cell survival, and glycolytic responses. The fundamental strategy behind that approach is that fetal lung normally develops under hypoxic conditions and that this hypoxic, growth-favoring environment is interrupted by a premature birth. Importantly, during fetal lung development, alveolar development appears to be dependent on vascular development. Therefore, enhancement of signaling factors that occur during hypoxic fetal life ('continued fetal life ex utero'), including angiogenic responses, could potentially lead to improved lung growth and thereby alleviate the alveolar and vascular hypoplasia characteristic of BPD

  18. The Monocarboxylate Transporter Inhibitor α-Cyano-4-Hydroxycinnamic Acid Disrupts Rat Lung Branching

    Directory of Open Access Journals (Sweden)

    Sara Granja

    2013-12-01

    Full Text Available Background/Aims: The human embryo develops in a hypoxic environment. In this way, cells have to rely on the glycolytic pathway for energy supply, leading to an intracellular accumulation of monocarboxylates such as lactate and pyruvate. These acids have an important role in cell metabolism and their rapid transport across the plasma membrane is crucial for the maintenance of intracellular pH homeostasis. This transport is mediated by a family of transporters, designated by monocarboxylate transporters (MCTs, namely isoforms 1 and 4. MCT1/4 expression is regulated by the ancillary protein CD147.The general aim of this study was to characterize the expression pattern of MCT1/4, CD147 and the glucose transporter GLUT1 during human fetal lung development and elucidate the role of MCTs in lung development. Methods: The expression pattern of MCT1/4 and GLUT1 was characterized by immunohistochemistry and fetal lung viability and branching were evaluated by exposing rat fetal lung explants to CHC, an inhibitor of MCT activity. Results: Our findings show that all the biomarkers are differently expressed during fetal lung development and that CHC appears to have an inhibitory effect on lung branching and viability, in a dose dependent way. Conclusion: We provide evidence for the role of MCTs in embryo lung development, however to prove the dependence of MCT activity further studies are waranted.

  19. Fetal body weight and the development of the control of the cardiovascular system in fetal sheep.

    Science.gov (United States)

    Frasch, M G; Müller, T; Wicher, C; Weiss, C; Löhle, M; Schwab, K; Schubert, H; Nathanielsz, P W; Witte, O W; Schwab, M

    2007-03-15

    Reduced birth weight predisposes to cardiovascular diseases in later life. We examined in fetal sheep at 0.76 (n = 18) and 0.87 (n = 17) gestation whether spontaneously occurring variations in fetal weight affect maturation of autonomic control of cardiovascular function. Fetal weights at both gestational ages were grouped statistically in low (LW) and normal weights (NW) (P fetal sheep not constituting a major malnutritive condition. Mean fetal blood pressure (FBP) of all fetuses was negatively correlated to fetal weight at 0.76 but not 0.87 gestation (P fetal heart rate depended on fetal weight (P fetal weight within the normal weight span is accompanied by a different trajectory of development of sympathetic blood pressure and vagal heart rate control. This may contribute to the development of elevated blood pressure in later life. Examination of the underlying mechanisms and consequences may contribute to the understanding of programming of cardiovascular diseases.

  20. Fetal alcohol exposure and development of the integument

    Directory of Open Access Journals (Sweden)

    Longhurst WD

    2016-05-01

    Full Text Available William D Longhurst,1 Jordan Ernst,2 Larry Burd3 1Center for Emergency Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA; 2University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA; 3Department of Pediatrics, North Dakota Fetal Alcohol Syndrome Center, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA Background: The physiology of fetal alcohol exposure changes across gestation. Early in pregnancy placental, fetal, and amniotic fluid concentrations of alcohol exposure are equivalent. Beginning in mid-pregnancy, the maturing fetal epidermis adds keratins which decrease permeability resulting in development of a barrier between fetal circulation and the amniotic fluid. Barrier function development is essential for viability in late pregnancy and in the extra-uterine environment. In this paper we provide a selected review of the effects of barrier function on fetal alcohol exposure. Methods: We utilized a search of PubMed and Google for all years in all languages for MeSH on Demand terms: alcohol drinking, amnion, amniotic fluid, epidermis, ethanol, female, fetal development, fetus, humans, keratins, permeability, and pregnancy. We also reviewed the reference lists of relevant papers and hand-searched reference lists of textbooks for additional references. Results: By 30 gestational weeks, development of barrier function alters the pathophysiology of ethanol dispersion between the fetus and amniotic fluid. Firstly, increases in the effectiveness of barrier function decreases the rate of diffusion of alcohol from fetal circulation across fetal skin into the amniotic fluid. This reduces the volume of alcohol entering the amniotic fluid. Secondly, barrier function increases the duration of fetal exposure by decreasing the rate of alcohol diffusion from amniotic fluid back into fetal circulation. Ethanol is then transported into

  1. Hypoxia: From Placental Development to Fetal Programming.

    Science.gov (United States)

    Fajersztajn, Lais; Veras, Mariana Matera

    2017-10-16

    Hypoxia may influence normal and different pathological processes. Low oxygenation activates a variety of responses, many of them regulated by hypoxia-inducible factor 1 complex, which is mostly involved in cellular control of O 2 consumption and delivery, inhibition of growth and development, and promotion of anaerobic metabolism. Hypoxia plays a significant physiological role in fetal development; it is involved in different embryonic processes, for example, placentation, angiogenesis, and hematopoiesis. More recently, fetal hypoxia has been associated directly or indirectly with fetal programming of heart, brain, and kidney function and metabolism in adulthood. In this review, the role of hypoxia in fetal development, placentation, and fetal programming is summarized. Hypoxia is a basic mechanism involved in different pregnancy disorders and fetal health developmental complications. Although there are scientific data showing that hypoxia mediates changes in the growth trajectory of the fetus, modulates gene expression by epigenetic mechanisms, and determines the health status later in adulthood, more mechanistic studies are needed. Furthermore, if we consider that intrauterine hypoxia is not a rare event, and can be a consequence of unavoidable exposures to air pollution, nutritional deficiencies, obesity, and other very common conditions (drug addiction and stress), the health of future generations may be damaged and the incidence of some diseases will markedly increase as a consequence of disturbed fetal programming. Birth Defects Research 109:1377-1385, 2017.© 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Magnetic resonance imaging (MRI) in obstetrics. II. Fetal anatomy.

    Science.gov (United States)

    Powell, M C; Worthington, B S; Buckley, J M; Symonds, E M

    1988-01-01

    Magnetic resonance imaging (MRI) was performed in 36 patients at between 10 and 38 weeks gestation to determine the fetal anatomy that could be identified at different gestations. Fetal motion significantly degraded the image quality in the first and second trimesters, but in the final trimester fetal anatomy was clearly demonstrated. T2 weighted sequences showed the fetal brain and lungs to have a high signal intensity. Shorter TR leading to a T1 weighting gave better resolution of the overall anatomy. MRI has revealed the potential for assessment of lung maturity and the growth-retarded fetus.

  3. Fetal MRI correlates with postnatal CT angiogram assessment of pulmonary anatomy in tetralogy of Fallot with absent pulmonary valve.

    Science.gov (United States)

    Sun, Heather Y; Boe, Justin; Rubesova, Erika; Barth, Richard A; Tacy, Theresa A

    2014-01-01

    In tetralogy of Fallot with absent pulmonary valve, pulmonary stenosis and regurgitation results in significant pulmonary artery dilatation. Branch pulmonary artery dilatation often compresses the tracheobronchial tree, causing fluid trapping in fetal life and air trapping and/or atelectasis after birth. Prenatal diagnosis predicts poor prognosis, which depends on the degree of respiratory insufficiency from airway compromise and lung parenchymal disease after birth. Fetal magnetic resonance imaging (MRI) has been useful in evaluating the effects of congenital lung lesions on lung development and indicating severity of pulmonary hypoplasia. This report is the first demonstrating the utility of fetal MRI in tetralogy of Fallot/absent pulmonary valve patients, which predicted postnatal pulmonary artery size and visualized airway compression and lung parenchymal lesions. The distribution of lobar fluid trapping on fetal MRI correlated with air trapping on postnatal computed tomography angiogram. © 2013 Wiley Periodicals, Inc.

  4. MR assessment of fetal pulmonary hypoplasia

    Energy Technology Data Exchange (ETDEWEB)

    Kuwashima, Shigeko; Kohno, Atsushi; Saiki, Natoru; Iimura, Fumitoshi; Kohno, Tatsuo; Hashimoto, Teisuke; Fujioka, Mutsuhisa [Dokkyo Univ. School of Medicine, Mibu, Tochigi (Japan)

    2000-08-01

    The purpose of this study is to evaluate pulmonary hypoplasia of the fetus using MRI. The subjects consisted of 36 fetuses (18 to 40 weeks' gestation). All fetuses or mothers had major anomalies diagnosed on fetal ultrasonography. MR imaging was performed with a 1.5-T magnet and HASTE (half-Fourier acquisition single-shot turbo spin-echo) sequence. MR images were evaluated with special attention to the intensity of the lung. A diagnosis of pulmonary hypoplasia was based on the clinical, surgical, and autopsy findings. All fetuses with normal pulmonary development showed high intensity in the lung, while all fetuses with pulmonary hypoplasia showed a low intensity in the lung, obscured pulmonary vessels and a small thorax. There was a close correlation between the lung intensity and pulmonary growth. MR assessment of lung intensity may facilitate the diagnosis of pulmonary hypoplasia, particularly after 26 weeks' gestation. Some of the normally developing lung showed a low intensity from 20 to 24 weeks of gestational age. The change to normal lung intensity may occur during this period. (author)

  5. Fetal MRI of pathological brain development

    International Nuclear Information System (INIS)

    Brugger, P.C.; Prayer, D.

    2006-01-01

    Because of the superior tissue contrast, high spatial resolution, and multiplanar capabilities, fetal magnetic resonance imaging (MRI) can depict fetal brain pathologies with high accuracy. Pathological fetal brain development may result from malformations or acquired conditions. Differentiation of these etiologies is important with respect to managing the actual pregnancy or counseling future pregnancies. As a widened ventricular system is a common hallmark of both maldevelopment and acquired conditions, it may cause problems in the differential diagnosis. Fetal MRI can provide detailed morphological information, which allows refinement of the diagnosis of ventricular enlargement in a large number of cases. Systematic work-up of morphological details that may be recognized on MR images provides an approach for achieving a correct diagnosis in cases of ventricle enlargement. (orig.) [de

  6. Fetal MRI: An approach to practice: A review

    Directory of Open Access Journals (Sweden)

    Sahar N. Saleem

    2014-09-01

    Full Text Available MRI has been increasingly used for detailed visualization of the fetus in utero as well as pregnancy structures. Yet, the familiarity of radiologists and clinicians with fetal MRI is still limited. This article provides a practical approach to fetal MR imaging. Fetal MRI is an interactive scanning of the moving fetus owed to the use of fast sequences. Single-shot fast spin-echo (SSFSE T2-weighted imaging is a standard sequence. T1-weighted sequences are primarily used to demonstrate fat, calcification and hemorrhage. Balanced steady-state free-precession (SSFP, are beneficial in demonstrating fetal structures as the heart and vessels. Diffusion weighted imaging (DWI, MR spectroscopy (MRS, and diffusion tensor imaging (DTI have potential applications in fetal imaging. Knowing the developing fetal MR anatomy is essential to detect abnormalities. MR evaluation of the developing fetal brain should include recognition of the multilayered-appearance of the cerebral parenchyma, knowledge of the timing of sulci appearance, myelination and changes in ventricular size. With advanced gestation, fetal organs as lungs and kidneys show significant changes in volume and T2-signal. Through a systematic approach, the normal anatomy of the developing fetus is shown to contrast with a wide spectrum of fetal disorders. The abnormalities displayed are graded in severity from simple common lesions to more complex rare cases. Complete fetal MRI is fulfilled by careful evaluation of the placenta, umbilical cord and amniotic cavity. Accurate interpretation of fetal MRI can provide valuable information that helps prenatal counseling, facilitate management decisions, guide therapy, and support research studies.

  7. Maternal protein-energy malnutrition during early pregnancy in sheep impacts the fetal ornithine cycle to reduce fetal kidney microvascular development.

    Science.gov (United States)

    Dunford, Louise J; Sinclair, Kevin D; Kwong, Wing Y; Sturrock, Craig; Clifford, Bethan L; Giles, Tom C; Gardner, David S

    2014-11-01

    This paper identifies a common nutritional pathway relating maternal through to fetal protein-energy malnutrition (PEM) and compromised fetal kidney development. Thirty-one twin-bearing sheep were fed either a control (n=15) or low-protein diet (n=16, 17 vs. 8.7 g crude protein/MJ metabolizable energy) from d 0 to 65 gestation (term, ∼ 145 d). Effects on the maternal and fetal nutritional environment were characterized by sampling blood and amniotic fluid. Kidney development was characterized by histology, immunohistochemistry, vascular corrosion casts, and molecular biology. PEM had little measureable effect on maternal and fetal macronutrient balance (glucose, total protein, total amino acids, and lactate were unaffected) or on fetal growth. PEM decreased maternal and fetal urea concentration, which blunted fetal ornithine availability and affected fetal hepatic polyamine production. For the first time in a large animal model, we associated these nutritional effects with reduced micro- but not macrovascular development in the fetal kidney. Maternal PEM specifically impacts the fetal ornithine cycle, affecting cellular polyamine metabolism and microvascular development of the fetal kidney, effects that likely underpin programming of kidney development and function by a maternal low protein diet. © FASEB.

  8. Effects of tracheal occlusion with retinoic acid administration on normal lung development.

    Science.gov (United States)

    Delabaere, Amélie; Marceau, Geoffroy; Coste, Karen; Blanchon, Loïc; Déchelotte, Pierre-Jean; Blanc, Pierre; Sapin, Vincent; Gallot, Denis

    2017-05-01

    Tracheal occlusion (TO) is an investigational therapy for severe congenital diaphragmatic hernia that decreases pulmonary hypoplasia, but sustained TO also induces deficient surfactant synthesis. Intramuscular maternal administration of retinoic acid (RA) in a surgical rabbit model of congenital diaphragmatic hernia showed a beneficial effect on lung maturation. We evaluated the potential of RA delivery into the trachea and studied the combined effects of TO and RA on normal lung development. Experiments were performed on normal rabbit fetuses. Liposomes and capric triglyceride (Miglyol ® ), alone and with RA, were administered in the trachea just before TO (d26). Lung morphology and surfactant production were studied at term (d30). Tracheal occlusion increased lung weight and enhanced alveolar development but increased apoptotic activity and decreased surfactant expression. Tracheal injection of RA improved surfactant production to levels of normal controls. We established the potential of liposome and Miglyol as RA vehicle for delivering this bioactive molecule in the fetal airways. Tracheal RA injection seems to oppose the effects of TO in fetuses with normal lungs. © 2017 John Wiley & Sons, Ltd. © 2017 John Wiley & Sons, Ltd.

  9. Unusual signal intensity of congenital pulmonary airway malformation on fetal magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Owada, Keiho; Miyazaki, Osamu; Nosaka, Shunsuke [National Center for Child Health and Development, Department of Radiology, Tokyo (Japan); Matsuoka, Kentaro [National Center for Child Health and Development, Department of Pathology, Tokyo (Japan); Sago, Haruhiko [National Center for Child Health and Development, Department of Perinatal Medicine and Maternal Care, Tokyo (Japan)

    2015-05-01

    Congenital pulmonary airway malformation (CPAM) is classified into pathologically different types. These types are sometimes distinguishable by fetal lung MRI and are usually observed as higher-signal lesions on T2-weighted images than normal lung. We describe a case of unusual CPAM resembling neoplasms, with a lower signal than is found in normal lung. Histopathology showed a large number of mucogenic cells but found no evidence that could explain this feature on fetal MRI. An unusual low-signal mass associated with a pulmonary cyst in fetal lung on MRI may suggest an unusual type 1 CPAM. (orig.)

  10. Unusual signal intensity of congenital pulmonary airway malformation on fetal magnetic resonance imaging

    International Nuclear Information System (INIS)

    Owada, Keiho; Miyazaki, Osamu; Nosaka, Shunsuke; Matsuoka, Kentaro; Sago, Haruhiko

    2015-01-01

    Congenital pulmonary airway malformation (CPAM) is classified into pathologically different types. These types are sometimes distinguishable by fetal lung MRI and are usually observed as higher-signal lesions on T2-weighted images than normal lung. We describe a case of unusual CPAM resembling neoplasms, with a lower signal than is found in normal lung. Histopathology showed a large number of mucogenic cells but found no evidence that could explain this feature on fetal MRI. An unusual low-signal mass associated with a pulmonary cyst in fetal lung on MRI may suggest an unusual type 1 CPAM. (orig.)

  11. Thyroid hormones and fetal brain development.

    Science.gov (United States)

    Pemberton, H N; Franklyn, J A; Kilby, M D

    2005-08-01

    Thyroid hormones are intricately involved in the developing fetal brain. The fetal central nervous system is sensitive to the maternal thyroid status. Critical amounts of maternal T3 and T4 must be transported across the placenta to the fetus to ensure the correct development of the brain throughout ontogeny. Severe mental retardation of the child can occur due to compromised iodine intake or thyroid disease. This has been reported in areas of the world with iodine insufficiency, New Guinea, and also in mother with thyroid complications such as hypothyroxinaemia and hyperthyroidism. The molecular control of thyroid hormones by deiodinases for the activation of thyroid hormones is critical to ensure the correct amount of active thyroid hormones are temporally supplied to the fetus. These hormones provide timing signals for the induction of programmes for differentiation and maturation at specific stages of development. Understanding these molecular mechanisms further will have profound implications in the clinical management of individuals affected by abnormal maternal of fetal thyroid status.

  12. Normal anatomy and MR findings of fetal main organs at MR imaging

    International Nuclear Information System (INIS)

    Xia Liming; Zou Mingli; Feng Dingyi; Hu Junwu; Qi Jianpin; Wang Chengyuan

    2005-01-01

    Objective: To investigate normal anatomy and MR findings of fetal main organs. Methods: Forty-seven fetus underwented fast MR imaging, SSFSE sequence was used, the normal anatomy and MR findings of fetal main organs was observed in different gestational age. The organs included: brain, lungs, heart, liver, spleen, gastrointestinal tract, urinary collecting systems, bladder, bones, spine, and subcutaneous fat. Results: Results of MR in 47 fetus showed that the main organs had developed by 20-week-old fetus, about 20 weeks gestation, cerebral cortical surface was smooth, no cortical gyri and sulci, then cortical gyri and sulci developed slowly. The lungs, trachea, bronchus, gastrointestinal tract, renal collecting system and bladder showed high signal intensity; the heart, great vessels, liver, spleen, bones and muscles appeared hypointense; the kidneys appeared isointense, the spine had developed and subcutaneous fat was seen in 20-week-old fetus, the subcutaneous fat increased with fetus maturating. Conclusion: Normal anatomy and MR findings of fetal main organs were clearly showed by fast MR imaging, and they are different from the newborns. (authors)

  13. Fetal MRI of pathological brain development; Fetale MRT der pathologischen Hirnentwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, P.C. [Medizinische Universitaet Wien (Austria). Arbeitsgruppe Integrative Morphologie, Zentrum fuer Anatomie und Zellbiologie; Prayer, D. [Medizinische Universitaet Wien (Austria). Klinik fuer Radiodiagnostik

    2006-02-15

    Because of the superior tissue contrast, high spatial resolution, and multiplanar capabilities, fetal magnetic resonance imaging (MRI) can depict fetal brain pathologies with high accuracy. Pathological fetal brain development may result from malformations or acquired conditions. Differentiation of these etiologies is important with respect to managing the actual pregnancy or counseling future pregnancies. As a widened ventricular system is a common hallmark of both maldevelopment and acquired conditions, it may cause problems in the differential diagnosis. Fetal MRI can provide detailed morphological information, which allows refinement of the diagnosis of ventricular enlargement in a large number of cases. Systematic work-up of morphological details that may be recognized on MR images provides an approach for achieving a correct diagnosis in cases of ventricle enlargement. (orig.) [German] Aufgrund des hervorragenden Gewebekontrastes, der hohen raeumlichen Aufloesung und multiplanaren Moeglichkeiten erlaubt die fetale Magnetresonanztomographie (MRT) eine detaillierte Darstellung fetaler Hirnpathologien. Eine pathologische Hirnentwicklung kann sowohl auf Fehlbildungen als auch waehrend der Schwangerschaft erworbenen Stoerungen beruhen. Nachdem die weiteren Konsequenzen fuer die bestehende, aber auch fuer folgende Schwangerschaften zu einem grossen Teil von einer Differenzierung dieser Aetiologien abhaengig sein kann, ist ein Erkennen der jeweiligen Pathologie wesentlich. Die morphologische Praesentation erworbener und fehlbildungsbedingter Veraenderungen auf MR-Bildern ist u. U. sehr aehnlich. Besondere differenzialdiagnostische Probleme bereitet dabei das Vorliegen eines erweiterten Ventrikelsystems, das als Symptom unterschiedlichster Veraenderungen vorliegen kann. Anhand einer systematischen Darstellung mittels MR-erfassbarer morphologischer Details wird eine Anleitung gegeben, bei Bestehen dieses Leitsymptoms zu einer moeglichst genauen Diagnose zu kommen

  14. Invasive Fetal Therapy: Global Status and Local Development

    Directory of Open Access Journals (Sweden)

    Ming Chen

    2004-12-01

    Full Text Available There are few congenital anomalies that can be treated in utero, despite the rapid development of fetal medicine. The number of available antenatal treatments is growing with the advance of supplementary tools, especially ultrasound and endoscopy. Disorders involving accumulation of excessive fluid in the amniotic cavity (polyhydramnios, chest (hydrothorax, abdomen (ascites and urinary system (obstructive uropathy are regularly treated using aspiration or shunt drainage under ultrasound monitoring. Electrolyte solutions or concentrated blood component supplements are used to treat oligohydramnios (amnioinfusion and amniopatch and fetal anemia (fetal transfusion. Placental tumor (chorioangioma and fetal tumors (cystic hygroma and sacrococcygeal teratoma are also successfully treated by antenatal injection of medications. Fetoscopic procedures, especially obstetric endoscopy, are now used regularly in North America, Europe, Australasia and Japan after the validity was established in the treatment of twin-twin transfusion syndrome when compared with traditional amnioreduction. However, most procedures involving surgical fetoscopy or open fetal surgery remain experimental. Their validity and efficacy are not confirmed in a number of fetal diseases for which they were claimed to be effective. A brief review of the global status and history of invasive fetal therapy is given, and its status in Taiwan is also described. Future development in this field relies on greater understanding of the basic physiology and pathology of the diseases involved, as well as on the progress of sophisticated instrumentation.

  15. Frecuencia cardiaca y movimientos fetales posterior a la administracion de betametasona para maduración pulmonar fetal

    Directory of Open Access Journals (Sweden)

    Yolima Ruiz Lopez

    2013-05-01

    Full Text Available El objetivo de la investigación fue demostrar las modificaciones de la frecuencia cardiaca y los movimientos fetales producidas por la administración de betametasona para maduración pulmonar fetal. Se realizó una investigación de tipo explicativa, prospectiva y longitudinal con un diseño cuasi-experimental y una muestra no probabilística de 106 gestantes entre 24 y 34 semanas, con diagnóstico de amenaza de parto pretérmino tratadas con betametasona (12 mg intramuscular cada 24 horas por dos dosis que acudieron al Hospital Central “Dr. Urquinaona”. Se evaluaron los movimientos fetales y frecuencia cardiaca materna y fetal. No se encontraron diferencias significativas en la frecuencia cardiaca materna comparado con los valores iniciales (p = ns. Se observó que el valor inicial de la frecuencia cardiaca fetal fue de 135,1±9,7 latidos por minuto para aumentar luego a 137,2±8,9 latidos por minuto (p = ns para presentar un nuevo aumento hasta (142,9±9,9 latidos por minuto que fue significativo comparado con los valores iniciales (p < 0,05. Se observó una disminución significativa de movimientos fetales medidos en 30 minutos después de la primera inyección (23,1±6,0 movimientos comparado con 14,8±7,0 movimientos, para aumentar después de la segunda inyección pero aun presentando valores significativamente más bajos comparado con los valores iniciales (20,0 ±6,7 movimientos; p < 0,05. Se concluye que la administración de betametasona para maduración pulmonar fetal produce incremento significativo en la frecuencia cardiaca y reducción marcada de los movimientos fetales. Abstract Fetal heart rate and movements after betamethasone administration for fetal lung maturity The objective of research was to demonstrate fetal heart rate and movements modifications by the use of betamethasone for fetal lung maturity. An explicative, prospective and longitudinal research was done with a quasi-experimental design and a non

  16. Massive hemoptysis and complete unilateral lung collapse in pregnancy due to pulmonary tuberculosis with good maternal and fetal outcome: a case report.

    Science.gov (United States)

    Masukume, Gwinyai; Sengurayi, Elton; Moyo, Phinot; Feliu, Julio; Gandanhamo, Danboy; Ndebele, Wedu; Ngwenya, Solwayo; Gwini, Rudo

    2013-08-22

    We report an extremely rare case of massive hemoptysis and complete left-sided lung collapse in pregnancy due to pulmonary tuberculosis in a health care worker with good maternal and fetal outcome. A 33-year-old human immuno deficiency virus seronegative African health care worker in her fourth pregnancy with two previous second trimester miscarriages and an apparently healthy daughter from her third pregnancy presented coughing up copious amounts of blood at 18 weeks and two days of gestation. She had a cervical suture in situ for presumed cervical weakness. Computed tomography of her chest showed complete collapse of the left lung; subsequent bronchoscopy was apparently normal. Her serum β-human chorionic gonadotropin, tests for autoimmune disease and echocardiography were all normal. Her lung re-inflated spontaneously. Sputum for acid alcohol fast bacilli was positive; our patient was commenced on anti-tuberculosis medication and pyridoxine. At 41 weeks and three days of pregnancy our patient went into spontaneous labor and delivered a live born female baby weighing 2.6 kg with APGAR scores of nine and 10 at one and five minutes respectively. She and her baby are apparently doing well about 10 months after delivery. It is possible to have massive hemoptysis and complete unilateral lung collapse with spontaneous resolution in pregnancy due to pulmonary tuberculosis with good maternal and fetal outcome.

  17. WHO multicentre study for the development of growth standards from fetal life to childhood: the fetal component.

    Science.gov (United States)

    Merialdi, Mario; Widmer, Mariana; Gülmezoglu, Ahmet Metin; Abdel-Aleem, Hany; Bega, George; Benachi, Alexandra; Carroli, Guillermo; Cecatti, Jose Guilherme; Diemert, Anke; Gonzalez, Rogelio; Hecher, Kurt; Jensen, Lisa N; Johnsen, Synnøve L; Kiserud, Torvid; Kriplani, Alka; Lumbiganon, Pisake; Tabor, Ann; Talegawkar, Sameera A; Tshefu, Antoinette; Wojdyla, Daniel; Platt, Lawrence

    2014-05-02

    In 2006 WHO presented the infant and child growth charts suggested for universal application. However, major determinants for perinatal outcomes and postnatal growth are laid down during antenatal development. Accordingly, monitoring fetal growth in utero by ultrasonography is important both for clinical and scientific reasons. The currently used fetal growth references are derived mainly from North American and European population and may be inappropriate for international use, given possible variances in the growth rates of fetuses from different ethnic population groups. WHO has, therefore, made it a high priority to establish charts of optimal fetal growth that can be recommended worldwide. This is a multi-national study for the development of fetal growth standards for international application by assessing fetal growth in populations of different ethnic and geographic backgrounds. The study will select pregnant women of high-middle socioeconomic status with no obvious environmental constraints on growth (adequate nutritional status, non-smoking), and normal pregnancy history with no complications likely to affect fetal growth. The study will be conducted in centres from ten developing and industrialized countries: Argentina, Brazil, Democratic Republic of Congo, Denmark, Egypt, France, Germany, India, Norway, and Thailand. At each centre, 140 pregnant women will be recruited between 8 + 0 and 12 + 6 weeks of gestation. Subsequently, visits for fetal biometry will be scheduled at 14, 18, 24, 28, 32, 36, and 40 weeks (+/- 1 week) to be performed by trained ultrasonographers.The main outcome of the proposed study will be the development of fetal growth standards (either global or population specific) for international applications. The data from this study will be incorporated into obstetric practice and national health policies at country level in coordination with the activities presently conducted by WHO to implement the use of the Child Growth Standards.

  18. MRI of normal fetal brain development

    International Nuclear Information System (INIS)

    Prayer, Daniela; Kasprian, Gregor; Krampl, Elisabeth; Ulm, Barbara; Witzani, Linde; Prayer, Lucas; Brugger, Peter C.

    2006-01-01

    Normal fetal brain maturation can be studied by in vivo magnetic resonance imaging (MRI) from the 18th gestational week (GW) to term, and relies primarily on T2-weighted and diffusion-weighted (DW) sequences. These maturational changes must be interpreted with a knowledge of the histological background and the temporal course of the respective developmental steps. In addition, MR presentation of developing and transient structures must be considered. Signal changes associated with maturational processes can mainly be ascribed to the following changes in tissue composition and organization, which occur at the histological level: (1) a decrease in water content and increasing cell-density can be recognized as a shortening of T1- and T2-relaxation times, leading to increased T1-weighted and decreased T2-weighted intensity, respectively; (2) the arrangement of microanatomical structures to create a symmetrical or asymmetrical environment, leading to structural differences that may be demonstrated by DW-anisotropy; (3) changes in non-structural qualities, such as the onset of a membrane potential in premyelinating axons. The latter process also influences the appearance of a structure on DW sequences. Thus, we will review the in vivo MR appearance of different maturational states of the fetal brain and relate these maturational states to anatomical, histological, and in vitro MRI data. Then, the development of the cerebral cortex, white matter, temporal lobe, and cerebellum will be reviewed, and the MR appearance of transient structures of the fetal brain will be shown. Emphasis will be placed on the appearance of the different structures with the various sequences. In addition, the possible utility of dynamic fetal sequences in assessing spontaneous fetal movements is discussed

  19. MRI of normal fetal brain development

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Radiodiagnostics, Medical University of Vienna, Vienna (Austria)]. E-mail: Daniela.prayer@meduniwien.ac.at; Kasprian, Gregor [Department of Radiodiagnostics, Medical University of Vienna, Vienna (Austria); Krampl, Elisabeth [Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna (Austria); Ulm, Barbara [Department of Prenatal Diagnosis, Medical University of Vienna, Vienna (Austria); Witzani, Linde [Department of Radiodiagnostics, Medical University of Vienna, Vienna (Austria); Prayer, Lucas [Diagnosezentrum Urania, Vienna (Austria); Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna (Austria)

    2006-02-15

    Normal fetal brain maturation can be studied by in vivo magnetic resonance imaging (MRI) from the 18th gestational week (GW) to term, and relies primarily on T2-weighted and diffusion-weighted (DW) sequences. These maturational changes must be interpreted with a knowledge of the histological background and the temporal course of the respective developmental steps. In addition, MR presentation of developing and transient structures must be considered. Signal changes associated with maturational processes can mainly be ascribed to the following changes in tissue composition and organization, which occur at the histological level: (1) a decrease in water content and increasing cell-density can be recognized as a shortening of T1- and T2-relaxation times, leading to increased T1-weighted and decreased T2-weighted intensity, respectively; (2) the arrangement of microanatomical structures to create a symmetrical or asymmetrical environment, leading to structural differences that may be demonstrated by DW-anisotropy; (3) changes in non-structural qualities, such as the onset of a membrane potential in premyelinating axons. The latter process also influences the appearance of a structure on DW sequences. Thus, we will review the in vivo MR appearance of different maturational states of the fetal brain and relate these maturational states to anatomical, histological, and in vitro MRI data. Then, the development of the cerebral cortex, white matter, temporal lobe, and cerebellum will be reviewed, and the MR appearance of transient structures of the fetal brain will be shown. Emphasis will be placed on the appearance of the different structures with the various sequences. In addition, the possible utility of dynamic fetal sequences in assessing spontaneous fetal movements is discussed.

  20. Non-invasive pulsed cavitational ultrasound for fetal tissue ablation: feasibility study in a fetal sheep model.

    Science.gov (United States)

    Kim, Y; Gelehrter, S K; Fifer, C G; Lu, J C; Owens, G E; Berman, D R; Williams, J; Wilkinson, J E; Ives, K A; Xu, Z

    2011-04-01

    Currently available fetal intervention techniques rely on invasive procedures that carry inherent risks. A non-invasive technique for fetal intervention could potentially reduce the risk of fetal and obstetric complications. Pulsed cavitational ultrasound therapy (histotripsy) is an ablation technique that mechanically fractionates tissue at the focal region using extracorporeal ultrasound. In this study, we investigated the feasibility of using histotripsy as a non-invasive approach to fetal intervention in a sheep model. The experiments involved 11 gravid sheep at 102-129 days of gestation. Fetal kidney, liver, lung and heart were exposed to ultrasound pulses (bones. Histological assessment confirmed lesion locations and sizes corresponding to regions where cavitation was monitored, with no lesions found when cavitation was absent. Inability to generate cavitation was primarily associated with increased depth to target and obstructing structures such as fetal limbs. Extracorporeal histotripsy therapy successfully created targeted lesions in fetal sheep organs without significant damage to overlying structures. With further improvements, histotripsy may evolve into a viable technique for non-invasive fetal intervention procedures. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  1. Perinatal Maternal Mental Health, Fetal Programming and Child Development

    Directory of Open Access Journals (Sweden)

    Andrew J. Lewis

    2015-11-01

    Full Text Available Maternal mental disorders over pregnancy show a clear influence on child development. This review is focused on the possible mechanisms by which maternal mental disorders influence fetal development via programming effects. This field is complex since mental health symptoms during pregnancy vary in type, timing and severity and maternal psychological distress is often accompanied by higher rates of smoking, alcohol use, poor diet and lifestyle. Studies are now beginning to examine fetal programming mechanisms, originally identified within the DOHaD framework, to examine how maternal mental disorders impact fetal development. Such mechanisms include hormonal priming effects such as elevated maternal glucocorticoids, alteration of placental function and perfusion, and epigenetic mechanisms. To date, mostly high prevalence mental disorders such as depression and anxiety have been investigated, but few studies employ diagnostic measures, and there is very little research examining the impact of maternal mental disorders such as schizophrenia, bipolar disorder, eating disorders and personality disorders on fetal development. The next wave of longitudinal studies need to focus on specific hypotheses driven by plausible biological mechanisms for fetal programming and follow children for a sufficient period in order to examine the early manifestations of developmental vulnerability. Intervention studies can then be targeted to altering these mechanisms of intergenerational transmission once identified.

  2. Perinatal Maternal Mental Health, Fetal Programming and Child Development.

    Science.gov (United States)

    Lewis, Andrew J; Austin, Emma; Knapp, Rebecca; Vaiano, Tina; Galbally, Megan

    2015-11-26

    Maternal mental disorders over pregnancy show a clear influence on child development. This review is focused on the possible mechanisms by which maternal mental disorders influence fetal development via programming effects. This field is complex since mental health symptoms during pregnancy vary in type, timing and severity and maternal psychological distress is often accompanied by higher rates of smoking, alcohol use, poor diet and lifestyle. Studies are now beginning to examine fetal programming mechanisms, originally identified within the DOHaD framework, to examine how maternal mental disorders impact fetal development. Such mechanisms include hormonal priming effects such as elevated maternal glucocorticoids, alteration of placental function and perfusion, and epigenetic mechanisms. To date, mostly high prevalence mental disorders such as depression and anxiety have been investigated, but few studies employ diagnostic measures, and there is very little research examining the impact of maternal mental disorders such as schizophrenia, bipolar disorder, eating disorders and personality disorders on fetal development. The next wave of longitudinal studies need to focus on specific hypotheses driven by plausible biological mechanisms for fetal programming and follow children for a sufficient period in order to examine the early manifestations of developmental vulnerability. Intervention studies can then be targeted to altering these mechanisms of intergenerational transmission once identified.

  3. Epidermal growth factor and lung development in the offspring of the diabetic rat

    DEFF Research Database (Denmark)

    Thulesen, J; Poulsen, Steen Seier; Nexø, Ebba

    2000-01-01

    Fetuses of diabetic mothers who were exposed to excessive glucose show delayed maturation. Under these conditions, altered growth factor expression or signaling may have important regulatory influences. We examined the role of epidermal growth factor (EGF) in lung development and maternal diabetes...... in the rat. In order to evaluate the possible role of glucose for the expression of EGF and the growth of lung tissue, we performed in vitro studies with organotypic cultures of fetal alveolar cells obtained from control rats. Compared to pups of normal rats, the newborn rats of untreated diabetic rats had...... and was associated with a reduced intensity of surfactant protein A-IR. The only difference observed between pups of treated diabetic rats and controls was a decrease in the lung weight:body weight ratio. In organotypic cultures, the presence of 13 mmol/L glucose in the cell media increased immunoreactive staining...

  4. Early and late effects of prenatal corticosteroid treatment on the microRNA profiles of lung tissue in rats

    Science.gov (United States)

    YU, HONG-REN; LI, SUNG-CHOU; TSENG, WAN-NING; TAIN, YOU-LIN; CHEN, CHIH-CHENG; SHEEN, JIUNN-MING; TIAO, MAO-MENG; KUO, HO-CHANG; HUANG, CHAO-CHENG; HSIEH, KAI-SHENG; HUANG, LI-TUNG

    2016-01-01

    Glucocorticoids have been administered to mothers at risk of premature delivery to induce maturation of preterm fetal lungs and prevent the development of respiratory distress syndrome. Micro (mi)RNAs serve various crucial functions in cell proliferation, differentiation and organ development; however, few studies have demonstrated an association between miRNAs and lung development. The aim of the present study was to investigate alterations in the miRNA profiles of rat lung tissue following prenatal glucocorticoid therapy for fetal lung development. The differences in miRNA expression profiles were compared between postnatal days 7 (D7) and 120 (D120) rat lung tissues, followed by validation using reverse transcription-quantitative polymerase chain reaction. The miRNA profiles of rat lung tissues following prenatal dexamethasone (DEX) therapy were also investigated. miRNAs with 2-fold changes were selected for further analysis. At D120, 6 upregulated and 6 downregulated miRNAs were detected, compared with D7. Among these differentially expressed miRNAs, miR-101-3p and miR-99b-5p were associated with the lowest and highest expressions of miRNA at D7, respectively. A limited impact on the miRNA profiles of rat lung tissues was observed following prenatal DEX treatment, which may help to further clarify the mechanisms underlying normal lung development. However, the results of the present study cannot entirely elucidate the effects of prenatal DEX treatment on the lung development of premature infants, and further studies investigating the impact of prenatal corticosteroids on fetal lung miRNA profiles are required. PMID:26997989

  5. The effect of Ramadan fasting on fetal development.

    Science.gov (United States)

    Karateke, Atilla; Kaplanoglu, Mustafa; Avci, Fazil; Kurt, Raziye Keskin; Baloglu, Ali

    2015-01-01

    To evaluate the effects of Ramadan fasting on fetal development and outcomes of pregnancy. We performed this study in Antakya State Hospital of Obstetrics and Child Care, between 28 June 2014 and 27 July 2014 (during the month of Ramadan). A total of two hundred forty healthy pregnant women who were fasting during Ramadan, were included in the groups. The three groups were divided according to the trimesters. The each group was consisted of 40 healthy pregnant women with fasting and 40 healthy pregnant women without fasting. For evaluating the effects of Ramadan on fetus, ultrasonography was performed on all pregnant women in the beginning and the end of Ramadan. We used the essential parameters for the following measurements: increase of fetal biparietal diameter (BPD), increase of fetal femur length (FL), increase of estimated fetal body weight (EFBW), fetal biophysical profile (BPP), amniotic fluid index (AFI), and umbilical artery systole/diastole (S/D) ratio. No significant difference was found between the two groups for the fetal age, maternal weight gain (kilogram), estimated fetal weight gain (EFWG), fetal BPP, AFI, and umbilical artery S/D ratio. On the other hand, a statistically significant increase was observed in maternal weight in the second and third trimesters and a significant increase was observed in the amniotic fluid index in second trimester. In Ramadan there was no bad fetal outcome between pregnant women with fasting and pregnant women without fasting. Pregnant women who want to be with fast, should be examined by doctors, adequately get breakfast before starting to fast and after the fasting take essential calori and hydration. More comprehensive randomized studies are needed to explain the effects of fasting on the pregnancy and fetal outcomes.

  6. Imaging of fetal chest masses

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Richard A. [Lucile Packard Children' s Hospital, Stanford University School of Medicine, Department of Radiology, Stanford, CA (United States)

    2012-01-15

    Prenatal imaging with high-resolution US and rapid acquisition MRI plays a key role in the accurate diagnosis of congenital chest masses. Imaging has enhanced our understanding of the natural history of fetal lung masses, allowing for accurate prediction of outcome, parental counseling, and planning of pregnancy and newborn management. This paper will focus on congenital bronchopulmonary malformations, which account for the vast majority of primary lung masses in the fetus. In addition, anomalies that mimic masses and less common causes of lung masses will be discussed. (orig.)

  7. MR evaluation of fetal demise

    International Nuclear Information System (INIS)

    Victoria, Teresa; Chauvin, Nancy Anne; Johnson, Ann M.; Kramer, Sandra Sue; Epelman, Monica; Capilla, Elena

    2011-01-01

    Fetal demise is an uncommon event encountered at MR imaging. When it occurs, recognition by the interpreting radiologist is important to initiate appropriate patient management. To identify MR findings of fetal demise. Following IRB approval, a retrospective search of the radiology fetal MR database was conducted searching the words ''fetal demise'' and ''fetal death.'' Fetuses with obvious maceration or no sonographic confirmation of death were excluded. Eleven cases formed the study group. These were matched randomly to live fetuses of similar gestational age. Images were reviewed independently by three pediatric radiologists. The deceased fetus demonstrates decreased MR soft-tissue contrast and definition of tissue planes, including loss of gray-white matter differentiation in the brain. The signal within the cardiac chambers, when visible, is bright on HASTE sequences from the stagnant blood; the heart is small. Pleural effusions and decreased lung volumes may be seen. Interestingly, the fetal orbits lose their anatomical round shape and become smaller and more elliptical; a dark, irregular rim resembling a mask may be seen. Although fetal demise is uncommonly encountered at MR imaging, radiologists should be aware of such imaging findings so prompt management can be instituted. (orig.)

  8. LungMAP: The Molecular Atlas of Lung Development Program.

    Science.gov (United States)

    Ardini-Poleske, Maryanne E; Clark, Robert F; Ansong, Charles; Carson, James P; Corley, Richard A; Deutsch, Gail H; Hagood, James S; Kaminski, Naftali; Mariani, Thomas J; Potter, Steven S; Pryhuber, Gloria S; Warburton, David; Whitsett, Jeffrey A; Palmer, Scott M; Ambalavanan, Namasivayam

    2017-11-01

    The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. Copyright © 2017 the American Physiological Society.

  9. Epigenetic regulation during fetal femur development: DNA methylation matters.

    Directory of Open Access Journals (Sweden)

    María C de Andrés

    Full Text Available Epigenetic modifications are heritable changes in gene expression without changes in DNA sequence. DNA methylation has been implicated in the control of several cellular processes including differentiation, gene regulation, development, genomic imprinting and X-chromosome inactivation. Methylated cytosine residues at CpG dinucleotides are commonly associated with gene repression; conversely, strategic loss of methylation during development could lead to activation of lineage-specific genes. Evidence is emerging that bone development and growth are programmed; although, interestingly, bone is constantly remodelled throughout life. Using human embryonic stem cells, human fetal bone cells (HFBCs, adult chondrocytes and STRO-1(+ marrow stromal cells from human bone marrow, we have examined a spectrum of developmental stages of femur development and the role of DNA methylation therein. Using pyrosequencing methodology we analysed the status of methylation of genes implicated in bone biology; furthermore, we correlated these methylation levels with gene expression levels using qRT-PCR and protein distribution during fetal development evaluated using immunohistochemistry. We found that during fetal femur development DNA methylation inversely correlates with expression of genes including iNOS (NOS2 and COL9A1, but not catabolic genes including MMP13 and IL1B. Furthermore, significant demethylation was evident in the osteocalcin promoter between the fetal and adult developmental stages. Increased TET1 expression and decreased expression of DNA (cytosine-5--methyltransferase 1 (DNMT1 in adult chondrocytes compared to HFBCs could contribute to the loss of methylation observed during fetal development. HFBC multipotency confirms these cells to be an ideal developmental system for investigation of DNA methylation regulation. In conclusion, these findings demonstrate the role of epigenetic regulation, specifically DNA methylation, in bone development

  10. [Fetal urology].

    Science.gov (United States)

    Jakobovits, Akos; Jakobovits, Antal

    2009-06-14

    Although it becomes vitally important only after birth, renal function already plays significant role in maintaining fetal metabolic equilibrium. The kidneys significantly contribute to production of amniotic fluid. Adequate amount of amniotic fluid is needed to stimulate the intrauterine fetal respiratory activity. Intrauterine breathing is essential for lung development. As a result, oligohydramnion is conducive to pulmonary hypoplasia. The latter may lead to neonatal demise soon after birth. In extrauterine life kidneys eliminate nitrogen containing metabolic byproducts. Inadequate renal function results therefore lethal uremia. Integrity of ureters and the urethra is essential for the maintenance of renal function. Retention of urine causes degeneration of the functional units of the kidneys and ensuing deterioration of renal function. Intrauterine kidney puncture or shunt procedure may delay this process in some cases. On the other hand, once renal function has been damaged, no therapy can restart it. Certain anomalies of renal excretory pathways may also be associated with other congenital abnormalities, making the therapeutic efforts pointless. Presence of these associated intrauterine defects makes early pregnancy termination a management alternative, as well as it affects favorably perinatal mortality rates.

  11. Fetal magnetic resonance imaging. Diagnostics in cases of congenital cystadenomatoid malformation

    International Nuclear Information System (INIS)

    Buesing, K.A.; Kilian, A.K.; Neff, K.W.; Schaible, T.

    2006-01-01

    Despite advancing therapeutic strategies, congenital cystadenomatoid malformation of the fetal lung is still a potentially life-threatening anomaly. Antenatally, the development of hydrops as well as the natural history of the malformation is of particular therapeutic and prognostic importance. Postnatally, respiratory distress due to pulmonary hypoplasia counts as a crucial limiting factor. Owing to its feasibility and practicability, as well as a high sensitivity, antenatal ultrasound is still the screening method of choice for the detection of fetal thoracic malformations. However, particularly in cases of indistinguishable sonographic findings, fetal MRI is the modality of choice for proving the diagnosis and preliminary appraisal of intensive care therapy and extracorporal membrane oxygenation postnatally. Furthermore, fetal MRI often facilitates assessment and planning of intrauterine surgical procedures. These two features frequently require a close transfer to an expert neonatal centre. (orig.) [de

  12. Maternal smoking during pregnancy and fetal organ growth: a magnetic resonance imaging study.

    Directory of Open Access Journals (Sweden)

    Devasuda Anblagan

    Full Text Available To study whether maternal cigarette smoking during pregnancy is associated with alterations in the growth of fetal lungs, kidneys, liver, brain, and placenta.A case-control study, with operators performing the image analysis blinded.Study performed on a research-dedicated magnetic resonance imaging (MRI scanner (1.5 T with participants recruited from a large teaching hospital in the United Kingdom.A total of 26 pregnant women (13 current smokers, 13 non smokers were recruited; 18 women (10 current smokers, 8 nonsmokers returned for the second scan later in their pregnancy.Each fetus was scanned with MRI at 22-27 weeks and 33-38 weeks gestational age (GA.Images obtained with MRI were used to measure volumes of the fetal brain, kidneys, lungs, liver and overall fetal size, as well as placental volumes.Exposed fetuses showed lower brain volumes, kidney volumes, and total fetal volumes, with this effect being greater at visit 2 than at visit 1 for brain and kidney volumes, and greater at visit 1 than at visit 2 for total fetal volume. Exposed fetuses also demonstrated lower lung volume and placental volume, and this effect was similar at both visits. No difference was found between the exposed and nonexposed fetuses with regards to liver volume.Magnetic resonance imaging has been used to show that maternal smoking is associated with reduced growth of fetal brain, lung and kidney; this effect persists even when the volumes are corrected for maternal education, gestational age, and fetal sex. As expected, the fetuses exposed to maternal smoking are smaller in size. Similarly, placental volumes are smaller in smoking versus nonsmoking pregnant women.

  13. Maternal protein-energy malnutrition during early pregnancy in sheep impacts the fetal ornithine cycle to reduce fetal kidney microvascular development.

    OpenAIRE

    Dunford, L. J.; Sinclair, K. D.; Kwong, W. Y.; Sturrock, C.; Clifford, B. L.; Giles, T. C.; Gardner, D. S.

    2014-01-01

    This paper identifies a common nutritional pathway relating maternal through to fetal protein-energy malnutrition (PEM) and compromised fetal kidney development. Thirty-one twin-bearing sheep were fed either a control (n=15) or low-protein diet (n=16, 17 vs. 8.7 g crude protein/MJ metabolizable energy) from d 0 to 65 gestation (term, ?145 d). Effects on the maternal and fetal nutritional environment were characterized by sampling blood and amniotic fluid. Kidney development was characterized ...

  14. Mathematical models of human cerebellar development in the fetal period.

    Science.gov (United States)

    Dudek, Krzysztof; Nowakowska-Kotas, Marta; Kędzia, Alicja

    2018-04-01

    The evaluation of cerebellar growth in the fetal period forms a part of a widely used examination to identify any features of abnormalities in early stages of human development. It is well known that the development of anatomical structures, including the cerebellum, does not always follow a linear model of growth. The aim of the study was to analyse a variety of mathematical models of human cerebellar development in fetal life to determine their adequacy. The study comprised 101 fetuses (48 males and 53 females) between the 15th and 28th weeks of fetal life. The cerebellum was exposed and measurements of the vermis and hemispheres were performed, together with statistical analyses. The mathematical model parameters of fetal growth were assessed for crown-rump length (CRL) increases, transverse cerebellar diameter and ventrodorsal dimensions of the cerebellar vermis in the transverse plane, and rostrocaudal dimensions of the cerebellar vermis and hemispheres in the frontal plane. A variety of mathematical models were applied, including linear and non-linear functions. Taking into consideration the variance between models and measurements, as well as correlation parameters, the exponential and Gompertz models proved to be the most suitable for modelling cerebellar growth in the second and third trimesters of pregnancy. However, the linear model gave a satisfactory approximation of cerebellar growth, especially in older fetuses. The proposed models of fetal cerebellar growth constructed on the basis of anatomical examination and objective mathematical calculations could be useful in the estimation of fetal development. © 2018 Anatomical Society.

  15. Hypoplastic left heart syndrome and the nutmeg lung pattern in utero: a cause and effect relationship or prognostic indicator?

    Energy Technology Data Exchange (ETDEWEB)

    Saul, David; Johnson, Ann M.; Victoria, Teresa [The Children' s Hospital of Philadelphia, Radiology Department, Philadelphia, PA (United States); Degenhardt, Karl; Rychik, Jack [The Children' s Hospital of Philadelphia, Cardiac Center and Fetal Heart Program, Philadelphia, PA (United States); Iyoob, Suzanne D.; Johnson, Mark P. [The Children' s Hospital of Philadelphia, Center for Fetal Diagnosis and Treatment, Philadelphia, PA (United States); Surrey, Lea F. [The Children' s Hospital of Philadelphia, Pathology Department, Philadelphia, PA (United States)

    2016-04-15

    Hypoplastic left heart syndrome (HLHS) is the third most common cause of critical congenital heart disease in newborns, and one of the most challenging forms to treat. Secondary pulmonary lymphangiectasia has been recognized in association with HLHS, an appearance described on fetal MRI as the ''nutmeg lung.'' To investigate the association of fetal nutmeg lung with HLHS survival. A retrospective search of the fetal MRI database was performed. The nutmeg lung pattern was defined as T2 heterogeneous signal with tubular structures radiating peripherally from the hila. Postnatal echocardiograms and charts were reviewed. Forty-four fetal MR studies met inclusion criteria, of which 4 patients (9%) had the nutmeg lung pattern and 3 of whom also had restrictive lesions. Mortality in this nutmeg lung group was 100% by 5 months of age. Of the 40 patients without nutmeg lung, mortality/orthotopic heart transplant (OHT) was 35%. Of these 40 patients without nutmeg lung, 5 had restriction on echo, 3 of whom died/had OHT before 5 months of age (60% of patients with restriction and non-nutmeg lung). There was a significantly higher incidence of restrictive lesions (P = 0.02) and mortality/OHT (P = 0.02) in patients with nutmeg lung compared to those without. The nutmeg lung MR appearance in HLHS fetuses is associated with increased mortality/OHT (100% in the first 5 months of life compared to 35% with HLHS alone). Not all patients with restrictive lesions develop nutmeg lung, and outcome is not as poor when restriction is present in isolation. Dedicated evaluation for nutmeg lung pattern on fetal MR studies may be useful to guide prognostication and aid clinicians in counseling parents of fetuses with HLHS. (orig.)

  16. Hypoplastic left heart syndrome and the nutmeg lung pattern in utero: a cause and effect relationship or prognostic indicator?

    International Nuclear Information System (INIS)

    Saul, David; Johnson, Ann M.; Victoria, Teresa; Degenhardt, Karl; Rychik, Jack; Iyoob, Suzanne D.; Johnson, Mark P.; Surrey, Lea F.

    2016-01-01

    Hypoplastic left heart syndrome (HLHS) is the third most common cause of critical congenital heart disease in newborns, and one of the most challenging forms to treat. Secondary pulmonary lymphangiectasia has been recognized in association with HLHS, an appearance described on fetal MRI as the ''nutmeg lung.'' To investigate the association of fetal nutmeg lung with HLHS survival. A retrospective search of the fetal MRI database was performed. The nutmeg lung pattern was defined as T2 heterogeneous signal with tubular structures radiating peripherally from the hila. Postnatal echocardiograms and charts were reviewed. Forty-four fetal MR studies met inclusion criteria, of which 4 patients (9%) had the nutmeg lung pattern and 3 of whom also had restrictive lesions. Mortality in this nutmeg lung group was 100% by 5 months of age. Of the 40 patients without nutmeg lung, mortality/orthotopic heart transplant (OHT) was 35%. Of these 40 patients without nutmeg lung, 5 had restriction on echo, 3 of whom died/had OHT before 5 months of age (60% of patients with restriction and non-nutmeg lung). There was a significantly higher incidence of restrictive lesions (P = 0.02) and mortality/OHT (P = 0.02) in patients with nutmeg lung compared to those without. The nutmeg lung MR appearance in HLHS fetuses is associated with increased mortality/OHT (100% in the first 5 months of life compared to 35% with HLHS alone). Not all patients with restrictive lesions develop nutmeg lung, and outcome is not as poor when restriction is present in isolation. Dedicated evaluation for nutmeg lung pattern on fetal MR studies may be useful to guide prognostication and aid clinicians in counseling parents of fetuses with HLHS. (orig.)

  17. Insulin Treatment Cannot Promote Lipogenesis in Rat Fetal Lung in Gestational Diabetes Mellitus Because of Failure to Redress the Imbalance Among SREBP-1, SCAP, and INSIG-1.

    Science.gov (United States)

    Li, Jinyan; Qian, Guanhua; Zhong, Xiaocui; Yu, Tinghe

    2018-03-01

    Gestational diabetes mellitus (GDM) has a higher incidence of neonatal respiratory distress syndrome, and lipogenesis is required for the synthesis of pulmonary surfactants. The aim of this study was to determine the effect of insulin treatment in GDM on the production of lipids in the lungs of fetal rats. GDM was induced by streptozotocin, and insulin was used to manage diabetes. Type II alveolar epithelial cells (AEC II), bronchoalveolar lavage fluid (BALF), and lung tissues of the neonatal rats were sampled for analyses. Insulin treatment could not decrease plasma glucose to normal level at a later gestational stage. Lipids/phospholipids in AEC II, BALF, and lung tissues decreased in GDM, and insulin treatment could not increase the levels; quantitative PCR and western blotting demonstrated a lower level of sterol regulator element-binding protein 1 (SREBP-1), SREBP cleavage-activating protein (SCAP), and insulin-induced gene 1 (INSIG-1) in GDM, but insulin treatment upregulated only SREBP-1. Nuclear translocation of the SREBP-1 protein in AEC II was impaired in GDM, which could not be ameliorated by insulin treatment. These findings indicated that insulin treatment in GDM cannot promote lipogenesis in the fetal lung because of failure to redress the imbalance among SREBP-1, SCAP, and INSIG-1.

  18. Fetal Neurobehavioral Development and the Role of Maternal Nutrient Intake and Psychological Health

    Science.gov (United States)

    Spann, Marisa; Smerling, Jennifer; Gustafsson, Hanna C.; Foss, Sophie; Monk, Catherine

    2014-01-01

    Measuring and understanding fetal neurodevelopment provides insight regarding the developing brain. Maternal nutrient intake and psychological stress during pregnancy each impact fetal neurodevelopment and influence childhood outcomes and are thus important factors to consider when studying fetal neurobehavioral development. The authors provide an…

  19. Fetal Alcohol Syndrome and Fetal Alcohol Effects in Child Development.

    Science.gov (United States)

    Pancratz, Diane R.

    This literature review defines Fetal Alcohol Syndrome (FAS) and Fetal Alcohol Effects (FAE) and considers their causes, diagnoses, prevalence, and educational ramifications. Effects of alcohol during each of the trimesters of pregnancy are summarized. Specific diagnostic characteristics of FAS are listed: (1) growth deficiency, (2) a…

  20. VEGF receptor expression decreases during lung development in congenital diaphragmatic hernia induced by nitrofen

    Energy Technology Data Exchange (ETDEWEB)

    Sbragia, L. [Divisão de Cirurgia Pediátrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil, Divisão de Cirurgia Pediátrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Nassr, A.C.C. [Departamento de Hidrobiologia do Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brasil, Departamento de Hidrobiologia do Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Gonçalves, F.L.L. [Divisão de Cirurgia Pediátrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil, Divisão de Cirurgia Pediátrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Schmidt, A.F. [Pediatrics House Office, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH, USA, Pediatrics House Office, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Zuliani, C.C. [Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil, Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP (Brazil); Garcia, P.V. [Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brasil, Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, SP (Brazil); Gallindo, R.M. [Divisão de Cirurgia Pediátrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil, Divisão de Cirurgia Pediátrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Pereira, L.A.V. [Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brasil, Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, SP (Brazil)

    2014-02-17

    Changes in vascular endothelial growth factor (VEGF) in pulmonary vessels have been described in congenital diaphragmatic hernia (CDH) and may contribute to the development of pulmonary hypoplasia and hypertension; however, how the expression of VEGF receptors changes during fetal lung development in CDH is not understood. The aim of this study was to compare morphological evolution with expression of VEGF receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1), in pseudoglandular, canalicular, and saccular stages of lung development in normal rat fetuses and in fetuses with CDH. Pregnant rats were divided into four groups (n=20 fetuses each) of four different gestational days (GD) 18.5, 19.5, 20.5, 21.5: external control (EC), exposed to olive oil (OO), exposed to 100 mg nitrofen, by gavage, without CDH (N-), and exposed to nitrofen with CDH (CDH) on GD 9.5 (term=22 days). The morphological variables studied were: body weight (BW), total lung weight (TLW), left lung weight, TLW/BW ratio, total lung volume, and left lung volume. The histometric variables studied were: left lung parenchymal area density and left lung parenchymal volume. VEGFR1 and VEGFR2 expression were determined by Western blotting. The data were analyzed using analysis of variance with the Tukey-Kramer post hoc test. CDH frequency was 37% (80/216). All the morphological and histometric variables were reduced in the N- and CDH groups compared with the controls, and reductions were more pronounced in the CDH group (P<0.05) and more evident on GD 20.5 and GD 21.5. Similar results were observed for VEGFR1 and VEGFR2 expression. We conclude that N- and CDH fetuses showed primary pulmonary hypoplasia, with a decrease in VEGFR1 and VEGFR2 expression.

  1. VEGF receptor expression decreases during lung development in congenital diaphragmatic hernia induced by nitrofen

    Directory of Open Access Journals (Sweden)

    L. Sbragia

    2014-02-01

    Full Text Available Changes in vascular endothelial growth factor (VEGF in pulmonary vessels have been described in congenital diaphragmatic hernia (CDH and may contribute to the development of pulmonary hypoplasia and hypertension; however, how the expression of VEGF receptors changes during fetal lung development in CDH is not understood. The aim of this study was to compare morphological evolution with expression of VEGF receptors, VEGFR1 (Flt-1 and VEGFR2 (Flk-1, in pseudoglandular, canalicular, and saccular stages of lung development in normal rat fetuses and in fetuses with CDH. Pregnant rats were divided into four groups (n=20 fetuses each of four different gestational days (GD 18.5, 19.5, 20.5, 21.5: external control (EC, exposed to olive oil (OO, exposed to 100 mg nitrofen, by gavage, without CDH (N-, and exposed to nitrofen with CDH (CDH on GD 9.5 (term=22 days. The morphological variables studied were: body weight (BW, total lung weight (TLW, left lung weight, TLW/BW ratio, total lung volume, and left lung volume. The histometric variables studied were: left lung parenchymal area density and left lung parenchymal volume. VEGFR1 and VEGFR2 expression were determined by Western blotting. The data were analyzed using analysis of variance with the Tukey-Kramer post hoc test. CDH frequency was 37% (80/216. All the morphological and histometric variables were reduced in the N- and CDH groups compared with the controls, and reductions were more pronounced in the CDH group (P<0.05 and more evident on GD 20.5 and GD 21.5. Similar results were observed for VEGFR1 and VEGFR2 expression. We conclude that N- and CDH fetuses showed primary pulmonary hypoplasia, with a decrease in VEGFR1 and VEGFR2 expression.

  2. VEGF receptor expression decreases during lung development in congenital diaphragmatic hernia induced by nitrofen

    International Nuclear Information System (INIS)

    Sbragia, L.; Nassr, A.C.C.; Gonçalves, F.L.L.; Schmidt, A.F.; Zuliani, C.C.; Garcia, P.V.; Gallindo, R.M.; Pereira, L.A.V.

    2014-01-01

    Changes in vascular endothelial growth factor (VEGF) in pulmonary vessels have been described in congenital diaphragmatic hernia (CDH) and may contribute to the development of pulmonary hypoplasia and hypertension; however, how the expression of VEGF receptors changes during fetal lung development in CDH is not understood. The aim of this study was to compare morphological evolution with expression of VEGF receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1), in pseudoglandular, canalicular, and saccular stages of lung development in normal rat fetuses and in fetuses with CDH. Pregnant rats were divided into four groups (n=20 fetuses each) of four different gestational days (GD) 18.5, 19.5, 20.5, 21.5: external control (EC), exposed to olive oil (OO), exposed to 100 mg nitrofen, by gavage, without CDH (N-), and exposed to nitrofen with CDH (CDH) on GD 9.5 (term=22 days). The morphological variables studied were: body weight (BW), total lung weight (TLW), left lung weight, TLW/BW ratio, total lung volume, and left lung volume. The histometric variables studied were: left lung parenchymal area density and left lung parenchymal volume. VEGFR1 and VEGFR2 expression were determined by Western blotting. The data were analyzed using analysis of variance with the Tukey-Kramer post hoc test. CDH frequency was 37% (80/216). All the morphological and histometric variables were reduced in the N- and CDH groups compared with the controls, and reductions were more pronounced in the CDH group (P<0.05) and more evident on GD 20.5 and GD 21.5. Similar results were observed for VEGFR1 and VEGFR2 expression. We conclude that N- and CDH fetuses showed primary pulmonary hypoplasia, with a decrease in VEGFR1 and VEGFR2 expression

  3. Fetal programming of infant neuromotor development: the generation R study.

    Science.gov (United States)

    van Batenburg-Eddes, Tamara; de Groot, Laila; Steegers, Eric A P; Hofman, Albert; Jaddoe, Vincent W V; Verhulst, Frank C; Tiemeier, Henning

    2010-02-01

    The objective of the study was to examine whether infant neuromotor development is determined by fetal size and body symmetry in the general population. This study was embedded within the Generation R Study, a population-based cohort in Rotterdam. In 2965 fetuses, growth parameters were measured in mid-pregnancy and late pregnancy. After birth, at age 9 to 15 wks, neuromotor development was assessed with an adapted version of Touwen's Neurodevelopmental Examination. Less optimal neuromotor development was defined as a score in the highest tertile. We found that higher fetal weight was beneficial to infant neurodevelopment. A fetus with a 1-SD score higher weight in mid-pregnancy had an 11% lower risk of less optimal neuromotor development (OR: 0.89; 95% CI: 0.82-0.97). Similarly, a fetus with a 1-SD score larger abdominal-to-head circumference (AC/HC) ratio had a 13% lower risk of less optimal neuromotor development (OR: 0.87; 95% CI: 0.79-0.96). These associations were also present in late pregnancy. Our findings show that fetal size and body symmetry in pregnancy are associated with infant neuromotor development. These results suggest that differences in infant neuromotor development, a marker of behavioral and cognitive problems, are at least partly caused by processes occurring early in fetal life.

  4. The Effects of Hemodynamic Alterations on Lung Volumes in Fetuses with Tetralogy of Fallot: An MRI Study.

    Science.gov (United States)

    Berger-Kulemann, Vanessa; Berger, Rudolf; Mlczoch, Elisabeth; Sternal, Daniel; Mailath-Pokorny, Mariella; Hachemian, Nilouparak; Prayer, Daniela; Weber, Michael; Salzer-Muhar, Ulrike

    2015-08-01

    This study assessed whether the presence of tetralogy of Fallot (TOF) affects fetal lung development and whether these fetuses are at risk of pulmonary hypoplasia (PH). Furthermore, we investigated whether the degree of the concomitant pulmonary valve (PV) stenosis or a stenosis in the branch pulmonary arteries correlates with the fetal lung volume. Lung volumetry was performed in 16 fetuses with TOF who underwent MRI between gestational weeks 21 and 35 and in 22 controls. Fetal biometric data and the diameters of the PVs were evaluated by ultrasound. PV and branch pulmonary artery diameters were standardized (z-scores), and fetal lung volume/fetal body weight (FLV/FBW) ratios (ml/g) were calculated. The mean FLV/FBW ratio (0.031 ± 0.009 ml/g) in the TOF group was statistically significantly lower than in the control group (0.041 ± 0.009 ml/g; P = 0.003). None of the fetuses with TOF met the criterion for PH. FLV did not correlate with the degree of PV stenosis, but rather with the presence of a significant stenosis in at least one branch pulmonary artery. The presence of TOF moderately affects fetal lung growth, which is apparently not dependent on the degree of the PV stenosis. However, only an additional stenosis in at least one branch pulmonary artery was associated with a small FLV, but not with PH. Thus, reduced pulmonary blood flow may be offset by additional factors, such as the ability to establish a sufficient collateral system and to alter structural vascular size and, thus, pulmonary vascular resistance.

  5. Intra-amniotic Ureaplasma parvum-Induced Maternal and Fetal Inflammation and Immune Responses in Rhesus Macaques.

    Science.gov (United States)

    Senthamaraikannan, Paranthaman; Presicce, Pietro; Rueda, Cesar M; Maneenil, Gunlawadee; Schmidt, Augusto F; Miller, Lisa A; Waites, Ken B; Jobe, Alan H; Kallapur, Suhas G; Chougnet, Claire A

    2016-11-15

     Although Ureaplasma species are the most common organisms associated with prematurity, their effects on the maternal and fetal immune system remain poorly characterized.  Rhesus macaque dams at approximately 80% gestation were injected intra-amniotically with 10 7 colony-forming units of Ureaplasma parvum or saline (control). Fetuses were delivered surgically 3 or 7 days later. We performed comprehensive assessments of inflammation and immune effects in multiple fetal and maternal tissues.  Although U. parvum grew well in amniotic fluid, there was minimal chorioamnionitis. U. parvum colonized the fetal lung, but fetal systemic microbial invasion was limited. Fetal lung inflammation was mild, with elevations in CXCL8, tumor necrosis factor (TNF) α, and CCL2 levels in alveolar washes at day 7. Inflammation was not detected in the fetal brain. Significantly, U. parvum decreased regulatory T cells (Tregs) and activated interferon γ production in these Tregs in the fetus. It was detected in uterine tissue by day 7 and induced mild inflammation and increased expression of connexin 43, a gap junction protein involved with labor.  U. parvum colonized the amniotic fluid and caused uterine inflammation, but without overt chorioamnionitis. It caused mild fetal lung inflammation but had a more profound effect on the fetal immune system, decreasing Tregs and polarizing them toward a T-helper 1 phenotype. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. First and second trimester screening for fetal structural anomalies.

    Science.gov (United States)

    Edwards, Lindsay; Hui, Lisa

    2018-04-01

    Fetal structural anomalies are found in up to 3% of all pregnancies and ultrasound-based screening has been an integral part of routine prenatal care for decades. The prenatal detection of fetal anomalies allows for optimal perinatal management, providing expectant parents with opportunities for additional imaging, genetic testing, and the provision of information regarding prognosis and management options. Approximately one-half of all major structural anomalies can now be detected in the first trimester, including acrania/anencephaly, abdominal wall defects, holoprosencephaly and cystic hygromata. Due to the ongoing development of some organ systems however, some anomalies will not be evident until later in the pregnancy. To this extent, the second trimester anatomy is recommended by professional societies as the standard investigation for the detection of fetal structural anomalies. The reported detection rates of structural anomalies vary according to the organ system being examined, and are also dependent upon factors such as the equipment settings and sonographer experience. Technological advances over the past two decades continue to support the role of ultrasound as the primary imaging modality in pregnancy, and the safety of ultrasound for the developing fetus is well established. With increasing capabilities and experience, detailed examination of the central nervous system and cardiovascular system is possible, with dedicated examinations such as the fetal neurosonogram and the fetal echocardiogram now widely performed in tertiary centers. Magnetic resonance imaging (MRI) is well recognized for its role in the assessment of fetal brain anomalies; other potential indications for fetal MRI include lung volume measurement (in cases of congenital diaphragmatic hernia), and pre-surgical planning prior to fetal spina bifida repair. When a major structural abnormality is detected prenatally, genetic testing with chromosomal microarray is recommended over

  7. O6-methylguanine DNA methyltransferase in human fetal tissues: fetal and maternal factors

    International Nuclear Information System (INIS)

    D'Ambrosio, S.M.; Samuel, M.J.; Dutta-Choudhury, T.A.; Wani, A.A.

    1986-01-01

    O 6 -Methylguanine methyltransferase (O 6 -MT) was measured and compared in extracts of 7 human fetal tissues obtained from 21 different fetal specimens as a function of fetal age and race, and maternal smoking and drug usage. Activity was determined from the proteinase-K solubilized radioactivity transferred from the DNA to the O 6 -MT. S9 homogenates were incubated with a heat depurinated [ 3 H]-methylnitrosourea alkylated DNA. Liver exhibited the highest activity followed by kidney, lung, small intestine, large intestine, skin and brain. Each of the tissues exhibited a 3- to 5-fold level of interindividual variation of O 6 -MT. There did not appear to be any significant difference of O 6 -MT in the tissues obtained from mothers who smoked cigarettes during pregnancy. Also, fetal race and age did not appear to account for the level of variation of O 6 -MT. The fetal tissues obtained from an individual using phenobarbital and smoking exhibited 4-fold increases in O 6 -MT activity. The tissues obtained from another individual on kidney dialysis were 2- to 3-fold higher than the normal population. These data suggest that the variation in human O 6 -MT can not be explained by racial or smoking factors, but may be modulated by certain drugs

  8. DNA repair and induction of plasminogen activator in human fetal cells treated with ultraviolet light

    International Nuclear Information System (INIS)

    Ben-Ishai, R.; Sharon, R.; Rothman, M.; Miskin, R.

    1984-01-01

    We have tested human fetal fibroblasts for development associated changes in DNA repair by utilizing nucleoid sedimentation as an assay for excision repair. Among skin fibroblasts the rate of excision repair was significantly higher in non-fetal cells than in fibroblasts derived from an 8 week fetus; this was evident by a delay in both the relaxation and the restoration of DNA supercoiling in nucleoids after irradiation. Skin fibroblasts derived at 12 week gestation were more repair proficient than those derived at 8 week gestation. However, they exhibited a somewhat lower rate of repair than non-fetal cells. The same fetal and non-fetal cells were also tested for induction of the protease plasminogen activator (PA) after u.v. irradiation. Enhancement of PA was higher in skin fibroblasts derived at 8 week than in those derived at 12 week gestation and was absent in non-fetal skin fibroblasts. These results are consistent with our previous findings that in human cells u.v. light-induced PA synthesis is correlated with reduced DNA repair capacity. Excision repair and PA inducibility were found to depend on tissue of origin in addition to gestational stage, as shown for skin and lung fibroblasts from the same 12 week fetus. Lung compared to skin fibroblasts exhibited lower repair rates and produced higher levels of PA after irradiation. The sedimentation velocity of nucleoids, prepared from unirradiated fibroblasts, in neutral sucrose gradients with or without ethidium bromide, indicated the presence of DNA strand breaks in fetal cells. It is proposed that reduced DNA repair in fetal cells may result from alterations in DNA supercoiling, and that persistent DNA strand breaks enhance transcription of PA gene(s)

  9. MR imaging methods for assessing fetal brain development.

    Science.gov (United States)

    Rutherford, Mary; Jiang, Shuzhou; Allsop, Joanna; Perkins, Lucinda; Srinivasan, Latha; Hayat, Tayyib; Kumar, Sailesh; Hajnal, Jo

    2008-05-01

    Fetal magnetic resonance imaging provides an ideal tool for investigating growth and development of the brain in vivo. Current imaging methods have been hampered by fetal motion but recent advances in image acquisition can produce high signal to noise, high resolution 3-dimensional datasets suitable for objective quantification by state of the art post acquisition computer programs. Continuing development of imaging techniques will allow a unique insight into the developing brain, more specifically process of cell migration, axonal pathway formation, and cortical maturation. Accurate quantification of these developmental processes in the normal fetus will allow us to identify subtle deviations from normal during the second and third trimester of pregnancy either in the compromised fetus or in infants born prematurely.

  10. Development and significance of a fetal electrocardiogram recorded by signal-averaged high-amplification electrocardiography.

    Science.gov (United States)

    Hayashi, Risa; Nakai, Kenji; Fukushima, Akimune; Itoh, Manabu; Sugiyama, Toru

    2009-03-01

    Although ultrasonic diagnostic imaging and fetal heart monitors have undergone great technological improvements, the development and use of fetal electrocardiograms to evaluate fetal arrhythmias and autonomic nervous activity have not been fully established. We verified the clinical significance of the novel signal-averaged vector-projected high amplification ECG (SAVP-ECG) method in fetuses from 48 gravidas at 32-41 weeks of gestation and in 34 neonates. SAVP-ECGs from fetuses and newborns were recorded using a modified XYZ-leads system. Once noise and maternal QRS waves were removed, the P, QRS, and T wave intervals were measured from the signal-averaged fetal ECGs. We also compared fetal and neonatal heart rates (HRs), coefficients of variation of heart rate variability (CV) as a parasympathetic nervous activity, and the ratio of low to high frequency (LF/HF ratio) as a sympathetic nervous activity. The rate of detection of a fetal ECG by SAVP-ECG was 72.9%, and the fetal and neonatal QRS and QTc intervals were not significantly different. The neonatal CVs and LF/HF ratios were significantly increased compared with those in the fetus. In conclusion, we have developed a fetal ECG recording method using the SAVP-ECG system, which we used to evaluate autonomic nervous system development.

  11. Intact fetal ovarian cord formation promotes mouse oocyte survival and development

    Directory of Open Access Journals (Sweden)

    Pera Renee

    2010-01-01

    Full Text Available Abstract Background Female reproductive potential, or the ability to propagate life, is limited in mammals with the majority of oocytes lost before birth. In mice, surviving perinatal oocytes are enclosed in ovarian follicles for subsequent oocyte development and function in the adult. Before birth, fetal germ cells of both sexes develop in clusters, or germline cysts, in the undifferentiated gonad. Upon sex determination of the fetal gonad, germ cell cysts become organized into testicular or ovarian cord-like structures and begin to interact with gonadal somatic cells. Although germline cysts and testicular cords are required for spermatogenesis, the role of cyst and ovarian cord formation in mammalian oocyte development and female fertility has not been determined. Results Here, we examine whether intact fetal ovarian germ and somatic cell cord structures are required for oocyte development using mouse gonad re-aggregation and transplantation to disrupt gonadal organization. We observed that germ cells from disrupted female gonad prior to embryonic day e13.5 completed prophase I of meiosis but did not survive following transplantation. Furthermore, re-aggregated ovaries from e13.5 to e15.5 developed with a reduced number of oocytes. Oocyte loss occurred before follicle formation and was associated with an absence of ovarian cord structure and ovary disorganization. However, disrupted ovaries from e16.5 or later were resistant to the re-aggregation impairment and supported robust oocyte survival and development in follicles. Conclusions Thus, we demonstrate a critical window of oocyte development from e13.5 to e16.5 in the intact fetal mouse ovary, corresponding to the establishment of ovarian cord structure, which promotes oocyte interaction with neighboring ovarian somatic granulosa cells before birth and imparts oocytes with competence to survive and develop in follicles. Because germline cyst and ovarian cord structures are conserved in the

  12. Metabolic development of the porcine placenta in response to alterations in maternal or fetal homeostasis

    International Nuclear Information System (INIS)

    Namsey, T.G.; kasser, T.R.; Hausman, G.J.; Martin, R.J.

    1986-01-01

    Porcine placenta has been utilized as a model for elucidating contributions of both fetal and maternal tissues to metabolic activity of the placenta in response to a variety of stresses. Alloxan diabetes, food restriction and genetic obesity all produced alterations in placental metablolism with differences in responses of fetal and maternal placentas. Further analysis of nutrient untilization by the placenta produced dramatic differences in the partitioning of substrates by fetal and maternal tissues during placental development. Metabolic activity of maternal tissue contributed to overall placental metabolic activity to a greater degree than fetal tissue. However, experiments with in utero fetal decapitation indicated that some of differences between fetal and maternal placental metabolic activity may be due to the influence of fetal regulatory mechanisms. Maternal endometrium plays a critical role in metabolic response of uteroplacenta and thus availability of nutrients to the fetus and fetal placenta. Differences in metabolic development of fetal and maternal tissues suggested that regulation of placental metabolism may originate from fetal as well as maternal sources

  13. THE POSSIBILITIES TO DETERMINE FETAL MATURITY BY ULTRASOUND DIAGNOSTICS

    Directory of Open Access Journals (Sweden)

    S. N. Lysenko

    2015-01-01

    Full Text Available Background: Extragenital disorders in a pregnant patient, as well as complications of pregnancy often necessitate preterm delivery, when the state of the fetus is one of the criteria determining terms and type of delivery. In connection with this, the physician faces the challenge of accurate assessment of fetal maturity. Aim: To identify ultrasound signs of functional fetal maturity. Materials and methods: 120 pregnant patients were assessed at 35 to 40 weeks of gestation. Beyond a standard fetometry, we assessed interhemispheric cerebellar size, the biggest size of the Beclard’s nucleus, the ratio of cortical to medullar substance of fetal adrenal glands (adrenal coefficient, the ration between ultrasound density of lungs, liver and ultrasound density of fetal urine (histogram analysis. Results: Up to 36 weeks of gestation, the interhemispheric cerebellar size was below 52 mm, starting from 37 weeks, above 53 mm and from week 40 on, above 58 mm. All newborns, which had their interhemispheric cerebellar size ≥ 53 mm antenatally, were assessed as being mature at birth (p < 0.05. All newborns, which had Beclard’s nucleus size ≥ 5 mm antenatally, were assessed as being mature at birth (p < 0.05. At 35–35.6 weeks of gestation, mean adrenal coefficients in all cases exceeded 1. Starting with full 36 weeks of gestation onwards, this parameter decreased to 0.94 and showed a steady decrease thereafter. There were no signs of functional immaturity or respiratory distress among newborns with antenatal adrenal coefficient of ≤ 0.99 (p < 0.05. The ratio between ultrasound density of lungs to ultrasound density of bladder contents increases up to 37 weeks of gestation and remains stable up to 40 weeks. The ratio of liver density to the same substrate is non-significantly lower due to lower ultrasound density of the liver itself. The ratio of ultrasound density of the lung to that of the liver up to 36 weeks was at least 1.41 and decreased

  14. Avaliação da maturidade pulmonar fetal em gestações de alto risco Prenatal diagnosis of fetal lung maturity in high-risk pregnancies

    Directory of Open Access Journals (Sweden)

    Wladimir Taborda

    1998-07-01

    in 121 consecutive high-risk gestations at the São Paulo Hospital from January 1990 to January 1995. Delivery occurred within 3 days of fetal lung maturation testing. This is a prospective study in which the sensitivity, specificity, positive (PPV and negative predictive value (NPV of all the tests were determined. Neonatal respiratory outcome and amniocentesis results were stratified by gestational age for comparison. The distribution of the studied population according to maternal pathology was diabetes mellitus (48, hypertensive disorders (41, Rh isoimmunization (14 and miscellaneous (18. Respiratory distress (RD was present in 33 infants (27.2%, mainly in the diabetic group. There was no false negative using lung profile (all patients and foam stability tests among hypertensive pregnancies (specificity 100%, but there were about 20% to 50% false positives in the other tests. Overall, all four tests had a low PPV: 23% for foam test, 51% for L/S ratio, 63% for PG, 61% for lung profile, and high NPV: 92% for foam test, 88% for L/S ratio, 89% for PG and 100% for lung profile. All tests had less accuracy in the diabetic pregnant women. This study shows that the presence of PG and L/S ratio > 1.7 in the amniotic fluid of high-risk pregnancies confirms maturity with a very low risk to develop RD and that the foam stability test was useful as a first-line test to predict the absence of surfactant-deficient respiratory distress syndrome, particularly in hypertensive pregnant women.

  15. Transabdominal amnioinfusion for improving fetal outcomes after oligohydramnios secondary to preterm prelabour rupture of membranes before 26 weeks.

    Science.gov (United States)

    Van Teeffelen, Stijn; Pajkrt, Eva; Willekes, Christine; Van Kuijk, Sander M J; Mol, Ben Willem J

    2013-08-03

    Preterm prelabour rupture of membranes (PPROM) before 26 weeks can delay lung development and can cause pulmonary hypoplasia, as a result of oligohydramnios. Restoring the amniotic fluid volume by transabdominal amnioinfusion might prevent abnormal lung development and might have a protective effect for neurological complications, fetal deformities and neonatal sepsis. To assess the effectiveness of transabdominal amnioinfusion in improving perinatal outcome in women with oligohydramnios secondary to rupture of fetal membranes before 26 weeks. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 April 2013). All randomised controlled trials comparing transabdominal amnioinfusion with no transabdominal amnioinfusion. Cluster- or quasi-randomised trials were not eligible for inclusion. In cases where only an abstract was available, we attempted to find the full articles. Two review authors assessed trials for inclusion. No eligible trials were identified. There are no included studies. There is currently no evidence to evaluate the use of transabdominal amnioinfusion in women with oligohydramnios secondary to rupture of fetal membranes before 26 weeks for improving perinatal outcome. Further research examining the effects of this intervention is needed. Two randomised controlled trials are ongoing but final data have not yet been published.

  16. Somatomedin-C/insulin-like growth factor-I and Insulin-like growth factor-II mRNAs in rate fetal and adult tissues

    International Nuclear Information System (INIS)

    Lund, P.K.; Moats-Staats, B.M.; Hynes, M.A.; Simmons, J.G.; Jansen, M.; D'ercole, A.J.; Van Wyk, J.J.

    1986-01-01

    Somatomedin-C or insulin-like growth factor I (Sm-C/IGF-I) and insulin-like growth factor II (IGF-II) have been implicated in the regulation of fetal growth and development. In the present study 32 P-labeled complementary DNA probes encoding human and mouse Sm-C/IGF-I and human IGF-II were used in Northern blot hybridizations to analyze rat Sm-C/IGF-I and IGF-II mRNAs in poly(A + ) RNAs from intestine, liver, lung, and brain of adult rats and fetal rats between day 14 and 17 of gestation. In fetal rats, all four tissues contained a major mRNA of 1.7 kilobase (kb) that hybridized with the human Sm-C/IGF-I cDNA and mRNAs of 7.5, 4.7, 1.7, and 1.2 kb that hybridized with the mouse Sm-C/IGF-I cDNA. Adult rat intestine, liver, and lung also contained these mRNAs but Sm-C/IGF-I mRNAs were not detected in adult rat brain. These findings provide direct support for prior observations that multiple tissues in the fetus synthesize immunoreactive Sm-C/IGF-I and imply a role for Sm-C/IGF-I in fetal development as well as postnatally. Multiple IGF-II mRNAs of estimated sizes 4.7, 3.9, 2.2, 1.75, and 1.2 kb were observed in fetal rat intestine, liver, lung, and brain. The 4.7- and 3.9-kb mRNAs were the major hybridizing IGF-II mRNAs in all fetal tissues. Higher abundance of IGF-II mRNAs in rat fetal tissues compared with adult tissues supports prior hypotheses, based on serum IGF-II concentrations, that IGF-II is predominantly a fetal somatomedin. IGF-II mRNAs are present, however, in some poly(A + ) RNAs from adult rat tissues. The brain was the only tissue in the adult rat where the 4.7- and 3.9-kb IGF-II mRNAs were consistently detected. These findings suggest that a role for IGF-II in the adult rat, particularly in the central nervous system, cannot be excluded

  17. Intrapartum fetal heart rate profiles with and without fetal asphyxia.

    Science.gov (United States)

    Low, J A; Pancham, S R; Worthington, D N

    1977-04-01

    Fetal heart rate profiles for periods up to 12 hours prior to delivery have been reviewed in 515 patients with a fetus at risk. Mechanisms other than fetal asphyxia will cause fetal heart rate decelerations, and fetal asphyxia may in some instances develop in the absence of total or late decelerations. However, an increasing incidence of total decelerations and late decelerations and particularly a marked pattern of total decelerations and late decelerations are of value in the prediction of fetal asphyxia. Fetal heart rate deceleration patterns can predict the probability of fetal asphyxia at the time of initial intervention, while a progression of fetal heart rate deceleration patterns in the individual fetus can be of assistance in the subsequent scheduling of serial acid-base assessments during labor.

  18. Prenatal MR imaging of congenital diaphragmatic hernias: association of MR fetal lung volume with the need for postnatal prosthetic patch repair

    Energy Technology Data Exchange (ETDEWEB)

    Hagelstein, Claudia; Weidner, Meike; Schoenberg, Stefan O.; Buesing, Karen A.; Neff, K.W. [University of Heidelberg, Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim (Germany); Zahn, Katrin [University of Heidelberg, Department of Pediatric Surgery, University Medical Center Mannheim, Mannheim (Germany); Weiss, Christel [University of Heidelberg, Department of Medical Statistics and Biomathematics, University Medical Center Mannheim, Mannheim (Germany); Schaible, Thomas [University of Heidelberg, Department of Pediatrics, University Medical Center Mannheim, Mannheim (Germany)

    2015-01-15

    To assess whether the need for postnatal prosthetic patch repair of the diaphragmatic defect in neonates with a congenital diaphragmatic hernia (CDH) is associated with the antenatal measured observed-to-expected magnetic resonance fetal lung volume (o/e MR-FLV). The o/e MR-FLV was calculated in 247 fetuses with isolated CDH. Logistic regression analysis was used to assess the prognostic value of the individual o/e MR-FLV for association with the need for postnatal patch repair. Seventy-seven percent (77 %) of patients with a CDH (190/247) required prosthetic patch repair and the defect was closed primarily in 23 % (57/247). Patients requiring a patch had a significantly lower o/e MR-FLV (27.7 ± 10.2 %) than patients with primary repair (40.8 ± 13.8 %, p < 0.001, AUC = 0.786). With an o/e MR-FLV of 20 %, 92 % of the patients required patch repair, compared to only 24 % with an o/e MR-FLV of 60 %. The need for a prosthetic patch was further influenced by the fetal liver position (herniation/no herniation) as determined by magnetic resonance imaging (MRI; p < 0.001). Fetal liver position, in addition to the o/e MR-FLV, improves prognostic accuracy (AUC = 0.827). Logistic regression analysis based on the o/e MR-FLV is useful for prenatal estimation of the prosthetic patch requirement in patients with a CDH. In addition to the o/e MR-FLV, the position of the liver as determined by fetal MRI helps improve prognostic accuracy. (orig.)

  19. Cigarette Smoke Exposure during Pregnancy Alters Fetomaternal Cell Trafficking Leading to Retention of Microchimeric Cells in the Maternal Lung

    Science.gov (United States)

    Vogelgesang, Anja; Scapin, Cristina; Barone, Caroline; Tam, Elaine

    2014-01-01

    Cigarette smoke exposure causes chronic oxidative lung damage. During pregnancy, fetal microchimeric cells traffic to the mother. Their numbers are increased at the site of acute injury. We hypothesized that milder chronic diffuse smoke injury would attract fetal cells to maternal lungs. We used a green-fluorescent-protein (GFP) mouse model to study the effects of cigarette smoke exposure on fetomaternal cell trafficking. Wild-type female mice were exposed to cigarette smoke for about 4 weeks and bred with homozygote GFP males. Cigarette smoke exposure continued until lungs were harvested and analyzed. Exposure to cigarette smoke led to macrophage accumulation in the maternal lung and significantly lower fetal weights. Cigarette smoke exposure influenced fetomaternal cell trafficking. It was associated with retention of GFP-positive fetal cells in the maternal lung and a significant reduction of fetal cells in maternal livers at gestational day 18, when fetomaternal cell trafficking peaks in the mouse model. Cells quickly clear postpartum, leaving only a few, difficult to detect, persisting microchimeric cells behind. In our study, we confirmed the postpartum clearance of cells in the maternal lungs, with no significant difference in both groups. We conclude that in the mouse model, cigarette smoke exposure during pregnancy leads to a retention of fetal microchimeric cells in the maternal lung, the site of injury. Further studies will be needed to elucidate the effect of cigarette smoke exposure on the phenotypic characteristics and function of these fetal microchimeric cells, and confirm its course in cigarette smoke exposure in humans. PMID:24832066

  20. Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development

    Energy Technology Data Exchange (ETDEWEB)

    Huisman, Thierry A.G.M.; Kubik-Huch, Rahel; Marincek, Borut [Institute of Diagnostic Radiology, University Hospital Zurich, 8091 Zurich (Switzerland); Martin, Ernst [Department of Neuroradiology and Magnetic Resonance, University Children' s Hospital, 8091 Zurich (Switzerland)

    2002-08-01

    Fetal MRI examines non-invasively the unborn fetus. Ultrafast MRI sequences effectively suppress fetal motion. Multiple case reports and studies have shown that fetal MRI is particularly helpful in the evaluation of the central nervous system. The high contrast-to-noise ratio, the high spatial resolution, the multiplanar capabilities, the large field of view and the simultaneous visualisation of fetal and maternal structures have proven to be advantageous. Fetal MRI is particularly helpful in the evaluation of the normal and pathological development of the brain. Despite the fact that no side effects have been reported or are to be expected, the use of MRI during pregnancy is still limited to the second and third trimester of pregnancy. Magnetic resonance imaging contrast media are not to be used as it passes the placenta. Ultrasound remains the primary screening modality for fetal pathology; fetal MRI can serve as an adjunct or second-line imaging modality. (orig.)

  1. Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development

    International Nuclear Information System (INIS)

    Huisman, Thierry A.G.M.; Kubik-Huch, Rahel; Marincek, Borut; Martin, Ernst

    2002-01-01

    Fetal MRI examines non-invasively the unborn fetus. Ultrafast MRI sequences effectively suppress fetal motion. Multiple case reports and studies have shown that fetal MRI is particularly helpful in the evaluation of the central nervous system. The high contrast-to-noise ratio, the high spatial resolution, the multiplanar capabilities, the large field of view and the simultaneous visualisation of fetal and maternal structures have proven to be advantageous. Fetal MRI is particularly helpful in the evaluation of the normal and pathological development of the brain. Despite the fact that no side effects have been reported or are to be expected, the use of MRI during pregnancy is still limited to the second and third trimester of pregnancy. Magnetic resonance imaging contrast media are not to be used as it passes the placenta. Ultrasound remains the primary screening modality for fetal pathology; fetal MRI can serve as an adjunct or second-line imaging modality. (orig.)

  2. Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development.

    Science.gov (United States)

    Huisman, Thierry A G M; Martin, Ernst; Kubik-Huch, Rahel; Marincek, Borut

    2002-08-01

    Fetal MRI examines non-invasively the unborn fetus. Ultrafast MRI sequences effectively suppress fetal motion. Multiple case reports and studies have shown that fetal MRI is particularly helpful in the evaluation of the central nervous system. The high contrast-to-noise ratio, the high spatial resolution, the multiplanar capabilities, the large field of view and the simultaneous visualisation of fetal and maternal structures have proven to be advantageous. Fetal MRI is particularly helpful in the evaluation of the normal and pathological development of the brain. Despite the fact that no side effects have been reported or are to be expected, the use of MRI during pregnancy is still limited to the second and third trimester of pregnancy. Magnetic resonance imaging contrast media are not to be used as it passes the placenta. Ultrasound remains the primary screening modality for fetal pathology; fetal MRI can serve as an adjunct or second-line imaging modality.

  3. In utero exposure to chloroquine alters sexual development in the male fetal rat

    International Nuclear Information System (INIS)

    Clewell, Rebecca A.; Pluta, Linda; Thomas, Russell S.; Andersen, Melvin E.

    2009-01-01

    Chloroquine (CQ), a drug that has been used extensively for the prevention and treatment of malaria, is currently considered safe for use during pregnancy. However, CQ has been shown to disrupt steroid homeostasis in adult rats and similar compounds, such as quinacrine, inhibit steroid production in the Leydig cell in vitro. To explore the effect of in utero CQ exposure on fetal male sexual development, pregnant Sprague-Dawley rats were given a daily dose of either water or chloroquine diphosphate from GD 16-18 by oral gavage. Chloroquine was administered as 200 mg/kg CQ base on GD 16, followed by two maintenance doses of 100 mg/kg CQ base on GD 16 and 18. Three days of CQ treatment resulted in reduced maternal and fetal weight on GD 19 and increased necrosis and steatosis in the maternal liver. Fetal livers also displayed mild lipid accumulation. Maternal serum progesterone was increased after CQ administration. Fetal testes testosterone, however, was significantly decreased. Examination of the fetal testes revealed significant alterations in vascularization and seminiferous tubule development after short-term CQ treatment. Anogenital distance was not altered. Microarray and RT-PCR showed down-regulation of several genes associated with cholesterol transport and steroid synthesis in the fetal testes. This study indicates that CQ inhibits testosterone synthesis and normal testis development in the rat fetus at human relevant doses.

  4. Prematurity and fetal lung response after tracheal occlusion in fetuses with severe congenital diaphragmatic hernia.

    Science.gov (United States)

    Sananes, Nicolas; Rodo, Carlota; Peiro, Jose Luis; Britto, Ingrid Schwach Werneck; Sangi-Haghpeykar, Haleh; Favre, Romain; Joal, Arnaud; Gaudineau, Adrien; Silva, Marcos Marques da; Tannuri, Uenis; Zugaib, Marcelo; Carreras, Elena; Ruano, Rodrigo

    2016-09-01

    To evaluate the independent association of fetal pulmonary response and prematurity to postnatal outcomes after fetal tracheal occlusion for congenital diaphragmatic hernia. Fetal pulmonary response, prematurity (prematurity (prematurity was not statistically associated with mortality after controlling for fetal pulmonary response (aOR 0.52, 95% CI 0.12-2.30, p=0.367). Fetal pulmonary response after FETO is the most important factor associated with survival, independently from the gestational age at delivery.

  5. Investigation of normal organ development with fetal MRI

    International Nuclear Information System (INIS)

    Prayer, Daniela; Brugger, Peter C.

    2007-01-01

    The understanding of the presentation of normal organ development on fetal MRI forms the basis for recognition of pathological states. During the second and third trimesters, maturational processes include changes in size, shape and signal intensities of organs. Visualization of these developmental processes requires tailored MR protocols. Further prerequisites for recognition of normal maturational states are unequivocal intrauterine orientation with respect to left and right body halves, fetal proportions, and knowledge about the MR presentation of extrafetal/intrauterine organs. Emphasis is laid on the demonstration of normal MR appearance of organs that are frequently involved in malformation syndromes. In addition, examples of time-dependent contrast enhancement of intrauterine structures are given. (orig.)

  6. Investigation of normal organ development with fetal MRI

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Medical University of Vienna, Department of Radiology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Center of Anatomy and Cell Biology, Integrative Morphology Group, Vienna (Austria)

    2007-10-15

    The understanding of the presentation of normal organ development on fetal MRI forms the basis for recognition of pathological states. During the second and third trimesters, maturational processes include changes in size, shape and signal intensities of organs. Visualization of these developmental processes requires tailored MR protocols. Further prerequisites for recognition of normal maturational states are unequivocal intrauterine orientation with respect to left and right body halves, fetal proportions, and knowledge about the MR presentation of extrafetal/intrauterine organs. Emphasis is laid on the demonstration of normal MR appearance of organs that are frequently involved in malformation syndromes. In addition, examples of time-dependent contrast enhancement of intrauterine structures are given. (orig.)

  7. Role of melatonin in embryo fetal development

    OpenAIRE

    Voiculescu, SE; Zygouropoulos, N; Zahiu, CD; Zagrean, AM

    2014-01-01

    Melatonin is an indoleamine produced by the pineal gland and secreted in a circadian manner. In the past few decades, research over this topic has been enhanced. Melatonin has many important roles in the human physiology: regulator of the circadian rhythms, sleep inducer, antioxidant, anticarcinogenic. This paper reviews the involvement of melatonin in embryo fetal development. The pineal gland develops completely postpartum, so both the embryo and the fetus are dependent on the maternal mela...

  8. Thiamin deficiency on fetal brain development with and without prenatal alcohol exposure.

    Science.gov (United States)

    Kloss, Olena; Eskin, N A Michael; Suh, Miyoung

    2018-04-01

    Adequate thiamin levels are crucial for optimal health through maintenance of homeostasis and viability of metabolic enzymes, which require thiamine as a co-factor. Thiamin deficiency occurs during pregnancy when the dietary intake is inadequate or excessive alcohol is consumed. Thiamin deficiency leads to brain dysfunction because thiamin is involved in the synthesis of myelin and neurotransmitters (e.g., acetylcholine, γ-aminobutyric acid, glutamate), and its deficiency increases oxidative stress by decreasing the production of reducing agents. Thiamin deficiency also leads to neural membrane dysfunction, because thiamin is a structural component of mitochondrial and synaptosomal membranes. Similarly, in-utero exposure to alcohol leads to fetal brain dysfunction, resulting in negative effects such as fetal alcohol spectrum disorder (FASD). Thiamin deficiency and prenatal exposure to alcohol could act synergistically to produce negative effects on fetal development; however, this area of research is currently under-studied. This minireview summarizes the evidence for the potential role of thiamin deficiency in fetal brain development, with or without prenatal exposure to alcohol. Such evidence may influence the development of new nutritional strategies for preventing or mitigating the symptoms of FASD.

  9. Development of Fetal Movement between 26 and 36 Weeks’ Gestation in Response to Vibro-acoustic Stimulation

    Directory of Open Access Journals (Sweden)

    Marybeth eGrant-Beuttler

    2011-12-01

    Full Text Available Background: Ultrasound observation of fetal movement has documented general trends in motor development and fetal age when motor response to stimulation is observed. Evaluation of fetal movement quality, in addition to specific motor activity, may improve documentation of motor development and highlight specific motor responses to stimulation. Aims: The aim of this investigation was to assess fetal movement at 26 and 36 weeks gestation during three conditions (baseline, immediate response to vibro-acoustic stimulation (VAS, and post-response. Design: A prospective, longitudinal design was utilized. Subjects: Twelve normally developing fetuses, 8 females and 4 males, were examined with continuous ultrasound imaging. Outcome measures: The Fetal Neurobehavioral Coding System (FENS was used to evaluate the quality of motor activity during 10-second epochs over the three conditions. Results: Seventy-five percent of the fetuses at the 26 week assessment and 100% of the fetuses at the 36 week assessment responded with movement immediately following stimulation. Significant differences in head, fetal breathing, general, limb, and mouthing movements were detected between the 26 week and 36 week assessments. Movement differences between conditions were detected in head, fetal breathing, limb, and mouthing movements. Conclusions: Smoother and more complex movement was observed with fetal maturation. Following VAS stimulation, an immediate increase of large, jerky movements suggest instability in fetal capabilities. Fetal movement quality changes over gestation may reflect sensorimotor synaptogenesis in the central nervous system, while observation of immature movement patterns following VAS stimulation may reflect movement pattern instability.

  10. Effects of proposed adipogenic factors in fetal swine sera upon preadipocyte development

    International Nuclear Information System (INIS)

    Ramsay, T.G.; Hausman, G.J.; Martin, R.J.

    1986-01-01

    Genetic obesity has been detected in fetal pigs which suggests primary factors that cause the obesity develop prenatally. Growth hormone and thyroid hormones have been implicated as regulatory factors in fetal serum for preadipocyte differentiation. This experiment examined effects of growth hormone (GH) and thyroxine (T4) addition upon preadipocyte proliferation and differentiation when supplemented to deficient fetal pig sea. Hormones were added to decapitated fetal pig (Decap) sera to concentrations present in intact littermate (Reference) sera. Primary stromal-vascular cell cultures were prepared from rat inguinal adipose tissue. Cells were incubated with 5% decap or reference sera and hormones in media 199 during: days 1 to 5 for a 3 H-thymidine incorporation assay; days 1 to 15 for assay of α-glycerol phosphate dehydrogenase; days 5 to 14 for a complete differentiation assay. Decap sera promoted less proliferation and enzyme differentiation than reference sera with no effect of GH addition. GH reduced detection of lipid accumulating cells on percol density gradients by 81%. T4 addition stimulated preadipocyte multiplication and produced a 30% increase in completely differentiated preadipocytes. These results indicate thyroid hormones are important components of fetal sera for regulation of preadipocyte development, whereas GH may only affect cellular metabolism

  11. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).

    Science.gov (United States)

    Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E

    2014-08-01

    The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.

  12. Fetal behavioral teratology.

    Science.gov (United States)

    Visser, Gerard H A; Mulder, Eduard J H; Tessa Ververs, F F

    2010-10-01

    Ultrasound studies of fetal motor behavior provide direct – in vivo – insight in the functioning of the motor component of the fetal central nervous system. In this article, studies are reviewed showing changes in the first timetable of appearance of fetal movements, changes in quality and/or quantity of movements and disturbances in the development of fetal behavioral states in case of endogenous malfunctions, maternal diseases and exogenous behavioral teratogens.

  13. Exploring polyamines: Functions in embryo/fetal development

    Directory of Open Access Journals (Sweden)

    Tarique Hussain

    2017-03-01

    Full Text Available Polyamines such as putrescine, spermidine, spermine and agmatine are aliphatic polycationic compounds present in all living cells, and are derived from amino acids, intestinal bacteria, exfoliated enterocytes and supported from diet. Polyamines as the key compounds play essential role in cell proliferation, growth and differentiation. They also exert significant effects on embryonic development, implantation, embryonic diapause, placentation, angiogensis and fetal development. This review paper summarizes the functions of polyamines and embryo/fetus development and its regulatory mechanism which should help to provide some evidences for clinic.

  14. Lung Development and Aging.

    Science.gov (United States)

    Bush, Andrew

    2016-12-01

    The onset of chronic obstructive pulmonary disease (COPD) can arise either from failure to attain the normal spirometric plateau or from an accelerated decline in lung function. Despite reports from numerous big cohorts, no single adult life factor, including smoking, accounts for this accelerated decline. By contrast, five childhood risk factors (maternal and paternal asthma, maternal smoking, childhood asthma and respiratory infections) are strongly associated with an accelerated rate of lung function decline and COPD. Among adverse effects on lung development are transgenerational (grandmaternal smoking), antenatal (exposure to tobacco and pollution), and early childhood (exposure to tobacco and pollution including pesticides) factors. Antenatal adverse events can operate by causing structural changes in the developing lung, causing low birth weight and prematurity and altered immunological responses. Also important are mode of delivery, early microbiological exposures, and multiple early atopic sensitizations. Early bronchial hyperresponsiveness, before any evidence of airway inflammation, is associated with adverse respiratory outcomes. Overlapping cohort studies established that spirometry tracks from the preschool years to late middle age, and those with COPD in the sixth decade already had the worst spirometry at age 10 years. Alveolar development is now believed to continue throughout somatic growth and is adversely impacted by early tobacco smoke exposure. Genetic factors are also important, with genes important in lung development and early wheezing also being implicated in COPD. The inescapable conclusion is that the roots of COPD are in early life, and COPD is a disease of childhood adverse factors interacting with genetic factors.

  15. The effect of Ramadan fasting on maternal serum lipids, cortisol levels and fetal development.

    Science.gov (United States)

    Dikensoy, Ebru; Balat, Ozcan; Cebesoy, Bahar; Ozkur, Ayhan; Cicek, Hulya; Can, Gunay

    2009-02-01

    To determine the effects of fasting during the month of Ramadan on fetal development and maternal serum cortisol and lipid profile. This study was performed in Obstetrics and Gynecology Department of Gaziantep University Hospital, between 23 September 2006 and 23 October 2006 (during the month of Ramadan). Thirty-six consecutive healthy women with uncomplicated pregnancies of 20 weeks or more, who were fasting during Ramadan, were included in the study group (group 1). The control group (group 2) consisted of 29 healthy pregnant women, who were not fasting during the study period. For evaluating Ramadan's effect on fetus, Doppler ultrasonography was performed on all subjects in the beginning and then once a week until the end of Ramadan for the following measurements: increase of fetal biparietal diameter (BPD), increase of fetal femur length (FL), increase of estimated fetal body weight (EFBW), fetal biophysical profile (BPP), amniotic fluid index (AFI), and umbilical artery systole/diastole (S/D) ratio. Maternal serum cortisol, triglyceride, total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), very low density lipoprotein (VLDL), and LDL/HDL ratio were also evaluated before and after Ramadan. No significant difference was found between the two groups for the fetal age, maternal weight gain (kilogram), estimated fetal weight gain (EFWG), fetal BPP, AFI, and umbilical artery S/D ratio. In the fasting group, the maternal serum cortisol levels on day 20 were significantly higher than the initial levels obtained 1 week prior to Ramadan (p Ramadan. HDL levels showed a slight increase, but LDL/HDL ratios were significantly decreased in fasting group (p Ramadan. No untoward effect of Ramadan was observed on intrauterine fetal development.

  16. Prenatal Foundations: Fetal Programming of Health and Development

    Science.gov (United States)

    Davis, Elysia Poggi; Thompson, Ross A.

    2014-01-01

    The fetal programming and developmental origins of disease models suggest that experiences that occur before birth can have consequences for physical and mental health that persist across the lifespan. Development is more rapid during the prenatal period as compared to any other stage of life. This introductory article considers evidence that…

  17. Neonatal opaque right lung: delayed fluid resorption

    International Nuclear Information System (INIS)

    Swischuk, L.E.; Hayden, K.; Richardson, J.

    1981-01-01

    Eight newborn infants with opaque right lungs were examined. Clinically, the main problem associated with the opaque right lung is mild respiratory distress, and radiographyically, the findings consist of (a) a totally opaque right lung, (b) a semiopaque right lung, or (c) an opaque right upper lobe only. These findings are usually interpreted as representing pneumonia, empyema, or hydrochlothorax, but the fact that they clear within 24 to 48 hours indicates that none of these diseases is the cause. It is thought that neonatal opaque right lung results from the transient retention of normal fetal fluid in the right lung

  18. Automatic Measurement of Fetal Brain Development from Magnetic Resonance Imaging: New Reference Data.

    Science.gov (United States)

    Link, Daphna; Braginsky, Michael B; Joskowicz, Leo; Ben Sira, Liat; Harel, Shaul; Many, Ariel; Tarrasch, Ricardo; Malinger, Gustavo; Artzi, Moran; Kapoor, Cassandra; Miller, Elka; Ben Bashat, Dafna

    2018-01-01

    Accurate fetal brain volume estimation is of paramount importance in evaluating fetal development. The aim of this study was to develop an automatic method for fetal brain segmentation from magnetic resonance imaging (MRI) data, and to create for the first time a normal volumetric growth chart based on a large cohort. A semi-automatic segmentation method based on Seeded Region Growing algorithm was developed and applied to MRI data of 199 typically developed fetuses between 18 and 37 weeks' gestation. The accuracy of the algorithm was tested against a sub-cohort of ground truth manual segmentations. A quadratic regression analysis was used to create normal growth charts. The sensitivity of the method to identify developmental disorders was demonstrated on 9 fetuses with intrauterine growth restriction (IUGR). The developed method showed high correlation with manual segmentation (r2 = 0.9183, p user independent, applicable with retrospective data, and is suggested for use in routine clinical practice. © 2017 S. Karger AG, Basel.

  19. Development of prenatal lateralization: evidence from fetal mouth movements.

    Science.gov (United States)

    Reissland, N; Francis, B; Aydin, E; Mason, J; Exley, K

    2014-05-28

    Human lateralized behaviors relate to the asymmetric development of the brain. Research of the prenatal origins of laterality is equivocal with some studies suggesting that fetuses exhibit lateralized behavior and other not finding such laterality. Given that by around 22weeks of gestation the left cerebral hemisphere compared to the right is significantly larger in both male and female fetuses we expected that the right side of the fetal face would show more movement with increased gestation. This longitudinal study investigated whether fetuses from 24 to 36weeks of gestation showed increasing lateralized behaviors during mouth opening and whether lateralized mouth movements are related to fetal age, gender and maternal self-reported prenatal stress. Following ethical approval, fifteen healthy fetuses (8 girls) of primagravid mothers were scanned four times from 24 to 36-gestation. Two types of mouth opening movements - upper lip raiser and mouth stretch - were coded in 60 scans for 10min. We modeled the proportion of right mouth opening for each fetal scan using a generalized linear mixed model, which takes account of the repeated measures design. There was a significant increase in the proportion of lateralized mouth openings over the period increasing by 11% for each week of gestational age (LRT change in deviance=10.92, 1df; pgender differences were found nor was there any effect of maternally reported stress on fetal lateralized mouth movements. There was also evidence of left lateralization preference in mouth movement, although no evidence of changes in lateralization bias over time. This longitudinal study provides important new insights into the development of lateralized mouth movements from 24 to 36 weeks of gestation. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Impacts of maternal dietary protein intake on fetal survival, growth, and development.

    Science.gov (United States)

    Herring, Cassandra M; Bazer, Fuller W; Johnson, Gregory A; Wu, Guoyao

    2018-03-01

    Maternal nutrition during gestation, especially dietary protein intake, is a key determinant in embryonic survival, growth, and development. Low maternal dietary protein intake can cause embryonic losses, intra-uterine growth restriction, and reduced postnatal growth due to a deficiency in specific amino acids that are important for cell metabolism and function. Of note, high maternal dietary protein intake can also result in intra-uterine growth restriction and embryonic death, due to amino acid excesses, as well as the toxicity of ammonia, homocysteine, and H 2 S that are generated from amino acid catabolism. Maternal protein nutrition has a pronounced impact on fetal programming and alters the expression of genes in the fetal genome. As a precursor to the synthesis of molecules (e.g. nitric oxide, polyamines, and creatine) with cell signaling and metabolic functions, L-arginine (Arg) is essential during pregnancy for growth and development of the conceptus. With inadequate maternal dietary protein intake, Arg and other important amino acids are deficient in mother and fetus. Dietary supplementation of Arg during gestation has been effective in improving embryonic survival and development of the conceptus in many species, including humans, pigs, sheep, mice, and rats. Both the balance among amino acids and their quantity are critical for healthy pregnancies and offspring. Impact statement This review aims at: highlighting adverse effects of elevated levels of ammonia in mother or fetus on embryonic/fetal survival, growth, and development; helping nutritionists and practitioners to understand the mechanisms whereby elevated levels of ammonia in mother or fetus results in embryonic/fetal death, growth restriction, and developmental abnormalities; and bringing, into the attention of nutritionists and practitioners, the problems of excess or inadequate dietary intake of protein or amino acids on pregnancy outcomes in animals and humans. The article provides new

  1. Effect of assisted reproductive technology on fetal brain development assessed by prenatal ultrasonography.

    Science.gov (United States)

    Yin, Linliang; Xu, Yongle; Li, Hong; Ling, Chen; Choy, Kwong Wai; Xia, Fei; Deng, Xuedong

    2015-01-01

    The aim was to evaluate whether assisted reproductive technology (ART) affects the development of the fetal central nervous system (CNS). This study was carried out on women with singleton pregnancies, including 427 women who became pregnant by ART and 32,859 women with natural conceptions (NCs). The cavum septum pellucidum (CSP) width, transverse cerebellar diameter (TCD), cisterna magna (CM) depth, and lateral ventricle width were measured by ultrasound for 72 normal ART fetuses and 201 normal NC fetuses. The malformation rate of CNS was determined for both groups. In both groups, significant positive correlations with gestational age were found for CSP width (ART: r=0.7841, NC: r=0.7864; P0.05). The development and malformation rate of the fetal CNS is not significantly different between ART and NC fetuses, thus, ART does not affect the development of the fetal brain.

  2. Effects of chronic carbon monoxide exposure on fetal growth and development in mice

    Directory of Open Access Journals (Sweden)

    Venditti Carolina C

    2011-12-01

    Full Text Available Abstract Background Carbon monoxide (CO is produced endogenously, and can also be acquired from many exogenous sources: ie. cigarette smoking, automobile exhaust. Although toxic at high levels, low level production or exposure lends to normal physiologic functions: smooth muscle cell relaxation, control of vascular tone, platelet aggregation, anti- inflammatory and anti-apoptotic events. In pregnancy, it is unclear at what level maternal CO exposure becomes toxic to the fetus. In this study, we hypothesized that CO would be embryotoxic, and we sought to determine at what level of chronic CO exposure in pregnancy embryo/fetotoxic effects are observed. Methods Pregnant CD1 mice were exposed to continuous levels of CO (0 to 400 ppm from conception to gestation day 17. The effect on fetal/placental growth and development, and fetal/maternal CO concentrations were determined. Results Maternal and fetal CO blood concentrations ranged from 1.12- 15.6 percent carboxyhemoglobin (%COHb and 1.0- 28.6%COHb, respectively. No significant difference was observed in placental histological morphology or in placental mass with any CO exposure. At 400 ppm CO vs. control, decreased litter size and fetal mass (p Conclusions Exposure to levels at or below 300 ppm CO throughout pregnancy has little demonstrable effect on fetal growth and development in the mouse.

  3. Pulmonary Hypoplasia Caused by Fetal Ascites in Congenital Cytomegalovirus Infection Despite Fetal Therapy

    Directory of Open Access Journals (Sweden)

    Kazumichi Fujioka

    2017-11-01

    Full Text Available We report two cases of pulmonary hypoplasia due to fetal ascites in symptomatic congenital cytomegalovirus (CMV infections despite fetal therapy. The patients died soon after birth. The pathogenesis of pulmonary hypoplasia in our cases might be thoracic compression due to massive fetal ascites as a result of liver insufficiency. Despite aggressive fetal treatment, including multiple immunoglobulin administration, which was supposed to diminish the pathogenic effects of CMV either by neutralization or immunomodulatory effects, the fetal ascites was uncontrollable. To prevent development of pulmonary hypoplasia in symptomatic congenital CMV infections, further fetal intervention to reduce ascites should be considered.

  4. The frontosphenoidal suture: fetal development and phenotype of its synostosis

    Energy Technology Data Exchange (ETDEWEB)

    Mathijssen, Irene M.J.; Meulen, Jacques J.N.M. van der; Adrichem, Leon N.A. van; Vaandrager, J.M.; Vermeij-Keers, Christl [Erasmus MC, University Medical Centre, Department of Plastic and Reconstructive Surgery, Rotterdam (Netherlands); Hulst, Rene R.W.J. van der [University Hospital Maastricht, Department of Plastic and Reconstructive Surgery, Maastricht (Netherlands); Lequin, Maarten H. [Erasmus MC, University Medical Centre, Department of Radiology, Rotterdam (Netherlands)

    2008-04-15

    Isolated synostosis of the frontosphenoidal suture is very rare and difficult to diagnose. Little has been reported on the clinical presentation and fetal development of this suture. To understand the development of the frontosphenoidal suture and the outcome of its synostosis. We studied the normal fetal development of the frontosphenoidal suture in dry human skulls and the clinical features of four patients with isolated synostosis of the frontosphenoidal suture. The frontosphenoidal suture develops relatively late during the second trimester of pregnancy, which explains the mild phenotype when there is synostosis. This rare craniosynostosis results in a deformity that causes recession of the lateral part of the frontal bone and supraorbital rim, with minimal facial asymmetry. Three-dimensional CT is the best examination to confirm the diagnosis. Isolated frontosphenoidal synostosis should be considered in patients with unilateral flattening of the forehead at birth that does not improve within the first few months of life. (orig.)

  5. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  6. Normal renal development investigated with fetal MRI

    International Nuclear Information System (INIS)

    Witzani, Linde; Brugger, Peter Christian; Hoermann, Marcus; Kasprian, Gregor; Csapone-Balassy, Csilla; Prayer, Daniela

    2006-01-01

    Objective: To evaluate age-dependent changes in fetal kidney measurements with MRI. Patients and methods: Fetal MRI examinations were used to study the kidney length (218 fetuses), signal intensities of renal tissue, renal pelvis, and liver tissue on T2-weighted images (223 fetuses), and the whole-kidney apparent diffusion coefficient (107 fetuses). A 1.5 T superconducting unit with a phased array coil was used in patients from 16 to 39 weeks' gestation. The imaging protocol included T2-weighted single-shot fast spin-echo, T2-weighted balanced angiography and diffusion-weighted sequences. Slice thickness ranged from 3 to 5 mm. Results: Fetal kidney length as a function of gestational age was expressed by the linear regression: kidney length (mm) = 0.190 x gestational age (d) - 8.034 (R 2 0.883, p 2 /s) = 0.0302 x square (gestational age (d)) - 14.202 x gestational age (d) + 2728.6 (R 2 = 0.225, p < 0.001). Conclusion: The length, signal intensity on T2-weighted images, and apparent diffusion coefficient of the fetal kidney change significantly with gestational age. The presented data may help in the prenatal diagnosis of renal anomalies

  7. The Role of Serotonin Transporter in Human Lung Development and in Neonatal Lung Disorders

    Directory of Open Access Journals (Sweden)

    E. C. C. Castro

    2017-01-01

    Full Text Available Introduction. Failure of the vascular pulmonary remodeling at birth often manifests as pulmonary hypertension (PHT and is associated with a variety of neonatal lung disorders including a uniformly fatal developmental disorder known as alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV. Serum serotonin regulation has been linked to pulmonary vascular function and disease, and serotonin transporter (SERT is thought to be one of the key regulators in these processes. We sought to find evidence of a role that SERT plays in the neonatal respiratory adaptation process and in the pathomechanism of ACD/MPV. Methods. We used histology and immunohistochemistry to determine the timetable of SERT protein expression in normal human fetal and postnatal lungs and in cases of newborn and childhood PHT of varied etiology. In addition, we tested for a SERT gene promoter defect in ACD/MPV patients. Results. We found that SERT protein expression begins at 30 weeks of gestation, increases to term, and stays high postnatally. ACD/MPV patients had diminished SERT expression without SERT promoter alteration. Conclusion. We concluded that SERT/serotonin pathway is crucial in the process of pulmonary vascular remodeling/adaptation at birth and plays a key role in the pathobiology of ACD/MPV.

  8. Fast, free-breathing, in vivo fetal imaging using time-resolved 3D MRI technique: preliminary results.

    Science.gov (United States)

    Liu, Jing; Glenn, Orit A; Xu, Duan

    2014-04-01

    Fetal MR imaging is very challenging due to the movement of fetus and the breathing motion of the mother. Current clinical protocols involve quick 2D scouting scans to determine scan plane and often several attempts to reorient the scan plane when the fetus moves. This makes acquisition of fetal MR images clinically challenging and results in long scan times in order to obtain images that are of diagnostic quality. Compared to 2D imaging, 3D imaging of the fetus has many advantages such as higher SNR and ability to reformat images in multiple planes. However, it is more sensitive to motion and challenging for fetal imaging due to irregular fetal motion in addition to maternal breathing and cardiac motion. This aim of this study is to develop a fast 3D fetal imaging technique to resolve the challenge of imaging the moving fetus. This 3D imaging sequence has multi-echo radial sampling in-plane and conventional Cartesian encoding through plane, which provides motion robustness and high data acquisition efficiency. The utilization of a golden-ratio based projection profile allows flexible time-resolved image reconstruction with arbitrary temporal resolution at arbitrary time points as well as high signal-to-noise and contrast-to-noise ratio. The nice features of the developed image technique allow the 3D visualization of the movements occurring throughout the scan. In this study, we applied this technique to three human subjects for fetal MRI and achieved promising preliminary results of fetal brain, heart and lung imaging.

  9. [Development of the lung cancer diagnostic system].

    Science.gov (United States)

    Lv, You-Jiang; Yu, Shou-Yi

    2009-07-01

    To develop a lung cancer diagnosis system. A retrospective analysis was conducted in 1883 patients with primary lung cancer or benign pulmonary diseases (pneumonia, tuberculosis, or pneumonia pseudotumor). SPSS11.5 software was used for data processing. For the relevant factors, a non-factor Logistic regression analysis was used followed by establishment of the regression model. Microsoft Visual Studio 2005 system development platform and VB.Net corresponding language were used to develop the lung cancer diagnosis system. The non-factor multi-factor regression model showed a goodness-of-fit (R2) of the model of 0.806, with a diagnostic accuracy for benign lung diseases of 92.8%, a diagnostic accuracy for lung cancer of 89.0%, and an overall accuracy of 90.8%. The model system for early clinical diagnosis of lung cancer has been established.

  10. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development.

    Science.gov (United States)

    Szabo, Linda; Morey, Robert; Palpant, Nathan J; Wang, Peter L; Afari, Nastaran; Jiang, Chuan; Parast, Mana M; Murry, Charles E; Laurent, Louise C; Salzman, Julia

    2015-06-16

    The pervasive expression of circular RNA is a recently discovered feature of gene expression in highly diverged eukaryotes, but the functions of most circular RNAs are still unknown. Computational methods to discover and quantify circular RNA are essential. Moreover, discovering biological contexts where circular RNAs are regulated will shed light on potential functional roles they may play. We present a new algorithm that increases the sensitivity and specificity of circular RNA detection by discovering and quantifying circular and linear RNA splicing events at both annotated and un-annotated exon boundaries, including intergenic regions of the genome, with high statistical confidence. Unlike approaches that rely on read count and exon homology to determine confidence in prediction of circular RNA expression, our algorithm uses a statistical approach. Using our algorithm, we unveiled striking induction of general and tissue-specific circular RNAs, including in the heart and lung, during human fetal development. We discover regions of the human fetal brain, such as the frontal cortex, with marked enrichment for genes where circular RNA isoforms are dominant. The vast majority of circular RNA production occurs at major spliceosome splice sites; however, we find the first examples of developmentally induced circular RNAs processed by the minor spliceosome, and an enriched propensity of minor spliceosome donors to splice into circular RNA at un-annotated, rather than annotated, exons. Together, these results suggest a potentially significant role for circular RNA in human development.

  11. Significance of lung anomalies in fetuses affected by tetralogy of Fallot with absent pulmonary valve syndrome.

    Science.gov (United States)

    Tenisch, Estelle; Raboisson, Marie-Josée; Rypens, Françoise; Déry, Julie; Grignon, Andrée; Lapierre, Chantale

    2017-11-01

    Tetralogy of Fallot with absent pulmonary valve syndrome is a rare form of tetralogy of Fallot with dilatation of large pulmonary arteries. Prognosis is related to the severity of the cardiac malformation and to bronchial tree compression by dilated pulmonary arteries. This study analyses the prenatal echographic lung appearance in fetuses with tetralogy of Fallot with absent pulmonary valve and discusses its significance. We carried out a retrospective review of fetal and postnatal files of nine fetuses diagnosed with tetralogy of Fallot with absent pulmonary valve syndrome in our institution. Correlations of prenatal ultrasound and cardiac imaging findings were obtained with outcome. Abnormal heterogeneous fetal lung echogenicity was detected in eight cases out of nine, always associated with significant lobar arterial dilatation. This aspect was well correlated with postnatal imaging and outcome in the four neonatal cases. The only fetus with normal lung echogenicity also had lower degree of pulmonary artery dilatation in the series. This study demonstrates that a heterogeneous ultrasound appearance of the fetal lungs can be detected in utero in the most severe cases. This aspect suggests an already significant compression of the fetal bronchial tree by the dilated arteries that may have prognostic implications.

  12. MRS of normal and impaired fetal brain development

    International Nuclear Information System (INIS)

    Girard, Nadine; Fogliarini, Celine; Viola, Angele; Confort-Gouny, Sylviane; Le Fur, Yann; Viout, Patrick; Chapon, Frederique; Levrier, Olivier; Cozzone, Patrick

    2006-01-01

    Cerebral maturation in the human fetal brain was investigated by in utero localized proton magnetic resonance spectroscopy (MRS). Spectra were acquired on a clinical MR system operating at 1.5 T. Body phased array coils (four coils) were used in combination with spinal coils (two coils). The size of the nominal volume of interest (VOI) was 4.5 cm 3 (20 mm x 15 mm x 15 mm). The MRS acquisitions were performed using a spin echo sequence at short and long echo times (TE = 30 ms and 135 ms) with a VOI located within the cerebral hemisphere at the level of the centrum semiovale. A significant reduction in myo-inositol and choline and an increase in N-acetylaspartate were observed with progressive age. The normal MR spectroscopy data reported here will help to determine whether brain metabolism is altered, especially when subtle anatomic changes are observed on conventional images. Some examples of impaired fetal brain development studied by MRS are illustrated

  13. MRS of normal and impaired fetal brain development

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Nadine [Service de Neuroradiologie, Assistance Publique-Hopitaux de Marseille, Hopital la Timone, Universite de la Mediterranee, Marseille (France)]. E-mail: nadine.girard@ap-hm.fr; Fogliarini, Celine [Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Universite de la Mediterranee, Faculte de Medecine la Timone, Marseille (France); Viola, Angele [Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Universite de la Mediterranee, Faculte de Medecine la Timone, Marseille (France); Confort-Gouny, Sylviane [Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Universite de la Mediterranee, Faculte de Medecine la Timone, Marseille (France); Le Fur, Yann [Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Universite de la Mediterranee, Faculte de Medecine la Timone, Marseille (France); Viout, Patrick [Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Universite de la Mediterranee, Faculte de Medecine la Timone, Marseille (France); Chapon, Frederique [Service de Neuroradiologie, Assistance Publique-Hopitaux de Marseille, Hopital la Timone, Universite de la Mediterranee, Marseille (France); Levrier, Olivier [Service de Neuroradiologie, Assistance Publique-Hopitaux de Marseille, Hopital la Timone, Universite de la Mediterranee, Marseille (France); Cozzone, Patrick [Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Universite de la Mediterranee, Faculte de Medecine la Timone, Marseille (France)

    2006-02-15

    Cerebral maturation in the human fetal brain was investigated by in utero localized proton magnetic resonance spectroscopy (MRS). Spectra were acquired on a clinical MR system operating at 1.5 T. Body phased array coils (four coils) were used in combination with spinal coils (two coils). The size of the nominal volume of interest (VOI) was 4.5 cm{sup 3} (20 mm x 15 mm x 15 mm). The MRS acquisitions were performed using a spin echo sequence at short and long echo times (TE = 30 ms and 135 ms) with a VOI located within the cerebral hemisphere at the level of the centrum semiovale. A significant reduction in myo-inositol and choline and an increase in N-acetylaspartate were observed with progressive age. The normal MR spectroscopy data reported here will help to determine whether brain metabolism is altered, especially when subtle anatomic changes are observed on conventional images. Some examples of impaired fetal brain development studied by MRS are illustrated.

  14. Regeneration of the lung: Lung stem cells and the development of lung mimicking devices

    NARCIS (Netherlands)

    Schilders, K.; Eenjes, E.; van Riet, S.; Poot, Andreas A.; Stamatialis, Dimitrios; Truckenmüller, R.K.; Hiemstra, P.; Rottier, R.

    2016-01-01

    Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as

  15. Retardation of fetal dendritic development induced by gestational hyperglycemia is associated with brain insulin/IGF-I signals.

    Science.gov (United States)

    Jing, Yu-Hong; Song, Yan-Feng; Yao, Ya-Ming; Yin, Jie; Wang, De-Gui; Gao, Li-Ping

    2014-10-01

    Hyperglycemia is an essential risk factor for mothers and fetuses in gestational diabetes. Clinical observation has indicated that the offspring of mothers with diabetes shows impaired somatosensory function and IQ. However, only a few studies have explored the effects of hyperglycemia on fetal brain development. Neurodevelopment is susceptible to environmental conditions. Thus, this study aims to investigate the effects of maternal hyperglycemia on fetal brain development and to evaluate insulin and insulin-like growth factor-I (IGF-I) signals in fetal brain under hyperglycemia or controlled hyperglycemia. At day 1 of pregnancy, gestational rats were intraperitoneally injected with streptozocin (60 mg/kg). Some of the hyperglycemic gestational rats were injected with insulin (20 IU, two times a day) to control hyperglycemia; the others were injected with saline of equal volume. The gestational rats were sacrificed at days 14, 16, and 18 of embryo development. The dendritic spines of subplate cortex neurons in the fetal brain were detected by Golgi-Cox staining. The mRNA levels of insulin receptors (IRs) and IGF-IR in the fetal brain were measured using qRT-PCR. The protein levels of synaptophysin, IR, and IGF-IR in the fetal brain were detected by western blot. No significant difference in fetal brain formation was observed between the maternal hyperglycemic group and insulin-treated group. By contrast, obvious retardation of dendritic development in the fetus was observed in the maternal hyperglycemic group. Similarly, synaptophysin expression was lower in the fetus of the maternal hyperglycemic group than in that of the insulin-treated group. The mRNA and protein expression levels of IRs in the fetal brain were higher in the hyperglycemic group than in the insulin-treated group. By contrast, the levels of IGF-IR in the brain were lower in the fetus of the maternal hyperglycemic group than in that of the insulin-treated group. These results suggested that

  16. Prenatal and postnatal genetic influence on lung function development

    DEFF Research Database (Denmark)

    Kreiner-Møller, Eskil; Bisgaard, Hans; Bønnelykke, Klaus

    2014-01-01

    BACKGROUND: It is unknown to what extent adult lung function genes affect lung function development from birth to childhood. OBJECTIVE: Our aim was to study the association of candidate genetic variants with neonatal lung function and lung function development until age 7 years. METHODS: Lung fun...

  17. Pulmonary imaging in pregnancy. Maternal risk and fetal dosimetry

    International Nuclear Information System (INIS)

    Marcus, C.S.; Mason, G.R.; Kuperus, J.H.; Mena, I.

    1985-01-01

    A Tc-99m macroaggregated albumin (MAA) perfusion lung scan and a Tc-99m DTPA aerosol ventilation scan were performed for suspicion of pulmonary embolism (PE) in a patient who was ten weeks pregnant. There was considerable reluctance on the part of the obstetricians to permit this study. Standard MIRD dose estimates to the fetus were performed, which showed a maximum fetal exposure of about 50 mrem. It was concluded that the risk to mother and fetus from undiagnosed and untreated PE is much greater than the negligible risk to the fetus from the radiation exposure; fear of fetal radiation damage should not be a deterrent to performing these scans

  18. Development of the Human Placenta and Fetal Heart: Synergic or Independent?

    Directory of Open Access Journals (Sweden)

    Graham J. Burton

    2018-04-01

    Full Text Available The placenta is the largest fetal organ, and toward the end of pregnancy the umbilical circulation receives at least 40% of the biventricular cardiac output. It is not surprising, therefore, that there are likely to be close haemodynamic links between the development of the placenta and the fetal heart. Development of the placenta is precocious, and in advance of that of the fetus. The placenta undergoes considerable remodeling at the end of the first trimester of pregnancy, and its vasculature is capable of adapting to environmental conditions and to variations in the blood supply received from the mother. There are two components to the placental membranes to consider, the secondary yolk sac and the chorioallantoic placenta. The yolk sac is the first of the extraembryonic membranes to be vascularized, and condensations in the mesenchyme at ~17 days post-conception (p.c. give rise to endothelial and erythroid precursors. A network of blood vessels is established ~24 days p.c., with the vitelline vein draining through the region of the developing liver into the sinus venosus. Gestational sacs of early pregnancy failures often display aberrant development of the yolk sac, which is likely to be secondary to abnormal fetal development. Vasculogenesis occurs in the villous mesenchyme of the chorioallantoic placenta at a similarly early stage. Nucleated erythrocytes occupy the lumens of the placental capillaries and end-diastolic flow is absent in the umbilical arterial circulation throughout most of the first trimester, indicating a high resistance to blood flow. Resistance begins to fall in the umbilico-placental circulation around 12–14 weeks. During normal early pregnancy the placental capillary network is plastic, and considerable remodeling occurs in response to the local oxygen concentration, and in particular to oxidative stress. In pregnancies complicated by preeclampsia and/or fetal growth restriction, utero-placental malperfusion induces

  19. Evidence of cardiac involvement in the fetal inflammatory response syndrome: disruption of gene networks programming cardiac development in nonhuman primates.

    Science.gov (United States)

    Mitchell, Timothy; MacDonald, James W; Srinouanpranchanh, Sengkeo; Bammler, Theodor K; Merillat, Sean; Boldenow, Erica; Coleman, Michelle; Agnew, Kathy; Baldessari, Audrey; Stencel-Baerenwald, Jennifer E; Tisoncik-Go, Jennifer; Green, Richard R; Gale, Michael J; Rajagopal, Lakshmi; Adams Waldorf, Kristina M

    2018-04-01

    Most early preterm births are associated with intraamniotic infection and inflammation, which can lead to systemic inflammation in the fetus. The fetal inflammatory response syndrome describes elevations in the fetal interleukin-6 level, which is a marker for inflammation and fetal organ injury. An understanding of the effects of inflammation on fetal cardiac development may lead to insight into the fetal origins of adult cardiovascular disease. The purpose of this study was to determine whether the fetal inflammatory response syndrome is associated with disruptions in gene networks that program fetal cardiac development. We obtained fetal cardiac tissue after necropsy from a well-described pregnant nonhuman primate model (pigtail macaque, Macaca nemestrina) of intrauterine infection (n=5) and controls (n=5). Cases with the fetal inflammatory response syndrome (fetal plasma interleukin-6 >11 pg/mL) were induced by either choriodecidual inoculation of a hypervirulent group B streptococcus strain (n=4) or intraamniotic inoculation of Escherichia coli (n=1). RNA and protein were extracted from fetal hearts and profiled by microarray and Luminex (Millipore, Billerica, MA) for cytokine analysis, respectively. Results were validated by quantitative reverse transcriptase polymerase chain reaction. Statistical and bioinformatics analyses included single gene analysis, gene set analysis, Ingenuity Pathway Analysis (Qiagen, Valencia, CA), and Wilcoxon rank sum. Severe fetal inflammation developed in the context of intraamniotic infection and a disseminated bacterial infection in the fetus. Interleukin-6 and -8 in fetal cardiac tissues were elevated significantly in fetal inflammatory response syndrome cases vs controls (P1.5-fold change, P<.05) in the fetal heart (analysis of variance). Altered expression of select genes was validated by quantitative reverse transcriptase polymerase chain reaction that included several with known functions in cardiac injury, morphogenesis

  20. Fibronectin distribution during the development of fetal rat skin

    DEFF Research Database (Denmark)

    Gibson, W T; Couchman, J R; Weaver, A C

    1983-01-01

    Fibronectin distribution during fetal rat skin development has been studied immunocytochemically at the light and electron microscope level from 16 days of gestation to birth. The dermal-epidermal junction, the dermis, and connective tissue around developing muscle were shown by light microscopy......, and there was also staining associated with the underlying fine collagen fibrils. These observations are further evidence for the proposed role of fibronectin as a mediator of the cell-matrix interactions which are of importance for tissue development and maintenance....

  1. Prognostic Significance of Preterm Isolated Decreased Fetal Movement

    Directory of Open Access Journals (Sweden)

    Ertuğrul Karahanoğlu

    2017-12-01

    Full Text Available Objective: Our aim is to evaluate the prognostic significance of isolated, preterm decreased fetal movement following normal initial full diagnostic workup. Study design: A retrospective observational study was conducted at a tertiary centre. The applied protocol was approved by the Medical Research Ethics Department of the hospital where the research was conducted. Obstetrics outcomes of preterm- and term-decreased fetal movement were compared following an initial, normal diagnostic work up. Evaluated outcomes were birth weight, mode of delivery, stillbirth rate, induction of labour, development of gestational hypertension, small for gestational age and oligohydramnios, polyhydramnios during the follow up period. Result: Obstetric complications related to placental insufficiency develops more frequently for decreased fetal movement in preterm cases with respect to that of in term cases. Following the diagnosis of decreased fetal movement, pregnancy hypertension occurred in 17% of preterm decreased fetal movement cases and in 4.7% of term decreased fetal movement cases. Fetal growth restriction developed in 6.6% of preterm decreased fetal movement and in 2.3% of term decreased fetal movement. Amniotic fluid abnormalities more frequently developed in preterm decreased fetal movement. Conclusion: Following an initial normal diagnostic workup, preterm decreased fetal movement convey a higher risk for the development of pregnancy complications associated with placental insufficiency. The patient should be monitored closely and management protocols must be developed for initial normal diagnostic workups in cases of preterm decreased fetal movement.

  2. Digital atlas of fetal brain MRI.

    Science.gov (United States)

    Chapman, Teresa; Matesan, Manuela; Weinberger, Ed; Bulas, Dorothy I

    2010-02-01

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C#, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download from http://radiology.seattlechildrens.org/teaching/fetal_brain . Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development.

  3. Ultrasound studies of the effects of certain poisonous plants on uterine function and fetal development in livestock.

    Science.gov (United States)

    Bunch, T D; Panter, K E; James, L F

    1992-05-01

    Ingestion of locoweed (Astragalus spp. and Oxytropis spp.) by pregnant livestock may result in fetal malformations, delayed placentation, reduced placental and uterine vascular development, hydrops amnii, hydrops allantois, abnormal cotyledonary development, interruption of fetal fluid balance, and abortion. Ultrasonography of pregnant sheep fed locoweed demonstrated that abortion was first preceded by changes in fetal heart rate and strength of contraction and structural changes of the cotyledons, followed by increased accumulation of fetal fluid within the placental membranes and death of the fetus. During pregnancy the toxic agent in locoweed (swainsonine) apparently passes through the placental barrier to the fetus and during lactation through the milk to the neonate. Poison-hemlock (Conium maculatum), wild tree tobacco (Nicotiana glauca), and lunara lupine (Lupinus formosus) all contain piperidine alkaloids and induce fetal malformations, including multiple congenital contractures and cleft palate in livestock. Ultrasonography studies of pregnant sheep and goats gavaged with these plants during 30 to 60 d of gestation suggests that the primary cause of multiple congenital contractures and cleft palate is the degree and the duration of the alkaloid-induced fetal immobilization.

  4. Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition.

    Science.gov (United States)

    Gao, Lu; Rabbitt, Elizabeth H; Condon, Jennifer C; Renthal, Nora E; Johnston, John M; Mitsche, Matthew A; Chambon, Pierre; Xu, Jianming; O'Malley, Bert W; Mendelson, Carole R

    2015-07-01

    The precise mechanisms that lead to parturition are incompletely defined. Surfactant protein-A (SP-A), which is secreted by fetal lungs into amniotic fluid (AF) near term, likely provides a signal for parturition; however, SP-A-deficient mice have only a relatively modest delay (~12 hours) in parturition, suggesting additional factors. Here, we evaluated the contribution of steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2), which upregulate SP-A transcription, to the parturition process. As mice lacking both SRC-1 and SRC-2 die at birth due to respiratory distress, we crossed double-heterozygous males and females. Parturition was severely delayed (~38 hours) in heterozygous dams harboring SRC-1/-2-deficient embryos. These mothers exhibited decreased myometrial NF-κB activation, PGF2α, and expression of contraction-associated genes; impaired luteolysis; and elevated circulating progesterone. These manifestations also occurred in WT females bearing SRC-1/-2 double-deficient embryos, indicating that a fetal-specific defect delayed labor. SP-A, as well as the enzyme lysophosphatidylcholine acyltransferase-1 (LPCAT1), required for synthesis of surfactant dipalmitoylphosphatidylcholine, and the proinflammatory glycerophospholipid platelet-activating factor (PAF) were markedly reduced in SRC-1/-2-deficient fetal lungs near term. Injection of PAF or SP-A into AF at 17.5 days post coitum enhanced uterine NF-κB activation and contractile gene expression, promoted luteolysis, and rescued delayed parturition in SRC-1/-2-deficient embryo-bearing dams. These findings reveal that fetal lungs produce signals to initiate labor when mature and that SRC-1/-2-dependent production of SP-A and PAF is crucial for this process.

  5. Placental Inflammation and Fetal Injury in a Rare Zika Case Associated With Guillain-Barré Syndrome and Abortion

    Directory of Open Access Journals (Sweden)

    Kíssila Rabelo

    2018-05-01

    Full Text Available Zika virus (ZIKV is an emerging virus involved in recent outbreaks in Brazil. The association between the virus and Guillain-Barré syndrome (GBS or congenital disorders has raised a worldwide concern. In this work, we investigated a rare Zika case, which was associated with GBS and spontaneous retained abortion. Using specific anti-ZIKV staining, the virus was identified in placenta (mainly in Hofbauer cells and in several fetal tissues, such as brain, lungs, kidneys, skin and liver. Histological analyses of the placenta and fetal organs revealed different types of tissue abnormalities, which included inflammation, hemorrhage, edema and necrosis in placenta, as well as tissue disorganization in the fetus. Increased cellularity (Hofbauer cells and TCD8+ lymphocytes, expression of local pro-inflammatory cytokines such as IFN-γ and TNF-α, and other markers, such as RANTES/CCL5 and VEGFR2, supported placental inflammation and dysfunction. The commitment of the maternal-fetal link in association with fetal damage gave rise to a discussion regarding the influence of the maternal immunity toward the fetal development. Findings presented in this work may help understanding the ZIKV immunopathogenesis under the rare contexts of spontaneous abortions in association with GBS.

  6. Fetal abdominal magnetic resonance imaging

    International Nuclear Information System (INIS)

    Brugger, Peter C.; Prayer, Daniela

    2006-01-01

    This review deals with the in vivo magnetic resonance imaging (MRI) appearance of the human fetal abdomen. Imaging findings are correlated with current knowledge of human fetal anatomy and physiology, which are crucial to understand and interpret fetal abdominal MRI scans. As fetal MRI covers a period of more than 20 weeks, which is characterized not only by organ growth, but also by changes and maturation of organ function, a different MR appearance of the fetal abdomen results. This not only applies to the fetal intestines, but also to the fetal liver, spleen, and adrenal glands. Choosing the appropriate sequences, various aspects of age-related and organ-specific function can be visualized with fetal MRI, as these are mirrored by changes in signal intensities. Knowledge of normal development is essential to delineate normal from pathological findings in the respective developmental stages

  7. Fetal abdominal magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, Peter C. [Center of Anatomy and Cell Biology, Integrative Morphology Group, Medical University of Vienna, Waehringerstrasse 13, 1090 Vienna (Austria)]. E-mail: peter.brugger@meduniwien.ac.at; Prayer, Daniela [Department of Radiology, Medical University of Vienna, Waehringerguertel 18-20, 1090 Vienna (Austria)

    2006-02-15

    This review deals with the in vivo magnetic resonance imaging (MRI) appearance of the human fetal abdomen. Imaging findings are correlated with current knowledge of human fetal anatomy and physiology, which are crucial to understand and interpret fetal abdominal MRI scans. As fetal MRI covers a period of more than 20 weeks, which is characterized not only by organ growth, but also by changes and maturation of organ function, a different MR appearance of the fetal abdomen results. This not only applies to the fetal intestines, but also to the fetal liver, spleen, and adrenal glands. Choosing the appropriate sequences, various aspects of age-related and organ-specific function can be visualized with fetal MRI, as these are mirrored by changes in signal intensities. Knowledge of normal development is essential to delineate normal from pathological findings in the respective developmental stages.

  8. Digital atlas of fetal brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Teresa; Weinberger, E. [Department of Radiology, Seattle Children' s Hospital, Seattle, WA (United States); Matesan, Manuela [University of Washington, Department of Radiology, Seattle, WA (United States); Bulas, Dorothy I. [Division of Diagnostic Imaging and Radiology, Children' s National Medical Center, Washington, DC (United States)

    2010-02-15

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download. Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development. (orig.)

  9. Digital atlas of fetal brain MRI

    International Nuclear Information System (INIS)

    Chapman, Teresa; Weinberger, E.; Matesan, Manuela; Bulas, Dorothy I.

    2010-01-01

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download. Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development. (orig.)

  10. Tracheomegaly: a complication of fetal endoscopic tracheal occlusion in the treatment of congenital diaphragmatic hernia

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kieran; Afaq, Asim; Roebuck, Derek J. [Great Ormond Street Hospital for Children, Radiology Department, London (United Kingdom); Broderick, Nigel [Nottingham University Hospitals, Radiology Department, Nottingham (United Kingdom); Gabra, Hany O.; Elliott, Martin J. [Great Ormond Street Hospital for Children, Department of Cardiothoracic Surgery, London (United Kingdom)

    2010-05-15

    Fetal endoscopic tracheal occlusion (FETO) is a promising treatment for severe congenital diaphragmatic hernia, a condition that carries significant morbidity and mortality. It is hypothesised that balloon occlusion of the fetal trachea leads to an improvement in lung growth and development. The major documented complications of FETO to date are related to preterm delivery. To report a series of five infants who developed tracheomegaly following FETO. Review of all children referred with tracheomegaly to the paediatric intensive care and tracheal service at two referral centres. Five neonates presented with features of respiratory distress shortly after birth and were subsequently found to have marked tracheomegaly. Two neonates had tracheomalacia in addition. There are no previous reports in the literature describing tracheomalacia, or more specifically, tracheomegaly, as a consequence of FETO. We propose that the particularly compliant fetal airway is at risk of mechanical damage from in utero balloon occlusion. This observation of a new problem in this cohort suggests a thorough evaluation of the trachea should be performed in children who have had FETO in utero. It may be that balloon occlusion of the trachea earlier in utero (before 26 weeks' gestation) predisposes to this condition. (orig.)

  11. Tracheomegaly: a complication of fetal endoscopic tracheal occlusion in the treatment of congenital diaphragmatic hernia

    International Nuclear Information System (INIS)

    McHugh, Kieran; Afaq, Asim; Roebuck, Derek J.; Broderick, Nigel; Gabra, Hany O.; Elliott, Martin J.

    2010-01-01

    Fetal endoscopic tracheal occlusion (FETO) is a promising treatment for severe congenital diaphragmatic hernia, a condition that carries significant morbidity and mortality. It is hypothesised that balloon occlusion of the fetal trachea leads to an improvement in lung growth and development. The major documented complications of FETO to date are related to preterm delivery. To report a series of five infants who developed tracheomegaly following FETO. Review of all children referred with tracheomegaly to the paediatric intensive care and tracheal service at two referral centres. Five neonates presented with features of respiratory distress shortly after birth and were subsequently found to have marked tracheomegaly. Two neonates had tracheomalacia in addition. There are no previous reports in the literature describing tracheomalacia, or more specifically, tracheomegaly, as a consequence of FETO. We propose that the particularly compliant fetal airway is at risk of mechanical damage from in utero balloon occlusion. This observation of a new problem in this cohort suggests a thorough evaluation of the trachea should be performed in children who have had FETO in utero. It may be that balloon occlusion of the trachea earlier in utero (before 26 weeks' gestation) predisposes to this condition. (orig.)

  12. Tracheomegaly: a complication of fetal endoscopic tracheal occlusion in the treatment of congenital diaphragmatic hernia

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kieran; Afaq, Asim; Roebuck, Derek J [Great Ormond Street Hospital for Children, Radiology Department, London (United Kingdom); Broderick, Nigel [Nottingham University Hospitals, Radiology Department, Nottingham (United Kingdom); Gabra, Hany O; Elliott, Martin J [Great Ormond Street Hospital for Children, Department of Cardiothoracic Surgery, London (United Kingdom)

    2010-05-15

    Fetal endoscopic tracheal occlusion (FETO) is a promising treatment for severe congenital diaphragmatic hernia, a condition that carries significant morbidity and mortality. It is hypothesised that balloon occlusion of the fetal trachea leads to an improvement in lung growth and development. The major documented complications of FETO to date are related to preterm delivery. To report a series of five infants who developed tracheomegaly following FETO. Review of all children referred with tracheomegaly to the paediatric intensive care and tracheal service at two referral centres. Five neonates presented with features of respiratory distress shortly after birth and were subsequently found to have marked tracheomegaly. Two neonates had tracheomalacia in addition. There are no previous reports in the literature describing tracheomalacia, or more specifically, tracheomegaly, as a consequence of FETO. We propose that the particularly compliant fetal airway is at risk of mechanical damage from in utero balloon occlusion. This observation of a new problem in this cohort suggests a thorough evaluation of the trachea should be performed in children who have had FETO in utero. It may be that balloon occlusion of the trachea earlier in utero (before 26 weeks' gestation) predisposes to this condition. (orig.)

  13. Fetal Programming of Infant Neuromotor Development: The Generation R Study

    NARCIS (Netherlands)

    van Batenburg-Eddes, T.; de Groot, L.; Steegers, E.A.P.; Hofman, A.; Jaddoe, V.W.V.; Verhulst, F.C.; Tiemeier, H.

    2010-01-01

    The objective of the study was to examine whether infant neuromotor development is determined by fetal size and body symmetry in the general population. This study was embedded within the Generation R Study, a population-based cohort in Rotterdam. In 2965 fetuses, growth parameters were measured in

  14. Effects of nanotoxicity on female reproductivity and fetal development in animal models.

    Science.gov (United States)

    Sun, Jianling; Zhang, Qiu; Wang, Zhiping; Yan, Bing

    2013-04-29

    The extensive application of nanomaterials in industry, medicine and consumer products has raised concerns about their potential toxicity. The female population is particularly vulnerable and deserves special attention because toxicity in this group may impact both female reproductivity and fetal development. Mouse and zebrafish models each have their own unique features and studies using these models to examine the potential toxicity of various nanoparticles are compared and summarized in this review. Several nanoparticles exhibit detrimental effects on female reproductivity as well as fetal development, and these adverse effects are related to nanoparticle composition, surface modification, dose, exposure route and animal species. Limited studies on the mechanisms of nanotoxicity are also documented and reviewed herein.

  15. Effects of Nanotoxicity on Female Reproductivity and Fetal Development in Animal Models

    Directory of Open Access Journals (Sweden)

    Jianling Sun

    2013-04-01

    Full Text Available The extensive application of nanomaterials in industry, medicine and consumer products has raised concerns about their potential toxicity. The female population is particularly vulnerable and deserves special attention because toxicity in this group may impact both female reproductivity and fetal development. Mouse and zebrafish models each have their own unique features and studies using these models to examine the potential toxicity of various nanoparticles are compared and summarized in this review. Several nanoparticles exhibit detrimental effects on female reproductivity as well as fetal development, and these adverse effects are related to nanoparticle composition, surface modification, dose, exposure route and animal species. Limited studies on the mechanisms of nanotoxicity are also documented and reviewed herein.

  16. Fetal cardiology

    International Nuclear Information System (INIS)

    Meijboom, E.J.; Rijsterborgh, N.; Bom, N.

    1986-01-01

    Doppler echocardiography makes it possible to diagnose congenital heart disease in early pregnancy. It allows us to study the anatomical configuration of the fetal heart, and additionally, to evaluate the physiological conditions of the fetus. Evaluation of the direction, velocity, wave form pattern, and quantification of blood flow at the various sites in the fetal heart helps us to assess the characteristics of the fetal circulation and condition of the fetal heart. In order to use this technique in pathological situations, an initial study of the developing normal human fetal circulation was necessary. The authors studied 34 uncomplicated pregnancies by serial Doppler echocardiography. The studies were performed every 4 weeks from 16-weeks gestation to term. The pulsed Doppler sector scanner provided cardiac cross-sectional images, mitral and tricuspid blood velocities were obtained from apical four-chamber views. Angle corrected maximal and mean temporal velocities were calculated by digitizing the Doppler frequency shift recording on a graphic tablet computed with a minicomputer. The angle between the Doppler interrogation beam and the direction of blood flow was kept as small as possible in order to minimize the error

  17. Maternal Therapy with Ad.VEGF-A165 Increases Fetal Weight at Term in a Guinea-Pig Model of Fetal Growth Restriction.

    Science.gov (United States)

    Swanson, Anna M; Rossi, Carlo A; Ofir, Keren; Mehta, Vedanta; Boyd, Michael; Barker, Hannah; Ledwozyw, Agata; Vaughan, Owen; Martin, John; Zachary, Ian; Sebire, Neil; Peebles, Donald M; David, Anna L

    2016-12-01

    In a model of growth-restricted sheep pregnancy, it was previously demonstrated that transient uterine artery VEGF overexpression can improve fetal growth. This approach was tested in guinea-pig pregnancies, where placental physiology is more similar to humans. Fetal growth restriction (FGR) was attained through peri-conceptual nutrient restriction in virgin guinea pigs. Ad.VEGF-A 165 or Ad.LacZ (1 × 10 10 vp) was applied at mid-gestation via laparotomy, delivered externally to the uterine circulation with thermosensitive gel. At short-term (3-8 days post surgery) or at term gestation, pups were weighed, and tissues were sampled for vector spread analysis, VEGF expression, and its downstream effects. Fetal weight at term was increased (88.01 ± 13.36 g; n = 26) in Ad.VEGF-A 165 -treated animals compared with Ad.LacZ-treated animals (85.52 ± 13.00 g; n = 19; p = 0.028). The brain, liver, and lung weight and crown rump length were significantly larger in short-term analyses, as well as VEGF expression in transduced tissues. At term, molecular analyses confirmed the presence of VEGF transgene in target tissues but not in fetal samples. Tissue histology analysis and blood biochemistry/hematological examination were comparable with controls. Uterine artery relaxation in Ad.VEGF-A 165 -treated dams was higher compared with Ad.LacZ-treated dams. Maternal uterine artery Ad.VEGF-A 165 increases fetal growth velocity and term fetal weight in growth-restricted guinea-pig pregnancy.

  18. Fetal magnetic resonance imaging: methods and techniques; Fetale Magnetresonanztomographie: Methoden und Technik

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, P.C. [Zentrum fuer Anatomie und Zellbiologie, Medizinische Universitaet Wien (Austria). Arbeitsgruppe Integrative Morphologie; Stuhr, F.; Lindner, C.; Prayer, D. [Medizinische Universitaet Wien (Austria). Klinik fuer Radiodiagnostik

    2006-02-15

    Since the introduction of fetal magnetic resonance imaging (MRI) into prenatal diagnostics, advances in coil technology and development of ultrafast sequences have further enhanced this technique. At present numerous sequences are available to visualize the whole fetus with high resolution and image quality, even in late stages of pregnancy. Taking into consideration the special circumstances of examination and adjusting sequence parameters to gestational age, fetal anatomy can be accurately depicted. The variety of sequences also allows further characterization of fetal tissues and pathologies. Fetal MRI not only supplies additional information to routine ultrasound studies, but also reveals fetal morphology and pathology in a way hitherto not possible. (orig.) [German] Seit Einfuehrung der fetalen Magnetresonanztomographie (MRT) in die praenatale Diagnostik wurde das Verfahren durch neue Spulentechniken und die Entwicklung ultraschneller Sequenzen kontinuierlich weiter entwickelt. Gegenwaertig steht eine Vielzahl von Sequenzen zur Verfuegung, die es erlauben, mit hoher Bildqualitaet und raeumlicher Aufloesung selbst in fortgeschrittenen Schwangerschaftsstadien den gesamten Feten darzustellen. Unter Beruecksichtigung der speziellen Untersuchungsbedingungen und des Schwangerschaftsalters kann so die fetale Anatomie genau abgebildet werden. Die Vielfalt an Sequenzen und deren gezielter Einsatz ermoeglichen es weiter, fetale Gewebe und Pathologien naeher zu charakterisierten. Auf diese Weise liefert die fetale MRT nicht nur Zusatzinformationen zur Routineultraschalluntersuchung, sie gibt auch Aufschluss ueber bestimmte fetale Morphologien und Pathologien, die bisher nicht darstellbar waren. (orig.)

  19. Fetal electrocardiogram (ECG) for fetal monitoring during labour.

    Science.gov (United States)

    Neilson, James P

    2015-12-21

    Hypoxaemia during labour can alter the shape of the fetal electrocardiogram (ECG) waveform, notably the relation of the PR to RR intervals, and elevation or depression of the ST segment. Technical systems have therefore been developed to monitor the fetal ECG during labour as an adjunct to continuous electronic fetal heart rate monitoring with the aim of improving fetal outcome and minimising unnecessary obstetric interference. To compare the effects of analysis of fetal ECG waveforms during labour with alternative methods of fetal monitoring. The Cochrane Pregnancy and Childbirth Group's Trials Register (latest search 23 September 2015) and reference lists of retrieved studies. Randomised trials comparing fetal ECG waveform analysis with alternative methods of fetal monitoring during labour. One review author independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. One review author assessed the quality of the evidence using the GRADE approach. Seven trials (27,403 women) were included: six trials of ST waveform analysis (26,446 women) and one trial of PR interval analysis (957 women). The trials were generally at low risk of bias for most domains and the quality of evidence for ST waveform analysis trials was graded moderate to high. In comparison to continuous electronic fetal heart rate monitoring alone, the use of adjunctive ST waveform analysis made no obvious difference to primary outcomes: births by caesarean section (risk ratio (RR) 1.02, 95% confidence interval (CI) 0.96 to 1.08; six trials, 26,446 women; high quality evidence); the number of babies with severe metabolic acidosis at birth (cord arterial pH less than 7.05 and base deficit greater than 12 mmol/L) (average RR 0.72, 95% CI 0.43 to 1.20; six trials, 25,682 babies; moderate quality evidence); or babies with neonatal encephalopathy (RR 0.61, 95% CI 0.30 to 1.22; six trials, 26,410 babies; high quality evidence). There were, however, on average

  20. Real-Time Automatic Fetal Brain Extraction in Fetal MRI by Deep Learning

    OpenAIRE

    Salehi, Seyed Sadegh Mohseni; Hashemi, Seyed Raein; Velasco-Annis, Clemente; Ouaalam, Abdelhakim; Estroff, Judy A.; Erdogmus, Deniz; Warfield, Simon K.; Gholipour, Ali

    2017-01-01

    Brain segmentation is a fundamental first step in neuroimage analysis. In the case of fetal MRI, it is particularly challenging and important due to the arbitrary orientation of the fetus, organs that surround the fetal head, and intermittent fetal motion. Several promising methods have been proposed but are limited in their performance in challenging cases and in real-time segmentation. We aimed to develop a fully automatic segmentation method that independently segments sections of the feta...

  1. A Probability Analysis of Historical Pregnancy and Fetal Data from Dutch Belted and New Zealand White Rabbit Strains from Embryo-Fetal Development Studies.

    Science.gov (United States)

    Posobiec, Lorraine M; Cox, Estella M; Solomon, Howard M; Lewis, Elise M; Wang, Kai-fen; Stanislaus, Dinesh

    2016-04-01

    Embryo-fetal development (EFD) studies, typically in pregnant rats and rabbits, are conducted prior to enrolling females of reproductive age in clinical trials. Common rabbit strains used are the New Zealand White (NZW) and Dutch Belted (DB). As fetal abnormalities can occur in all groups, including controls, Historical Control Data (HCD) is compiled using data from control groups of EFD studies, and is used along with each study's concurrent control group to help determine whether fetal abnormalities are caused by the test article or are part of background incidences. A probability analysis was conducted on 2014 HCD collected at Charles River Inc., Horsham PA on Covance NZW, Covance DB, and Charles River (CR) NZW rabbits. The analysis was designed to determine the probability of 2 or 3 out of a group of 22 does aborting their litter or of having a fetal abnormality by chance. Results demonstrate that pregnancy parameters and fetal observations differ not only between strains, but between sources of rabbits of the same strain. As a result the probability of these observations occurring by chance in two or three litters was drastically different. Although no one single strain is perfect, this analysis highlights the need to appreciate the inherent differences in pregnancy and fetal abnormalities between strains, and points out that an apparent isolated increased incidence of an observation in one strain will not necessarily be test-article related in another strain. A robust HCD is critical for interpretation of EFD rabbit studies, regardless of the rabbit strain used. © 2016 Wiley Periodicals, Inc.

  2. Morphology, development, and evolution of fetal membranes and placentation in squamate reptiles.

    Science.gov (United States)

    Blackburn, Daniel G; Flemming, Alexander F

    2009-09-15

    Current studies on fetal membranes of reptiles are providing insight into three major historical transformations: evolution of the amniote egg, evolution of viviparity, and evolution of placentotrophy. Squamates (lizards and snakes) are ideal for such studies because their fetal membranes sustain embryos in oviparous species and contribute to placentas in viviparous species. Ultrastructure of the fetal membranes in oviparous corn snakes (Pituophis guttatus) shows that the chorioallantois is specialized for gas exchange and the omphalopleure, for water absorption. Transmission and scanning electron microscopic studies of viviparous thamnophine snakes (Thamnophis, Storeria) have revealed morphological specializations for gas exchange and absorption in the intra-uterine environment that represent modifications of features found in oviparous species. Thus, fetal membranes in oviparous species show morphological differentiation for distinct functions that have been recruited and enhanced under viviparous conditions. The ultimate in specialization of fetal membranes is found in viviparous skinks of South America (Mabuya) and Africa (Trachylepis, Eumecia), in which placentotrophy accounts for nearly all of the nutrients for development. Ongoing research on these lizards has revealed morphological specializations of the chorioallantoic placenta through which nutrient transfer is accomplished. In addition, African Trachylepis show an invasive form of implantation, in which uterine epithelium is replaced by invading chorionic cells. Ongoing analysis of these lizards shows how integration of multiple lines of evidence can provide insight into the evolution of developmental and reproductive specializations once thought to be confined to eutherian mammals.

  3. Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Fetal Pulmonary Circulation: An Experimental Study in Fetal Lambs.

    Science.gov (United States)

    Sharma, Dyuti; Aubry, Estelle; Ouk, Thavarak; Houeijeh, Ali; Houfflin-Debarge, Véronique; Besson, Rémi; Deruelle, Philippe; Storme, Laurent

    2017-07-16

    Background: Persistent pulmonary hypertension of the newborn (PPHN) causes significant morbidity and mortality in neonates. n -3 Poly-unsaturated fatty acids have vasodilatory properties in the perinatal lung. We studied the circulatory effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in fetal sheep and in fetal pulmonary arterial rings. Methods: At 128 days of gestation, catheters were placed surgically in fetal systemic and pulmonary circulation, and a Doppler probe around the left pulmonary artery (LPA). Pulmonary arterial pressure and LPA flow were measured while infusing EPA or DHA for 120 min to the fetus, to compute pulmonary vascular resistance (PVR). The dose effects of EPA or DHA were studied in vascular rings pre-constricted with serotonin. Rings treated with EPA were separated into three groups: E+ (intact endothelium), E- (endothelium stripped) and LNA E+ (pretreatment of E+ rings with l-nitro-arginine). Results: EPA, but not DHA, induced a significant and prolonged 25% drop in PVR ( n = 8, p DHA resulted in only a mild relaxation at the highest concentration of DHA (300 µM) compared to E+. Conclusions: EPA induces a sustained pulmonary vasodilatation in fetal lambs. This effect is endothelium- and dose-dependent and involves nitric oxide (NO) production. We speculate that EPA supplementation may improve pulmonary circulation in clinical conditions with PPHN.

  4. Growth and development symposium: Fetal programming in animal agriculture

    Science.gov (United States)

    Fetal programming is the ability to improve animal production and well-being by altering the maternal environment and holds enormous challenges and great opportunities for researchers and the animal industry. A symposium was held to provide an overview of current knowledge of fetal programming in re...

  5. Fetal MRI: techniques and protocols

    International Nuclear Information System (INIS)

    Prayer, Daniela; Brugger, Peter Christian; Prayer, Lucas

    2004-01-01

    The development of ultrafast sequences has led to a significant improvement in fetal MRI. Imaging protocols have to be adjusted to the rapidly developing fetal central nervous system (CNS) and to the clinical question. Sequence parameters must be changed to cope with the respective developmental stage, to produce images free from motion artefacts and to provide optimum visualization of the region and focus of interest. In contrast to postnatal studies, every suspect fetal CNS abnormality requires examination of the whole fetus and the extrafetal intrauterine structures including the uterus. This approach covers both aspects of fetal CNS disorders: isolated and complex malformations and cerebral lesions arising from the impaired integrity of the feto-placental unit. (orig.)

  6. Fetal MRI: techniques and protocols

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Neuroradiology, University Clinics of Radiodiagnostics, Medical University Vienna, Waehringerguertel 18-10, 1090, Vienna (Austria); Brugger, Peter Christian [Department of Anatomy, Integrative Morphology Group, Medical University Vienna (Austria); Prayer, Lucas [Diagnosezentrum Urania, Vienna (Austria)

    2004-09-01

    The development of ultrafast sequences has led to a significant improvement in fetal MRI. Imaging protocols have to be adjusted to the rapidly developing fetal central nervous system (CNS) and to the clinical question. Sequence parameters must be changed to cope with the respective developmental stage, to produce images free from motion artefacts and to provide optimum visualization of the region and focus of interest. In contrast to postnatal studies, every suspect fetal CNS abnormality requires examination of the whole fetus and the extrafetal intrauterine structures including the uterus. This approach covers both aspects of fetal CNS disorders: isolated and complex malformations and cerebral lesions arising from the impaired integrity of the feto-placental unit. (orig.)

  7. Development of the liver during the fetal period

    International Nuclear Information System (INIS)

    Albay, S.; Malas, Mehmet A.; Cetin, E.; Cankara, N.; Karahan, N.

    2005-01-01

    To investigate the development of the liver in human fetuses aged between 9-40 weeks. We studied 121 human fetuses (62 males, 59 females) with no external anomalies aged between 9-40 postmenstrual weeks during 2003-2004 in Suleyman Demirel University, Isparta, Turkey. The fetuses were divided into four groups as 1st, 2nd and 3rd trimesters and full term fetuses. We measured fetal weight, length, width, thickness, and volume of the liver. We established localization of the liver and its relation with the neighboring structures, its ligaments, and size of itself and its lobes, shapes of the liver and the localization of the porta hepatis on the visceral surface of the liver. We found significant correlations between the size, weight, volume of the liver, sizes of its lobe and gestational age (p 0.05). However, the proportion of the distance between the porta hepatis and the upper margin to the distance between the porta hepatis and the lower margin decreased significantly with gestational age (p<0.05). Type 3 liver (square) was the most commonly observed type of fetal liver (53%). Our opinion is that the parameters obtained can be useful to diagnose pathologies of liver development and anomalies concerning several branches of medicine such as anatomy, pathologic anatomy (fetopathology), forensic medicine, medical imaging, obstetrics and pediatrics. (author)

  8. The effect of antenatal steroids on fetal lung maturation between the 34th and 36th week of pregnancy.

    Science.gov (United States)

    Balci, Osman; Ozdemir, Suna; Mahmoud, Alaa S; Acar, Ali; Colakoglu, Mehmet C

    2010-01-01

    To evaluate the effect of antenatal treatment with a single dose of betamethasone between the 34th and the 36th week of pregnancy on the maturation of fetal lung. To study 100 pregnant women in their 34th-36th week of pregnancy who were diagnosed as susceptible to have preterm delivery. Fifty patients did not receive betamethasone (group 1). The other 50 patients were administered 12 mg betamethasone in a single dose (group 2). Patients who delivered at least 24 h after the administration of betamethasone were included in this study. After delivery, the Apgar score and the development of respiratory distress syndrome (RDS) in the neonates were compared. Group 2 babies had better Apgar scores when compared to group 1, and the difference was statistically significant. Sixteen (32%) neonates of group 1 and 7 (14%) neonates of group 2 required resuscitation, and the difference was statistically significant (p = 0.032; OR = 0.34, 95% CI 0.12-0.93). RDS was detected in 8 newborns of group 1 and 2 of group 2. The difference was statistically significant (p = 0.046; OR = 0.21, 95% CI 0.04-1.08). The administration of a single dose of betamethasone to pregnant women in their 34th-36th week of pregnancy who are likely to have preterm delivery reduces RDS development. There is a need for larger studies to confirm these results. Copyright 2010 S. Karger AG, Basel.

  9. Development of a Smart Mobile Data Module for Fetal Monitoring in E-Healthcare.

    Science.gov (United States)

    Houzé de l'Aulnoit, Agathe; Boudet, Samuel; Génin, Michaël; Gautier, Pierre-François; Schiro, Jessica; Houzé de l'Aulnoit, Denis; Beuscart, Régis

    2018-03-23

    The fetal heart rate (FHR) is a marker of fetal well-being in utero (when monitoring maternal and/or fetal pathologies) and during labor. Here, we developed a smart mobile data module for the remote acquisition and transmission (via a Wi-Fi or 4G connection) of FHR recordings, together with a web-based viewer for displaying the FHR datasets on a computer, smartphone or tablet. In order to define the features required by users, we modelled the fetal monitoring procedure (in home and hospital settings) via semi-structured interviews with midwives and obstetricians. Using this information, we developed a mobile data transfer module based on a Raspberry Pi. When connected to a standalone fetal monitor, the module acquires the FHR signal and sends it (via a Wi-Fi or a 3G/4G mobile internet connection) to a secure server within our hospital information system. The archived, digitized signal data are linked to the patient's electronic medical records. An HTML5/JavaScript web viewer converts the digitized FHR data into easily readable and interpretable graphs for viewing on a computer (running Windows, Linux or MacOS) or a mobile device (running Android, iOS or Windows Phone OS). The data can be viewed in real time or offline. The application includes tools required for correct interpretation of the data (signal loss calculation, scale adjustment, and precise measurements of the signal's characteristics). We performed a proof-of-concept case study of the transmission, reception and visualization of FHR data for a pregnant woman at 30 weeks of amenorrhea. She was hospitalized in the pregnancy assessment unit and FHR data were acquired three times a day with a Philips Avalon® FM30 fetal monitor. The prototype (Raspberry Pi) was connected to the fetal monitor's RS232 port. The emission and reception of prerecorded signals were tested and the web server correctly received the signals, and the FHR recording was visualized in real time on a computer, a tablet and smartphones

  10. Linear and nonlinear features of fetal heart rate on the assessment of fetal development in the course of pregnancy and the impact of fetal gender.

    Science.gov (United States)

    Spyridou, K; Chouvarda, I; Hadjileontiadis, L; Maglaveras, N

    2018-01-30

    This work aims to investigate the impact of gestational age and fetal gender on fetal heart rate (FHR) tracings. Different linear and nonlinear parameters indicating correlation or complexity were used to study the influence of fetal age and gender on FHR tracings. The signals were recorded from 99 normal pregnant women in a singleton pregnancy at gestational ages from 28 to 40 weeks, before the onset of labor. There were 56 female fetuses and 43 male. Analysis of FHR shows that the means as well as measures of irregularity of FHR, such as approximate entropy and algorithmic complexity, decrease as gestation progresses. There were also indications that mutual information and multiscale entropy were lower in male fetuses in early pregnancy. Fetal age and gender seem to influence FHR tracings. Taking this into consideration would improve the interpretation of FHR monitoring.

  11. Placental adaptations to the maternal-fetal environment: implications for fetal growth and developmental programming.

    Science.gov (United States)

    Sandovici, Ionel; Hoelle, Katharina; Angiolini, Emily; Constância, Miguel

    2012-07-01

    The placenta is a transient organ found in eutherian mammals that evolved primarily to provide nutrients for the developing fetus. The placenta exchanges a wide array of nutrients, endocrine signals, cytokines and growth factors with the mother and the fetus, thereby regulating intrauterine development. Recent studies show that the placenta is not just a passive organ mediating maternal-fetal exchange. It can adapt its capacity to supply nutrients in response to intrinsic and extrinsic variations in the maternal-fetal environment. These dynamic adaptations are thought to occur to maximize fetal growth and viability at birth in the prevailing conditions in utero. However, some of these adaptations may also affect the development of individual fetal tissues, with patho-physiological consequences long after birth. Here, this review summarizes current knowledge on the causes, possible mechanisms and consequences of placental adaptive responses, with a focus on the regulation of transporter-mediated processes for nutrients. This review also highlights the emerging roles that imprinted genes and epigenetic mechanisms of gene regulation may play in placental adaptations to the maternal-fetal environment. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  12. Normal renal development investigated with fetal MRI

    Energy Technology Data Exchange (ETDEWEB)

    Witzani, Linde [Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: linde.witzani@aon.at; Brugger, Peter Christian [Center of Anatomy and Cell Biology, Integrative Morphology Group, Medical University of Vienna, Waehringerstrasse 13, A-1090 Vienna (Austria); Hoermann, Marcus [Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Kasprian, Gregor [Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Csapone-Balassy, Csilla [Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Prayer, Daniela [Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-02-15

    Objective: To evaluate age-dependent changes in fetal kidney measurements with MRI. Patients and methods: Fetal MRI examinations were used to study the kidney length (218 fetuses), signal intensities of renal tissue, renal pelvis, and liver tissue on T2-weighted images (223 fetuses), and the whole-kidney apparent diffusion coefficient (107 fetuses). A 1.5 T superconducting unit with a phased array coil was used in patients from 16 to 39 weeks' gestation. The imaging protocol included T2-weighted single-shot fast spin-echo, T2-weighted balanced angiography and diffusion-weighted sequences. Slice thickness ranged from 3 to 5 mm. Results: Fetal kidney length as a function of gestational age was expressed by the linear regression: kidney length (mm) = 0.190 x gestational age (d) - 8.034 (R {sup 2} 0.883, p < 0.001). Paired t-test analysis showed a highly statistically significant difference between the ratio of renal tissue signal intensity to renal pelvis signal intensity and the ratio of liver signal intensity to renal pelvis signal intensity on T2-weighted images (t = -50.963, d.f. = 162, p < 0.001), with renal tissue hyperintense to liver tissue. The apparent diffusion coefficient in relation to gestational age was described by the equation: ADC ({mu}m{sup 2}/s) = 0.0302 x square (gestational age (d)) - 14.202 x gestational age (d) + 2728.6 (R {sup 2} = 0.225, p < 0.001). Conclusion: The length, signal intensity on T2-weighted images, and apparent diffusion coefficient of the fetal kidney change significantly with gestational age. The presented data may help in the prenatal diagnosis of renal anomalies.

  13. Screening for fetal growth restriction using fetal biometry combined with maternal biomarkers.

    Science.gov (United States)

    Gaccioli, Francesca; Aye, Irving L M H; Sovio, Ulla; Charnock-Jones, D Stephen; Smith, Gordon C S

    2018-02-01

    Fetal growth restriction is a major determinant of perinatal morbidity and mortality. Screening for fetal growth restriction is a key element of prenatal care but it is recognized to be problematic. Screening using clinical risk assessment and targeting ultrasound to high-risk women is the standard of care in the United States and United Kingdom, but the approach is known to have low sensitivity. Systematic reviews of randomized controlled trials do not demonstrate any benefit from universal ultrasound screening for fetal growth restriction in the third trimester, but the evidence base is not strong. Implementation of universal ultrasound screening in low-risk women in France failed to reduce the risk of complications among small-for-gestational-age infants but did appear to cause iatrogenic harm to false positives. One strategy to making progress is to improve screening by developing more sensitive and specific tests with the key goal of differentiating between healthy small fetuses and those that are small through fetal growth restriction. As abnormal placentation is thought to be the major cause of fetal growth restriction, one approach is to combine fetal biometry with an indicator of placental dysfunction. In the past, these indicators were generally ultrasonic measurements, such as Doppler flow velocimetry of the uteroplacental circulation. However, another promising approach is to combine ultrasonic suspicion of small-for-gestational-age infant with a blood test indicating placental dysfunction. Thus far, much of the research on maternal serum biomarkers for fetal growth restriction has involved the secondary analysis of tests performed for other indications, such as fetal aneuploidies. An exemplar of this is pregnancy-associated plasma protein A. This blood test is performed primarily to assess the risk of Down syndrome, but women with low first-trimester levels are now serially scanned in later pregnancy due to associations with placental causes of

  14. Prenatal diagnosis of horseshoe lung and esophageal atresia

    International Nuclear Information System (INIS)

    Goldberg, Shlomit; Ringertz, Hans; Barth, Richard A.

    2006-01-01

    We present a case of horseshoe lung (HL) and esophageal atresia suspected prenatally on US imaging and confirmed with fetal MRI. Prenatal diagnosis of HL and esophageal atresia allowed for prenatal counseling and informed parental decisions. (orig.)

  15. Prenatal diagnosis of horseshoe lung and esophageal atresia

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Shlomit; Ringertz, Hans [Stanford University School of Medicine, Radiology Department, Stanford, CA (United States); Barth, Richard A. [Stanford University School of Medicine, Radiology Department, Stanford, CA (United States); Lucile Packard Children' s Hospital, Radiology, Palo Alto, CA (United States)

    2006-09-15

    We present a case of horseshoe lung (HL) and esophageal atresia suspected prenatally on US imaging and confirmed with fetal MRI. Prenatal diagnosis of HL and esophageal atresia allowed for prenatal counseling and informed parental decisions. (orig.)

  16. Development of an experimental model of brain tissue heterotopia in the lung

    Science.gov (United States)

    Quemelo, Paulo Roberto Veiga; Sbragia, Lourenço; Peres, Luiz Cesar

    2007-01-01

    Summary The presence of heterotopic brain tissue in the lung is a rare abnormality. The cases reported thus far are usually associated with neural tube defects (NTD). As there are no reports of experimental models of NTD that present this abnormality, the objective of the present study was to develop a surgical method of brain tissue heterotopia in the lung. We used 24 pregnant Swiss mice divided into two groups of 12 animals each, denoted 17GD and 18GD according to the gestational day (GD) when caesarean section was performed to collect the fetuses. Surgery was performed on the 15th GD, one fetus was removed by hysterectomy and its brain tissue was cut into small fragments and implanted in the lung of its litter mates. Thirty-four live fetuses were obtained from the 17GD group. Of these, eight (23.5%) were used as control (C), eight (23.5%) were sham operated (S) and 18 (52.9%) were used for pulmonary brain tissue implantation (PBI). Thirty live fetuses were obtained from the females of the 18GD group. Of these, eight (26.6%) were C, eight (26.6%) S and 14 (46.6%) were used for PBI. Histological examination of the fetal trunks showed implantation of GFAP-positive brain tissue in 85% of the fetuses of the 17GD group and in 100% of those of the 18GD group, with no significant difference between groups for any of the parameters analysed. The experimental model proved to be efficient and of relatively simple execution, showing complete integration of the brain tissue with pulmonary and pleural tissue and thus representing a model that will permit the study of different aspects of cell implantation and interaction. PMID:17877535

  17. Studies in Fetal Behavior: Revisited, Renewed, and Reimagined

    Science.gov (United States)

    DiPietro, Janet A.; Costigan, Kathleen A.; Voegtline, Kristin M.

    2016-01-01

    Among the earliest volumes of this Monograph series was a report by Lester Sontag and colleagues, of the esteemed Fels Institute, on the heart rate of the human fetus as an expression of the developing nervous system. Here, some 75 years later, we commemorate this work and provide historical and contemporary context on knowledge regarding fetal development, as well as results from our own research. These are based on synchronized monitoring of maternal and fetal parameters assessed between 24 and 36 weeks gestation on 740 maternal-fetal pairs compiled from eight separate longitudinal studies, which commenced in the early 1990s. Data include maternal heart rate, respiratory sinus arrhythmia, and electrodermal activity and fetal heart rate, motor activity, and their integration. Hierarchical linear modeling of developmental trajectories reveals that the fetus develops in predictable ways consistent with advancing parasympathetic regulation. Findings also include: within-fetus stability (i.e., preservation of rank ordering over time) for heart rate, motor, and coupling measures; a transitional period of decelerating development near 30 weeks gestation; sex differences in fetal heart rate measures but not in most fetal motor activity measures; modest correspondence in fetal neurodevelopment among siblings as compared to unrelated fetuses; and deviations from normative fetal development in fetuses affected by intrauterine growth restriction and other conditions. Maternal parameters also change during this period of gestation and there is evidence that fetal sex and individual variation in fetal neurobehavior influence maternal physiological processes and the local intrauterine context. Results are discussed within the framework of neuromaturation, the emergence of individual differences, and the bidirectional nature of the maternal-fetal relationship. We pose a number of open questions for future research. Although the human fetus remains just out of reach, new

  18. Thoraco-amniotic shunting for fetal pleural effusion--a case series.

    LENUS (Irish Health Repository)

    Walsh, J

    2011-11-15

    Fetal pleural effusion is a rare occurrence, with an incidence of 1 per 10-15,000 pregnancies. The prognosis is related to the underlying cause and is often poor. There is increasing evidence that in utero therapy with thoraco-amniotic shunting improves prognosis by allowing lung expansion thereby preventing hydrops and pulmonary hypoplasia. This is a review of all cases of fetal pleural effusion managed over an eight year period the National Maternity Hospital Dublin. Over the nine year period there were 21 cases of fetal pleural effusion giving an overall incidence of 1 per 9281 deliveries. Of these, 15 underwent thoraco-amniotic shunting. There were associated anomalies diagnosed in 5 (33%) of cases. The overall survival in our cohort was 53%. The presence of hydrops was a poor prognostic factor, with survival in cases with hydrops of 33% (3\\/9) compared to 83% (5\\/6) in those cases without associated hydrops.

  19. Prediction of fetal lung maturity using the lecithin/sphingomyelin (L/S) ratio analysis with a simplified sample preparation, using a commercial microtip-column combined with mass spectrometric analysis.

    Science.gov (United States)

    Kwak, Ho-Seok; Chung, Hee-Jung; Choi, Young Sik; Min, Won-Ki; Jung, So Young

    2015-07-01

    Fetal lung maturity is estimated using the lecithin/sphingomyelin ratio (L/S ratio) in amniotic fluid and it is commonly measured with thin-layer chromatography (TLC). The TLC method is time consuming and technically difficult; however, it is widely used because there is no alternative. We evaluated a novel method for measuring the L/S ratio, which involves a tip-column with a cation-exchange resin and mass spectrometry. Phospholipids in the amniotic fluid were extracted using methanol and chloroform. Choline-containing phospholipids such as lecithin and sphingomyelin were purified by passing them through the tip-column. LC-MS/MS and MALDI-TOF were used to directly analyze the purified samples. The L/S ratio by mass spectrometry was calculated from the sum peak intensity of the six lecithin, and that of sphingomyelin 34:1. In 20 samples, the L/S ratio determined with TLC was significantly correlated with that obtained by LC-MS/MS and MALDI-TOF. There was a 100% concordance between the L/S ratio by TLC and that by LC-MS/MS (kappa value=1.0). The concordance between the L/S ratio by TLC and that by MALDI-TOF was also 100% (kappa value=1.0). Our method provides a faster, simpler, and more reliable assessment of fetal lung maturity. The L/S ratio measured by LC-MS/MS and MALDI-TOF offers a compelling alternative method to traditional TLC. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A novel surgical approach for intratracheal administration of bioactive agents in a fetal mouse model.

    Science.gov (United States)

    Carlon, Marianne S; Toelen, Jaan; da Cunha, Marina Mori; Vidović, Dragana; Van der Perren, Anke; Mayer, Steffi; Sbragia, Lourenço; Nuyts, Johan; Himmelreich, Uwe; Debyser, Zeger; Deprest, Jan

    2012-10-31

    Prenatal pulmonary delivery of cells, genes or pharmacologic agents could provide the basis for new therapeutic strategies for a variety of genetic and acquired diseases. Apart from congenital or inherited abnormalities with the requirement for long-term expression of the delivered gene, several non-inherited perinatal conditions, where short-term gene expression or pharmacological intervention is sufficient to achieve therapeutic effects, are considered as potential future indications for this kind of approach. Candidate diseases for the application of short-term prenatal therapy could be the transient neonatal deficiency of surfactant protein B causing neonatal respiratory distress syndrome(1,2) or hyperoxic injuries of the neonatal lung(3). Candidate diseases for permanent therapeutic correction are Cystic Fibrosis (CF)(4), genetic variants of surfactant deficiencies(5) and α1-antitrypsin deficiency(6). Generally, an important advantage of prenatal gene therapy is the ability to start therapeutic intervention early in development, at or even prior to clinical manifestations in the patient, thus preventing irreparable damage to the individual. In addition, fetal organs have an increased cell proliferation rate as compared to adult organs, which could allow a more efficient gene or stem cell transfer into the fetus. Furthermore, in utero gene delivery is performed when the individual's immune system is not completely mature. Therefore, transplantation of heterologous cells or supplementation of a non-functional or absent protein with a correct version should not cause immune sensitization to the cell, vector or transgene product, which has recently been proven to be the case with both cellular and genetic therapies(7). In the present study, we investigated the potential to directly target the fetal trachea in a mouse model. This procedure is in use in larger animal models such as rabbits and sheep(8), and even in a clinical setting(9), but has to date not been

  1. Forebrain development in fetal MRI: evaluation of anatomical landmarks before gestational week 27

    International Nuclear Information System (INIS)

    Schmook, Maria T.; Weber, Michael; Kasprian, Gregor; Nemec, Stefan; Prayer, Daniela; Brugger, Peter C.; Krampl-Bettelheim, Elisabeth

    2010-01-01

    Forebrain malformations include some of the most severe developmental anomalies and require early diagnosis. The proof of normal or abnormal prosencephalic development may have an influence on further management in the event of a suspected fetal malformation. The purpose of this retrospective study was to evaluate the detectability of anatomical landmarks of forebrain development using in vivo fetal magnetic resonance imaging (MRI) before gestational week (gw) 27. MRI studies of 83 singleton fetuses (gw 16-26, average ±sd: gw 22 ± 2) performed at 1.5 Tesla were assessed. T2-weighted (w) fast spin echo, T1w gradient-echo and diffusion-weighted sequences were screened for the detectability of anatomical landmarks as listed below. The interhemispheric fissure, ocular bulbs, corpus callosum, infundibulum, chiasm, septum pellucidum (SP), profile, and palate were detectable in 95%, 95%, 89%, 87%, 82%, 81%, 78%, 78% of cases. Olfactory tracts were more easily delineated than bulbs and sulci (37% versus 18% and 8%), with significantly higher detection rates in the coronal plane. The pituitary gland could be detected on T1w images in 60% with an increasing diameter with gestational age (p=0.041). The delineation of olfactory tracts (coronal plane), chiasm, SP and pituitary gland were significantly increased after week 21 (p<0.05). Pathologies were found in 28% of cases. This study provides detection rates for anatomical landmarks of forebrain development with fetal MRI before gw 27. Several anatomical structures are readily detectable with routine fetal MRI sequences; thus, if these landmarks are not delineable, it should raise the suspicion of a pathology. Recommendations regarding favorable sequences/planes are provided. (orig.)

  2. Forebrain development in fetal MRI: evaluation of anatomical landmarks before gestational week 27

    Energy Technology Data Exchange (ETDEWEB)

    Schmook, Maria T.; Weber, Michael; Kasprian, Gregor; Nemec, Stefan; Prayer, Daniela [Medical University of Vienna, Department of Radiology/Division of Neuro- and Musculoskeletal Radiology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Integrative Morphology Group, Center for Anatomy and Cell Biology, Vienna (Austria); Krampl-Bettelheim, Elisabeth [Department of Obstetrics and Gynecology / Division of Obstetrics and Feto-maternal Medicine, Vienna (Austria)

    2010-06-15

    Forebrain malformations include some of the most severe developmental anomalies and require early diagnosis. The proof of normal or abnormal prosencephalic development may have an influence on further management in the event of a suspected fetal malformation. The purpose of this retrospective study was to evaluate the detectability of anatomical landmarks of forebrain development using in vivo fetal magnetic resonance imaging (MRI) before gestational week (gw) 27. MRI studies of 83 singleton fetuses (gw 16-26, average {+-}sd: gw 22 {+-} 2) performed at 1.5 Tesla were assessed. T2-weighted (w) fast spin echo, T1w gradient-echo and diffusion-weighted sequences were screened for the detectability of anatomical landmarks as listed below. The interhemispheric fissure, ocular bulbs, corpus callosum, infundibulum, chiasm, septum pellucidum (SP), profile, and palate were detectable in 95%, 95%, 89%, 87%, 82%, 81%, 78%, 78% of cases. Olfactory tracts were more easily delineated than bulbs and sulci (37% versus 18% and 8%), with significantly higher detection rates in the coronal plane. The pituitary gland could be detected on T1w images in 60% with an increasing diameter with gestational age (p=0.041). The delineation of olfactory tracts (coronal plane), chiasm, SP and pituitary gland were significantly increased after week 21 (p<0.05). Pathologies were found in 28% of cases. This study provides detection rates for anatomical landmarks of forebrain development with fetal MRI before gw 27. Several anatomical structures are readily detectable with routine fetal MRI sequences; thus, if these landmarks are not delineable, it should raise the suspicion of a pathology. Recommendations regarding favorable sequences/planes are provided. (orig.)

  3. [Morphologic study of the intestine in an experimental model of amnioinfusion in fetal rabbits with gastroschisis].

    Science.gov (United States)

    Muñoz, M E; Albert, A; Juliá, V; Sancho, M A; Grande, C; Martínez, A; Morales, L

    2002-10-01

    An experimental model of serial amnioinfusion has been developed in fetal rabbits with gastroschisis, using an intraamniotic catheter connected to a subcutaneous port. Fetuses of 4 groups were compared 7 days after surgery: group A: gastroschisis and daily amnioinfusion through an implanted catheter; group C: gastroschisis and blind amniotic catheter; group G: gastroschisis without catheter; group O: nonoperated fetuses. Survival rate, fetal body weight, lung weight, intestinal weight and length were determined. Computer aided morphometric analysis was performed, in which intestinal diameter, thickness and villi length were measured. Amniotic fluid samples were recovered along the experimental period. Intestinal length was significantly shorter and had a significantly thicker wall than nonoperated fetuses; we found no other morphometric differences between gastroschisis treated with amnioinfusion (group A) and the other gastroschisis groups (C and G). Amnioinfusion did not affect fetal survival rate; the amniotic catheter alone did not cause pulmonary hypoplasia due to significant amniotic leak. The physiological decrease in amniotic volume towards the end of gestation has not been modified by this regime of amnioinfusion.

  4. Central vagal sensory and motor connections: human embryonic and fetal development.

    Science.gov (United States)

    Cheng, Gang; Zhou, Xiangtian; Qu, Jia; Ashwell, Ken W S; Paxinos, G

    2004-07-30

    The embryonic and fetal development of the nuclear components and pathways of vagal sensorimotor circuits in the human has been studied using Nissl staining and carbocyanine dye tracing techniques. Eight fetal brains ranging from 8 to 28 weeks of development had DiI (1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate) inserted into either the thoracic vagus nerve at the level of the sternal angle (two specimens of 8 and 9 weeks of gestation) or into vagal rootlets at the surface of the medulla (at all other ages), while a further five were used for study of cytoarchitectural development. The first central labeling resulting from peripheral application of DiI to the thoracic vagus nerve was seen at 8 weeks. By 9 weeks, labeled bipolar cells at the ventricular surface around the sulcus limitans (sl) were seen after DiI application to the thoracic vagus nerve. Subnuclear organization as revealed by both Nissl staining and carbocyanine dye tracing was found to be advanced at a relatively early fetal age, with afferent segregation in the medial Sol apparent at 13 weeks and subnuclear organization of efferent magnocellular divisions of dorsal motor nucleus of vagus nerve noticeable at the same stage. The results of the present study also confirm that vagal afferents are distributed to the dorsomedial subnuclei of the human nucleus of the solitary tract, with particular concentrations of afferent axons in the gelatinosus subnucleus. These vagal afferents appeared to have a restricted zone of termination from quite early in development (13 weeks) suggesting that there is no initial exuberance in the termination field of vagal afferents in the developing human nucleus of the solitary tract. On the other hand, the first suggestion of afferents invading 10N from the medial Sol was not seen until 20 weeks and was not well developed until 24 weeks, suggesting that direct monosynaptic connections between the sensory and effector components of the vagal

  5. A gene network switch enhances the oxidative capacity of ovine skeletal muscle during late fetal development

    Directory of Open Access Journals (Sweden)

    Bidwell Christopher A

    2010-06-01

    Full Text Available Abstract Background The developmental transition between the late fetus and a newborn animal is associated with profound changes in skeletal muscle function as it adapts to the new physiological demands of locomotion and postural support against gravity. The mechanisms underpinning this adaption process are unclear but are likely to be initiated by changes in hormone levels. We tested the hypothesis that this developmental transition is associated with large coordinated changes in the transcription of skeletal muscle genes. Results Using an ovine model, transcriptional profiling was performed on Longissimus dorsi skeletal muscle taken at three fetal developmental time points (80, 100 and 120 d of fetal development and two postnatal time points, one approximately 3 days postpartum and a second at 3 months of age. The developmental time course was dominated by large changes in expression of 2,471 genes during the interval between late fetal development (120 d fetal development and 1-3 days postpartum. Analysis of the functions of genes that were uniquely up-regulated in this interval showed strong enrichment for oxidative metabolism and the tricarboxylic acid cycle indicating enhanced mitochondrial activity. Histological examination of tissues from these developmental time points directly confirmed a marked increase in mitochondrial activity between the late fetal and early postnatal samples. The promoters of genes that were up-regulated during this fetal to neonatal transition were enriched for estrogen receptor 1 and estrogen related receptor alpha cis-regulatory motifs. The genes down-regulated during this interval highlighted de-emphasis of an array of functions including Wnt signaling, cell adhesion and differentiation. There were also changes in gene expression prior to this late fetal - postnatal transition and between the two postnatal time points. The former genes were enriched for functions involving the extracellular matrix and immune

  6. Analysis of gene expression in fetal and adult cells infected with rubella virus

    International Nuclear Information System (INIS)

    Adamo, Maria Pilar; Zapata, Marta; Frey, Teryl K.

    2008-01-01

    Congenital infection with rubella virus (RUB) leads to persistent infection and congenital defects and we showed previously that primary human fetal fibroblasts did not undergo apoptosis when infected with RUB, which could promote fetal virus persistence [Adamo, P., Asis, L., Silveyra, P., Cuffini, C., Pedranti, M., Zapata, M., 2004. Rubella virus does not induce apoptosis in primary human embryo fibroblasts cultures: a possible way of viral persistence in congenital infection. Viral Immunol. 17, 87-100]. To extend this observation, gene chip analysis was performed on a line of primary human fetal fibroblasts (10 weeks gestation) and a line of human adult lung fibroblasts (which underwent apoptosis in response to RUB infection) to compare gene expression in infected and uninfected cells. A total of 632 and 516 genes were upregulated or downregulated in the infected fetal and adult cells respectively in comparison to uninfected cells, however only 52 genes were regulated in both cell types. Although the regulated genes were different, across functional gene categories the patterns of gene regulation were similar. In general, regulation of pro- and anti-apoptotic genes following infection appeared to favor apoptosis in the adult cells and lack of apoptosis in the fetal cells, however there was a greater relative expression of anti-apoptotic genes and reduced expression of pro-apoptotic genes in uninfected fetal cells versus uninfected adult cells and thus the lack of apoptosis in fetal cells following RUB infection was also due to the prevailing background of gene expression that is antagonistic to apoptosis. In support of this hypothesis, it was found that of a battery of five chemicals known to induce apoptosis, two induced apoptosis in the adult cells, but not in fetal cells, and two induced apoptosis more rapidly in the adult cells than in fetal cells (the fifth did not induce apoptosis in either). A robust interferon-stimulated gene response was induced

  7. STEREOLOGICAL STUDIES ON FETAL VASCULAR DEVELOPMENT IN HUMAN PLACENTAL VILLI

    Directory of Open Access Journals (Sweden)

    Terry M Mayhew

    2011-05-01

    Full Text Available In human pregnancy, fetal well-being depends on the development of placental villi and the creation and maintenance of fetal microvessels within them. The aim of this study was to define stereological measures of the growth, capillarization and maturation of villi and of fetoplacental angiogenesis and capillary remodelling. Placentas were collected at 12-41 weeks of gestation and assigned to six age groups spanning equal age ranges. Tissue samples were randomised for position and orientation. Overall growth of peripheral (intermediate and terminal villi and their capillaries was evaluated using total volumes, surface areas and lengths. Measures of villous capillarization comprised capillary volume, surface and length densities and capillary:villus surface and length ratios. Size and shape remodelling of villi and capillaries was assessed using mean cross-sectional areas, perimeters and shape coefficients (perimeter2/area. Group comparisons were drawn by analysis of variance. Villous and capillary volumes, surfaces and lengths increased significantly throughout gestation. Villous maturation involved phasic (capillary:villus surface and length ratios or progressive (volume, surface and length densities increases in indices of villous capillarization. It also involved isomorphic thinning (cross-sectional areas and perimeters declined but shape coefficients did not alter. In contrast, growth of capillaries did not involve changes in luminal areas or perimeters. The results show that villous growth and fetal angiogenesis involve increases in overall length rather than calibre and that villous differentiation involves increased capillarization. Although they do not distinguish between increases in the lengths versus numbers of capillary segments, other studies have shown that capillaries switch from branching to non-branching angiogenesis during gestation. Combined with maintenance of capillary calibres, these processes will contribute to the reduced

  8. Antenatal Steroids and the IUGR Fetus: Are Exposure and Physiological Effects on the Lung and Cardiovascular System the Same as in Normally Grown Fetuses?

    Directory of Open Access Journals (Sweden)

    Janna L. Morrison

    2012-01-01

    Full Text Available Glucocorticoids are administered to pregnant women at risk of preterm labour to promote fetal lung surfactant maturation. Intrauterine growth restriction (IUGR is associated with an increased risk of preterm labour. Hence, IUGR babies may be exposed to antenatal glucocorticoids. The ability of the placenta or blood brain barrier to remove glucocorticoids from the fetal compartment or the brain is compromised in the IUGR fetus, which may have implications for lung, brain, and heart development. There is conflicting evidence on the effect of exogenous glucocorticoids on surfactant protein expression in different animal models of IUGR. Furthermore, the IUGR fetus undergoes significant cardiovascular adaptations, including altered blood pressure regulation, which is in conflict with glucocorticoid-induced alterations in blood pressure and flow. Hence, antenatal glucocorticoid therapy in the IUGR fetus may compromise regulation of cardiovascular development. The role of cortisol in cardiomyocyte development is not clear with conflicting evidence in different species and models of IUGR. Further studies are required to study the effects of antenatal glucocorticoids on lung, brain, and heart development in the IUGR fetus. Of specific interest are the aetiology of IUGR and the resultant degree, duration, and severity of hypoxemia.

  9. Antenatal steroids and the IUGR fetus: are exposure and physiological effects on the lung and cardiovascular system the same as in normally grown fetuses?

    Science.gov (United States)

    Morrison, Janna L; Botting, Kimberley J; Soo, Poh Seng; McGillick, Erin V; Hiscock, Jennifer; Zhang, Song; McMillen, I Caroline; Orgeig, Sandra

    2012-01-01

    Glucocorticoids are administered to pregnant women at risk of preterm labour to promote fetal lung surfactant maturation. Intrauterine growth restriction (IUGR) is associated with an increased risk of preterm labour. Hence, IUGR babies may be exposed to antenatal glucocorticoids. The ability of the placenta or blood brain barrier to remove glucocorticoids from the fetal compartment or the brain is compromised in the IUGR fetus, which may have implications for lung, brain, and heart development. There is conflicting evidence on the effect of exogenous glucocorticoids on surfactant protein expression in different animal models of IUGR. Furthermore, the IUGR fetus undergoes significant cardiovascular adaptations, including altered blood pressure regulation, which is in conflict with glucocorticoid-induced alterations in blood pressure and flow. Hence, antenatal glucocorticoid therapy in the IUGR fetus may compromise regulation of cardiovascular development. The role of cortisol in cardiomyocyte development is not clear with conflicting evidence in different species and models of IUGR. Further studies are required to study the effects of antenatal glucocorticoids on lung, brain, and heart development in the IUGR fetus. Of specific interest are the aetiology of IUGR and the resultant degree, duration, and severity of hypoxemia.

  10. Partial pulmonary embolization disrupts alveolarization in fetal sheep

    Directory of Open Access Journals (Sweden)

    Hooper Stuart B

    2010-04-01

    Full Text Available Abstract Background Although bronchopulmonary dysplasia is closely associated with an arrest of alveolar development and pulmonary capillary dysplasia, it is unknown whether these two features are causally related. To investigate the relationship between pulmonary capillaries and alveolar formation, we partially embolized the pulmonary capillary bed. Methods Partial pulmonary embolization (PPE was induced in chronically catheterized fetal sheep by injection of microspheres into the left pulmonary artery for 1 day (1d PPE; 115d gestational age; GA or 5 days (5d PPE; 110-115d GA. Control fetuses received vehicle injections. Lung morphology, secondary septal crests, elastin, collagen, myofibroblast, PECAM1 and HIF1α abundance and localization were determined histologically. VEGF-A, Flk-1, PDGF-A and PDGF-Rα mRNA levels were measured using real-time PCR. Results At 130d GA (term ~147d, in embolized regions of the lung the percentage of lung occupied by tissue was increased from 29 ± 1% in controls to 35 ± 1% in 1d PPE and 44 ± 1% in 5d PPE fetuses (p VEGF and Flk-1, although a small increase in PDGF-Rα expression at 116d GA, from 1.00 ± 0.12 in control fetuses to 1.61 ± 0.18 in 5d PPE fetuses may account for impaired differentiation of alveolar myofibroblasts and alveolar development. Conclusions PPE impairs alveolarization without adverse systemic effects and is a novel model for investigating the role of pulmonary capillaries and alveolar myofibroblasts in alveolar formation.

  11. Antithyroid drug-induced fetal goitrous hypothyroidism

    DEFF Research Database (Denmark)

    Bliddal, Sofie; Rasmussen, Ase Krogh; Sundberg, Karin

    2011-01-01

    Maternal overtreatment with antithyroid drugs can induce fetal goitrous hypothyroidism. This condition can have a critical effect on pregnancy outcome, as well as on fetal growth and neurological development. The purpose of this Review is to clarify if and how fetal goitrous hypothyroidism can...... be prevented, and how to react when prevention has failed. Understanding the importance of pregnancy-related changes in maternal thyroid status when treating a pregnant woman is crucial to preventing fetal goitrous hypothyroidism. Maternal levels of free T(4) are the most consistent indication of maternal...... and fetal thyroid status. In patients with fetal goitrous hypothyroidism, intra-amniotic levothyroxine injections improve fetal outcome. The best way to avoid maternal overtreatment with antithyroid drugs is to monitor closely the maternal thyroid status, especially estimates of free T(4) levels....

  12. Effects of a 4.7 T static magnetic field on fetal development in ICR mice

    International Nuclear Information System (INIS)

    Okazaki, Ryuji; Ootsuyama, Akira; Uchida, Soshi; Norimura, Toshiyuki

    2001-01-01

    In order to determine the effects of a 4.7 T static magnetic field (SMF) on fetal development in mice, we evaluated fetal teratogenesis and endochondral ossification following exposure in utero. Pregnant ICR mice were exposed to a 4.7 T SMF from day 7.5 to 9.5 of gestation in a whole-body dose, and sacrificed on day 18.5 of gestation. We examined with incidence of prenatal death, external malformations and fetal skeletal malformations. There were no significant differences observed in the incidence of prenatal death and/or malformations between SMF-exposed mice and control mice. Further, we evaluated the immunoreactivity for the vascular endothelial growth factor (VEGF), which is implicated in angiogenesis and osteogenesis, in the sternum of fetal mice following magnetic exposure. Our studies also indicated that on day 16.5 of gestation following SMF exposure, the immunoreactivity for VEGF was increased compared to unexposed controls. However, it was decreased in the exposed group compared to the control group on day 18.5 of gestation. DNA and proteoglycan (PG) synthesis were also measured in rabbit costal growth plate chondrocytes in vitro. No significant differences were observed in DNA synthesis between the SMF exposed chondrocytes and the control chondrocytes; however, PG synthesis in SMF exposed chondrocytes increased compared to the controls. Based on these results, we suggest that while SMF exposure promoted the endochondral ossification of chondrocytes, it did not induce any harmful effects on fetal development in ICR mice. (author)

  13. Effects of a 4.7 T static magnetic field on fetal development in ICR mice

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Ryuji; Ootsuyama, Akira; Uchida, Soshi; Norimura, Toshiyuki [Univ. of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan). School of Medicine

    2001-09-01

    In order to determine the effects of a 4.7 T static magnetic field (SMF) on fetal development in mice, we evaluated fetal teratogenesis and endochondral ossification following exposure in utero. Pregnant ICR mice were exposed to a 4.7 T SMF from day 7.5 to 9.5 of gestation in a whole-body dose, and sacrificed on day 18.5 of gestation. We examined with incidence of prenatal death, external malformations and fetal skeletal malformations. There were no significant differences observed in the incidence of prenatal death and/or malformations between SMF-exposed mice and control mice. Further, we evaluated the immunoreactivity for the vascular endothelial growth factor (VEGF), which is implicated in angiogenesis and osteogenesis, in the sternum of fetal mice following magnetic exposure. Our studies also indicated that on day 16.5 of gestation following SMF exposure, the immunoreactivity for VEGF was increased compared to unexposed controls. However, it was decreased in the exposed group compared to the control group on day 18.5 of gestation. DNA and proteoglycan (PG) synthesis were also measured in rabbit costal growth plate chondrocytes in vitro. No significant differences were observed in DNA synthesis between the SMF exposed chondrocytes and the control chondrocytes; however, PG synthesis in SMF exposed chondrocytes increased compared to the controls. Based on these results, we suggest that while SMF exposure promoted the endochondral ossification of chondrocytes, it did not induce any harmful effects on fetal development in ICR mice. (author)

  14. Prenatal ultrasound and fetal MRI: the comparative value of each modality in prenatal diagnosis.

    Science.gov (United States)

    Pugash, Denise; Brugger, Peter C; Bettelheim, Dieter; Prayer, Daniela

    2008-11-01

    Fetal MRI is used with increasing frequency as an adjunct to ultrasound (US) in prenatal diagnosis. In this review, we discuss the relative value of both prenatal US and MRI in evaluating fetal and extra-fetal structures for a variety of clinical indications. Advantages and disadvantages of each imaging modality are addressed. In summary, MRI has advantages in demonstrating pathology of the brain, lungs, complex syndromes, and conditions associated with reduction of amniotic fluid. At present, US is the imaging method of choice during the first trimester, and in the diagnosis of cardiovascular abnormalities, as well as for screening. In some conditions, such as late gestational age, increased maternal body mass index, skeletal dysplasia, and metabolic disease, neither imaging method may provide sufficient diagnostic information.

  15. Prenatal ultrasound and fetal MRI: The comparative value of each modality in prenatal diagnosis

    International Nuclear Information System (INIS)

    Pugash, Denise; Brugger, Peter C.; Bettelheim, Dieter; Prayer, Daniela

    2008-01-01

    Fetal MRI is used with increasing frequency as an adjunct to ultrasound (US) in prenatal diagnosis. In this review, we discuss the relative value of both prenatal US and MRI in evaluating fetal and extra-fetal structures for a variety of clinical indications. Advantages and disadvantages of each imaging modality are addressed. In summary, MRI has advantages in demonstrating pathology of the brain, lungs, complex syndromes, and conditions associated with reduction of amniotic fluid. At present, US is the imaging method of choice during the first trimester, and in the diagnosis of cardiovascular abnormalities, as well as for screening. In some conditions, such as late gestational age, increased maternal body mass index, skeletal dysplasia, and metabolic disease, neither imaging method may provide sufficient diagnostic information

  16. Prenatal ultrasound and fetal MRI: The comparative value of each modality in prenatal diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Pugash, Denise [Department of Radiology, University of British Columbia, Vancouver (Canada)], E-mail: dpugash@cw.bc.ca; Brugger, Peter C. [Integrative Morphology Group, Centre of Anatomy and Cell Biology, Medical University of Vienna, Waehringerstrasse 13, 1090 Vienna (Austria); Bettelheim, Dieter [University Clinics of Obstetrics and Gynaecology, Medical University of Vienna, Waehringerguertel 18-20, 1090 Wien (Austria); Prayer, Daniela [University Clinics of Radiodiagnostics, Medical University of Vienna, Waehringerguertel 18-20, 1090 Wien (Austria)

    2008-11-15

    Fetal MRI is used with increasing frequency as an adjunct to ultrasound (US) in prenatal diagnosis. In this review, we discuss the relative value of both prenatal US and MRI in evaluating fetal and extra-fetal structures for a variety of clinical indications. Advantages and disadvantages of each imaging modality are addressed. In summary, MRI has advantages in demonstrating pathology of the brain, lungs, complex syndromes, and conditions associated with reduction of amniotic fluid. At present, US is the imaging method of choice during the first trimester, and in the diagnosis of cardiovascular abnormalities, as well as for screening. In some conditions, such as late gestational age, increased maternal body mass index, skeletal dysplasia, and metabolic disease, neither imaging method may provide sufficient diagnostic information.

  17. Maternal hemodynamics, fetal biometry and Dopplers in pregnancies followed up for suspected fetal growth restriction.

    Science.gov (United States)

    Roberts, Llinos A; Ling, Hua Zen; Poon, Liona; Nicolaides, Kypros H; Kametas, Nikos A

    2018-04-01

    To assess whether in a cohort of patients with small for gestational age (SGA) foetuses with estimated fetal weight ≤10 th percentile, maternal hemodynamics, fetal biometry and Dopplers at presentation, can predict the subsequent development of abnormal fetal Dopplers or delivery with birthweight Cheetah), mean arterial pressure, fetal biometry, umbilical artery (UA), middle cerebral artery (MCA) and uterine artery (UT) pulsatility index (PI) and the deepest vertical pool (DVP) of amniotic fluid. Z-scores of these variables were calculated based on reported reference ranges and the values were compared between those with evidence of abnormal fetal Dopplers at presentation (group 1), those that developed abnormal Dopplers in subsequent visits (group 2) and those who did not develop abnormal Dopplers throughout pregnancy (group 3). Abnormal fetal Dopplers were defined as UAPI >95 th percentile, or MCA PI <5 th percentile. Differences in measured variables at presentation were also compared between pregnancies delivering a baby with birthweight <3 rd and ≥3 rd percentile. Multivariate logistic regression analysis was used to determine significant predictors of birthweight <3 rd percentile and evolution from normal fetal Dopplers to abnormal fetal Dopplers in groups 2 and 3. In the study population 14 (16%) cases were in group 1, 19 (22%) in group 2 and 53 (62%) in group 3. The birthweight was <3 rd percentile in 39 (45%) cases and ≥3 rd percentile in 47 (55%). In the study groups, compared to normal populations, there was decreased cardiac output and stroke volume and increased peripheral vascular resistance and mean arterial pressure (MAP) and the deviations from normal were most marked in group 1. Pregnancies with a birthweight <3 rd , compared to those ≥3 rd percentile, had higher deviations from normal in fetal biometry, maternal cardiac output, stroke volume, heart rate and peripheral vascular resistance and UT-PI. Multivariate logistic regression

  18. Development of a Guinea Pig Lung Deposition Model

    Science.gov (United States)

    2016-01-01

    Development of a Guinea Pig Lung Deposition Model Distribution Statement A. Approved for public release; distribution is unlimited. January...4 Figure 2. Particle deposition in the lung of the guinea pig via endotracheal breathing...Particle deposition in the lungs of guinea pigs via nasal breathing. ......................................... 12 v PREFACE The research work

  19. The Relationship between Autism Spectrum Disorder and Melatonin during Fetal Development

    Directory of Open Access Journals (Sweden)

    Yunho Jin

    2018-01-01

    Full Text Available The aim of this review is to clarify the interrelationship between melatonin and autism spectrum disorder (ASD during fetal development. ASD refers to a diverse range of neurodevelopmental disorders characterized by social deficits, impaired communication, and stereotyped or repetitive behaviors. Melatonin, which is secreted by the pineal gland, has well-established neuroprotective and circadian entraining effects. During pregnancy, the hormone crosses the placenta into the fetal circulation and transmits photoperiodic information to the fetus allowing the establishment of normal sleep patterns and circadian rhythms that are essential for normal neurodevelopment. Melatonin synthesis is frequently impaired in patients with ASD. The hormone reduces oxidative stress, which is harmful to the central nervous system. Therefore, the neuroprotective and circadian entraining roles of melatonin may reduce the risk of neurodevelopmental disorders such as ASD.

  20. The Gini coefficient: a methodological pilot study to assess fetal brain development employing postmortem diffusion MRI

    International Nuclear Information System (INIS)

    Viehweger, Adrian; Sorge, Ina; Hirsch, Wolfgang; Riffert, Till; Dhital, Bibek; Knoesche, Thomas R.; Anwander, Alfred; Stepan, Holger

    2014-01-01

    Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm 2 . Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R 2 = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state. (orig.)

  1. Fetal echocardiography

    International Nuclear Information System (INIS)

    Chaubal, Nitin G.; Chaubal, Jyoti

    2009-01-01

    USG performed with a high-end machine, using a good cine-loop facility is extremely helpful in the diagnosis of fetal cardiac anomalies. In fetal echocardiography, the four-chamber view and the outflow-tract view are used to diagnose cardiac anomalies. The most important objective during a targeted anomaly scan is to identify those cases that need a dedicated fetal echocardiogram. Associated truncal and chromosomal anomalies need to be identified. This review shows how fetal echocardiography, apart from identifying structural defects in the fetal heart, can be used to look at rhythm abnormalities and other functional aspects of the fetal heart

  2. Platelet-activating factor synthesis and receptor-mediated signaling are downregulated in ovine newborn lungs: relevance in postnatal pulmonary adaptation and persistent pulmonary hypertension of the newborn.

    Science.gov (United States)

    Renteria, L S; Cruz, E; Ibe, B O

    2013-12-01

    Platelet-activating factor (PAF) is a phospholipid with a wide range of biological activities. We studied PAF metabolism and PAF receptor (PAFR) signaling in perinatal ovine lungs to understand PAF's role in transition of the perinatal pulmonary hemodynamics and pathophysiology of persistent pulmonary hypertension of the newborn. We hypothesized that downregulation of PAF synthesis with upregulation of PAF catabolism by acetylhydrolase (PAF-Ah) in the newborn lung is needed for fetus-to-newborn pulmonary adaptation. Studies were conducted on fetal and newborn lamb pulmonary arteries (PA), veins (PV) and smooth muscle cells (SMC). PAF metabolism, PAFR binding and cell proliferation were studied by cell culture; gene expression was studied by qPCR. Fetal lungs synthesized 60% more PAF than newborn lungs. Compared with the fetal PVs and SMCs, PAF-Ah activity in newborn was 40-60% greater. PAF-Ah mRNA expression in newborn vessels was different from the expression by fetal PA. PAF-Ah gene clone activity confirmed deletion of hypoxia-sensitive site. PAFR mRNA expression by the PVs and SMC-PV of the fetus and newborn was greater than by corresponding PAs and SMC-PA. Q-PCR study of PAFR expression by the SMC-PV of both groups was greater than SMC-PA. Fetal SMCs bound more PAF than the newborn SMCs. PAFR antagonist, CV-3988, inhibited PAFR binding and DNA synthesis by the fetal SMCs, but augmented binding and DNA synthesis by newborn cells. We show different PAF-PAFR mediated effects in perinatal lungs, suggesting both transcriptional and translational regulation of PAF-Ah and PAFR expression in the perinatal lamb lungs. These indicate that the downregulation of PAF-mediated effects postnatally protects against persistent pulmonary hypertension of the newborn.

  3. Regulated gene expression in cultured type II cells of adult human lung

    OpenAIRE

    Ballard, Philip L.; Lee, Jae W.; Fang, Xiaohui; Chapin, Cheryl; Allen, Lennell; Segal, Mark R.; Fischer, Horst; Illek, Beate; Gonzales, Linda W.; Kolla, Venkatadri; Matthay, Michael A.

    2010-01-01

    Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at ∼95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days...

  4. WHO multicentre study for the development of growth standards from fetal life to childhood

    DEFF Research Database (Denmark)

    Merialdi, Mario; Widmer, Mariana; Gülmezoglu, Ahmet Metin

    2014-01-01

    backgrounds. The study will select pregnant women of high-middle socioeconomic status with no obvious environmental constraints on growth (adequate nutritional status, non-smoking), and normal pregnancy history with no complications likely to affect fetal growth. The study will be conducted in centres from...... ten developing and industrialized countries: Argentina, Brazil, Democratic Republic of Congo, Denmark, Egypt, France, Germany, India, Norway, and Thailand. At each centre, 140 pregnant women will be recruited between 8 + 0 and 12 + 6 weeks of gestation. Subsequently, visits for fetal biometry...

  5. Prenatal diagnosis of congenital cystic adenomatoid malformation of the lung: A case report

    International Nuclear Information System (INIS)

    Shin, Hyun Ja; Shin, M. J.; Yoo, Y. J.; Park, J. M.; Kim, J. R.

    1990-01-01

    Congenital cystic adenomatoid malformation is one of a rare congenital malformation usually unilateal in volving a part of lobe or a whole lobe of the fetal lung, characterized by excessive growing of terminal respiratory element. We made a prenatal diagnosis in a case of congenital cystic adenomdtoid malformation with diffuse bilateral involvement, Stocker Type III which is associated with fetal hydrops

  6. Analysis of fetal movements by Doppler actocardiogram and fetal B-mode imaging.

    Science.gov (United States)

    Maeda, K; Tatsumura, M; Utsu, M

    1999-12-01

    We have presented that fetal surveillance may be enhanced by use of the fetal actocardiogram and by computerized processing of fetal motion as well as fetal B-mode ultrasound imaging. Ultrasonic Doppler fetal actogram is a sensitive and objective method for detecting and recording fetal movements. Computer processing of the actograph output signals enables powerful, detailed, and convenient analysis of fetal physiologic phenomena. The actocardiogram is a useful measurement tool not only in fetal behavioral studies but also in evaluation of fetal well-being. It reduces false-positive, nonreactive NST and false-positive sinusoidal FHR pattern. It is a valuable tool to predict fetal distress. The results of intrapartum fetal monitoring are further improved by the antepartum application of the actocardiogram. Quantified fetal motion analysis is a useful, objective evaluation of the embryo and fetus. This method allows monitoring of changes in fetal movement, as well as frequency, amplitude, and duration. Furthermore, quantification of fetal motion enables evaluation of fetal behavior states and how these states relate to other measurements, such as changes in FHR. Numeric analysis of both fetal actogram and fetal motion from B-mode images is a promising application in the correlation of fetal activity or behavior with other fetal physiologic measurements.

  7. Bioenergetics of lung tumors: alteration of mitochondrial biogenesis and respiratory capacity.

    Science.gov (United States)

    Bellance, N; Benard, G; Furt, F; Begueret, H; Smolková, K; Passerieux, E; Delage, J P; Baste, J M; Moreau, P; Rossignol, R

    2009-12-01

    Little is known on the metabolic profile of lung tumors and the reminiscence of embryonic features. Herein, we determined the bioenergetic profiles of human fibroblasts taken from lung epidermoid carcinoma (HLF-a) and fetal lung (MRC5). We also analysed human lung tumors and their surrounding healthy tissue from four patients with adenocarcinoma. On these different models, we measured functional parameters (cell growth rates in oxidative and glycolytic media, respiration, ATP synthesis and PDH activity) as well as compositional features (expression level of various energy proteins and upstream transcription factors). The results demonstrate that both the lung fetal and cancer cell lines produced their ATP predominantly by glycolysis, while oxidative phosphorylation was only capable of poor ATP delivery. This was explained by a decreased mitochondrial biogenesis caused by a lowered expression of PGC1alpha (as shown by RT-PCR and Western blot) and mtTFA. Consequently, the relative expression of glycolytic versus OXPHOS markers was high in these cells. Moreover, the re-activation of mitochondrial biogenesis with resveratrol induced cell death specifically in cancer cells. A consistent reduction of mitochondrial biogenesis and the subsequent alteration of respiratory capacity was also observed in lung tumors, associated with a lower expression level of bcl2. Our data give a better characterization of lung cancer cells' metabolic alterations which are essential for growth and survival. They designate mitochondrial biogenesis as a possible target for anti-cancer therapy.

  8. Development of a fetal weight chart using serial trans-abdominal ultrasound in an East African population

    DEFF Research Database (Denmark)

    Schmiegelow, Christentze; Scheike, Thomas; Oesterholt, Mayke

    2012-01-01

    OBJECTIVE: To produce a fetal weight chart representative of a Tanzanian population, and compare it to weight charts from Sub-Saharan Africa and the developed world. METHODS: A longitudinal observational study in Northeastern Tanzania. Pregnant women were followed throughout pregnancy with serial...... trans-abdominal ultrasound. All pregnancies with pathology were excluded and a chart representing the optimal growth potential was developed using fetal weights and birth weights. The weight chart was compared to a chart from Congo, a chart representing a white population, and a chart representing...... a white population but adapted to the study population. The prevalence of SGA was assessed using all four charts. RESULTS: A total of 2193 weight measurements from 583 fetuses/newborns were included in the fetal weight chart. Our chart had lower percentiles than all the other charts. Most importantly...

  9. Fetal magnetic resonance imaging and human genetics

    International Nuclear Information System (INIS)

    Hengstschlaeger, Markus

    2006-01-01

    The use of fetal magnetic resonance imaging (MRI), in addition to prenatal genetic testing and sonography, has the potential to improve prenatal diagnosis of genetic disorders. MRI plays an important role in the evaluation of fetal abnormalities and malformations. Fetal MRI often enables a differential diagnosis, a determination of the extent of the disorder, the prognosis, and an improvement in therapeutic management. For counseling of parents, as well as to basically understand how genetic aberrations affect fetal development, it is of great importance to correlate different genotypes with fetal MRI data

  10. Fetal magnetic resonance imaging and human genetics

    Energy Technology Data Exchange (ETDEWEB)

    Hengstschlaeger, Markus [Medical Genetics, Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)]. E-mail: markus.hengstschlaeger@meduniwien.ac.at

    2006-02-15

    The use of fetal magnetic resonance imaging (MRI), in addition to prenatal genetic testing and sonography, has the potential to improve prenatal diagnosis of genetic disorders. MRI plays an important role in the evaluation of fetal abnormalities and malformations. Fetal MRI often enables a differential diagnosis, a determination of the extent of the disorder, the prognosis, and an improvement in therapeutic management. For counseling of parents, as well as to basically understand how genetic aberrations affect fetal development, it is of great importance to correlate different genotypes with fetal MRI data.

  11. Fetal MRI

    International Nuclear Information System (INIS)

    Prayer, D.; Brugger, P.C.

    2004-01-01

    New, ultrafast sequences have made it possible to obtain MR images of the fetus without maternal sedation or immobilization of the fetus itself. While fetal MRI began as an adjunct to ultrasound, it has now been shown that MRI can provide additional information that may change prognosis, the management of pregnancy, or the treatment of the newborn child. It is of particular value in the assessment of malformations of the central nervous system. The steady development and adaptation of MR-sequences to the needs of fetal imaging has led to new indications that can support prognostic and therapeutic decisions. (orig.)

  12. Fetal MRI

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, D.; Brugger, P.C. [University Hospital of Vienna (Austria). Division of Neuroradiology

    2004-07-01

    New, ultrafast sequences have made it possible to obtain MR images of the fetus without maternal sedation or immobilization of the fetus itself. While fetal MRI began as an adjunct to ultrasound, it has now been shown that MRI can provide additional information that may change prognosis, the management of pregnancy, or the treatment of the newborn child. It is of particular value in the assessment of malformations of the central nervous system. The steady development and adaptation of MR-sequences to the needs of fetal imaging has led to new indications that can support prognostic and therapeutic decisions. (orig.)

  13. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    International Nuclear Information System (INIS)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-01-01

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  14. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy, E-mail: shivanna@bcm.edu

    2015-07-15

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  15. Extracellular matrix in lung development, homeostasis and disease.

    Science.gov (United States)

    Zhou, Yong; Horowitz, Jeffrey C; Naba, Alexandra; Ambalavanan, Namasivayam; Atabai, Kamran; Balestrini, Jenna; Bitterman, Peter B; Corley, Richard A; Ding, Bi-Sen; Engler, Adam J; Hansen, Kirk C; Hagood, James S; Kheradmand, Farrah; Lin, Qing S; Neptune, Enid; Niklason, Laura; Ortiz, Luis A; Parks, William C; Tschumperlin, Daniel J; White, Eric S; Chapman, Harold A; Thannickal, Victor J

    2018-03-08

    The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases. Copyright © 2017. Published by Elsevier B.V.

  16. Congenital peribronchial myofibroblastic tumor: prenatal imaging clues to differentiate from other fetal chest lesions

    Energy Technology Data Exchange (ETDEWEB)

    Calvo-Garcia, Maria A.; Bitters, Constance; Kline-Fath, Beth M. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, MLC 5031, Cincinnati, OH (United States); Lim, Foong-Yen [Cincinnati Children' s Hospital Medical Center, Department of Pediatric Surgery and Fetal Care Center of Cincinnati, Cincinnati, OH (United States); Stanek, Jerzy [Cincinnati Children' s Hospital Medical Center, Department of Pathology, Cincinnati, OH (United States)

    2014-04-15

    We present a prenatal case of congenital peribronchial myofibroblastic tumor referred as a congenital pulmonary airway malformation (CPAM) with hydrops and polyhydramnios at 30 weeks' gestational age. US and fetal MRI findings did not fit with the referral diagnosis, raising the possibility of intrinsic lung tumor. Fetal hydrops worsened and the baby was successfully delivered by ex utero intrapartum treatment (EXIT) to resection at 31 weeks' gestational age. To the best of our knowledge, this is a unique case of congenital peribronchial myofibroblastic tumor that underwent comprehensive prenatal evaluation and EXIT procedure with good outcome. (orig.)

  17. Congenital peribronchial myofibroblastic tumor: prenatal imaging clues to differentiate from other fetal chest lesions

    International Nuclear Information System (INIS)

    Calvo-Garcia, Maria A.; Bitters, Constance; Kline-Fath, Beth M.; Lim, Foong-Yen; Stanek, Jerzy

    2014-01-01

    We present a prenatal case of congenital peribronchial myofibroblastic tumor referred as a congenital pulmonary airway malformation (CPAM) with hydrops and polyhydramnios at 30 weeks' gestational age. US and fetal MRI findings did not fit with the referral diagnosis, raising the possibility of intrinsic lung tumor. Fetal hydrops worsened and the baby was successfully delivered by ex utero intrapartum treatment (EXIT) to resection at 31 weeks' gestational age. To the best of our knowledge, this is a unique case of congenital peribronchial myofibroblastic tumor that underwent comprehensive prenatal evaluation and EXIT procedure with good outcome. (orig.)

  18. The Gini coefficient: a methodological pilot study to assess fetal brain development employing postmortem diffusion MRI

    Energy Technology Data Exchange (ETDEWEB)

    Viehweger, Adrian; Sorge, Ina; Hirsch, Wolfgang [University Hospital Leipzig, Department of Pediatric Radiology, Leipzig (Germany); Riffert, Till; Dhital, Bibek; Knoesche, Thomas R.; Anwander, Alfred [Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig (Germany); Stepan, Holger [University Leipzig, Department of Obstetrics, Leipzig (Germany)

    2014-10-15

    Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm{sup 2}. Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R{sup 2} = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state. (orig.)

  19. Amniotic oxytocin and vasopressin in relation to human fetal development and labour

    NARCIS (Netherlands)

    Oosterbaan, H. P.; Swaab, D. F.

    1989-01-01

    Previous experiments in rats revealed increased amniotic oxytocin (OXT) levels in the course of normal development and increased vasopressin (AVP) levels in retarded fetal growth. In order to see whether similar changes would also occur in human, OXT and AVP levels were determined in amniotic fluid,

  20. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone.

    Science.gov (United States)

    Pearson, Helen; Britt, Rodney D; Pabelick, Christine M; Prakash, Y S; Amrani, Yassine; Pandya, Hitesh C

    2015-12-01

    Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Cultured fetal human ASM cells stimulated with TNF-α (0-20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases.

  1. Epigenetic regulation and fetal programming.

    Science.gov (United States)

    Gicquel, Christine; El-Osta, Assam; Le Bouc, Yves

    2008-02-01

    Fetal programming encompasses the role of developmental plasticity in response to environmental and nutritional signals during early life and its potential adverse consequences (risk of cardiovascular, metabolic and behavioural diseases) in later life. The first studies in this field highlighted an association between poor fetal growth and chronic adult diseases. However, environmental signals during early life may lead to adverse long-term effects independently of obvious effects on fetal growth. Adverse long-term effects reflect a mismatch between early (fetal and neonatal) environmental conditions and the conditions that the individual will confront later in life. The mechanisms underlying this risk remain unclear. However, experimental data in rodents and recent observations in humans suggest that epigenetic changes in regulatory genes and growth-related genes play a significant role in fetal programming. Improvements in our understanding of the biochemical and molecular mechanisms at play in fetal programming would make it possible to identify biomarkers for detecting infants at high risk of adult-onset diseases. Such improvements should also lead to the development of preventive and therapeutic strategies.

  2. The effect of fetal sex on customized fetal growth charts.

    Science.gov (United States)

    Rizzo, Giuseppe; Prefumo, Federico; Ferrazzi, Enrico; Zanardini, Cristina; Di Martino, Daniela; Boito, Simona; Aiello, Elisa; Ghi, Tullio

    2016-12-01

    To evaluate the effect of fetal sex on singleton pregnancy growth charts customized for parental characteristics, race, and parity Methods: In a multicentric cross-sectional study, 8070 ultrasonographic examinations from low-risk singleton pregnancies between 16 and 40 weeks of gestation were considered. The fetal measurements obtained were biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL). Quantile regression was used to examine the impact of fetal sex across the biometric percentiles of the fetal measurements considered together with parents' height, weight, parity, and race. Fetal gender resulted to be a significant covariate for BDP, HC, and AC with higher values for male fetuses (p ≤ 0.0009). Minimal differences were found among sexes for FL. Parity, maternal race, paternal height and maternal height, and weight resulted significantly related to the fetal biometric parameters considered independently from fetal gender. In this study, we constructed customized biometric growth charts for fetal sex, parental, and obstetrical characteristics using quantile regression. The use of gender-specific charts offers the advantage to define individualized normal ranges of fetal biometric parameters at each specific centile. This approach may improve the antenatal identification of abnormal fetal growth.

  3. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    Science.gov (United States)

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life. Copyright © 2016 by The American Association of Immunologists, Inc.

  4. MRI of the fetal abdomen

    International Nuclear Information System (INIS)

    Hoermann, M.; Brugger, P.C.; Witzani, L.; Prayer, D.

    2006-01-01

    Magnetic resonance imaging (MRI) is an important diagnostic component for central nervous system and thoracic diseases during fetal development. Although ultrasound remains the method of choice for observing the fetus during pregnancy, fetal MRI is being increasingly used as an additional technique for the accurate diagnosis of abdominal diseases. Recent publications confirm the value of MRI in the diagnosis of fetal gastrointestinal tract and urogenital system diseases. The following report provides an overview of MRI-examination techniques for the most frequent diseases of the abdomen. (orig.) [de

  5. CHARACTERIZATION OF THE PERIOD OF SENSITIVITY OF FETAL MALE SEXUAL DEVELOPMENT TO VINCLOZOLIN

    Science.gov (United States)

    Characterization of the period of sensitivity of fetal male sexual development to vinclozolin.Wolf CJ, LeBlanc GA, Ostby JS, Gray LE Jr.Endocrinology Branch, MD 72, Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U....

  6. Lung abscess mimicking lung cancer developed around staples in a patient with permanent tracheostoma.

    Science.gov (United States)

    Watanabe, Yui; Aoki, Masaya; Suzuki, Soichi; Umehara, Tadashi; Harada, Aya; Wakida, Kazuhiro; Nagata, Toshiyuki; Kariatsumari, Kota; Nakamura, Yoshihiro; Sato, Masami

    2015-11-01

    A 68-year-old male with a tracheostoma due to hypopharyngeal cancer was admitted because his chest computed tomography (CT) showed a small nodule in the right middle lobe. Following a partial resection of the right middle lobe, histopathological diagnosis of the resected sample was that of organizing pneumonia. Eleven months later, chest CT showed a mass with pleural indentation and spiculation in the right middle lobe. 18-Fluorodeoxyglucose-positron emission tomography showed significant accumulation in the middle lobe tumor mass shadow. The abnormal chest shadow that had developed around surgical staples suggested inadequate resection and tumor recurrence. As the abnormal radiological shadow was enlarging, middle lobectomy was carried out. Histological examination revealed that the tumor was a lung abscess without malignant features. This is a unique case of lung abscess mimicking lung cancer which developed around staples used during partial resection of the lung.

  7. Engine and radiator: fetal and placental interactions for heat dissipation.

    Science.gov (United States)

    Schröder, H J; Power, G G

    1997-03-01

    The 'engine' of fetal metabolism generates heat (3-4 W kg-1 in fetal sheep) which has to be dissipated to the maternal organism. Fetal heat may move through the amniotic/allantoic fluids to the uterine wall (conductive pathway; total conductance, 1.1 W degrees C-1 kg-1) and with the umbilical arterial blood flow (convective pathway) to the placenta. Because resistance to heat flow is larger than zero fetal temperature exceeds maternal temperature by about 0.5 degree C (0.3-1 degree C). Probably 85% of fetal heat is lost to the maternal organism through the placenta, which thus serves as the main 'radiator'. Placental heat conductivity appears to be extremely high and this may lead to impaired heat exchange (guinea-pig placenta). A computer simulation demonstrates that fetal temperature is essentially clamped to maternal temperature, and that fetal thermoregulatory efforts to gain thermal independence would be futile. Indeed, when the late gestational fetus in utero is challenged by cold stress, direct and indirect indicators of (non-shivering) thermogenesis (oxygen consumption, increase of plasma glycerol and free fatty acid levels) change only moderately. In prematurely delivered lambs, however, cold stress provokes summit metabolism and maximum heat production. Only when birth is imitated in utero (by cord clamping, external artificial lung ventilation and cooling) do thermogenic efforts approach levels typical of extra-uterine life. This suggests the presence of inhibitors of thermogenesis of placental origin, e.g. prostaglandins and adenosine. When the synthesis of prostaglandins is blocked by pretreatment with indomethacin, sheep fetuses react to intra-uterine cooling with vigorous thermogenic responses, which can be subdued by infusion of prostaglandin E2 (PGE2). Since the sheep placenta is known to produce sufficient amounts of PGE2, it seems that the placenta controls fetal thermogenic responses to some extent. This transforms the fetus into an ectothermic

  8. Fetal MRI; Fetales MRT

    Energy Technology Data Exchange (ETDEWEB)

    Blondin, D. [Inst. fuer Diagn. Radiologie, Uniklinikum Duesseldorf (Germany); Turowski, B. [Inst. fuer Diagn. Radiologie, Neuroradiologie, Uniklinikum Duesseldorf (Germany); Schaper, J. [Inst. fuer Diagn. Radiologie, Kinderradiologie, Uniklinikum Duesseldorf (Germany)

    2007-02-15

    Ultrasonography is the method of choice for prenatal malformation screening, but it does not always provide sufficient information for correct diagnosis or adequate abnormality evaluation. Fetal MRI is increasingly being used to complete sonographic findings. It was initially used for evaluation of cerebral abnormalities but is increasingly being applied to other fetal areas. In vivo investigation of fetal brain maturation has been enhanced by MRI. An adequate analysis of fetal chest and abdomen can be achieved with fast T2-, T1-weighted and diffusion-weighted imaging (DWI). The advantages include the great field of view and the excellent soft tissue contrast. This allows correct diagnosis of congenital diaphragmatic hernia and evaluation of the consequences on pulmonary growth. Other pulmonary malformations, such as cystic adenomatoid malformation, sequestration and brochogenic cysts, can also be easily identified. Renal position can be quickly determined using DWI sequences and renal agenesia can be easily diagnosed with only one sequence. Prenatal MRI is virtually as effective as postnatal examination, dispenses with transport of a potentially very ill newborn, and provides logistic advantages. Therefore, prenatal MRI is useful for adequate postnatal treatment of newborns with malformations. (orig.)

  9. Epigenetic regulation of fetal bone development and placental transfer of nutrients: progress for osteoporosis.

    Science.gov (United States)

    Bocheva, Georgeta; Boyadjieva, Nadka

    2011-12-01

    Osteoporosis is a common age-related disorder and causes acute and long-term disability and economic cost. Many factors influence the accumulation of bone minerals, including heredity, diet, physical activity, gender, endocrine functions, and risk factors such as alcohol, drug abuse, some pharmacological drugs or cigarette smoking. The pathology of bone development during intrauterine life is a factor for osteoporosis. Moreover, the placental transfer of nutrients plays an important role in the building of bones of fetuses. The importance of maternal calcium intake and vitamin D status are highlighted in this review. Various environmental factors including nutrition state or maternal stress may affect the epigenetic state of a number of genes during fetal development of bones. Histone modifications as histone hypomethylation, histone hypermethylation, hypoacetylation, etc. are involved in chromatin remodeling, known to contribute to the epigenetic landscape of chromosomes, and play roles in both fetal bone development and osteoporosis. This review will give an overview of epigenetic modulation of bone development and placental transfer of nutrients. In addition, the data from animal and human studies support the role of epigenetic modulation of calcium and vitamin D in the pathogenesis of osteoporosis. We review the evidence suggesting that various genes are involved in regulation of osteoclast formation and differentiation by osteoblasts and stem cells. Epigenetic changes in growth factors as well as cytokines play a rol in fetal bone development. On balance, the data suggest that there is a link between epigenetic changes in placental transfer of nutrients, including calcium and vitamin D, abnormal intrauterine bone development and pathogenesis of osteoporosis.

  10. Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep

    Science.gov (United States)

    Seedorf, Gregory J.; Brown, Alicia; Roe, Gates; O'Meara, Meghan C.; Gien, Jason; Tang, Jen-Ruey; Abman, Steven H.

    2011-01-01

    Intrauterine growth restriction (IUGR) increases the risk for bronchopulmonary dysplasia (BPD). Abnormal lung structure has been noted in animal models of IUGR, but whether IUGR adversely impacts fetal pulmonary vascular development and pulmonary artery endothelial cell (PAEC) function is unknown. We hypothesized that IUGR would decrease fetal pulmonary alveolarization, vascular growth, and in vitro PAEC function. Studies were performed in an established model of severe placental insufficiency and IUGR induced by exposing pregnant sheep to elevated temperatures. Alveolarization, quantified by radial alveolar counts, was decreased 20% (P growth by 68% (P growth was reduced in IUGR PAECs by 29% at baseline (P growth and PAEC dysfunction in vitro. This may contribute to the increased risk for adverse respiratory outcomes and BPD in infants with IUGR. PMID:21873446

  11. Role of melatonin in embryo fetal development.

    Science.gov (United States)

    Voiculescu, S E; Zygouropoulos, N; Zahiu, C D; Zagrean, A M

    2014-01-01

    Melatonin is an indoleamine produced by the pineal gland and secreted in a circadian manner. In the past few decades, research over this topic has been enhanced. Melatonin has many important roles in the human physiology: regulator of the circadian rhythms, sleep inducer, antioxidant, anticarcinogenic. This paper reviews the involvement of melatonin in embryo fetal development. The pineal gland develops completely postpartum, so both the embryo and the fetus are dependent on the maternal melatonin provided transplacentally. Melatonin appears to be involved in the normal outcome of pregnancy beginning with the oocyte quality and finishing with the parturition. Its pregnancy night-time concentrations increase after 24 weeks of gestation, with significantly high levels after 32 weeks. Melatonin receptors are widespread in the embryo and fetus since early stages. There is solid evidence that melatonin is neuroprotective and has a positive effect on the outcome of the compromised pregnancies. In addition, chronodisruption leads to a reproductive dysfunction. Thus, the influence of melatonin on the developing human fetus may not be limited to the entertaining of circadian rhythmicity, but further studies are needed.

  12. The number of fetal cells in maternal blood is associated to exercise and fetal gender

    DEFF Research Database (Denmark)

    Schlütter, Jacob Mørup; Kirkegaard, Ida; Christensen, Connie Britta

    Introduction: We have established a robust method to specifically identify and isolate a placental fetal cell in maternal blood (fcmbs) at a gestational age of 12 weeks. The concentration of these cells, however, varies considerably among pregnant women (median 3 fcmbs/30 mL blood, range 0...... activity was obtained by a questionnaire and a structured interview. The number of fcmbs was assessed in 30 mL blood processed by a proprietary method developed in-house. Fetal cells in the blood, binding to fetal cell specific antibodies, were initially isolated by magnetic cell sorting. The fetal cells...... vs. 4, p=0.06) decreased the number of fcmbs, whereas coitus the evening before increased the number (4 vs. 3, p=0.11). Conclusion: The number of fcmbs is affected by normal activities. This should be taken into account when planning collection of fetal cells in connection for prenatal diagnosis...

  13. Fetal programming of sexual development and reproductive function.

    Science.gov (United States)

    Zambrano, Elena; Guzmán, Carolina; Rodríguez-González, Guadalupe L; Durand-Carbajal, Marta; Nathanielsz, Peter W

    2014-01-25

    The recent growth of interest in developmental programming of physiological systems has generally focused on the cardiovascular system (especially hypertension) and predisposition to metabolic dysfunction (mainly obesity and diabetes). However, it is now clear that the full range of altered offspring phenotypes includes impaired reproductive function. In rats, sheep and nonhuman primates, reproductive capacity is altered by challenges experienced during critical periods of development. This review will examine available experimental evidence across commonly studied experimental species for developmental programming of female and male reproductive function throughout an individual's life-course. It is necessary to consider events that occur during fetal development, early neonatal life and prior to and during puberty, during active reproductive life and aging as reproductive performance declines. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. The origin of fetal sterols in second-trimester amniotic fluid : endogenous synthesis or maternal-fetal transport?

    NARCIS (Netherlands)

    Baardman, Maria E.; Erwich, Jan Jaap H. M.; Berger, Rolf M. F.; Hofstra, Robert M. W.; Kerstjens-Frederikse, Wilhelmina S.; Luetjohann, Dieter; Plosch, Torsten; Lutjohann, D.

    OBJECTIVE: Cholesterol is crucial for fetal development. To gain more insight into the origin of the fetal cholesterol pool in early human pregnancy, we determined cholesterol and its precursors in the amniotic fluid of uncomplicated, singleton human pregnancies. STUDY DESIGN: Total sterols were

  15. Maternal Sevoflurane Exposure Causes Abnormal Development of Fetal Prefrontal Cortex and Induces Cognitive Dysfunction in Offspring

    Directory of Open Access Journals (Sweden)

    Ruixue Song

    2017-01-01

    Full Text Available Maternal sevoflurane exposure during pregnancy is associated with increased risk for behavioral deficits in offspring. Several studies indicated that neurogenesis abnormality may be responsible for the sevoflurane-induced neurotoxicity, but the concrete impact of sevoflurane on fetal brain development remains poorly understood. We aimed to investigate whether maternal sevoflurane exposure caused learning and memory impairment in offspring through inducing abnormal development of the fetal prefrontal cortex (PFC. Pregnant mice at gestational day 15.5 received 2.5% sevoflurane for 6 h. Learning function of the offspring was evaluated with the Morris water maze test at postnatal day 30. Brain tissues of fetal mice were subjected to immunofluorescence staining to assess differentiation, proliferation, and cell cycle dynamics of the fetal PFC. We found that maternal sevoflurane anesthesia impaired learning ability in offspring through inhibiting deep-layer immature neuron output and neuronal progenitor replication. With the assessment of cell cycle dynamics, we established that these effects were mediated through cell cycle arrest in neural progenitors. Our research has provided insights into the cell cycle-related mechanisms by which maternal sevoflurane exposure can induce neurodevelopmental abnormalities and learning dysfunction and appeals people to consider the neurotoxicity of anesthetics when considering the benefits and risks of nonobstetric surgical procedures.

  16. Expression analysis of asthma candidate genes during human and murine lung development.

    Science.gov (United States)

    Melén, Erik; Kho, Alvin T; Sharma, Sunita; Gaedigk, Roger; Leeder, J Steven; Mariani, Thomas J; Carey, Vincent J; Weiss, Scott T; Tantisira, Kelan G

    2011-06-23

    Little is known about the role of most asthma susceptibility genes during human lung development. Genetic determinants for normal lung development are not only important early in life, but also for later lung function. To investigate the role of expression patterns of well-defined asthma susceptibility genes during human and murine lung development. We hypothesized that genes influencing normal airways development would be over-represented by genes associated with asthma. Asthma genes were first identified via comprehensive search of the current literature. Next, we analyzed their expression patterns in the developing human lung during the pseudoglandular (gestational age, 7-16 weeks) and canalicular (17-26 weeks) stages of development, and in the complete developing lung time series of 3 mouse strains: A/J, SW, C57BL6. In total, 96 genes with association to asthma in at least two human populations were identified in the literature. Overall, there was no significant over-representation of the asthma genes among genes differentially expressed during lung development, although trends were seen in the human (Odds ratio, OR 1.22, confidence interval, CI 0.90-1.62) and C57BL6 mouse (OR 1.41, CI 0.92-2.11) data. However, differential expression of some asthma genes was consistent in both developing human and murine lung, e.g. NOD1, EDN1, CCL5, RORA and HLA-G. Among the asthma genes identified in genome wide association studies, ROBO1, RORA, HLA-DQB1, IL2RB and PDE10A were differentially expressed during human lung development. Our data provide insight about the role of asthma susceptibility genes during lung development and suggest common mechanisms underlying lung morphogenesis and pathogenesis of respiratory diseases.

  17. Increasing fetal ovine number per gestation alters fetal plasma clinical chemistry values.

    Science.gov (United States)

    Zywicki, Micaela; Blohowiak, Sharon E; Magness, Ronald R; Segar, Jeffrey L; Kling, Pamela J

    2016-08-01

    Intrauterine growth restriction (IUGR) is interconnected with developmental programming of lifelong pathophysiology. IUGR is seen in human multifetal pregnancies, with stepwise rises in fetal numbers interfering with placental nutrient delivery. It remains unknown whether fetal blood analyses would reflect fetal nutrition, liver, and excretory function in the last trimester of human or ovine IUGR In an ovine model, we hypothesized that fetal plasma biochemical values would reflect progressive placental, fetal liver, and fetal kidney dysfunction as the number of fetuses per gestation rose. To determine fetal plasma biochemical values in singleton, twin, triplet, and quadruplet/quintuplet ovine gestation, we investigated morphometric measures and comprehensive metabolic panels with nutritional measures, liver enzymes, and placental and fetal kidney excretory measures at gestational day (GD) 130 (90% gestation). As anticipated, placental dysfunction was supported by a stepwise fall in fetal weight, fetal plasma glucose, and triglyceride levels as fetal number per ewe rose. Fetal glucose and triglycerides were directly related to fetal weight. Plasma creatinine, reflecting fetal renal excretory function, and plasma cholesterol, reflecting placental excretory function, were inversely correlated with fetal weight. Progressive biochemical disturbances and growth restriction accompanied the rise in fetal number. Understanding the compensatory and adaptive responses of growth-restricted fetuses at the biochemical level may help explain how metabolic pathways in growth restriction can be predetermined at birth. This physiological understanding is important for clinical care and generating interventional strategies to prevent altered developmental programming in multifetal gestation. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  18. Fetal programming and eating disorder risk.

    Science.gov (United States)

    Jones, Candace; Pearce, Brad; Barrera, Ingrid; Mummert, Amanda

    2017-09-07

    Fetal programming describes the process by which environmental stimuli impact fetal development to influence disease development later in life. Our analysis summarizes evidence for the role of fetal programming in eating disorder etiology through review of studies demonstrating specific obstetric complications and later eating risk of anorexia or bulimia. Using Pubmed, we found thirteen studies investigating obstetric factors and eating disorder risk published between 1999 and 2016. We then discuss modifiable maternal risk factors, including nutrition and stress, that influence anorexia or bulimia risk of their offspring. Translation of these findings applies to preventative strategies by health organizations and physicians to provide optimal health for mothers and their children to prevent development of medical and psychiatric illnesses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Regulation of adpose tissue development ion the fetus: the fetal pig model

    International Nuclear Information System (INIS)

    Hausman, G.J.; Campion, D.R.; Martin, R.J.

    1986-01-01

    We have examined genetic, endocrine, nutritional and neural influences on metabolic and structural differentiation of the fetal pig subcutaneous depot. As in man, the subcutaneous depot in the pig is the largest depot of the body; it is similar anatomically in both species. Studies of fetuses from genetically lean and obese sows illustrate the full utility of the fetal pig model. The following measurements have been obtained from fetuses (110 days of gestation) from lean and obese sows: adipocyte size and number, lipoprotein lipase (LPL) and other lipogenic enzyme activities, radiolabelled substrate flux studies of lipid metabolism, enzyme histochemistry of lipogenic enzymes, body composition, levels of plasma hormones and metabolites and lipid clearance values. Of these measurements, an elevated fat cell LPL activity and depressed plasma growth hormone level were the most important abnormalities in obese fetuses. Experimentally induced alterations in the fetal endocrine profile have shown that pituitary associated hormones may control fetal adipocyte replication; whereas, pancreatic hormones may control adipocyte hypertrophy and maturation. Studies of the fetal pig should lead to identification of specific factors responsible for adipocyte abnormalities of obesity

  20. Air pollution during pregnancy and lung development in the child.

    Science.gov (United States)

    Korten, Insa; Ramsey, Kathryn; Latzin, Philipp

    2017-01-01

    Air pollution exposure has increased extensively in recent years and there is considerable evidence that exposure to particulate matter can lead to adverse respiratory outcomes. The health impacts of exposure to air pollution during the prenatal period is especially concerning as it can impair organogenesis and organ development, which can lead to long-term complications. Exposure to air pollution during pregnancy affects respiratory health in different ways. Lung development might be impaired by air pollution indirectly by causing lower birth weight, premature birth or disturbed development of the immune system. Exposure to air pollution during pregnancy has also been linked to decreased lung function in infancy and childhood, increased respiratory symptoms, and the development of childhood asthma. In addition, impaired lung development contributes to infant mortality. The mechanisms of how prenatal air pollution affects the lungs are not fully understood, but likely involve interplay of environmental and epigenetic effects. The current epidemiological evidence on the effect of air pollution during pregnancy on lung function and children's respiratory health is summarized in this review. While evidence for the adverse effects of prenatal air pollution on lung development and health continue to mount, rigorous actions must be taken to reduce air pollution exposure and thus long-term respiratory morbidity and mortality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. cAMP response element binding protein1 is essential for activation of steroyl co-enzyme a desaturase 1 (Scd1 in mouse lung type II epithelial cells.

    Directory of Open Access Journals (Sweden)

    Nisha Antony

    Full Text Available Cyclic AMP Response Element-Binding Protein 1 (Creb1 is a transcription factor that mediates cyclic adenosine 3', 5'-monophosphate (cAMP signalling in many tissues. Creb1(-/- mice die at birth due to respiratory failure and previous genome-wide microarray analysis of E17.5 Creb1(-/- fetal mouse lung identified important Creb1-regulated gene targets during lung development. The lipogenic enzymes stearoyl-CoA desaturase 1 (Scd1 and fatty acid synthase (Fasn showed highly reduced gene expression in Creb1(-/- lungs. We therefore hypothesized that Creb1 plays a crucial role in the transcriptional regulation of genes involved in pulmonary lipid biosynthetic pathways during lung development. In this study we confirmed that Scd1 and Fasn mRNA levels were down regulated in the E17.5 Creb1(-/- mouse lung while the lipogenic-associated transcription factors SrebpF1, C/ebpα and Pparγ were increased. In vivo studies using germline (Creb1(-/- and lung epithelial-specific (Creb1(EpiΔ/Δ Creb1 knockout mice showed strongly reduced Scd1, but not Fasn gene expression and protein levels in lung epithelial cells. In vitro studies using mouse MLE-15 epithelial cells showed that forskolin-mediated activation of Creb1 increased both Scd1 gene expression and protein synthesis. Additionally, MLE15 cells transfected with a dominant-negative ACreb vector blocked forskolin-mediated stimulation of Scd1 gene expression. Lipid profiling in MLE15 cells showed that dominant-negative ACreb suppressed forskolin-induced desaturation of ether linked lipids to produce plasmalogens, as well as levels of phosphatidylethanolamine, ceramide and lysophosphatidylcholine. Taken together these results demonstrate that Creb1 is essential for the induction and maintenance of Scd1 in developing fetal mouse lung epithelial cells.

  2. Fetal programming and environmental exposures ...

    Science.gov (United States)

    Fetal programming is an enormously complex process that relies on numerous environmental inputs from uterine tissue, the placenta, the maternal blood supply, and other sources. Recent evidence has made clear that the process is not based entirely on genetics, but rather on a delicate series of interactions between genes and the environment. It is likely that epigenctic (“above the genome”) changes are responsible for modifying gene expression in the developing fetus, and these modifications can have long-lasting health impacts. Determining which epigenetic regulators are most vital in embryonic development will improve pregnancy outcomes and our ability to treat and prevent disorders that emerge later in life. “Fetal Programming and Environmental Exposures: Implications for Prenatal Care and Preterm Birth’ began with a keynote address by Frederick vom Saal, who explained that low-level exposure to endocrine disrupting chemicals (EDCs) perturbs hormone systems in utero and can have negative effects on fetal development. vom Saal presented data on the LOC bisphenol A (BPA), an estrogen-mimicking compound found in many plastics. He suggested that low-dose exposure to LOCs can alter the development process and enhance chances of acquiring adult diseases, such as breastcancer, diabetes, and even developmental disorders such as attention deficit disorder (ADHD).’ Fetal programming is an enormously complex process that relies on numerous environmental inputs

  3. Fetal Primary Cardiac Tumors During Perinatal Period

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    2017-06-01

    Full Text Available Fetal primary cardiac tumors are rare, but they may cause complications, which are sometimes life threatening, including arrhythmias, hydrops fetalis, ventricular outflow/inflow obstruction, cardiac failure, and even sudden death. Among fetal primary cardiac tumors, rhabdomyomas are most common, followed by teratomas, fibromas, hemangiomas, and myxomas. Everolimus, a mammalian target of rapamycin inhibitor, has been reported to be an effective drug to cause tumor remission in three neonates with multiple cardiac rhabdomyomas. Neonatal cardiac surgery for the resection of primary cardiac tumors found by fetal echocardiography has been reported sporadically. However, open fetal surgery for pericardial teratoma resection, which was performed successfully via a fetal median sternotomy in one case report, could be a promising intervention to rescue these patients with large pericardial effusions. These recent achievements undoubtedly encourage further development in early management of fetal cardiac tumors. Owing to the rarity of fetal primary cardiac tumors, relevant information in terms of prenatal diagnosis, treatment, and prognosis remains to be clarified.

  4. Inhibition of Mammary Cancer Progression in Fetal Alcohol Exposed Rats by β-Endorphin Neurons.

    Science.gov (United States)

    Zhang, Changqing; Franklin, Tina; Sarkar, Dipak K

    2016-01-01

    Fetal alcohol exposure (FAE) increases the susceptibility to carcinogen-induced mammary cancer progression in rodent models. FAE also decreases β-endorphin (β-EP) level and causes hyperstress response, which leads to inhibition of immune function against cancer. Previous studies have shown that injection of nanosphere-attached dibutyryl cyclic adenosine monophosphate (dbcAMP) into the third ventricle increases the number of β-EP neurons in the hypothalamus. In this study, we assessed the therapeutic potential of stress regulation using methods to increase hypothalamic levels of β-EP, a neuropeptide that inhibits stress axis activity, in treatment of carcinogen-induced mammary cancer in fetal alcohol exposed rats. Fetal alcohol exposed and control Sprague Dawley rats were given a dose of N-Nitroso-N-methylurea (MNU) at postnatal day 50 to induce mammary cancer growth. Upon detection of mammary tumors, the animals were either transplanted with β-EP neurons or injected with dbcAMP-delivering nanospheres into the hypothalamus to increase β-EP peptide production. Spleen cytokines were detected using reverse transcription polymerase chain reaction assays. Metastasis study was done by injecting mammary cancer cells MADB106 into jugular vein of β-EP-activated or control fetal alcohol exposed animals. Both transplantation of β-EP neurons and injection of dbcAMP-delivering nanospheres inhibited MNU-induced mammary cancer growth in control rats, and reversed the effect of FAE on the susceptibility to mammary cancer. Similar to the previously reported immune-enhancing and stress-suppressive effects of β-EP transplantation, injection of dbcAMP-delivering nanospheres increased the levels of interferon-γ and granzyme B and decreased the levels of epinephrine and norepinephrine in fetal alcohol exposed rats. Mammary cancer cell metastasis study also showed that FAE increased incidence of lung tumor retention, while β-EP transplantation inhibited lung tumor growth in

  5. Localization and stretch-dependence of lung elastase activity in development and compensatory growth.

    Science.gov (United States)

    Young, Sarah Marie; Liu, Sheng; Joshi, Rashika; Batie, Matthew R; Kofron, Matthew; Guo, Jinbang; Woods, Jason C; Varisco, Brian Michael

    2015-04-01

    Synthesis and remodeling of the lung matrix is necessary for primary and compensatory lung growth. Because cyclic negative force is applied to developing lung tissue during the respiratory cycle, we hypothesized that stretch is a critical regulator of lung matrix remodeling. By using quantitative image analysis of whole-lung and whole-lobe elastin in situ zymography images, we demonstrated that elastase activity increased twofold during the alveolar stage of postnatal lung morphogenesis in the mouse. Remodeling was restricted to alveolar walls and ducts and was nearly absent in dense elastin band structures. In the mouse pneumonectomy model of compensatory lung growth, elastase activity increased threefold, peaking at 14 days postpneumonectomy and was higher in the accessory lobe compared with other lobes. Remodeling during normal development and during compensatory lung growth was different with increased major airway and pulmonary arterial remodeling during development but not regeneration, and with homogenous remodeling throughout the parenchyma during development, but increased remodeling only in subpleural regions during compensatory lung growth. Left lung wax plombage prevented increased lung elastin during compensatory lung growth. To test whether the adult lung retains an innate capacity to remodel elastin, we developed a confocal microscope-compatible stretching device. In ex vivo adult mouse lung sections, lung elastase activity increased exponentially with strain and in peripheral regions of lung more than in central regions. Our study demonstrates that lung elastase activity is stretch-dependent and supports a model in which externally applied forces influence the composition, structure, and function of the matrix during periods of alveolar septation. Copyright © 2015 the American Physiological Society.

  6. Fetal thrombocytopenia in pregnancies with fetal human parvovirus-B19 infection.

    Science.gov (United States)

    Melamed, Nir; Whittle, Wendy; Kelly, Edmond N; Windrim, Rory; Seaward, P Gareth R; Keunen, Johannes; Keating, Sarah; Ryan, Greg

    2015-06-01

    Fetal infection with human parvovirus B19 (hParvo-B19) has been associated mainly with fetal anemia, although data regarding other fetal hematologic effects are limited. Our aim was to assess the rate and consequences of severe fetal thrombocytopenia after fetal hParvo-B19 infection. We conducted a retrospective study of pregnancies that were complicated by fetal hParvo-B19 infection that underwent fetal blood sampling (FBS). The characteristics and outcomes of fetuses with severe thrombocytopenia (B19 infection. A total of 37 pregnancies that were affected by fetal hParvo-B19 infection were identified. Of the 29 cases that underwent FBS and had information regarding fetal platelets, 11 cases (38%) were complicated by severe fetal thrombocytopenia. Severely thrombocytopenic fetuses were characterized by a lower hemoglobin concentration (2.6 ± 0.9 g/dL vs 5.5 ± 3.6 g/dL; P = .01), lower reticulocyte count (9.1% ± 2.8% vs 17.3% ± 10.6%; P = .02), and lower gestational age at the time of diagnosis (21.4 ± 3.1 wk vs 23.6 ± 2.2 wk; P = .03). Both the fetal death rate within 48 hours of FBS (27.3% vs 0%; P = .02) and the risk of prematurity (100.0% vs 13.3%; P B19 infection, can be further worsened by IUT, and may be associated with an increased risk of procedure-related fetal loss after either FBS or IUT. Copyright © 2015. Published by Elsevier Inc.

  7. The impact of fetal growth restriction on latency in the setting of expectant management of preeclampsia.

    Science.gov (United States)

    McKinney, David; Boyd, Heather; Langager, Amanda; Oswald, Michael; Pfister, Abbey; Warshak, Carri R

    2016-03-01

    Fetal growth restriction is a common complication of preeclampsia. Expectant management for qualifying patients has been found to have acceptable maternal safety while improving neonatal outcomes. Whether fetal growth restriction influences the duration of latency during expectant management of preeclampsia is unknown. The objective of the study was to determine whether fetal growth restriction is associated with a reduced interval to delivery in women with preeclampsia being expectantly managed prior to 34 weeks. We performed a retrospective cohort of singleton, live-born, nonanomalous deliveries at the University of Cincinnati Medical Center between 2008 and 2013. Patients were included in our analysis if they were diagnosed with preeclampsia prior to 34 completed weeks and if the initial management plan was to pursue expectant management beyond administration of steroids for fetal lung maturity. Two study groups were determined based on the presence or absence of fetal growth restriction. Patients were delivered when they developed persistent neurological symptoms, severe hypertension refractory to medical therapy, renal insufficiency, nonreassuring fetal status, pulmonary edema, or hemolysis elevated liver low platelet syndrome or when they reached 37 weeks if they remained stable without any other indication for delivery. Our primary outcome was the interval from diagnosis of preeclampsia to delivery, measured in days. Secondary outcomes included indications for delivery, rates of induction and cesarean delivery, development of severe morbidities of preeclampsia, and select neonatal outcomes. We performed a multivariate logistic regression analysis comparing those with fetal growth restriction with those with normally grown fetuses to determine whether there is an association between fetal growth restriction and a shortened interval to delivery, neonatal intensive care unit admission, prolonged neonatal stay, and neonatal mortality. A total of 851 patients met

  8. Fetal Cardiac Doppler Signal Processing Techniques: Challenges and Future Research Directions

    Directory of Open Access Journals (Sweden)

    Saeed Abdulrahman Alnuaimi

    2017-12-01

    Full Text Available The fetal Doppler Ultrasound (DUS is commonly used for monitoring fetal heart rate and can also be used for identifying the event timings of fetal cardiac valve motions. In early-stage fetuses, the detected Doppler signal suffers from noise and signal loss due to the fetal movements and changing fetal location during the measurement procedure. The fetal cardiac intervals, which can be estimated by measuring the fetal cardiac event timings, are the most important markers of fetal development and well-being. To advance DUS-based fetal monitoring methods, several powerful and well-advanced signal processing and machine learning methods have recently been developed. This review provides an overview of the existing techniques used in fetal cardiac activity monitoring and a comprehensive survey on fetal cardiac Doppler signal processing frameworks. The review is structured with a focus on their shortcomings and advantages, which helps in understanding fetal Doppler cardiogram signal processing methods and the related Doppler signal analysis procedures by providing valuable clinical information. Finally, a set of recommendations are suggested for future research directions and the use of fetal cardiac Doppler signal analysis, processing, and modeling to address the underlying challenges.

  9. Abnormal platelet-derived growth factor signaling accounting for lung hypoplasia in experimental congenital diaphragmatic hernia.

    Science.gov (United States)

    Dingemann, Jens; Doi, Takashi; Ruttenstock, Elke; Puri, Prem

    2010-10-01

    The pathogenesis of pulmonary hypoplasia in congenital diaphragmatic hernia (CDH) is not fully understood. Platelet-derived growth factor A (PDGFA) and platelet-derived growth factor receptor α (PDGFRα) play a crucial role in lung development. It has been reported that PDGF induces H(2)O(2)-production and that oxidative stress may be an important mechanism for the impaired lung development in the nitrofen rat model. We hypothesized that pulmonary expression of PDGFA and PDGFRα is altered in the nitrofen induced CDH model. Pregnant rats received 100 mg nitrofen or vehicle on gestational day 9 (D9) and were sacrificed on D15, D18 or D21. RNA was extracted from fetal left lungs and mRNA levels of PDGFA and PDGFRα were determined using real-time polymerase chain reaction. Immunohistochemistry for protein expression of PDGFA and PDGFRα was performed. Pulmonary H(2)O(2) was measured colorimetrically. mRNA levels of PDGFRα at D15 (4.50 ± 0.87) and PDGFA at D18 (2.90 ± 1.38) were increased in the nitrofen group (P stress during lung development. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. β2-Microglobulin participates in development of lung emphysema by inducing lung epithelial cell senescence.

    Science.gov (United States)

    Gao, Na; Wang, Ying; Zheng, Chun-Ming; Gao, Yan-Li; Li, Hui; Li, Yan; Fu, Ting-Ting; Xu, Li-Li; Wang, Wei; Ying, Sun; Huang, Kewu

    2017-05-01

    β 2 -Microglobulin (β 2 M), the light chain of the major histocompatibility complex class I (MHC I), has been identified as a proaging factor and is involved in the pathogenesis of neurodegenerative disorders by driving cognitive and regenerative impairments. However, little attention has focused on the effect of β 2 M in the development of lung emphysema. Here, we found that concentrations of β 2 M in plasma were significantly elevated in patients with lung emphysema than those in normal control subjects (1.89 ± 0.12 vs. 1.42 ± 0.06 mg/l, P lung tissue of emphysema (39.90 ± 1.97 vs. 23.94 ± 2.11%, P lung emphysema through induction of lung epithelial cell senescence and inhibition. Copyright © 2017 the American Physiological Society.

  11. Effects of prenatal stress on fetal and child development: a critical literature review.

    Science.gov (United States)

    Graignic-Philippe, R; Dayan, J; Chokron, S; Jacquet, A-Y; Tordjman, S

    2014-06-01

    Many studies have examined effects of prenatal stress on pregnancy and fetal development, especially on prematurity and birthweight, and more recently long-term effects on child behavioral and emotional development. These studies are reviewed and their limitations are discussed with regard to definitions (including the concepts of stress and anxiety), stress measurements, samples, and control for confounds such as depression. It appears necessary to assess individual stress reactivity prospectively and separately at each trimester of pregnancy, to discriminate chronic from acute stress, and to take into consideration moderator variables such as past life events, sociocultural factors, predictability, social support and coping strategies. Furthermore, it might be useful to examine simultaneously, during but also after pregnancy, stress, anxiety and depression in order to understand better their relationships and to evaluate their specific effects on pregnancy and child development. Finally, further research could benefit from an integrated psychological and biological approach studying together subjective perceived stress and objective physiological stress responses in pregnant women, and their effects on fetal and child development as well as on mother-infant interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Cross-hemispheric functional connectivity in the human fetal brain.

    Science.gov (United States)

    Thomason, Moriah E; Dassanayake, Maya T; Shen, Stephen; Katkuri, Yashwanth; Alexis, Mitchell; Anderson, Amy L; Yeo, Lami; Mody, Swati; Hernandez-Andrade, Edgar; Hassan, Sonia S; Studholme, Colin; Jeong, Jeong-Won; Romero, Roberto

    2013-02-20

    Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC.

  13. [THE FETAL MIDDLE CEREBRAL ARTERY PEAK SYSTOLIC VELOCITY AS A PEDICTOR OF FETAL ANEMIA IN RH-ALLOIMMUNIZED PREGNANCY].

    Science.gov (United States)

    Markov, D; Pavlova, E; Atanassova, D; Diavolov, V; Hitrova, S; Vakrilova, L; Pramatarova, T; Slancheva, B; Ivanov, St

    2015-01-01

    Rh-isoimmunization is a pathological condition in which the fetal red blood cells of a Rh (+) fetus are destroyed by the isoantibodies of a Rh (-) woman sensitized in a previous event. Despite of the wide spread implementation of anti D-gammaglobolin prophylaxis this is still the most common cause for fetal anemia. Recently, sonographic measurement of the fetal middle cerebral artery peak systolic velocity (MCA-PSV) has been shown to be an accurate non-invasive test to predict low fetal hemoglobin levels. We present a case report of Rh-alloimmunized pregnancy with moderate fetal anemia, followed-up by weekly MCA-PSV measurements. A 37-year-old Rh (-) negative gravida 3, para 1, without anti-D gammaglobolin prophylaxis in her previous pregnancies, presented at 27+0 weeks of gestation (w.g.) for a routine third trimester scan. Subsequent ultrasound measurements of MCA-PSV confirmed a progressive increase of the peak systolic velocities from 40 to 80 cm/sec, as well as a gradual rise in the anti-D titers. The evidence of developing fetal anemia necessitated elective Caesarean section performed at 35 wg. The neonate was admitted in the intensive care unit and required resuscitation, one exchange blood transfusion and several courses of phototherapy. The patient was discharged two weeks post partum. There is a strong correlation between the high peak systolic velocities in the middle cerebral artery (MCA-PSV) and the low levels of fetal hemoglobin. The high sensitivity and positive predictive value concerning the development of fetal anemia, as well as its good repeatability, makes this non-invasive test a valuable asset in the management of all pregnancies complicated by severe Rh-alloimmunization.

  14. Age related changes in steroid receptors on cultured lung fibroblasts

    International Nuclear Information System (INIS)

    Barile, F.A.; Bienkowski, R.S.

    1986-01-01

    The number of high affinity glucocorticoid receptors (Ro) on human fetal lung fibroblasts decreases as the cells age in vitro, and it has been suggested that these cell systems may be useful models of age-related changes in vivo. They examined the relation between change in Ro with in vitro aging and donor age. Confluent monolayers of lung fibroblasts at various population doubling levels (PDL), were incubated with ( 3 H)-dexamethasone (( 3 H)Dex) either alone or with excess (.01 mM) Dex. Specific binding was calculated as the difference between radioactivity in cells incubated with and without unlabeled Dex; Scatchard plots were used to analyze the data. Ro, measured as fmol ( 3 H)Dex/10 6 cells, for two lines of human fetal cells (HFL-1 and MRC-5) decreased with increasing age in vitro. However, human newborn (CRL-1485) and adult (CCL-201) cells and fetal rabbit cells (FAB-290), showed increases in Ro with continuous passage. For each cell line, the affinity constant (K/sub d/) did not change significantly with passage. They conclude that the direction of changes in steroid receptor levels on cells aging in vitro is influenced by donor age and species. Caution should be used in applying results obtained from model systems to aging organisms

  15. Adverse fetal outcome in road accidents: Injury mechanism study and injury criteria development in a pregnant woman finite element model.

    Science.gov (United States)

    Auriault, F; Thollon, L; Pérès, J; Behr, M

    2016-12-01

    This study documents the development of adverse fetal outcome predictors dedicated to the analysis of road accidents involving pregnant women. To do so, a pre-existing whole body finite element model representative of a 50th percentile 26 weeks pregnant woman was used. A total of 8 accident scenarios were simulated with the model positioned on a sled. Each of these scenarios was associated to a risk of adverse fetal outcome based on results from real car crash investigations involving pregnant women from the literature. The use of airbags and accidents involving unbelted occupants were not considered in this study. Several adverse fetal outcome potential predictors were then evaluated with regard to their correlation to this risk of fetal injuries. Three predictors appeared strongly correlated to the risk of adverse fetal outcome: (1) the intra uterine pressure at the placenta fetal side area (r=0.92), (2) the fetal head acceleration (HIC) (r=0.99) and (3) area of utero-placental interface over a strain threshold (r=0.90). Finally, sensitivity analysis against slight variations of the simulation parameters was performed and assess robustness of these criteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Digital communication with fetal monitors.

    Science.gov (United States)

    Bozóki, Z

    1997-11-01

    Fetal heart rate (FHR) values in the averaged format that are provided by commercial computed cardiotocography analysis systems may be unsuitable for special analysis purposes. I developed a communication software program to obtain any measured values of fetal monitors for individual analysis of computed cardiotocography. The software program was used to study the data continuity of beat-to-beat FHR values as an experiment for chaos theory and power spectrum analysis. The results indicated that the signal loss was recognized at a precision of 95%. The described method of digital communication with fetal monitors was found to be useful for individual purposes in the field of computed cardiotocography analysis.

  17. Embryo-fetal development toxicity of honokiol microemulsion intravenously administered to pregnant rats.

    Science.gov (United States)

    Zhang, Qianqian; Ye, Xiangfeng; Wang, Lingzhi; Peng, Bangjie; Zhang, Yingxue; Bao, Jie; Li, Wanfang; Wei, Jinfeng; Wang, Aiping; Jin, Hongtao; Chen, Shizhong

    2016-02-01

    The aim of this study was to evaluate the embryo-fetal development toxicity of honokiol microemulsion. The drug was intravenously injected to pregnant SD rats at dose levels of 0, 200, 600 and 2000 μg/kg/day from day 6-15 of gestation. All the pregnant animals were observed for body weights and any abnormal changes and subjected to caesarean-section on gestation day (GD) 20; all fetuses obtained from caesarean-section were assessed by external inspection, visceral and skeletal examinations. No treatment-related external alterations as well as visceral and skeletal malformations were observed in honokiol microemulsion groups. There was no significant difference in the body weight gain of the pregnant rats, average number of corpora lutea, and the gravid uterus weight in the honokiol microemulsion groups compared with the vehicle control group. However, at a dose level of 2000 μg/kg/day, there was embryo-fetal developmental toxicity observed, including a decrease in the body length and tail length of fetuses. In conclusion, the no-observed-adverse-effect level (NOAEL) of honokiol microemulsion is 600 μg/kg/day, 75 times above the therapeutic dosage and it has embryo-fetal toxicity at a dose level of 2000 μg/kg/day, which is approximately 250 times above the therapeutic dosage. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. MRI of fetal acquired brain lesions

    International Nuclear Information System (INIS)

    Prayer, Daniela; Brugger, Peter C.; Kasprian, Gregor; Witzani, Linde; Helmer, Hanns; Dietrich, Wolfgang; Eppel, Wolfgang; Langer, Martin

    2006-01-01

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images

  19. MRI of fetal acquired brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Radiodiagnostics, Medical University of Vienna (Austria)]. E-mail: daniela.prayer@meduniwien.ac.at; Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna (Austria); Kasprian, Gregor [Department of Radiodiagnostics, Medical University of Vienna (Austria); Witzani, Linde [Department of Radiodiagnostics, Medical University of Vienna (Austria); Helmer, Hanns [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Dietrich, Wolfgang [Department of Neurosurgery, Medical University of Vienna (Austria); Eppel, Wolfgang [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Langer, Martin [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria)

    2006-02-15

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images.

  20. MicroRNAs and fetal brain development: Implications for ethanol teratology during the second trimester period of neurogenesis.

    Directory of Open Access Journals (Sweden)

    Rajesh eMiranda

    2012-05-01

    Full Text Available Maternal ethanol consumption during pregnancy can lead to a stereotypic cluster of fetal craniofacial, cardiovascular, skeletal and neurological deficits that are collectively termed the Fetal Alcohol Spectrum Disorder (FASD. Fetal ethanol exposure is a leading non-genetic cause of mental retardation. Mechanisms underlying the etiology of ethanol teratology are varied and complex. This review will focus on the developing brain as an important and vulnerable ethanol target. Near the end of the first trimester, and during the second trimester, fetal neural stem cells (NSCs produce most of the neurons of the adult brain, and ethanol has been shown to influence NSC renewal and maturation. We will discuss the neural developmental and teratological implications of the biogenesis and function of microRNAs (miRNAs, a class of small non-protein-coding RNAs that control the expression of gene networks by translation repression. A small but growing body of research has identified ethanol-sensitive miRNAs at different stages of NSC and brain maturation. While many microRNAs appear to be vulnerable to ethanol at specific developmental stages, a few, like the miR-9 family, appear to exhibit broad vulnerability to ethanol across multiple stages of NSC differentiation. An assessment of the regulation and function of these miRNAs provides important clues about the mechanisms that underlie fetal vulnerability to alterations in the maternal-fetal environment and yields insights into the genesis of FASD.

  1. Hemodynamic, pulmonary vascular, and myocardial abnormalities secondary to pharmacologic constriction of the fetal ductus arteriosus. A possible mechanism for persistent pulmonary hypertension and transient tricuspid insufficiency in the newborn infant.

    Science.gov (United States)

    Levin, D L; Mills, L J; Weinberg, A G

    1979-08-01

    The prostaglandin synthetase inhibitor indomethacin was given orally or intravenously to pregnant ewes. This resulted in a significant rise in the fetal pulmonary-to-systemic arterial mean blood pressure difference across the ductus arteriosus, presumably secondary to constriction of the ductus arteriosus. In five experiments the pressure difference could be promptly but temporarily reversed by the administration of prostaglandin E1 (PGE1) into the fetal inferior vena cava. Fetal lungs from study and control animals were fixed by perfusion at measured pulmonary arterial mean blood pressure, and fifth-generation resistance vessels were studied. The medial width/external diameter ratio was significantly increased in the study vs the control lungs due to increased smooth muscle and decreased external diameter. In addition, study fetuses had acute degenerative myocardial changes in the tricuspid valve papillary muscles, the right ventricular free wall and the interventricular septum. Similar changes were not seen in control fetuses. Indomethacin administration during pregnancy causes constriction of the fetal ductus arteriosus, fetal pulmonary arterial hypertension, and right ventricular damage. If severe, this may cause rapid fetal death. If less severe, in the newborn infant, this mechanism may be one cause of persistent pulmonary hypertension due to vasoconstriction and increased pulmonary arterial smooth muscle and/or tricuspid insufficiency due to papillary muscle infarction.

  2. The effects of prenatal cannabis exposure on fetal development and pregnancy outcomes: a protocol.

    Science.gov (United States)

    Gunn, Jayleen K L; Rosales, Cecilia B; Center, Katherine E; Nuñez, Annabelle V; Gibson, Steven J; Ehiri, John E

    2015-03-13

    The effects of exposure to marijuana in utero on fetal development are not clear. Given that the recent legislation on cannabis in the US is likely to result in increased use, there is a need to assess the effects of prenatal cannabis exposure on fetal development and pregnancy outcomes. The objective of this review is to assess the effects of prenatal exposure to cannabis on pregnancy outcomes (including maternal and child outcomes). Major databases will be searched from inception to the latest issue, with the aim of identifying studies that reported the effects of prenatal exposure to cannabis on fetal development and pregnancy outcomes. Two investigators will independently review all titles and abstracts to identify potential articles. Discrepancies will be resolved by repeated review, discussion and consensus. Study quality assessment will be undertaken, using standard protocols. To qualify for inclusion, studies must report at least one maternal or neonatal outcome post partum. Cross-sectional, case-control, cohort and randomised controlled trials published in English will be included. In order to rule out the effects of other drugs that may affect fetal development and pregnancy outcomes, studies will only be included if they report outcomes of prenatal exposure to cannabis while excluding other illicit substances. Data from eligible studies will be extracted, and data analysis will include a systematic review and critical appraisal of evidence, and meta-analysis if data permit. Meta-analysis will be conducted if three or more studies report comparable statistics on the same outcome. The review which will result from this protocol has not already been conducted. Preparation of the review will follow the procedures stated in this protocol, and will adhere to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Ethical approval of data will not be required since the review will use data that are already available in the

  3. Biochemical composition of fetal fluids in at term, normal developed, healthy, viable dogs and preliminary data from pathologic littermates.

    Science.gov (United States)

    Veronesi, M C; Bolis, B; Faustini, M; Rota, A; Mollo, A

    2018-03-01

    A proper canine neonatal assistance, required to reduce the high perinatal loss rate, imply a full knowledge about the fetal-to-neonatal physiology. Because fetal fluids play an important role throughout mammals pregnancy, influencing fetal growth and development, fetal well being, and contributing to guarantee the most suitable environment for the fetus, the knowledge about fetal fluids biochemical composition is of major importance. At first, the biochemical composition of fetal fluids collected by normal developed, healthy and viable newborns, is necessary to depict the normal features, and represent the first step for the further detection of abnormalities associated to fetal/neonatal distress and useful for the early identification of newborns needing special attention, immediately after birth. The present study was aimed to define the biochemical composition of amniotic and allantoic fluids collected from fetus delivered by caesarean section at term of pregnancy. To reduce the possible confounding effect of maternal labor or troubles at parturition, fetal fluids were collected only from puppies born by elective caesaeran section, at term of normal pregnancies. Fetal fluids from 76 puppies, 70 normal and six pathologic newborns, born by elective caesarean section were collected and analyzed for alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin, lactate dehydrogenase (LDH), creatine-kinase (CK), alkaline phosphatase (ALP), creatinine, urea, amylase, lipase, gamma-glutamyl transferase (γ-GT), triglycerides, cholesterol, total proteins, albumin, globulins, glucose, magnesium, potassium, chloride, sodium, calcium, phosphorus and osmolarity. No significant differences were found between biochemical composition of amniotic or allantoic fluid in normal and pathologic newborns, maybe due to the small number of the pathologic puppies. Although some correlations between the two fluids were found (albumin, phosphorus, glucose and

  4. Fetal behavior in normal dichorionic twin pregnancy

    NARCIS (Netherlands)

    Mulder, E. J. H.; Derks, J. B.; de Laat, M. W. M.; Visser, G. H. A.

    2012-01-01

    Objectives: A prospective study was performed to compare fetal behavioral development in healthy dichorionic twins and singletons, and identify twin intra-pair associations (synchrony) of fetal movements and rest-activity cycles using different criteria to define synchrony. Subjects and methods:

  5. Average fetal depth in utero: data for estimation of fetal absorbed radiation dose

    International Nuclear Information System (INIS)

    Ragozzino, M.W.; Breckle, R.; Hill, L.M.; Gray, J.E.

    1986-01-01

    To estimate fetal absorbed dose from radiographic examinations, the depth from the anterior maternal surface to the midline of the fetal skull and abdomen was measured by ultrasound in 97 pregnant women. The relationships between fetal depth, fetal presentation, and maternal parameters of height, weight, anteroposterior (AP) thickness, gestational age, placental location, and bladder volume were analyzed. Maternal AP thickness (MAP) can be estimated from gestational age, maternal height, and maternal weight. Fetal midskull and abdominal depths were nearly equal. Fetal depth normalized to MAP was independent or nearly independent of maternal parameters and fetal presentation. These data enable a reasonable estimation of absorbed dose to fetal brain, abdomen, and whole body

  6. Cell surface carbohydrate changes during embryonic and fetal skin development

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Holbrook, K; Clausen, H

    1986-01-01

    Monoclonal antibodies to four type 2 chain carbohydrate antigens were used for immunohistochemical studies of embryonic and fetal skin. The antibodies detected N-acetyllactosamine and 3 fucosyl substitutes of this, blood group antigen H, Lex, and Ley. Periderm consistently stained for N-acetyllac......Monoclonal antibodies to four type 2 chain carbohydrate antigens were used for immunohistochemical studies of embryonic and fetal skin. The antibodies detected N-acetyllactosamine and 3 fucosyl substitutes of this, blood group antigen H, Lex, and Ley. Periderm consistently stained for N...

  7. Agonist mediated fetal muscle-type nicotinic acetylcholine receptor desensitization

    Science.gov (United States)

    The exposure of a developing embryo or fetus to teratogenic alkaloids from plants has the potential to cause developmental defects in livestock due to the inhibition of fetal movement by alkaloids. The mechanism behind the inhibition of fetal movement is the desensitization of fetal muscle-type nico...

  8. Comparative assessments of the effects of alcohol exposure on fetal brain development using optical coherence tomography and ultrasound imaging

    Science.gov (United States)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2013-02-01

    The developing fetal brain is vulnerable to a variety of environmental agents including maternal ethanol consumption. Preclinical studies on the development and amelioration of fetal teratology would be significantly facilitated by the application of high resolution imaging technologies like optical coherence tomography (OCT) and high-frequency ultrasound (US). This study investigates the ability of these imaging technologies to measure the effects of maternal ethanol exposure on brain development, ex vivo, in fetal mice. Pregnant mice at gestational day 12.5 were administered ethanol (3 g/Kg b.wt.) or water by intragastric gavage, twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and imaged. Three-dimensional images of the mice fetus brains were obtained by OCT and high-resolution US, and the volumes of the left and right ventricles of the brain were measured. Ethanol-exposed fetuses exhibited a statistically significant, 2-fold increase in average left and right ventricular volumes compared with the ventricular volume of control fetuses, with OCT-derived measures of 0.38 and 0.18 mm3, respectively, whereas the boundaries of the fetal mouse lateral ventricles were not clearly definable with US imaging. Our results indicate that OCT is a useful technology for assessing ventriculomegaly accompanying alcohol-induced developmental delay. This study clearly demonstrated advantages of using OCT for quantitative assessment of embryonic development compared with US imaging.

  9. Ezh2 represses the basal cell lineage during lung endoderm development.

    Science.gov (United States)

    Snitow, Melinda E; Li, Shanru; Morley, Michael P; Rathi, Komal; Lu, Min Min; Kadzik, Rachel S; Stewart, Kathleen M; Morrisey, Edward E

    2015-01-01

    The development of the lung epithelium is regulated in a stepwise fashion to generate numerous differentiated and stem cell lineages in the adult lung. How these different lineages are generated in a spatially and temporally restricted fashion remains poorly understood, although epigenetic regulation probably plays an important role. We show that the Polycomb repressive complex 2 component Ezh2 is highly expressed in early lung development but is gradually downregulated by late gestation. Deletion of Ezh2 in early lung endoderm progenitors leads to the ectopic and premature appearance of Trp63+ basal cells that extend the entire length of the airway. Loss of Ezh2 also leads to reduced secretory cell differentiation. In their place, morphologically similar cells develop that express a subset of basal cell genes, including keratin 5, but no longer express high levels of either Trp63 or of standard secretory cell markers. This suggests that Ezh2 regulates the phenotypic switch between basal cells and secretory cells. Together, these findings show that Ezh2 restricts the basal cell lineage during normal lung endoderm development to allow the proper patterning of epithelial lineages during lung formation. © 2015. Published by The Company of Biologists Ltd.

  10. Alteration in peripheral blood concentration of certain pro-inflammatory cytokines in cows developing retention of fetal membranes.

    Science.gov (United States)

    Boro, Prasanta; Kumaresan, A; Pathak, Rupal; Patbandha, T K; Kumari, Susavi; Yadav, Asha; Manimaran, A; Baithalu, R K; Attupuram, Nitin M; Mohanty, T K

    2015-06-01

    Retention of fetal membranes (RFM) adversely affects the production and reproduction potential of the affected cows leading to huge economic loss. Physiological separation of fetal membranes is reported to be an inflammatory process. The present study compared the concentrations of certain pro inflammatory cytokines [Interleukin 1β (IL-1), Interleukin 6 (IL-6), Interleukin 8 (IL-8) and Tumor necrosis factor α (TNF-α) between the cows that developed RFM (n=10) and the cows that expelled fetal membranes normally (n=10) to find out if they could serve as a predictive tool for RFM. Blood samples were collected from the cows from 30 days before expected parturition through day -21, day -14, day -7, day -5, day -3, day -1, on the day of parturition (day 0), day 1 postpartum and the pro-inflammatory cytokines were estimated in blood plasma by ELISA method. The IL-1β concentration was significantly lower (Pmembranes normally from 3 days before calving till the day of calving. The plasma concentrations of IL-6 and IL-8 were also lower (Pmembranes normally. It may be inferred that the concentrations of IL-1, IL-6, IL-8 and TNF-α around parturition were altered in cows developing RFM compared to those expelled fetal membranes normally. Copyright © 2015. Published by Elsevier B.V.

  11. Fetal programming in meat production.

    Science.gov (United States)

    Du, Min; Wang, Bo; Fu, Xing; Yang, Qiyuan; Zhu, Mei-Jun

    2015-11-01

    Nutrient fluctuations during the fetal stage affects fetal development, which has long-term impacts on the production efficiency and quality of meat. During the early development, a pool of mesenchymal progenitor cells proliferate and then diverge into either myogenic or adipogenic/fibrogenic lineages. Myogenic progenitor cells further develop into muscle fibers and satellite cells, while adipogenic/fibrogenic lineage cells develop into adipocytes, fibroblasts and resident fibro-adipogenic progenitor cells. Enhancing the proliferation and myogenic commitment of progenitor cells during fetal development enhances muscle growth and lean production in offspring. On the other hand, promoting the adipogenic differentiation of adipogenic/fibrogenic progenitor cells inside the muscle increases intramuscular adipocytes and reduces connective tissue, which improves meat marbling and tenderness. Available studies in mammalian livestock, including cattle, sheep and pigs, clearly show the link between maternal nutrition and the quantity and quality of meat production. Similarly, chicken muscle fibers develop before hatching and, thus, egg and yolk sizes and hatching temperature affect long-term growth performance and meat production of chicken. On the contrary, because fishes are able to generate new muscle fibers lifelong, the impact of early nutrition on fish growth performance is expected to be minor, which requires further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Relative IGF-1 and IGF-2 gene expression in maternal and fetal tissues from diabetic swine

    International Nuclear Information System (INIS)

    Wolverton, C.K.; Leaman, D.W.; White, M.E.; Ramsay, T.G.

    1990-01-01

    Fourteen pregnant, crossbred gilts were utilized in this study. Seven gilts were injected with alloxan (50 mg/kg) at day 75 of gestation to induce diabetes. Gilts underwent caesarean section on day 105 of gestation. Samples were collected from maternal skeletal muscle, adipose tissue, uterus and endometrium; and from fetal skeletal muscle, adipose tissue, placenta, liver, lung, kidney, heart, brain and spleen. Tissues were frozen in liquid nitrogen for later analysis of IGF-1 and IGF-2 gene expression. Samples were pooled and total RNA was isolated using the guanidine isothiocynate method. Total mRNA was analyzed by dot blot hybridization. Blots were probed with 32 P-cDNA for porcine IGF-1 and rat IGF-2. IGF-1 gene expression in maternal tissues was unaffected by diabetes. Maternal diabetes increased IGF-2 mRNA in maternal adipose tissue but exhibited no effect in muscle or uterus. Expression of IGF-2 by maternal endometrium was decreased by diabetes. Maternal diabetes induced an increase in IGF-1 gene expression in muscle and placenta while causing an increase in IGF-2 expression in fetal liver and placenta. IGF-2 mRNA was lower in lung from fetuses of diabetic mothers than in controls. These results suggest that maternal diabetes alters IGF-1 and IGF-2 gene expression in specific tissues and differential regulation of these genes appears to exist in the mother and developing fetus

  13. Fetal Urinary Tract Anomalies: Review of Pathophysiology, Imaging, and Management.

    Science.gov (United States)

    Mileto, Achille; Itani, Malak; Katz, Douglas S; Siebert, Joseph R; Dighe, Manjiri K; Dubinsky, Theodore J; Moshiri, Mariam

    2018-05-01

    Common fetal anomalies of the kidneys and urinary tract encompass a complex spectrum of abnormalities that can be detected prenatally by ultrasound. Common fetal anomalies of the kidneys and urinary tract can affect amniotic fluid volume production with the development of oligohydramnios or anhydramnios, resulting in fetal pulmonary hypoplasia and, potentially, abnormal development of other fetal structures. We provide an overview of common fetal anomalies of the kidneys and urinary tract with an emphasis on sonographic patterns as well as pathologic and postnatal correlation, along with brief recommendations for postnatal management. Of note, we render an updated classification of fetal abnormalities of the kidneys and urinary tract based on the presence or absence of associated urinary tract dilation. In addition, we review the 2014 classification of urinary tract dilation based on the Linthicum multidisciplinary consensus panel.

  14. Differential proteomic expression of human placenta and fetal development following e-waste lead and cadmium exposure in utero

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Long; Ge, Jingjing; Huo, Xia; Zhang, Yuling [Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041 (China); Lau, Andy T.Y. [Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou 515041 (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041 (China); Xu, Xijin, E-mail: xuxj@stu.edu.cn [Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041 (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041 (China)

    2016-04-15

    ABSTRACT: Prenatal exposure to lead (Pb) and cadmium (Cd) has been associated with a series of physiological problems resulting in fetal growth restriction. We aimed to investigate the effects of Pb and Cd exposure on placental function and the potential mechanisms involved in fetal development. Placental specimens and questionnaires were collected from an e-waste area and a reference area in China. Two-dimensional electrophoresis combined with MALDI-TOF-MS/MS and molecular network relationship were performed to analyze differentially expressed proteins using a compositing sample pool. Compared with the reference group, the exposed group exhibited significantly higher levels of placental Pb and Cd (p < 0.01), shorter body length and higher gestational age (p < 0.01). After bivariate adjustment in a linear regression model, decreases of 205.05 g in weight and 0.44 cm in body length were associated with a 10 ng/g wt increase in placental Cd. Pb showed a negative trend but lacked statistical significance. Proteomic analysis showed 32 differentially-expressed proteins and were predominantly involved in protein translocation, cytoskeletal structure, and energy metabolism. Fumarate hydratase was down-regulated in the exposed placenta tissues and validated by ELISA. Alterations in placental proteome suggest that imbalances in placental mitochondria respiration might be a vital pathway targeting fetal growth restriction induced by exposure to Cd. - Highlights: • The placental Pb and Cd levels were higher in the e-waste polluted area. • Proteome in placenta tissues was performed by two-dimensional gel electrophoresis. • Cd exposure in the placenta was associated with the reduced fetal development. • 32 proteins covered in translocation, energy metabolism and cytoskeletal structure. • Dysregulated mitochondrial respiration may act in the Cd-reduced fetal development.

  15. Differential proteomic expression of human placenta and fetal development following e-waste lead and cadmium exposure in utero

    International Nuclear Information System (INIS)

    Xu, Long; Ge, Jingjing; Huo, Xia; Zhang, Yuling; Lau, Andy T.Y.; Xu, Xijin

    2016-01-01

    ABSTRACT: Prenatal exposure to lead (Pb) and cadmium (Cd) has been associated with a series of physiological problems resulting in fetal growth restriction. We aimed to investigate the effects of Pb and Cd exposure on placental function and the potential mechanisms involved in fetal development. Placental specimens and questionnaires were collected from an e-waste area and a reference area in China. Two-dimensional electrophoresis combined with MALDI-TOF-MS/MS and molecular network relationship were performed to analyze differentially expressed proteins using a compositing sample pool. Compared with the reference group, the exposed group exhibited significantly higher levels of placental Pb and Cd (p < 0.01), shorter body length and higher gestational age (p < 0.01). After bivariate adjustment in a linear regression model, decreases of 205.05 g in weight and 0.44 cm in body length were associated with a 10 ng/g wt increase in placental Cd. Pb showed a negative trend but lacked statistical significance. Proteomic analysis showed 32 differentially-expressed proteins and were predominantly involved in protein translocation, cytoskeletal structure, and energy metabolism. Fumarate hydratase was down-regulated in the exposed placenta tissues and validated by ELISA. Alterations in placental proteome suggest that imbalances in placental mitochondria respiration might be a vital pathway targeting fetal growth restriction induced by exposure to Cd. - Highlights: • The placental Pb and Cd levels were higher in the e-waste polluted area. • Proteome in placenta tissues was performed by two-dimensional gel electrophoresis. • Cd exposure in the placenta was associated with the reduced fetal development. • 32 proteins covered in translocation, energy metabolism and cytoskeletal structure. • Dysregulated mitochondrial respiration may act in the Cd-reduced fetal development.

  16. Subclinical decelerations during developing hypotension in preterm fetal sheep after acute on chronic lipopolysaccharide exposure

    Science.gov (United States)

    Lear, Christopher A.; Davidson, Joanne O.; Galinsky, Robert; Yuill, Caroline A.; Wassink, Guido; Booth, Lindsea C.; Drury, Paul P.; Bennet, Laura; Gunn, Alistair J.

    2015-01-01

    Subclinical (shallow) heart rate decelerations occur during neonatal sepsis, but there is limited information on their relationship with hypotension or whether they occur before birth. We examined whether subclinical decelerations, a fall in fetal heart rate (FHR) that remained above 100 bpm, were associated with hypotension in preterm fetal sheep exposed to lipopolysaccharide (LPS). Chronically-instrumented fetal sheep at 0.7 gestation received continuous low-dose LPS infusions (n = 15, 100 ng/kg over 24 h, followed by 250 ng/kg/24 h for 96 h) or saline (n = 8). Boluses of 1 μg LPS or saline were given at 48 and 72 h. FHR variability (FHRV) was calculated, and sample asymmetry was used to assess the severity and frequency of decelerations. Low-dose LPS infusion did not affect FHR. After the first LPS bolus, 7 fetuses remained normotensive, while 8 developed hypotension (a fall in mean arterial blood pressure of ≥5 mmHg). Developing hypotension was associated with subclinical decelerations, with a corresponding increase in sample asymmetry and FHRV (p < 0.05). The second LPS bolus was associated with similar but attenuated changes in FHR and blood pressure (p < 0.05). In conclusion, subclinical decelerations are not consistently seen during prenatal exposure to LPS, but may be a useful marker of developing inflammation-related hypotension before birth. PMID:26537688

  17. The CT appearances of delayed amniotic fluid clearance from the lungs in an infant with absent pulmonary valve and congenital lobar emphysema

    International Nuclear Information System (INIS)

    Fink, A. Michelle; Edis, Brian; Massie, John

    2005-01-01

    Congenital lobar emphysema (CLE) is a cause of severe neonatal respiratory distress. Overexpansion of the affected pulmonary lobe in the fetus is due to narrowing of the airway, with a resultant 'ball-valve' effect. At birth, there may be delayed clearance of fetal lung fluid. Early chest radiographs show opacification of the hyperexpanded lobe. The CT findings in the immediate neonatal period have not been previously reported. We describe the imaging in a neonate with tetralogy of Fallot and absent pulmonary valve with secondary CLE. CT demonstrates the hyperexpanded lobe with initial thickening of the interlobular septa and alveolar ground glass attenuation, with subsequent clearing. This resorption of fetal lung fluid via the pulmonary interstitium should not be confused with interstitial lung disease. (orig.)

  18. The CT appearances of delayed amniotic fluid clearance from the lungs in an infant with absent pulmonary valve and congenital lobar emphysema

    Energy Technology Data Exchange (ETDEWEB)

    Fink, A. Michelle [Royal Children' s Hospital, Department of Medical Imaging, Parkville, Victoria (Australia); University of Melbourne, Melbourne, Victoria (Australia); Edis, Brian [Royal Children' s Hospital, Department of Cardiology, Parkville, Victoria (Australia); Massie, John [University of Melbourne, Melbourne, Victoria (Australia); Royal Children' s Hospital, Department of Respiratory Medicine, Parkville, Victoria (Australia); Murdoch Children' s Research Institute, Melbourne, Victoria (Australia)

    2005-09-01

    Congenital lobar emphysema (CLE) is a cause of severe neonatal respiratory distress. Overexpansion of the affected pulmonary lobe in the fetus is due to narrowing of the airway, with a resultant 'ball-valve' effect. At birth, there may be delayed clearance of fetal lung fluid. Early chest radiographs show opacification of the hyperexpanded lobe. The CT findings in the immediate neonatal period have not been previously reported. We describe the imaging in a neonate with tetralogy of Fallot and absent pulmonary valve with secondary CLE. CT demonstrates the hyperexpanded lobe with initial thickening of the interlobular septa and alveolar ground glass attenuation, with subsequent clearing. This resorption of fetal lung fluid via the pulmonary interstitium should not be confused with interstitial lung disease. (orig.)

  19. Maternal exposure to procymidone has no effects on fetal external genitalia development in male rabbit fetuses in a modified developmental toxicity study.

    Science.gov (United States)

    Inawaka, Kunifumi; Kishimoto, Noriyuki; Higuchi, Hashihiro; Kawamura, Satoshi

    2010-06-01

    This study was conducted to evaluate the effects of procymidone (PCM) on development of male rabbit fetal external genitalia. PCM was administered once daily by gavage at dose levels of 0 (control) and 125mg/kg/day to pregnant rabbits from gestation day 6 through 28 and fetal external genitalia was observed in detail. This treatment period covered the critical stage of sexual differentiation of fetal external genitalia in rabbits. In the maternal animals, food consumption was reduced in the PCM group. There were no effects of PCM on maternal caesarean sectioning data or fetal external observations. In fetal external genitalia observations, there were no significant differences between the control and PCM treatment group in any of the following parameters: ano-genital distance (AGD), phallus boundary-genital distance, diameter of preputial lamella, ventral gap of preputial lamella, or ventral gap to diameter ration of preputial lamella, though severe feminization such as decreasing of AGD and hypospadias in male rat offspring at the dose level of 125 mg/kg of PCM were reported. These results suggest that PCM has no effect on fetal external genitalia development in male rabbit fetuses, and species difference of developmental effects of PCM on sexual differentiation exists.

  20. Development of fetal brain of 20 weeks gestational age: Assessment with post-mortem Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Zhang Zhonghe; Liu Shuwei; Lin Xiangtao; Teng Gaojun; Yu Taifei; Fang Fang; Zang Fengchao

    2011-01-01

    Background: The 20th week gestational age (GA) is at mid-gestation and corresponds to the age at which the termination of pregnancy in several countries and the first Magnetic Resonance Imaging (MRI) can be performed, and at which the premature babies may survive. However, at present, very little is known about the exact anatomical character at this GA. Objective: To delineate the developing fetal brain of 20 weeks GA and obtain the three dimensional visualization model. Materials and methods: 20 fetal specimens were scanned by 3.0 T and 7.0 T post-mortem MRI, and the three dimensional visualization model was obtained with Amira 4.1. Results: Most of the sulci or their anlage, except the postcentral sulcus and intraparietal sulcus, were present. The laminar organization, described as layers with different signal intensities, was most clearly distinguished at the parieto-occipital lobe and peripheral regions of the hippocampus. The basal nuclei could be clearly visualized, and the brain stem and cerebellum had formed their common shape. On the visualization model, the shape and relative relationship of the structures could be appropriately delineated. The ranges of normal values of the brain structures were obtained, but no sexual dimorphisms or cerebral asymmetries were found. Conclusions: The developing fetal brain of 20 weeks GA can be clearly delineated on 3.0 T and 7.0 T post-mortem MRIs, and the three dimensional visualization model supplies great help in precise cognition of the immature brain. These results may have positive influences on the evaluation of the fetal brain in the uterus.

  1. Fetal motion estimation from noninvasive cardiac signal recordings.

    Science.gov (United States)

    Biglari, Hadis; Sameni, Reza

    2016-11-01

    Fetal motility is a widely accepted indicator of the well-being of a fetus. In previous research, it has be shown that fetal motion (FM) is coherent with fetal heart rate accelerations and an indicator for active/rest cycles of the fetus. The most common approach for FM and fetal heart rate (FHR) assessment is by Doppler ultrasound (DUS). While DUS is the most common approach for studying the mechanical activities of the heart, noninvasive fetal electrocardiogram (ECG) and magnetocardiogram (MCG) recording and processing techniques have been considered as a possible competitor (or complement) for the DUS. In this study, a fully automatic and robust framework is proposed for the extraction, ranking and alignment of fetal QRS-complexes from noninvasive fetal ECG/MCG. Using notions from subspace tracking, two measures, namely the actogram and rotatogram, are defined for fetal motion tracking. The method is applied to four fetal ECG/MCG databases, including twin MCG recordings. By defining a novel measure of causality, it is shown that there is significant coherency and causal relationship between the actogram/rotatogram and FHR accelerations/decelerations. Using this measure, it is shown that in many cases, the actogram and rotatogram precede the FHR variations, which supports the idea of motion-induced FHR accelerations/decelerations for these cases and raises attention for the non-motion-induced FHR variations, which can be associated to the fetal central nervous system developments. The results of this study can lead to novel perspectives of the fetal sympathetic and parasympathetic brain systems and future requirements of fetal cardiac monitoring.

  2. Microarray Meta-Analysis Identifies Acute Lung Injury Biomarkers in Donor Lungs That Predict Development of Primary Graft Failure in Recipients

    Science.gov (United States)

    Haitsma, Jack J.; Furmli, Suleiman; Masoom, Hussain; Liu, Mingyao; Imai, Yumiko; Slutsky, Arthur S.; Beyene, Joseph; Greenwood, Celia M. T.; dos Santos, Claudia

    2012-01-01

    Objectives To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans. Methods We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene chips were classified and grouped based on the strategy used to induce lung injury. Effect size (change in gene expression) was calculated between non-injurious and injurious conditions comparing two main strategies to pool chips: (1) one-hit and (2) two-hit lung injury models. A random effects model was used to integrate individual effect sizes calculated from each experiment. Classification models were built using the gene expression signatures generated by the meta-analysis to predict the development of lung injury in human lung transplant recipients. Results Two injury-specific lists of differentially expressed genes generated from our meta-analysis of lung injury models were validated using external data sets and prospective data from animal models of ventilator-induced lung injury (VILI). Pathway analysis of gene sets revealed that both new and previously implicated VILI-related pathways are enriched with differentially regulated genes. Classification model based on gene expression signatures identified in animal models of lung injury predicted development of primary graft failure (PGF) in lung transplant recipients with larger than 80% accuracy based upon injury profiles from transplant donors. We also found that better classifier performance can be achieved by using meta-analysis to identify differentially-expressed genes than using single study-based differential analysis. Conclusion Taken together, our data suggests that microarray analysis of gene expression data allows for the detection of

  3. Fetal echocardiography

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007340.htm Fetal echocardiography To use the sharing features on this page, please enable JavaScript. Fetal echocardiography is a test that uses sound waves ( ultrasound ) ...

  4. ACR Appropriateness Criteria Assessment of Fetal Well-Being.

    Science.gov (United States)

    Simpson, Lynn; Khati, Nadia J; Deshmukh, Sandeep P; Dudiak, Kika M; Harisinghani, Mukesh G; Henrichsen, Tara L; Meyer, Benjamin J; Nyberg, David A; Poder, Liina; Shipp, Thomas D; Zelop, Carolyn M; Glanc, Phyllis

    2016-12-01

    Although there is limited evidence that antepartum testing decreases the risk for fetal death in low-risk pregnancies, women with high-risk factors for stillbirth should undergo antenatal fetal surveillance. The strongest evidence supporting antepartum testing pertains to pregnancies complicated by intrauterine fetal growth restriction secondary to uteroplacental insufficiency. The main ultrasound-based modalities to determine fetal health are the biophysical profile, modified biophysical profile, and duplex Doppler velocimetry. In patients at risk for cardiovascular compromise, fetal echocardiography may also be indicated to ensure fetal well-being. Although no single antenatal test has been shown to be superior, all have high negative predictive values. Weekly or twice-weekly fetal testing has become the standard practice in high-risk pregnancies. The timing for the initiation of assessments of fetal well-being should be tailored on the basis of the risk for stillbirth and the likelihood of survival with intervention. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer-reviewed journals and the application of well-established methodologies (the RAND/UCLA Appropriateness Method and the Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances in which evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  5. The fetal programming effect of prenatal smoking on Igf1r and Igf1 methylation is organ- and sex-specific.

    Science.gov (United States)

    Meyer, Karolin F; Verkaik-Schakel, Rikst Nynke; Timens, Wim; Kobzik, Lester; Plösch, Torsten; Hylkema, Machteld N

    2017-01-01

    The impact of prenatal smoke exposure (PSE) on DNA methylation has been demonstrated in blood samples from children of smoking mothers, but evidence for sex-dependent smoke-induced effects is limited. As the identified differentially methylated genes can be associated with developmental processes, and insulin-like growth factors (IGFs) play a critical role in prenatal tissue growth, we hypothesized that PSE induces fetal programming of Igf1r and Igf1. Using a mouse model of smoking during pregnancy, we show that PSE alters promoter methylation of Igf1r and Igf1 and deregulates their gene expression in lung and liver of fetal (E17.5) and neonatal (D3) mouse offspring. By further comparing female versus male, lung versus liver, or fetal versus neonatal time point, our results demonstrate that CpG site-specific aberrant methylation patterns sex-dependently vary per organ and time point. Moreover, PSE reduces gene expression of Igf1r and Igf1, dependent on organ, sex, and offspring's age. Our results indicate that PSE may be a source of organ-specific rather than general systemic fetal programming. This is exemplified here by gene promoter methylation and mRNA levels of Igf1r and Igf1, together with a sex- and organ-specific naturally established correlation of both parameters that is affected by prenatal smoke exposure. Moreover, the comparison of fetuses with neonates suggests a CpG site-dependent reversibility/persistence of PSE-induced differential methylation patterns.

  6. Biomedical Instruments for Fetal and Neonatal Surveillance

    International Nuclear Information System (INIS)

    Rolfe, P; Scopesi, F; Serra, G

    2006-01-01

    Specialised instruments have been developed to aid the care of the fetus and the newborn baby. Miniature sensors using optical, electrical, chemical, mechanical and magnetic principles have been produced for capturing key measurands. These include temperature, pressure, flow and dimension, as well as several specific molecules such as glucose, oxygen and carbon dioxide. During pregnancy ultrasound imaging and blood flow techniques provide valuable information concerning fetal abnormalities, fetal growth, fetal breathing and fetal heart rate. Signal processing and pattern recognition can be useful for deriving indicators of fetal distress and clinical status, based on biopotentials as well as ultrasound signals. Fetal pH measurement is a critical requirement during labour and delivery. The intensive care of ill preterm babies involves provision of an optimal thermal environment and respiratory support. Monitoring of blood gas and acid-base status is essential, and this involves both blood sampling for in vitro analysis as well as the use of invasive or non-invasive sensors. For the future it will be vital that the technologies used are subjected to controlled trials to establish benefit or otherwise

  7. Replication of cultured lung epithelial cells

    International Nuclear Information System (INIS)

    Guzowski, D.; Bienkowski, R.

    1986-01-01

    The authors have investigated the conditions necessary to support replication of lung type 2 epithelial cells in culture. Cells were isolated from mature fetal rabbit lungs (29d gestation) and cultured on feeder layers of mitotically inactivated 3T3 fibroblasts. The epithelial nature of the cells was demonstrated by indirect immunofluorescent staining for keratin and by polyacid dichrome stain. Ultrastructural examination during the first week showed that the cells contained myofilaments, microvilli and lamellar bodies (markers for type 2 cells). The following changes were observed after the first week: increase in cell size; loss of lamellar bodies and appearance of multivesicular bodies; increase in rough endoplasmic reticulum and golgi; increase in tonafilaments and well-defined junctions. General cell morphology was good for up to 10 wk. Cells cultured on plastic surface degenerated after 1 wk. Cell replication was assayed by autoradiography of cultures exposed to ( 3 H)-thymidine and by direct cell counts. The cells did not replicate during the first week; however, between 2-10 wk the cells incorporated the label and went through approximately 6 population doublings. They have demonstrated that lung alveolar epithelial cells can replicate in culture if they are maintained on an appropriate substrate. The coincidence of ability to replicate and loss of markers for differentiation may reflect the dichotomy between growth and differentiation commonly observed in developing systems

  8. APOPTOSIS DURING HUMAN FETAL KIDNEY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Rade Čukuranović

    2005-01-01

    Full Text Available Kidney morphogenesis is a complex and stepwise process. The formation of mature kidney in mammals is preceded by two primitive embryonic kidneys known as pronephros and mesonephros. Metanephros develops as a result of reciprocal inductive interactions between two primordial mesodermal derivates: ureteric bud, an epithelial outgrowth of the Wolffian duct, and metanephric blastema, a group of mesenchymal cells. The ureteric bud induces the metanephric mesenchyme to differentiate and form nephrons, whilst the metanephric mesenchyme induces the ureteric bud to grow and branch to form collecting ducts. The nephron goes through four developmental stages, which are described as: 1 vesicle, 2 comma-shaped and S-shaped stages, 3 developing capillary loop, and finally 4 maturing glomerulus. Apoptosis (programmed cell death is a predominant form of physiological cell death, by which organism eliminate unwanted or damaged cells. It is the major component of normal development and disease. Apoptosis is the result of series of biochemical processes happening in certain order in a dying cell, among which the most important is activation of enzyme families called caspases which influence different cell components. Apoptosis is characterized by membrane blebbing, shrinkage of the cell, nuclear fragmentation and chromatin condensation. Organelles are preserved almost intact. Cell surface molecules change. A variety of physiological and pathological stimuli can initiate apoptosis. They act via receptor mechanisms, through biochemical agents, or cause DNA and cell membrane damage. Apoptosis is an important component of fetal development. It is thought that apoptosis is the one of the main regulatory events involved in kidney morphogenesis, considering that among great number of developed cells, only a few of them are involved in the developing program by escaping apoptosis. In any period during kidney development about 3 to 5%of cells are apoptotic. Thorough

  9. The Normal Fetal Pancreas.

    Science.gov (United States)

    Kivilevitch, Zvi; Achiron, Reuven; Perlman, Sharon; Gilboa, Yinon

    2017-10-01

    The aim of the study was to assess the sonographic feasibility of measuring the fetal pancreas and its normal development throughout pregnancy. We conducted a cross-sectional prospective study between 19 and 36 weeks' gestation. The study included singleton pregnancies with normal pregnancy follow-up. The pancreas circumference was measured. The first 90 cases were tested to assess feasibility. Two hundred ninety-seven fetuses of nondiabetic mothers were recruited during a 3-year period. The overall satisfactory visualization rate was 61.6%. The intraobserver and interobserver variability had high interclass correlation coefficients of of 0.964 and 0.967, respectively. A cubic polynomial regression described best the correlation of pancreas circumference with gestational age (r = 0.744; P pancreas circumference percentiles for each week of gestation were calculated. During the study period, we detected 2 cases with overgrowth syndrome and 1 case with an annular pancreas. In this study, we assessed the feasibility of sonography for measuring the fetal pancreas and established a normal reference range for the fetal pancreas circumference throughout pregnancy. This database can be helpful when investigating fetomaternal disorders that can involve its normal development. © 2017 by the American Institute of Ultrasound in Medicine.

  10. Periconceptional growth hormone treatment alters fetal growth and development in lambs.

    Science.gov (United States)

    Koch, J M; Wilmoth, T A; Wilson, M E

    2010-05-01

    Research in the area of fetal programming has focused on intrauterine growth restriction. Few studies have attempted to examine programming mechanisms that ultimately lead to lambs with a greater potential for postnatal growth. We previously demonstrated that treatment of ewes with GH at the time of breeding led to an increase in birth weight. Therefore, the objective of this study was to determine the effects of a single injection of sustained-release GH given during the periconceptional period on fetal growth and development and to determine if the GH axis would be altered in these offspring. Estrus was synchronized using 2 injections of PGF(2alpha); at the time of the second injection, ewes assigned to treatment were also given an injection of sustained-release GH. A maternal jugular vein sample was taken weekly to analyze IGF-I as a proxy for GH to estimate the duration of the treatment effect. In ewes treated with GH, IGF-I increased (P brain weights were obtained, as well as left and right ventricular wall thicknesses. On postnatal d 100, a subset of ewe lambs were weighed and challenged with an intravenous injection of GHRH. Lambs from treated ewes had increased (P left ventricular wall was thinner (P development. Lambs born to ewes treated with GH were larger at birth and had altered organ development, which may indicate that early maternal GH treatment may lead to permanent changes in the developing fetus. The ewe lambs maintained their growth performance to at least 100 d of postnatal life and appeared to have an altered GH axis, as demonstrated by the altered response to GHRH.

  11. Prevention of fetal demise and growth restriction in a mouse model of fetal alcohol syndrome.

    Science.gov (United States)

    Spong, C Y; Abebe, D T; Gozes, I; Brenneman, D E; Hill, J M

    2001-05-01

    Two peptides [NAPVSIPQ (NAP) and SALLRSIPA (ADNF-9)], that are associated with novel glial proteins regulated by vasoactive intestinal peptide, are shown now to provide protective intervention in a model of fetal alcohol syndrome. Fetal demise and growth restrictions were produced after intraperitoneal injection of ethanol to pregnant mice during midgestation (E8). Death and growth abnormalities elicited by alcohol treatment during development are believed to be associated, in part, with severe oxidative damage. NAP and ADNF-9 have been shown to exhibit antioxidative and antiapoptotic actions in vitro. Pretreatment with an equimolar combination of the peptides prevented the alcohol-induced fetal death and growth abnormalities. Pretreatment with NAP alone resulted in a significant decrease in alcohol-associated fetal death; whereas ADNF-9 alone had no detectable effect on fetal survival after alcohol exposure, indicating a pharmacological distinction between the peptides. Biochemical assessment of the fetuses indicated that the combination peptide treatment prevented the alcohol-induced decreases in reduced glutathione. Peptide efficacy was evident with either 30-min pretreatment or with 1-h post-alcohol administration. Bioavailability studies with [(3)H]NAPVSIPQ indicated that 39% of the total radioactivity comigrated with intact peptide in the fetus 60 min after administration. These studies demonstrate that fetal death and growth restriction associated with prenatal alcohol exposure were prevented by combinatorial peptide treatment and suggest that this therapeutic strategy be explored in other models/diseases associated with oxidative stress.

  12. Fetal scalp pH testing

    Science.gov (United States)

    Fetal scalp blood; Scalp pH testing; Fetal blood testing - scalp; Fetal distress - fetal scalp testing; Labor - fetal scalp testing ... a baby. In these cases, testing the scalp pH can help the doctor decide whether the fetus ...

  13. [Incidence of fetal macrosomia: maternal and fetal morbidity].

    Science.gov (United States)

    Rodríguez-Rojas, R R; Cantú-Esquivel, M G; Benavides-de la Garza, L; Benavides-de Anda, L

    1996-06-01

    The macrosomia is an obstetric eventuality associated to high maternal-fetal morbidity-mortality. This assay was planned in order to know the incidence of macrosomia in our institution, the relation between vaginal and abdominal deliveries and the fetal-maternal morbidity we reviewed 3590 records and we found 5.6% incidence of macrosomia in the global obstetric population. There was 58% of vaginal deliveries, 68% of the newborn were male. The main complications were in the C. sections, 2 laceration of the hysterectomy, and 2 peroperative atonias. In the vaginal deliveries, the lacerations of III and IV grade were 9 of each grade. The main fetal complications were 5 slight to severe asphyxia and 4 shoulder dystocias. This assay concludes that the macrosomia in our service is similar to the already published ones, a 42% were C. section and the maternal-fetal morbidity was low.

  14. The use of non-invasive fetal electrocardiography in diagnosing second-degree fetal atrioventricular block.

    Science.gov (United States)

    Lakhno, Igor; Behar, Joachim A; Oster, Julien; Shulgin, Vyacheslav; Ostras, Oleksii; Andreotti, Fernando

    2017-01-01

    Complete atrioventricular block in fetuses is known to be mostly associated with autoimmune disease and can be irreversible if no steroids treatment is provided. Conventional methods used in clinical practice for diagnosing fetal arrhythmia are limited since they do not reflect the primary electrophysiological conduction processes that take place in the myocardium. The non-invasive fetal electrocardiogram has the potential to better support fetal arrhythmias diagnosis through the continuous analysis of the beat to beat variation of the fetal heart rate and morphological analysis of the PQRST complex. We present two retrospective case reports on which atrioventricular block diagnosis could have been supported by the non-invasive fetal electrocardiogram. The two cases comprised a 22-year-old pregnant woman with the gestational age of 31 weeks and a 25-year-old pregnant woman with the gestational age of 41 weeks. Both women were admitted to the Department of Maternal and Fetal Medicine at the Kyiv and Kharkiv municipal perinatal clinics. Patients were observed using standard fetal monitoring methods as well as the non-invasive fetal electrocardiogram. The non-invasive fetal electrocardiographic recordings were analyzed retrospectively, where it is possible to identify the presence of the atrioventricular block. This study demonstrates, for the first time, the feasibility of the non-invasive fetal electrocardiogram as a supplementary method to diagnose of the fetal atrioventricular block. Combined with current fetal monitoring techniques, non-invasive fetal electrocardiography could support clinical decisions.

  15. Seric unconjugated Estrial as a prediction in fetal pulmonar maturity

    International Nuclear Information System (INIS)

    Velasquez F, A.Y.

    1986-07-01

    It was determined the effectivity and utility of the measurement of seric unconjugated estriol levels by radioimmunoassay, as a non invasive technique for determinating fetal lung maturity, correlating with Clement's test and optical density of the amniotic liquid. The study was made in 50 pregnant patients between the 37 and 52 weeks of gestation; samples of 5 to 8 cc of blood for the trial were collected. The evaluation of the new born was made by APGAR, gestational age by Ballard method and the presence of idiopatic respiratory difficulties by Silverman. (author)

  16. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  17. Fetal brain volumetry through MRI volumetric reconstruction and segmentation

    Science.gov (United States)

    Estroff, Judy A.; Barnewolt, Carol E.; Connolly, Susan A.; Warfield, Simon K.

    2013-01-01

    Purpose Fetal MRI volumetry is a useful technique but it is limited by a dependency upon motion-free scans, tedious manual segmentation, and spatial inaccuracy due to thick-slice scans. An image processing pipeline that addresses these limitations was developed and tested. Materials and methods The principal sequences acquired in fetal MRI clinical practice are multiple orthogonal single-shot fast spin echo scans. State-of-the-art image processing techniques were used for inter-slice motion correction and super-resolution reconstruction of high-resolution volumetric images from these scans. The reconstructed volume images were processed with intensity non-uniformity correction and the fetal brain extracted by using supervised automated segmentation. Results Reconstruction, segmentation and volumetry of the fetal brains for a cohort of twenty-five clinically acquired fetal MRI scans was done. Performance metrics for volume reconstruction, segmentation and volumetry were determined by comparing to manual tracings in five randomly chosen cases. Finally, analysis of the fetal brain and parenchymal volumes was performed based on the gestational age of the fetuses. Conclusion The image processing pipeline developed in this study enables volume rendering and accurate fetal brain volumetry by addressing the limitations of current volumetry techniques, which include dependency on motion-free scans, manual segmentation, and inaccurate thick-slice interpolation. PMID:20625848

  18. Recent developments in NMR imaging of lung

    International Nuclear Information System (INIS)

    Ailion, D.C.

    1989-01-01

    This presentation describes the phenomenon of tissue-induced inhomogeneous broadening due to the air/water interfaces in lung and includes a description of its physical basis, imaging and nonimaging techniques for its observation, recent theoretical development of the present stage of understanding of the mechanisms underlying the relaxation times T 1 and T 2 will also be given. Finally, a description of the rapid line scan (RLS) technique for obtaining rapid, artifactfree images of moving objects, such as the lungs of spontaneously breathing animals, is presented. (author). 19 refs.; 13 figs

  19. STORY AND HISTORY IN FETAL BEHAVIOR RESEARCH.

    Science.gov (United States)

    Brakke, Karen

    2015-09-01

    In their monograph, DiPietro, Costigan, and Voegtline present an important and thoughtful portrait of low-risk fetal development during the last trimester of gestation, and they also pay tribute to the Fels Longitudinal Study investigators' early work in this area. In this commentary, the history and legacy of the Fels Institute is further explored within the broader context of fetal research, and DiPietro et al.'s findings are placed in alignment with contemporary dynamic systems' theoretical approaches that emphasize longitudinal analysis of emergent behavior and process during early development. The commentary puts forth the assertion that the work reported by DiPietro and her colleagues tells a story that sets the stage for a new generation of technology-enhanced and culturally expanded investigations of fetal behavior. © 2015 The Society for Research in Child Development, Inc.

  20. Fetal programming of neuropsychiatric disorders.

    Science.gov (United States)

    Faa, Gavino; Manchia, Mirko; Pintus, Roberta; Gerosa, Clara; Marcialis, Maria Antonietta; Fanos, Vassilios

    2016-09-01

    Starting from the Developmental Origins of Health and Disease (DOHaD) hypotheses proposed by David Barker, namely fetal programming, in the past years, there is a growing evidence of the major role played by epigenetic factors during the intrauterine life and the perinatal period. Furthermore, it has been assessed that these factors can affect the health status in infancy and even in adulthood. In this review, we focus our attention on the fetal programming of the brain, analyzing the most recent literature concerning the epigenetic factors that can influence the development of neuropsychiatric disorders such as bipolar disorders, major depressive disorders, and schizophrenia. The perinatal epigenetic factors have been divided in two main groups: maternal factors and fetal factors. The maternal factors include diet, smoking, alcoholism, hypertension, malnutrition, trace elements, stress, diabetes, substance abuse, and exposure to environmental toxicants, while the fetal factors include hypoxia/asphyxia, placental insufficiency, prematurity, low birth weight, drugs administered to the mother or to the baby, and all factors causing intrauterine growth restriction. A better comprehension of the possible mechanisms underlying the pathogenesis of these diseases may help researchers and clinicians develop new diagnostic tools and treatments to offer these patients a tailored medical treatment strategy to improve their quality of life. Birth Defects Research (Part C) 108:207-223, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Fetal karyotype: can we always trust its result?

    Directory of Open Access Journals (Sweden)

    Carolina Leite Drummond

    2008-09-01

    Full Text Available We retrospectively investigated six cases of discrepancy between prenatal fetal karyotype and postnatal findings. In five cases, the chromosomal abnormalities initially found by CVS or amniocentesis were not confirmed by later analyses and postnatal examination. In one case, the fetal karyotype found to be normal by CVS had to be checked due to sonographic features and clinical anomalies found after birth. In most cases, the normal development on sonographic examination raised the doubt about the abnormal fetal karyotype. Discrepant findings between fetal karyotype results and sonographic findings require great caution in their interpretation and counseling of parents. Placental confined mosaicism seems to be the most frequent cause of such discrepant results. The interpretation of fetal karyotype results should always be correlated with sonographic and clinical findings.

  2. Assisted Reproduction Causes Reduced Fetal Growth Associated with Downregulation of Paternally Expressed Imprinted Genes That Enhance Fetal Growth in Mice.

    Science.gov (United States)

    Li, Bo; Chen, Shuqiang; Tang, Na; Xiao, Xifeng; Huang, Jianlei; Jiang, Feng; Huang, Xiuying; Sun, Fangzhen; Wang, Xiaohong

    2016-02-01

    Alteration of intrauterine growth trajectory is linked to metabolic diseases in adulthood. In mammalian and, specifically, human species, pregnancies through assisted reproductive technology (ART) are associated with changes in intrauterine growth trajectory. However, it is still unclear how ART alters intrauterine growth trajectory, especially reduced fetal growth in early to midgestation. In this study, using a mouse model, it was found that ART procedures reduce fetal and placental growth at Embryonic Day 10.5. Furthermore, ART leads to decreased methylation levels at H19, KvDMR1, and Snrpn imprinting control regions in the placentae, instead of fetuses. Furthermore, in the placenta, ART downregulated a majority of parentally expressed imprinted genes, which enhance fetal growth, whereas it upregulated a majority of maternally expressed genes which repress fetal growth. Additionally, the expression of genes that regulate placental development was also affected by ART. ART also downregulated a majority of placental nutrient transporters. Disruption of genomic imprinting and abnormal expression of developmentally and functionally relevant genes in placenta may influence the placental development and function, which affect fetal growth and reprogramming. © 2016 by the Society for the Study of Reproduction, Inc.

  3. Fetal MRI: A Technical Update with Educational Aspirations.

    Science.gov (United States)

    Gholipour, Ali; Estroff, Judith A; Barnewolt, Carol E; Robertson, Richard L; Grant, P Ellen; Gagoski, Borjan; Warfield, Simon K; Afacan, Onur; Connolly, Susan A; Neil, Jeffrey J; Wolfberg, Adam; Mulkern, Robert V

    2014-11-01

    Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies.

  4. Fetal Programming of Obesity: Maternal Obesity and Excessive Weight Gain

    Directory of Open Access Journals (Sweden)

    Seray Kabaran

    2014-10-01

    Full Text Available The prevalence of obesity is an increasing health problem throughout the world. Maternal pre-pregnancy weight, maternal nutrition and maternal weight gain are among the factors that can cause childhood obesity. Both maternal obesity and excessive weight gain increase the risks of excessive fetal weight gain and high birth weight. Rapid weight gain during fetal period leads to changes in the newborn body composition. Specifically, the increase in body fat ratio in the early periods is associated with an increased risk of obesity in the later periods. It was reported that over-nutrition during fetal period could cause excessive food intake during postpartum period as a result of metabolic programming. By influencing the fetal metabolism and tissue development, maternal obesity and excessive weight gain change the amounts of nutrients and metabolites that pass to the fetus, thus causing excessive fetal weight gain which in turn increases the risk of obesity. Fetal over-nutrition and excessive weight gain cause permanent metabolic and physiologic changes in developing organs. While mechanisms that affect these organs are not fully understood, it is thought that the changes may occur as a result of the changes in fetal energy metabolism, appetite control, neuroendocrine functions, adipose tissue mass, epigenetic mechanisms and gene expression. In this review article, the effects of maternal body weight and weight gain on fetal development, newborn birth weight and risk of obesity were evaluated, and additionally potential mechanisms that can explain the effects of fetal over-nutrition on the risk of obesity were investigated [TAF Prev Med Bull 2014; 13(5.000: 427-434

  5. Correlation between US and MRI for prenatal lung volumetry in diaphragmatic hernia, and use of Doppler to identify the ipsilateral lung cap

    Energy Technology Data Exchange (ETDEWEB)

    Castellote, Amparo; Mencho, Sandra; Cadavid, Lina; Piqueras, Joaquim; Enriquez, Goya [University Children' s Hospital Vall d' Hebron, Department of Pediatric Radiology, Barcelona (Spain); Carreras, Elena; Higueras, Teresa [University Hospital Vall d' Hebron, Department of Obstetrics and Gynecology, Barcelona (Spain)

    2011-12-15

    Pulmonary hypoplasia is a common cause of neonatal death. To describe the correlation between relative fetal lung volume (RFLV) and lung-to-head ratio (LHR) in fetuses with unilateral diaphragmatic hernia. Additionally, to describe identification of the ipsilateral lung cap by power Doppler. Single-institution study of consecutive fetuses with diaphragmatic hernia. LHR (by US) and RFLV (by MRI) were correlated in fetuses with and without an ipsilateral lung cap seen at MRI. In four, color/power Doppler was used to follow the pulmonary artery of the ipsilateral lung to identify the compressed cap. The study included 48 fetuses of 20-38 weeks' gestational age (mean, 26 weeks). Mean LHR was 1.52 (range, 0.6-3) in fetuses with a lung cap and 1.15 (range, 0.6-2.58) in fetuses without (P = 0.043). Mean RFLV was 47.4% (range, 18-80%) in fetuses with and 32.9% (range, 14-57%) in fetuses without a lung cap (P = 0.005). RFLV and LHR correlated (r = 0.41, P = 0.01 in those with a cap; r = 0.50, P = 0.05 in those without). Power Doppler identified the ipsilateral lung cap and pulsed Doppler confirmed pulmonary vascularization in four of four fetuses. LHR underestimates lung volume in fetuses with an ipsilateral lung cap. Power Doppler may be useful for identifying the cap. (orig.)

  6. A study on maternal-fetal attachment in pregnant women undergoing fetal echocardiography

    Directory of Open Access Journals (Sweden)

    Concetta Polizzi

    2017-03-01

    Full Text Available Purpose: To investigate the possible effects of the fetal echocardiography experience on the prenatal attachment process. The predictive effect of specific women’s psychological variables will be explored as well.Design and methods: This between groups study involved 85 women with pregnancy at risk who underwent the fetal echocardiography, and 83 women who were about to undergo the morphological scan. The tools employed were: the Prenatal Attachment Inventory (P.A.I. to explore the maternal-fetal attachment; the Maternity Social Support Scale to investigate the woman perception of being socially supported during pregnancy; both the Big Five Questionnaire and the FACES III to explore the personality traits of pregnant women and their perception of their couple relationship functioning.Findings: The outcomes of ANOVA do not show statistically significant differences between the two groups of the mothers-to-be with regard to the scores of the P.A.I. (F = .017; p = .897; η2 = .000, while the regression analysis of the possible effect of the maternal psychological variables on the mother-fetus relationship shows a statistically significant result only with regard to the “social support” variable (r2 = .061; df = 80; p = .025.Conclusions: It would seem that the process of the prenatal attachment develops independently whether the woman has to undergo a first level screening or a second level examination such as the fetal echocardiography.

  7. Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research.

    Science.gov (United States)

    Carter-Harris, Lisa; Davis, Lorie L; Rawl, Susan M

    2016-11-01

    To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development.

  8. Towards a new era in fetal medicine in the Nordic countries

    DEFF Research Database (Denmark)

    Sitras, Vasilis; Brodszki, Jana; Carlsson, Ylva

    2016-01-01

    Fetal medicine is a subspecialty of obstetrics investigating the development, growth and disease of the human fetus. The advances in fetal imaging (ultrasonography, MRI) and molecular diagnostic techniques, together with the possibility of intervention in utero, make fetal medicine an important, ...

  9. Improvement of maternal vitamin D status with 25-hydroxycholecalciferol positively impacts porcine fetal skeletal muscle development and myoblast activity.

    Science.gov (United States)

    Hines, E A; Coffey, J D; Starkey, C W; Chung, T K; Starkey, J D

    2013-09-01

    There is little information available regarding the influence of maternal vitamin D status on fetal skeletal muscle development. Therefore, we investigated the effect of improved vitamin D status resulting from 25-hydroxycholecalciferol (25OHD3) supplementation of dams on fetal skeletal muscle developmental characteristics and myoblast activity using Camborough 22 gilts (n = 40) randomly assigned to 1 of 2 corn-soybean meal-based diets. The control diet (CTL) contained 2,500 IU cholecalciferol (D3)/kg diet, whereas the experimental diet contained 500 IU D3/kg diet plus 50 µg 25OHD3/kg diet. Gilts were fed 2.7 kg of their assigned diet once daily beginning 43 d before breeding through d 90 of gestation. On gestational d 90 (± 1), fetal LM and semitendinosus muscle samples were collected for analysis of developmental characteristics and myoblast activity, respectively. No treatment difference was observed in fetal LM cross-sectional area (P = 0.25). Fetuses from 25OHD3-supplemented gilts had more LM fibers (P = 0.04) that tended to be smaller in cross-sectional area compared with CTL fetuses (P = 0.11). A numerical increase in the total number of Pax7+ myoblasts was also observed in fetuses from 25OHD3-supplemented gilts (P = 0.12). Myoblasts derived from the muscles of fetuses from 25OHD3-fed dams displayed an extended proliferative phase in culture compared with those from fetuses of dams fed only D3 (P importance of maternal vitamin D status on the development of fetal skeletal muscle.

  10. Human fetal anatomy: MR imaging.

    Science.gov (United States)

    Weinreb, J C; Lowe, T; Cohen, J M; Kutler, M

    1985-12-01

    Twenty-four pregnant women carrying 26 fetuses (two sets of twins) were imaged with magnetic resonance (MR) imaging at 0.35 T following sonographic evaluation. Each study was retrospectively evaluated to determine which of 33 normal fetal structures were visible on the images and which imaging parameters were most useful for depicting fetal anatomy. Fetal motion degraded fetal images in all but two cases, both with oligohydramnios and in the third trimester of gestation. Nevertheless, many fetal structures were identifiable, particularly in the third trimester. Visualization of fetal anatomy improved with intravenous maternal sedation in five cases. Relatively T1-weighted images occasionally offered the advantage of less image degradation owing to fetal motion and improved contrast between different fetal structures. More T2 weighting was believed to be advantageous in one case for outlining the fetal head and in one case for delineation of the brain. In many cases, structures were similarly identifiable (though with different signal intensities) regardless of the parameters selected. The authors conclude that MR imaging of many fetal structures is currently unsatisfactory and is probably of limited value, particularly in the first and second trimesters. However, the relative frequency and detail with which the fetal head and liver can be depicted indicate that these may be areas for further investigation, and the potential utility of imaging fetal fat warrants further investigation.

  11. Fetal programming as a predictor of adult health or disease: the need to reevaluate fetal heart function.

    Science.gov (United States)

    Miranda, Joana O; Ramalho, Carla; Henriques-Coelho, Tiago; Areias, José Carlos

    2017-11-01

    Epidemiologic and experimental evidence suggests that adverse stimuli during critical periods in utero permanently alters organ structure and function and may have persistent consequences for the long-term health of the offspring. Fetal hypoxia, maternal malnutrition, or ventricular overloading are among the major adverse conditions that can compromise cardiovascular development in early life. With the heart as a central organ in fetal adaptive mechanisms, a deeper understanding of the fetal cardiovascular physiology and of the echocardiographic tools to assess both normal and stressed pregnancies would give precious information on fetal well-being and hopefully may help in early identification of special risk groups for cardiovascular diseases later in life. Assessment of cardiac function in the fetus represents an additional challenge when comparing to children and adults, requiring advanced training and a critical approach to properly acquire and interpret functional parameters. This review summarizes the basic fetal cardiovascular physiology and the main differences from the mature postnatal circulation, provides an overview of the particularities of echocardiographic evaluation in the fetus, and finally proposes an integrated view of in utero programming of cardiovascular diseases later in life, highlighting priorities for future clinical research.

  12. Food and Drug Administration warning on anesthesia and brain development: implications for obstetric and fetal surgery.

    Science.gov (United States)

    Olutoye, Olutoyin A; Baker, Byron Wycke; Belfort, Michael A; Olutoye, Oluyinka O

    2018-01-01

    There has been growing concern about the detrimental effects of certain anesthetic agents on the developing brain. Preclinical studies in small animal models as well as nonhuman primates suggested loss or death of brain cells and consequent impaired neurocognitive function following anesthetic exposure in neonates and late gestation fetuses. Human studies in this area are limited and currently inconclusive. On Dec. 14, 2016, the US Food and Drug Administration issued a warning regarding impaired brain development in children following exposure to certain anesthetic agents used for general anesthesia, namely the inhalational anesthetics isoflurane, sevoflurane, and desflurane, and the intravenous agents propofol and midazolam, in the third trimester of pregnancy. Furthermore, this warning recommends that health care professionals should balance the benefits of appropriate anesthesia in young children and pregnant women against potential risks, especially for procedures that may last >3 hours or if multiple procedures are required in children surgery in the second and third trimester; this exposure is typically longer than that for cesarean delivery. Very few studies address the effect of anesthetic exposure on the fetus in the second trimester when most nonobstetric and fetal surgical procedures are performed. It is also unclear how the plasticity of the fetal brain at this stage of development will modulate the consequences of anesthetic exposure. Strategies that may circumvent possible untoward long-term neurologic effects of anesthesia in the baby include: (1) use of nonimplicated (nongamma-aminobutyric acid agonist) agents for sedation such as opioids (remifentanil, fentanyl) or the alpha-2 agonist, dexmedetomidine, when appropriate; (2) minimizing the duration of exposure to inhalational anesthetics for fetal, obstetric, and nonobstetric procedures in the pregnant patient, as much as possible within safe limits; and (3) commencing surgery promptly and limiting

  13. Fetal MSCs

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Derived from extra embryonic tissues (amniotic fluid, placenta, cord blood, Wharton's Jelly) and fetal tissues (aborted fetuses). Derived from extra embryonic tissues (amniotic fluid, placenta, cord blood, Wharton's Jelly) and fetal tissues (aborted fetuses). In comparison ...

  14. Usefulness of fetal MR imaging for congenital urological anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Akasaka, Yoshinobu; Sugimura, Kazuro [Kobe Univ. (Japan). Graduate School of Medicine; Kanegawa, Kimio [Kobe Children' s Hospital (Japan)

    2002-04-01

    Despite the fact that congenital urological anomalies are not rare, the role of fetal MRI in these disorders has not been well defined. We evaluated the usefulness of MRI in the prenatal diagnosis of patients with such anomalies. A total of 23 cases were included in this study. The 23 cases were divided as follows: 7 cases of bilateral renal agenesis or severe hypogenesis (Potter sequence: PS), 8 cases of multicystic dysplastic kidney (2 cases were bilateral: MCDK), 5 cases of hydronephrosis (HN), one case of hydroureteronephrosis (HUN) and 2 cases of HN or HUN with duplication (DUP). In this study the scan time for fetal MRI was approximately 30 seconds for one sequence. Overall, the diagnostic accuracy was 65.2%; 85.2% for PS, 87.5% for MCDK, 60.0% for HN, 50.0% for HUN and 0% for DUP. Even though imaging quality was relatively poor for motion artifact in this series, we were able to diagnose PS and MCDK because of associated lung hypoplasia and its characteristic shape. The diagnosis of HN, HUN and DUP was difficult. HN was sometimes misdiagnosed as a retroperitoneal cystic mass because the dilation of calices was obscured in severe cases. In HUN and DUP cases dilation of the ureter was unclear. However, using HASTE or true FISP sequence may solve this problem. Based on this data, we conclude that fetal MRI is useful for prenatal diagnosis of urological anomalies. (author)

  15. Evaluation of fetal brain development by magnetic resonance imaging. Subependymal germinal matrix layer and cerebral ventricle

    International Nuclear Information System (INIS)

    Kinoshita, Yoshimasa; Yokota, Akira; Okudera, Toshio

    1999-01-01

    Three dimensional data of brain from the formalin-fixed fetuses were collected without isolation, by the 4.7 tesla super high magnetic field MRI and the developmental process of the cerebral parenchyma was studied by 3D images. Subjects were 13 fetal brain and MRI was performed using 3D-steady-state free precession sequence. The isolated brain is very soft and fragile and is deformed by its weight at the imaging. However 3D-MRI can be obtained without isolation, and the deformation is remarkably small. The subependymal germinal matrix layer did not be observed in 7 weeks-old fetus, appeared at 9 weeks-old and increased gradually. Then it rapidly reduced from 28 weeks-old. The volume calculated, from 3D-MRI, increased rapidly from 9 weeks-old to 23 weeks-old, and reached the maximum (2.346 mm 3 ) at 23 weeks-old. The relation between fetal ages and volume of cerebral ventricle also showed similar pattern. This method will be useful to examine the development of the fetal brain without any damage. (K.H.)

  16. Antenatal ureaplasma infection impairs development of the fetal ovine gut in an IL-1-dependent manner.

    Science.gov (United States)

    Wolfs, T G A M; Kallapur, S G; Knox, C L; Thuijls, G; Nitsos, I; Polglase, G R; Collins, J J P; Kroon, E; Spierings, J; Shroyer, N F; Newnham, J P; Jobe, A H; Kramer, B W

    2013-05-01

    Ureaplasma infection of the amniotic cavity is associated with adverse postnatal intestinal outcomes. We tested whether interleukin-1 (IL-1) signaling underlies intestinal pathology following ureaplasma exposure in fetal sheep. Pregnant ewes received intra-amniotic injections of ureaplasma or culture media for controls at 3, 7, and 14 d before preterm delivery at 124 d gestation (term 150 d). Intra-amniotic injections of recombinant human interleukin IL-1 receptor antagonist (rhIL-1ra) or saline for controls were given 3 h before and every 2 d after Ureaplasma injection. Ureaplasma exposure caused fetal gut inflammation within 7 d with damaged villus epithelium and gut barrier loss. Proliferation, differentiation, and maturation of enterocytes were significantly reduced after 7 d of ureaplasma exposure, leading to severe villus atrophy at 14 d. Inflammation, impaired development and villus atrophy of the fetal gut was largely prevented by intra-uterine rhIL-1ra treatment. These data form the basis for a clinical understanding of the role of ureaplasma in postnatal intestinal pathologies.

  17. Regulated gene expression in cultured type II cells of adult human lung.

    Science.gov (United States)

    Ballard, Philip L; Lee, Jae W; Fang, Xiaohui; Chapin, Cheryl; Allen, Lennell; Segal, Mark R; Fischer, Horst; Illek, Beate; Gonzales, Linda W; Kolla, Venkatadri; Matthay, Michael A

    2010-07-01

    Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at approximately 95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days on collagen-coated dishes with or without DCI for the final 3 days. In freshly isolated cells, highly expressed genes included SFTPA/B/C, SCGB1A, IL8, CXCL2, and SFN in addition to ubiquitously expressed genes. Transcript abundance was correlated between fetal and adult cells (r = 0.88), with a subset of 187 genes primarily related to inflammation and immunity that were expressed >10-fold higher in adult cells. During control culture, expression increased for 8.1% of expressed genes and decreased for approximately 4% including 118 immune response and 10 surfactant-related genes. DCI treatment promoted lamellar body production and increased expression of approximately 3% of probed genes by > or =1.5-fold; 40% of these were also induced in fetal cells. Highly induced genes (> or =10-fold) included PGC, ZBTB16, DUOX1, PLUNC, CIT, and CRTAC1. Twenty-five induced genes, including six genes related to surfactant (SFTPA/B/C, PGC, CEBPD, and ADFP), also had decreased expression during control culture and thus are candidates for hormonal regulation in vivo. Our results further define the adult human type II cell molecular phenotype and demonstrate that a subset of genes remains hormone responsive in cultured adult cells.

  18. Quantitative CT characterization of pediatric lung development using routine clinical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Jill M.; Brody, Alan S.; Fleck, Robert J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Walkup, Laura L. [Cincinnati Children' s Hospital Medical Center, Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati, OH (United States); Woods, Jason C. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Cincinnati Children' s Hospital Medical Center, Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati, OH (United States)

    2016-12-15

    The use of quantitative CT analysis in children is limited by lack of normal values of lung parenchymal attenuation. These characteristics are important because normal lung development yields significant parenchymal attenuation changes as children age. To perform quantitative characterization of normal pediatric lung parenchymal X-ray CT attenuation under routine clinical conditions in order to establish a baseline comparison to that seen in pathological lung conditions. We conducted a retrospective query of normal CT chest examinations in children ages 0-7 years from 2004 to 2014 using standard clinical protocol. During these examinations semi-automated lung parenchymal segmentation was performed to measure lung volume and mean lung attenuation. We analyzed 42 CT examinations in 39 children, ages 3 days to 83 months (mean ± standard deviation [SD] = 42 ± 27 months). Lung volume ranged 0.10-1.72 liters (L). Mean lung attenuation was much higher in children younger than 12 months, with values as high as -380 Hounsfield units (HU) in neonates (lung volume 0.10 L). Lung volume decreased to approximately -650 HU by age 2 years (lung volume 0.47 L), with subsequently slower exponential decrease toward a relatively constant value of -860 HU as age and lung volume increased. Normal lung parenchymal X-ray CT attenuation decreases with increasing lung volume and age; lung attenuation decreases rapidly in the first 2 years of age and more slowly thereafter. This change in normal lung attenuation should be taken into account as quantitative CT methods are translated to pediatric pulmonary imaging. (orig.)

  19. Quantitative CT characterization of pediatric lung development using routine clinical imaging

    International Nuclear Information System (INIS)

    Stein, Jill M.; Brody, Alan S.; Fleck, Robert J.; Walkup, Laura L.; Woods, Jason C.

    2016-01-01

    The use of quantitative CT analysis in children is limited by lack of normal values of lung parenchymal attenuation. These characteristics are important because normal lung development yields significant parenchymal attenuation changes as children age. To perform quantitative characterization of normal pediatric lung parenchymal X-ray CT attenuation under routine clinical conditions in order to establish a baseline comparison to that seen in pathological lung conditions. We conducted a retrospective query of normal CT chest examinations in children ages 0-7 years from 2004 to 2014 using standard clinical protocol. During these examinations semi-automated lung parenchymal segmentation was performed to measure lung volume and mean lung attenuation. We analyzed 42 CT examinations in 39 children, ages 3 days to 83 months (mean ± standard deviation [SD] = 42 ± 27 months). Lung volume ranged 0.10-1.72 liters (L). Mean lung attenuation was much higher in children younger than 12 months, with values as high as -380 Hounsfield units (HU) in neonates (lung volume 0.10 L). Lung volume decreased to approximately -650 HU by age 2 years (lung volume 0.47 L), with subsequently slower exponential decrease toward a relatively constant value of -860 HU as age and lung volume increased. Normal lung parenchymal X-ray CT attenuation decreases with increasing lung volume and age; lung attenuation decreases rapidly in the first 2 years of age and more slowly thereafter. This change in normal lung attenuation should be taken into account as quantitative CT methods are translated to pediatric pulmonary imaging. (orig.)

  20. Adverse fetal and neonatal outcomes associated with a life-long high fat diet: role of altered development of the placental vasculature.

    Directory of Open Access Journals (Sweden)

    Emily K Hayes

    Full Text Available Maternal obesity results in a number of obstetrical and fetal complications with both immediate and long-term consequences. The increased prevalence of obesity has resulted in increasing numbers of women of reproductive age in this high-risk group. Since many of these obese women have been subjected to hypercaloric diets from early childhood we have developed a rodent model of life-long maternal obesity to more clearly understand the mechanisms that contribute to adverse pregnancy outcomes in obese women. Female Sprague Dawley rats were fed a control diet (CON--16% of calories from fat or high fat diet (HF--45% of calories from fat from 3 to 19 weeks of age. Prior to pregnancy HF-fed dams exhibited significant increases in body fat, serum leptin and triglycerides. A subset of dams was sacrificed at gestational day 15 to evaluate fetal and placental development. The remaining animals were allowed to deliver normally. HF-fed dams exhibited a more than 3-fold increase in fetal death and decreased neonatal survival. These outcomes were associated with altered vascular development in the placenta, as well as increased hypoxia in the labyrinth. We propose that the altered placental vasculature may result in reduced oxygenation of the fetal tissues contributing to premature demise and poor neonatal survival.

  1. Maternal exercise, season and sex modify the human fetal circadian rhythm.

    Science.gov (United States)

    Sletten, Julie; Cornelissen, Germaine; Assmus, Jørg; Kiserud, Torvid; Albrechtsen, Susanne; Kessler, Jörg

    2018-05-13

    The knowledge on circadian rhythmicity is rapidly expanding. We aimed to define the longitudinal development of the circadian heart rate rhythm in the human fetus in an unrestricted, out-of-hospital setting, and to examine the effects of maternal physical activity, season and fetal sex. We recruited 48 women with low-risk singleton pregnancies. Using a portable monitor for continuous fetal electrocardiography, fetal heart rate recordings were obtained around gestational weeks 24, 28, 32 and 36. Circadian rhythmicity in fetal heart rate and fetal heart rate variation was detected by cosinor analysis; developmental trends were calculated by population-mean cosinor and multilevel analysis. For the fetal heart rate and fetal heart rate variation, a significant circadian rhythm was present in 122/123 (99.2%) and 116/121 (95.9%) of the individual recordings, respectively. The rhythms were best described by combining cosine waves with periods of 24 and 8 hours. With increasing gestational age, the magnitude of the fetal heart rate rhythm increased, and the peak of the fetal heart rate variation rhythm shifted from a mean of 14:25 (24 weeks) to 20:52 (36 weeks). With advancing gestation, the rhythm-adjusted mean value of the fetal heart rate decreased linearly in females (prhythm diversity was found in male fetuses, during higher maternal physical activity and during the summer season. The dynamic development of the fetal circadian heart rate rhythm during the second half of pregnancy is modified by fetal sex, maternal physical activity and season. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Development of Eimeria nieschulzi (Coccidia, Apicomplexa Gamonts and Oocysts in Primary Fetal Rat Cells

    Directory of Open Access Journals (Sweden)

    Hong Chen

    2013-01-01

    Full Text Available The in vitro production of gametocytes and oocysts of the apicomplexan parasite genus Eimeria is still a challenge in coccidiosis research. Until today, an in vitro development of gametocytes or oocysts had only been shown in some Eimeria species. For several mammalian Eimeria species, partial developments could be achieved in different cell types, but a development up to gametocytes or oocysts is still lacking. This study compares several permanent cell lines with primary fetal cells of the black rat (Rattus norvegicus concerning the qualitative in vitro development of the rat parasite Eimeria nieschulzi. With the help of transgenic parasites, the developmental progress was documented. The selected Eimeria nieschulzi strain constitutively expresses the yellow fluorescent protein and a macrogamont specific upregulated red tandem dimer tomato. In the majority of all investigated host cells the development stopped at the second merozoite stage. In a mixed culture of cells derived from inner fetal organs the development of schizont generations I-IV, macrogamonts, and oocysts were observed in crypt-like organoid structures. Microgamonts and microgametes could not be observed and oocysts did not sporulate under air supply. By immunohistology, we could confirm that wild-type E. nieschulzi stages can be found in the crypts of the small intestine. The results of this study may be helpful for characterization of native host cells and for development of an in vitro cultivation system for Eimeria species.

  3. Fetal organ dosimetry for the Techa River and Ozyorsk offspring cohorts. Pt. 1. A Urals-based series of fetal computational phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Matthew R.; Bolch, Wesley E. [University of Florida, Advanced Laboratory for Radiation Dosimetry Studies (ALRADS), J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL (United States); Shagina, Natalia B.; Tolstykh, Evgenia I.; Degteva, Marina O. [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation); Fell, Tim P. [Public Health England, Centre for Radiation, Chemical and Environmental Health, Didcot, Chilton, Oxon (United Kingdom)

    2015-03-15

    The European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) project aims to improve understanding of cancer risks associated with chronic in utero radiation exposure. A comprehensive series of hybrid computational fetal phantoms was previously developed at the University of Florida in order to provide the SOLO project with the capability of computationally simulating and quantifying radiation exposures to individual fetal bones and soft tissue organs. To improve harmonization between the SOLO fetal biokinetic models and the computational phantoms, a subset of those phantoms was systematically modified to create a novel series of phantoms matching anatomical data representing Russian fetal biometry in the Southern Urals. Using previously established modeling techniques, eight computational Urals-based phantoms aged 8, 12, 18, 22, 26, 30, 34, and 38 weeks post-conception were constructed to match appropriate age-dependent femur lengths, biparietal diameters, individual bone masses and whole-body masses. Bone and soft tissue organ mass differences between the common ages of the subset of UF phantom series and the Urals-based phantom series illustrated the need for improved understanding of fetal bone densities as a critical parameter of computational phantom development. In anticipation for SOLO radiation dosimetry studies involving the developing fetus and pregnant female, the completed phantom series was successfully converted to a cuboidal voxel format easily interpreted by radiation transport software. (orig.)

  4. Roles of Melatonin in Fetal Programming in Compromised Pregnancies

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Chen

    2013-03-01

    Full Text Available Compromised pregnancies such as those associated with gestational diabetes mellitus, intrauterine growth retardation, preeclampsia, maternal undernutrition, and maternal stress may negatively affect fetal development. Such pregnancies may induce oxidative stress to the fetus and alter fetal development through the epigenetic process that may affect development at a later stage. Melatonin is an oxidant scavenger that reverses oxidative stress during the prenatal period. Moreover, the role of melatonin in epigenetic modifications in the field of developmental programming has been studied extensively. Here, we describe the physiological function of melatonin in pregnancy and discuss the roles of melatonin in fetal programming in compromised pregnancies, focusing on its involvement in redox and epigenetic mechanisms.

  5. Roles of Melatonin in Fetal Programming in Compromised Pregnancies

    Science.gov (United States)

    Chen, Yu-Chieh; Sheen, Jiunn-Ming; Tiao, Miao-Meng; Tain, You-Lin; Huang, Li-Tung

    2013-01-01

    Compromised pregnancies such as those associated with gestational diabetes mellitus, intrauterine growth retardation, preeclampsia, maternal undernutrition, and maternal stress may negatively affect fetal development. Such pregnancies may induce oxidative stress to the fetus and alter fetal development through the epigenetic process that may affect development at a later stage. Melatonin is an oxidant scavenger that reverses oxidative stress during the prenatal period. Moreover, the role of melatonin in epigenetic modifications in the field of developmental programming has been studied extensively. Here, we describe the physiological function of melatonin in pregnancy and discuss the roles of melatonin in fetal programming in compromised pregnancies, focusing on its involvement in redox and epigenetic mechanisms. PMID:23466884

  6. Fetal tachycardia : diagnosis and treatment

    NARCIS (Netherlands)

    Oudijk, Martijn Alexander

    2003-01-01

    Part I: Fetal tachyarrhythmias Diagnosis Fetal tachycardia is a serious condition warranting specialized evaluation. In chapter 2, methods of diagnosis of fetal tachycardia are described, including doppler and M-mode echocardiography and fetal magnetocardiography. The study presented in chapter 3

  7. Fetal short time variation during labor: a non-invasive alternative to fetal scalp pH measurements?

    Science.gov (United States)

    Schiermeier, Sven; Reinhard, Joscha; Hatzmann, Hendrike; Zimmermann, Ralf C; Westhof, Gregor

    2009-01-01

    To determine whether short time variation (STV) of fetal heart beat correlates with scalp pH measurements during labor. From 1279 deliveries, 197 women had at least one fetal scalp pH measurement. Using the CTG-Player, STVs were calculated from the electronically saved cardiotocography (CTG) traces and related to the fetal scalp pH measurements. There was no correlation between STV and fetal scalp pH measurements (r=-0.0592). Fetal STV is an important parameter with high sensitivity for antenatal fetal acidosis. This study shows that STV calculations do not correlate with fetal scalp pH measurements during labor, hence are not helpful in identifying fetal acidosis.

  8. Automated Software Analysis of Fetal Movement Recorded during a Pregnant Woman's Sleep at Home.

    Science.gov (United States)

    Nishihara, Kyoko; Ohki, Noboru; Kamata, Hideo; Ryo, Eiji; Horiuchi, Shigeko

    2015-01-01

    Fetal movement is an important biological index of fetal well-being. Since 2008, we have been developing an original capacitive acceleration sensor and device that a pregnant woman can easily use to record fetal movement by herself at home during sleep. In this study, we report a newly developed automated software system for analyzing recorded fetal movement. This study will introduce the system and compare its results to those of a manual analysis of the same fetal movement signals (Experiment I). We will also demonstrate an appropriate way to use the system (Experiment II). In Experiment I, fetal movement data reported previously for six pregnant women at 28-38 gestational weeks were used. We evaluated the agreement of the manual and automated analyses for the same 10-sec epochs using prevalence-adjusted bias-adjusted kappa (PABAK) including quantitative indicators for prevalence and bias. The mean PABAK value was 0.83, which can be considered almost perfect. In Experiment II, twelve pregnant women at 24-36 gestational weeks recorded fetal movement at night once every four weeks. Overall, mean fetal movement counts per hour during maternal sleep significantly decreased along with gestational weeks, though individual differences in fetal development were noted. This newly developed automated analysis system can provide important data throughout late pregnancy.

  9. The relationship between maternal and fetal vitamin D, insulin resistance, and fetal growth.

    LENUS (Irish Health Repository)

    Walsh, Jennifer M

    2013-05-01

    Evidence for a role of vitamin D in maintaining normal glucose homeostasis is inconclusive. We sought to clarify the relationship between maternal and fetal insulin resistance and vitamin D status. This is a prospective cohort study of 60 caucasian pregnant women. Concentrations of 25-hydroxyvitamin D (25-OHD), glucose, insulin, and leptin were measured in early pregnancy and at 28 weeks. Ultrasound at 34 weeks assessed fetal anthropometry including abdominal wall width, a marker of fetal adiposity. At delivery birth weight was recorded and fetal 25-OHD, glucose, C-peptide, and leptin measured in cord blood. Insulin resistance was calculated using the Homeostasis Model Assessment (HOMA) equation. We found that those with lower 25-OHD in early pregnancy had higher HOMA indices at 28 weeks, (r = -.32, P = .02). No significant relationship existed between maternal or fetal leptin and 25-OHD, or between maternal or fetal 25-OHD and fetal anthropometry or birth weight. The incidence of vitamin D deficiency was high at each time point (15%-45%). These findings lend support to routine antenatal supplementation with vitamin D in at risk populations.

  10. Developmental aspects of the rat brain insulin receptor: loss of sialic acid and fluctuation in number characterize fetal development

    International Nuclear Information System (INIS)

    Brennan, W.A. Jr.

    1988-01-01

    In this study, I have investigated the structure of the rat brain insulin receptor during fetal development. There is a progressive decrease in the apparent molecular size of the brain alpha-subunit during development: 130K on day 16 of gestation, 126K at birth, and 120K in the adult. Glycosylation was investigated as a possible reason for the observed differences in the alpha-subunit molecular size. The results show that the developmental decrease in the brain alpha-subunit apparent molecular size is due to a parallel decrease in sialic acid content. This was further confirmed by measuring the retention of autophosphorylated insulin receptors on wheat germ agglutinin (WGA)-Sepharose. An inverse correlation between developmental age and retention of 32 P-labeled insulin receptors on the lectin column was observed. Insulin binding increases 6-fold between 16 and 20 days of gestation [61 +/- 25 (+/- SE) fmol/mg protein and 364 +/- 42 fmol/mg, respectively]. Thereafter, binding in brain membranes decreases to 150 +/- 20 fmol/mg by 2 days after birth, then reaches the adult level of 63 +/- 15 fmol/mg. In addition, the degree of insulin-stimulated autophosphorylation closely parallels the developmental changes in insulin binding. Between 16 and 20 days of fetal life, insulin-stimulated phosphorylation of the beta-subunit increases 6-fold. Thereafter, the extent of phosphorylation decreases rapidly, reaching adult values identical with those in 16-day-old fetal brain. These results suggest that the embryonic brain possesses competent insulin receptors whose expression changes markedly during fetal development. This information should be important in defining the role of insulin in the developing nervous system

  11. Characterization of the fetal blood transcriptome and proteome in maternal anti-fetal rejection: evidence of a distinct and novel type of human fetal systemic inflammatory response.

    Science.gov (United States)

    Lee, Joonho; Romero, Roberto; Chaiworapongsa, Tinnakorn; Dong, Zhong; Tarca, Adi L; Xu, Yi; Chiang, Po Jen; Kusanovic, Juan Pedro; Hassan, Sonia S; Yeo, Lami; Yoon, Bo Hyun; Than, Nandor Gabor; Kim, Chong Jai

    2013-10-01

    The human fetus is able to mount a systemic inflammatory response when exposed to microorganisms. This stereotypic response has been termed the 'fetal inflammatory response syndrome' (FIRS), defined as an elevation of fetal plasma interleukin-6 (IL-6). FIRS is frequently observed in patients whose preterm deliveries are associated with intra-amniotic infection, acute inflammatory lesions of the placenta, and a high rate of neonatal morbidity. Recently, a novel form of fetal systemic inflammation, characterized by an elevation of fetal plasma CXCL10, has been identified in patients with placental lesions consistent with 'maternal anti-fetal rejection'. These lesions include chronic chorioamnionitis, plasma cell deciduitis, and villitis of unknown etiology. In addition, positivity for human leukocyte antigen (HLA) panel-reactive antibodies (PRA) in maternal sera can also be used to increase the index of suspicion for maternal anti-fetal rejection. The purpose of this study was to determine (i) the frequency of pathologic lesions consistent with maternal anti-fetal rejection in term and spontaneous preterm births; (ii) the fetal serum concentration of CXCL10 in patients with and without evidence of maternal anti-fetal rejection; and (iii) the fetal blood transcriptome and proteome in cases with a fetal inflammatory response associated with maternal anti-fetal rejection. Maternal and fetal sera were obtained from normal term (n = 150) and spontaneous preterm births (n = 150). A fetal inflammatory response associated with maternal anti-fetal rejection was diagnosed when the patients met two or more of the following criteria: (i) presence of chronic placental inflammation; (ii) ≥80% of maternal HLA class I PRA positivity; and (iii) fetal serum CXCL10 concentration >75th percentile. Maternal HLA PRA was analyzed by flow cytometry. The concentrations of fetal CXCL10 and IL-6 were determined by ELISA. Transcriptome analysis was undertaken after the extraction of total RNA

  12. Fetal Echocardiography and Indications

    Directory of Open Access Journals (Sweden)

    Melih Atahan Güven

    2008-09-01

    Full Text Available Congenital heart diseases are encountered in 0.8% of live births and are among the most frequently diagnosed malformations. At least half of these anomalies end up with death or require surgical interventions and are responsible for 30% of the perinatal mortality. Fetal echocardiography is the sum of knowledge, skill and orientation rather than knowing the embryologic details of the fetal heart. The purpose of fetal echocardiography is to document the presence of normal fetal cardiac anatomy and rhythm in high risk group and to define the anomaly and arrhythmia if present. A certain sequence should be followed during the evaluation of fetal heart. Sequential segmental analysis (SSA and basic definition terminology made it possible to determine a lot of complex cardiac anomalies during prenatal period. By the end of 1970’s, Shinebourne started using sequential segmental analysis for fetal cardiac evaluation and today, prenatal diagnosis of congenital heart disease is possible without any confusion. In this manner, whole fetal heart can be evaluated as the relation of three segments (atria, ventricles and the great arteries with each other, irrelevant of complexity of a possible cardiac anomaly. Presence of increased nuchal thickness during early gestation and abnormal four-chamber-view during ultrasonography by the obstetrician presents a clear indication for fetal echocardiography,however, one should keep in mind that 80-90% of the babies born with a congenital heart disease do not have a familial or maternal risk factor. In addition, it should be remembered that expectant mothers with diabetes mellitus pose an indication for fetal echocardiography.

  13. A transcriptome-wide screen for mRNAs enriched in fetal Leydig cells: CRHR1 agonism stimulates rat and mouse fetal testis steroidogenesis.

    Directory of Open Access Journals (Sweden)

    Erin N McDowell

    Full Text Available Fetal testis steroidogenesis plays an important role in the reproductive development of the male fetus. While regulators of certain aspects of steroidogenesis are known, the initial driver of steroidogenesis in the human and rodent fetal testis is unclear. Through comparative analysis of rodent fetal testis microarray datasets, 54 candidate fetal Leydig cell-specific genes were identified. Fetal mouse testis interstitial expression of a subset of these genes with unknown expression (Crhr1, Gramd1b, Itih5, Vgll3, and Vsnl1 was verified by whole-mount in situ hybridization. Among the candidate fetal Leydig cell-specific factors, three receptors (CRHR1, PRLR, and PROKR2 were tested for a steroidogenic function using ex vivo fetal testes treated with receptor agonists (CRH, PRL, and PROK2. While PRL and PROK2 had no effect, CRH, at low (approximately 1 to 10 nM concentration, increased expression of the steroidogenic genes Cyp11a1, Cyp17a1, Scarb1, and Star in GD15 mouse and GD17 rat testes, and in conjunction, testosterone production was increased. Exposure of GD15 fetal mouse testis to a specific CRHR1 antagonist blunted the CRH-induced steroidogenic gene expression and testosterone responses. Similar to ex vivo rodent fetal testes, ≥ 10 nM CRH exposure of MA-10 Leydig cells increased steroidogenic pathway mRNA and progesterone levels, showing CRH can enhance steroidogenesis by directly targeting Leydig cells. Crh mRNA expression was observed in rodent fetal hypothalamus, and CRH peptide was detected in rodent amniotic fluid. Together, these data provide a resource for discovering factors controlling fetal Leydig cell biology and suggest that CRHR1 activation by CRH stimulates rat and mouse fetal Leydig cell steroidogenesis in vivo.

  14. Value of amniocentesis versus fetal tissue for cytogenetic analysis in cases of fetal demise.

    Science.gov (United States)

    Bryant Borders, Ann E; Greenberg, Jessica; Plaga, Stacey; Shepard-Hinton, Megan; Yates, Carin; Elias, Sherman; Shulman, Lee P

    2009-01-01

    Use of fetal tissue for cytogenetic analysis in cases of second- and third-trimester fetal demise frequently results in unacceptably high failure rates. We reviewed our ongoing use of amniocentesis prior to uterine evacuation to determine if this provided a better source of cells for cytogenetic analysis. We compared cytogenetic results using fetal tissues obtained following uterine evacuation to our ongoing use of amniotic fluid cell obtained by transabdominal amniocentesis prior to uterine evacuation from 2003 to 2008. In 49 of the 63 cases evaluated by fetal tissue biopsies performed after uterine evacuation, a karyotypic analysis was obtained (77.8%). Among the 38 cases evaluated by amniocentesis, an amniotic fluid sample and fetal cytogenetic results were obtained in all 38 (100%) cases. Our findings indicate that amniocentesis is a more reliable source of cytogenetic information than fetal tissue in cases of second- and third-trimester fetal demise.

  15. Clinical implications from monitoring fetal activity.

    Science.gov (United States)

    Rayburn, W F

    1982-12-15

    The monitoring of fetal motion in high-risk pregnancies has been shown to be worthwhile in predicting fetal distress and impending fetal death. The maternal recording of perceived fetal activity is an inexpensive surveillance technique which is most useful when there is chronic uteroplacental insufficiency or when a stillbirth may be expected. The presence of an active, vigorous fetus is reassuring, but documented fetal inactivity required a reassessment of the underlying antepartum complication and further fetal evaluation with real-time ultrasonography, fetal heart rate testing, and biochemical testing. Fetal distress from such acute changes as abruptio placentae or umbilical cord compression may not be predicted by monitoring fetal motion. Although not used for routine clinical investigation, electromechanical devices such as tocodynamometry have provided much insight into fetal behavioral patterns at many stages of pregnancy and in pregnancies with an antepartum complication.

  16. [Air pollutant exposure during pregnancy and fetal and early childhood development. Research protocol of the INMA (Childhood and Environment Project)].

    Science.gov (United States)

    Esplugues, Ana; Fernández-Patier, Rosalía; Aguilera, Inma; Iñíguez, Carmen; García Dos Santos, Saúl; Aguirre Alfaro, Amelia; Lacasaña, Marina; Estarlich, Marisa; Grimalt, Joan O; Fernández, Marieta; Rebagliato, Marisa; Sala, María; Tardón, Adonina; Torrent, Maties; Martínez, María Dolores; Ribas-Fitó, Núria; Sunyer, Jordi; Ballester, Ferran

    2007-01-01

    The INMA (INfancia y Medio Ambiente [Spanish for Environment and Childhood]) project is a cooperative research network. This project aims to study the effects of environment and diet on fetal and early childhood development. This article aims to present the air pollutant exposure protocol during pregnancy and fetal and early childhood development of the INMA project. The information to assess air pollutant exposure during pregnancy is based on outdoor measurement of air pollutants (nitrogen dioxide [NO2], volatile organic compounds [VOC], ozone, particulate matter [PM10, PM2,5 ] and of their composition [polycyclic aromatic hydrocarbons]); measurement of indoor and personal exposure (VOC and NO2); urinary measurement of a biological marker of hydrocarbon exposure (1-hydroxypyrene); and data gathered by questionnaires and geographic information systems. These data allow individual air pollutant exposure indexes to be developed, which can then be used to analyze the possible effects of exposure on fetal development and child health. This protocol and the type of study allow an approximation to individual air pollutant exposure to be obtained. Finally, the large number of participants (N = 4,000), as well as their geographic and social diversity, increases the study's potential.

  17. Cardiac-specific activation of Cre expression at late fetal development

    International Nuclear Information System (INIS)

    Opherk, Jan P.; Yampolsky, Peter; Hardt, Stefan E.; Schoels, Wolfgang; Katus, Hugo A.; Koenen, Michael; Zehelein, Joerg

    2007-01-01

    In a first step towards dissecting molecular mechanisms that contribute to the development of cardiac diseases, we have generated transgenic mice that express a Cre-GFP fusion protein under the transcriptional control of a 4.3 kb murine cardiac Troponin I gene (cTnI) promoter. Cre-GFP expression, similar in three transgenic lines, is described in one line. In mouse embryos, transgenic for the Cre-GFP and ROSA lacZ reporter allele, first Cre-mediated recombination appeared at 16.5 dpc selectively at the heart. Like the endogenous cTnI gene, transgenic Cre expression showed a slow rise through fetal development that increased neonatally. Bitransgenic hearts, stained at 30 days of age, showed intense signals in ventricular and atrial myocytes while no recombination occurred in other tissues. The delayed onset of Cre activity in cTnI-Cre mice could provide a useful genetic tool to evaluate the function of loxP targeted cardiac genes without interference of recombination during early heart development

  18. Middle cerebral artery flow velocity waveforms in fetal hypoxaemia.

    Science.gov (United States)

    Vyas, S; Nicolaides, K H; Bower, S; Campbell, S

    1990-09-01

    In 81 small-for-gestational age fetuses (SGA) colour flow imaging was used to identify the fetal middle cerebral artery for subsequent pulsed Doppler studies. Impedence to flow (pulsatility index; PI) was significantly lower, and mean blood velocity was significantly higher, than the respective reference ranges with gestation. Fetal blood sampling by cordocentesis was performed in all SGA fetuses and a significant quadratic relation was found between fetal hypoxaemia and the degree of reduction in the PI of FVWs from the fetal middle cerebral artery. Thus, maximum reduction in PI is reached when the fetal PO2 is 2-4 SD below the normal mean for gestation. When the oxygen deficit is greater there is a tendency for the PI to rise, and this presumably reflects the development of brain oedema.

  19. Malnutrition during fetal life, fetal programming and implications for farm aninals productivity

    DEFF Research Database (Denmark)

    Nielsen, Mette Olaf; Khanal, Prabhat; Johnsen, Lærke

    Some 20 years ago, observations from human epidemiological research revolutionized the scientific view of the importance of fetal life development for body functions in postnatal life. Until then, it was believed that the genome received from the parents at conception in mammals would define the ...

  20. The development of fetal dosimetry and its application to a-bomb survivors exposed in utero

    International Nuclear Information System (INIS)

    Chen, J.

    2012-01-01

    The cohort of the atomic bomb survivors of Hiroshima and Nagasaki comprises the major basis for investigations of health effects induced by ionising radiation in humans. To study the health effects associated with radiation exposure before birth, fetal dosimetry is needed if significant differences exist between the fetal absorbed dose and the mother's uterine dose. Combining total neutron and gamma ray free-in-air fluences at 1 m above ground with fluence-to-absorbed dose conversion coefficients, fetal doses were calculated for various exposure orientations at the ground distance of 1500 m from the hypo-centres in Hiroshima and Nagasaki. The results showed that the mother's uterine dose can serve as a good surrogate for the dose of the embryo and fetus in the first trimester. However, significant differences exist between doses of the fetus of different ages. If the mother's uterine dose were used as a surrogate, doses to the fetus in the last two trimesters could be overestimated by more than 20 % for exposure orientations facing towards and away from the hypo-centre while significantly underestimated for lateral positions relative to the hypo-centre. In newer fetal models, the brain is modelled for all fetal ages. Brain doses to the 3-month fetus are generally higher than those to an embryo and fetus of other ages. In most cases, brain absorbed doses differ significantly from the doses to the entire fetal body. In order to accurately assess radiation effects to the fetal brain, it is necessary to determine brain doses separately. (author)

  1. Sonographic Measurement of Fetal Ear Length in Turkish Women with a Normal Pregnancy

    Directory of Open Access Journals (Sweden)

    Mucize Eriç Özdemir

    2014-12-01

    Full Text Available Background: Abnormal fetal ear length is a feature of chromosomal disorders. Fetal ear length measurement is a simple measurement that can be obtained during ultrasonographic examinations. Aims: To develop a nomogram for fetal ear length measurements in our population and investigate the correlation between fetal ear length, gestational age, and other standard fetal biometric measurements. Study Design: Cohort study. Methods: Ear lengths of the fetuses were measured in normal singleton pregnancies. The relationship between gestational age and fetal ear length in millimetres was analysed by simple linear regression. In addition, the correlation of fetal ear length measurements with biparietal diameter, head circumference, abdominal circumference, and femur length were evaluated.Ear length measurements were obtained from fetuses in 389 normal singleton pregnancies ranging between 16 and 28 weeks of gestation. Results: A nomogram was developed by linear regression analysis of the parameters ear length and gestational age. Fetal ear length (mm = y = (1.348 X gestational age-12.265, where gestational ages is in weeks. A high correlation was found between fetal ear length and gestational age, and a significant correlation was also found between fetal ear length and the biparietal diameter (r=0.962; p<0.001. Similar correlations were found between fetal ear length and head circumference, and fetal ear length and femur length. Conclusion: The results of this study provide a nomogram for fetal ear length. The study also demonstrates the relationship between ear length and other biometric measurements.

  2. Preventing Intellectual and Interactional Sequelae of Fetal Malnutrition: A Longitudinal Transactional, and Synergistic Approach to Development.

    Science.gov (United States)

    Zeskind, Philip Sanford; Ramey, Craig T.

    1981-01-01

    Presents longitudinal data regarding detrimental effects through 36 months of age on intellectual, behavioral, and social-interactional development in a nonsupportive caregiving environment, and the continuing amelioration of those effects in a supportive caregiving environment. Suggests that mothers of fetally malnourished infants may have had…

  3. Further Development of an Exhaled microRNA Biomarker of Lung Cancer Risk

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0328 TITLE: Further Development of an Exhaled microRNA Biomarker of Lung Cancer Risk PRINCIPAL INVESTIGATOR: Dr...4. TITLE AND SUBTITLE Further Development of an Exhaled microRNA Biomarker of Lung Cancer Risk 5b. GRANT NUMBER W81XWH 16-1-0328 5c. PROGRAM...devise a non-invasive airway based exhaled microRNA metric for lung cancer risk, initial work to be tested in a case control study. We expanded the

  4. Maternal exposure to hurricane destruction and fetal mortality.

    Science.gov (United States)

    Zahran, Sammy; Breunig, Ian M; Link, Bruce G; Snodgrass, Jeffrey G; Weiler, Stephan; Mielke, Howard W

    2014-08-01

    The majority of research documenting the public health impacts of natural disasters focuses on the well-being of adults and their living children. Negative effects may also occur in the unborn, exposed to disaster stressors when critical organ systems are developing and when the consequences of exposure are large. We exploit spatial and temporal variation in hurricane behaviour as a quasi-experimental design to assess whether fetal death is dose-responsive in the extent of hurricane damage. Data on births and fetal deaths are merged with Parish-level housing wreckage data. Fetal outcomes are regressed on housing wreckage adjusting for the maternal, fetal, placental and other risk factors. The average causal effect of maternal exposure to hurricane destruction is captured by difference-in-differences analyses. The adjusted odds of fetal death are 1.40 (1.07-1.83) and 2.37 (1.684-3.327) times higher in parishes suffering 10-50% and >50% wreckage to housing stock, respectively. For every 1% increase in the destruction of housing stock, we observe a 1.7% (1.1-2.4%) increase in fetal death. Of the 410 officially recorded fetal deaths in these parishes, between 117 and 205 may be attributable to hurricane destruction and postdisaster disorder. The estimated fetal death toll is 17.4-30.6% of the human death toll. The destruction caused by Hurricanes Katrina and Rita imposed significant measurable losses in terms of fetal death. Postdisaster migratory dynamics suggest that the reported effects of maternal exposure to hurricane destruction on fetal death may be conservative. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Automated Software Analysis of Fetal Movement Recorded during a Pregnant Woman's Sleep at Home.

    Directory of Open Access Journals (Sweden)

    Kyoko Nishihara

    Full Text Available Fetal movement is an important biological index of fetal well-being. Since 2008, we have been developing an original capacitive acceleration sensor and device that a pregnant woman can easily use to record fetal movement by herself at home during sleep. In this study, we report a newly developed automated software system for analyzing recorded fetal movement. This study will introduce the system and compare its results to those of a manual analysis of the same fetal movement signals (Experiment I. We will also demonstrate an appropriate way to use the system (Experiment II. In Experiment I, fetal movement data reported previously for six pregnant women at 28-38 gestational weeks were used. We evaluated the agreement of the manual and automated analyses for the same 10-sec epochs using prevalence-adjusted bias-adjusted kappa (PABAK including quantitative indicators for prevalence and bias. The mean PABAK value was 0.83, which can be considered almost perfect. In Experiment II, twelve pregnant women at 24-36 gestational weeks recorded fetal movement at night once every four weeks. Overall, mean fetal movement counts per hour during maternal sleep significantly decreased along with gestational weeks, though individual differences in fetal development were noted. This newly developed automated analysis system can provide important data throughout late pregnancy.

  6. Clinical significance of perceptible fetal motion.

    Science.gov (United States)

    Rayburn, W F

    1980-09-15

    The monitoring of fetal activity during the last trimester of pregnancy has been proposed to be useful in assessing fetal welfare. The maternal perception of fetal activity was tested among 82 patients using real-time ultrasonography. All perceived fetal movements were visualized on the scanner and involved motion of the lower limbs. Conversely, 82% of all visualized motions of fetal limbs were perceived by the patients. All combined motions of fetal trunk with limbs were preceived by the patients and described as strong movements, whereas clusters of isolated, weak motions of the fetal limbs were less accurately perceived (56% accuracy). The number of fetal movements perceived during the 15-minute test period was significantly (p fetal motion was present (44 of 45 cases) than when it was absent (five of 10 cases). These findings reveal that perceived fetal motion is: (1) reliable; (2) related to the strength of lower limb motion; (3) increased with ruptured amniotic membranes; and (4) reassuring if considered to be active.

  7. Differential diagnosis between fetal extrarenal pelvis and obstructive uropathy on fetal ultrasonogram

    Energy Technology Data Exchange (ETDEWEB)

    Han, Byoung Hee; Cho, Jeong Yeon; Cho, Byung Jae; Lee, Kyung Sang [Samsung Cheil Hospital, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2003-03-15

    To establish the standard guideline for differentiating the extrarenal pelvis from obstructive uropathy on fetal ultrasonogram (US) to avoid unnecessary postnatal follow-up and other additional examinations. From July 2000 to July 2001, Thirty-four kidneys with hydronephrosis diagnosed on fetal ultrasonogram performed during the third trimester of pregnancy were included in this study. Hydronephrosis was defined as the pelvic anteroposterior (AP) diameter being 4 mm or greater before 33 weeks of gestation while 7 mm or greater at or after 33 weeks of gestation. The size of the renal pelvis was measured at intrarenal, intra-extrarenal junctional and extrarenal portions in every kidney on the transverse view of the fetal renal hiluin. Postnatally, all neonates underwent renal ultrasonogram 2 to 8 days after birth, and renal pelvic diameters were measured using the same method as the fetal US in 28 kidneys. We then compared the extrarenal-intrarenal ratio (E/I ratio) of pelvic diameter between fetal and neoatal kidneys. We presumed that the extrarenal pelvis in fetal US was the pelvis showing the normal intrarenal pelvic diameter accompanied by the most dilated exrtarenal pelvic diameter. Follow-up ultrasonograms were measured using the same method as the fetal US in 28 kidneys. We then compared the extrarenal intrarenal ratio (E/I ratio) of pelvic diameter between fetal and neonatal kidneys. We presumed that the extrarenal pelvis on fetal US was the pelvis showing the normal intrarenal pelvic diameter accompanied by the most dilated extrarenal pelvic diameter. Follow-up ultrasonograms were performed in 12 of 17 neonates who had the maximal diameter at extrarenal portion on fetal ultrasonogram. VCUG and IVU were taken in 2 patients with a persistent dilatation of the renal pelvis on follow-up ultrasonograms. On fetal US, 17/34 kidneys showed the extrarenal portion with the most dilatation while in 12/34 kidneys, the intra-extra renal junction portion was the most

  8. Differential diagnosis between fetal extrarenal pelvis and obstructive uropathy on fetal ultrasonogram

    International Nuclear Information System (INIS)

    Han, Byoung Hee; Cho, Jeong Yeon; Cho, Byung Jae; Lee, Kyung Sang

    2003-01-01

    To establish the standard guideline for differentiating the extrarenal pelvis from obstructive uropathy on fetal ultrasonogram (US) to avoid unnecessary postnatal follow-up and other additional examinations. From July 2000 to July 2001, Thirty-four kidneys with hydronephrosis diagnosed on fetal ultrasonogram performed during the third trimester of pregnancy were included in this study. Hydronephrosis was defined as the pelvic anteroposterior (AP) diameter being 4 mm or greater before 33 weeks of gestation while 7 mm or greater at or after 33 weeks of gestation. The size of the renal pelvis was measured at intrarenal, intra-extrarenal junctional and extrarenal portions in every kidney on the transverse view of the fetal renal hiluin. Postnatally, all neonates underwent renal ultrasonogram 2 to 8 days after birth, and renal pelvic diameters were measured using the same method as the fetal US in 28 kidneys. We then compared the extrarenal-intrarenal ratio (E/I ratio) of pelvic diameter between fetal and neoatal kidneys. We presumed that the extrarenal pelvis in fetal US was the pelvis showing the normal intrarenal pelvic diameter accompanied by the most dilated exrtarenal pelvic diameter. Follow-up ultrasonograms were measured using the same method as the fetal US in 28 kidneys. We then compared the extrarenal intrarenal ratio (E/I ratio) of pelvic diameter between fetal and neonatal kidneys. We presumed that the extrarenal pelvis on fetal US was the pelvis showing the normal intrarenal pelvic diameter accompanied by the most dilated extrarenal pelvic diameter. Follow-up ultrasonograms were performed in 12 of 17 neonates who had the maximal diameter at extrarenal portion on fetal ultrasonogram. VCUG and IVU were taken in 2 patients with a persistent dilatation of the renal pelvis on follow-up ultrasonograms. On fetal US, 17/34 kidneys showed the extrarenal portion with the most dilatation while in 12/34 kidneys, the intra-extra renal junction portion was the most

  9. Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition

    OpenAIRE

    Gao, Lu; Rabbitt, Elizabeth H.; Condon, Jennifer C.; Renthal, Nora E.; Johnston, John M.; Mitsche, Matthew A.; Chambon, Pierre; Xu, Jianming; O’Malley, Bert W.; Mendelson, Carole R.

    2015-01-01

    The precise mechanisms that lead to parturition are incompletely defined. Surfactant protein-A (SP-A), which is secreted by fetal lungs into amniotic fluid (AF) near term, likely provides a signal for parturition; however, SP-A–deficient mice have only a relatively modest delay (~12 hours) in parturition, suggesting additional factors. Here, we evaluated the contribution of steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2), which upregulate SP-A transcription, to the parturition process...

  10. Gestational Age Estimation Based on Fetal Pelvimetry on Fetal Ultrasound in Iraqi Women

    Directory of Open Access Journals (Sweden)

    Sattar Razzaq Al-Esawi

    2016-08-01

    Full Text Available Ultrasound is an integral part of obstetric practice, and assessment of gestational age (GA is a central element of obstetric ultrasonography. Sonographic estimation of GA is derived from calculations based on fetal measurements. Numerous equations for GA calculation from fetal biometry have been adopted in routine practice. This study reports a new method of estimating GA in the second and third trimester using interischial distance (IID, the distance between the two ischial primary ossification centers, on fetal ultrasound. Four hundred women with uncomplicated normal singleton pregnancies from 16 weeks to term were examined. Standard fetal obstetric ultrasound was done measuring biparietal diameter (BPD and femur length (FL for each fetus. The IID, in millimeters, was correlated with the GA in weeks based upon the BPD and FL individually, and the BPD and FL together. Statistical analysis showed strong correlation between the IID and GA calculated from the FL with correlation coefficient (r =0.989, P < 0.001. Strong linear correlation was also found between the IID and GA based upon BPD and BPD+FL. Further statistical analysis using regression equations also showed that the IID was slightly wider in female fetuses, but this difference was not statistically significant. Resulting from this analysis, we have arrived at an easy-to-use equation: GA Weeks = (IID mm + 8 ±1 week. We feel this method can be especially applicable in the developing world, where midwives may not have access to software for fetal biometry in their basic handheld ultrasound machines. Even more sophisticated machines may not come with loaded software for obstetrics analysis. There are several limitations to this study, discussed below. We recommend further studies correlating the IID with other biometric parameters.

  11. Studies in Fetal Behavior: Revisited, Renewed, and Reimagined

    OpenAIRE

    DiPietro, Janet A.; Costigan, Kathleen A.; Voegtline, Kristin M.

    2015-01-01

    Among the earliest volumes of this Monograph series was a report by Lester Sontag and colleagues, of the esteemed Fels Institute, on the heart rate of the human fetus as an expression of the developing nervous system. Here, some 75 years later, we commemorate this work and provide historical and contemporary context on knowledge regarding fetal development, as well as results from our own research. These are based on synchronized monitoring of maternal and fetal parameters assessed between 24...

  12. Prenatal Diagnosis of Fetal Encephalomalacia after Maternal Diabetic Ketoacidosis

    Science.gov (United States)

    Love, Rozalyn; Lee, Amy; Matiasek, April; Carter, William; Ylagan, Marissa

    2014-01-01

    Introduction Encephalomalacia in a developing fetus is a rare and devastating neurological finding on radiologic imaging. Maternal diabetic ketoacidosis (DKA) can lead to metabolic and vascular derangements which can cause fetal encephalomalacia. Case We report the case of a 27-year-old pregnant woman with White's Class C diabetes mellitus who presented in the 25th week of gestation with DKA. Four weeks after her discharge, marked fetal cerebral ventriculomegaly was noted on ultrasound. A subsequent fetal magnetic resonance imaging (MRI) demonstrated extensive, symmetric cystic encephalomalacia, primarily involving both cerebral hemispheres. The pregnancy was continued with close fetal and maternal surveillance. The patient underwent a repeat cesarean delivery in her 37th week. The infant had a 1 month neonatal intensive care unit stay with care rendered by a multiple disciplinary team of pediatric subspecialists. The postnatal course was complicated by global hypotonia, poor feeding, delayed development and ultimately required anticonvulsants for recurrent seizures. He died at the age of 9 months from aspiration during a seizure. Discussion Although the maternal mortality from DKA has declined, DKA still confers significant neurological fetal morbidity to its survivors. PMID:25452892

  13. Prenatal Diagnosis of Fetal Encephalomalacia after Maternal Diabetic Ketoacidosis

    Directory of Open Access Journals (Sweden)

    Rozalyn Love

    2014-11-01

    Full Text Available Introduction - Encephalomalacia in a developing fetus is a rare and devastating neurological finding on radiologic imaging. Maternal diabetic ketoacidosis (DKA can lead to metabolic and vascular derangements which can cause fetal encephalomalacia. Case - We report the case of a 27-year-old pregnant woman with White's Class C diabetes mellitus who presented in the 25th week of gestation with DKA. Four weeks after her discharge, marked fetal cerebral ventriculomegaly was noted on ultrasound. A subsequent fetal magnetic resonance imaging (MRI demonstrated extensive, symmetric cystic encephalomalacia, primarily involving both cerebral hemispheres. The pregnancy was continued with close fetal and maternal surveillance. The patient underwent a repeat cesarean delivery in her 37th week. The infant had a 1 month neonatal intensive care unit stay with care rendered by a multiple disciplinary team of pediatric subspecialists. The postnatal course was complicated by global hypotonia, poor feeding, delayed development and ultimately required anticonvulsants for recurrent seizures. He died at the age of 9 months from aspiration during a seizure. Discussion - Although the maternal mortality from DKA has declined, DKA still confers significant neurological fetal morbidity to its survivors.

  14. Prenatal diagnosis of fetal encephalomalacia after maternal diabetic ketoacidosis.

    Science.gov (United States)

    Love, Rozalyn; Lee, Amy; Matiasek, April; Carter, William; Ylagan, Marissa

    2014-11-01

    Introduction Encephalomalacia in a developing fetus is a rare and devastating neurological finding on radiologic imaging. Maternal diabetic ketoacidosis (DKA) can lead to metabolic and vascular derangements which can cause fetal encephalomalacia. Case We report the case of a 27-year-old pregnant woman with White's Class C diabetes mellitus who presented in the 25th week of gestation with DKA. Four weeks after her discharge, marked fetal cerebral ventriculomegaly was noted on ultrasound. A subsequent fetal magnetic resonance imaging (MRI) demonstrated extensive, symmetric cystic encephalomalacia, primarily involving both cerebral hemispheres. The pregnancy was continued with close fetal and maternal surveillance. The patient underwent a repeat cesarean delivery in her 37th week. The infant had a 1 month neonatal intensive care unit stay with care rendered by a multiple disciplinary team of pediatric subspecialists. The postnatal course was complicated by global hypotonia, poor feeding, delayed development and ultimately required anticonvulsants for recurrent seizures. He died at the age of 9 months from aspiration during a seizure. Discussion Although the maternal mortality from DKA has declined, DKA still confers significant neurological fetal morbidity to its survivors.

  15. Fetal Programming and Cardiovascular Pathology

    Science.gov (United States)

    Alexander, Barbara T.; Dasinger, John Henry; Intapad, Suttira

    2016-01-01

    Low birth weight serves as a crude proxy for impaired growth during fetal life and indicates a failure for the fetus to achieve its full growth potential. Low birth weight can occur in response to numerous etiologies that include complications during pregnancy, poor prenatal care, parental smoking, maternal alcohol consumption or stress. Numerous epidemiological and experimental studies demonstrate that birth weight is inversely associated with blood pressure and coronary heart disease. Sex and age impact the developmental programming of hypertension. In addition, impaired growth during fetal life also programs enhanced vulnerability to a secondary insult. Macrosomia, which occurs in response to maternal obesity, diabetes and excessive weight gain during gestation, is also associated with increased cardiovascular risk. Yet, the exact mechanisms that permanently change the structure, physiology and endocrine health of an individual across their lifespan following altered growth during fetal life are not entirely clear. Transmission of increased risk from one generation to the next in the absence of an additional prenatal insult indicates an important role for epigenetic processes. Experimental studies also indicate that the sympathetic nervous system, the renin angiotensin system, increased production of oxidative stress and increased endothelin play an important role in the developmental programming of blood pressure in later life. Thus, this review will highlight how adverse influences during fetal life and early development program an increased risk for cardiovascular disease including high blood pressure and provide an overview of the underlying mechanisms that contribute to the fetal origins of cardiovascular pathology. PMID:25880521

  16. Fetal programming and cardiovascular pathology.

    Science.gov (United States)

    Alexander, Barbara T; Dasinger, John Henry; Intapad, Suttira

    2015-04-01

    Low birth weight serves as a crude proxy for impaired growth during fetal life and indicates a failure for the fetus to achieve its full growth potential. Low birth weight can occur in response to numerous etiologies that include complications during pregnancy, poor prenatal care, parental smoking, maternal alcohol consumption, or stress. Numerous epidemiological and experimental studies demonstrate that birth weight is inversely associated with blood pressure and coronary heart disease. Sex and age impact the developmental programming of hypertension. In addition, impaired growth during fetal life also programs enhanced vulnerability to a secondary insult. Macrosomia, which occurs in response to maternal obesity, diabetes, and excessive weight gain during gestation, is also associated with increased cardiovascular risk. Yet, the exact mechanisms that permanently change the structure, physiology, and endocrine health of an individual across their lifespan following altered growth during fetal life are not entirely clear. Transmission of increased risk from one generation to the next in the absence of an additional prenatal insult indicates an important role for epigenetic processes. Experimental studies also indicate that the sympathetic nervous system, the renin angiotensin system, increased production of oxidative stress, and increased endothelin play an important role in the developmental programming of blood pressure in later life. Thus, this review will highlight how adverse influences during fetal life and early development program an increased risk for cardiovascular disease including high blood pressure and provide an overview of the underlying mechanisms that contribute to the fetal origins of cardiovascular pathology. © 2015 American Physiological Society.

  17. Impact of Oxidative Stress in Fetal Programming

    OpenAIRE

    Thompson, Loren P.; Al-Hasan, Yazan

    2012-01-01

    Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that pr...

  18. Assessment and control of fetal exposure

    International Nuclear Information System (INIS)

    Harty, R.; Swinth, K.L.; Traub, R.J.

    1991-10-01

    The assessment and control of fetal exposure to radiation in the workplace is an issue that is complicated by both biological and political/social ramifications. As a result of the dramatic increase in the number of women employed as radiation workers during the past 10 years, many facilities using radioactive materials have instituted fetal protection programs with special requirements for female radiation workers. It is necessary, however, to ensure that any fetal protection program be developed in such a way as to be nondiscriminatory. A study has been initiated whose purpose is to balance the political/social and the biological ramifications associated with occupational protection of the developing embryo/fetus. Several considerations are involved in properly balancing these factors. These considerations include appropriate methods of declaring the pregnancy, training workers, controlling the dose to the embryo/fetus, measuring and calculating the dose to the embryo/fetus, and recording the pertinent information. Alternative strategies for handling these factors while ensuring maximum protection of the embryo/fetus and the rights and responsibilities of employees and employers are discussed

  19. An immunocytochemical study of the germinal layer vasculature in the developing fetal brain using Ulex europaeus 1 lectin.

    Science.gov (United States)

    Gould, S J; Howard, S

    1988-10-01

    The characteristics of the germinal matrix vasculature were studied in the developing fetal brain using immunocytochemical methods. A preliminary comparative immunocytochemical study was made on six fetal brains to compare endothelial staining by Ulex europaeus I lectin with that of antibody to Factor VIII related antigen. Ulex was found to stain germinal layer vessels better than Factor VIII related antigen. Subsequently, the germinal layers of a further 15 fetal and preterm infant brains ranging from 13 to 35 weeks' gestation were stained with Ulex europaeus I to demonstrate the vasculature. With increasing gestation, there was a gradual increase in vessel density, particularly of capillaries. This was not a uniform process. A plexus of capillaries was prominent immediately beneath the ependyma while the more central parts of the germinal matrix contained fewer, but often larger diameter, vessels. The variation in vessel density which was a feature of the later gestation brains may have implications for local blood flow and may be a factor in haemorrhage at this site.

  20. Maternal bisphenol a exposure impacts the fetal heart transcriptome.

    Directory of Open Access Journals (Sweden)

    Kalyan C Chapalamadugu

    Full Text Available Conditions during fetal development influence health and disease in adulthood, especially during critical windows of organogenesis. Fetal exposure to the endocrine disrupting chemical, bisphenol A (BPA affects the development of multiple organ systems in rodents and monkeys. However, effects of BPA exposure on cardiac development have not been assessed. With evidence that maternal BPA is transplacentally delivered to the developing fetus, it becomes imperative to examine the physiological consequences of gestational exposure during primate development. Herein, we evaluate the effects of daily, oral BPA exposure of pregnant rhesus monkeys (Macaca mulatta on the fetal heart transcriptome. Pregnant monkeys were given daily oral doses (400 µg/kg body weight of BPA during early (50-100 ± 2 days post conception, dpc or late (100 ± 2 dpc--term, gestation. At the end of treatment, fetal heart tissues were collected and chamber specific transcriptome expression was assessed using genome-wide microarray. Quantitative real-time PCR was conducted on select genes and ventricular tissue glycogen content was quantified. Our results show that BPA exposure alters transcription of genes that are recognized for their role in cardiac pathophysiologies. Importantly, myosin heavy chain, cardiac isoform alpha (Myh6 was down-regulated in the left ventricle, and 'A Disintegrin and Metalloprotease 12', long isoform (Adam12-l was up-regulated in both ventricles, and the right atrium of the heart in BPA exposed fetuses. BPA induced alteration of these genes supports the hypothesis that exposure to BPA during fetal development may impact cardiovascular fitness. Our results intensify concerns about the role of BPA in the genesis of human metabolic and cardiovascular diseases.

  1. Impact of chronic maternal stress during early gestation on maternal-fetal stress transfer and fetal stress sensitivity in sheep.

    Science.gov (United States)

    Dreiling, Michelle; Schiffner, Rene; Bischoff, Sabine; Rupprecht, Sven; Kroegel, Nasim; Schubert, Harald; Witte, Otto W; Schwab, Matthias; Rakers, Florian

    2018-01-01

    Acute stress-induced reduction of uterine blood flow (UBF) is an indirect mechanism of maternal-fetal stress transfer during late gestation. Effects of chronic psychosocial maternal stress (CMS) during early gestation, as may be experienced by many working women, on this stress signaling mechanism are unclear. We hypothesized that CMS in sheep during early gestation augments later acute stress-induced decreases of UBF, and aggravates the fetal hormonal, cardiovascular, and metabolic stress responses during later development. Six pregnant ewes underwent repeated isolation stress (CMS) between 30 and 100 days of gestation (dGA, term: 150 dGA) and seven pregnant ewes served as controls. At 110 dGA, ewes were chronically instrumented and underwent acute isolation stress. The acute stress decreased UBF by 19% in both the CMS and control groups (p stress-induced cortisol and norepinephrine concentrations indicating a hyperactive hypothalamus-pituitary-adrenal (HPA)-axis and sympathetic-adrenal-medullary system. Increased fetal norepinephrine is endogenous as maternal catecholamines do not cross the placenta. Cortisol in the control but not in the CMS fetuses was correlated with maternal cortisol blood concentrations; these findings indicate: (1) no increased maternal-fetal cortisol transfer with CMS, (2) cortisol production in CMS fetuses when the HPA-axis is normally inactive, due to early maturation of the fetal HPA-axis. CMS fetuses were better oxygenated, without shift towards acidosis compared to the controls, potentially reflecting adaptation to repeated stress. Hence, CMS enhances maternal-fetal stress transfer by prolonged reduction in UBF and increased fetal HPA responsiveness.

  2. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms

    Science.gov (United States)

    Antony, N.; McDougall, A. R.; Mantamadiotis, T.; Cole, T. J.; Bird, A. D.

    2016-01-01

    During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1−/− mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1−/− mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1−/− mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development. PMID:27150575

  3. Maternal obesity accelerates fetal pancreatic beta-cell but not alpha-cell development in sheep: prenatal consequences.

    Science.gov (United States)

    Ford, Stephen P; Zhang, Liren; Zhu, Meijun; Miller, Myrna M; Smith, Derek T; Hess, Bret W; Moss, Gary E; Nathanielsz, Peter W; Nijland, Mark J

    2009-09-01

    Maternal obesity affects offspring weight, body composition, and organ function, increasing diabetes and metabolic syndrome risk. We determined effects of maternal obesity and a high-energy diet on fetal pancreatic development. Sixty days prior to breeding, ewes were assigned to control [100% of National Research Council (NRC) recommendations] or obesogenic (OB; 150% NRC) diets. At 75 days gestation, OB ewes exhibited elevated insulin-to-glucose ratios at rest and during a glucose tolerance test, demonstrating insulin resistance compared with control ewes. In fetal studies, ewes ate their respective diets from 60 days before to 75 days after conception when animals were euthanized under general anesthesia. OB and control ewes increased in body weight by approximately 43% and approximately 6%, respectively, from diet initiation until necropsy. Although all organs were heavier in fetuses from OB ewes, only pancreatic weight increased as a percentage of fetal weight. Blood glucose, insulin, and cortisol were elevated in OB ewes and fetuses on day 75. Insulin-positive cells per unit pancreatic area were 50% greater in fetuses from OB ewes as a result of increased beta-cell mitoses rather than decreased programmed cell death. Lambs of OB ewes were born earlier but weighed the same as control lambs; however, their crown-to-rump length was reduced, and their fat mass was increased. We conclude that increased systemic insulin in fetuses from OB ewes results from increased glucose exposure and/or cortisol-induced accelerated fetal beta-cell maturation and may contribute to premature beta-cell function loss and predisposition to obesity and metabolic disease in offspring.

  4. Early Detection of Fetal Malformation, a Long Distance Yet to Cover! Present Status and Potential of First Trimester Ultrasonography in Detection of Fetal Congenital Malformation in a Developing Country: Experience at a Tertiary Care Centre in India

    Directory of Open Access Journals (Sweden)

    Namrata Kashyap

    2015-01-01

    Full Text Available Background. Early detection of malformation is tremendously improved with improvement in imaging technology. Yet in a developing country like India majority of pregnant women are not privileged to get timely diagnosis. Aims and Objectives. To assess the present status and potential of first trimester ultrasonography in detection of fetal congenital structural malformations. Methodology. This was a retrospective observational study conducted at Sanjay Gandhi Postgraduate Institute of Medical Sciences. All pregnant women had anomaly scan and women with fetal structural malformations were included. Results. Out of 4080 pregnant women undergoing ultrasound, 312 (7.6% had fetal structural malformation. Out of 139 patients who were diagnosed after 20 weeks, 47 (33.8% had fetal structural anomalies which could have been diagnosed before 12 weeks and 92 (66.1% had fetal malformations which could have been diagnosed between 12 and 20 weeks. Conclusion. The first trimester ultrasonography could have identified 50% of major structural defects compared to 1.6% in the present scenario. This focuses on the immense need of the hour to gear up for early diagnosis and timely intervention in the field of prenatal detection of congenital malformation.

  5. Adapting Parcellation Schemes to Study Fetal Brain Connectivity in Serial Imaging Studies

    DEFF Research Database (Denmark)

    Cheng, Xi; Wilm, Jakob; Seshamani, Sharmishtaa

    2013-01-01

    A crucial step in studying brain connectivity is the definition of the Regions Of Interest (ROI's) which are considered as nodes of a network graph. These ROI's identified in structural imaging reflect consistent functional regions in the anatomies being compared. However in serial studies...... of the developing fetal brain such functional and associated structural markers are not consistently present over time. In this study we adapt two non-atlas based parcellation schemes to study the development of connectivity networks of a fetal monkey brain using Diffusion Weighted Imaging techniques. Results...... demonstrate that the fetal brain network exhibits small-world characteristics and a pattern of increased cluster coefficients and decreased global efficiency. These findings may provide a route to creating a new biomarker for healthy fetal brain development....

  6. Fetal absorbed doses by radiopharmaceutical administration

    International Nuclear Information System (INIS)

    Rojo, Ana M; Gomez Parada, Ines M.; Di Trano, Jose L.

    2000-01-01

    The radiopharmaceutical administration with diagnostic or therapeutic purpose during pregnancy implies a prenatal radiation dose. The dose assessment and the evaluation of the radiological risks become relevant due to the great radiosensitivity of the fetal tissues in development. This paper is a revision of the available data for estimating fetal doses in the cases of the more frequently used radiopharmaceuticals in nuclear medicine, taking into account recent investigation in placental crossover. The more frequent diagnostic and therapeutic procedures were analyzed according to the radiation doses implied. (author)

  7. Fetal scalp blood sampling during labor

    DEFF Research Database (Denmark)

    Chandraharan, Edwin; Wiberg, Nana

    2014-01-01

    Fetal cardiotocography is characterized by low specificity; therefore, in an attempt to ensure fetal well-being, fetal scalp blood sampling has been recommended by most obstetric societies in the case of a non-reassuring cardiotocography. The scientific agreement on the evidence for using fetal...... scalp blood sampling to decrease the rate of operative delivery for fetal distress is ambiguous. Based on the same studies, a Cochrane review states that fetal scalp blood sampling increases the rate of instrumental delivery while decreasing neonatal acidosis, whereas the National Institute of Health...... and Clinical Excellence guideline considers that fetal scalp blood sampling decreases instrumental delivery without differences in other outcome variables. The fetal scalp is supplied by vessels outside the skull below the level of the cranial vault, which is likely to be compressed during contractions...

  8. Ultrasound Imaging of Mouse Fetal Intracranial Hemorrhage Due to Ischemia/Reperfusion

    Directory of Open Access Journals (Sweden)

    Kenichi Funamoto

    2017-05-01

    Full Text Available Despite vast improvement in perinatal care during the 30 years, the incidence rate of neonatal encephalopathy remains unchanged without any further Progress towards preventive strategies for the clinical impasse. Antenatal brain injury including fetal intracranial hemorrhage caused by ischemia/reperfusion is known as one of the primary triggers of neonatal injury. However, the mechanisms of antenatal brain injury are poorly understood unless better predictive models of the disease are developed. Here we show a mouse model for fetal intracranial hemorrhage in vivo developed to investigate the actual timing of hypoxia-ischemic events and their related mechanisms of injury. Intrauterine growth restriction mouse fetuses were exposed to ischemia/reperfusion cycles by occluding and opening the uterine and ovarian arteries in the mother. The presence and timing of fetal intracranial hemorrhage caused by the ischemia/reperfusion were measured with histological observation and ultrasound imaging. Protein-restricted diet increased the risk of fetal intracranial hemorrhage. The monitoring of fetal brains by ultrasound B-mode imaging clarified that cerebral hemorrhage in the fetal brain occurred after the second ischemic period. Three-dimensional ultrasound power Doppler imaging visualized the disappearance of main blood flows in the fetal brain. These indicate a breakdown of cerebrovascular autoregulation which causes the fetal intracranial hemorrhage. This study supports the fact that the ischemia/reperfusion triggers cerebral hemorrhage in the fetal brain. The present method enables us to noninvasively create the cerebral hemorrhage in a fetus without directly touching the body but with repeated occlusion and opening of the uterine and ovarian arteries in the mother.

  9. Passive stiffness of rat skeletal muscle undernourished during fetal development

    Directory of Open Access Journals (Sweden)

    Ana Elisa Toscano

    2010-01-01

    Full Text Available OBJECTIVES: The aim of the study was to investigate the effect of fetal undernutrition on the passive mechanical properties of skeletal muscle of weaned and young adult rats. INTRODUCTION: A poor nutrition supply during fetal development affects physiological functions of the fetus. From a mechanical point of view, skeletal muscle can be also characterized by its resistance to passive stretch. METHODS: Male Wistar rats were divided into two groups according to their mother's diet during pregnancy: a control group (mothers fed a 17% protein diet and an isocaloric low-protein group (mothers fed a 7.8% protein diet. At birth, all mothers received a standardized meal ad libitum. At the age of 25 and 90 days, the soleus muscle and extensor digitorum longus (EDL muscles were removed in order to test the passive mechanical properties. A first mechanical test consisted of an incremental stepwise extension test using fast velocity stretching (500 mm/s enabling us to measure, for each extension stepwise, the dynamic stress (σd and the steady stress (σs. A second test consisted of a slow velocity stretch in order to calculate normalized stiffness and tangent modulus from the stress-strain relationship. RESULTS: The results for the mechanical properties showed an important increase in passive stiffness in both the soleus and EDL muscles in weaned rat. In contrast, no modification was observed in young adult rats. CONCLUSIONS: The increase in passive stiffness in skeletal muscle of weaned rat submitted to intrauterine undernutrition it is most likely due to changes in muscle passive stiffness.

  10. The Impact of Umbilical Blood Flow Regulation on Fetal Development Differs in Diabetic and Non-Diabetic Pregnancy

    Directory of Open Access Journals (Sweden)

    Jian Li

    2014-09-01

    Full Text Available Background/Aims: Diabetes is well-known to influence endothelial function. Endothelial function and blood flow regulation might be different in diabetic and non-diabetic pregnancy. However, the impact of umbilical blood flow regulation in gestational diabetes on fetal development is unknown so far. Methods: In a prospective birth cohort study, we analyzed the association of the umbilical artery Doppler indices (pulsatility index, resistance index and systolic/diastolic ratio and fetal size measures (biparietal diameter, head circumference, abdominal circumference, femur length and birth weight in 519 non-gestational diabetes mellitus pregnancies (controls and 226 gestational diabetes mellitus pregnancies in middle (day 160.32 ±16.29 of gestation and late (day 268.12 ±13.04 of gestation pregnancy. Results: Multiple regression analysis considering confounding factors (gestational day of ultrasound examination, offspring sex, maternal body mess index before pregnancy, maternal age at delivery, maternal body weight at delivery and maternal hypertension showed that umbilical artery Doppler indices (pulsatility index, resistance index and systolic/diastolic ratio were associated with fetal head circumference and femur length in middle gestational diabetes mellitus pregnancy but not in non-gestational diabetes mellitus pregnancy. Head circumference, biparietal diameter, abdominal circumference and femur length in mid gestation were smaller in fetus of gestational diabetes mellitus pregnancy versus non-gestational diabetes mellitus pregnancy. In contrast to non-gestational diabetes mellitus pregnancy in late gestation, umbilical artery Doppler indices in gestational diabetes mellitus pregnancy were not associated with ultrasound measures of fetal growth. Birth weight was slightly increased in gestational diabetes mellitus pregnancy as compared to non-gestational diabetes mellitus pregnancy. Conclusions: The impact of umbilical blood flow on fetal

  11. Development of pulmonary vascular response to oxygen

    International Nuclear Information System (INIS)

    Morin, F.C. III; Egan, E.A.; Ferguson, W.; Lundgren, C.E.

    1988-01-01

    The ability of the pulmonary circulation of the fetal lamb to respond to a rise in oxygen tension was studied from 94 to 146 days of gestation. The unanesthetized ewe breathed room air at normal atmospheric pressure, followed by 100% oxygen at three atmospheres absolute pressure in a hyperbaric chamber. In eleven near-term lambs, fetal arterial oxygen tension (Pa O 2 ) increased from 25 to 55 Torr, which increased the proportion or right ventricular output distributed to the fetal lungs from 8 to 59%. In five very immature lambs fetal Pa O 2 increased from 27 to 174 Torr, but the proportion of right ventricular output distributed to the lung did not change. In five of the near-term lambs, pulmonary blood flow was measured. For each measurement of the distribution of blood flow, approximately 8 x 10 5 spheres of 15-μm diameter, labeled with either 153 Gd, 113 Sn, 103 Ru, 95 Nb, or 46 Sc were injected. It increased from 34 to 298 ml · kg fetal wt -1 · min -1 , an 8.8-fold increase. The authors conclude that the pulmonary circulation of the fetal lamb does not respond to an increase in oxygen tension before 101 days of gestation; however, near term an increase in oxygen tension alone can induce the entire increase in pulmonary blood flow that normally occurs after the onset of breathing at birth

  12. Intrapartum fetal monitoring by ST-analysis of the fetal ECG

    NARCIS (Netherlands)

    Westerhuis, M.E.M.H.

    2010-01-01

    Objective Intrapartum fetal monitoring aims to identify fetuses at risk for neonatal and long-term injury due to asphyxia. To serve this purpose, cardiotocography (CTG) combined with ST-analysis of the fetal electrocardiogram (ECG), which is a relatively new method, may be used. The main aim of this

  13. Glucocorticoid programming of the fetal male hippocampal epigenome.

    Science.gov (United States)

    Crudo, Ariann; Suderman, Matthew; Moisiadis, Vasilis G; Petropoulos, Sophie; Kostaki, Alisa; Hallett, Michael; Szyf, Moshe; Matthews, Stephen G

    2013-03-01

    The late-gestation surge in fetal plasma cortisol is critical for maturation of fetal organ systems. As a result, synthetic glucocorticoids (sGCs) are administered to pregnant women at risk of delivering preterm. However, animal studies have shown that fetal exposure to sGC results in increased risk of behavioral, endocrine, and metabolic abnormalities in offspring. Here, we test the hypothesis that prenatal GC exposure resulting from the fetal cortisol surge or after sGC exposure results in promoter-specific epigenetic changes in the hippocampus. Fetal guinea pig hippocampi were collected before (gestational day [GD52]) and after (GD65) the fetal plasma cortisol surge (Term∼GD67) and 24 hours after (GD52) and 14 days after (GD65) two repeat courses of maternal sGC (betamethasone) treatment (n = 3-4/gp). We identified extensive genome-wide alterations in promoter methylation in late fetal development (coincident with the fetal cortisol surge), whereby the majority of the affected promoters exhibited hypomethylation. Fetuses exposed to sGC in late gestation exhibited substantial differences in DNA methylation and histone h3 lysine 9 (H3K9) acetylation in specific gene promoters; 24 hours after the sGC treatment, the majority of genes affected were hypomethylated or hyperacetylated. However, 14 days after sGC exposure these differences did not persist, whereas other promoters became hypermethylated or hyperacetylated. These data support the hypothesis that the fetal GC surge is responsible, in part, for significant variations in genome-wide promoter methylation and that prenatal sGC treatment profoundly changes the epigenetic landscape, affecting both DNA methylation and H3K9 acetylation. This is important given the widespread use of sGC in the management of women in preterm labor.

  14. Fetal brain damage following maternal carbon monoxide intoxication: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Ginsberg, M D; Myers, R E

    1974-01-01

    Techniques of fetal monitoring, including fetal blood sampling in utero, were employed to study the physiological effects of acute maternal carbon monoxide intoxication on nine term-pregnant female rhesus monkeys exposed to 0.1 to 0.3% inspired carbon monoxide over 1 to 3 hr. The mothers tolerated carboxyhemoglobin levels exceeding 60% without clinical sequelae, whereas the fetuses promptly developed profound hypoxia upon exposure of the mothers to CO. The fetal COHb levels rose only gradually over 1 to 3 hr, and thus contributed only slightly to the development of early fetal hypoxia. The fetal hypoxia was associated with bradycardia, hypotension, and metabolic and respiratory acidosis. Severity of intrauterine hypoxia was closely correlated with the appearance of brain damage. Brain swelling associated with hemorrhagic necrosis of the cerebral hemispheres (severe brain damage) appeared only in fetuses whose arterial oxygen content was reduced below 1.0 ml/100 ml for at least 45 min during the maternal CO intoxication.

  15. Cyto-adherence of Mycoplasma mycoides subsp. mycoides to bovine lung epithelial cells.

    Science.gov (United States)

    Aye, Racheal; Mwirigi, Martin Kiogora; Frey, Joachim; Pilo, Paola; Jores, Joerg; Naessens, Jan

    2015-02-07

    Mycoplasma mycoides subsp. mycoides (Mmm) is the causative agent of contagious bovine pleuropneumonia (CBPP), a respiratory disease of cattle, whereas the closely related Mycoplasma mycoides subsp. capri (Mmc) is a goat pathogen. Cyto-adherence is a crucial step in host colonization by mycoplasmas and subsequent pathogenesis. The aim of this study was to investigate the interactions between Mmm and mammalian host cells by establishing a cyto-adherence flow cytometric assay and comparing tissue and species specificity of Mmm and Mmc strains. There were little significant differences in the adherence patterns of eight different Mmm strains to adult bovine lung epithelial cells. However, there was statistically significant variation in binding to different host cells types. Highest binding was observed with lung epithelial cells, intermediate binding with endothelial cells and very low binding with fibroblasts, suggesting the presence of effective adherence of Mmm on cells lining the airways of the lung, which is the target organ for this pathogen, possibly by high expression of a specific receptor. However, binding to bovine fetal lung epithelial cells was comparably low; suggesting that the lack of severe pulmonary disease seen in many infected young calves can be explained by reduced expression of a specific receptor. Mmm bound with high efficiency to adult bovine lung cells and less efficiently to calves or goat lung cells. The data show that cyto-adherence of Mmm is species- and tissue- specific confirming its role in colonization of the target host and subsequent infection and development of CBPP.

  16. Reduced fetal androgen exposure compromises Leydig cell function in adulthood

    NARCIS (Netherlands)

    Teerds, K.J.; Keijer, J.

    2015-01-01

    Disruption of normal fetal development can influence functioning of organs and cells in adulthood. Circumstantial evidence suggests that subtle reductions in fetal androgen production may be the cause of adult male reproductive disorders due to reduced testosterone production. The mechanisms through

  17. Prenatal ultrasound findings of fetal neoplasms

    International Nuclear Information System (INIS)

    Lee, Soo Hyun; Cho, Jeong Yeon; Song, Mi Jin; Min, Jee Yeon; Han, Byoung Hee; Lee, Young Ho; Cho, Byung Jae; Kim, Seung Hyup

    2002-01-01

    A variety of neoplasms can develop in each tetal organ. Most fetal neoplasms can be detected by careful prenatal ultrasonographic examination. Some neoplosms show specific ultrasonographic findings suggesting the differential diagnosis, but others do not. Knowledge of the presence of a neoplasm in the fetus may alter the prenatal management of a pregnancy and the mode of delivery, and facilitates immediate postnatal treatment. During the last five years, we experienced 32 cases of fetal neoplasms in a variety of organs. We describe their typical and ultrasonographic findings with correlating postnatal CT, MRI, and pathologic findings

  18. Pontomedullary disconnection: fetal and neonatal considerations

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Emma; Sweeney, Elizabeth [Royal Liverpool Children' s Hospital, Department of Clinical Genetics, Liverpool (United Kingdom); Pilling, David [Royal Liverpool Children' s Hospital, Department of Paediatric Radiology, Liverpool (United Kingdom); Hesseling, Markus; Subhedar, Nim [Liverpool Women' s Hospital, Department of Neonatology, Liverpool (United Kingdom); Roberts, Devender [Liverpool Women' s Hospital, Department of Fetal Medicine, Liverpool (United Kingdom)

    2005-08-01

    The cerebellar and pontocerebellar hypoplasias present a unique challenge when detected in the developing fetus. A diverse aetiology and prognosis make counselling of these families difficult. Advances in fetal imaging allow for more accurate diagnosis and counselling, but postnatal MRI is still required. A case is presented in which cerebellar hypoplasia was detected at 20 weeks gestation. Later fetal imaging provided further information, but a diagnosis of pontomedullary disconnection was not made until the postnatal MRI scan. The clinical findings and possible causes of such pontocerebellar abnormalities are discussed. (orig.)

  19. Pontomedullary disconnection: fetal and neonatal considerations

    International Nuclear Information System (INIS)

    McCann, Emma; Sweeney, Elizabeth; Pilling, David; Hesseling, Markus; Subhedar, Nim; Roberts, Devender

    2005-01-01

    The cerebellar and pontocerebellar hypoplasias present a unique challenge when detected in the developing fetus. A diverse aetiology and prognosis make counselling of these families difficult. Advances in fetal imaging allow for more accurate diagnosis and counselling, but postnatal MRI is still required. A case is presented in which cerebellar hypoplasia was detected at 20 weeks gestation. Later fetal imaging provided further information, but a diagnosis of pontomedullary disconnection was not made until the postnatal MRI scan. The clinical findings and possible causes of such pontocerebellar abnormalities are discussed. (orig.)

  20. Fetal short time variation during labor: a non-invasive alternative to fetal scalp pH measurements?

    OpenAIRE

    Schiermeier, Sven; Reinhard, Joscha; Hatzmann, Hendrike; Zimmermann, Ralf C.; Westhof, Gregor

    2009-01-01

    Objective: To determine whether short time variation (STV) of fetal heart beat correlates with scalp pH measurements during labor. Patients and methods: From 1279 deliveries, 197 women had at least one fetal scalp pH measurement. Using the CTG-Player®, STVs were calculated from the electronically saved cardiotocography (CTG) traces and related to the fetal scalp pH measurements. Results: There was no correlation between STV and fetal scalp pH measurements (r=−0.0592). Conclusions: Fetal ST...

  1. Distribution of 131I-labeled recombinant human erythropoietin in maternal and fetal organs following intravenous administration in pregnant rats

    International Nuclear Information System (INIS)

    Yilmaz, O.; Lambrecht, F.Y.; Durkan, K.; Gokmen, N.; Erbayraktar, S.

    2007-01-01

    The aim of the present study was to demonstrate the possible transplacental transmission of 131 I labeled recombinant human erythropoietin ( 131 I-rh-EPO) in pregnant rats and its distribution through maternal and fetal organs. Six Wistar Albino Rats in their pregnancy of 18 days were used 131 I labeled recombinant human erythropoietin (specific activity = 2.4 μCi/IU) was injected into the tail vein of rats. After 30 minutes labeled erythropoietin infusion maternal stomach, kidney, lung, liver, brain and heart as well as fetus were removed. Then, the same organs were removed from each fetus. Measuring weight of maternal and fetal organs as well as placenta were followed by radioactivity count via Cd(Te) detector. 131 I labeled recombinant human erythropoietin was found to be able to pass rat placenta and its distribution order in fetal organs was similar to those of maternal organs. Besides, as measurements were performed closer to cornu uteri, uptakes were decreasing in every fetus and its corresponding placenta. (author)

  2. Platform dependence of inference on gene-wise and gene-set involvement in human lung development

    Directory of Open Access Journals (Sweden)

    Kho Alvin T

    2009-06-01

    Full Text Available Abstract Background With the recent development of microarray technologies, the comparability of gene expression data obtained from different platforms poses an important problem. We evaluated two widely used platforms, Affymetrix U133 Plus 2.0 and the Illumina HumanRef-8 v2 Expression Bead Chips, for comparability in a biological system in which changes may be subtle, namely fetal lung tissue as a function of gestational age. Results We performed the comparison via sequence-based probe matching between the two platforms. "Significance grouping" was defined as a measure of comparability. Using both expression correlation and significance grouping as measures of comparability, we demonstrated that despite overall cross-platform differences at the single gene level, increased correlation between the two platforms was found in genes with higher expression level, higher probe overlap, and lower p-value. We also demonstrated that biological function as determined via KEGG pathways or GO categories is more consistent across platforms than single gene analysis. Conclusion We conclude that while the comparability of the platforms at the single gene level may be increased by increasing sample size, they are highly comparable ontologically even for subtle differences in a relatively small sample size. Biologically relevant inference should therefore be reproducible across laboratories using different platforms.

  3. Fetal blood drawing.

    Science.gov (United States)

    Hobbins, J C; Mahoney, M J

    1975-07-19

    A small sample of fetal blood suitable for studies of haemoglobin synthesis was obtained from a placental vessel under endoscopic visualisation in 23 of 26 patients in whom the procedure was attempted prior to second-trimester abortion. Fetal blood loss, calculated in 23 cases, was between 0-2 ml. and 2-5 ml., and fetal blood-volume depletion varied from 0-5% to 15%. No short-term ill-effects were demonstrated in mother or fetus in any of 16 patients in whom the injection of aborti-facient was postponed for between 16 and 24 hours after the procedure.

  4. [Embryo-fetal diseases in multiple pregnancies].

    Science.gov (United States)

    Colla, F; Alba, E; Grio, R

    2001-04-01

    Embryo-fetal diseases are the consequence of prenatal (progenetic and metagenetic or environmental) and intranatal (of a traumatic, infective, toxic nature) pathological factors. In multiple pregnancies this complex etiopathogenesis also includes an altered didymous embriogenesis. This study aimed to evaluate the pathologies affecting the fetus in multiple pregnancy, a special biological situation leading to the potential onset of severe fetal and neonatal damage. The authors studied 205 patients with multiple pregnancies, including 199 bigeminal, 5 trigeminal and 1 quadrigeminal, admitted to the Department B of the Obstetrics and Gynecological Clinic of Turin University between 1989-1999. Possible embyro-fetal damage was examined using a chronological criterion: namely following the development of the multiple fetuses from the zygotic to the neonatal phase. Pregnancies were biamniotic bichorionic in 54% of cases, biamniotic monochorionic in 45% and monochorionic monoamniotic in 1%. There were a total of 154 (79.38%) premature births out of 194 and neonatal birth weight was always SGA (small for gestational age). 66.84% of newborns were LBW (<2500 g) and 7.14% were VLBW (<1500 g). Fetal mortality (2.29%) was higher than early neonatal mortality (1.53%). Perinatal mortality (3.82%) was three times higher than in all neonates from the same period (1.03%). The severe embryo-fetal and neonatal damage found in multiple pregnancies is a clinical reality that calls for adequate diagnostic and therapeutic measures, and above all specific medical and social prevention to limit maternal pathogenic risks.

  5. Impact of Oxidative Stress in Fetal Programming

    Directory of Open Access Journals (Sweden)

    Loren P. Thompson

    2012-01-01

    Full Text Available Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that protect against organ dysfunction in the programmed offspring.

  6. Fetal and neonatal thyrotoxicosis

    Science.gov (United States)

    Batra, Chandar Mohan

    2013-01-01

    Fetal thyrotoxicosis is a rare disease occurring in 1 out of 70 pregnancies with Grave's disease or in 1 out of 4000-50,000 deliveries. The mortality is 12-20%, usually from heart failure, but other complications are tracheal compression, infections and thrombocytopenia. It results from transfer of thyroid stimulating immunoglobulins from mother to fetus through the placenta. This transplacental transfer begins around 20th week of pregnancy and reaches its maximum by 30th week. These autoantibodies bind to the fetal thyroid stimulating hormone (TSH) receptors and increase the secretion of the thyroid hormones. The mother has an active autoimmune thyroid disease or has been treated for it in the past. She may be absolutely euthyroid due to past treatment by drugs, surgery or radioiodine ablation, but still have active TSH receptor stimulating autoantibodies, which can cause fetal thyrotoxicosis. The other features of this disease are fetal tachycardia, fetal goiter and history of spontaneous abortions and findings of goiter, ascites, craniosyntosis, fetal growth retardation, maceration and hydrops at fetal autopsy. If untreated, this disease can result in intrauterine death. The treatment for this disease consists of giving carbimazole to the mother, which is transferred through the placenta to the fetus. The dose of carbimazole is titrated with the fetal heart rate. If the mother becomes hypothyroid due to carbimazole, thyroxine is added taking advantage of the fact that very little of thyroxine is transferred across the placenta. Neonatal thyrotoxicosis patients are very sick and require emergency treatment. The goal of the treatment is to normalize thyroid functions as quickly as possible, to avoid iatrogenic hypothyroidism while providing management and supportive therapy for the infant's specific signs and symptoms. PMID:24251220

  7. Consistent reconstruction of 4D fetal heart ultrasound images to cope with fetal motion.

    Science.gov (United States)

    Tanner, Christine; Flach, Barbara; Eggenberger, Céline; Mattausch, Oliver; Bajka, Michael; Goksel, Orcun

    2017-08-01

    4D ultrasound imaging of the fetal heart relies on reconstructions from B-mode images. In the presence of fetal motion, current approaches suffer from artifacts, which are unrecoverable for single sweeps. We propose to use many sweeps and exploit the resulting redundancy to automatically recover from motion by reconstructing a 4D image which is consistent in phase, space, and time. An interactive visualization framework to view animated ultrasound slices from 4D reconstructions on arbitrary planes was developed using a magnetically tracked mock probe. We first quantified the performance of 10 4D reconstruction formulations on simulated data. Reconstructions of 14 in vivo sequences by a baseline, the current state-of-the-art, and the proposed approach were then visually ranked with respect to temporal quality on orthogonal views. Rankings from 5 observers showed that the proposed 4D reconstruction approach significantly improves temporal image quality in comparison with the baseline. The 4D reconstructions of the baseline and the proposed methods were then inspected interactively for accessibility to clinically important views and rated for their clinical usefulness by an ultrasound specialist in obstetrics and gynecology. The reconstructions by the proposed method were rated as 'very useful' in 71% and were statistically significantly more useful than the baseline reconstructions. Multi-sweep fetal heart ultrasound acquisitions in combination with consistent 4D image reconstruction improves quality as well as clinical usefulness of the resulting 4D images in the presence of fetal motion.

  8. Fetal Origins of Mental Health: The Developmental Origins of Health and Disease Hypothesis.

    Science.gov (United States)

    O'Donnell, Kieran J; Meaney, Michael J

    2017-04-01

    The quality of fetal growth and development predicts the risk for a range of noncommunicable, chronic illnesses. These observations form the basis of the "developmental origins of health and disease" hypothesis, which suggests that the intrauterine signals that compromise fetal growth also act to "program" tissue differentiation in a manner that predisposes to later illness. Fetal growth also predicts the risk for later psychopathology. These findings parallel studies showing that antenatal maternal emotional well-being likewise predicts the risk for later psychopathology. Taken together, these findings form the basis for integrative models of fetal neurodevelopment, which propose that antenatal maternal adversity operates through the biological pathways associated with fetal growth to program neurodevelopment. The authors review the literature and find little support for such integrated models. Maternal anxiety, depression, and stress all influence neurodevelopment but show modest, weak, or no associations with known stress mediators (e.g., glucocorticoids) or with fetal growth. Rather, compromised fetal development appears to establish a "meta-plastic" state that increases sensitivity to postnatal influences. There also remain serious concerns that observational studies associating either fetal growth or maternal mental health with neurodevelopmental outcomes fail to account for underlying genetic factors. Finally, while the observed relation between fetal growth and adult health has garnered considerable attention, the clinical relevance of these associations remains to be determined. There are both considerable promise and important challenges for future studies of the fetal origins of mental health.

  9. Development of novel non agoinst PPAR-gamma ligands for lung cancer treatment

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-15-1-0165 TITLE: Development of novel non-agoinst PPAR-gamma ligands for lung cancer treatment . PRINCIPAL INVESTIGATOR...factor PPARγ, the thiazolidinediones (TZDs), synergized with carboplatin treatment of lung cancer in vitro and in vivo. Unfortunately, the use of TZDs...novel therapeutics with potential in lung cancer , we have explored the role of these non- agonist PPARγ ligands in cancer treatment . We have

  10. 21 CFR 884.2900 - Fetal stethoscope.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal stethoscope. 884.2900 Section 884.2900 Food... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart... conventional stethoscopes. (b) Classification. Class I (general controls). The device is exempt from the...

  11. Vitamin D Depletion in Pregnancy Decreases Survival Time, Oxygen Saturation, Lung Weight and Body Weight in Preterm Rat Offspring

    DEFF Research Database (Denmark)

    Lykkedegn, Sine; Sorensen, Grith Lykke; Beck-Nielsen, Signe Sparre

    2016-01-01

    Animal studies suggest a role of vitamin D in fetal lung development although not studied in preterm animals. We tested the hypothesis that vitamin D depletion aggravates respiratory insufficiency in preterm rat offspring. Furthermore, the effects of vitamin D depletion on growth and lung...... surfactant were investigated. Female Sprague-Dawley rats were randomly assigned low vitamin D (VDL) or control diet before mating and followed with serum 25-hydroxyvitamin D (s-25(OH)D) determinations. After cesarean section at gestational day 19 (E19) or day 22 (E22), placental weight, birth weight, crown......-rump-length (CRL), oxygenation (SaO2) at 30 min and survival time were recorded. The pup lungs were analyzed for phospholipid levels, surfactant protein A-D mRNA and the expression of the vitamin D receptor (VDR). S-25(OH)D was significantly lower in the VDL group at cesarean section (12 vs. 30nmol/L, p

  12. [Effect of music on fetal behaviour].

    Science.gov (United States)

    Malinova, M; Malinova, M

    2004-01-01

    Antenatal music stimulation shown to elicit fetal heart rate and body movement responses, indicating that prenatal experience with music influences auditory functional development. The slower tempo resulted in less movement variation.

  13. Glucocorticoids and fetal programming part 1: Outcomes.

    Science.gov (United States)

    Moisiadis, Vasilis G; Matthews, Stephen G

    2014-07-01

    Fetal development is a critical period for shaping the lifelong health of an individual. However, the fetus is susceptible to internal and external stimuli that can lead to adverse long-term health consequences. Glucocorticoids are an important developmental switch, driving changes in gene regulation that are necessary for normal growth and maturation. The fetal hypothalamic-pituitary-adrenal (HPA) axis is particularly susceptible to long-term programming by glucocorticoids; these effects can persist throughout the life of an organism. Dysfunction of the HPA axis as a result of fetal programming has been associated with impaired brain growth, altered behaviour and increased susceptibility to chronic disease (such as metabolic and cardiovascular disease). Moreover, the effects of glucocorticoid-mediated programming are evident in subsequent generations, and transmission of these changes can occur through both maternal and paternal lineages.

  14. Wound healing in a fetal, adult, and scar tissue model: a comparative study

    NARCIS (Netherlands)

    Coolen, N.A.; Schouten, K.C.; Boekema, B.K.; Middelkoop, E.; Ulrich, M.

    2010-01-01

    Early gestation fetal wounds heal without scar formation. Understanding the mechanism of this scarless healing may lead to new therapeutic strategies for improving adult wound healing. The aims of this study were to develop a human fetal wound model in which fetal healing can be studied and to

  15. Twin-twin transfusion syndrome: cerebral ischemia is not the only fetal MR imaging finding

    Energy Technology Data Exchange (ETDEWEB)

    Kline-Fath, Beth M. [University of Cincinnati Medical Center, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Cincinnati Children' s Hospital, Department of Radiology, Cincinnati, OH (United States); Calvo-Garcia, Maria A.; O' Hara, Sara M.; Racadio, Judy M. [University of Cincinnati Medical Center, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Crombleholme, Timothy M. [University of Cincinnati Medical Center, Department of Surgery, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States)

    2007-01-15

    Twin-twin transfusion syndrome (TTTS) is a complication of monochorionic/diamniotic twin pregnancies. An imbalance of blood flow occurs through placental anastomoses, causing potentially significant morbidity and mortality in both twins. Although the sonographic findings of TTTS are well documented, we believe that MR imaging is a valuable adjunct. We describe the fetal MR imaging findings associated with TTTS. From 2003 to 2005, 37 consecutive MR imaging studies were performed on multiple-gestation pregnancies. Of the 37, 25 were consistent with TTTS, correlated and confirmed by sonographic criteria. MR fetal abnormalities were documented. Cerebral ischemia, which could not be demonstrated by sonography, was delineated well by MR imaging. New findings noted on fetal MR imaging were enlargement of cerebral venous sinuses in both twins, dilatation of the renal collecting system in the recipient, lung lesions in the recipient and cerebral malformations in the donor. MR imaging is an important adjunct in TTTS imaging. Its benefit over sonography is its clear definition of cerebral pathology, which is important for intervention and counseling. The new findings, particularly in the urinary tract and cerebral venous sinuses, also help support the diagnosis of TTTS and might reveal additional consequences of the altered hemodynamics that occur in TTTS. (orig.)

  16. Twin-twin transfusion syndrome: cerebral ischemia is not the only fetal MR imaging finding

    International Nuclear Information System (INIS)

    Kline-Fath, Beth M.; Calvo-Garcia, Maria A.; O'Hara, Sara M.; Racadio, Judy M.; Crombleholme, Timothy M.

    2007-01-01

    Twin-twin transfusion syndrome (TTTS) is a complication of monochorionic/diamniotic twin pregnancies. An imbalance of blood flow occurs through placental anastomoses, causing potentially significant morbidity and mortality in both twins. Although the sonographic findings of TTTS are well documented, we believe that MR imaging is a valuable adjunct. We describe the fetal MR imaging findings associated with TTTS. From 2003 to 2005, 37 consecutive MR imaging studies were performed on multiple-gestation pregnancies. Of the 37, 25 were consistent with TTTS, correlated and confirmed by sonographic criteria. MR fetal abnormalities were documented. Cerebral ischemia, which could not be demonstrated by sonography, was delineated well by MR imaging. New findings noted on fetal MR imaging were enlargement of cerebral venous sinuses in both twins, dilatation of the renal collecting system in the recipient, lung lesions in the recipient and cerebral malformations in the donor. MR imaging is an important adjunct in TTTS imaging. Its benefit over sonography is its clear definition of cerebral pathology, which is important for intervention and counseling. The new findings, particularly in the urinary tract and cerebral venous sinuses, also help support the diagnosis of TTTS and might reveal additional consequences of the altered hemodynamics that occur in TTTS. (orig.)

  17. Fetal cerebral biometry: normal parenchymal findings and ventricular size

    International Nuclear Information System (INIS)

    Garel, C.

    2005-01-01

    Assessing fetal cerebral biometry is one means of ascertaining that the development of the fetal central nervous system is normal. Norms have been established on large cohorts of fetuses by sonographic and neurofetopathological studies. Biometric standards have been established in MR in much smaller cohorts. The purpose of this paper is to analyse methods of measuring a few parameters in MR [biparietal diameter (BPD), fronto-occipital diameter (FOD), length of the corpus callosum (LCC), atrial diameter, transverse cerebellar diameter, height, anteroposterior diameter and surface of the vermis] and to compare US and MR in the assessment of fetal cerebral biometry. (orig.)

  18. Calcitonin gene related family peptides: importance in normal placental and fetal development.

    Science.gov (United States)

    Yallampalli, Chandra; Chauhan, Madhu; Endsley, Janice; Sathishkumar, Kunju

    2014-01-01

    Synchronized molecular and cellular events occur between the uterus and the implanting embryo to facilitate successful pregnancy outcome. Nevertheless, the molecular signaling network that coordinates strategies for successful decidualization, placentation and fetal growth are not well understood. The discovery of calcitonin/calcitonin gene-related peptides (CT/CGRP) highlighted new signaling mediators in various physiological processes, including reproduction. It is known that CGRP family peptides including CGRP, adrenomedulin and intermedin play regulatory functions during implantation, trophoblast proliferation and invasion, and fetal organogenesis. In addition, all the CGRP family peptides and their receptor components are found to be expressed in decidual, placental and fetal tissues. Additionally, plasma levels of peptides of the CGRP family were found to fluctuate during normal gestation and to induce placental cellular differentiation, proliferation, and critical hormone signaling. Moreover, aberrant signaling of these CGRP family peptides during gestation has been associated with pregnancy disorders. It indicates the existence of a possible regulatory role for these molecules during decidualization and placentation processes, which are known to be particularly vulnerable. In this review, the influence of the CGRP family peptides in these critical processes is explored and discussed.

  19. Detection and Processing Techniques of FECG Signal for Fetal Monitoring

    Directory of Open Access Journals (Sweden)

    Hasan MA

    2009-03-01

    Full Text Available Abstract Fetal electrocardiogram (FECG signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system.

  20. Placental responses to changes in the maternal environment determine fetal growth

    Directory of Open Access Journals (Sweden)

    Kris Genelyn eDimasuay

    2016-01-01

    Full Text Available Placental responses to maternal perturbations are complex and remain poorly understood. Altered maternal environment during pregnancy such as hypoxia, stress, obesity, diabetes, toxins, altered nutrition, inflammation, and reduced utero-placental blood flow may influence fetal development, which can predispose to diseases later in life. The placenta being a metabolically active tissue responds to these perturbations by regulating the fetal supply of nutrients and oxygen and secretion of hormones into the maternal and fetal circulation. We have proposed that placental nutrient sensing integrates maternal and fetal nutritional cues with information from intrinsic nutrient sensing signaling pathways to balance fetal demand with the ability of the mother to support pregnancy by regulating maternal physiology, placental growth, and placental nutrient transport. Emerging evidence suggests that the nutrient-sensing signaling pathway mechanistic target of rapamycin (mTOR plays a central role in this process. Thus, placental nutrient sensing plays a critical role in modulating maternal-fetal resource allocation, thereby affecting fetal growth and the life-long health of the fetus.

  1. Performance of a wearable acoustic system for fetal movement discrimination.

    Directory of Open Access Journals (Sweden)

    Jonathan Lai

    Full Text Available Fetal movements (FM are a key factor in clinical management of high-risk pregnancies such as fetal growth restriction. While maternal perception of reduced FM can trigger self-referral to obstetric services, maternal sensation is highly subjective. Objective, reliable monitoring of fetal movement patterns outside clinical environs is not currently possible. A wearable and non-transmitting system capable of sensing fetal movements over extended periods of time would be extremely valuable, not only for monitoring individual fetal health, but also for establishing normal levels of movement in the population at large. Wearable monitors based on accelerometers have previously been proposed as a means of tracking FM, but such systems have difficulty separating maternal and fetal activity and have not matured to the level of clinical use. We introduce a new wearable system based on a novel combination of accelerometers and bespoke acoustic sensors as well as an advanced signal processing architecture to identify and discriminate between types of fetal movements. We validate the system with concurrent ultrasound tests on a cohort of 44 pregnant women and demonstrate that the garment is capable of both detecting and discriminating the vigorous, whole-body 'startle' movements of a fetus. These results demonstrate the promise of multimodal sensing for the development of a low-cost, non-transmitting wearable monitor for fetal movements.

  2. What do we know about maternal-fetal attachment?

    Science.gov (United States)

    Shieh, C; Kravitz, M; Wang, H H

    2001-09-01

    A review of the literature suggests that there are three critical attributes related to the concept of maternal-fetal attachment, including cognitive, affective, and altruistic attachment. Cognitive attachment is the desire to know the baby. Affective attachment is the pleasure associated with thoughts of or interaction with the fetus. Altruistic attachment refers to a desire to protect the unborn child. Existing measurements on maternal-fetal attachment are developed based on low-risk and white pregnant women and previous research has not yet resulted in a consistent theoretical model. Future research should focus on development of culturally sensitive instruments and combining qualitative and quantitative measures to broaden theoretical understanding of the concept. Nursing assessment of maternal-fetal attachment is an on-going process. The nurse's role is to reassure those who have developed attachment to their fetuses and to motivate those who are unaware of or unconcerned about their attachment to their fetuses. Collecting data from different attributes of attachment helps nurses identify each woman's attachment patterns and areas of concern.

  3. High-salt diets during pregnancy affected fetal and offspring renal renin-angiotensin system.

    Science.gov (United States)

    Mao, Caiping; Liu, Rong; Bo, Le; Chen, Ningjing; Li, Shigang; Xia, Shuixiu; Chen, Jie; Li, Dawei; Zhang, Lubo; Xu, Zhice

    2013-07-01

    Intrauterine environments are related to fetal renal development and postnatal health. Influence of salty diets during pregnancy on renal functions and renin-angiotensin system (RAS) was determined in the ovine fetuses and offspring. Pregnant ewes were fed high-salt diet (HSD) or normal-salt diet (NSD) for 2 months during middle-to-late gestation. Fetal renal functions, plasma hormones, and mRNA and protein expressions of the key elements of renal RAS were measured in the fetuses and offspring. Fetal renal excretion of sodium was increased while urine volume decreased in the HSD group. Fetal blood urea nitrogen was increased, while kidney weight:body weight ratio decreased in the HSD group. The altered ratio was also observed in the offspring aged 15 and 90 days. Maternal and fetal plasma antidiuretic hormone was elevated without changes in plasma renin activity and Ang I levels, while plasma Ang II was decreased. The key elements of local renal RAS, including angiotensinogen, angiotensin converting enzyme (ACE), ACE2, AT1, and AT2 receptor expression in both mRNA and protein, except renin, were altered following maternal high salt intake. The results suggest that high intake of salt during pregnancy affected fetal renal development associated with an altered expression of the renal key elements of RAS, some alterations of fetal origins remained after birth as possible risks in developing renal or cardiovascular diseases.

  4. Fetal shielding combined with state of the art CT dose reduction strategies during maternal chest CT

    Energy Technology Data Exchange (ETDEWEB)

    Chatterson, Leslie C., E-mail: lch088@mail.usask.ca [Department of Diagnostic Imaging, University of Saskatchewan (Canada); Leswick, David A.; Fladeland, Derek A. [Department of Diagnostic Imaging, University of Saskatchewan (Canada); Hunt, Megan M.; Webster, Stephen [Saskatchewan Ministry of Labour Relations and Workplace Safety (Canada); Lim, Hyun [Department of Community Health and Epidemiology, College of Medicine, University of Saskatchewan (Canada)

    2014-07-15

    Purpose: Custom bismuth-antimony shields were previously shown to reduce fetal dose by 53% on an 8DR (detector row) CT scanner without dynamic adaptive section collimation (DASC), automatic tube current modulation (ATCM) or adaptive statistical iterative reconstruction (ASiR). The purpose of this study is to compare the effective maternal and average fetal organ dose reduction both with and without bismuth-antimony shields on a 64DR CT scanner using DASC, ATCM and ASiR during maternal CTPA. Materials and methods: A phantom with gravid prosthesis and a bismuth-antimony shield were used. Thermoluminescent dosimeters (TLDs) measured fetal radiation dose. The average fetal organ dose and effective maternal dose were determined using 100 kVp, scanning from the lung apices to the diaphragm utilizing DASC, ATCM and ASiR on a 64DR CT scanner with and without shielding in the first and third trimester. Isolated assessment of DASC was done via comparing a new 8DR scan without DASC to a similar scan on the 64DR with DASC. Results: Average third trimester unshielded fetal dose was reduced from 0.22 mGy ± 0.02 on the 8DR to 0.13 mGy ± 0.03 with the conservative 64DR protocol that included 30% ASiR, DASC and ATCM (42% reduction, P < 0.01). Use of a shield further reduced average third trimester fetal dose to 0.04 mGy ± 0.01 (69% reduction, P < 0.01). The average fetal organ dose reduction attributable to DASC alone was modest (6% reduction from 0.17 mGy ± 0.02 to 0.16 mGy ± 0.02, P = 0.014). First trimester fetal organ dose on the 8DR protocol was 0.07 mGy ± 0.03. This was reduced to 0.05 mGy ± 0.03 on the 64DR protocol without shielding (30% reduction, P = 0.009). Shields further reduced this dose to below accurately detectable levels. Effective maternal dose was reduced from 4.0 mSv on the 8DR to 2.5 mSv on the 64DR scanner using the conservative protocol (38% dose reduction). Conclusion: ASiR, ATCM and DASC combined significantly reduce effective maternal and fetal

  5. Fetal shielding combined with state of the art CT dose reduction strategies during maternal chest CT

    International Nuclear Information System (INIS)

    Chatterson, Leslie C.; Leswick, David A.; Fladeland, Derek A.; Hunt, Megan M.; Webster, Stephen; Lim, Hyun

    2014-01-01

    Purpose: Custom bismuth-antimony shields were previously shown to reduce fetal dose by 53% on an 8DR (detector row) CT scanner without dynamic adaptive section collimation (DASC), automatic tube current modulation (ATCM) or adaptive statistical iterative reconstruction (ASiR). The purpose of this study is to compare the effective maternal and average fetal organ dose reduction both with and without bismuth-antimony shields on a 64DR CT scanner using DASC, ATCM and ASiR during maternal CTPA. Materials and methods: A phantom with gravid prosthesis and a bismuth-antimony shield were used. Thermoluminescent dosimeters (TLDs) measured fetal radiation dose. The average fetal organ dose and effective maternal dose were determined using 100 kVp, scanning from the lung apices to the diaphragm utilizing DASC, ATCM and ASiR on a 64DR CT scanner with and without shielding in the first and third trimester. Isolated assessment of DASC was done via comparing a new 8DR scan without DASC to a similar scan on the 64DR with DASC. Results: Average third trimester unshielded fetal dose was reduced from 0.22 mGy ± 0.02 on the 8DR to 0.13 mGy ± 0.03 with the conservative 64DR protocol that included 30% ASiR, DASC and ATCM (42% reduction, P < 0.01). Use of a shield further reduced average third trimester fetal dose to 0.04 mGy ± 0.01 (69% reduction, P < 0.01). The average fetal organ dose reduction attributable to DASC alone was modest (6% reduction from 0.17 mGy ± 0.02 to 0.16 mGy ± 0.02, P = 0.014). First trimester fetal organ dose on the 8DR protocol was 0.07 mGy ± 0.03. This was reduced to 0.05 mGy ± 0.03 on the 64DR protocol without shielding (30% reduction, P = 0.009). Shields further reduced this dose to below accurately detectable levels. Effective maternal dose was reduced from 4.0 mSv on the 8DR to 2.5 mSv on the 64DR scanner using the conservative protocol (38% dose reduction). Conclusion: ASiR, ATCM and DASC combined significantly reduce effective maternal and fetal

  6. Fetal origin of vascular aging

    Directory of Open Access Journals (Sweden)

    Shailesh Pitale

    2011-01-01

    Full Text Available Aging is increasingly regarded as an independent risk factor for development of cardiovascular diseases such as atherosclerosis and hypertension and their complications (e.g. MI and Stroke. It is well known that vascular disease evolve over decades with progressive accumulation of cellular and extracellular materials and many inflammatory processes. Metabolic syndrome, obesity and diabetes are conventionally recognized as risk factors for development of coronary vascular disease (CVD. These conditions are known to accelerate ageing process in general and vascular ageing in particular. Adverse events during intrauterine life may programme organ growth and favour disease later in life, popularly known as, ′Barker′s Hypothesis′. The notion of fetal programming implies that during critical periods of prenatal growth, changes in the hormonal and nutritional milieu of the conceptus may alter the full expression of the fetal genome, leading to permanent effects on a range of physiological.

  7. Fetal Intelligent Navigation Echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart.

    Science.gov (United States)

    Yeo, Lami; Romero, Roberto

    2013-09-01

    To describe a novel method (Fetal Intelligent Navigation Echocardiography (FINE)) for visualization of standard fetal echocardiography views from volume datasets obtained with spatiotemporal image correlation (STIC) and application of 'intelligent navigation' technology. We developed a method to: 1) demonstrate nine cardiac diagnostic planes; and 2) spontaneously navigate the anatomy surrounding each of the nine cardiac diagnostic planes (Virtual Intelligent Sonographer Assistance (VIS-Assistance®)). The method consists of marking seven anatomical structures of the fetal heart. The following echocardiography views are then automatically generated: 1) four chamber; 2) five chamber; 3) left ventricular outflow tract; 4) short-axis view of great vessels/right ventricular outflow tract; 5) three vessels and trachea; 6) abdomen/stomach; 7) ductal arch; 8) aortic arch; and 9) superior and inferior vena cava. The FINE method was tested in a separate set of 50 STIC volumes of normal hearts (18.6-37.2 weeks of gestation), and visualization rates for fetal echocardiography views using diagnostic planes and/or VIS-Assistance® were calculated. To examine the feasibility of identifying abnormal cardiac anatomy, we tested the method in four cases with proven congenital heart defects (coarctation of aorta, tetralogy of Fallot, transposition of great vessels and pulmonary atresia with intact ventricular septum). In normal cases, the FINE method was able to generate nine fetal echocardiography views using: 1) diagnostic planes in 78-100% of cases; 2) VIS-Assistance® in 98-100% of cases; and 3) a combination of diagnostic planes and/or VIS-Assistance® in 98-100% of cases. In all four abnormal cases, the FINE method demonstrated evidence of abnormal fetal cardiac anatomy. The FINE method can be used to visualize nine standard fetal echocardiography views in normal hearts by applying 'intelligent navigation' technology to STIC volume datasets. This method can simplify

  8. Mechanisms of Fetal Programming in Hypertension

    Directory of Open Access Journals (Sweden)

    John Edward Jones

    2012-01-01

    Full Text Available Events that occur in the early fetal environment have been linked to long-term health and lifespan consequences in the adult. Intrauterine growth restriction (IUGR, which may occur as a result of nutrient insufficiency, exposure to hormones, or disruptions in placental structure or function, may induce the fetus to alter its developmental program in order to adapt to the new conditions. IUGR may result in a decrease in the expression of genes that are responsible for nephrogenesis as nutrients are rerouted to the development of more essential organs. Fetal survival under these conditions often results in low birth weight and a deficit in nephron endowment, which are associated with hypertension in adults. Interestingly, male IUGR offspring appear to be more severely affected than females, suggesting that sex hormones may be involved. The processes of fetal programming of hypertension are complex, and we are only beginning to understand the underlying mechanisms.

  9. Fetal hyperglycemia changes human preadipocyte function in adult life

    DEFF Research Database (Denmark)

    Hansen, Ninna Schiøler; Strasko, Klaudia Stanislawa; Hjort, Line

    2017-01-01

    Context: Offspring of women with gestational diabetes (O-GDM) or type 1 diabetes mellitus (O-T1DM) have been exposed to hyperglycemia in utero and have an increased risk of developing metabolic disease in adulthood. Design: In total, we recruited 206 adult offspring comprising the two fetal...... acid supply. Conclusions: Taken together, these findings show that intrinsic epigenetic and functional changes exist in preadipocyte cultures from individuals exposed to fetal hyperglycemia who are at increased risk of developing metabolic disease....

  10. Value of fetal skeletal radiographs in the diagnosis of fetal death

    International Nuclear Information System (INIS)

    Bourliere-Najean, B.; Russel, A.S.; Petit, P.; Devred, P.; Panuel, M.; Piercecchi-Marti, M.D.; Fredouille, C.; Sigaudy, S.; Philip, N.

    2003-01-01

    The aim of this study was to assess the value of fetal skeletal radiographs in determining the etiology of fetal death. A total of 1193 post-mortem fetal skeletal radiographs were analysed. Fetuses were classified into one of three groups (group I: abnormality diagnosed during pregnancy; group II: maternal pathology; group III: spontaneous abortion of pregnancy, IIIa before 26 weeks of gestation (WG), IIIb after 26 weeks of gestation). Face, supine and lateral skeletal views were performed. Skeletal abnormalities were detected in 33.9% of the fetuses, including 22.7% with minor abnormalities (abnormal rib number, no nasal bone ossification, amesophalangia or P2 hypoplasia of the fifth digit) and 14.5% with major abnormalities (other skeletal abnormalities). Among the fetuses with major abnormalities, 98.8% came from group I, 2.9% came from group II, 2.3% came from group IIIa and none came from group IIIb. Fetal skeletal radiographs are not useful in fetuses arising from spontaneous abortion of pregnancy without abnormality on ultrasound screening, abnormality clinical examination or in fetuses with prenatal diagnosis of chromosomal abnormality. This practice is valuable only if there is a multidisciplinary team, with all the participants (pathologists, radiologists, geneticists) knowledgeable about fetal pathology. In the absence of this multidisciplinary approach, it is easier to X-ray all fetuses to avoid misdiagnosis and the important consequences for genetic counselling. (orig.)

  11. Value of fetal skeletal radiographs in the diagnosis of fetal death

    Energy Technology Data Exchange (ETDEWEB)

    Bourliere-Najean, B.; Russel, A.S.; Petit, P.; Devred, P. [Department of Pediatric Radiology, CHU Timone, 264 rue St. Pierre, 13385 Marseille cedex 5 (France); Panuel, M. [Department of Radiology, Hopital Nord, chemin Bourrelys, 13915 Marseille cedex 20 (France); Piercecchi-Marti, M.D.; Fredouille, C. [Department of Pathology, CHU Timone, 264 rue St. Pierre, 13385 Marseille cedex 5 (France); Sigaudy, S.; Philip, N. [Department of Genetics, CHU Timone, 264 rue St. Pierre, 13385 Marseille cedex 5 (France)

    2003-05-01

    The aim of this study was to assess the value of fetal skeletal radiographs in determining the etiology of fetal death. A total of 1193 post-mortem fetal skeletal radiographs were analysed. Fetuses were classified into one of three groups (group I: abnormality diagnosed during pregnancy; group II: maternal pathology; group III: spontaneous abortion of pregnancy, IIIa before 26 weeks of gestation (WG), IIIb after 26 weeks of gestation). Face, supine and lateral skeletal views were performed. Skeletal abnormalities were detected in 33.9% of the fetuses, including 22.7% with minor abnormalities (abnormal rib number, no nasal bone ossification, amesophalangia or P2 hypoplasia of the fifth digit) and 14.5% with major abnormalities (other skeletal abnormalities). Among the fetuses with major abnormalities, 98.8% came from group I, 2.9% came from group II, 2.3% came from group IIIa and none came from group IIIb. Fetal skeletal radiographs are not useful in fetuses arising from spontaneous abortion of pregnancy without abnormality on ultrasound screening, abnormality clinical examination or in fetuses with prenatal diagnosis of chromosomal abnormality. This practice is valuable only if there is a multidisciplinary team, with all the participants (pathologists, radiologists, geneticists) knowledgeable about fetal pathology. In the absence of this multidisciplinary approach, it is easier to X-ray all fetuses to avoid misdiagnosis and the important consequences for genetic counselling. (orig.)

  12. Antenatal management of recurrent fetal goitrous hyperthyroidism associated with fetal cardiac failure in a pregnant woman with persistent high levels of thyroid-stimulating hormone receptor antibody after ablative therapy.

    Science.gov (United States)

    Matsumoto, Tadashi; Miyakoshi, Kei; Saisho, Yoshifumi; Ishii, Tomohiro; Ikenoue, Satoru; Kasuga, Yoshifumi; Kadohira, Ikuko; Sato, Seiji; Momotani, Naoko; Minegishi, Kazuhiro; Yoshimura, Yasunori

    2013-01-01

    High titer of maternal thyroid-stimulating hormone receptor antibody (TRAb) in patients with Graves' disease could cause fetal hyperthyroidism during pregnancy. Clinical features of fetal hyperthyroidism include tachycardia, goiter, growth restriction, advanced bone maturation, cardiomegaly, and fetal death. The recognition and treatment of fetal hyperthyroidism are believed to be important to optimize growth and intellectual development in affected fetuses. We herein report a case of fetal treatment in two successive siblings showing in utero hyperthyroid status in a woman with a history of ablative treatment for Graves' disease. The fetuses were considered in hyperthyroid status based on high levels of maternal TRAb, a goiter, and persistent tachycardia. In particular, cardiac failure was observed in the second fetus. With intrauterine treatment using potassium iodine and propylthiouracil, fetal cardiac function improved. A high level of TRAb was detected in the both neonates. To the best of our knowledge, this is the first report on the changes of fetal cardiac function in response to fetal treatment in two siblings showing in utero hyperthyroid status. This case report illustrates the impact of prenatal medication via the maternal circulation for fetal hyperthyroidism and cardiac failure.

  13. Maternal Aldehyde Elimination during Pregnancy Preserves the Fetal Genome

    Science.gov (United States)

    Oberbeck, Nina; Langevin, Frédéric; King, Gareth; de Wind, Niels; Crossan, Gerry P.; Patel, Ketan J.

    2014-01-01

    Summary Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2−/−Fanca−/− embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2. PMID:25155611

  14. Maternal aldehyde elimination during pregnancy preserves the fetal genome.

    Science.gov (United States)

    Oberbeck, Nina; Langevin, Frédéric; King, Gareth; de Wind, Niels; Crossan, Gerry P; Patel, Ketan J

    2014-09-18

    Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2(-/-)Fanca(-/-) embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Fetal pancreatic beta-cell function in pregnancies complicated by maternal diabetes mellitus: relationship to fetal acidemia and macrosomia.

    Science.gov (United States)

    Salvesen, D R; Brudenell, J M; Proudler, A J; Crook, D; Nicolaides, K H

    1993-05-01

    Our purpose was to investigate the relationship between fetal pancreatic beta-cell function and fetal acidemia and macrosomia in pregnancies complicated by maternal diabetes mellitus. A cross-sectional study at the Harris Birthright Research Centre for Fetal Medicine, London, was performed. In 32 pregnancies complicated by maternal diabetes mellitus cordocentesis was performed at 36 to 39 weeks' gestation for the measurement of umbilical venous blood pH, PO2, PCO2, lactate, and glucose concentration; plasma insulin immunoreactivity; and insulin/glucose ratio. A reference range for plasma insulin and insulin/glucose ratio was constructed by studying fetal blood samples from 80 women who did not have diabetes mellitus. Mean umbilical venous blood pH was significantly lower and plasma insulin immunoreactivity and insulin/glucose ratio were significantly higher than the appropriate normal mean for gestation. There were significant associations between (1) maternal and fetal blood glucose concentrations (r = 0.95, p < 0.0001), (2) fetal blood glucose and plasma insulin immunoreactivity (r = 0.57, p < 0.01), (3) fetal plasma insulin immunoreactivity and blood pH (r = -0.39, p < 0.05), and (4) fetal insulin/glucose ratio and degree of macrosomia (r = 0.76, p < 0.0001). Fetal pancreatic beta-cell hyperplasia is implicated in the pathogenesis of both fetal acidemia and macrosomia.

  16. Role of catecholamines in maternal-fetal stress transfer in sheep.

    Science.gov (United States)

    Rakers, Florian; Bischoff, Sabine; Schiffner, Rene; Haase, Michelle; Rupprecht, Sven; Kiehntopf, Michael; Kühn-Velten, W Nikolaus; Schubert, Harald; Witte, Otto W; Nijland, Mark J; Nathanielsz, Peter W; Schwab, Matthias

    2015-11-01

    We sought to evaluate whether in addition to cortisol, catecholamines also transfer psychosocial stress indirectly to the fetus by decreasing uterine blood flow (UBF) and increasing fetal anaerobic metabolism and stress hormones. Seven pregnant sheep chronically instrumented with uterine ultrasound flow probes and catheters at 0.77 gestation underwent 2 hours of psychosocial stress by isolation. We used adrenergic blockade with labetalol to examine whether decreased UBF is catecholamine mediated and to determine to what extent stress transfer from mother to fetus is catecholamine dependent. Stress induced transient increases in maternal cortisol and norepinephrine (NE). Maximum fetal plasma cortisol concentrations were 8.1 ± 2.1% of those in the mother suggesting its maternal origin. In parallel to the maternal NE increase, UBF decreased by maximum 22% for 30 minutes (P Fetal NE remained elevated for >2 hours accompanied by a prolonged blood pressure increase (P fetal NE and blood pressure increase and the shift toward anaerobic metabolism. We conclude that catecholamine-induced decrease of UBF is a mechanism of maternal-fetal stress transfer. It may explain the influence of maternal stress on fetal development and on programming of adverse health outcomes in later life especially during early pregnancy when fetal glucocorticoid receptor expression is limited. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Fetal magnetic resonance imaging of thoracic and abdominal malformations; Fetale Magnetresonanztomographie thorakaler und abdomineller Malformationen

    Energy Technology Data Exchange (ETDEWEB)

    Woitek, R.; Asenbaum, U.; Furtner, J.; Prayer, D. [Medizinische Universitaet Wien, Abteilung fuer Neuroradiologie und Muskuloskelettale Radiologie, Universitaetsklinik fuer Radiodiagnostik, Wien (Austria); Brugger, P.C. [Medizinische Universitaet Wien, Zentrum fuer Anatomie und Zellbiologie, Wien (Austria)

    2013-02-15

    Diagnosis and differential diagnosis of fetal thoracic and abdominal malformations. Ultrasound and magnetic resonance imaging (MRI). In cases of suspected pathologies based on fetal ultrasound MRI can be used for more detailed examinations and can be of assistance in the differential diagnostic process. Improved imaging of anatomical structures and of the composition of different tissues by the use of different MRI sequences. Fetal MRI has become a part of clinical routine in thoracic and abdominal malformations and is the basis for scientific research in this field. In cases of thoracic or abdominal malformations fetal MRI provides important information additional to ultrasound to improve diagnostic accuracy, prognostic evaluation and surgical planning. (orig.) [German] Diagnose und Differenzialdiagnose fetaler thorakaler und abdomineller Malformationen. Ultraschall, MRT. MRT zur weiteren Abklaerung und genaueren Differenzierung bei vielen im Ultraschall gestellten Verdachtsdiagnosen. Verbesserte anatomische Darstellung mittels MRT und Darstellung unterschiedlicher Gewebezusammensetzung mittels verschiedener MR-Sequenzen. Die fetale MRT ist bei der angegebenen Fragestellung in die klinische Routine eingegangen und liefert weiterhin die Basis fuer wissenschaftliche Untersuchungen in diesem Bereich. Die fetale MRT liefert beim Vorliegen thorakaler oder abdomineller Malformationen komplementaer zum Ultraschall wichtige Zusatzinformationen, um die diagnostische Genauigkeit zu erhoehen, die Prognoseabschaetzung zu verbessern und ggf. eine bessere chirurgische Planung zu ermoeglichen. (orig.)

  18. Effect of zinc oxide nanoparticles on dams and embryo–fetal development in rats

    Directory of Open Access Journals (Sweden)

    Hong J

    2014-12-01

    Full Text Available Jeong-Sup Hong,1,2 Myeong-Kyu Park,1 Min-Seok Kim,1 Jeong-Hyeon Lim,1 Gil-Jong Park,1 Eun-Ho Maeng,1 Jae-Ho Shin,3 Yu-Ri Kim,4 Meyoung-Kon Kim,4 Jong-Kwon Lee,5 Jin-A Park,2 Jong-Choon Kim,6 Ho-Chul Shin2 1Health Care Research Laboratory, Korea Testing and Research Institute, Gimpo, 2College of Veterinary Medicine, Konkuk University, Seoul, 3Department of Biomedical Laboratory Science, Eulji University, Seongnam-si, 4Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, 5Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Chungcheongbuk-do, 6College of Veterinary Medicine, Chonnam National University, Gwangju, Korea Abstract: This study investigated the potential adverse effects of zinc oxide nanoparticles (ZnOSM20[-] NPs; negatively charged, 20 nm on pregnant dams and embryo–fetal development after maternal exposure over the period of gestational days 5–19 with Sprague Dawley rats. ZnOSM20(- NPs were administered to pregnant rats by gavage at 0 mg/kg/day, 100 mg/kg/day, 200 mg/kg/day, and 400 mg/kg/day. All dams were subjected to caesarean section on gestational day 20, and all the fetuses were examined for external, visceral, and skeletal alterations. Toxicity in the dams manifested as significantly decreased body weight at 400 mg/kg/day and decreased liver weight, and increased adrenal glands weight at 200 mg/kg/day and 400 mg/kg/day. However, no treatment-related difference in the number of corpora lutea, the number of implantation sites, the implantation rate (%, resorption, dead fetuses, litter size, fetal deaths, fetal and placental weights, and sex ratio were observed between the groups. Morphological examinations of the fetuses demonstrated no significant difference in the incidences of abnormalities between the groups. No significant difference was found in the Zn content of fetal tissue between the control and high-dose groups. These results showed

  19. High vulnerability of the developing fetal brain to ionizing radiation and hyperthermia

    International Nuclear Information System (INIS)

    Kameyama, Yoshiro

    1989-01-01

    The developing brain is one of the fetal structures most susceptible to environmental teratogenic insults, because of its long-lasting sensitive period extending from the beginning of embryonic organogenesis to the postnatal infantile period, the great vulnerability of undifferentiated neural cells to a wide range of environmental agents, and the lack of further reproductive capacity of neurons. Among the environmental agents which affect the developing brain, ionizing radiation and hyperthermia are regarded as the most important physical agents. The most prevalent disorders of the brain produced are histogenetic ones such as a deficit of cortical neurons, disorganized cortical architecture, and poor dendritic arborization of the cortical neurons. In this review, emphasis is given to a review of studies on the critical development stage for the induction of histogenetic disorders of the cerebral cortex and on the high vulnerability of developing neuronal cells to the two physical environmental agents mentioned. (author) 59 refs

  20. Effects of Intrauterine Growth Restriction During Late Pregnancy on the Development of the Ovine Fetal Thymus and the T-Lymphocyte Subpopulation.

    Science.gov (United States)

    Liu, Yingchun; He, Shan; Zhang, Yuan; Xia, Wei; Li, Ming; Zhang, Chongzhi; Gao, Feng

    2015-07-01

    The retarded development of fetal thymus in intrauterine growth restriction (IUGR) from maternal undernutrition during late pregnancy destroys the tridimensional structure and modifies the development of fetal T lymphocytes. The mechanisms, however, remain unclear. The objective of this study was to investigate the effect of IUGR during late pregnancy on the development of the ovine fetal thymus and the T-lymphocyte subpopulation. Eighteen time-mated ewes with singleton fetuses were allocated to three groups at day 90 of pregnancy: restricted group 1 (RG1, 0.18 MJ ME/BW(0.75) /day, n = 6), restricted group 2 (RG2, 0.33 MJ ME/BW(0.75) /day, n = 6) and a control group (CG, ad libitum, 0.67 MJ ME/BW(0.75) /day, n = 6). Fetuses were recovered at slaughter on day 140. Fetuses in RG1 exhibited decreased (P restricted groups. In addition, there was reduced mRNA expression (P < 0.05) of T-cell receptor, apoptosis antigen 1 ligand, and RAG2 in the RG1 group. In contrast, increases in glutathione peroxidase, malondialdehyde, caspase-3, Cytochrome c, and CD4(+) T cells were observed (P < 0.05), and higher mRNA expressions (P < 0.05) of protein 53, Bcl-2 associated X protein (Bax), and apoptosis antigen 1 (Fas) were found in RG1 fetuses; and thymuses of RG2 fetuses had increased caspase-3, and expression of Fas and Bax (P < 0.05), relative to control fetuses. These results indicate that reduced cell proliferation, oxidative stress, and increased cell apoptosis were the potential mechanisms for impaired development and microenvironment of IUGR fetal thymus, and for modifying the maturation of CD4(+) CD8(+) thymocytes underlying their reduced numbers . © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Modificaciones hemodinámicas y metabólicas maternas secundarias al uso de betametasona para la maduración pulmonar fetal

    Directory of Open Access Journals (Sweden)

    Keibis Jiménez-Castillejo

    2013-09-01

    Full Text Available El objetivo de la investigación fue determinar las modificaciones hemodinámicas y metabólicas maternas secundarias al uso de betametasona para la maduración pulmonar fetal. Se realizó una investigación de tipo explicativa, prospectiva y longitudinal con un diseño cuasi-experimental y una muestra no probabilística intencional de 106 pacientes que acudieron a la consulta pre-natal de alto riesgo del Hospital Central “Dr. Urquinaona". Una vez seleccionadas las pacientes se le administró inyecciones intramusculares de betametasona (12 mg por dos días consecutivos. El valor de presión arterial sistólica presentó un leve aumento luego de la segunda medición y la tercera medición (p = ns. La presión arterial diastólica presentó aumento significativo durante la segunda medición y un nuevo aumento significativo en la tercera medición (p < 0,05. Se observaron aumentos significativos en el valor promedio de la frecuencia cardiaca luego de la segunda y tercera medición de betametasona (p < 0,05. No se encontraron modificaciones significativas en las concentraciones de glicemia, sodio y potasio entre las tres mediciones (p = ns. Se concluye que el uso de betametasona para inducir la maduración pulmonar fetal produce modificaciones hemodinámicas maternas acompañados de cambios metabólicos transitorios. Hemodynamical and metabolic modifications secondary to betamethasone use for fetal lung maturity Abstract The objective of research was to determine maternal hemodynamic and metabolic modifications secondary to the use of betamethasone for fetal lung maturation. An explicative, prospective and longitudinal research was done with a quasi-experimental design and intentional non probabilistic sample of 106 patients who assisted to High Risk Antenatal Consult at Hospital Central “Dr. Urquinaona". Once patients were selected, two intramuscular injections of betamethasone (12 mg were administered for two consecutive days. Systolic blood

  2. Magnetic resonance imaging of the fetal brain.

    Science.gov (United States)

    Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C

    2016-06-01

    This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.

  3. Bi-iliac distance and iliac bone position compared to the vertebral column in normal fetal development

    DEFF Research Database (Denmark)

    Hartling, U B; Fischer Hansen, B; Skovgaard, L T

    2001-01-01

    Prenatal standards of bi-iliac width were not found in the literature based on autopsy investigations, nor was the caudo-cranial position of the ilia compared to the vertebral column. The first purpose of the present study was to establish normal standard values for the bi-iliac distance in fetal...... life, the second to evaluate the level of the iliac bones proportional to the ossified vertebral column. Whole body radiographs in antero-posterior projections from 98 human fetuses (36 female and 44 male fetuses, as well as 18 fetuses on which the sex had not been determined) were analyzed...... caliper. The caudo-cranial position of the iliac bones was evaluated. The present study shows that in normal fetal development there is a continuous linear enlargement of the pelvic region in the transverse and vertical planes. The upper iliac contour stays at the level of the first sacral vertebral body...

  4. Chromosome 11-linked determinant controls fetal globin expression and the fetal-to-adult globin switch

    International Nuclear Information System (INIS)

    Melis, M.; Demopulos, G.; Najfeld, V.; Zhang, J.W.; Brice, M.; Papayannopoulou, T.; Stamatoyannopoulos, G.

    1987-01-01

    Hybrids formed by fusing mouse erythroleukemia (MEL) cells with human fetal erythroid cells produce human fetal globin, but they switch to adult globin production as culture time advances. To obtain information on the chromosomal assignment of the elements that control γ-to-β switching, the authors analyzed the chromosomal composition of hybrids producing exclusively or predominantly human fetal globin and hybrids producing only adult human globin. No human chromosome was consistently present in hybrids expressing fetal globin and consistently absent in hybrids expressing adult globin. Subcloning experiments demonstrated identical chromosomal compositions in subclones displaying the fetal globin program and those that had switched to expression of the adult globin program. These data indicate that retention of only one human chromosome -- i.e., chromosome 11 -- is sufficient for expression of human fetal globin and the subsequent γ-to-β switch. The results suggest that the γ-to-β switch is controlled either cis to the β-globin locus of by a trans-acting mechanism, the genes of which reside on human chromosome 11

  5. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    Directory of Open Access Journals (Sweden)

    Andras eJakab

    2014-10-01

    Full Text Available The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st – 38th gestational weeks (GW with a network-based statistical inference approach. The overall connectivity network, short range and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29. GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW, temporal (peak: 26 GW, frontal (peak: 26.4 GW and parietal expansion (peak: 27.5 GW. We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macroconnectivity.

  6. Fetal functional imaging portrays heterogeneous development of emerging human brain networks.

    Science.gov (United States)

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity.

  7. Variability in Classroom Social Communication: Performance of Children with Fetal Alcohol Spectrum Disorders and Typically Developing Peers

    Science.gov (United States)

    Kjellmer, Liselotte; Olswang, Lesley B.

    2013-01-01

    Purpose: In this study, the authors examined how variability in classroom social communication performance differed between children with fetal alcohol spectrum disorders (FASD) and pair-matched, typically developing peers. Method: Twelve pairs of children were observed in their classrooms, 40 min per day (20 min per child) for 4 days over a…

  8. Fetal Echocardiography/Your Unborn Baby's Heart

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Fetal Echocardiography / Your Unborn Baby's Heart Updated:Oct 6,2016 ... Your Risk • Symptoms & Diagnosis Introduction Common Tests Fetal Echocardiography/Your Unborn Baby's Heart - Fetal Echocardiogram Test - Detection ...

  9. Obesity and Lifespan Health—Importance of the Fetal Environment

    Directory of Open Access Journals (Sweden)

    Alice F. Tarantal

    2014-04-01

    Full Text Available A marked increase in the frequency of obesity at the population level has resulted in an increasing number of obese women entering pregnancy. The increasing realization of the importance of the fetal environment in relation to chronic disease across the lifespan has focused attention on the role of maternal obesity in fetal development. Previous studies have demonstrated that obesity during adolescence and adulthood can be traced back to fetal and early childhood exposures. This review focuses on factors that contribute to early developmental events, such as epigenetic modifications, the potential for an increase in inflammatory burden, early developmental programming changes such as the variable development of white versus brown adipose tissue, and alterations in organ ontogeny. We hypothesize that these mechanisms promote an unfavorable fetal environment and can have a long-standing impact, with early manifestations of chronic disease that can result in an increased demand for future health care. In order to identify appropriate preventive measures, attention needs to be placed both on reducing maternal obesity as well as understanding the molecular, cellular, and epigenetic mechanisms that may be responsible for the prenatal onset of chronic disease.

  10. Sectional anatomy of the fetal brain in uterus at term on the sagittal plane

    Directory of Open Access Journals (Sweden)

    Fan-Zhen Kong

    2011-06-01

    Conclusion: Through the comparison study between sagittal sections and corresponding MRI of fetal brain at term, we could obtain morphological anatomic structures and MRI of fetal brain, providing morphological demonstration of the intrauterine development of fetal brain and auxiliary diagnosis of ultrasound and MRI in pregnant woman.

  11. Current approaches on non-invasive prenatal diagnosis: Prenatal genomics, transcriptomics, personalized fetal diagnosis

    Directory of Open Access Journals (Sweden)

    Tuba Günel

    2014-12-01

    Full Text Available Recent developments in molecular genetics improved our knowledge on fetal genome and physiology. Novel scientific innovations in prenatal diagnosis have accelerated in the last decade changing our vision immensely. Data obtained from fetal genomic studies brought new insights to fetal medicine and by the advances in fetal DNA and RNA sequencing technology novel treatment strategies has evolved. Non-invasive prenatal diagnosis found ground in genetics and the results are widely studied in scientific arena. When Lo and colleges proved fetal genetic material can be extracted from maternal plasma and fetal DNA can be isolated from maternal serum, the gate to many exciting discoveries was open. Microarray technology and advances in sequencing helped fetal diagnosis as well as other areas of medicine. Today it is a very crucial prerequisite for physicians practicing prenatal diagnosis to have a profound knowledge in genetics. Prevailing practical use and application of fetal genomic tests in maternal and fetal medicine mandates obstetricians to update their knowledge in genetics. The purpose of this review is to assist physicians to understand and update their knowledge in fetal genetic testing from maternal blood, individualized prenatal counseling and advancements on the subject by sharing our experiences as İstanbul University Fetal Nucleic Acid Research Group.

  12. A Review of the Importance of Maternal-fetal Attachment According to the Islamic Recommendations

    OpenAIRE

    Fatemeh Ghodrati; Marzieh Akbarzadeh

    2018-01-01

    Background & aim: Maternal-fetal attachment has an important effect on mother's identity as well as maternal and fetal health. Moreover, this concept is considered as a crucial issue for the improvement of children emotional development. Regarding the Islamic recommendations on maternal-fetal attachment and its correlation with maternal affection, this study was conducted to review the importance of maternal-fetal attachment according to the Islamic recommendations. Methods: This review was c...

  13. FA1 immunoreactivity in endocrine tumours and during development of the human fetal pancreas; negative correlation with glucagon expression

    DEFF Research Database (Denmark)

    Tornehave, D; Jensen, Charlotte Harken; Teisner, B

    1996-01-01

    Fetal antigen 1 (FA1) is a glycoprotein containing six epidermal growth factor (EGF)-like repeats. It is closely similar to the protein translated from the human delta-like (dlk) cDNA and probably constitutes a proteolytically processed form of dlk. dlk is homologous to the Drosophila homeotic...... proteins delta and notch and to the murine preadipocyte differentiation factor Pref-1. These proteins participate in determining cell fate choices during differentiation. We now report that FA1 immunoreactivity is present in a number of neuroectodermally derived tumours as well as in pancreatic endocrine...... tumours. A negative correlation between FA1 and glucagon immunoreactants in these tumours prompted a reexamination of FA1 immunoreactants during fetal pancreatic development. At the earliest stages of development, FA1 was expressed by most of the non-endocrine parenchymal cells and, with ensuing...

  14. Interplay between the lung microbiome and lung cancer.

    Science.gov (United States)

    Mao, Qixing; Jiang, Feng; Yin, Rong; Wang, Jie; Xia, Wenjie; Dong, Gaochao; Ma, Weidong; Yang, Yao; Xu, Lin; Hu, Jianzhong

    2018-02-28

    The human microbiome confers benefits or disease susceptibility to the human body through multiple pathways. Disruption of the symbiotic balance of the human microbiome is commonly found in systematic diseases such as diabetes, obesity, and chronic gastric diseases. Emerging evidence has suggested that dysbiosis of the microbiota may also play vital roles in carcinogenesis at multiple levels, e.g., by affecting metabolic, inflammatory, or immune pathways. Although the impact of the gut microbiome on the digestive cancer has been widely explored, few studies have investigated the interplay between the microbiome and lung cancer. Some recent studies have shown that certain microbes and microbiota dysbiosis are correlated with development of lung cancer. In this mini-review, we briefly summarize current research findings describing the relationship between the lung microbiome and lung cancer. We further discuss the potential mechanisms through which the lung microbiome may play a role in lung carcinogenesis and impact lung cancer treatment. A better knowledge of the interplay between the lung microbiome and lung cancer may promote the development of innovative strategies for early prevention and personalized treatment in lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Acute Effects of Viral Exposure on P-Glycoprotein Function in the Mouse Fetal Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Enrrico Bloise

    2017-02-01

    Full Text Available Background/Aims: Viral infection during pregnancy is known to affect the fetal brain. The toll-like receptor (TLR-3 is a pattern recognition receptor activated by viruses known to elicit adverse fetal neurological outcomes. The P-glycoprotein (P-gp efflux transporter protects the developing fetus by limiting the transfer of substrates across both the placenta and the fetal blood-brain barrier (BBB. As such, inhibition of P-gp at these blood-barrier sites may result in increased exposure of the developing fetus to environmental toxins and xenobiotics present in the maternal circulation. We hypothesized that viral exposure during pregnancy would impair P-gp function in the placenta and in the developing BBB. Here we investigated whether the TLR-3 ligand, polyinosinic:polycytidylic acid (PolyI:C, increased accumulation of one P-gp substrate in the fetus and in the developing fetal brain. Methods: Pregnant C57BL/6 mice (GD15.5 were injected (i.p. with PolyI:C (5 mg/kg or 10 mg/kg or vehicle (saline. [3H]digoxin (P-gp substrate was injected (i.v. 3 or 23h post-treatment and animals were euthanized 1h later. Maternal plasma, ‘fetal-units’ (fetal membranes, amniotic fluid and whole fetus, and fetal brains were collected. Results: PolyI:C exposure (4h significantly elevated maternal plasma IL-6 (P<0.001 and increased [3H]digoxin accumulation in the fetal brain (P<0.05. In contrast, 24h after PolyI:C exposure, no effect on IL-6 or fetal brain accumulation of P-gp substrate was observed. Conclusion: Viral infection modeled by PolyI:C causes acute increases in fetal brain accumulation of P-gp substrates and by doing so, may increase fetal brain exposure to xenobiotics and environmental toxins present in the maternal circulation.

  16. Zika virus infection in immunocompetent pregnant mice causes fetal damage and placental pathology in the absence of fetal infection

    Science.gov (United States)

    Kummer, Lawrence W.; Lanthier, Paula; Kim, In-Jeong; Kuki, Atsuo; Thomas, Stephen J.

    2018-01-01

    Zika virus (ZIKV) infection during human pregnancy may cause diverse and serious congenital defects in the developing fetus. Previous efforts to generate animal models of human ZIKV infection and clinical symptoms often involved manipulating mice to impair their Type I interferon (IFN) signaling, thereby allowing enhanced infection and vertical transmission of virus to the embryo. Here, we show that even pregnant mice competent to generate Type I IFN responses that can limit ZIKV infection nonetheless develop profound placental pathology and high frequency of fetal demise. We consistently found that maternal ZIKV exposure led to placental pathology and that ZIKV RNA levels measured in maternal, placental or embryonic tissues were not predictive of the pathological effects seen in the embryos. Placental pathology included trophoblast hyperplasia in the labyrinth, trophoblast giant cell necrosis in the junctional zone, and loss of embryonic vessels. Our findings suggest that, in this context of limited infection, placental pathology rather than embryonic/fetal viral infection may be a stronger contributor to adverse pregnancy outcomes in mice. Our finding demonstrates that in immunocompetent mice, direct viral infection of the embryo is not essential for fetal demise. Our immunologically unmanipulated pregnancy mouse model provides a consistent and easily measurable congenital abnormality readout to assess fetal outcome, and may serve as an additional model to test prophylactic and therapeutic interventions to protect the fetus during pregnancy, and for studying the mechanisms of ZIKV congenital immunopathogenesis. PMID:29634758

  17. Fetal Origin of Sensorimotor Behavior

    Directory of Open Access Journals (Sweden)

    Jaqueline Fagard

    2018-05-01

    Full Text Available The aim of this article is to track the fetal origin of infants’ sensorimotor behavior. We consider development as the self-organizing emergence of complex forms from spontaneously generated activity, governed by the innate capacity to detect and memorize the consequences of spontaneous activity (contingencies, and constrained by the sensory and motor maturation of the body. In support of this view, we show how observations on fetuses and also several fetal experiments suggest that the fetus’s first motor activity allows it to feel the space around it and to feel its body and the consequences of its movements on its body. This primitive motor babbling gives way progressively to sensorimotor behavior which already possesses most of the characteristics of infants’ later behavior: repetition of actions leading to sensations, intentionality, some motor control and oriented reactions to sensory stimulation. In this way the fetus can start developing a body map and acquiring knowledge of its limited physical and social environment.

  18. A human lung xenograft mouse model of Nipah virus infection.

    Directory of Open Access Journals (Sweden)

    Gustavo Valbuena

    2014-04-01

    Full Text Available Nipah virus (NiV is a member of the genus Henipavirus (family Paramyxoviridae that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%. NiV can cause Acute Lung Injury (ALI in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive "air" spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (10(7 TCID50/gram lung tissue as early as 3 days post infection (pi. NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses.

  19. [Fetal programming as a cause of chronic diseases in adult life].

    Science.gov (United States)

    Seremak-Mrozikiewicz, Agnieszka; Barlik, Magdalena; Drews, Krzysztof

    2014-01-01

    Long-term adaptive changes occurring in a developing fetus in response to unstable in utero environmental conditions, which appear at a particular time (critical window), are called intrauterine or fetal programming. These adaptive changes are beneficial during the intrauterine period because they adapt the fetus to current needs, but may turn out to be harmful in the end and lead to development of chronic diseases in adult life. Fetal programming means the structural and functional changing of an organism, metabolism and function of some cells, tissues and systems, that occur even despite intrauterine limitations. Events of fetal life influence the determination of physiological patterns which may manifest as disease processes in the adulthood (Barker's hypothesis). Genetic and environmental factors (poor diet in pregnancy chronic intrauterine fetal hypoxia, the effects of xenobiotics and drugs, as well as hormonal disorders) influence the phenotype of a newborn and are involved in the intrauterine programming process. The effects of fetal programming may be passed along to the next generations via not fully understood pathways, which probably include epigenetic mechanisms. Most of the mechanisms underlying this process remain unclear and need to be elucidated.

  20. Maternal deprivation decelerates postnatal morphological lung development of F344 rats.

    Science.gov (United States)

    Hupa, Katharina Luise; Schmiedl, Andreas; Pabst, Reinhard; Von Hörsten, Stephan; Stephan, Michael

    2014-02-01

    Intensive medical care at premature born infants is often associated with separation of neonates from their mothers. Here, early artificial prolonged separation of rat pups from their dams (Maternal Deprivation, MD) was used to study potential impact on morphological lung maturation. Furthermore, we investigated the influence of an endogenous deficiency of the neuropeptide-cleaving dipeptidyl peptidase IV (DPP4), since the effects of MD are known to be partly mediated via neuropeptidergic effects, hypothesizing that MD will lead to a retardation of postnatal lung development, DPP4-dependendly. We used wild type and CD26/DPP4 deficient rats. For MD, the dam was placed each day into a separate cage for 2 h, while the pups remained in the nest on their own. Morphological lung maturation and cell proliferation at the postnatal days 7, 10, 14, and 21 were determined morphometrically. Maternally deprived wild types showed a retarded postnatal lung development compared with untreated controls in both substrains. During alveolarization, an increased thickness of alveolar septa and a decreased surface of septa about 50% were found. At the end of the morphological lung maturation, the surface of the alveolar septa was decreased at about 25% and the septal thickness remained increased about 20%. The proliferation rate was also decreased about 50% on day 14. However, the MD induced effects were less pronounced in DPP4-deficient rats, due to a significant deceleration already induced by DPP4-deficiency. Thus, MD as a model for postnatal stress experience influences remarkably postnatal development of rats, which is significantly modulated by the DPP4-system. Copyright © 2013 Wiley Periodicals, Inc.

  1. Fetal response to abbreviated relaxation techniques. A randomized controlled study.

    Science.gov (United States)

    Fink, Nadine S; Urech, Corinne; Isabel, Fornaro; Meyer, Andrea; Hoesli, Irène; Bitzer, Johannes; Alder, Judith

    2011-02-01

    stress during pregnancy can have adverse effects on the course of pregnancy and on fetal development. There are few studies investigating the outcome of stress reduction interventions on maternal well-being and obstetric outcome. this study aims (1) to obtain fetal behavioral states (quiet/active sleep, quiet/active wakefulness), (2) to investigate the effects of maternal relaxation on fetal behavior as well as on uterine activity, and (3) to investigate maternal physiological and endocrine parameters as potential underlying mechanisms for maternal-fetal relaxation-transferral. the behavior of 33 fetuses was analyzed during laboratory relaxation/quiet rest (control group, CG) and controlled for baseline fetal behavior. Potential associations between relaxation/quiet rest and fetal behavior (fetal heart rate (FHR), FHR variation, FHR acceleration, and body movements) and uterine activity were studied, using a computerized cardiotocogram (CTG) system. Maternal heart rate, blood pressure, cortisol, and norepinephrine were measured. intervention (progressive muscle relaxation, PMR, and guided imagery, GI) showed changes in fetal behavior. The intervention groups had higher long-term variation during and after relaxation compared to the CG (p=.039). CG fetuses had more FHR acceleration, especially during and after quiet rest (p=.027). Women in the PMR group had significantly more uterine activity than women in the GI group (p=.011) and than CG women. Maternal heart rate, blood pressure, and stress hormones were not associated with fetal behavior. this study indicates that the fetus might participate in maternal relaxation and suggests that GI is superior to PMR. This could especially be true for women who tend to direct their attention to body sensations such as abdominal activity. 2010 Elsevier Ltd. All rights reserved.

  2. Mantel--Haenszel analysis of Oxford data. II. Independent effects of fetal irradiation subfactors

    International Nuclear Information System (INIS)

    Kneale, G.W.; Stewart, A.M.

    1976-01-01

    A Mantel-Haenszel analysis of fetal irradiation subfactors indicated that most of the extra x-rayed cases in the Oxford Survey of Childhood Cancers were radiation induced. First trimester exposures were rare but probably ten times more dangerous than later exposures. Ratios of observed: expected numbers of cancer deaths were lower for children with abnormal x-rays than for other x-rayed children, and lower for recent than remote exposures. The first of these differences was probably due to several antenatal conditions having positive associations with obstetric radiography and several causes of early (noncancer) deaths; the second one was probably due to a progressive lowering of film doses between 1940 and the present time. A rare cause of fetal irradiation (hydramnios), whose associations with congenital defects are well documented, led to the discovery that two faults in the International Classification of Diseases and Causes of Death have contributed to mistaken ideas about the etiology of childhood cancers: Neoplasms were not listed among the official causes of stillbirths, and cystic tumors of the kidneys and lungs of infants were not listed as neoplasms

  3. The Role of Neutrophil Myeloperoxidase in Models of Lung Tumor Development

    International Nuclear Information System (INIS)

    Rymaszewski, Amy L.; Tate, Everett; Yimbesalu, Joannes P.; Gelman, Andrew E.; Jarzembowski, Jason A.; Zhang, Hao; Pritchard, Kirkwood A. Jr.; Vikis, Haris G.

    2014-01-01

    Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting

  4. The role of neutrophil myeloperoxidase in models of lung tumor development.

    Science.gov (United States)

    Rymaszewski, Amy L; Tate, Everett; Yimbesalu, Joannes P; Gelman, Andrew E; Jarzembowski, Jason A; Zhang, Hao; Pritchard, Kirkwood A; Vikis, Haris G

    2014-05-09

    Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.

  5. The Role of Neutrophil Myeloperoxidase in Models of Lung Tumor Development

    Energy Technology Data Exchange (ETDEWEB)

    Rymaszewski, Amy L.; Tate, Everett; Yimbesalu, Joannes P. [Department of Pharmacology and Toxicology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Gelman, Andrew E. [Department of Surgery, Washington University in St. Louis, St. Louis, MO 63130 (United States); Jarzembowski, Jason A. [Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Zhang, Hao; Pritchard, Kirkwood A. Jr. [Department of Surgery and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Vikis, Haris G., E-mail: hvikis@mcw.edu [Department of Pharmacology and Toxicology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226 (United States)

    2014-05-09

    Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.

  6. The Role of Neutrophil Myeloperoxidase in Models of Lung Tumor Development

    Directory of Open Access Journals (Sweden)

    Amy L. Rymaszewski

    2014-05-01

    Full Text Available Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA-initiated, butylated hydroxytoluene (BHT-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC, a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.

  7. Accounting for Fetal Origins

    DEFF Research Database (Denmark)

    Dalgaard, Carl-Johan Lars; Hansen, Casper Worm; Strulik, Holger

    2017-01-01

    The Fetal Origins hypothesis has received considerable empirical support, both within epidemiology and economics. The present study compares the ability of two rival theoretical frameworks in accounting for the kind of path dependence implied by the Fetal Origins Hypothesis. We argue that while...

  8. Fetal programming and gestational diabetes mellitus.

    Science.gov (United States)

    Monteiro, Lara J; Norman, Jane E; Rice, Gregory E; Illanes, Sebastián E

    2016-12-01

    Gestational diabetes mellitus is defined by new-onset glucose intolerance during pregnancy. About 2-5% of all pregnant women develop gestational diabetes during their pregnancies and the prevalence has increased considerably during the last decade. This metabolic condition is manifested when pancreatic β-cells lose their ability to compensate for increased insulin resistance during pregnancy, however, the pathogenesis of the disease remains largely unknown. Gestational diabetes is strongly associated with adverse pregnancy outcome as well as with long-term adverse effects on the offspring which likely occurs due to epigenetic modifications of the fetal genome. In the current review we address gestational diabetes and the short and long term complications for both mothers and offspring focusing on the importance of fetal programming in conferring risk of developing diseases in adulthood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Maternal–Fetal Nutrient Transport in Pregnancy Pathologies: The Role of the Placenta

    Directory of Open Access Journals (Sweden)

    Kendra Elizabeth Brett

    2014-09-01

    Full Text Available Appropriate in utero growth is essential for offspring development and is a critical contributor to long-term health. Fetal growth is largely dictated by the availability of nutrients in maternal circulation and the ability of these nutrients to be transported into fetal circulation via the placenta. Substrate flux across placental gradients is dependent on the accessibility and activity of nutrient-specific transporters. Changes in the expression and activity of these transporters is implicated in cases of restricted and excessive fetal growth, and may represent a control mechanism by which fetal growth rate attempts to match availability of nutrients in maternal circulation. This review provides an overview of placenta nutrient transport with an emphasis on macro-nutrient transporters. It highlights the changes in expression and activity of these transporters associated with common pregnancy pathologies, including intrauterine growth restriction, macrosomia, diabetes and obesity, as well as the potential impact of maternal diet. Molecular signaling pathways linking maternal nutrient availability and placenta nutrient transport are discussed. How sexual dimorphism affects fetal growth strategies and the placenta’s response to an altered intrauterine environment is considered. Further knowledge in this area may be the first step in the development of targeted interventions to help optimize fetal growth.

  10. PREDICCIÓN PRENATAL DE LA MADURACIÓN PULMONAR FETAL POR DETERMINACIÓN DE FOSFOLÍPIDOS Y POR RECUENTO DE CUERPOS LAMELARES EN LÍQUIDO AMNIÓTICO

    Directory of Open Access Journals (Sweden)

    Ariel Iván Ruiz-Parra

    2010-06-01

    17.000 cuerpos lamelares/micro L tiene sensibilidad del 81.22%, especificidad de 80.61. LR (+ de 4.18 y LR (- de 0.23.

    Conclusión. La prueba más sensible para detectar madurez pulmonar fue el fosfatidilinositol y la más específica el fosfatidilglicerol. El recuento de cuerpos lamelares es una buena prueba de maduración pulmonar, pero se deben tener en cuenta sus características para tomar decisiones.

    Palabras clave: Líquido amniótico, maduración pulmonar fetal, relación Lecitina/Esfingomielina, cuerpos lamelares, pruebas diagnósticas, curva ROC.

    FETAL LUNG MATURITY ANTENATAL PREDICTION BY PHOSPHOLIPID CONCENTRATION AND BY LAMELLAR BODY COUNT IN AMNIOTIC FLUID

    Abstract

    Introduction. Lecithin/Sphyngomyelin ratio in amniotic fluid is a gold standard test to make accurate antenatal prediction of fetal lung maturity, of utmost importance in the prevention of neonatal respiratory distress syndrome; but other tests are quicker, cheaper and readily available. Lamellar body count fills these criteria.

    Objectives. To evaluate tests from amniotic fluid samples in fetal lung maturity prediction versus gold standard Lecithin/ Sphyngomyelin at different ratios; these are concentrations of phosphatydilglycerol, phosphatydilinositol, phosphatydilserine and lamellar body count.

    Materials and methods. Phospholipids were measured by unidimensional thin layer chromatography by the Helena Fetal-Tek 200 method, lecithin and sphyngomyelin by densitometry and lamellar body count by CELL-DYN 3200 blood counter. Operative characteristics were determined by three criteria applied to lecithin/sphyngomyelin ratio.

    Results. 1234 were analysed. 99.5% of amniotic fluid positive for phosphatydilglycerol had a lecithin/sphyngomyelin ratio of _> 2.0, but same ratio was found in 70% of negative fluids. To detect lung maturity, Phosphatydilinositol had a sensitivity of 91.5% to 95.7% and

  11. Distinct functional programming of human fetal and adult monocytes.

    Science.gov (United States)

    Krow-Lucal, Elisabeth R; Kim, Charles C; Burt, Trevor D; McCune, Joseph M

    2014-03-20

    Preterm birth affects 1 out of 9 infants in the United States and is the leading cause of long-term neurologic handicap and infant mortality, accounting for 35% of all infant deaths in 2008. Although cytokines including interferon-γ (IFN-γ), interleukin-10 (IL-10), IL-6, and IL-1 are produced in response to in utero infection and are strongly associated with preterm labor, little is known about how human fetal immune cells respond to these cytokines. We demonstrate that fetal and adult CD14(+)CD16(-) classical monocytes are distinct in terms of basal transcriptional profiles and in phosphorylation of signal transducers and activators of transcription (STATs) in response to cytokines. Fetal monocytes phosphorylate canonical and noncanonical STATs and respond more strongly to IFN-γ, IL-6, and IL-4 than adult monocytes. We demonstrate a higher ratio of SOCS3 to IL-6 receptor in adult monocytes than in fetal monocytes, potentially explaining differences in STAT phosphorylation. Additionally, IFN-γ signaling results in upregulation of antigen presentation and costimulatory machinery in adult, but not fetal, monocytes. These findings represent the first evidence that primary human fetal and adult monocytes are functionally distinct, potentially explaining how these cells respond differentially to cytokines implicated in development, in utero infections, and the pathogenesis of preterm labor.

  12. Liquid-Diet with Alcohol Alters Maternal, Fetal and Placental Weights and the Expression of Molecules Involved in Integrin Signaling in the Fetal Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Ujjwal K. Rout

    2010-11-01

    Full Text Available Maternal alcohol consumption during pregnancy causes wide range of behavioral and structural deficits in children, commonly known as Fetal Alcohol Syndrome (FAS. Children with FAS may suffer behavioral deficits in the absence of obvious malformations. In rodents, the exposure to alcohol during gestation changes brain structures and weights of offspring. The mechanism of FAS is not completely understood. In the present study, an established rat (Long-Evans model of FAS was used. The litter size and the weights of mothers, fetuses and placentas were examined on gestation days 18 or 20. On gestation day 18, the effects of chronic alcohol on the expression levels of integrin receptor subunits, phospholipase-Cγ and N-cadherin were examined in the fetal cerebral cortices. Presence of alcohol in the liquid-diet reduced the consumption and decreased weights of mothers and fetuses but increased the placental weights. Expression levels of β1 and α3 integrin subunits and phospholipase-Cγ2 were significantly altered in the fetal cerebral cortices of mothers on alcohol containing diet. Results show that alcohol consumption during pregnancy even with protein, mineral and vitamin enriched diet may affect maternal and fetal health, and alter integrin receptor signaling pathways in the fetal cerebral cortex disturbing the development of fetal brains.

  13. Fetal response to maternal hunger and satiation - novel finding from a qualitative descriptive study of maternal perception of fetal movements.

    Science.gov (United States)

    Bradford, Billie; Maude, Robyn

    2014-08-26

    Maternal perception of decreased fetal movements is a specific indicator of fetal compromise, notably in the context of poor fetal growth. There is currently no agreed numerical definition of decreased fetal movements, with the subjective perception of a decrease on the part of the mother being the most significant definition clinically. Both qualitative and quantitative aspects of fetal activity may be important in identifying the compromised fetus.Yet, how pregnant women perceive and describe fetal activity is under-investigated by qualitative means. The aim of this study was to explore normal fetal activity, through first-hand descriptive accounts by pregnant women. Using qualitative descriptive methodology, interviews were conducted with 19 low-risk women experiencing their first pregnancy, at two timepoints in their third trimester. Interview transcripts were later analysed using qualitative content analysis and patterns of fetal activity identified were then considered along-side the characteristics of the women and their birth outcomes. This paper focuses on a novel finding; the description by pregnant women of fetal behaviour indicative of hunger and satiation. Full findings will be presented in later papers. Most participants (74% 14 of 19) indicated mealtimes were a time of increased fetal activity. Eight participants provided detailed descriptions of increased activity around meals, with seven (37% 7 of 19) of these specifying increased fetal activity prior to meals or in the context of their own hunger. These movements were interpreted as a fetal demand for food often prompting the mother to eat. Interestingly, the women who described increased fetal activity in the context of hunger subsequently gave birth to smaller infants (mean difference 364 gm) than those who did not describe a fetal response to hunger. Food seeking behaviour may have a pre-birth origin. Maternal-fetal interaction around mealtimes could constitute an endocrine mediated

  14. Development and assessment of countermeasure formulations for treatment of lung injury induced by chlorine inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Chen, Jing; Schlueter, Connie F.; Mo, Yiqun; Humphrey, David M. [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Rawson, Greg; Niño, Joe A.; Carson, Kenneth H. [Microencapsulation and Nanomaterials Department, Chemistry and Chemical Engineering Division, Southwest Research Institute, San Antonio, TX (United States)

    2016-05-01

    Chlorine is a commonly used, reactive compound to which humans can be exposed via accidental or intentional release resulting in acute lung injury. Formulations of rolipram (a phosphodiesterase inhibitor), triptolide (a natural plant product with anti-inflammatory properties), and budesonide (a corticosteroid), either neat or in conjunction with poly(lactic:glycolic acid) (PLGA), were developed for treatment of chlorine-induced acute lung injury by intramuscular injection. Formulations were produced by spray-drying, which generated generally spherical microparticles that were suitable for intramuscular injection. Multiple parameters were varied to produce formulations with a wide range of in vitro release kinetics. Testing of selected formulations in chlorine-exposed mice demonstrated efficacy against key aspects of acute lung injury. The results show the feasibility of developing microencapsulated formulations that could be used to treat chlorine-induced acute lung injury by intramuscular injection, which represents a preferred route of administration in a mass casualty situation. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Countermeasures for treatment of chlorine-induced acute lung injury are needed. • Formulations containing rolipram, triptolide, or budesonide were produced. • Formulations with a wide range of release properties were developed. • Countermeasure formulations inhibited chlorine-induced lung injury in mice.

  15. MECHANISMS IN ENDOCRINOLOGY: Neurodevelopmental disorders in children born to mothers with thyroid dysfunction: evidence of fetal programming?

    Science.gov (United States)

    Andersen, Stine Linding; Carlé, Allan; Karmisholt, Jesper; Pedersen, Inge Bülow; Andersen, Stig

    2017-07-01

    Fetal programming is a long-standing, but still evolving, concept that links exposures during pregnancy to the later development of disease in the offspring. A fetal programming effect has been considered within different endocrine axes and in relation to different maternal endocrine diseases. In this critical review, we describe and discuss the hypothesis of fetal programming by maternal thyroid dysfunction in the context of fetal brain development and neurodevelopmental disorders in the offspring. Thyroid hormones are important regulators of early brain development, and evidence from experimental and observational human studies have demonstrated structural and functional abnormalities in the brain caused by the lack or excess of thyroid hormone during fetal brain development. The hypothesis that such abnormalities introduced during early fetal brain development increase susceptibility for the later onset of neurodevelopmental disorders in the offspring is biologically plausible. However, epidemiological studies on the association between maternal thyroid dysfunction and long-term child outcomes are observational in design, and are challenged by important methodological aspects. © 2017 European Society of Endocrinology.

  16. Assessment of fetal radiation dose to patients and staff in diagnostic radiology

    International Nuclear Information System (INIS)

    Osei, E.K.

    2000-07-01

    A major source of uncertainty in the estimation of fetal absorbed radiation dose is the influence of fetal size and position as these change with gestational age. Consequently, dose to the fetus is related to gestational age. Most studies of fetal dose estimation during pregnancy assume that the uterus dose is equal to fetal dose. These dose estimates do not take account of gestational age and individual fetal depth, factors which are significant when calculating dose. To establish both positional and size data for estimation of fetal absorbed dose from radiological examinations, the depths from the mother's anterior surface to the mid-line of the fetal head and abdomen were measured from ultrasound scans in 215 pregnant women. Depths were measured along a ray path projected in the anterior-posterior direction from the mother's abdomen. The fetal size was estimated from measurements of the fetal abdominal and head circumference, femur length and the biparietal diameter. The effects of fetal presentation, maternal bladder volume, placenta location, gestational age and maternal AP thickness on fetal depth and size were analysed. A Monte Carlo (MC) model was developed, and used to derive factors for converting dose-area product and free-in-air entrance surface dose from medical exposure of a pregnant patient to absorbed dose to the uterus/embryo, and for converting uterus dose to fetal dose in the later stages of pregnancy. Also presented are factors for converting thermoluminescence dosimeter reading from occupational exposure of a pregnant worker to equivalent dose to the fetus. The MC model was verified experimentally by direct measurement of uterus depth dose in a female Rando phantom, and also by comparison with other experimental work and MC results in the literature. The application of the various conversion factors is demonstrated by a review of the dose estimation process in 50 cases of fetal irradiation from medical exposures. (author)

  17. Fetal ventriculomegalies during pregnancy course, outcome, and psychomotor development of born children.

    Science.gov (United States)

    Dukanac Stamenkovic, J; Steric, M; Srbinovic, L; Janjic, T; Vrzic Petronijevic, S; Petronijevic, M; Cetkovic, A

    2016-01-01

    The objectives of this study were as follows: to present the course and outcome of pregnancies complicated with fetal ventriculomegaly, determine the association between prenatal ultrasound diagnoses and definitive postnatal diagnosis or diagnoses after autopsy and additional analysis, and to monitor the psychomotor development of children born with ventriculomegaly. The survey was designed as retrospective study and included 62 pregnant women who were attending a regular ultrasound examinations at the Department of Gynecology and Obstetrics, Clinical Center of Serbia, or patients who were referred from other institutions in Serbia. Ventriculomegalies were divided into three groups: mild, moderate, and severe or hydrocephalus. The most common were severe ventriculomegalies, with 34 cases (55%). Of all pregnancies complicated with ventriculomegalies, 61% were terminated. Among those continued, 88% had normal psychomotor development. In 97% ultrasonographic diagnosis was confirmed. Majority of pregnancies complicated with ventriculomegaly were continued and most of the children born with anomalies had normal psychomotor development.

  18. MRI of the fetal spine

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Erin M. [Departement of Radiology, Children' s Hospital of Philadelphia, PA (United States)

    2004-09-01

    Magnetic resonance imaging of the fetal spine is a vital complement to fetal sonographic examination. Assessing the wide spectrum of spinal dysraphism, as well as spinal neoplasia, allows for more correct prenatal diagnoses, patient care planning, and patient counselling. Proper appraisal of the value of experimental procedures, such as fetal myelomeningocoele repair, requires a high level of diagnostic accuracy for the selection and follow-up of appropriate candidates. (orig.)

  19. MRI of the fetal spine

    International Nuclear Information System (INIS)

    Simon, Erin M.

    2004-01-01

    Magnetic resonance imaging of the fetal spine is a vital complement to fetal sonographic examination. Assessing the wide spectrum of spinal dysraphism, as well as spinal neoplasia, allows for more correct prenatal diagnoses, patient care planning, and patient counselling. Proper appraisal of the value of experimental procedures, such as fetal myelomeningocoele repair, requires a high level of diagnostic accuracy for the selection and follow-up of appropriate candidates. (orig.)

  20. Thrombophilic disorders and fetal loss: a meta-analysis.

    Science.gov (United States)

    Rey, Evelyne; Kahn, Susan R; David, Michèle; Shrier, Ian

    2003-03-15

    Our aim was to assess the strength of the controversial association between thrombophilia and fetal loss, and to examine whether it varies according to the timing or definition of fetal loss. We searched Medline and Current Contents for articles published between 1975 and 2002 and their references with terms denoting recurrent fetal and non-recurrent fetal loss combined with various thrombophilic disorders. We included in our meta-analysis case-control, cohort, and cross-sectional studies published in English, the methodological quality of which was rated as moderate or strong. Pooled odds ratios (OR) with 95% CI were generated by random effects models with Cochrane Review Manager software. We included 31 studies. Factor V Leiden was associated with early (OR 2.01, 95% CI 1.13-3.58) and late (7.83, 2.83-21.67) recurrent fetal loss, and late non-recurrent fetal loss (3.26, 1.82-5.83). Exclusion of women with other pathologies that could explain fetal loss strengthened the association between Factor V Leiden and recurrent fetal loss. Activated protein C resistance was associated with early recurrent fetal loss (3.48, 1.58-7.69), and prothrombin G20210A mutation with early recurrent (2.56, 1.04-.29) and late non-recurrent (2.30, 1.09-4.87) fetal loss. Protein S deficiency was associated with recurrent fetal loss (14.72, 0.99-218.01) and late non-recurrent fetal loss (7.39, 1.28-42.63). Methylenetetrahydrofolate mutation, protein C, and antithrombin deficiencies were not significantly associated with fetal loss. The magnitude of the association between thrombophilia and fetal loss varies, according to type of fetal loss and type of thrombophilia.

  1. Motion compensated cine CMR of the fetal heart using radial undersampling and compressed sensing

    OpenAIRE

    Roy, Christopher W.; Seed, Mike; Kingdom, John C.; Macgowan, Christopher K.

    2017-01-01

    Background To develop and evaluate a reconstruction framework for high resolution time-resolved CMR of the fetal heart in the presence of motion. Methods Data were acquired using a golden angle radial trajectory in seven fetal subjects and reconstructed as real-time images to detect fetal movement. Data acquired during through-plane motion were discarded whereas in-plane motion was corrected. A fetal cardiac gating signal was extracted to sort the corrected data by cardiac phase, allowing rec...

  2. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome.

    Science.gov (United States)

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-06-15

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development.

  3. Insulin utilizes the PI 3-kinase pathway to inhibit SP-A gene expression in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Snyder Jeanne M

    2002-10-01

    Full Text Available Abstract Background It has been proposed that high insulin levels may cause delayed lung development in the fetuses of diabetic mothers. A key event in lung development is the production of adequate amounts of pulmonary surfactant. Insulin inhibits the expression of surfactant protein A (SP-A, the major surfactant-associated protein, in lung epithelial cells. In the present study, we investigated the signal transduction pathways involved in insulin inhibition of SP-A gene expression. Methods H441 cells, a human lung adenocarcinoma cell line, or human fetal lung explants were incubated with or without insulin. Transcription run-on assays were used to determine SP-A gene transcription rates. Northern blot analysis was used to examine the effect of various signal transduction inhibitors on SP-A gene expression. Immunoblot analysis was used to evaluate the levels and phosphorylation states of signal transduction protein kinases. Results Insulin decreased SP-A gene transcription in human lung epithelial cells within 1 hour. Insulin did not affect p44/42 mitogen-activated protein kinase (MAPK phosphorylation and the insulin inhibition of SP-A mRNA levels was not affected by PD98059, an inhibitor of the p44/42 MAPK pathway. In contrast, insulin increased p70 S6 kinase Thr389 phosphorylation within 15 minutes. Wortmannin or LY294002, both inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase, or rapamycin, an inhibitor of the activation of p70 S6 kinase, a downstream effector in the PI 3-kinase pathway, abolished or attenuated the insulin-induced inhibition of SP-A mRNA levels. Conclusion Insulin inhibition of SP-A gene expression in lung epithelial cells probably occurs via the rapamycin-sensitive PI 3-kinase signaling pathway.

  4. Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development.

    Directory of Open Access Journals (Sweden)

    Keith M Godfrey

    Full Text Available Among primates, human neonates have the largest brains but also the highest proportion of body fat. If placental nutrient supply is limited, the fetus faces a dilemma: should resources be allocated to brain growth, or to fat deposition for use as a potential postnatal energy reserve? We hypothesised that resolving this dilemma operates at the level of umbilical blood distribution entering the fetal liver. In 381 uncomplicated pregnancies in third trimester, we measured blood flow perfusing the fetal liver, or bypassing it via the ductus venosus to supply the brain and heart using ultrasound techniques. Across the range of fetal growth and independent of the mother's adiposity and parity, greater liver blood flow was associated with greater offspring fat mass measured by dual-energy X-ray absorptiometry, both in the infant at birth (r = 0.43, P<0.001 and at age 4 years (r = 0.16, P = 0.02. In contrast, smaller placentas less able to meet fetal demand for essential nutrients were associated with a brain-sparing flow pattern (r = 0.17, p = 0.02. This flow pattern was also associated with a higher degree of shunting through ductus venosus (P = 0.04. We propose that humans evolved a developmental strategy to prioritize nutrient allocation for prenatal fat deposition when the supply of conditionally essential nutrients requiring hepatic inter-conversion is limited, switching resource allocation to favour the brain if the supply of essential nutrients is limited. Facilitated placental transfer mechanisms for glucose and other nutrients evolved in environments less affluent than those now prevalent in developed populations, and we propose that in circumstances of maternal adiposity and nutrient excess these mechanisms now also lead to prenatal fat deposition. Prenatal developmental influences play important roles in the human propensity to deposit fat.

  5. Fatores maternos e perinatais relacionados à macrossomia fetal Maternal and perinatal factors related to fetal macrosomia

    Directory of Open Access Journals (Sweden)

    José Mauro Madi

    2006-04-01

    .3-4,1, diabetes mellitus (p<0.05; OR=4.2; 95% CI: 2.7-6.4, meconium-stained amniotic fluid (p<0.02; OR=1.3; 95% CI: 1.0-1.7, need of neonatal intensive care unit (p<0,05; OR=2.0; 95% CI: 1.5-2.7, early neonatal mortality (p<0,05; OR = 2.7; 95% CI: 1.0-6.7, cesarean section (p < 0.05; OR = 2.03; 95% CI: 1,6-2,5 and cephalopelvic disproportion (p < 0.05;OR = 2.8; 95% CI: 1.6-4,8. There was no statistical difference between birth injury and fetal mortality range. In the FM group the main cesarean section indications were repeat cesarean sections (11.9% and cephalopelvic disproportion (8.6%; in the normal birthweight group, repeat cesareans (8.3% and fetal distress during labor (3.9%. CONCLUSIONS: in spite of the characteristic limitations of a retrospective evaluation, the analysis demonstrated which complications were associated with large fetal size, being useful in obstetric handling of patients with a diagnosis of extreme fetal growth. FM remains an obstetric problem of difficult solution, associated with important maternal and perinatal health problems, due to the significant observed rates of maternal and perinatal morbidity and mortality in developed and developing countries.

  6. Predicting intrapartum fetal compromise using the fetal cerebro-umbilical ratio.

    Science.gov (United States)

    Sabdia, S; Greer, R M; Prior, T; Kumar, S

    2015-05-01

    The aim of this study was to explore the association between the cerebro-umbilical ratio measured at 35-37 weeks and intrapartum fetal compromise. This retrospective cross sectional study was conducted at the Mater Mothers' Hospital in Brisbane, Australia. Maternal demographics and fetal Doppler indices at 35-37 weeks gestation for 1381 women were correlated with intrapartum and neonatal outcomes. Babies born by caesarean section or instrumental delivery for fetal compromise had the lowest median cerebro-umbilical ratio 1.60 (IQR 1.22-2.08) compared to all other delivery groups (vaginal delivery, emergency delivery for failure to progress, emergency caesarean section for other reasons or elective caesarean section). The percentage of infants with a cerebro-umbilical ratio cerebro-umbilical ratio between the 10th-90th centile and 9.6% of infants with a cerebro-umbilical ratio > 90th centile required delivery for the same indication (p cerebro-umbilical ratio was associated with an increased risk of emergency delivery for fetal compromise, OR 2.03 (95% CI 1.41-2.92), p cerebro-umbilical ratio measured at 35-37 weeks is associated with a greater risk of intrapartum compromise. This is a relatively simple technique which could be used to risk stratify women in diverse healthcare settings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Development of a preparation and staining method for fetal erythroblasts in maternal blood : Simultaneous immunocytochemical staining and FISH analysis

    NARCIS (Netherlands)

    Oosterwijk, JC; Mesker, WE; Ouwerkerk-van Velzen, MCM; Knepfle, CFHM; Wiesmeijer, KC; van den Burg, MJM; Beverstock, GC; Bernini, LF; van Ommen, Gert-Jan B; Kanhai, HHH; Tanke, HJ

    1998-01-01

    In order to detect fetal nucleated red blood cells (NRBCs) in maternal blood, a protocol was developed which aimed at producing a reliable staining method for combined immunocytochemical and FISH analysis. The technique had to be suitable for eventual automated screening of slides. Chorionic villi

  8. Cadmium-induced fetal toxicity in the rat

    International Nuclear Information System (INIS)

    Levin, A.A.

    1980-01-01

    Cadmium, a heavy metal environment contaminant, induces fetal death and placental necrosis in the Wistar rat. This study investigated fetal, maternal, and placental responses to cadmium intoxication. Subcutaneous injection of CdCl 2 to dams on day 18 of pregnancy produced a high incidence of fetal death (75%) and placental necrosis. Death in the fetus was produced despite limited fetal accumulations of cadmium. Distribution studies using 109 Cd-labeled CdCl 2 demonstrated that less than 0.1% of the injected dose was associated with the fetus. To determine if fetuses were sensitive to these low levels of cadmium, direct injections of CdCl 2 into fetuses were performed in utero. Direct injections produced fetal accumulations 8-fold greater than those following maternal injections. The 8-fold greater fetal accumulations following direct injection were associated with only a 12% fetal mortality compared to the 75% mortality following maternal injections. The data indicated that the fetal toxicity of cadmium following maternal injections was not the result of direct effects of cadmium on the fetus. In conclusion, cadmium-induced fetal death was not the result of direct effects of cadmium on the fetus but may have been induced by placental cellular injury resulting from high accumulations of cadmium in the placenta. A vascular response to placental injury, leading to decreased utero-placental bood flow and cadmium-induced alterations in trophoblastic function, resulted in fetal death

  9. The "Fetal Reserve Index": Re-Engineering the Interpretation and Responses to Fetal Heart Rate Patterns.

    Science.gov (United States)

    Eden, Robert D; Evans, Mark I; Evans, Shara M; Schifrin, Barry S

    2018-01-01

    Electronic fetal monitoring (EFM) correlates poorly with neonatal outcome. We present a new metric: the "Fetal Reserve Index" (FRI), formally incorporating EFM with maternal, obstetrical, fetal risk factors, and excessive uterine activity for assessment of risk for cerebral palsy (CP). We performed a retrospective, case-control series of 50 term CP cases with apparent intrapartum neurological injury and 200 controls. All were deemed neurologically normal on admission. We compared the FRI against ACOG Category (I-III) system and long-term outcome parameters against ACOG monograph (NEACP) requirements for labor-induced fetal neurological injury. Abnormal FRI's identified 100% of CP cases and did so hours before injury. ACOG Category III identified only 44% and much later. Retrospective ACOG monograph criteria were found in at most 30% of intrapartum-acquired CP patients; only 27% had umbilical or neonatal pH <7.0. In this initial, retrospective trial, an abnormal FRI identified all cases of labor-related neurological injury more reliably and earlier than Category III, which may allow fetal therapy by intrauterine resuscitation. The combination of traditional EFM with maternal, obstetrical, and fetal risk factors creating the FRI performed much better as a screening test than EFM alone. Our quantified screening system needs further evaluation in prospective trials. © 2017 S. Karger AG, Basel.

  10. Minimal alteration in the ratio of circulatory fetal DNA to fetal corticotropin-releasing hormone mRNA level in preeclampsia.

    Science.gov (United States)

    Zhong, Xiao Yan; Holzgreve, Wolfgang; Gebhardt, Stefan; Hillermann, Renate; Tofa, Kashefa Carelse; Gupta, Anurag Kumar; Huppertz, Berthold; Hahn, Sinuhe

    2006-01-01

    We have recently observed that fetal DNA and fetal corticotropin-releasing hormone (CRH) mRNA are associated with in vitro generated syncytiotrophoblast-derived microparticles, and that the ratio of fetal DNA to mRNA (CRH) varied according to whether the particles were derived by predominantly apoptotic, apo-necrotic or necrotic pathways. Hence, we examined whether these ratios varied in maternal plasma samples taken from normotensive and preeclamptic pregnancies in vivo. Maternal plasma samples were collected from 18 cases with preeclampsia and 29 normotensive term controls. Circulatory fetal CRH mRNA and DNA levels were quantified by real-time PCR and RT-PCR. Circulatory fetal mRNA and fetal DNA levels were significantly elevated in the preeclampsia study group when compared to normotensive controls. Alterations in the fetal mRNA to DNA ratio between the study and control groups were minimal, even when stratified into early (34 weeks of gestation) onset preeclampsia. Our data suggest that although circulatory fetal DNA and mRNA levels are significantly elevated in preeclampsia, the ratios in maternal plasma are not dramatically altered. Copyright 2006 S. Karger AG, Basel.

  11. Prenatal sonographic measurement of the fetal thyroid gland

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Young Cheol; Kim, Young Hwa; Cho, Won Soo; Bae, Won Kyung; Kim, Il Young [Chunan Hospital, Soonchunhyang University College of Medicine, Chunan (Korea, Republic of)

    2001-03-15

    To investigate whether the fetal thyroid gland could be examined by prenatal ultrasonography and to established the normal range of fetal thyroid width according to the gestational age. The width of the fetal thyroid was determined by prenatal ultrasonography from 118 pregnant women. Three of the mothers had current or previous thyroid disease and the widths of the fetal thyroid were determined from 115 normal subjects. The width of the fetal thyroid was defined by a maximum transverse distance of the thyroid gland between two carotid arteries on transverse scan of the fetal neck. We analyzed the cause of non-measurable cases. The width of the fetal thyroid and Neo-TSH were compared in 19 subjects, including 3 subjects will current or previous thyroid disease. We could measure the fetal thyroid widths in 95 cases (80%). The fetal thyroid widths of mothers without current or previous thyroid disease was 0.9-2.36 cm,which showed linear correlation with gestational age (Y=0.0506 X + 0.0439, r{sup 2}=0.5661). Causes of non-measurable cases were neck flexion (65%), prone position (22%), and overlapped fetal neck by arm or shoulder (13%). Of the 19 neonates with Neo-TSH level, one case had a mother with a thyroid disease and showed increased width of the fetal and high Neo-TSH. The fetal thyroid was measured in 80% of prenatal ultrasonography and the width of the fetal thyroid showed linear correlated with gestational age. We assumed that the width of the thyroid could be useful for diagnosing fetal thyroid disorder when maternal thyroid disease exists.

  12. Prenatal sonographic measurement of the fetal thyroid gland

    International Nuclear Information System (INIS)

    Ahn, Young Cheol; Kim, Young Hwa; Cho, Won Soo; Bae, Won Kyung; Kim, Il Young

    2001-01-01

    To investigate whether the fetal thyroid gland could be examined by prenatal ultrasonography and to established the normal range of fetal thyroid width according to the gestational age. The width of the fetal thyroid was determined by prenatal ultrasonography from 118 pregnant women. Three of the mothers had current or previous thyroid disease and the widths of the fetal thyroid were determined from 115 normal subjects. The width of the fetal thyroid was defined by a maximum transverse distance of the thyroid gland between two carotid arteries on transverse scan of the fetal neck. We analyzed the cause of non-measurable cases. The width of the fetal thyroid and Neo-TSH were compared in 19 subjects, including 3 subjects will current or previous thyroid disease. We could measure the fetal thyroid widths in 95 cases (80%). The fetal thyroid widths of mothers without current or previous thyroid disease was 0.9-2.36 cm,which showed linear correlation with gestational age (Y=0.0506 X + 0.0439, r 2 =0.5661). Causes of non-measurable cases were neck flexion (65%), prone position (22%), and overlapped fetal neck by arm or shoulder (13%). Of the 19 neonates with Neo-TSH level, one case had a mother with a thyroid disease and showed increased width of the fetal and high Neo-TSH. The fetal thyroid was measured in 80% of prenatal ultrasonography and the width of the fetal thyroid showed linear correlated with gestational age. We assumed that the width of the thyroid could be useful for diagnosing fetal thyroid disorder when maternal thyroid disease exists.

  13. Repercussions of mild diabetes on pregnancy in Wistar rats and on the fetal development

    Directory of Open Access Journals (Sweden)

    Saito Felipe H

    2010-04-01

    Full Text Available Abstract Background Experimental models are necessary to elucidate diabetes pathophysiological mechanisms not yet understood in humans. Objective: To evaluate the repercussions of the mild diabetes, considering two methodologies, on the pregnancy of Wistar rats and on the development of their offspring. Methods In the 1st induction, female offspring were distributed into two experimental groups: Group streptozotocin (STZ, n = 67: received the β-cytotoxic agent (100 mg STZ/kg body weight - sc on the 1st day of the life; and Non-diabetic Group (ND, n = 14: received the vehicle in a similar time period. In the adult life, the animals were mated. After a positive diagnosis of pregnancy (0, female rats from group STZ presenting with lower glycemia than 120 mg/dL received more 20 mg STZ/kg (ip at day 7 of pregnancy (2nd induction. The female rats with glycemia higher than 120 mg/dL were discarded because they reproduced results already found in the literature. In the mornings of days 0, 7, 14 and 21 of the pregnancy glycemia was determined. At day 21 of pregnancy (at term, the female rats were anesthetized and killed for maternal reproductive performance and fetal development analysis. The data were analyzed using Student-Newman-Keuls, Chi-square and Zero-inflated Poisson (ZIP Tests (p Results STZ rats presented increased rates of pre (STZ = 22.0%; ND = 5.1% and post-implantation losses (STZ = 26.1%; ND = 5.7%, reduced rates of fetuses with appropriate weight for gestational age (STZ = 66%; ND = 93% and reduced degree of development (ossification sites. Conclusion Mild diabetes led a negative impact on maternal reproductive performance and caused intrauterine growth restriction and impaired fetal development.

  14. Metabolism of lipoproteins by human fetal hepatocytes

    International Nuclear Information System (INIS)

    Carr, B.R.

    1987-01-01

    The rate of clearance of lipoproteins from plasma appears to play a role in the development of atherogenesis. The liver may account for as much as two thirds of the removal of low-density lipoprotein and one third of the clearance of high-density lipoprotein in certain animal species and humans, mainly by receptor-mediated pathways. The purpose of the present investigation was to determine if human fetal hepatocytes maintained in vitro take up and degrade lipoproteins. We first determined that the maximal binding capacity of iodine 125-iodo-LDL was approximately 300 ng of low-density lipoprotein protein/mg of membrane protein and an apparent dissociation constant of approximately 60 micrograms low-density lipoprotein protein/ml in membranes prepared from human fetal liver. We found that the maximal uptake of [ 125 I]iodo-LDL and [ 125 I]iodo-HDL by fetal hepatocytes occurred after 12 hours of incubation. Low-density lipoprotein uptake preceded the appearance of degradation products by 4 hours, and thereafter the degradation of low-density lipoprotein increased linearly for at least 24 hours. In contrast, high-density lipoprotein was not degraded to any extent by fetal hepatocytes. [ 125 I]Iodo-LDL uptake and degradation were inhibited more than 75% by preincubation with low-density lipoprotein but not significantly by high-density lipoprotein, whereas [ 125 I]iodo-HDL uptake was inhibited 70% by preincubation with high-density lipoprotein but not by low-density lipoprotein. In summary, human fetal hepatocytes take up and degrade low-density lipoprotein by a receptor-mediated process similar to that described for human extrahepatic tissues

  15. Lung cancer in the pregnant woman: to treat or not to treat, that is the question.

    Science.gov (United States)

    Azim, Hatem A; Peccatori, Fedro A; Pavlidis, Nicholas

    2010-03-01

    Lung cancer in pregnancy is a rare situation; however, it is increasingly reported in the past two decades. The association might be more encountered in the coming years due to the rising trends of cigarette smoking among young women and tendency to delay pregnancy to later in life. We performed a literature search without any date or language restriction and identified 44 cases diagnosed and/or treated for lung cancer during the course of pregnancy. Patients had poor post-partum outcome with less than one-forth alive at 1 year following delivery. There was a high incidence of metastases to the products of conception reaching 26%. Eight patients were treated with systemic therapies during the course of gestation with normal fetal outcome and no evidence of fetal or placental metastases. Counseling of these patients is very important. Apart from the clinical conflict they pose, some ethical aspects should be taken in consideration. The poor maternal prognosis should be discussed and the patient's autonomy should be respected to decide whether she wants to keep the pregnancy or not.

  16. Indoor fuel exposure and the lung in both developing and developed countries: An update

    Science.gov (United States)

    2012-01-01

    Synopsis Almost 3 billion people worldwide burn solid fuels indoors. These fuels include biomass and coal. Although indoor solid fuel smoke is likely a greater problem in developing countries, wood burning populations in developed countries may also be at risk from these exposures. Despite the large population at risk worldwide, the effect of exposure to indoor solid fuel smoke has not been adequately studied. Indoor air pollution from solid fuel use is strongly associated with COPD (both emphysema and chronic bronchitis), acute respiratory tract infections, and lung cancer (primarily coal use) and weakly associated with asthma, tuberculosis, and interstitial lung disease. Tobacco use further potentiates the development of respiratory disease among subjects exposed to solid fuel smoke. There is a need to perform additional interventional studies in this field. It is also important to increase awareness about the health effects of solid fuel smoke inhalation among physicians and patients as well as trigger preventive actions through education, research, and policy change in both developing and developed countries. PMID:23153607

  17. Antepartum Fetal Monitoring through a Wearable System and a Mobile Application

    Directory of Open Access Journals (Sweden)

    Maria G. Signorini

    2018-04-01

    Full Text Available Prenatal monitoring of Fetal Heart Rate (FHR is crucial for the prevention of fetal pathologies and unfavorable deliveries. However, the most commonly used Cardiotocographic exam can be performed only in hospital-like structures and requires the supervision of expert personnel. For this reason, a wearable system able to continuously monitor FHR would be a noticeable step towards a personalized and remote pregnancy care. Thanks to textile electrodes, miniaturized electronics, and smart devices like smartphones and tablets, we developed a wearable integrated system for everyday fetal monitoring during the last weeks of pregnancy. Pregnant women at home can use it without the need for any external support by clinicians. The transmission of FHR to a specialized medical center allows its remote analysis, exploiting advanced algorithms running on high-performance hardware able to obtain the best classification of the fetal condition. The system has been tested on a limited set of pregnant women whose fetal electrocardiogram recordings were acquired and classified, yielding an overall score for both accuracy and sensitivity over 90%. This novel approach can open a new perspective on the continuous monitoring of fetus development by enhancing the performance of regular examinations, making treatments really personalized, and reducing hospitalization or ambulatory visits.

  18. [Performance of prenatal diagnosis and postnatal development of congenital lung malformations].

    Science.gov (United States)

    Desseauve, D; Dugué-Marechaud, M; Maurin, S; Gatibelza, M-È; Vequeau-Goua, V; Mergy-Laurent, M; Levard, G; Pierre, F

    2015-04-01

    For many diseases, the comparison of prenatal diagnosis with a histopathological reality is not always possible. Fetal lung pathology, with its high rate of surgery in postnatal, allows this assessment. This study proposes an approach to the reliability of prenatal diagnosis and analysis of the postnatal development of all children in care for congenital pulmonary malformation (CPM). This is a retrospective study of all cases of CPM diagnosed in Poitiers University Hospital from 1995 to 2011. Cases diagnosed prenatally were identified and the diagnostic accuracy was studied by histology when cases had surgery. The postnatal development of prenatally diagnosed cases is described and compared to children who did not receive prenatal diagnosis. Among the 45 cases of CPM supported at the Poitiers University Hospital, 30 had received prenatal diagnosis of isolated CPM. The diagnostic concordance between antenatal ultrasound and the final diagnosis is κ=0.67 (CI95% [0.38 to 0.94]). The sensitivity of ultrasound was 90% (CI95% [55-99.7]) in our series for the diagnosis of CAMP (cystic adenomatoid malformation pulmonary). We found a sonographic disappearance of lesions in 4 children, 1 child in regression, stable lesions in 21 cases. Four children showed an increase in volume of the malformation, with signs of poor tolerance in 3 cases. After birth, children who received a prenatal diagnosis were no more symptomatic than those whose diagnosis was made postnatal: 21 (70%) versus 11 (73%; P=1) respectively. Similarly, they often received prophylactic surgery: 18 (60%) versus 2 (13%) respectively (P<0.01) and less often suffered post-surgery complication: 3 (10%) versus 10 (67%) respectively (P<0.01). The number of children monitored was not significantly different in the two groups. Prenatal diagnosis allows for the precise nature of the lesion in 90% of cases in 2013 and had no impact on symptomatology at birth. When prenatal diagnosis is possible, preventive

  19. Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-15-1-0243 TITLE: Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution PRINCIPAL...SUBTITLE 5a. CONTRACT NUMBER Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution 5b. GRANT NUMBER 5c. PROGRAM...derive a prognostic classifier. 15. SUBJECT TERMS NSCLC; tumor evolution ; whole exome sequencing 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  20. Fetal development and renal function in adult rats prenatally subjected to sodium overload.

    Science.gov (United States)

    Cardoso, Henriqueta D; Cabral, Edjair V; Vieira-Filho, Leucio D; Vieyra, Adalberto; Paixão, Ana D O

    2009-10-01

    The aims of this study were (1) to evaluate two factors that affect fetal development--placental oxidative stress (Ox) and plasma volume (PV)--in dams with sodium overload and (2) to correlate possible alterations in these factors with subsequent modifications in the renal function of adult offspring. Wistar dams were maintained on 0.17 M NaCl instead of water from 20 days before mating until either the twentieth pregnancy day/parturition or weaning. Colorimetric methods were used to measure Ox in maternal and offspring tissues, PV, 24-h urinary protein (U(Prot24 h)) and serum triacylglycerols (TG) and cholesterol (Chol). Renal hemodynamics was evaluated in the offspring at 90 days of age using a blood pressure transducer, a flow probe and inulin clearance to measure mean arterial pressure (MAP), renal blood flow and glomerular filtration rate (GFR), respectively. The number of nephrons (NN) was counted in kidney suspensions. Dams showed unchanged PV, placental Ox and fetal weight but increased U(Prot24 h) (150%, P sodium-overloaded pups showed increased U(Prot24 h) (45%, P sodium-overloaded rats showed increased U(Prot24 h) (27%, P sodium-overloaded group. We conclude that salt overload from the prenatal stage until weaning leads to alterations in lipid metabolism and in the renal function of the pups, which are additional to those alterations seen in rats only overloaded prenatally.