WorldWideScience

Sample records for fetal liver glycogen

  1. Somatomedin-C stimulates glycogen synthesis in fetal rat hepatocytes

    International Nuclear Information System (INIS)

    Freemark, M.; D'Ercole, A.J.; Handwerger, S.

    1985-01-01

    The effects of somatomedin-C/insulin-like growth factor I (Sm-C) on glycogen metabolism in cultured hepatocytes from 20-day-old rat fetuses have been examined and compared with the effects of insulin. Sm-C (25-375 ng/ml; 3.25-50 nM) stimulated dose-dependent increases in [ 14 C]glucose incorporation into glycogen (14.4-72.9% and total cell glycogen content (10.6-34.3%. Maximal stimulation of glycogen synthesis by Sm-C occurred at 2-4 h of incubation. Insulin (10 nM to 10 microM) also stimulated [ 14 C]glucose incorporation but its potency was only 1/20th that of Sm-C. The time course of stimulation of glucose incorporation by insulin was identical to that of Sm-C, the dose-response curves of the two hormones were parallel, and the maximal effects of insulin were not enhanced by simultaneous exposure of cells to Sm-C. These findings suggest that Sm-C and insulin stimulate glycogenesis in fetal liver through similar or identical mechanisms. Since the potency of Sm-C was 20 times greater than that of insulin, the glycogenic action of insulin in fetal liver may be mediated through binding to a hepatic receptor which also binds Sm-C. In addition to having mitogenic effects on fetal tissues, Sm-C may have direct anabolic effects on fetal carbohydrate metabolism

  2. Threonine phosphorylation of rat liver glycogen synthase

    International Nuclear Information System (INIS)

    Arino, J.; Arro, M.; Guinovart, J.J.

    1985-01-01

    32 P-labeled glycogen synthase specifically immunoprecipitated from 32 P-phosphate incubated rat hepatocytes contains, in addition to [ 32 P] phosphoserine, significant levels of [ 32 P] phosphothreonine. When the 32 P-immunoprecipitate was cleaved with CNBr, the [ 32 P] phosphothreonine was recovered in the large CNBr fragment (CB-2, Mapp 28 Kd). Homogeneous rat liver glycogen synthase was phosphorylated by all the protein kinases able to phosphorylate CB-2 in vitro. After analysis of the immunoprecipitated enzyme for phosphoaminoacids, it was observed that only casein kinase II was able to phosphorylate on threonine and 32 P-phosphate was only found in CB-2. These results demonstrate that rat liver glycogen synthase is phosphorylated at threonine site(s) contained in CB-2 and strongly indicate that casein kinase II may play a role in the ''in vivo'' phosphorylation of liver glycogen synthase. This is the first protein kinase reported to phosphorylate threonine residues in liver glycogen synthase

  3. Molecular Structure of Human-Liver Glycogen.

    Directory of Open Access Journals (Sweden)

    Bin Deng

    Full Text Available Glycogen is a highly branched glucose polymer which is involved in maintaining blood-sugar homeostasis. Liver glycogen contains large composite α particles made up of linked β particles. Previous studies have shown that the binding which links β particles into α particles is impaired in diabetic mice. The present study reports the first molecular structural characterization of human-liver glycogen from non-diabetic patients, using transmission electron microscopy for morphology and size-exclusion chromatography for the molecular size distribution; the latter is also studied as a function of time during acid hydrolysis in vitro, which is sensitive to certain structural features, particularly glycosidic vs. proteinaceous linkages. The results are compared with those seen in mice and pigs. The molecular structural change during acid hydrolysis is similar in each case, and indicates that the linkage of β into α particles is not glycosidic. This result, and the similar morphology in each case, together imply that human liver glycogen has similar molecular structure to those of mice and pigs. This knowledge will be useful for future diabetes drug targets.

  4. Mechanism of activation of liver glycogen synthase by swelling

    NARCIS (Netherlands)

    Meijer, A. J.; Baquet, A.; Gustafson, L.; van Woerkom, G. M.; Hue, L.

    1992-01-01

    The mechanism linking the stimulation of liver glycogen synthesis to swelling induced either by amino acids or hypotonicity was studied in hepatocytes, in gel-filtered liver extracts, and in purified preparations of particulate glycogen to which glycogen-metabolizing enzymes are bound. High

  5. Patterns of glycogen turnover in liver characterized by computer modeling

    International Nuclear Information System (INIS)

    Youn, J.H.; Bergman, R.N.

    1987-01-01

    The authors used a computer model of liver glycogen turnover to reexamine the data of Devos and Hers, who reported the time course of accumulation in and loss from glycogen of label originating in [1- 14 C]galactose injected at different times after the start of refeeding of 40-h fasted mice or rats. In the present study computer representation of individual glycogen molecules was utilized to account for growth and degradation of glycogen according to specific hypothetical patterns. Using this model they could predict the accumulation and localization within glycogen of labeled glucose residues and compare the predictions with the previously published data. They considered three specific hypotheses of glycogen accumulation during refeeding: (1) simultaneous, (2) sequential, and (3) accelerating growth. Hypothetical patterns of glycogen degradation were (1) ordered and (2) random degradation. The pattern of glycogen synthesis consistent with experimental data was a steadily increasing number of growing glycogen molecules, whereas during degradation glycogen molecules are exposed to degrading enzymes randomly, rather than in a specific reverse order of synthesis. These patterns predict the existence of a specific mechanism for the steadily increasing seeding of new glycogen molecules during synthesis

  6. Muscle and liver glycogen, protein, and triglyceride in the rat

    DEFF Research Database (Denmark)

    Richter, Erik; Sonne, Bente; Joensen Mikines, Kari

    1984-01-01

    in skeletal muscle was accompanied by increased breakdown of triglyceride and/or protein. Thus, the effect of exhausting swimming and of running on concentrations of glycogen, protein, and triglyceride in skeletal muscle and liver were studied in rats with and without deficiencies of the sympatho......-adrenal system. In control rats, both swimming and running decreased the concentration of glycogen in fast-twitch red and slow-twitch red muscle whereas concentrations of protein and triglyceride did not decrease. In the liver, swimming depleted glycogen stores but protein and triglyceride concentrations did...... not decrease. In exercising rats, muscle glycogen breakdown was impaired by adrenodemedullation and restored by infusion of epinephrine. However, impaired glycogen breakdown during exercise was not accompanied by a significant net breakdown of protein or triglyceride. Surgical sympathectomy of the muscles did...

  7. Diurnal variation in glycogen phosphorylase activity in rat liver. A quantitative histochemical study

    NARCIS (Netherlands)

    Frederiks, W. M.; Marx, F.; Bosch, K. S.

    1987-01-01

    The diurnal variations of the glycogen content and of glycogen phosphorylase activity in periportal and pericentral areas of rat liver parenchyma have been analyzed in periodic acid Schiff (PAS)-stained cryostat sections using quantitative microdensitometry. Glycogen content and phosphorylase

  8. Modelo experimental para restrição do crescimento fetal em ratos: efeito sobre o glicogênio hepático e morfometria intestinal e renal Experimental rat model for fetal growth restriction: effects on liver glycogen and intestinal and renal morphometry

    Directory of Open Access Journals (Sweden)

    Márcia Pereira Bueno

    2010-04-01

    storage in fetuses with IUGR compared to C-IUGR and CE. CONCLUSIONS: the model described was efficient and caused symmetric fetal IUGR with decreased size of most organs, especially the liver, and changes in glycogen stores.

  9. Hepatic glycogen synthesis in the fetal mouse: An ultrastructural, morphometric, and autoradiographic investigation of the relationship between the smooth endoplasmic reticulum and glycogen

    International Nuclear Information System (INIS)

    Breslin, J.S.

    1989-01-01

    Fetal rodent hepatocytes undergo a rapid and significant accumulation of glycogen prior to birth. The distinct association of the smooth endoplasmic reticulum (SER) with glycogen during glycogen synthesis documented in the adult hepatocyte has not been clearly demonstrated in the fetus. The experiments described in this dissertation tested the hypothesis that SER is present and functions in the synthesis of fetal hepatic glycogen. Biochemical analysis, light microscopic (LM) histochemistry and electron microscope (EM) morphometry demonstrated that fetal hepatic glycogen synthesis began on day 15, with maximum accumulation occurring between days 17-19. Glycogen accumulation began in a small population of cells. Both the number of cells containing glycogen and the quantity of glycogen per cell increased as glycogen accumulated. Smooth endoplasmic reticulum (SER) was observed on day 14 of gestation and throughout fetal hepatic glycogen synthesis, primarily as dilated ribosome-free terminal extensions of rough endoplasmic reticulum (RER), frequently associated with glycogen. SER was in close proximity to isolated particles of glycogen and at the periphery of large compact glycogen deposits. Morphometry demonstrated that the membrane surface of SER in the average fetal hepatocyte increased as glycogen accumulated through day 18 and dropped significantly as glycogen levels peaked on day 19. Parallel alterations in RER membrane surface, indicated overall increases in ER membrane surface. Autoradiography following administration of 3 H-galactose demonstrated that newly synthesized glycogen was deposited near profiles of SER at day 16 and at day 18; however, at day 18 the majority of label was uniformly distributed over glycogen remote from profiles of SER

  10. Serum glucose and liver glycogen in gamma irradiated rats

    International Nuclear Information System (INIS)

    Ahlersova, E.; Ahlers, I.; Molcanova, A.

    1988-01-01

    Overnight fasted male rats of Wistar strain were irradiated with single whole-body doses of 4.78-7.17-9.57 and 14.35 Gy of gamma rays. After decapitation at intervals 1-28 d (4.78 and 7.17 Gy), 1-7 d (9.57 Gy) and 1-3 d (14.35 Gy) glucose concentration in serum and glycogen concentration in liver of irradiated and non-irradiated animals were determined. The higher was radiation dose the more expressive extent and depth of changes (hyperglycemia, accumulation of glycogen) occured. Blood glucose and liver glycogen may serve as a reliable and dose-dependent biological indicators of metabolic changes in irradiated rats. (author)

  11. Examination of liver and muscle glycogen and blood glucose levels ...

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... changes in fish affect the conversion of liver glycogen into blood ... province, altitude 1248 m and surface area of 86 km2, 20 km in length 4.5 km in width ... alcohol (95% pure) were added, followed by boiling for a further 15 min. ..... water temperature on the blood glucose level of chub (Leuciscus cephalus ...

  12. Dysfunctional Muscle and Liver Glycogen Metabolism in mdx Dystrophic Mice

    Science.gov (United States)

    Stapleton, David I.; Lau, Xianzhong; Flores, Marcelo; Trieu, Jennifer; Gehrig, Stefan M.; Chee, Annabel; Naim, Timur; Lynch, Gordon S.; Koopman, René

    2014-01-01

    Background Duchenne muscular dystrophy (DMD) is a severe, genetic muscle wasting disorder characterised by progressive muscle weakness. DMD is caused by mutations in the dystrophin (dmd) gene resulting in very low levels or a complete absence of the dystrophin protein, a key structural element of muscle fibres which is responsible for the proper transmission of force. In the absence of dystrophin, muscle fibres become damaged easily during contraction resulting in their degeneration. DMD patients and mdx mice (an animal model of DMD) exhibit altered metabolic disturbances that cannot be attributed to the loss of dystrophin directly. We tested the hypothesis that glycogen metabolism is defective in mdx dystrophic mice. Results Dystrophic mdx mice had increased skeletal muscle glycogen (79%, (Pglycogen synthesis is initiated by glycogenin, the expression of which was increased by 50% in mdx mice (PGlycogen synthase activity was 12% higher (Pglycogen branching enzyme activity was 70% lower (Pglycogen breakdown, glycogen phosphorylase, had 62% lower activity (Pglycogen debranching enzyme expression was 50% higher (Pglycogen (Pglycogen metabolism in mdx mice identified reduced glycogenin protein expression (46% less; Pglycogen but reduced amounts of liver glycogen. PMID:24626262

  13. Acid hydrolysis and molecular density of phytoglycogen and liver glycogen helps understand the bonding in glycogen α (composite particles.

    Directory of Open Access Journals (Sweden)

    Prudence O Powell

    Full Text Available Phytoglycogen (from certain mutant plants and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired.

  14. Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles

    Science.gov (United States)

    Powell, Prudence O.; Sullivan, Mitchell A.; Sheehy, Joshua J.; Schulz, Benjamin L.; Warren, Frederick J.; Gilbert, Robert G.

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired. PMID:25799321

  15. Characterization of the growth and degradation of glycogen in the liver

    International Nuclear Information System (INIS)

    Youn, J.; Bergman, R.

    1986-01-01

    The patterns of the growth and degradation of hepatic glycogen were studied using a computer model. The database was that of Devos and Hers on the distribution of label in glycogen from [1- 14 C] galactose injected at different times after the start of refeeding 40 h fasted mice. The data was simulated to examine the following hypotheses (H): Glycogen Synthesis H.S1: all glycogen molecules grow simultaneously. H.S2: at each moment of synthesis only a fixed number of molecules grow. H.S3: the number of growing molecules increases linearly with respect to time. H.S4: increase in the number of growing molecules is accelerated as glycogen is synthesized. Glycogen Degradation H.D1: glycogen molecules to be attacked by degrading enzymes are randomly chosen. H.D2: glycogen molecules are degraded sequentially in the reverse order of synthesis. H.D3: glycogen molecules have different probabilities of degradation depending upon the time of synthesis. The growth and degradation according to hypotheses S4 and D3, respectively, could best account for the data. The modelling study predicts that, at the beginning of refeeding, only a small number of molecules grow. But, as glycogen is synthesized, the rate of seeding of new glycogen molecules increases with time, causing a nonlinear proliferation of the number of growing molecules. During degradation glycogen molecules synthesized later have a greater chance to be degraded first, a characteristic which may be explained by the rosette structure of liver glycogen

  16. Ursolic acid and luteolin-7-glucoside improve lipid profiles and increase liver glycogen content through glycogen synthase kinase-3.

    Science.gov (United States)

    Azevedo, Marisa F; Camsari, Cagri; Sá, Carla M; Lima, Cristovao F; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2010-06-01

    In the present study, two phytochemicals - ursolic acid (UA) and luteolin-7-glucoside (L7G) - were assessed in vivo in healthy rats regarding effects on plasma glucose and lipid profile (total cholesterol, HDL and LDL), as well as liver glycogen content, in view of their importance in the aetiology of diabetes and associated complications. Both UA and L7G significantly decreased plasma glucose concentration. UA also significantly increased liver glycogen levels accompanied by phosphorylation of glycogen synthase kinase-3 (GSK3). The increase in glycogen deposition induced by UA (mediated by GSK3) could have contributed to the lower plasma glucose levels observed. Both compounds significantly lowered total plasma cholesterol and low-density lipoprotein levels, and, in addition, UA increased plasma high-density lipoprotein levels. Our results show that UA particularly may be useful in preventable strategies for people at risk of developing diabetes and associated cardiovascular complications by improving plasma glucose levels and lipid profile, as well as by promoting liver glycogen deposition.

  17. Effects of gamma-irradiation on the glycogen and lipid contents of the rat liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Nahed, R H.A.; Al-Zahaby, Al-Ahmmady, S.; Sanad, S M.K.; Roushdy, H M

    1986-01-01

    Histochemical changes in the glycogen and lipid contents of the rat liver cells were studied at different intervals following whole body gamma-irradiation at the exposure dose level of 600 rads. The glycogen and lipid contents were significantly altered, the changes were time-dependent.

  18. Quantification of the glycogen cascade system: the ultrasensitive responses of liver glycogen synthase and muscle phosphorylase are due to distinctive regulatory designs

    Directory of Open Access Journals (Sweden)

    Venkatesh KV

    2005-05-01

    Full Text Available Abstract Background Signaling pathways include intricate networks of reversible covalent modification cycles. Such multicyclic enzyme cascades amplify the input stimulus, cause integration of multiple signals and exhibit sensitive output responses. Regulation of glycogen synthase and phosphorylase by reversible covalent modification cycles exemplifies signal transduction by enzyme cascades. Although this system for regulating glycogen synthesis and breakdown appears similar in all tissues, subtle differences have been identified. For example, phosphatase-1, a dephosphorylating enzyme of the system, is regulated quite differently in muscle and liver. Do these small differences in regulatory architecture affect the overall performance of the glycogen cascade in a specific tissue? We address this question by analyzing the regulatory structure of the glycogen cascade system in liver and muscle cells at steady state. Results The glycogen cascade system in liver and muscle cells was analyzed at steady state and the results were compared with literature data. We found that the cascade system exhibits highly sensitive switch-like responses to changes in cyclic AMP concentration and the outputs are surprisingly different in the two tissues. In muscle, glycogen phosphorylase is more sensitive than glycogen synthase to cyclic AMP, while the opposite is observed in liver. Furthermore, when the liver undergoes a transition from starved to fed-state, the futile cycle of simultaneous glycogen synthesis and degradation switches to reciprocal regulation. Under such a transition, different proportions of active glycogen synthase and phosphorylase can coexist due to the varying inhibition of glycogen-synthase phosphatase by active phosphorylase. Conclusion The highly sensitive responses of glycogen synthase in liver and phosphorylase in muscle to primary stimuli can be attributed to distinctive regulatory designs in the glycogen cascade system. The different

  19. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver

    International Nuclear Information System (INIS)

    Shikanai, Mima; Asahina, Kinji; Iseki, Sachiko; Teramoto, Kenichi; Nishida, Tomohiro; Shimizu-Saito, Keiko; Ota, Masato; Eto, Kazuhiro; Teraoka, Hirobumi

    2009-01-01

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or α-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.

  20. Liver glycogen in type 2 diabetic mice is randomly branched as enlarged aggregates with blunted glucose release.

    Science.gov (United States)

    Besford, Quinn Alexander; Zeng, Xiao-Yi; Ye, Ji-Ming; Gray-Weale, Angus

    2016-02-01

    Glycogen is a vital highly branched polymer of glucose that is essential for blood glucose homeostasis. In this article, the structure of liver glycogen from mice is investigated with respect to size distributions, degradation kinetics, and branching structure, complemented by a comparison of normal and diabetic liver glycogen. This is done to screen for differences that may result from disease. Glycogen α-particle (diameter ∼ 150 nm) and β-particle (diameter ∼ 25 nm) size distributions are reported, along with in vitro γ-amylase degradation experiments, and a small angle X-ray scattering analysis of mouse β-particles. Type 2 diabetic liver glycogen upon extraction was found to be present as large loosely bound, aggregates, not present in normal livers. Liver glycogen was found to aggregate in vitro over a period of 20 h, and particle size is shown to be related to rate of glucose release, allowing a structure-function relationship to be inferred for the tissue specific distribution of particle types. Application of branching theories to small angle X-ray scattering data for mouse β-particles revealed these particles to be randomly branched polymers, not fractal polymers. Together, this article shows that type 2 diabetic liver glycogen is present as large aggregates in mice, which may contribute to the inflexibility of interconversion between glucose and glycogen in type 2 diabetes, and further that glycogen particles are randomly branched with a size that is related to the rate of glucose release.

  1. Glycogen synthesis in liver and skeletal muscle after exercise: participation of the gluconeogenic pathway

    International Nuclear Information System (INIS)

    Johnson, J.L.

    1986-01-01

    Hepatic glycogenesis occurs by both the uptake of plasma glucose (direct pathway) as well as from gluconeogenesis (indirect pathway). In vitro studies suggest that skeletal muscle can also synthesize glycogen from lactate. The purpose of the present studies was to assess the contribution of the indirect pathway to liver and muscle glycogen synthesis after exercise with various substrata infusions. The authors hypothesis was the contribution of the indirect pathway of hepatic glycogenesis would increase after exercise. To this end, fasted rats were depleted of glycogen by exhaustive exercise; a second group of fasted rats remained rested. Both groups were then infused intravenously with glucose containing tracer quantities of [6- 3 H] and [U- 14 C] glucose for 4 hrs. The ensuing hyperglycemic response was exaggerated in post-exercised rats; whereas, plasma lactate levels were lower than those of nonexercised rats. The percent of hepatic glycogen synthesized from gluconeogenic precursors did not differ between exercised (39%) and nonexercised (36%) rats

  2. Monitoring of liver glycogen synthesis in diabetic patients using carbon-13 MR spectroscopy

    International Nuclear Information System (INIS)

    Tomiyasu, Moyoko; Obata, Takayuki; Nishi, Yukio; Nakamoto, Hiromitsu; Nonaka, Hiroi; Takayama, Yukihisa; Autio, Joonas; Ikehira, Hiroo; Kanno, Iwao

    2010-01-01

    To investigate the relationship between liver glucose, glycogen, and plasma glucose in diabetic patients, in vivo liver carbon-13 magnetic resonance spectroscopy ( 13 C MRS) with a clinical 3.0 T MR system was performed. Subjects were healthy male volunteers (n = 5) and male type-2 diabetic patients (n = 5). Pre- and during oral glucose tolerance tests (OGTT), 13 C MR spectra without proton decoupling were acquired in a monitoring period of over 6 h, and in total seven spectra were obtained from each subject. For OGTT, 75 g of glucose, including 5 g of [1- 13 C]glucose, was administered. The MR signals of liver [1- 13 C]glucose and glycogen were detected and their time-course changes were assessed in comparison with the plasma data obtained at screening. The correlations between the fasting plasma glucose level and liver glycogen/glucose rate (Spearman: ρ = -0.68, p 13 C MRS can perform noninvasive measurement of glycogen storage/degradation ability in the liver individually and can assist in tailor-made therapy for diabetes. In conclusion, 13 C MRS has a potential to become a powerful tool in diagnosing diabetes multilaterally.

  3. Glycogen content in hepatocytes is related with their size in normal rat liver but not in cirrhotic one.

    Science.gov (United States)

    Bezborodkina, Natalia N; Chestnova, Anna Yu; Vorobev, Mikhail L; Kudryavtsev, Boris N

    2016-04-01

    Hepatocytes differ from one another by the degree of the ploidy, size, position in the liver lobule, and level of the DNA-synthetic processes. It is believed, that the cell size exerts substantial influence on the metabolism of the hepatocytes and the glycogen content in them. The aim of the present study was to test this hypothesis. Dry weight of hepatocytes, their ploidy and glycogen content were determined in the normal and the cirrhotic rat liver. Liver cirrhosis in rats was produced by chronic inhalation of CCl4 vapours in the course of 6 months. A combined cytophotometric method was used. Dry weight of the cell, its glycogen and DNA content were successively measured on a mapped preparation. Hepatocytes of each ploidy class in the normal and the cirrhotic rat liver accumulated glycogen at the same rate. In the normal liver, there was a distinct correlation between the size of hepatocytes and glycogen content in them. This correlation was observed in each ploidy class, and was especially pronounced in the class of mononucleate tetraploid hepatocytes. In the cirrhotic liver, there was no correlation between the size of the cells and their glycogen content. The impairment of liver lobular structure probably explains the observed lack of correlation between hepatocyte size and their glycogen content in the cirrhotic liver. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  4. Posthemorrhage glycogen and lactate metabolism in the liver: an experimental study with postprandial rats

    International Nuclear Information System (INIS)

    Boija, P.O.; Nylander, G.; Suhaili, A.; Ware, J.

    1988-01-01

    Glycogen and lactate metabolism was studied in livers from three groups of postprandial rats sustaining 70 mm Hg hemorrhagic hypotension for variable periods, 60 min (60H group), 120 min (120H group), and nonbled controls. The donor livers were investigated after completed hemorrhage using an in vitro perfusion system with L-lactate as substrate, together with U- 14 C-lactate. The residual glycogen stores were determined after perfusions. The incorporation of labelled lactate to glucose was increased in the 120H group by 66.7% and 116.8% compared to the 60H group and controls (p less than 0.01), but glycogenolysis was still the main source of glucose released in the 120H group. Glycogen formation from labelled lactate was 46.6% higher in the 120H group compared to controls (p less than 0.05) and lactate oxidation was decreased by 67.5% (p less than 0.05). The data suggest that hepatocytes are capable of rapid change from glycolysis to gluconeogenesis during hemorrhagic hypovolemia. However, energy-sparing glycogen breakdown is given priority over gluconeogenesis as long as glycogen remains available

  5. Fructose effect to enhance liver glycogen deposition is due to inhibition of glycogenolysis

    International Nuclear Information System (INIS)

    Youn, J.; Kaslow, H.; Bergman, R.

    1987-01-01

    The effect of fructose on glycogen degradation was examined by measuring flux of [ 14 C] from prelabeled glycogen in perfused rat livers. During 2 h refeeding of fasted rats hepatic glycogen was labeled by injection of [U 14 C] galactose (0.1 mg and 0.02 μCi/g of body weight). Refed livers were perfused for 30 min with glucose only (10 mM) and for 60 min with glucose (10 mM) without (n=5) or with fructose (1, 2, 10 mM; n=5 for each). With fructose, label production immediately declined and remained suppressed through the end of perfusion (P < 0.05). Suppression was dose-dependent: steady state label production was suppressed 45, 64, and 72% by 1, 2, and 10 mM fructose (P < 0.0001), without significant changes in glycogen synthase or phosphorylase. These results suggest the existence of allosteric inhibition of phosphorylase in the presence of fructose. Fructose 1-phosphate (F1P) accumulated in proportion to fructose (0.11 +/- 0.01 without fructose, 0.86 +/- 0.03, 1.81 +/- 0.18, and 8.23 +/- 0.6 μmoles/g of liver with 1, 2, and 10 mM fructose. Maximum inhibition of phosphorylase was 82%; FIP concentration for half inhibition was 0.57 μmoles/g of liver, well within the concentration of F1P attained in refeeding. Fructose enhances net glycogen synthesis in liver by suppressing glycogenolysis and the suppression is presumably caused by allosteric inhibition of phosphorylase by F1P

  6. Changes in liver glycogen reserve in Wistar rats as a result of polysaccharide treatment and single sublethal gamma-irradiation

    International Nuclear Information System (INIS)

    Metodiev, S.; Lambov, V.; Pavlova, N.

    1993-01-01

    The phase changes in the quantity of liver glycogen after single sublethal irradiation are investigated. The lowest concentration levels are registered at days 1, 3, 8 and 13 post irradiation. The effect of polysaccharide radioresistance modulation on the liver glycogen concentration is evaluated. The subcutaneous polysaccharide application of the immuno-active product PL prevents the sharp decrease of the liver glycogen concentration level, as a result of radiation provoked damages. The polysaccharide protection is most effective 5 - 21 days after irradiation. The conclusions are based on enzymic and hystomorphological studies. (author)

  7. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice.

    Science.gov (United States)

    Irimia, Jose M; Meyer, Catalina M; Segvich, Dyann M; Surendran, Sneha; DePaoli-Roach, Anna A; Morral, Nuria; Roach, Peter J

    2017-06-23

    Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Fetal liver T2* values: defining a standardized scale.

    Science.gov (United States)

    Goitein, Orly; Eshet, Yael; Hoffmann, Chen; Raviv-Zilka, Lisa; Salem, Yishay; Hamdan, Ashraf; Goitein, David; Kushnir, Tamar; Eshed, Iris; Di-Segni, Elio; Konen, Eli

    2013-12-01

    To define the normal T2* values of liver in the third trimester of pregnancy in normal fetuses. Multi-echo gradient echo T2* sequence was applied to the fetal abdomen in the axial plane in women undergoing a fetal MRI (1.5 Tesla [T], MRI system). A region of interest, best visualizing in the liver parenchyma was used for measurements. Studies were independently read by two experienced readers to assess intra- and interobserver variability. The study cohort included 46 pregnant women undergoing fetal MRI for any indication other than liver pathology evaluation. Three scans were excluded due to fetal motion. Average maternal and gestational age were 33 ± 4 years and 31.9 ± 3 weeks, respectively. Average T2* values were found to be 19.7 ± 7.4 ms. The intra- and interobserver agreement were very good: 0.93 and 0.8-0.084, respectively. T2* MRI allows noninvasive evaluation liver iron content in the third trimester fetus. Measured values at this stage of pregnancy are significantly lower compared with values cited in the literature for adults. This is of major importance in the correct diagnosis of fetal iron overload states. We propose this as the standard reference when evaluating fetal iron overload pathology. Copyright © 2013 Wiley Periodicals, Inc.

  9. Glycogen metabolism in the liver of Indian desert gerbils (Meriones hurrianae, Jerdon) exposed to internal beta irradiation

    International Nuclear Information System (INIS)

    Gupta, N.K.

    1996-01-01

    Glycogen content and the activities of phosphorylase, glycogen synthetase, phosphohexose isomerase, glucose-6-phosphatase, succinate dehydrogenase, alanine and aspartate aminotransferases have been biochemically determined in the liver of Indian desert gerbils following radiocalcium internal irradiation. Decline in glycogen, phosphohexose isomerase, with a concomitant increase in phosphorylase, succinate dehydrogenase reveals a switch over from glycolytic to oxidative metabolism in liver. Activities of aminotransferases indicate the utilization of transamination products of alanine and aspartate in oxidative pathway during early periods. Transiently increased glucose-6-phosphatase seems to restrict glycogenolytic and glycolytic metabolism and thereby pave way for the acceleration of oxidative metabolism. (author). 52 refs., 2 tabs

  10. Starch Binding Domain-containing Protein 1 Plays a Dominant Role in Glycogen Transport to Lysosomes in Liver.

    Science.gov (United States)

    Sun, Tao; Yi, Haiqing; Yang, Chunyu; Kishnani, Priya S; Sun, Baodong

    2016-08-05

    A small portion of cellular glycogen is transported to and degraded in lysosomes by acid α-glucosidase (GAA) in mammals, but it is unclear why and how glycogen is transported to the lysosomes. Stbd1 has recently been proposed to participate in glycogen trafficking to lysosomes. However, our previous study demonstrated that knockdown of Stbd1 in GAA knock-out mice did not alter lysosomal glycogen storage in skeletal muscles. To further determine whether Stbd1 participates in glycogen transport to lysosomes, we generated GAA/Stbd1 double knock-out mice. In fasted double knock-out mice, glycogen accumulation in skeletal and cardiac muscles was not affected, but glycogen content in liver was reduced by nearly 73% at 3 months of age and by 60% at 13 months as compared with GAA knock-out mice, indicating that the transport of glycogen to lysosomes was suppressed in liver by the loss of Stbd1. Exogenous expression of human Stbd1 in double knock-out mice restored the liver lysosomal glycogen content to the level of GAA knock-out mice, as did a mutant lacking the Atg8 family interacting motif (AIM) and another mutant that contains only the N-terminal 24 hydrophobic segment and the C-terminal starch binding domain (CBM20) interlinked by an HA tag. Our results demonstrate that Stbd1 plays a dominant role in glycogen transport to lysosomes in liver and that the N-terminal transmembrane region and the C-terminal CBM20 domain are critical for this function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. File list: His.Liv.20.AllAg.Fetal_liver [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.20.AllAg.Fetal_liver hg19 Histone Liver Fetal liver SRX860907,SRX860899,SRX...860908,SRX860905,SRX860900,SRX860906,SRX860904,SRX860903,SRX860902,SRX860901 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.20.AllAg.Fetal_liver.bed ...

  12. File list: ALL.Liv.50.AllAg.Fetal_liver [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.50.AllAg.Fetal_liver hg19 All antigens Liver Fetal liver SRX860899,SRX86090...7,SRX860905,SRX860900,SRX860903,SRX860906,SRX860904,SRX860908,SRX860902,SRX860901 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.50.AllAg.Fetal_liver.bed ...

  13. File list: ALL.Liv.10.AllAg.Fetal_liver [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.10.AllAg.Fetal_liver hg19 All antigens Liver Fetal liver SRX860905,SRX86090...7,SRX860901,SRX860899,SRX860900,SRX860904,SRX860903,SRX860908,SRX860906,SRX860902 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.10.AllAg.Fetal_liver.bed ...

  14. File list: His.Liv.50.AllAg.Fetal_liver [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.50.AllAg.Fetal_liver hg19 Histone Liver Fetal liver SRX860899,SRX860907,SRX...860905,SRX860900,SRX860903,SRX860906,SRX860904,SRX860908,SRX860902,SRX860901 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.50.AllAg.Fetal_liver.bed ...

  15. File list: His.Liv.05.AllAg.Fetal_liver [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.05.AllAg.Fetal_liver hg19 Histone Liver Fetal liver SRX860905,SRX860904,SRX...860907,SRX860901,SRX860900,SRX860908,SRX860899,SRX860906,SRX860903,SRX860902 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.05.AllAg.Fetal_liver.bed ...

  16. File list: His.Liv.10.AllAg.Fetal_liver [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.10.AllAg.Fetal_liver hg19 Histone Liver Fetal liver SRX860905,SRX860907,SRX...860901,SRX860899,SRX860900,SRX860904,SRX860903,SRX860908,SRX860906,SRX860902 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.10.AllAg.Fetal_liver.bed ...

  17. File list: ALL.Liv.05.AllAg.Fetal_liver [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.05.AllAg.Fetal_liver hg19 All antigens Liver Fetal liver SRX860905,SRX86090...4,SRX860907,SRX860901,SRX860900,SRX860908,SRX860899,SRX860906,SRX860903,SRX860902 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.05.AllAg.Fetal_liver.bed ...

  18. File list: ALL.Liv.20.AllAg.Fetal_liver [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.20.AllAg.Fetal_liver hg19 All antigens Liver Fetal liver SRX860907,SRX86089...9,SRX860908,SRX860905,SRX860900,SRX860906,SRX860904,SRX860903,SRX860902,SRX860901 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.20.AllAg.Fetal_liver.bed ...

  19. CHEMICAL CHARACTERIZATION OF A HYPOGLYCEMIC EXTRACT FROM CUCURBITA FICIFOLIA BOUCHE THAT INDUCES LIVER GLYCOGEN ACCUMULATION IN DIABETIC MICE.

    Science.gov (United States)

    Jessica, Garcia Gonzalez; Mario, Garcia Lorenzana; Alejandro, Zamilpa; Cesar, Almanza Perez Julio; Ivan, Jasso Villagomez E; Ruben, Roman Ramos; Javier, Alarcon-Aguilar Francisco

    2017-01-01

    The aqueous extract of Cucurbita ficifolia ( C. ficifolia ) fruit has demonstrated hypoglycemic effect, which may be attributed to some components in the extract. However, the major secondary metabolites in this fruit have not yet been identified and little is known about its extra-pancreatic action, in particular, on liver carbohydrate metabolism. Therefore, in addition to the isolation and structural elucidation of the principal components in the aqueous extract of C. ficifolia , the aim of this study was to determine whether or not the hypoglycemic effect of the aqueous extract of Cucurbita ficifolia ( C. ficifolia ) fruit is due to accumulation of liver glycogen in diabetic mice. The aqueous extract from fruit of C. ficifolia was fractionated and its main secondary metabolites were purified and chemically characterized (NMR and GC-MS). Alloxan-induced diabetic mice received daily by gavage the aqueous extract (30 days). The liver glycogen content was quantified by spectroscopic method and by PAS stain; ALT and AST by spectrometric method; glycogen synthase, glycogen phosphorylase and GLUT2 by Western blot; the mRNA expression of GLUT2 and glucagon-receptor by RT-PCR; while serum insulin was quantified by ELISA method. A liver histological analysis was also performed by H&E stain. Chemical fingerprint showed five majoritarian compounds in the aqueous extract of C. ficifolia : p -coumaric acid, p-hydroxybenzoic acid, salicin, stigmast-7,2,2-dien-3-ol and stigmast-7-en-3-ol. The histological analysis showed accumulation of liver glycogen. Also, increased glycogen synthase and decreased glycogen phosphorylase were observed. Interestingly, the histological architecture evidenced a liver-protective effect due the extract. Five compounds were identified in C. ficifolia aqueous extract. The hypoglycemic effect of this extract may be partially explained by liver glycogen accumulation. The bioactive compound responsible for the hypoglycemic effect of this extract will be

  20. Histochemical Effects of “Verita WG” on Glycogen and Lipid Storage in Common Carp (Cyprinus carpio L. Liver

    Directory of Open Access Journals (Sweden)

    Elenka Georgieva

    2013-12-01

    Full Text Available We aimed in the present work is to study the effects of fosetyl-Al and fenamidone based fungicide (“Verita WG” on glycogen storage and expression of lipid droplets in common carp (Cyprinus carpio, L. liver. Concentrations of the test chemical were 30 mg/L, 38 mg/L and 50 mg/L under laboratory conditions. We used PAS-reaction for detection of glycogen storage and Sudan III staining for detection of lipid droplets in common carp hepatocytes. Hence, we found that the amount of glycogen and the fat storage in the liver increased proportionally with the increased fungicide concentrations. We also found conglomerates of accumulated glycogen in certain hepatocytes at all used concentrations. Overall, the results demonstrated enhanced glyconeogenesis and fat accumulation in the common carp liver, exposed to the test chemical.

  1. Development of the liver during the fetal period

    International Nuclear Information System (INIS)

    Albay, S.; Malas, Mehmet A.; Cetin, E.; Cankara, N.; Karahan, N.

    2005-01-01

    To investigate the development of the liver in human fetuses aged between 9-40 weeks. We studied 121 human fetuses (62 males, 59 females) with no external anomalies aged between 9-40 postmenstrual weeks during 2003-2004 in Suleyman Demirel University, Isparta, Turkey. The fetuses were divided into four groups as 1st, 2nd and 3rd trimesters and full term fetuses. We measured fetal weight, length, width, thickness, and volume of the liver. We established localization of the liver and its relation with the neighboring structures, its ligaments, and size of itself and its lobes, shapes of the liver and the localization of the porta hepatis on the visceral surface of the liver. We found significant correlations between the size, weight, volume of the liver, sizes of its lobe and gestational age (p 0.05). However, the proportion of the distance between the porta hepatis and the upper margin to the distance between the porta hepatis and the lower margin decreased significantly with gestational age (p<0.05). Type 3 liver (square) was the most commonly observed type of fetal liver (53%). Our opinion is that the parameters obtained can be useful to diagnose pathologies of liver development and anomalies concerning several branches of medicine such as anatomy, pathologic anatomy (fetopathology), forensic medicine, medical imaging, obstetrics and pediatrics. (author)

  2. Muscle and liver glycogen utilization during prolonged lift and carry exercise: male and female responses.

    Science.gov (United States)

    Price, Thomas B; Sanders, Kimberly

    2017-02-01

    This study examined the use of carbohydrates by men and women during lift/carry exercise. Effects of menstrual cycle variation were examined in women. Twenty-five subjects (15 M, 10 F) were studied; age 25 ± 2y M, 26 ± 3y F, weight 85 ± 3 kg* M, 63 ± 3 kg F, and height 181 ± 2 cm* M, 161 ± 2 cm F (* P  Glycogen utilization was tracked with natural abundance C-13 NMR of quadriceps femoris and biceps brachialis muscles, and in the liver at rest and throughout the exercise period. Males completed more of the 180 min protocol than females [166 ± 9 min M, 112 ± 16 min* F (L), 88 ± 16 min** F (F) (* P  = 0.0036, ** P  glycogen depletion was similar between sexes and within females in L/F phases [4.7 ± 0.8 mmol/L-h M, 4.5 ± 2.4 mmol/L-h F (L), 10.3 ± 3.5 mmol/L-h F (F)]. Biceps glycogen depletion was greater in females [2.7 ± 0.9 mmol/L-h M, 10.3 ± 1.3 mmol/L-h* F (L), 16.8 ± 4.8 mmol/L-h** F (F) (* P  = 0.0004, ** P  = 0.0122)]. Resting glycogen levels were higher in females during the follicular phase ( P  = 0.0077). Liver glycogen depletion increased during exercise, but was not significant. We conclude that with non-normalized lift/carry exercise: (1) Based on their smaller size, women are less capable of completing and work their upper body harder than men. (2) Women and men work their lower body at similar levels. (3) Women store more quadriceps carbohydrate during the follicular phase. (4) The liver is not significantly challenged by this protocol. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. Effect of D-tagatose on liver weight and glycogen content of rats.

    Science.gov (United States)

    Bär, A; Lina, B A; de Groot, D M; de Bie, B; Appel, M J

    1999-04-01

    D-tagatose is an incompletely absorbed ketohexose (stereoisomer of D-fructose) which has potential as an energy-reduced alternative sweetener. In an earlier 90-day toxicity study, rats fed diets with 10, 15 and 20% D-tagatose exhibited increased liver weights, but no histopathological alterations. To determine whether there might be any toxicological relevance to this effect, three studies were conducted in male, adult Sprague-Dawley rats. In the first study, four groups received Purina diet (group A), Purina diet with 20% D-tagatose (group B), SDS diet (group C), or SDS diet with 20% D-tagatose (group D). For groups A and B, the 28-day treatment period was followed by a 14-day recovery period (Purina diet). Food remained available to all animals until the time of sacrifice. Groups of 10 rats were killed on days 14 (groups A and B), 28 (groups A-D), and 42 (groups A and B). Body weights, as well as weights of wet and lyophilized livers, were determined. The lyophilized livers collected on day 28 from groups A and B were analyzed for protein, total lipid, glycogen, DNA, and residual moisture. By day 14, relative wet liver weights had increased by 23% in group B. On day 28, the increase was 38% in group B and 44% in group D. At the end of the recovery period, the increase had diminished to 14% in group B. On day 28, liver glycogen content (in %) was significantly increased, and liver protein, lipid, and DNA contents were significantly decreased in group B compared to group A. Total amounts per liver of protein, total lipid, glycogen, and DNA were significantly increased. In the second study, four groups of 20 rats each received SDS diet with 0, 5, 10, and 20% D-tagatose for 29-31 days. The food was available until the time of sacrifice. At termination, plasma was obtained from 10 rats/group for clinicochemical analyses. Five rats/group were subjected to whole-body perfusion, followed by processing of livers for qualitative and quantitative electron microscopic

  4. Salinity Effects on Strategies of Glycogen Utilization in Livers of Euryhaline Milkfish (Chanos chanos under Hypothermal Stress

    Directory of Open Access Journals (Sweden)

    Chia-Hao Chang

    2018-02-01

    Full Text Available The fluctuation of temperature affects many physiological responses in ectothermic organisms, including feed intake, growth, reproduction, and behavior. Changes in environmental temperatures affect the acquisition of energy, whereas hepatic glycogen plays a central role in energy supply for the homeostasis of the entire body. Glycogen phosphorylase (GP, which catalyzes the rate-limiting step in glycogenolysis, is also an indicator of environmental stress. Here, we examined the effects of salinity on glycogen metabolism in milkfish livers under cold stress. A reduction of feed intake was observed in both freshwater (FW and seawater (SW milkfish under cold adaptation. At normal temperature (28°C, compared to the FW milkfish, the SW milkfish exhibited greater mRNA abundance of the liver isoform of GP (Ccpygl, higher GP activity, and less glycogen content in the livers. Upon hypothermal (18°C stress, hepatic Ccpygl mRNA expression of FW milkfish surged at 3 h, declined at 6 and 12 h, increased again at 24 h, and increased significantly after 96 h. Increases in GP protein, GP activity, and the phosphorylation state and the breakdown of glycogen were also found in FW milkfish livers after 12 h of exposure at 18°C. Conversely, the Ccpygl transcript levels in SW milkfish were downregulated after 1 h of exposure at 18°C, whereas the protein abundance of GP, GP activity, and glycogen content were not significantly altered. Taken together, under 18°C cold stress, FW milkfish exhibited an acute response with the breakdown of hepatic glycogen for maintaining energy homeostasis of the entire body, whereas no change was observed in the hepatic glycogen content and GP activity of SW milkfish because of their greater tolerance to cold conditions.

  5. Liver glycogen reduces food intake and attenuates obesity in a high-fat diet-fed mouse model.

    Science.gov (United States)

    López-Soldado, Iliana; Zafra, Delia; Duran, Jordi; Adrover, Anna; Calbó, Joaquim; Guinovart, Joan J

    2015-03-01

    We generated mice that overexpress protein targeting to glycogen (PTG) in the liver (PTG(OE)), which results in an increase in liver glycogen. When fed a high-fat diet (HFD), these animals reduced their food intake. The resulting effect was a lower body weight, decreased fat mass, and reduced leptin levels. Furthermore, PTG overexpression reversed the glucose intolerance and hyperinsulinemia caused by the HFD and protected against HFD-induced hepatic steatosis. Of note, when fed an HFD, PTG(OE) mice did not show the decrease in hepatic ATP content observed in control animals and had lower expression of neuropeptide Y and higher expression of proopiomelanocortin in the hypothalamus. Additionally, after an overnight fast, PTG(OE) animals presented high liver glycogen content, lower liver triacylglycerol content, and lower serum concentrations of fatty acids and β-hydroxybutyrate than control mice, regardless of whether they were fed an HFD or a standard diet. In conclusion, liver glycogen accumulation caused a reduced food intake, protected against the deleterious effects of an HFD, and diminished the metabolic impact of fasting. Therefore, we propose that hepatic glycogen content be considered a potential target for the pharmacological manipulation of diabetes and obesity. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Effect of intraperitoneal selenium administration on liver glycogen levels in rats subjected to acute forced swimming.

    Science.gov (United States)

    Akil, Mustafa; Bicer, Mursel; Kilic, Mehmet; Avunduk, Mustafa Cihat; Mogulkoc, Rasim; Baltaci, Abdulkerim Kasim

    2011-03-01

    There are a few of studies examining how selenium, which is known to reduce oxidative damage in exercise, influences glucose metabolism and exhaustion in physical activity. The present study aims to examine how selenium administration affects liver glycogen levels in rats subjected to acute swimming exercise. The study included 32 Sprague-Dawley type male rats, which were equally allocated to four groups: Group 1, general control; Group 2; selenium-supplemented control (6 mg/kg/day sodium selenite); Group 3, swimming control; Group 4, selenium-supplemented swimming (6 mg/kg/day sodium selenite). Liver tissue samples collected from the animals at the end of the study were fixed in 95% ethyl alcohol. From the tissue samples buried into paraffin, 5-µm cross-sections were obtained using a microtome, put on a microscope slide, and stained with PAS. Stained preparations were assessed using a Nikon Eclipse E400 light microscope. All images obtained with the light microscope were transferred to a PC and evaluated using Clemex PE 3.5 image analysis software. The highest liver glycogen levels were found in groups 1 and 2 (p swimming exercise can be restored by selenium administration. It can be argued that physiological doses of selenium administration can contribute to performance.

  7. Role of the direct and indirect pathways for glycogen synthesis in rat liver in the postprandial state

    International Nuclear Information System (INIS)

    Huang, M.T.; Veech, R.L.

    1988-01-01

    The pathway for hepatic glycogen synthesis in the postprandial state was studied in meal-fed rats chronically cannulated in the portal vein. Plasma glucose concentration in the portal vein was found to be 4.50 +/- 1.01 mM (mean +/- SE; n = 3) before a meal and 11.54 +/- 0.70 mM (mean +/- SE; n = 4) after a meal in rats meal-fed a diet consisting of 100% commercial rat chow for 7 d. The hepatic-portal difference of plasma glucose concentration showed that liver released glucose in the fasted state and either extracted or released glucose after feeding depending on plasma glucose concentration in the portal vein. The concentration of portal vein glucose at which liver changes from glucose releasing to glucose uptake was 8 mM, the Km of glucokinase. The rate of glycogen synthesis in liver during meal-feeding was found to be approximately 1 mumol glucosyl U/g wet wt/min in rats meal-fed a 50% glucose supplemented chow diet. The relative importance of the direct vs. indirect pathway for the replenishment of hepatic glycogen was determined by the incorporation of [3- 3 H,U- 14 C]glucose into liver glycogen. Labeled glucose was injected into the portal vein at the end of meal-feeding. The ratio of 3 H/ 14 C in the glucosyl units of glycogen was found to be 83-92% of the ratio in liver free glucose six minutes after the injection, indicating that the majority of exogenous glucose incorporated into glycogen did not go through glycolysis. The percent contribution of the direct versus indirect pathway was quantitated from the difference in the relative specific activity (RSA) of [ 3 H] and [ 14 C]-glycogen in rats infused with [3- 3 H,U- 14 C]glucose. No significant difference was found between the RSA of [ 3 H]glycogen and [ 14 C]glycogen, indicating further that the pathway for glycogen synthesis in liver from exogenous glucose is from the direct pathway

  8. Glucose phosphorylation is not rate limiting for accumulation of glycogen from glucose in perfused livers from fasted rats

    International Nuclear Information System (INIS)

    Youn, J.H.; Ader, M.; Bergman, R.N.

    1989-01-01

    Incorporation of Glc and Fru into glycogen was measured in perfused livers from 24-h fasted rats using [6-3H]Glc and [U-14C]Fru. For the initial 20 min, livers were perfused with low Glc (2 mM) to deplete hepatic glycogen and were perfused for the following 30 min with various combinations of Glc and Fru. With constant Fru (2 mM), increasing perfusate Glc increased the relative contribution of Glc carbons to glycogen (7.2 +/- 0.4, 34.9 +/- 2.8, and 59.1 +/- 2.7% at 2, 10, and 20 mM Glc, respectively; n = 5 for each). During perfusion with substrate levels seen during refeeding (10 mM Glc, 1.8 mumol/g/min gluconeogenic flux from 2 mM Fru), Fru provided 54.7 +/- 2.7% of the carbons for glycogen, while Glc provided only 34.9 +/- 2.8%, consistent with in vivo estimations. However, the estimated rate of Glc phosphorylation was at least 1.10 +/- 0.11 mumol/g/min, which exceeded by at least 4-fold the glycogen accumulation rate (0.28 +/- 0.04 mumol of glucose/g/min). The total rate of glucose 6-phosphate supply via Glc phosphorylation and gluconeogenesis (2.9 mumol/g/min) exceeded reported in vivo rates of glycogen accumulation during refeeding. Thus, in perfused livers of 24-h fasted rats there is an apparent redundancy in glucose 6-phosphate supply. These results suggest that the rate-limiting step for hepatic glycogen accumulation during refeeding is located between glucose 6-phosphate and glycogen, rather than at the step of Glc phosphorylation or in the gluconeogenic pathway

  9. T cell progenitors in the mouse fetal liver

    International Nuclear Information System (INIS)

    Rabinowich, H.; Umiel, T.; Globerson, A.

    1983-01-01

    Fourteen-day mouse fetal liver was found to contain cells capable of giving rise to T as well as B cell functions. The experimental system consisted of congenic C3H/DiSn and (C3H/DiSn X C3H.SW)F1 lethally irradiated (900 R) mice reconstituted with C3H/DiSn fetal liver or bone marrow cells. Assays included thyroid allograft rejection as well as in vitro measurement of reactivity to phytohemagglutinin (PHA) and concanavalin A (Con A) and in a mixed lymphocyte culture (MLC) system in spleen, lymph node, and thymus cells. The fetal liver chimeras were found to become as capable as the bone marrow chimeras in responding in these various assays. The T cell responses lagged behind the responses to the B cell mitogens dextran sulfate (DXS) and lipopolysaccharide (LPS) (30 days after reconstitution, as compared with 14 days for DXS and 21 for LPS). The reacting cells were of the donor genotype, as revealed after treatment with C3H/DiSn (H-2k) anti-C3H.SW (H-2b) congenic sera. T cell responses were not manifest in thymectomized (TX) chimeras. Hence, the liver seems to contain cells capable of developing into T cell lineages in a thymus-dependent process

  10. Effect of oral D-tagatose on liver volume and hepatic glycogen accumulation in healthy male volunteers.

    Science.gov (United States)

    Boesch, C; Ith, M; Jung, B; Bruegger, K; Erban, S; Diamantis, I; Kreis, R; Bär, A

    2001-04-01

    Standard toxicity tests with high levels of D-tagatose showed a reversible enlargement of the liver in Sprague-Dawley rats without increase of liver enzymes. The present study tests the hypotheses that partial substitution of dietary sucrose by D-tagatose for 28 days increases the volume of human liver and the concentration of liver glycogen. Twelve healthy, male volunteers were studied in a double-blind crossover study with ingestion of D-tagatose (3x15 g daily) and placebo (sucrose, 3x15 g daily) for periods of 28 days each. Liver volume and glycogen concentration have been determined by magnetic resonance (MR) imaging and spectroscopy, which were accompanied by routine medical examinations. MR examinations before and after the treatments revealed no effects (P>0.05) of treatment, period, or subject for changes in liver volume or glycogen concentration. A steady increase of liver volumes, independent of the D-tagatose or placebo intake, has been observed over the study in parallel with a slight increase in body weight. The treatment with D-tagatose was not associated with clinically relevant changes of the examined clinico-chemical and hematological parameters, including liver enzymes and uric acid. Copyright 2001 Academic Press.

  11. Fetal liver iron overload: the role of MR imaging

    International Nuclear Information System (INIS)

    Cassart, Marie; Avni, Freddy Efraim; Guibaud, Laurent; Molho, Marc; D'Haene, Nicky; Paupe, Alain

    2011-01-01

    To assess the potential role of MR imaging in the diagnosis of fetal liver iron overload. We reviewed seven cases of abnormal liver signal in fetuses referred to MR imaging in a context of suspected congenital infection (n = 2), digestive tract anomalies (n = 3) and hydrops fetalis (n = 2). The average GA of the fetuses was 31 weeks. The antenatal diagnoses were compared with histological data (n = 6) and postnatal work-up (n = 1). Magnetic resonance imaging demonstrated unexpected abnormal fetal liver signal suggestive of iron overload in all cases. The iron overload was confirmed on postnatal biopsy (n = 2) and fetopathology (n = 4). The final diagnosis was hepatic hemosiderosis (haemolytic anaemia (n = 2) and syndromal anomalies (n = 2)) and congenital haemochromatosis (n = 3). In all cases, the liver appeared normal on US. Magnetic resonance is the only imaging technique able to demonstrate liver iron overload in utero. Yet, the study outlines the fundamental role of MR imaging in cases of congenital haemochromatosis. The antenatal diagnosis of such a condition may prompt ante - (in the case of recurrence) or neonatal treatment, which might improve the prognosis. (orig.)

  12. Fetal liver iron overload: the role of MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cassart, Marie; Avni, Freddy Efraim [Erasme Hospital, Medical imaging, Brussels, Brabant (Belgium); Guibaud, Laurent [Hopital femme mere enfant, Imagerie Pediatrique et Foetale, Lyon-Bron (France); Molho, Marc [C.H.I Poissy/St Germain-en-Laye, Imagerie Medicale, Poissy (France); D' Haene, Nicky [Erasme Hospital, Anatomopathology Department, Brussels (Belgium); Paupe, Alain [C.H.I Poissy/St Germain-en-Laye, Pediatrie, Poissy (France)

    2011-02-15

    To assess the potential role of MR imaging in the diagnosis of fetal liver iron overload. We reviewed seven cases of abnormal liver signal in fetuses referred to MR imaging in a context of suspected congenital infection (n = 2), digestive tract anomalies (n = 3) and hydrops fetalis (n = 2). The average GA of the fetuses was 31 weeks. The antenatal diagnoses were compared with histological data (n = 6) and postnatal work-up (n = 1). Magnetic resonance imaging demonstrated unexpected abnormal fetal liver signal suggestive of iron overload in all cases. The iron overload was confirmed on postnatal biopsy (n = 2) and fetopathology (n = 4). The final diagnosis was hepatic hemosiderosis (haemolytic anaemia (n = 2) and syndromal anomalies (n = 2)) and congenital haemochromatosis (n = 3). In all cases, the liver appeared normal on US. Magnetic resonance is the only imaging technique able to demonstrate liver iron overload in utero. Yet, the study outlines the fundamental role of MR imaging in cases of congenital haemochromatosis. The antenatal diagnosis of such a condition may prompt ante - (in the case of recurrence) or neonatal treatment, which might improve the prognosis. (orig.)

  13. Effect of irradiation with fast electrons on the uridindiphosphateglucose mechanism of glycogen synthesis in NKly tumours, spleen and liver of mice having tumours

    International Nuclear Information System (INIS)

    Goryukhina, T.A.; Misheneva, V.S.; Burova, T.M.; Seits, I.F.

    1976-01-01

    A marked and stable decrease in the glycogen content of the liver has been observed within the entire 96-hour period after a single exposure to fast electrons (1000 rads) of mice having NKly tumour. Tumour cells maintain a low glycogen level that is peculiar for them. Activity of enzymes (UDPG-pyrophosphorylase, phosphoglucomutase and UDPG-glycogensynthetase) considerably changes but, in most cases, there is no parallelism between the glycogen content and glycogensynthetase activity

  14. Glycogenic hepatopathy is an under-recognised cause of hepatomegaly and elevated liver transaminases in type 1 diabetes mellitus.

    Science.gov (United States)

    Irani, N R; Venugopal, K; Kontorinis, N; Lee, M; Sinniah, R; Bates, T R

    2015-07-01

    Glycogenic hepatopathy (GH) is an under-recognised complication of type 1 diabetes mellitus (T1DM) not controlled to target resulting in hepatomegaly and elevated liver transaminases. We report the case of a 19-year-old man with T1DM not controlled to target who presented with abdominal pain, hepatomegaly and deranged liver transaminases. He was subsequently diagnosed with GH on liver biopsy, with the mainstay of treatment being reduction in caloric intake and insulin. © 2015 Royal Australasian College of Physicians.

  15. Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists.

    Science.gov (United States)

    Gonzalez, Javier T; Fuchs, Cas J; Smith, Fiona E; Thelwall, Pete E; Taylor, Roy; Stevenson, Emma J; Trenell, Michael I; Cermak, Naomi M; van Loon, Luc J C

    2015-12-15

    The purpose of this study was to define the effect of glucose ingestion compared with sucrose ingestion on liver and muscle glycogen depletion during prolonged endurance-type exercise. Fourteen cyclists completed two 3-h bouts of cycling at 50% of peak power output while ingesting either glucose or sucrose at a rate of 1.7 g/min (102 g/h). Four cyclists performed an additional third test for reference in which only water was consumed. We employed (13)C magnetic resonance spectroscopy to determine liver and muscle glycogen concentrations before and after exercise. Expired breath was sampled during exercise to estimate whole body substrate use. After glucose and sucrose ingestion, liver glycogen levels did not show a significant decline after exercise (from 325 ± 168 to 345 ± 205 and 321 ± 177 to 348 ± 170 mmol/l, respectively; P > 0.05), with no differences between treatments. Muscle glycogen concentrations declined (from 101 ± 49 to 60 ± 34 and 114 ± 48 to 67 ± 34 mmol/l, respectively; P glycogen concentrations declined during exercise when only water was ingested. Both glucose and sucrose ingestion prevent liver glycogen depletion during prolonged endurance-type exercise. Sucrose ingestion does not preserve liver glycogen concentrations more than glucose ingestion. However, sucrose ingestion does increase whole body carbohydrate utilization compared with glucose ingestion. This trial was registered at https://www.clinicaltrials.gov as NCT02110836. Copyright © 2015 the American Physiological Society.

  16. The early alterations in some enzymatic activity, blood glucose and liver glycogen levels induced by atropine injection and whole

    International Nuclear Information System (INIS)

    Abdel-Fattah, K.I.; El-Sayed, N.M.; Abou-Safi, H.M.; Hussain, A.H.

    1999-01-01

    Detecting the early physiological and biochemical changes in the biological material after exposure to gamma irradiation is very helpful in the techniques of protection against radiation. The present work was designed for detecting the early changes in plasma phosphatases, transaminases, glucose and liver glycogen levels after irradiation and the role of atropine injected before irradiation on these parameters. Rats were divided into four groups: control. injected (i. m.) with atropine (0.5 mg/100 g B.Wt), irradiated at 6 Gy, and injected with atropine before irradiation. Plasma was collected at 1.3 and 5 hr after radiation exposure. Results showed that atropine exerted some amelioration during the first three hours, mainly, on acid phosphatase and GPT activities and on glucose and liver glycogen one hour only post irradiation. Generally, the limited radioprotective role of atropine is related, to its physiological mechanism in the body

  17. Glycogen metabolism in humans

    OpenAIRE

    Adeva-Andany, María M.; González-Lucán, Manuel; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Ameneiros-Rodríguez, Eva

    2016-01-01

    In the human body, glycogen is a branched polymer of glucose stored mainly in the liver and the skeletal muscle that supplies glucose to the blood stream during fasting periods and to the muscle cells during muscle contraction. Glycogen has been identified in other tissues such as brain, heart, kidney, adipose tissue, and erythrocytes, but glycogen function in these tissues is mostly unknown. Glycogen synthesis requires a series of reactions that include glucose entrance into the cell through...

  18. Virtual determination of liver and muscle glycogen obtained from fed rats and from 24-hour fasted rats

    Directory of Open Access Journals (Sweden)

    V.M.T.T. Trindidade et al

    2014-08-01

    Full Text Available Introduction: Glycogen is the storage polysaccharide of animals, composed by glucoseresidues forming a branched polymer. The liver glycogen metabolism and hepaticgluconeogenesis are important buffer systems of blood glucose in different physiological orpathological situations, such as, during a fast period. Fasting muscle glycogenolysis alsooccurs, however, the release of glucose into the bloodstream is negligible because themuscle doesn’t have the enzyme glucose-6-P phosphatase, which is present in the liver.Objectives: This panel presents a learning object, mediated by computer, which simulatesthe determination of liver and muscle glycogen obtained from fed rats and from 24-hourfasted rats Materials and Methods: At first, cartoons were planned in order to show themethodology procedures and biochemical fundamentals. The most representative imageswere selected, edited, organized in a scene menu and inserted into an animationdeveloped with the aid of the Adobe ® Flash 8 software. The validation of this object wasperformed by the students of Biochemistry I (Pharmacy-UFRGS from the secondsemester of 2009 until the second semester of 2013. Results and Discussion: Theanalysis of students' answers revealed that 83% of them attributed the excellence rate tothe navigation program, to the display format and to the learning help. Conclusion:Therefore, this learning object can be considered an adequate teaching resource as wellas an innovative support in the construction of theoretical and practical knowledge ofBiochemistry. Support: SEAD-UFRGSAvailable at: http://www.ufrgs.br/gcoeb/obtencaodosagemglicogenio/

  19. Curative effect of spleen homogenate against radiation injury to serum glucose, liver glycogen and plasma protein fractions in rats

    International Nuclear Information System (INIS)

    Roushdy, H.M.; Ibrahim, H.A.; Edrees, G.M.F.

    1984-01-01

    The influence of the spleen homogenate injection as a curative substance against gamma irradiation effects has been investigated in male albino rats. The parameters tested were, life span, serum glucose level, liver glycogen content, serum protein fractions and A/G ratio. The results obtained are as follows: Irradiated group showed 100% mortality over 22 days, this percentage dropped to 60% over 30 days for irradiated group received spleen homogenate treatment. Irradiated animals, recorded initial hyperglycaemia which diminished by time, whereas the liver glycogen concentration showed first to initially increase then to decrease abruptly. Treatment with spleen homogenate after irradiation ameliorated the magnitude of radiation induced hyperglycaemia and liver glycogen depletion. The serum Albumin/Globulin ratio decreased by irradiation due to the decrease in the serum albumin accompanied by an increase in the serum globulin content. This ratio could be restored towards its normal level in irradiated animals received spleen homogenate treatment. The data obtained suggests the possibility of using spleen homogenate for the treatment of accidental radiation syndrome

  20. Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage

    KAUST Repository

    Lavoie, Suzie

    2016-04-21

    Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage.

  1. Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage

    KAUST Repository

    Lavoie, Suzie; Steullet, Pascal; Kulak, Anita; Preitner, Frederic; Do, Kim Q.; Magistretti, Pierre J.

    2016-01-01

    Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage.

  2. Brain glycogen

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia....... In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies-it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic...... activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...

  3. Developmental changes of protein, RNA, DNA, lipid, and glycogen in the liver, skeletal muscle, and brain of the piglet

    International Nuclear Information System (INIS)

    Hakkarainen, J.

    1975-01-01

    A scheme for the sequential quantitative separation and determination of protein, RNA, DNA, lipid, and glycogen from rat-liver homogenate is modified for application to frozen tissues of the piglet. The biochemical methods, including the biuret method, used in the present investigation are described and thoroughly checked. The effects of freezing and storage on the recovery of major tissue constituents are recorded. The modified scheme is applied to the determination of protein, RNA, DNA, lipid, and glycogen in the liver, skeletal muscle, and brain of the developing piglet. Developmental changes for these major tissue constituents, including the biuret protein, are described with special reference to protein synthesis and physiology of growth at the cellular level from 45 days of foetal age to 35-42 days of postnatal age for liver and skeletal muscle, and from birth to 31-40 days of postnatal age for the cerebrum and cerebellum. The uniformly labelled amino acid, 14 C-L-leucine, is used to study protein synthesis. Developmental patterns of labelling of protein and lipid in the liver, skeletal muscle, cerebrum, and cerebellum of the piglet from birth up to the age of two weeks are described. The results of the methodological, developmental, and experimental studies are thoroughly discussed in the light of the relevant literature and compared with those obtained in developmental and experimental studies on rats and other mammal species. (author)

  4. Glycogen synthase kinase 3β promotes liver innate immune activation by restraining AMP-activated protein kinase activation.

    Science.gov (United States)

    Zhou, Haoming; Wang, Han; Ni, Ming; Yue, Shi; Xia, Yongxiang; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan

    2018-02-13

    Glycogen synthase kinase 3β (Gsk3β [Gsk3b]) is a ubiquitously expressed kinase with distinctive functions in different types of cells. Although its roles in regulating innate immune activation and ischaemia and reperfusion injuries (IRIs) have been well documented, the underlying mechanisms remain ambiguous, in part because of the lack of cell-specific tools in vivo. We created a myeloid-specific Gsk3b knockout (KO) strain to study the function of Gsk3β in macrophages in a murine liver partial warm ischaemia model. Compared with controls, myeloid Gsk3b KO mice were protected from IRI, with diminished proinflammatory but enhanced anti-inflammatory immune responses in livers. In bone marrow-derived macrophages, Gsk3β deficiency resulted in an early reduction of Tnf gene transcription but sustained increase of Il10 gene transcription on Toll-like receptor 4 stimulation in vitro. These effects were associated with enhanced AMP-activated protein kinase (AMPK) activation, which led to an accelerated and higher level of induction of the novel innate immune negative regulator small heterodimer partner (SHP [Nr0b2]). The regulatory function of Gsk3β on AMPK activation and SHP induction was confirmed in wild-type bone marrow-derived macrophages with a Gsk3 inhibitor. Furthermore, we found that this immune regulatory mechanism was independent of Gsk3β Ser9 phosphorylation and the phosphoinositide 3-kinase-Akt signalling pathway. In vivo, myeloid Gsk3β deficiency facilitated SHP upregulation by ischaemia-reperfusion in liver macrophages. Treatment of Gsk3b KO mice with either AMPK inhibitor or SHP small interfering RNA before the onset of liver ischaemia restored liver proinflammatory immune activation and IRI in these otherwise protected hosts. Additionally, pharmacological activation of AMPK protected wild-type mice from liver IRI, with reduced proinflammatory immune activation. Inhibition of the AMPK-SHP pathway by liver ischaemia was demonstrated in tumour resection

  5. Synthesis of erythrocyte membrane proteins in dispersed cells from fetal rat liver

    International Nuclear Information System (INIS)

    Kitagawa, Yasuo; Murakami, Akihiko; Sugimoto, Etsuro

    1984-01-01

    Protein synthesis in dispersed cells from fetal liver was studied by fluorography of SDS-polyacrylamide gel electrophoresis of a [ 35 S] methionine labeled cell lysate. Synthesis of several proteins with molecular weights ranging from 45,000 to 220,000 was observed during erythropoiesis in fetal liver. Some of these proteins were demonstrated to be erythrocyte membrane proteins because they were immunoprecipitated with antiserum against rat red blood cells and the immunoprecipitation was competitive with non-radioactive proteins solubilized from erythrocyte ghosts. The same antiserum caused agglutination of dispered cells from fetal liver. This supported the possibility that these proteins are translocated onto plasma membranes of the dispersed cells. (author)

  6. Effect of long-term intraperitoneal zinc administration on liver glycogen levels in diabetic rats subjected to acute forced swimming.

    Science.gov (United States)

    Bicer, Mursel; Gunay, Mehmet; Akil, Mustafa; Avunduk, Mustafa Cihat; Mogulkoc, Rasim; Baltaci, Abdulkerim Kasim

    2011-03-01

    This study aims to examine the effect of zinc administration on liver glycogen levels of rats in which diabetes was induced with streptozotocin and which were subjected to acute swimming exercise. The study was conducted on 80 adult Sprague-Dawley male rats, which were equally allocated to eight groups: group 1, general control; group 2, zinc-administrated control; group 3, zinc-administrated diabetic control; group 4, swimming control; group 5, zinc-administrated swimming; group 6, zinc-administrated diabetic swimming; group 7, diabetic swimming; group 8, diabetic control group. In order to induce diabetes, animals were injected with 40 mg/kg intraperitoneal (ip) streptozotocin. The injections were repeated in the same dose after 24 h. Animals which had blood glucose at or above 300 mg/dl 6 days after the last injections were accepted as diabetic. Zinc was administrated ip for 4 weeks as 6 mg/kg/day per rat. Hepatic tissue samples taken from the animals at the end of the study were fixed in 95% ethyl alcohol. Cross sections of 5 µm thickness, taken by the help of a microtome from the tissue samples buried in paraffin, were placed on a microscope slide and stained with periodic acid-Schiff and evaluated by light microscope. All microscopic images were transferred to a PC and assessed with the help of Clemex PE3.5 image analysis software. The lowest liver glycogen levels in the study were obtained in groups 3, 4, 6, 7, and 8. Liver glycogen levels in group 5 were higher than groups 3, 4, 6, 7, and 8, but lower than groups 1 and 2 (p swimming exercise were restored by zinc administration and that diabetes induced in rats prevented the protective effect of zinc.

  7. Fetal liver stromal cells promote hematopoietic cell expansion

    International Nuclear Information System (INIS)

    Zhou, Kun; Hu, Caihong; Zhou, Zhigang; Huang, Lifang; Liu, Wenli; Sun, Hanying

    2009-01-01

    Future application of hematopoietic stem and progenitor cells (HSPCs) in clinical therapies largely depends on their successful expansion in vitro. Fetal liver (FL) is a unique hematopoietic organ in which hematopoietic cells markedly expand in number, but the mechanisms involved remain unclear. Stromal cells (StroCs) have been suggested to provide a suitable cellular environment for in vitro expansion of HSPCs. In this study, murine StroCs derived from FL at E14.5, with a high level of Sonic hedgehog (Shh) and Wnt expression, were found to have an increased ability to support the proliferation of HSPCs. This effect was inhibited by blocking Shh signaling. Supplementation with soluble Shh-N promoted the proliferation of hematopoietic cells by activating Wnt signaling. Our findings suggest that FL-derived StroCs support proliferation of HSPCs via Shh inducing an autocrine Wnt signaling loop. The use of FL-derived StroCs and regulation of the Shh pathway might further enhance HPSC expansion.

  8. Morphology and morphometry of fetal liver at 16-26 weeks of gestation by magnetic resonance imaging: Comparison with embryonic liver at Carnegie stage 23.

    Science.gov (United States)

    Hamabe, Yui; Hirose, Ayumi; Yamada, Shigehito; Uwabe, Chigako; Okada, Tomohisa; Togashi, Kaori; Kose, Katsumi; Takakuwa, Tetsuya

    2013-06-01

    Normal liver growth was described morphologically and morphometrically using magnetic resonance imaging (MRI) data of human fetuses, and compared with embryonic liver to establish a normal reference chart for clinical use. MRI images from 21 fetuses at 16-26 weeks of gestation and eight embryos at Carnegie stage (CS)23 were investigated in the present study. Using the image data, the morphology of the liver as well as its adjacent organs was extracted and reconstructed three-dimensionally. Morphometry of fetal liver growth was performed using simple regression analysis. The fundamental morphology was similar in all cases of the fetal livers examined. The liver tended to grow along the transversal axis. The four lobes were clearly recognizable in the fetal liver but not in the embryonic liver. The length of the liver along the three axes, liver volume and four lobes correlated with the bodyweight (BW). The morphogenesis of the fetal liver on the dorsal and caudal sides was affected by the growth of the abdominal organs, such as the stomach, duodenum and spleen, and retroperitoneal organs, such as the right adrenal gland and right kidney. The main blood vessels such as inferior vena cava, portal vein and umbilical vein made a groove on the surface of the liver. Morphology of the fetal liver was different from that of the embryonic liver at CS23. The present data will be useful for evaluating the development of the fetal liver and the adjacent organs that affect its morphology. © 2012 The Japan Society of Hepatology.

  9. Radiation and Heat Stress Impact on Plasma Levels of Thyroid Hormones, Lipid Fractions, Glucose and Liver Glycogen in rats

    International Nuclear Information System (INIS)

    Abdel-Fattah, K.I.; Abou-Safi, H.M.

    2003-01-01

    Since Egypt is classified as a hot country, the present work has been directed to study the combined effect of heat stress and gamma radiation exposure on blood thyroid hormonal levels and some other parameters. Four groups of rats were served as: control, whole-body gamma irradiated (6Gy), exposed to ambient heat stress (38 C-40 C) and a group exposed to heat stress and irradiation. Four time intervals 1, 3, 5 and 7 days were determined for heat stress or exposure to heat followed by irradiation. Blood samples and liver specimens were taken at the end of each time interval in the third group and after one hour of irradiation in the second and fourth groups. To detect the radiation effects after the different periods of heat stress, plasma levels of thyroid hormones (T3 and T4), lipid fractions (triglycerides, total cholesterol, HDL- and LDL-cholesterol), glucose and liver glycogen content were determined. The results revealed that exposure to heat and ionizing radiation leads to a decrease in the levels of thyroid hormones, which was mostly pronounced in the T3 levels. Plasma glucose levels showed significant elevations in both, the heat-stressed group and the heat-treated then irradiated group. While, liver glycogen content exhibited similar elevations only during the 1st, 3 rd and 5 th days of heating followed by irradiation treatment as compared to the heat stressed group. Yet, it showed significant declines in comparison with both control and irradiated groups. Enormous increments in all determined plasma lipid fractions were induced by heat stress and / or gamma radiation

  10. Glycogen Storage Disease Type Ia in Canines: A Model for Human Metabolic and Genetic Liver Disease

    OpenAIRE

    Specht, Andrew; Fiske, Laurie; Erger, Kirsten; Cossette, Travis; Verstegen, John; Campbell-Thompson, Martha; Struck, Maggie B.; Lee, Young Mok; Chou, Janice Y.; Byrne, Barry J.; Correia, Catherine E.; Mah, Cathryn S.; Weinstein, David A.; Conlon, Thomas J.

    2011-01-01

    A canine model of Glycogen storage disease type Ia (GSDIa) is described. Affected dogs are homozygous for a previously described M121I mutation resulting in a deficiency of glucose-6-phosphatase-α. Metabolic, clinicopathologic, pathologic, and clinical manifestations of GSDIa observed in this model are described and compared to those observed in humans. The canine model shows more complete recapitulation of the clinical manifestations seen in humans including “lactic acidosis”, larger size,...

  11. Glycogen storage disease type Ia in canines: a model for human metabolic and genetic liver disease.

    Science.gov (United States)

    Specht, Andrew; Fiske, Laurie; Erger, Kirsten; Cossette, Travis; Verstegen, John; Campbell-Thompson, Martha; Struck, Maggie B; Lee, Young Mok; Chou, Janice Y; Byrne, Barry J; Correia, Catherine E; Mah, Cathryn S; Weinstein, David A; Conlon, Thomas J

    2011-01-01

    A canine model of Glycogen storage disease type Ia (GSDIa) is described. Affected dogs are homozygous for a previously described M121I mutation resulting in a deficiency of glucose-6-phosphatase-α. Metabolic, clinicopathologic, pathologic, and clinical manifestations of GSDIa observed in this model are described and compared to those observed in humans. The canine model shows more complete recapitulation of the clinical manifestations seen in humans including "lactic acidosis", larger size, and longer lifespan compared to other animal models. Use of this model in preclinical trials of gene therapy is described and briefly compared to the murine model. Although the canine model offers a number of advantages for evaluating potential therapies for GSDIa, there are also some significant challenges involved in its use. Despite these challenges, the canine model of GSDIa should continue to provide valuable information about the potential for generating curative therapies for GSDIa as well as other genetic hepatic diseases.

  12. Glycogen Storage Disease Type Ia in Canines: A Model for Human Metabolic and Genetic Liver Disease

    Directory of Open Access Journals (Sweden)

    Andrew Specht

    2011-01-01

    Full Text Available A canine model of Glycogen storage disease type Ia (GSDIa is described. Affected dogs are homozygous for a previously described M121I mutation resulting in a deficiency of glucose-6-phosphatase-α. Metabolic, clinicopathologic, pathologic, and clinical manifestations of GSDIa observed in this model are described and compared to those observed in humans. The canine model shows more complete recapitulation of the clinical manifestations seen in humans including “lactic acidosis”, larger size, and longer lifespan compared to other animal models. Use of this model in preclinical trials of gene therapy is described and briefly compared to the murine model. Although the canine model offers a number of advantages for evaluating potential therapies for GSDIa, there are also some significant challenges involved in its use. Despite these challenges, the canine model of GSDIa should continue to provide valuable information about the potential for generating curative therapies for GSDIa as well as other genetic hepatic diseases.

  13. Comparative retention of fission fragment 147Pm in regenerated and fetal liver on induction of chromosome aberrations in these cells

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Zheng Siying; Wang Liuyi; Yang Shujin

    1989-01-01

    The purpose of the present study is to ascertain comparative retention of fission fragment 147 Pm in regenerated and fetal liver on induction of chromosome aberrations in these cells. The results indicated that retention of 147 Pm in regenerated liver was about 700 times than in fetal liver. The cumulative absorption dose in regenerated liver was about 2.87 Gy, while in fetal liver-only 0.004 Gy. Under the same conditions, the incidence rate of chromosome aberrations in regenerated liver cells induced by 147 Pm was 50.2%, and in fetal liver cells-about 28.3%. It should be concluded that the radiosensitivity to 147 Pm was not uniform among the regenerated and fetal liver cells. The study suggested that fetal liver cells show to be more radiosensitive to 147 Pm than regenerated liver cells. Among the type of aberrations in both cells induced by 147 Pm, chromatid breakages were predominant, accompanied with a few chromosome breakages

  14. Effect of heavy metals on the level of vitamin E, total lipid and glycogen reserves in the liver of common carp (Cyprinus carpio L.

    Directory of Open Access Journals (Sweden)

    Vinodhini Rajamanickam

    2008-06-01

    Full Text Available The aim of this study is to examine some changes in the biochemical profile of the liver tissue of common carp (Cyprinus carpio L. exposed to a sublethal concentration of heavy metal mixture (cadmium, chromium, nickel and lead. The biochemical profile, specifically glycogen, total lipid and vitamin E content in the liver tissue was examined and compared to that of the control group. The exposed group showed a marked decline in glycogen and vitamin E reserves. Conversely an increase in total lipid in comparison to control was observed. The result reflects the sensitivity of these biochemical parameters to the effects of sublethal levels of combined heavy metals for this the widely consumed freshwater fish.

  15. TRANSPLANTATION OF CRYOPRESERVED FETAL LIVER CELLS SEEDED INTO MACROPOROUS ALGINATE-GELATIN SCAFFOLDS IN RATS WITH LIVER FAILURE

    Directory of Open Access Journals (Sweden)

    D. V. Grizay

    2015-01-01

    Full Text Available Aim. To study the therapeutic potential of cryopreserved fetal liver cells seeded into macroporous alginategelatin scaffolds after implantation to omentum of rats with hepatic failure.Materials and methods.Hepatic failure was simulated by administration of 2-acetyl aminofl uorene followed partial hepatectomy. Macroporous alginate-gelatin scaffolds, seeded with allogenic cryopreserved fetal liver cells (FLCs were implanted into rat omentum. To prevent from colonization of host cells scaffolds were coated with alginate gel shell. Serum transaminase activity, levels of albumin and bilirubin as markers of hepatic function were determined during 4 weeks after failure model formation and scaffold implantation. Morphology of liver and scaffolds after implantation were examined histologically. Results. Macroporous alginate-gelatin scaffolds after implantation to healthy rats were colonized by host cells. Additional formation of alginate gel shell around scaffolds prevented the colonization. Implantation of macroporous scaffolds seeded with cryopreserved rat FLCs and additionally coated with alginate gel shell into omentum of rats with hepatic failure resulted in signifi cant improvement of hepatospecifi c parameters of the blood serum and positive changes of liver morphology. The presence of cells with their extracellular matrix within the scaffolds was confi rmed after 4 weeks post implantation.Conclusion. The data above indicate that macroporous alginate-gelatin scaffolds coated with alginate gel shell are promising cell carriers for the development of bioengineered liver equivalents.

  16. Effect of D-tagatose on liver weight and glycogen content of rats

    NARCIS (Netherlands)

    Bär, A.; Lina, B.A.R.; Groot, D.M.G. de; Bie, B. de; Appel, M.J.

    1999-01-01

    D-Tagatose is an incompletely absorbed ketohexose (stereoisomer of D-fructose) which has potential as an energy-reduced alternative sweetener. In an earlier 90-day toxicity study, rats fed diets with 10, 15 and 20% D-tagatose exhibited increased liver weights, but no histopathological alterations.

  17. [13C] GC-C-IRMS analysis of methylboronic acid derivatives of glucose from liver glycogen after the ingestion of [13C] labeled tracers in rats.

    Science.gov (United States)

    Luengo, Catherine; Azzout-Marniche, Dalila; Fromentin, Claire; Piedcoq, Julien; Lemosquet, Sophie; Tomé, Daniel; Gaudichon, Claire

    2009-11-01

    We developed a complete method to measure low [(13)C] enrichments in glycogen. Fourteen rats were fed a control diet. Six of them also ingested either [U-(13)C] glucose (n=2) or a mixture of 20 [U-(13)C] amino acids (n=4). Hepatic glycogen was extracted, digested to glucose and purified on anion-cation exchange resins. After the optimization of methylboronic acid derivatization using GC-MS, [(13)C] enrichment of extracted glucose was measured by GC-C-IRMS. The accuracy was addressed by measuring the enrichment excess of a calibration curve, which observed values were in good agreement with the expected values (R=0.9979). Corrected delta values were -15.6+/-1.6 delta(13)C (per thousand) for control rats (n=8) and increased to -5 to 8 delta(13)C (per thousand) per thousand and 12-14 delta(13)C (per thousand) per thousand after the ingestion of [U-(13)C] amino acids or [U-(13)C] glucose as oral tracers, respectively. The method enabled the determination of dietary substrate transfer into glycogen. The sequestration of dietary glucose in liver glycogen 4 h after the meal was 35% of the ingested dose whereas the transfer of carbon skeletons from amino acids was only 0.25 to 1%.

  18. Sodium-Glucose Cotransporter 2 Inhibitor and a Low Carbohydrate Diet Affect Gluconeogenesis and Glycogen Content Differently in the Kidney and the Liver of Non-Diabetic Mice.

    Science.gov (United States)

    Atageldiyeva, Kuralay; Fujita, Yukihiro; Yanagimachi, Tsuyoshi; Mizumoto, Katsutoshi; Takeda, Yasutaka; Honjo, Jun; Takiyama, Yumi; Abiko, Atsuko; Makino, Yuichi; Haneda, Masakazu

    2016-01-01

    A low carbohydrate diet (LCHD) as well as sodium glucose cotransporter 2 inhibitors (SGLT2i) may reduce glucose utilization and improve metabolic disorders. However, it is not clear how different or similar the effects of LCHD and SGLT2i are on metabolic parameters such as insulin sensitivity, fat accumulation, and especially gluconeogenesis in the kidney and the liver. We conducted an 8-week study using non-diabetic mice, which were fed ad-libitum with LCHD or a normal carbohydrate diet (NCHD) and treated with/without the SGLT-2 inhibitor, ipragliflozin. We compared metabolic parameters, gene expression for transcripts related to glucose and fat metabolism, and glycogen content in the kidney and the liver among the groups. SGLT2i but not LCHD improved glucose excursion after an oral glucose load compared to NCHD, although all groups presented comparable non-fasted glycemia. Both the LCHD and SGLT2i treatments increased calorie-intake, whereas only the LCHD increased body weight compared to the NCHD, epididimal fat mass and developed insulin resistance. Gene expression of certain gluconeogenic enzymes was simultaneously upregulated in the kidney of SGLT2i treated group, as well as in the liver of the LCHD treated group. The SGLT2i treated groups showed markedly lower glycogen content in the liver, but induced glycogen accumulation in the kidney. We conclude that LCHD induces deleterious metabolic changes in the non-diabetic mice. Our results suggest that SGLT2i induced gluconeogenesis mainly in the kidney, whereas for LCHD it was predominantly in the liver.

  19. Route of administration of pentobarbital affects activity of liver glycogen phosphorylase

    DEFF Research Database (Denmark)

    Mikines, K J; Sonne, B; Richter, Erik

    1986-01-01

    pentobarbital (5 mg/100 g body wt) either intraperitoneally, as a slow intravenous infusion, or as an intravenous or intracardial bolus. Times from administration of barbiturate to sampling of the liver were 10 min, 10 min, 85 +/- 32 s (mean +/- SE), and 53 +/- 10 s, respectively. Phosphorylase a activity...... in % of total phosphorylase activity was 40 +/- 2, 56 +/- 4, 82 +/- 3, and 92 +/- 2, respectively, all significantly different. Thus the route of administration of pentobarbital affects the phosphorylase a activity and should be considered when evaluating this activity. This fact can only be partially explained...

  20. Measurement of the capability of DNA synthesis of human fetal liver cells by the assay of 3H-TdR incorporation

    International Nuclear Information System (INIS)

    Wang Tao; Ma Xiangrui; Wang Hongyun; Cao Xia

    1987-01-01

    The fetal liver is one of the major sites of hematopoiesis during gestation. Under erythropoietin (EPO) stimulation, in erythroid precusor cells of fetal liver, proliferation and differentiation occurred and function of metabolism was enhanced. The technique of 3 H-TdR incorporation was used to measure the function of fetal liver cellular DNA synthesis. As EPO concentration at the range of approximately 20 ∼ 100 mU/ml, the counts of 3 H-TdR incorporation into fetal liver cells increased. As the concentration of EPO increased, however, its incorporation counts are lower than that in bone marrow of either the fetal or the adult. It suggested that precusors of erythrocyte of fetal liver has differentiated to later phases with the progressive accumulation of mature cells, therefore, both proliferation and function of metabolism are more or less decreased respectively. Under EPO stimulation, however, precusor of erythroid of fetal liver can greatly increase potential effects on DNA synthesis

  1. Insights into Brain Glycogen Metabolism

    Science.gov (United States)

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-01-01

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. PMID:27402852

  2. [Inhibition of glycogen synthase kinase 3b activity regulates Toll-like receptor 4-mediated liver inflammation].

    Science.gov (United States)

    Ren, Feng; Zhang, Hai-yan; Piao, Zheng-fu; Zheng, Su-jun; Chen, Yu; Chen, De-xi; Duan, Zhong-ping

    2012-09-01

    To determine the mechanism underlying the therapeutic activities of glycogen synthase kinase 3b (GSK3b) against hepatic ischemia-reperfusion (H-IR) injury by investigating the inhibitive effects of GSK3b on inflammation mediated by Toll-like receptor 4 (TLR4). C57BL/6 male mice were subjected to 90 min of warm liver cephalad lobe ischemia, followed by reperfusion for various lengths of time. The mice were divided into three groups: the H-IR untreated model (control group), and the H-IR inflammation-induced models that received an intraperitoneal injection of purified lipopolysaccharide (LPS) endotoxin alone (inflammation group) or with pretreatment of the SB216763 GSK3b-specific inhibitor (intervention group). To create a parallel isolated cell system for detailed investigations of macrophages, marrow-derived stem cells were isolated from femurs of the H-IR control group of mice and used to derive primary macrophages. The cells were then divided into the same three groups as the whole mouse system: control, LPS-induced inflammation model, and inflammation model with SB216763 intervention. Differential expressions of inflammation-related proteins and genes were detected by Western blotting and real-time quantitative PCR, respectively. The phosphorylation levels of ERK, JNK and p38 MAPK were induced in liver at 1 h after reperfusion, but then steadily decreased and returned to baseline levels by 4 h after reperfusion. In addition, the phosphorylation levels of ERK and JNK were induced in macrophages at 15 min after LPS stimulation, while the phosphorylation level of p38 MAPK was induced at 1 h; SB216763 pretreatment suppressed the LPS-stimulated ERK, JNK and p38 phosphorylation in macrophages. In the mouse model, GSK3b activity was found to promote the gene expression of anti-inflammatory cytokine IL-10 (control: 0.21 ± 0.08, inflammation: 0.83 ± 0.21, intervention: 1.76 ± 0.67; F = 3.16, P = 0.027) but to significantly inhibit the gene expression of pro

  3. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells

    International Nuclear Information System (INIS)

    Hirose, Yoshikazu; Itoh, Tohru; Miyajima, Atsushi

    2009-01-01

    Hedgehog (Hh) signaling plays crucial roles in development and homeostasis of various organs. In the adult liver, it regulates proliferation and/or viability of several types of cells, particularly under injured conditions, and is also implicated in stem/progenitor cell maintenance. However, the role of this signaling pathway during the normal developmental process of the liver remains elusive. Although Sonic hedgehog (Shh) is expressed in the ventral foregut endoderm from which the liver derives, the expression disappears at the onset of the liver bud formation, and its possible recurrence at the later stages has not been investigated. Here we analyzed the activation and functional relevance of Hh signaling during the mouse fetal liver development. At E11.5, Shh and an activation marker gene for Hh signaling, Gli1, were expressed in Dlk + hepatoblasts, the fetal liver progenitor cells, and the expression was rapidly decreased thereafter as the development proceeded. In the culture of Dlk + hepatoblasts isolated from the E11.5 liver, activation of Hh signaling stimulated their proliferation and this effect was cancelled by a chemical Hh signaling inhibitor, cyclopamine. In contrast, hepatocyte differentiation of Dlk + hepatoblasts in vitro as manifested by the marker gene expression and acquisition of ammonia clearance activity was significantly inhibited by forced activation of Hh signaling. Taken together, these results demonstrate the temporally restricted manner of Hh signal activation and its role in promoting the hepatoblast proliferation, and further suggest that the pathway needs to be shut off for the subsequent hepatic differentiation of hepatoblasts to proceed normally.

  4. Type I Glycogen Storage Disease

    Science.gov (United States)

    ... the most common form of glycogen storage disease, accounting for 25% of all cases. It is an ... Links Videos Webinars About ALF OVERVIEW Programs About Liver Disease Ask the Experts People ALF ...

  5. Gene targeting and cloning in pigs using fetal liver derived cells.

    Science.gov (United States)

    Waghmare, Sanjeev K; Estrada, Jose; Reyes, Luz; Li, Ping; Ivary, Bess; Sidner, Richard A; Burlak, Chris; Tector, A Joseph

    2011-12-01

    Since there are no pig embryonic stem cells, pig genetic engineering is done in fetal fibroblasts that remain totipotent for only 3 to 5 wk. Nuclear donor cells that remain totipotent for longer periods of time would facilitate complicated genetic engineering in pigs. The goal of this study was to test the feasibility of using fetal liver-derived cells (FLDC) to perform gene targeting, and create a genetic knockout pig. FLDC were isolated and processed using a human liver stem cell protocol. Single copy α-1,3-galactosyl transferase knockout (GTKO) FLDCs were created using electroporation and neomycin resistant colonies were screened using PCR. Homozygous GTKO cells were created through loss of heterozygosity mutations in single GTKO FLDCs. Double GTKO FLDCs were used in somatic cell nuclear transfer (SCNT) to create GTKO pigs. FLDCs grew for more than 80 population doublings, maintaining normal karyotype. Gene targeting and loss of heterozygosity mutations produced homozygous GTKO FLDCs. FLDCs used in SCNT gave rise to homozygous GTKO pigs. FDLCs can be used in gene targeting and SCNT to produce genetically modified pigs. The increased life span in culture compared to fetal fibroblasts may facilitate genetic engineering in the pig. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model

    Energy Technology Data Exchange (ETDEWEB)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il [Hebrew University Hadassah Medical School, Jerusalem (Israel); Shoshani-Dror, Dana [Hebrew University Hadassah Medical School, Jerusalem (Israel); Guillemin, Claire [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Neeman-azulay, Meytal; Fudim, Liza [Hebrew University Hadassah Medical School, Jerusalem (Israel); Weksler-Zangen, Sarah [Diabetes Research Unit, Hebrew University Hadassah Medical School and Hospital, Jerusalem (Israel); Stodgell, Christopher J.; Miller, Richard K. [Department of Obstetrics and Gynecology, University of Rochester, Rochester, MN (United States); Ornoy, Asher [Hebrew University Hadassah Medical School, Jerusalem (Israel)

    2012-12-01

    High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy. Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and

  7. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model

    International Nuclear Information System (INIS)

    Ergaz, Zivanit; Shoshani-Dror, Dana; Guillemin, Claire; Neeman-azulay, Meytal; Fudim, Liza; Weksler-Zangen, Sarah; Stodgell, Christopher J.; Miller, Richard K.; Ornoy, Asher

    2012-01-01

    High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy. Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and

  8. Glycogen synthesis in glycogenin 1-deficient patients

    DEFF Research Database (Denmark)

    Krag, Thomas O.; Ruiz-Ruiz, Cristina; Vissing, John

    2017-01-01

    Context: Glycogen storage disease (GSD) type XV is a rare disease caused by mutations in the GYG1 gene that codes for the core molecule of muscle glycogen, glycogenin 1. Nonetheless, glycogen is present in muscles of glycogenin 1-deficient patients, suggesting an alternative for glycogen buildup....... A likely candidate is glycogenin 2, an isoform expressed in the liver and heart but not in healthy skeletal muscle. Objective: We wanted to investigate the formation of glycogen and changes in glycogen metabolism in patients with GSD type XV. Design, Setting, and Patients: Two patients with mutations...... in the GYG1 gene were investigated for histopathology, ultrastructure, and expression of proteins involved in glycogen synthesis and metabolism. Results: Apart from occurrence of polyglucosan (PG) bodies in few fibers, glycogen appeared normal in most cells, and the concentration was normal in patients...

  9. Dysregulation of the DNA Damage Response and KMT2A Rearrangement in Fetal Liver Hematopoietic Cells.

    Directory of Open Access Journals (Sweden)

    Mai Nanya

    Full Text Available Etoposide, a topoisomerase 2 (TOP2 inhibitor, is associated with the development of KMT2A (MLL-rearranged infant leukemia. An epidemiological study suggested that in utero exposure to TOP2 inhibitors may be involved in generation of KMT2A (MLL rearrangement. The present study examined the mechanism underlying the development of KMT2A (MLL-rearranged infant leukemia in response to in utero exposure to etoposide in a mouse model. Fetal liver hematopoietic stem cells were more susceptible to etoposide than maternal bone marrow mononuclear cells. Etoposide-induced Kmt2a breakage was detected in fetal liver hematopoietic stem cells using a newly developed chromatin immunoprecipitation (ChIP assay. Assessment of etoposide-induced chromosomal translocation by next-generation RNA sequencing (RNA-seq identified several chimeric fusion messenger RNAs that were generated by etoposide treatment. However, Kmt2a (Mll-rearranged fusion mRNA was detected in Atm-knockout mice, which are defective in the DNA damage response, but not in wild-type mice. The present findings suggest that in utero exposure to TOP2 inhibitors induces Kmt2a rearrangement when the DNA damage response is defective.

  10. Can glycogen be measured by in vivo neutron activation analysis?

    International Nuclear Information System (INIS)

    Sutcliffe, J.F.; Smith, A.H.; King, R.F.G.H.; Smith, M.A.

    1992-01-01

    The object of this note is to examine the feasibility of measuring liver glycogen using in vivo neutron activation analysis. The authors present equations which allow the mass of glycogen to be expressed in terms of the masses of oxygen, hydrogen, carbon and nitrogen. Using the most precise, published measurements of these elements, the standard deviation in the estimate of liver glycogen was 34 g. The magnitude of this error precluded observing changes in liver glycogen which are normally in the range 16 g to 72 g. However, this technique might be useful in detecting transient high concentrations of liver glycogen.(UK)

  11. Insulin induces a positive relationship between the rates of ATP and glycogen changes in isolated rat liver in presence of glucose; a 31P and 13C NMR study.

    Science.gov (United States)

    Baillet-Blanco, Laurence; Beauvieux, Marie-Christine; Gin, Henri; Rigalleau, Vincent; Gallis, Jean-Louis

    2005-11-21

    There is an emerging theory suggesting that insulin, which is known to be the predominant postprandial anabolic hormone, is also a major regulator of mitochondrial oxidative phosphorylation in human skeletal muscle. However, little is known about its effects in the liver. Since there is a theoretical relationship between glycogen metabolism and energy status, a simultaneous and continuous investigation of hepatic ATP and glycogen content was performed in intact and isolated perfused liver by 31P and 13C nuclear magnetic resonance (NMR) The hepatic rates of ATP and glycogen changes were evaluated with different concentrations of insulin and glucose during continuous and short-term supply. Liver from rats fed ad libitum were perfused with Krebs-Henseleit Buffer (KHB)(controls) or KHB containing 6 mM glucose, 30 mM glucose, insulin alone, insulin + 6 mM glucose, insulin + 30 mM glucose. In the control, glycogenolysis occurred at a rate of -0.53 +/- 0.021 % x min(-1) and ATP content decreased at a rate of -0.28 +/- 0.029 % x min(-1). In the absence of insulin, there was a close proportional relationship between the glycogen flux and the glucose concentration, whereas ATP rates never varied. With insulin + glucose, both glycogen and ATP rates were strongly related to the glucose concentration; the magnitude of net glycogen flux was linearly correlated to the magnitude of net ATP flux: flux(glycogen) = 72.543(fluxATP) + 172.08, R2 = 0.98. Only the co-infusion of 30 mM glucose and insulin led to (i) a net glycogen synthesis, (ii) the maintenance of the hepatic ATP content, and a strong positive correlation between their net fluxes. This has never previously been reported. The specific effect of insulin on ATP change is likely related to a rapid stimulation of the hepatic mitochondrial oxidative phosphorylation. We propose that variations in the correlation between rates of ATP and glycogen changes could be a probe for insulin resistance due to the action of substrates

  12. CONTENT OF GLYCOGEN IN LIVER AND KETOBODIES IN BLOOD OF JAPANESE QUAILS (COTURNIX COTURNIX JAPONICA DURING STARVATION ENVISAGED IN THE METHODS OF BALANCE EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    Petar Batsalov

    2006-12-01

    Full Text Available The biochemical indexes “glycogen in liver” and “ketones in blood” of 0-72 hours feed deprived (according to methods for balanced experiments Japanese quails with and without energy additives were determined. There were 2 groups of birds- 1-st without energy supplement, 2-nd- fed with 1 g. glucose per os (as 25% solution – twice in 24 hours. The levels of liver glycogen in all the food-deprived quails were signifi cantly lower from -6910 (12-th hour of starving-to 4960mg/kg (72 hour of starving compared to the levels of the same index in fed birds (11990 mg/kg tissue. In the birds receiving energy additive they were higher compared to those deprived of the additive throughout the experimental period. The content of ketones in blood of the control birds was 0.015 mmol/l. The same index increased to 0.027 mmol/l in the feed and energy additive deprived group after the 36 hour of starving, but in the group became energy support, the contents of ketones were lower for the whole period of starving. The energy additive (1g glucose/24 hours helped the maintenance of the energy metabolism during continuous food depriving of the experimental quails.

  13. Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow

    DEFF Research Database (Denmark)

    Potocnik, A J; Brakebusch, C; Fässler, R

    2000-01-01

    hematolymphoid differentiation potential in vitro and in fetal organ cultures but were unable to seed fetal and adult hematopoietic tissues. Adult beta1 integrin null HSCs isolated from mice carrying loxP-tagged beta1 integrin alleles and ablated for beta1 integrin expression by retroviral cre transduction......Homing of hematopoietic stem cells (HSCs) into hematopoietic organs is a prerequisite for the establishment of hematopoiesis during embryogenesis and after bone marrow transplantation. We show that beta1 integrin-deficient HSCs from the para-aortic splanchnopleura and the fetal blood had...

  14. Insulin induces a positive relationship between the rates of ATP and glycogen changes in isolated rat liver in presence of glucose; a 31P and 13C NMR study

    Directory of Open Access Journals (Sweden)

    Gin Henri

    2005-11-01

    Full Text Available Abstract Background There is an emerging theory suggesting that insulin, which is known to be the predominant postprandial anabolic hormone, is also a major regulator of mitochondrial oxidative phosphorylation in human skeletal muscle. However, little is known about its effects in the liver. Since there is a theoretical relationship between glycogen metabolism and energy status, a simultaneous and continuous investigation of hepatic ATP and glycogen content was performed in intact and isolated perfused liver by 31P and 13C nuclear magnetic resonance (NMR The hepatic rates of ATP and glycogen changes were evaluated with different concentrations of insulin and glucose during continuous and short-term supply. Results Liver from rats fed ad libitum were perfused with Krebs-Henseleit Buffer (KHB(controls or KHB containing 6 mM glucose, 30 mM glucose, insulin alone, insulin + 6 mM glucose, insulin + 30 mM glucose. In the control, glycogenolysis occurred at a rate of -0.53 ± 0.021 %·min-1 and ATP content decreased at a rate of -0.28 ± 0.029 %·min-1. In the absence of insulin, there was a close proportional relationship between the glycogen flux and the glucose concentration, whereas ATP rates never varied. With insulin + glucose, both glycogen and ATP rates were strongly related to the glucose concentration; the magnitude of net glycogen flux was linearly correlated to the magnitude of net ATP flux: fluxglycogen = 72.543(fluxATP + 172.08, R2 = 0.98. Conclusion Only the co-infusion of 30 mM glucose and insulin led to (i a net glycogen synthesis, (ii the maintenance of the hepatic ATP content, and a strong positive correlation between their net fluxes. This has never previously been reported. The specific effect of insulin on ATP change is likely related to a rapid stimulation of the hepatic mitochondrial oxidative phosphorylation. We propose that variations in the correlation between rates of ATP and glycogen changes could be a probe for insulin

  15. Highly proliferative primitive fetal liver hematopoietic stem cells are fueled by oxidative metabolic pathways

    Directory of Open Access Journals (Sweden)

    Javed K. Manesia

    2015-11-01

    Full Text Available Hematopoietic stem cells (HSCs in the fetal liver (FL unlike adult bone marrow (BM proliferate extensively, posing different metabolic demands. However, metabolic pathways responsible for the production of energy and cellular building blocks in FL HSCs have not been described. Here, we report that FL HSCs use oxygen dependent energy generating pathways significantly more than their BM counterparts. RNA-Seq analysis of E14.5 FL versus BM derived HSCs identified increased expression levels of genes involved in oxidative phosphorylation (OxPhos and the citric acid cycle (TCA. We demonstrated that FL HSCs contain more mitochondria than BM HSCs, which resulted in increased levels of oxygen consumption and reactive oxygen species (ROS production. Higher levels of DNA repair and antioxidant pathway gene expression may prevent ROS-mediated (genotoxicity in FL HSCs. Thus, we here for the first time highlight the underestimated importance of oxygen dependent pathways for generating energy and building blocks in FL HSCs.

  16. Fetal liver transplantation in 2 patients with acute leukaemia after total body irradiation

    International Nuclear Information System (INIS)

    Lucarelli, G.; Izzi, T.; Porcellini, A.; Delfini, C.; Galimberti, M.; Moretti, L.; Polchi, P.; Agostinelli, F.; Andreani, M.; Manna, M.; Dallapiccola, B.

    1982-01-01

    2 patients with acute leukaemia in relapse were transplanted with fetal liver cells following a conditioning regimen of cyclophosphamide (120 mg/kg) and total body irradiation (1000 r). Each patient achieved a remission with haematopoietic recovery that was rapid in one case and delayed in the other. In one case there was evidence of chimerism as demonstrated by the presence of the XYY karyotype of the donor fetus in 20 % of marrow metaphases, by the presence of double Y bodies in the peripheral blood, by the appearance of new HLA-antigens, and by red cell isoenzyme phenotypes of donor origin. In the second case there was prompt haemotopoietic recovery and the appearance of red cell isoenzyme phenotypes of donor origin. Survival was 153 and 30 d, respectively, and both patients died of interstitial pneumonia without evidence of graft versus host disease. (author)

  17. MEK kinase 1 activity is required for definitive erythropoiesis in the mouse fetal liver

    DEFF Research Database (Denmark)

    Bonnesen, Barbara; Ørskov, Cathrine; Rasmussen, Susanne

    2005-01-01

    for MEKK1 in definitive mouse erythropoiesis. Although Mekk1(DeltaKD) mice are alive and fertile on a 129 x C57/BL6 background, the frequency of Mekk1(DeltaKD) embryos that develop past embryonic day (E) 14.5 is dramatically reduced when backcrossed into the C57/BL6 background. At E13.5, Mekk1(Delta......KD) embryos have normal morphology but are anemic due to failure of definitive erythropoiesis. When Mekk1(DeltaKD) fetal liver cells were transferred to lethally irradiated wild-type hosts, mature red blood cells were generated from the mutant cells, suggesting that MEKK1 functions in a non......-cell-autonomous manner. Based on immunohistochemical and hemoglobin chain transcription analysis, we propose that the failure of definitive erythropoiesis is due to a deficiency in enucleation activity caused by insufficient macrophage-mediated nuclear DNA destruction....

  18. Long-lasting inhibitory effects of fetal liver mesenchymal stem cells on T-lymphocyte proliferation.

    Directory of Open Access Journals (Sweden)

    Massimo Giuliani

    Full Text Available Human bone marrow mesenchymal stem cells (BM-MSC are multipotent progenitor cells that have transient immunomodulatory properties on Natural Killer (NK cells, Dendritic Cells (DC, and T cells. This study compared the use of MSC isolated from bone marrow and fetal liver (FL-MSC to determine which displayed the most efficient immunosuppressive effects on T cell activation. Although both types of MSC exhibit similar phenotype profile, FL-MSC displays a much more extended in vitro life-span and immunomodulatory properties. When co-cultured with CD3/CD28-stimulated T cells, both BM-MSC and FL-MSC affected T cell proliferation by inhibiting their entry into the cell cycle, by inducing the down-regulation of phospho-retinoblastoma (pRb, cyclins A and D1, as well as up-regulating p27(kip1 expression. The T cell inhibition by MSC was not due to the soluble HLA-G5 isoform, but to the surface expression of HLA-G1, as shown by the need of cell-cell contact and by the use of neutralizing anti-HLA-G antibodies. To note, in a HLA-G-mediated fashion, MSC facilitated the expansion of a CD4(low/CD8(low T subset that had decreased secretion of IFN-γ, and an induced secretion of the immunomodulatory cytokine IL-10. Because of their longer lasting in vitro immunosuppressive properties, mainly mediated by HLA-G, and their more efficient induction of IL-10 production and T cell apoptosis, fetal liver MSC could be considered a new tool for MSC therapy to prevent allograft rejection.

  19. Organ-Specific Gene Expression Changes in the Fetal Liver and Placenta in Response to Maternal Folate Depletion

    Directory of Open Access Journals (Sweden)

    Jill A. McKay

    2016-10-01

    Full Text Available Growing evidence supports the hypothesis that the in utero environment can have profound implications for fetal development and later life offspring health. Current theory suggests conditions experienced in utero prepare, or “programme”, the fetus for its anticipated post-natal environment. The mechanisms responsible for these programming events are poorly understood but are likely to involve gene expression changes. Folate is essential for normal fetal development and inadequate maternal folate supply during pregnancy has long term adverse effects for offspring. We tested the hypothesis that folate depletion during pregnancy alters offspring programming through altered gene expression. Female C57BL/6J mice were fed diets containing 2 mg or 0.4 mg folic acid/kg for 4 weeks before mating and throughout pregnancy. At 17.5 day gestation, genome-wide gene expression was measured in male fetal livers and placentas. In the fetal liver, 989 genes were expressed differentially (555 up-regulated, 434 down-regulated in response to maternal folate depletion, with 460 genes expressed differentially (250 up-regulated, 255 down-regulated in the placenta. Only 25 differentially expressed genes were common between organs. Maternal folate intake during pregnancy influences fetal gene expression in a highly organ specific manner which may reflect organ-specific functions.

  20. Organ-Specific Gene Expression Changes in the Fetal Liver and Placenta in Response to Maternal Folate Depletion.

    Science.gov (United States)

    McKay, Jill A; Xie, Long; Adriaens, Michiel; Evelo, Chris T; Ford, Dianne; Mathers, John C

    2016-10-22

    Growing evidence supports the hypothesis that the in utero environment can have profound implications for fetal development and later life offspring health. Current theory suggests conditions experienced in utero prepare, or "programme", the fetus for its anticipated post-natal environment. The mechanisms responsible for these programming events are poorly understood but are likely to involve gene expression changes. Folate is essential for normal fetal development and inadequate maternal folate supply during pregnancy has long term adverse effects for offspring. We tested the hypothesis that folate depletion during pregnancy alters offspring programming through altered gene expression. Female C57BL/6J mice were fed diets containing 2 mg or 0.4 mg folic acid/kg for 4 weeks before mating and throughout pregnancy. At 17.5 day gestation, genome-wide gene expression was measured in male fetal livers and placentas. In the fetal liver, 989 genes were expressed differentially (555 up-regulated, 434 down-regulated) in response to maternal folate depletion, with 460 genes expressed differentially (250 up-regulated, 255 down-regulated) in the placenta. Only 25 differentially expressed genes were common between organs. Maternal folate intake during pregnancy influences fetal gene expression in a highly organ specific manner which may reflect organ-specific functions.

  1. Gestational exposure to BDE-99 produces toxicity through upregulation of CYP isoforms and ROS production in the fetal rat liver.

    Science.gov (United States)

    Blanco, Jordi; Mulero, Miquel; Domingo, José L; Sánchez, Domènec J

    2012-05-01

    On gestation day (GD) 6 to GD 19, pregnant Sprague Dawley rats were orally exposed to 0, 0.5, 1, and 2 mg/kg/day to one of the most prevalent polybrominated diphenyl ethers congeners found in humans, 2,2',4,4',5-pentaBDE (BDE-99). All dams were euthanized on GD 20, and live fetuses were evaluated for sex, body weight, and external, internal, and skeletal malformations and developmental variations. The liver from one fetus of each litter was excised for the evaluation of oxidative stress markers and the messenger RNA expression of multiple cytochrome P450 (CYP) isoforms. Exposure to BDE-99 during the gestational period produced delayed ossification, slight hypertrophy of the heart, and enlargement of the liver in fetuses. A transplacental effect of BDE-99, evidenced by the activation of nuclear hormones receptors that induce the upregulation of CYP1A1, CYP1A2, CYP2B1, and CYP3A2 isoforms, was also found in fetal liver. These isoforms are correlated with the activity level of the enzyme catalase and the levels of thiobarbituric acid reactive substances. However, teratogenic effects from BDE-99 exposure were not observed. Clear signs of embryo/fetal toxicity, due to a possible hormonal disruption, were evidenced by a large increase in the CYP system and the production of reactive oxygen species in fetal liver.

  2. Biomarker for Glycogen Storage Diseases

    Science.gov (United States)

    2017-07-03

    Fructose Metabolism, Inborn Errors; Glycogen Storage Disease; Glycogen Storage Disease Type I; Glycogen Storage Disease Type II; Glycogen Storage Disease Type III; Glycogen Storage Disease Type IV; Glycogen Storage Disease Type V; Glycogen Storage Disease Type VI; Glycogen Storage Disease Type VII; Glycogen Storage Disease Type VIII

  3. Effects of intrauterine growth restriction during late pregnancy on the cell apoptosis and related gene expression in ovine fetal liver.

    Science.gov (United States)

    Liu, Yingchun; Ma, Chi; Li, Hui; Li, Lingyao; Gao, Feng; Ao, Changjin

    2017-03-01

    This study investigated the effect of intrauterine growth restriction (IUGR) during late pregnancy on the cell apoptosis and related gene expression in ovine fetal liver. Eighteen time-mated Mongolian ewes with singleton fetuses were allocated to three groups at d 90 of pregnancy: Restricted Group 1 (RG1, 0.18 MJ ME kg BW -0.75  d -1 , n = 6), Restricted Group 2 (RG2, 0.33 MJ ME kg BW -0.75  d -1 , n = 6) and a Control Group (CG, ad libitum, 0.67 MJ ME kg BW -0.75  d -1 , n = 6). Fetuses were recovered at slaughter on d 140. Fetal liver weight, DNA content and protein/DNA ratio, proliferation index, cytochrome c, activities of Caspase-3, 8, and 9 were examined, along with relative expression of genes related to apoptosis. Fetuses in both restricted groups exhibited decreased BW, hepatic weight, DNA content, and protein/DNA ratio when compared to CG (P restricted groups (P  0.05). Hepatic expression of gene related to apoptosis showed reduced protein 21 (P21), B-cell lymphoma 2 (Bcl-2) and apoptosis antigen 1 ligand (FasL) expression in RG1 and RG2 (P < 0.05). In contrast, the increased hepatic expression of protein 53 (P53), Bcl-2 associated X protein (Bax) and apoptosis antigen 1 (Fas) in both IUGR fetuses were found (P < 0.05). These results indicate that the fetal hepatocyte proliferation were arrested in G1 cell cycle, and the fetal hepatocyte apoptosis was sensitive to the IUGR resulted from maternal undernutrition. The cell apoptosis in IUGR fetal liver were the potential mechanisms for its retarded proliferation and impaired development. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Clinical study of fetal liver transplantation in treatment of four cases of accidental or therapeutic acute radiation sickness

    International Nuclear Information System (INIS)

    1989-01-01

    This report summarized the clinical experience of fetal liver transplantation (FLT) in the medical handling of accidental (case 1) or therapeutic (cases 2-4) acute radiation sickness of severe haemopoietic form. In addition to receiving 80 mg/kg of cyclophosphamide, cases 2, 3 and 4 were exposed to total body single irradiation of 5.5, 5.0 and 5.0 Gy, respectively; while case 1 was exposed to whole body irradiation of 5.2 Gy only. The total number of nucleated fetal liver cells transplanted was 2.26-4.1 x 10 8 /kg. Only 2-5% of peripheral blood cells of cases 2, 3 and 4 were found to have allogeneic marker. The author points out that FLT may be beneficial in those cases of accidental irradiation or patients with acute leukemia when there were no HLA-identical bone marrow donors available

  5. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

    Science.gov (United States)

    Woodman, Andrew G; Mah, Richard; Keddie, Danae; Noble, Ronan M N; Panahi, Sareh; Gragasin, Ferrante S; Lemieux, Hélène; Bourque, Stephane L

    2018-06-01

    Prenatal iron deficiency alters fetal developmental trajectories, which results in persistent changes in organ function. Here, we studied the effects of prenatal iron deficiency on fetal kidney and liver mitochondrial function. Pregnant Sprague-Dawley rats were fed partially or fully iron-restricted diets to induce a state of moderate or severe iron deficiency alongside iron-replete control rats. We assessed mitochondrial function via high-resolution respirometry and reactive oxygen species generation via fluorescence microscopy on gestational d 21. Hemoglobin levels were reduced in dams in the moderate (-31%) and severe groups (-54%) compared with controls, which was accompanied by 55% reductions in fetal hemoglobin levels in both moderate and severe groups versus controls. Male iron-deficient kidneys exhibited globally reduced mitochondrial content and respiration, as well as increased cytosolic superoxide and decreased NO. Female iron-deficient kidneys exhibited complex II down-regulation and increased mitochondrial oxidative stress. Male iron-deficient livers exhibited reduced complex IV respiration and increased cytosolic superoxide, whereas female liver tissues exhibited no alteration in oxidant levels or mitochondrial function. These findings indicate that prenatal iron deficiency causes changes in mitochondrial content and function as well as oxidant status in a sex- and organ-dependent manner, which may be an important mechanism that underlies the programming of cardiovascular disease.-Woodman, A. G., Mah, R., Keddie, D., Noble, R. M. N., Panahi, S., Gragasin, F. S., Lemieux, H., Bourque, S. L. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

  6. Protection of lethally irradiated mice with allogeneic fetal liver cells: influence of irradiation dose on immunologic reconstitution

    International Nuclear Information System (INIS)

    Tulunay, O.; Good, R.A.; Yunis, E.J.

    1975-01-01

    After lethal irradiation long-lived, immunologically vigorous C3Hf mice were produced by treatment with syngeneic fetal liver cells or syngeneic newborn or adult spleen cells. Treatment of lethally irradiated mice with syngeneic or allogeneic newborn thymus cells or allogeneic newborn or adult spleen cells regularly led to fatal secondary disease or graft-versus-host reactions. Treatment of the lethally irradiated mice with fetal liver cells regularly yielded long-lived, immunologically vigorous chimeras. The introduction of the fetal liver cells into the irradiated mice appeared to be followed by development of immunological tolerance of the donor cells. The findings suggest that T-cells at an early stage of differentiation are more susceptible to tolerance induction than are T-lymphocytes at later stages of differentiation. These investigations turned up a perplexing paradox which suggests that high doses of irradiation may injure the thymic stroma, rendering it less capable of supporting certain T-cell populations in the peripheral lymphoid tissue. Alternatively, the higher and not the lower dose of irradiation may have eliminated a host cell not readily derived from fetal liver precursors which represents an important helper cell in certain cell-mediated immune functions, e.g., graft-versus-host reactions, but which is not important in others, e.g., allograft rejections. The higher dose of lethal irradiation did not permit development or maintenance of a population of spleen cells that could initiate graft-versus-host reactions but did permit the development of a population of donor cells capable of achieving vigorous allograft rejection

  7. Brain glycogen in health and disease.

    Science.gov (United States)

    Duran, Jordi; Guinovart, Joan J

    2015-12-01

    Glycogen is present in the brain at much lower concentrations than in muscle or liver. However, by characterizing an animal depleted of brain glycogen, we have shown that the polysaccharide plays a key role in learning capacity and in activity-dependent changes in hippocampal synapse strength. Since glycogen is essentially found in astrocytes, the diverse roles proposed for this polysaccharide in the brain have been attributed exclusively to these cells. However, we have demonstrated that neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. However, these cells can store only minute amounts of glycogen, since the progressive accumulation of this molecule leads to neuronal loss. Loss-of-function mutations in laforin and malin cause Lafora disease. This condition is characterized by the presence of high numbers of insoluble polyglucosan bodies, known as Lafora bodies, in neuronal cells. Our findings reveal that the accumulation of this aberrant glycogen accounts for the neurodegeneration and functional consequences, as well as the impaired autophagy, observed in models of this disease. Similarly glycogen synthase is responsible for the accumulation of corpora amylacea, which are polysaccharide-based aggregates present in the neurons of aged human brains. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism is important under stress conditions and that neuronal glycogen accumulation contributes to neurodegenerative diseases and to aging-related corpora amylacea formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Efficacy of vitamins a and or E as antioxidants against serum glucose, liver glycogen and lipid discrepancy induced by gamma radiation during the estrus cycle of rats

    International Nuclear Information System (INIS)

    Abou-Safi, H.M.; Hussein, A.H.; El-Sayed, N.M.

    1999-01-01

    This work is directed to study the role of vitamins A and E treatment solely. or in combination against gamma-radiation effects during pro-estrus stage stage on serum glucose, liver content of glycogen, total and lipid fractions (triglycerides, total cholesterol, HDL-and LDL- cholesterol) in serum measured during the estrus stage of the rat estrus cycle. Animals were divided into six groups: untreated control, injected with sesame oil as a vehicle for vitamins injection (i.p.) whole body gamma-irradiated (6 GY), injected with vitamin A Two hours before irradiation, irradiated then injected after one hour with vitamin E, and injected with vitamins A and E pre- and post irradiation. The results demonstrated that irradiation induced significant elevations in the levels of all the measured parameters except in HDL-cholesterol. BOth vitamins ameliorated the recorded elevations during the estrus stage. The combined treatment with vitamins A and E reflected a potent harmony between protective roles of these two antioxidants pre- and post irradiation respectively, that normalized the levels of the measured parameters. The authors suggest that vitamins A and E treatment could enhance and reinforce the natural endogenous defences (steroids, particulary E 2 ) in the body against gamma irradiation and/or other environmental pollutants causing lipid peroxidation, especially during the period of ovulation. Moreover, it is worthy to consider this treatment as a hypolipidemic agent for patients with obesity, atherosclerosis and coronary artery diseases

  9. Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development.

    Directory of Open Access Journals (Sweden)

    Keith M Godfrey

    Full Text Available Among primates, human neonates have the largest brains but also the highest proportion of body fat. If placental nutrient supply is limited, the fetus faces a dilemma: should resources be allocated to brain growth, or to fat deposition for use as a potential postnatal energy reserve? We hypothesised that resolving this dilemma operates at the level of umbilical blood distribution entering the fetal liver. In 381 uncomplicated pregnancies in third trimester, we measured blood flow perfusing the fetal liver, or bypassing it via the ductus venosus to supply the brain and heart using ultrasound techniques. Across the range of fetal growth and independent of the mother's adiposity and parity, greater liver blood flow was associated with greater offspring fat mass measured by dual-energy X-ray absorptiometry, both in the infant at birth (r = 0.43, P<0.001 and at age 4 years (r = 0.16, P = 0.02. In contrast, smaller placentas less able to meet fetal demand for essential nutrients were associated with a brain-sparing flow pattern (r = 0.17, p = 0.02. This flow pattern was also associated with a higher degree of shunting through ductus venosus (P = 0.04. We propose that humans evolved a developmental strategy to prioritize nutrient allocation for prenatal fat deposition when the supply of conditionally essential nutrients requiring hepatic inter-conversion is limited, switching resource allocation to favour the brain if the supply of essential nutrients is limited. Facilitated placental transfer mechanisms for glucose and other nutrients evolved in environments less affluent than those now prevalent in developed populations, and we propose that in circumstances of maternal adiposity and nutrient excess these mechanisms now also lead to prenatal fat deposition. Prenatal developmental influences play important roles in the human propensity to deposit fat.

  10. Investigation and management of the hepatic glycogen storage diseases.

    Science.gov (United States)

    Bhattacharya, Kaustuv

    2015-07-01

    The glycogen storage diseases (GSD) comprise a group of disorders that involve the disruption of metabolism of glycogen. Glycogen is stored in various organs including skeletal muscle, the kidneys and liver. The liver stores glycogen to supply the rest of the body with glucose when required. Therefore, disruption of this process can lead to hypoglycaemia. If glycogen is not broken down effectively, this can lead to hepatomegaly. Glycogen synthase deficiency leads to impaired glycogen synthesis and consequently the liver is small. Glycogen brancher deficiency can lead to abnormal glycogen being stored in the liver leading to a quite different disorder of progressive liver dysfunction. Understanding the physiology of GSD I, III, VI and IX guides dietary treatments and the provision of appropriate amounts and types of carbohydrates. There has been recent re-emergence in the literature of the use of ketones in therapy, either in the form of the salt D,L-3-hydroxybutyrate or medium chain triglyceride (MCT). High protein diets have also been advocated. Alternative waxy maize based starches seem to show promising early data of efficacy. There are many complications of each of these disorders and they need to be prospectively surveyed and managed. Liver and kidney transplantation is still indicated in severe refractory disease.

  11. Introduction to the Thematic Minireview Series: Brain glycogen metabolism.

    Science.gov (United States)

    Carlson, Gerald M; Dienel, Gerald A; Colbran, Roger J

    2018-05-11

    The synthesis of glycogen allows for efficient intracellular storage of glucose molecules in a soluble form that can be rapidly released to enter glycolysis in response to energy demand. Intensive studies of glucose and glycogen metabolism, predominantly in skeletal muscle and liver, have produced innumerable insights into the mechanisms of hormone action, resulting in the award of several Nobel Prizes over the last one hundred years. Glycogen is actually present in all cells and tissues, albeit at much lower levels than found in muscle or liver. However, metabolic and physiological roles of glycogen in other tissues are poorly understood. This series of Minireviews summarizes what is known about the enzymes involved in brain glycogen metabolism and studies that have linked glycogen metabolism to multiple brain functions involving metabolic communication between astrocytes and neurons. Recent studies unexpectedly linking some forms of epilepsy to mutations in two poorly understood proteins involved in glycogen metabolism are also reviewed. © 2018 Carlson et al.

  12. Disruption of polyubiquitin gene Ubc leads to defective proliferation of hepatocytes and bipotent fetal liver epithelial progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyejin; Yoon, Min-Sik; Ryu, Kwon-Yul, E-mail: kyryu@uos.ac.kr

    2013-06-07

    Highlights: •Proliferation capacity of Ubc{sup −/−} FLCs was reduced during culture in vitro. •Ubc is required for proliferation of both hepatocytes and bipotent FLEPCs. •Bipotent FLEPCs exhibit highest Ubc transcription and proliferation capacity. •Cell types responsible for Ubc{sup −/−} fetal liver developmental defect were identified. -- Abstract: We have previously demonstrated that disruption of polyubiquitin gene Ubc leads to mid-gestation embryonic lethality most likely due to a defect in fetal liver development, which can be partially rescued by ectopic expression of Ub. In a previous study, we assessed the cause of embryonic lethality with respect to the fetal liver hematopoietic system. We confirmed that Ubc{sup −/−} embryonic lethality could not be attributed to impaired function of hematopoietic stem cells, which raises the question of whether or not FLECs such as hepatocytes and bile duct cells, the most abundant cell types in the liver, are affected by disruption of Ubc and contribute to embryonic lethality. To answer this, we isolated FLCs from E13.5 embryos and cultured them in vitro. We found that proliferation capacity of Ubc{sup −/−} cells was significantly reduced compared to that of control cells, especially during the early culture period, however we did not observe the increased number of apoptotic cells. Furthermore, levels of Ub conjugate, but not free Ub, decreased upon disruption of Ubc expression in FLCs, and this could not be compensated for by upregulation of other poly- or mono-ubiquitin genes. Intriguingly, the highest Ubc expression levels throughout the entire culture period were observed in bipotent FLEPCs. Hepatocytes and bipotent FLEPCs were most affected by disruption of Ubc, resulting in defective proliferation as well as reduced cell numbers in vitro. These results suggest that defective proliferation of these cell types may contribute to severe reduction of fetal liver size and potentially mid

  13. Glycogen dynamics of crucian carp (Carassius carassius) in prolonged anoxia.

    Science.gov (United States)

    Vornanen, Matti; Haverinen, Jaakko

    2016-12-01

    Mobilization of glycogen stores was examined in the anoxic crucian carp (Carassius carassius Linnaeus). Winter-acclimatized fish were exposed to anoxia for 1, 3, or 6 weeks at 2 °C, and changes in the size of glycogen deposits were followed. After 1 week of anoxia, a major part of the glycogen stores was mobilized in liver (79.5 %) and heart (75.6 %), and large decreases occurred in gill (46.7 %) and muscle (45.1 %). Brain was an exception in that its glycogen content remained unchanged. The amount of glycogen degraded during the first anoxic week was sufficient for the anaerobic ethanol production for more than 6 weeks of anoxia. After 3 and 6 weeks of anoxia, there was little further degradation of glycogen in other tissues except the brain where the stores were reduced by 30.1 and 49.9 % after 3 and 6 weeks of anoxia, respectively. One week of normoxic recovery following the 6-week anoxia was associated with a complete replenishment of the brain glycogen and partial recovery of liver, heart, and gill glycogen stores. Notably, the resynthesis of glycogen occurred at the expense of the existing energy reserves of the body in fasting fish. These findings indicate that in crucian carp, glycogen stores are quickly mobilized after the onset of anoxia, with the exception of the brain whose glycogen stores may be saved for putative emergency situations.

  14. Prenatal MRI fetal lung volumes and percent liver herniation predict pulmonary morbidity in congenital diaphragmatic hernia (CDH).

    Science.gov (United States)

    Zamora, Irving J; Olutoye, Oluyinka O; Cass, Darrell L; Fallon, Sara C; Lazar, David A; Cassady, Christopher I; Mehollin-Ray, Amy R; Welty, Stephen E; Ruano, Rodrigo; Belfort, Michael A; Lee, Timothy C

    2014-05-01

    The purpose of this study was to determine whether prenatal imaging parameters are predictive of postnatal CDH-associated pulmonary morbidity. The records of all neonates with CDH treated from 2004 to 2012 were reviewed. Patients requiring supplemental oxygen at 30 days of life (DOL) were classified as having chronic lung disease (CLD). Fetal MRI-measured observed/expected total fetal lung volume (O/E-TFLV) and percent liver herniation (%LH) were recorded. Receiver operating characteristic (ROC) curves and multivariate regression were applied to assess the prognostic value of O/E-TFLV and %LH for development of CLD. Of 172 neonates with CDH, 108 had fetal MRIs, and survival was 76%. 82% (89/108) were alive at DOL 30, 46 (52%) of whom had CLD. Neonates with CLD had lower mean O/E-TFLV (30 vs.42%; p=0.001) and higher %LH (21.3±2.8 vs.7.1±1.8%; p20% (AUC=0.78; p20% were highly associated with indicators of long-term pulmonary sequelae. On multivariate analysis, %LH was the strongest predictor of CLD in patients with CDH (OR: 10.96, 95%CI: 2.5-48.9, p=0.002). Prenatal measurement of O/E-TFLV and %LH is predictive of CDH pulmonary morbidity and can aid in establishing parental expectations of postnatal outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Enhancement of the grafting efficiency by the new method of fetal liver-bone marrow scheduled transplantation

    International Nuclear Information System (INIS)

    Xiang Yingsong; Yang Rujun; Yang Ping; Cai Jianming; Min Rui

    2000-01-01

    To enhance the grafting efficiency of bone marrow transplantation, lethally Irradiated recipient Kunming mice were transplantation with fetal liver-bone marrow scheduled transplantation. (FL-BMST) The numbers of WBC, nucleated cells were near to normal level 17 d after irradiation in FL-BMST group transplantation with 1 x 10 6 bone marrow cells, the indexes of CFU-E, CFU-GM, CFU-F, CFU-S, were returned to normal; the degree of GVHD in the FL-BMST group was slighter than that in sing bone marrow transplantation group; and the survival rate of mice was 60%, which was significantly higher than that of routine single bone marrow transplantation group. 'Niches' vacated each time could be fully used and be improved, be increased by fetal liver-bone marrow scheduled transplantation, so the homing of stem cells was increased, and the number of transplanted bone marrow cells could be decreased. So this new method was a better method than routine bone singe marrow transplantation

  16. Effects of hypoxia on ionic regulation, glycogen utilization and antioxidative ability in the gills and liver of the aquatic air-breathing fish Trichogaster microlepis.

    Science.gov (United States)

    Huang, Chun-Yen; Lin, Hui-Chen; Lin, Cheng-Huang

    2015-01-01

    We examined the hypothesis that Trichogaster microlepis, a fish with an accessory air-breathing organ, uses a compensatory strategy involving changes in both behavior and protein levels to enhance its gas exchange ability. This compensatory strategy enables the gill ion-regulatory metabolism to maintain homeostasis during exposure to hypoxia. The present study aimed to determine whether ionic regulation, glycogen utilization and antioxidant activity differ in terms of expression under hypoxic stresses; fish were sampled after being subjected to 3 or 12h of hypoxia and 12h of recovery under normoxia. The air-breathing behavior of the fish increased under hypoxia. No morphological modification of the gills was observed. The expression of carbonic anhydrase II did not vary among the treatments. The Na(+)/K(+)-ATPase enzyme activity did not decrease, but increases in Na(+)/K(+)-ATPase protein expression and ionocyte levels were observed. The glycogen utilization increased under hypoxia as measured by glycogen phosphorylase protein expression and blood glucose level, whereas the glycogen content decreased. The enzyme activity of several components of the antioxidant system in the gills, including catalase, glutathione peroxidase, and superoxidase dismutase, increased in enzyme activity. Based on the above data, we concluded that T. microlepis is a hypoxia-tolerant species that does not exhibit ion-regulatory suppression but uses glycogen to maintain energy utilization in the gills under hypoxic stress. Components of the antioxidant system showed increased expression under the applied experimental treatments. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Volume I. Glycogen: A historical overview, an adjunct to thesis. Volume II. Non-glucose components of glycogen

    International Nuclear Information System (INIS)

    Kirkman, B.R.

    1988-01-01

    Investigations have been carried out on three non-glucose components of native glycogen: protein, glucosamine, and phosphate. The protein, glycogenin, appears to serve as the primer upon which new molecules of glycogen are synthesized. When cell extracts are incubated with ( 14 C)UDPG, ( 14 C)glucose becomes transferred onto pre-existing chains of alpha-1,4 linked glucose associated with free glycogenin. The transferase and glycogenin remain associated during various purification steps. Liver glycogen appears to contain less than 0.02% protein which may correspond to the presence of one molecule of glycogenin (37 kDa) per alpha particle of liver glycogen. The core beta particle within each alpha particle may be synthesized upon glycogenin, while the remaining 20-40 beta particles may arise from each other. The author has demonstrated the natural occurrence of glucosamine in liver glycogen (but not muscle glycogen) from various species in an amount of about one molecule per molecule of glycogen. The glucosamine is underivatized, appears to be randomly scattered in the glycogen, and may be derived from dietary galactosamine. Similar to Fontana (1980), the author observed that native liver glycogen could be fractionated on DEAE-cellulose apparently on the basis of phosphate content. The more strongly bound glycogen possessed a greater molecular weight and content of glucosamine and phosphate. Possible explanations for these subfractions are considered. The phosphate appears to be concentrated near the center of the glycogen molecules. About 30% appears to be associated with glucose-6P and the remainder with an unidentified phosphodiester. The phosphate may stimulate glycogen synthesis. How the phosphate becomes incorporated is unknown

  18. Extraction of glycogen on mild condition lacks AIG fraction.

    Science.gov (United States)

    Ghafouri, Z; Rasouli, M

    2016-12-01

    Extraction of animal tissues with cold water or perchloric acid yields less glycogen than is obtained with hot-alkaline. Extraction with acid and alkaline gives two fractions, acid soluble (ASG) and insoluble glycogen (AIG). The aim of this work is to examine the hypothesis that not all liver glycogen is extractable by Tris-buffer using current techniques. Rat liver was homogenized with Tris-buffer pH 8.3 and extracted for the glycogen fractions, ASG and AIG. The degree of homogenization was changed to remove all glycogen. The content of glycogen was 47.7 ± 1.2 and 11.6 ± 0.8 mg/g wet liver in the supernatant and pellet of the first extraction respectively. About 24% of total glycogen is lost through the first pellet. Increasing the extent of homogenization from 30 to 180 sec and from 15000 to 20000 rpm followed with 30 sec ultrasonication did not improve the extraction. ASG and AIG constitute about 77% and 23% of the pellet glycogen respectively. Extraction with cold Tris-buffer failed to extract glycogen completely.  Increasing the extent of homogenization followed with ultrasonication also did not improve the extraction. Thus it is necessary to re-examine the previous findings obtained by extraction with cold Tris-buffer.

  19. Astrocyte glycogen and brain energy metabolism.

    Science.gov (United States)

    Brown, Angus M; Ransom, Bruce R

    2007-09-01

    The brain contains glycogen but at low concentration compared with liver and muscle. In the adult brain, glycogen is found predominantly in astrocytes. Astrocyte glycogen content is modulated by a number of factors including some neurotransmitters and ambient glucose concentration. Compelling evidence indicates that astrocyte glycogen breaks down during hypoglycemia to lactate that is transferred to adjacent neurons or axons where it is used aerobically as fuel. In the case of CNS white matter, this source of energy can extend axon function for 20 min or longer. Likewise, during periods of intense neural activity when energy demand exceeds glucose supply, astrocyte glycogen is degraded to lactate, a portion of which is transferred to axons for fuel. Astrocyte glycogen, therefore, offers some protection against hypoglycemic neural injury and ensures that neurons and axons can maintain their function during very intense periods of activation. These emerging principles about the roles of astrocyte glycogen contradict the long held belief that this metabolic pool has little or no functional significance.

  20. Moderate nutrient restriction influences transcript abundance of genes impacting production efficiencies of beef cattle in fetal liver, muscle, and cerebrum by d 50 of gestation

    Science.gov (United States)

    We hypothesized that a moderate maternal nutrient restriction during the first 50 d of gestation in beef heifers would affect transcript abundance of genes impacting production efficiency phenotypes in fetal liver, muscle, and cerebrum. Fourteen Angus-cross heifers were estrus synchronized and assig...

  1. Moderate nutrient restriction influences expression of genes impacting production efficiencies of beef cattle in fetal liver, muscle and cerebrum by day 50 of gestation

    Science.gov (United States)

    We hypothesized that a moderate maternal nutrient restriction during the first 50 days of gestation in beef heifers would affect expression of genes impacting production efficiency phenotypes in the fetal liver, muscle and cerebrum. Fourteen Angus-cross heifers were estrus synchronized and assigned ...

  2. Cloning of a novel cell type from human fetal liver expressing cytoplasmic CD3 delta and epsilon but not membrane CD3

    NARCIS (Netherlands)

    Hori, T.; de Waal Malefyt, R.; Duncan, B. W.; Harrison, M. R.; Roncarolo, M. G.; Spits, H.

    1991-01-01

    Seventeen-week human fetal liver cells cultured with a feeder cell mixture of irradiated PBL, irradiated JY cells (an EBV-transformed B cell line) and PHA contained a subpopulation of CD3- cells in addition to a major population of T cells with the mature phenotype. After 12 days in culture, CD3-

  3. Glucose 6-phosphate compartmentation and the control of glycogen synthesis

    NARCIS (Netherlands)

    Meijer, Alfred

    2002-01-01

    Using adenovirus-mediated gene transfer into FTO-2B cells, a rat hepatoma cell line, we have overexpressed hexokinase I, (HK I), glucokinase (GK), liver glycogen synthase (LGS), muscle glycogen synthase (MGS), and combinations of each of the two glucose phosphorylating enzymes with each one of the

  4. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    Full Text Available In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs we isolated human fetal liver stromal cells (hFLSCs from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days. Basic fibroblast growth factor (bFGF is known to play an important role in promoting self-renewal of human embryonic stem (hES cells. So, we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF, insulin-like growth factor 2 (IGF-2, and transforming growth factor β (TGF-β, thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together, bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.

  5. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    Science.gov (United States)

    Mathieu, Cécile; Li de la Sierra-Gallay, Ines; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. T lymphocytes from irradiation chimeras repopulated with 13-day fetal liver cells recognize antigens only in association with self-MHC products

    International Nuclear Information System (INIS)

    Nisbet-Brown, E.; Diener, E.

    1986-01-01

    The restriction specificities of maturing thymocytes are determined by the Class II MHC antigens expressed by non-lymphoid thymic tissues. The proliferative response of mature T lymphocytes to antigen-presenting cells (APC) and antigen requires that the APC express the same MHC antigens as the thymus in which the T cells differentiated. Thus, in the two-way bone marrow chimera [A + B----(A x B)F1], T lymphocyte populations of A and B haplotypes have each acquired the potential to recognize antigens associated with either parental haplotype. In spite of the large body of work on MHC restriction, we still do not have a clear understanding of the mechanisms which impose self restriction. The chimeric model systems used previously to study MHC restriction have used adult bone marrow cells as the source of lymphoid precursors. During normal ontogeny, T cells are derived from precursors in the fetal liver and we felt that a direct comparison of T cells from fetal liver and bone marrow-repopulated animals would shed light on the development of MHC restriction specificities during T cell ontogeny in the thymus or prethymically. We found that parental T lymphocyte populations isolated from two-way fetal liver chimeras cooperated only with syngeneic APC, while those from bone marrow chimeras cooperated with APC of either parental haplotype. This suggests that fetal liver and bone marrow may not be equivalent sources of stem cells. Our results may be due to fundamental differences between thymocyte precursors in fetal liver and bone marrow, including the time course of their expression of T cell receptor gene products

  7. Glycogen metabolism in radiation induced hepatocellular carcinoma in Swiss albino mice

    International Nuclear Information System (INIS)

    Gupta, N.K.; Kumar, Ashok

    1988-01-01

    Glycogen content and the activities of phosphorylase, glycogen sythetase (GS), glucose 6-phosphatase (G6Pase), phosphohexose isomerase (PHI), glucose 6-phosphodehydrogenase were biochemically determined in the heparocellular carcinoma induced in swiss albino mice following radiocalcium internal irradiation. The content glycogen and the activities of phosphorylase, glycogen synthetase, G6Pase, PHI, GPT and GOT are considerably reduced in the hepatocellular carcinoma compared to that in control liver. However, the activity of G6PDH shows an increased activity. Results indicate that the decreas ed glycogen content in the hepatocellular carcinoma is due to the reduced glycogen synthetase activity and utilization of glucose by HMP pathway. (author). 2 tabs., 24 refs

  8. Ordered synthesis and mobilization of glycogen in the perfused heart

    International Nuclear Information System (INIS)

    Brainard, J.R.; Hutson, J.Y.; Hoekenga, D.E.; Lenhoff, R.

    1989-01-01

    The molecular order of synthesis and mobilization of glycogen in the perfused heart was studied by 13 C NMR. By varying the glucose isotopomer ([1- 13 C]glucose or [2- 13 C]glucose) supplied to the heart, glycogen synthesized at different times during the perfusion was labeled at different carbon sites. Subsequently, the in situ mobilization of glycogen during ischemia was observed by detection of labeled lactate derived from glycolysis of the glucosyl monomers. When [1- 13 C]glucose was given initially in the perfusion and [2- 13 C]glucose was given second, [2- 13 C]lactate was detected first during ischemia and [3- 13 C]lactate second. This result, and the equivalent result when the glucose labels were given in the reverse order, demonstrates that glycogen synthesis and mobilization are ordered in the heart, where glycogen is found morphologically only as β particles. Previous studies of glycogen synthesis and mobilization in liver and adipocytes have suggested that the organization of β particles into α particles was partially responsible for ordered synthesis and mobilization. The observations reported here for cardiac glycogen suggest that another mechanism is responsible. In addition to examine the ordered synthesis and mobilization of cardiac glycogen, the authors have selectively monitored the NMR properties of 13 C-labeled glycogen synthesized early in the perfusion during further glycogen synthesis from a second, differently labeled substrate. During synthesis from the second labeled glucose monomer, the glycogen resonance from the first label decreased in integrated intensity and increased in line width. These results suggest either that there is significant isotopic exchange of glucosyl monomers in glycogen during net synthesis or that glucosyl residues incorporated into glycogen undergo motional restrictions as further glycogen synthesis occurs

  9. Genetics Home Reference: glycogen storage disease type 0

    Science.gov (United States)

    ... skeletal muscle, glycogen stored in muscle cells is broken down to supply the cells with energy. The ... that is stored in the liver can be broken down rapidly when glucose is needed to maintain ...

  10. Genetics Home Reference: glycogen storage disease type VI

    Science.gov (United States)

    ... or elevated levels of ketones in the blood (ketosis). Ketones are molecules produced during the breakdown of ... and may use fats for energy, resulting in ketosis. Glycogen accumulates within liver cells, causing these cells ...

  11. 1H NMR visibility of mammalian glycogen in solution

    International Nuclear Information System (INIS)

    Zang, L.H.; Rothman, D.L.; Shulman, R.G.

    1990-01-01

    High-resolution 1 H NMR spectra of rabbit liver glycogen in 2 H 2 O were obtained at 500 MHz, and several resonances were assigned by comparison with the chemical shifts of α-linked diglucose molecules. The NMR relaxation times T 1 and T 2 of glycogen in 2 H 2 O were determined to be 1.1 and 0.029 s, respectively. The measured natural linewidth of the carbon-1 proton is in excellent agreement with that calculated from T 2 . The visibility measurements made by digesting glycogen and comparing glucose and glycogen signal intensities demonstrate that in spite of the very high molecular weight, all of the proton nuclei in glycogen contribute to the NMR spectrum. The result is not unexpected, since 100% NMR visibility was previously observed from the carbon nuclei of glycogen, due to the rapid intramolecular motions

  12. Sexually dimorphic effects of maternal nutrient reduction on expression of genes regulating cortisol metabolism in fetal baboon adipose and liver tissues.

    Science.gov (United States)

    Guo, Chunming; Li, Cun; Myatt, Leslie; Nathanielsz, Peter W; Sun, Kang

    2013-04-01

    Maternal nutrient reduction (MNR) during fetal development may predispose offspring to chronic disease later in life. Increased regeneration of active glucocorticoids by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in metabolic tissues is fundamental to the developmental programming of metabolic syndrome, but underlying mechanisms are unknown. Hexose-6-phosphate dehydrogenase (H6PD) generates NADPH, the cofactor for 11β-HSD1 reductase activity. CCAAT/enhancer binding proteins (C/EBPs) and the glucocorticoid receptor (GR) regulate 11β-HSD1 expression. We hypothesize that MNR increases expression of fetal C/EBPs, GR, and H6PD, thereby increasing expression of 11β-HSD1 and reductase activity in fetal liver and adipose tissues. Pregnant MNR baboons ate 70% of what controls ate from 0.16 to 0.9 gestation (term, 184 days). Cortisol levels in maternal and fetal circulations increased in MNR pregnancies at 0.9 gestation. MNR increased expression of 11β-HSD1; H6PD; C/EBPα, -β, -γ; and GR in female but not male perirenal adipose tissue and in male but not female liver at 0.9 gestation. Local cortisol level and its targets PEPCK1 and PPARγ increased correspondingly in adipose and liver tissues. C/EBPα and GR were found to be bound to the 11β-HSD1 promoter. In conclusion, sex- and tissue-specific increases of 11β-HSD1, H6PD, GR, and C/EBPs may contribute to sexual dimorphism in the programming of exaggerated cortisol regeneration in liver and adipose tissues and offsprings' susceptibility to metabolic syndrome.

  13. Maternal diets deficient in folic acid and related methyl donors modify mechanisms associated with lipid metabolism in the fetal liver of the rat.

    Science.gov (United States)

    McNeil, Christopher J; Hay, Susan M; Rucklidge, Garry J; Reid, Martin D; Duncan, Gary J; Rees, William D

    2009-11-01

    Previously we have examined the effects of diets deficient in folic acid ( - F) or folate deficient with low methionine and choline ( - F LM LC) on the relative abundance of soluble proteins in the liver of the pregnant rat. In the present study we report the corresponding changes in the fetal liver at day 21 of gestation. The abundance of eighteen proteins increased when dams were fed the - F diet. When dams were fed the - F LM LC diet, thirty-three proteins increased and eight decreased. Many of the differentially abundant proteins in the fetal liver could be classified into the same functional groups as those previously identified in the maternal liver, namely protein synthesis, metabolism, lipid metabolism and proteins associated with the cytoskeleton and endoplasmic reticulum. The pattern was consistent with reduced cell proliferation in the - F LM LC group but not in the - F group. Metabolic enzymes associated with lipid metabolism changed in both the - F and - F LM LC groups. The mRNA for carnitine palmitoyl transferase were up-regulated and CD36 (fatty acid translocase) down-regulated in the - F group, suggesting increased mitochondrial oxidation of fatty acids as an indirect response to altered maternal lipid metabolism. In the - F LM LC group the mRNA for acetyl CoA carboxylase was down-regulated, suggesting reduced fatty acid synthesis. The mRNA for transcriptional regulators including PPARalpha and sterol response element-binding protein-1c were unchanged. These results suggest that an adequate supply of folic acid and the related methyl donors may benefit fetal development directly by improving lipid metabolism in fetal as well as maternal tissues.

  14. The in utero programming effect of increased maternal androgens and a direct fetal intervention on liver and metabolic function in adult sheep.

    Science.gov (United States)

    Hogg, Kirsten; Wood, Charlotte; McNeilly, Alan S; Duncan, W Colin

    2011-01-01

    Epigenetic changes in response to external stimuli are fast emerging as common underlying causes for the pre-disposition to adult disease. Prenatal androgenization is one such model that results in reproductive and metabolic features that are present in conditions such as polycystic ovary syndrome (PCOS). We examined the effect of prenatal androgens on liver function and metabolism of adult sheep. As non-alcoholic fatty liver disease is increased in PCOS we hypothesized that this, and other important liver pathways including metabolic function, insulin-like growth factor (IGF) and steroid receptivity, would be affected. Pregnant ewes received vehicle control (C; n = 5) or testosterone propionate (TP; n = 9) twice weekly (100 mg; i.m) from d62-102 (gestation 147 days). In a novel treatment paradigm, a second cohort received a direct C (n = 4) or TP (20 mg; n = 7) fetal injection at d62 and d82. In adults, maternal TP exposure resulted in increased insulin secretion to glucose load (Pfetal intervention (C and TP) led to early fatty liver changes in all animals without differential changes in insulin secretion. Furthermore, hepatic phosphoenolpyruvate carboxykinase (PEPCK) was up-regulated in the fetal controls (Pfetal TP (Pfetal TP exposure. Adult liver metabolism and signaling can be altered by early exposure to sex steroids implicating epigenetic regulation of metabolic disturbances that are common in PCOS.

  15. The in utero programming effect of increased maternal androgens and a direct fetal intervention on liver and metabolic function in adult sheep.

    Directory of Open Access Journals (Sweden)

    Kirsten Hogg

    Full Text Available Epigenetic changes in response to external stimuli are fast emerging as common underlying causes for the pre-disposition to adult disease. Prenatal androgenization is one such model that results in reproductive and metabolic features that are present in conditions such as polycystic ovary syndrome (PCOS. We examined the effect of prenatal androgens on liver function and metabolism of adult sheep. As non-alcoholic fatty liver disease is increased in PCOS we hypothesized that this, and other important liver pathways including metabolic function, insulin-like growth factor (IGF and steroid receptivity, would be affected. Pregnant ewes received vehicle control (C; n = 5 or testosterone propionate (TP; n = 9 twice weekly (100 mg; i.m from d62-102 (gestation 147 days. In a novel treatment paradigm, a second cohort received a direct C (n = 4 or TP (20 mg; n = 7 fetal injection at d62 and d82. In adults, maternal TP exposure resulted in increased insulin secretion to glucose load (P<0.05 and the histological presence of fatty liver (P<0.05 independent of central obesity. Additionally, hepatic androgen receptor (AR; P<0.05, glucocorticoid receptor (GR; P<0.05, UDP- glucose ceramide glucosyltransferase (UGCG; P<0.05 and IGF1 (P<0.01 expression were upregulated. The direct fetal intervention (C and TP led to early fatty liver changes in all animals without differential changes in insulin secretion. Furthermore, hepatic phosphoenolpyruvate carboxykinase (PEPCK was up-regulated in the fetal controls (P<0.05 and this was opposed by fetal TP (P<0.05. Hepatic estrogen receptor (ERα; P<0.05 and mitogen activated protein kinase kinase 4 (MAP2K4; P<0.05 were increased following fetal TP exposure. Adult liver metabolism and signaling can be altered by early exposure to sex steroids implicating epigenetic regulation of metabolic disturbances that are common in PCOS.

  16. Comparative Analysis of the Hematopoietic Progenitor Cells from Placenta, Cord Blood, and Fetal Liver, Based on Their Immunophenotype

    Directory of Open Access Journals (Sweden)

    Maria D. Kuchma

    2015-01-01

    Full Text Available We have investigated the characteristics of human hematopoietic progenitor cells (HPCs with the CD34+CD45lowSSClow phenotype from full-term placental tissue (FTPT as compared to cord blood (CB and fetal liver (FL cells. We demonstrated the presence of cell subpopulations at various stages of the differentiation with such immunophenotypes as CD34+/lowCD45low/-, CD34++CD45low/-, CD34+++CD45low/-, CD34+/lowCD45hi, and CD34++CD45hi in both first trimester placental tissue (FiTPT and FTPT which implies their higher phenotypic heterogeneity compared to CB. HPCs of the FTPT origin expressed the CD90 antigen at a higher level compared to its expression by the CB HPCs and the CD133 antigen expression being at the same level in both cases. The HPCs compartment of FTPT versus CB contained higher number of myeloid and erythroid committed cells but lower number of myeloid and lymphoid ones compared to FL HPCs. HPCs of the FTPT and CB origin possess similar potentials for the multilineage differentiation in vitro and similar ratios of myeloid and erythroid progenitors among the committed cells. This observation suggests that the active hematopoiesis occurs in the FTPT. We obtained viable HPCs from cryopreserved placental tissue fragments allowing us to develop procedures for banking and testing of placenta-derived HPCs for clinical use.

  17. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells

    Science.gov (United States)

    Zalzman, Michal; Gupta, Sanjeev; Giri, Ranjit K.; Berkovich, Irina; Sappal, Baljit S.; Karnieli, Ohad; Zern, Mark A.; Fleischer, Norman; Efrat, Shimon

    2003-06-01

    Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes.

  18. Distinct Molecular Signature of Murine Fetal Liver and Adult Hematopoietic Stem Cells Identify Novel Regulators of Hematopoietic Stem Cell Function.

    Science.gov (United States)

    Manesia, Javed K; Franch, Monica; Tabas-Madrid, Daniel; Nogales-Cadenas, Ruben; Vanwelden, Thomas; Van Den Bosch, Elisa; Xu, Zhuofei; Pascual-Montano, Alberto; Khurana, Satish; Verfaillie, Catherine M

    2017-04-15

    During ontogeny, fetal liver (FL) acts as a major site for hematopoietic stem cell (HSC) maturation and expansion, whereas HSCs in the adult bone marrow (ABM) are largely quiescent. HSCs in the FL possess faster repopulation capacity as compared with ABM HSCs. However, the molecular mechanism regulating the greater self-renewal potential of FL HSCs has not yet extensively been assessed. Recently, we published RNA sequencing-based gene expression analysis on FL HSCs from 14.5-day mouse embryo (E14.5) in comparison to the ABM HSCs. We reanalyzed these data to identify key transcriptional regulators that play important roles in the expansion of HSCs during development. The comparison of FL E14.5 with ABM HSCs identified more than 1,400 differentially expressed genes. More than 200 genes were shortlisted based on the gene ontology (GO) annotation term "transcription." By morpholino-based knockdown studies in zebrafish, we assessed the function of 18 of these regulators, previously not associated with HSC proliferation. Our studies identified a previously unknown role for tdg, uhrf1, uchl5, and ncoa1 in the emergence of definitive hematopoiesis in zebrafish. In conclusion, we demonstrate that identification of genes involved in transcriptional regulation differentially expressed between expanding FL HSCs and quiescent ABM HSCs, uncovers novel regulators of HSC function.

  19. Abnormal metabolism of glycogen phosphate as a cause for Lafora disease.

    Science.gov (United States)

    Tagliabracci, Vincent S; Girard, Jean Marie; Segvich, Dyann; Meyer, Catalina; Turnbull, Julie; Zhao, Xiaochu; Minassian, Berge A; Depaoli-Roach, Anna A; Roach, Peter J

    2008-12-05

    Lafora disease is a progressive myoclonus epilepsy with onset in the teenage years followed by neurodegeneration and death within 10 years. A characteristic is the widespread formation of poorly branched, insoluble glycogen-like polymers (polyglucosan) known as Lafora bodies, which accumulate in neurons, muscle, liver, and other tissues. Approximately half of the cases of Lafora disease result from mutations in the EPM2A gene, which encodes laforin, a member of the dual specificity protein phosphatase family that is able to release the small amount of covalent phosphate normally present in glycogen. In studies of Epm2a(-/-) mice that lack laforin, we observed a progressive change in the properties and structure of glycogen that paralleled the formation of Lafora bodies. At three months, glycogen metabolism remained essentially normal, even though the phosphorylation of glycogen has increased 4-fold and causes altered physical properties of the polysaccharide. By 9 months, the glycogen has overaccumulated by 3-fold, has become somewhat more phosphorylated, but, more notably, is now poorly branched, is insoluble in water, and has acquired an abnormal morphology visible by electron microscopy. These glycogen molecules have a tendency to aggregate and can be recovered in the pellet after low speed centrifugation of tissue extracts. The aggregation requires the phosphorylation of glycogen. The aggregrated glycogen sequesters glycogen synthase but not other glycogen metabolizing enzymes. We propose that laforin functions to suppress excessive glycogen phosphorylation and is an essential component of the metabolism of normally structured glycogen.

  20. Use of deuterium labelled glucose in evaluating the pathway of hepatic glycogen synthesis

    International Nuclear Information System (INIS)

    Goodman, M.N.; Masuoka, L.K.; deRopp, J.S.; Jones, A.D.

    1989-01-01

    Deuterium labelled glucose has been used to study the pathway of hepatic glycogen synthesis during the fasted-refed transition in rats. Deuterium enrichment of liver glycogen was determined using nuclear magnetic resonance as well as mass spectroscopy. Sixty minutes after oral administration of deuterated glucose to fasted rats, the portal vein blood was fully enriched with deuterated glucose. Despite this, less than half of the glucose molecules incorporated into liver glycogen contained deuterium. The loss of deuterium label from glucose is consistent with hepatic glycogen synthesis by an indirect pathway requiring prior metabolism of glucose. The use of deuterium labelled glucose may prove to be a useful probe to study hepatic glycogen metabolism. Its use may also find application in the study of liver glycogen metabolism in humans by a noninvasive means

  1. Carbohydrate supercompensation and muscle glycogen utilization during exhaustive running in highly trained athletes

    DEFF Research Database (Denmark)

    Madsen, K; Pedersen, P K; Rose, P

    1990-01-01

    regimen (Norm), the other after a diet and training programme intended to increase muscle glycogen levels (Carb). Muscle glycogen concentration in the gastrocnemius muscle increased by 25% (P less than 0.05) from 581 mmol.kg-1 dry weight, SEM 50 to 722 mmol.kg-1 dry weight, SEM 34 after Carb. Running time...... (0.92, SEM 0.01 vs 0.89, SEM 0.01; P less than 0.05). Since muscle glycogen utilization was identical in the two tests, the indication of higher utilization of total carbohydrate appears to be related to a higher utilization of liver glycogen. We have concluded that glycogen depletion...

  2. Effect of carbon tetrachloride on glycogen metabolism in fasted and refed mice

    International Nuclear Information System (INIS)

    Pushpendran, C.K.; Shenoy, B.V.; Eapen, J.

    1977-01-01

    Hepatic glycogen was depleted rapidly in fasted mice treated with CCl 4 . Glycogen breakdown was slow when CCl 4 was administered after 1 hr of refeeding. There was an initial increase and then a reduction in liver glycogen of mice refed for 2 hr prior to CCl 4 injection. The incorporation of glucose-U- 14 C into glycogen was higher in mice which were refed before CCl 4 administration than in fasted mice treated with the hepatotoxin. The specific activity of lactate was higher in CCl 4 treated mice. The data suggested differences in glycogen metabolism of fasted and refed mice in response to CCl 4 treatment. (author)

  3. Glycogen synthesis from lactate in a chronically active muscle

    International Nuclear Information System (INIS)

    Talmadge, R.J.; Scheide, J.I.; Silverman, H.

    1989-01-01

    In response to neural overactivity (pseudomyotonia), gastrocnemius muscle fibers from C57Bl/6Jdy2J/dy2J mice have different metabolic profiles compared with normal mice. A population of fibers in the fast-twitch superficial region of the dy2J gastrocnemius stores unusually high amounts of glycogen, leading to an increased glycogen storage in the whole muscle. The dy2J muscle also contains twice as much lactate as normal muscle. A [ 14 C]lactate intraperitoneal injection leads to preferential 14 C incorporation into glycogen in the dy2J muscle compared with normal muscle. To determine whether skeletal muscles were incorporating lactate into glycogen without body organ (liver, kidney) input, gastrocnemius muscles were bathed in 10 mM [ 14 C]lactate with intact neural and arterial supply but with impeded venous return. The contralateral gastrocnemius serves as a control for body organ input. By using this in situ procedure, we demonstrate that under conditions of high lactate both normal and dy2J muscle can directly synthesize glycogen from lactate. In this case, normal whole muscle incorporates [14C] lactate into glycogen at a higher rate than dy2J whole muscle. Autoradiography, however, suggests that the high-glycogen-containing muscle fibers in the dy2J muscle incorporate lactate into glycogen at nearly four times the rate of normal or surrounding muscle fibers

  4. Review: Alterations in placental glycogen deposition in complicated pregnancies: Current preclinical and clinical evidence.

    Science.gov (United States)

    Akison, Lisa K; Nitert, Marloes Dekker; Clifton, Vicki L; Moritz, Karen M; Simmons, David G

    2017-06-01

    Normal placental function is essential for optimal fetal growth. Transport of glucose from mother to fetus is critical for fetal nutrient demands and can be stored in the placenta as glycogen. However, the function of this glycogen deposition remains a matter of debate: It could be a source of fuel for the placenta itself or a storage reservoir for later use by the fetus in times of need. While the significance of placental glycogen remains elusive, mounting evidence indicates that altered glycogen metabolism and/or deposition accompanies many pregnancy complications that adversely affect fetal development. This review will summarize histological, biochemical and molecular evidence that glycogen accumulates in a) placentas from a variety of experimental rodent models of perturbed pregnancy, including maternal alcohol exposure, glucocorticoid exposure, dietary deficiencies and hypoxia and b) placentas from human pregnancies with complications including preeclampsia, gestational diabetes mellitus and intrauterine growth restriction (IUGR). These pregnancies typically result in altered fetal growth, developmental abnormalities and/or disease outcomes in offspring. Collectively, this evidence suggests that changes in placental glycogen deposition is a common feature of pregnancy complications, particularly those associated with altered fetal growth. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Mechanism of activation of glycogen phosphorylase by fructose in the liver. Stimulation of phosphorylase kinase related to the consumption of adenosine triphosphate.

    Science.gov (United States)

    Van de Werve, G; Hers, H G

    1979-01-15

    1. A dose-dependent activation of phosphorylase and consumption of ATP was observed in isolated hepatocytes incubated in the presence of fructose; histone kinase and phosphorylase kinase activities were unchanged at doses of this sugar that were fully effective on phosphorylase. The activation of phosphorylase by fructose was also observed in cells incubated in a Ca2+-free medium as well as in the livers of rats in vivo. 2. In a liver high-speed supernatant, fructose, tagatose and sorbose stimulated the activity of phosphorylase kinase; this effect was dependent on the presence of K+ ions, which are required for the activity of fructokinase; it was accompanied by the transformation of ATP into ADP. In the presence of hexokinase, glucose also stimulated phosphorylase kinase, both in an Na+ or a K+ medium. 3. The activities of partially purified muscle or liver phosphorylase kinase were unchanged in the presence of fructose. 4. Some properties of liver phosphorylase kinase are described, including a high molecular weight and an inhibition at ATP/Mg ratios above 0.5, as well as an effect of ATP concentration on the hysteretic behaviour of this enzyme. 5. The effect of fructose on the activation of phosphorylase is discussed in relation to the comsumption of ATP.

  6. Tissue glycogen and blood glucose in irradiated rats. I

    International Nuclear Information System (INIS)

    Ahlersova, E.; Ahlers, I.; Paulikova, E.; Praslicka, M.

    1980-01-01

    Fed and starved (overnight) male rats of the Wistar strain were exposed to whole-body irradiation with 14.35 Gy (1500 R) of X-rays. After irradiation and sham-irradiation all animals were starved until examination performed 1, 6, 24, 48 and 72 h after treatment. The concentration of glucose in the blood and the concentration of glycogen in the liver, heart, skeletal muscle, brown and white adipose tissue were determined. The concentrations of blood glucose and liver glycogen were found to increase between 1 and 6 h after irradiation of the starved animals. The most pronounced increase in glycogen concentration in the liver and heart muscle was observed 24 and 48 h after irradiation. A similar increase in the concentration of blood glucose was found between 48 and 72 h after irradiation. The fed and starved irradiated rats reacted differently, particularly between 48 and 72 h; the liver glycogen concentration decreased in the fed animals and remained elevated in the starved ones. Very high values of terminal glycemia were observed in both groups. The accumulation of glycogen in the heart muscle indicates that this organ is sensitive to ionizing radiation. (author)

  7. Cobalamin Concentrations in Fetal Liver Show Gender Differences: A Result from Using a High-Pressure Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry as an Ultratrace Cobalt Speciation Method.

    Science.gov (United States)

    Bosle, Janine; Goetz, Sven; Raab, Andrea; Krupp, Eva M; Scheckel, Kirk G; Lombi, Enzo; Meharg, Andrew A; Fowler, Paul A; Feldmann, Jörg

    2016-12-20

    Maternal diet and lifestyle choices may affect placental transfer of cobalamin (Cbl) to the fetus. Fetal liver concentration of Cbl reflects nutritional status with regards to vitamin B12, but at these low concentration current Cbl measurement methods lack robustness. An analytical method based on enzymatic extraction with subsequent reversed-phase-high-pressure liquid chromatography (RP-HPLC) separation and parallel ICPMS and electrospray ionization (ESI)-Orbitrap-MS to determine specifically Cbl species in liver samples of only 10-50 mg was developed using 14 pig livers. Subsequently 55 human fetal livers were analyzed. HPLC-ICPMS analysis for cobalt (Co) and Cbl gave detection limits of 0.18 ng/g and 0.88 ng/g d.m. in liver samples, respectively, with a recovery of >95%. Total Co (Co t ) concentration did not reflect the amount of Cbl or vitamin B12 in the liver. Cbl bound Co contributes only 45 ± 15% to Co t . XRF mapping and μXANES analysis confirmed the occurrence of non-Cbl cobalt in pig liver hot spots indicating particular Co. No correlations of total cobalt nor Cbl with fetal weight or weeks of gestation were found for the human fetal livers. Although no gender difference could be identified for total Co concentration, female livers were significantly higher in Cbl concentration (24.1 ± 7.8 ng/g) than those from male fetuses (19.8 ± 7.1 ng/g) (p = 0.04). This HPLC-ICPMS method was able to quantify total Co t and Cbl in fetus liver, and it was sensitive and precise enough to identify this gender difference.

  8. Regulation of glycogen synthesis in rat skeletal muscle after glycogen-depleting contractile activity: effects of adrenaline on glycogen synthesis and activation of glycogen synthase and glycogen phosphorylase.

    OpenAIRE

    Franch, J; Aslesen, R; Jensen, J

    1999-01-01

    We investigated the effects of insulin and adrenaline on the rate of glycogen synthesis in skeletal muscles after electrical stimulation in vitro. The contractile activity decreased the glycogen concentration by 62%. After contractile activity, the glycogen stores were fully replenished at a constant and high rate for 3 h when 10 m-i.u./ml insulin was present. In the absence of insulin, only 65% of the initial glycogen stores was replenished. Adrenaline decreased insulin-stimulated glycogen s...

  9. Sustained high plasma mannose less sensitive to fluctuating blood glucose in glycogen storage disease type Ia children

    NARCIS (Netherlands)

    Nagasaka, Hironori; Yorifuji, Tohru; Bandsma, Robert H. J.; Takatani, Tomozumi; Asano, Hisaki; Mochizuki, Hiroshi; Takuwa, Mayuko; Tsukahara, Hirokazu; Inui, Ayano; Tsunoda, Tomoyuki; Komatsu, Haruki; Hiejima, Eitaro; Fujisawa, Tomoo; Hirano, Ken-ichi; Miida, Takashi; Ohtake, Akira; Taguchi, Tadao; Miwa, Ichitomo

    Plasma mannose is suggested to be largely generated from liver glycogen-oriented glucose-6-phosphate. This study examined plasma mannose in glycogen storage disease type Ia (GSD Ia) lacking conversion of glucose-6-phosphate to glucose in the liver. We initially examined fasting-and postprandial 2

  10. Glycogen storage disease type III. A case report.

    Science.gov (United States)

    de Waal, A; Röhm, G F; Hoek, B B; Potgieter, G M; Oosthuysen, W T

    1984-01-07

    A 5-year-old Black boy presented with massive hepatomegaly and muscle weakness. Liver biopsy revealed the presence of glycogen pools in the cytoplasm and nuclei of hepatocytes. Erythrocyte glycogen levels, identified as limit dextrin, were grossly increased. The galactose tolerance test as well as the two-stage glucagon stimulation test suggested a decrease in activity of both amylo-1,6-glucosidase and glucose-6-phosphatase enzymes. This was confirmed by direct assays performed on liver tissue and erythrocytes. The decrease in glucose-6-phosphatase activity was attributed to a secondary effect of limit dextrin.

  11. Glycogen Synthesis in Glycogenin 1-Deficient Patients: A Role for Glycogenin 2 in Muscle.

    Science.gov (United States)

    Krag, Thomas O; Ruiz-Ruiz, Cristina; Vissing, John

    2017-08-01

    Glycogen storage disease (GSD) type XV is a rare disease caused by mutations in the GYG1 gene that codes for the core molecule of muscle glycogen, glycogenin 1. Nonetheless, glycogen is present in muscles of glycogenin 1-deficient patients, suggesting an alternative for glycogen buildup. A likely candidate is glycogenin 2, an isoform expressed in the liver and heart but not in healthy skeletal muscle. We wanted to investigate the formation of glycogen and changes in glycogen metabolism in patients with GSD type XV. Two patients with mutations in the GYG1 gene were investigated for histopathology, ultrastructure, and expression of proteins involved in glycogen synthesis and metabolism. Apart from occurrence of polyglucosan (PG) bodies in few fibers, glycogen appeared normal in most cells, and the concentration was normal in patients with GSD type XV. We found that glycogenin 1 was absent, but glycogenin 2 was present in the patients, whereas the opposite was the case in healthy controls. Electron microscopy revealed that glycogen was present between and not inside myofibrils in type II fibers, compromising the ultrastructure of these fibers, and only type I fibers contained PG bodies. We also found significant changes to the expression levels of several enzymes directly involved in glycogen and glucose metabolism. To our knowledge, this is the first report demonstrating expression of glycogenin 2 in glycogenin 1-deficient patients, suggesting that glycogenin 2 rescues the formation of glycogen in patients with glycogenin 1 deficiency. Copyright © 2017 Endocrine Society

  12. 13C MRS Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Corin O. Miller

    2017-06-01

    Full Text Available Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well-known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs using 13C MRS.Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal, along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion half way through the study on the second study session.Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e., monotonic increases in the 13C-glycogen NMR signal was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen

  13. Incorporation of phosphate into glycogen by glycogen synthase.

    Science.gov (United States)

    Contreras, Christopher J; Segvich, Dyann M; Mahalingan, Krishna; Chikwana, Vimbai M; Kirley, Terence L; Hurley, Thomas D; DePaoli-Roach, Anna A; Roach, Peter J

    2016-05-01

    The storage polymer glycogen normally contains small amounts of covalently attached phosphate as phosphomonoesters at C2, C3 and C6 atoms of glucose residues. In the absence of the laforin phosphatase, as in the rare childhood epilepsy Lafora disease, the phosphorylation level is elevated and is associated with abnormal glycogen structure that contributes to the pathology. Laforin therefore likely functions in vivo as a glycogen phosphatase. The mechanism of glycogen phosphorylation is less well-understood. We have reported that glycogen synthase incorporates phosphate into glycogen via a rare side reaction in which glucose-phosphate rather than glucose is transferred to a growing polyglucose chain (Tagliabracci et al. (2011) Cell Metab13, 274-282). We proposed a mechanism to account for phosphorylation at C2 and possibly at C3. Our results have since been challenged (Nitschke et al. (2013) Cell Metab17, 756-767). Here we extend the evidence supporting our conclusion, validating the assay used for the detection of glycogen phosphorylation, measurement of the transfer of (32)P from [β-(32)P]UDP-glucose to glycogen by glycogen synthase. The (32)P associated with the glycogen fraction was stable to ethanol precipitation, SDS-PAGE and gel filtration on Sephadex G50. The (32)P-signal was not affected by inclusion of excess unlabeled UDP before analysis or by treatment with a UDPase, arguing against the signal being due to contaminating [β-(32)P]UDP generated in the reaction. Furthermore, [(32)P]UDP did not bind non-covalently to glycogen. The (32)P associated with glycogen was released by laforin treatment, suggesting that it was present as a phosphomonoester. The conclusion is that glycogen synthase can mediate the introduction of phosphate into glycogen, thereby providing a possible mechanism for C2, and perhaps C3, phosphorylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Enzymatic regulation of seasonal glycogen cycling in the freeze-tolerant wood frog, Rana sylvatica.

    Science.gov (United States)

    do Amaral, M Clara F; Lee, Richard E; Costanzo, Jon P

    2016-12-01

    Liver glycogen is an important energy store in vertebrates, and in the freeze-tolerant wood frog, Rana sylvatica, this carbohydrate also serves as a major source of the cryoprotectant glucose. We investigated how variation in the levels of the catalytic subunit of protein kinase A (PKAc), glycogen phosphorylase (GP), and glycogen synthase (GS) relates to seasonal glycogen cycling in a temperate (Ohioan) and subarctic (Alaskan) populations of this species. In spring, Ohioan frogs had reduced potential for glycogen synthesis, as evidenced by low GS activity and high PKAc protein levels. In addition, glycogen levels in spring were the lowest of four seasonal samples, as energy input was likely directed towards metabolism and somatic growth during this period. Near-maximal glycogen levels were reached by mid-summer, and remained unchanged in fall and winter, suggesting that glycogenesis was curtailed during this period. Ohioan frogs had a high potential for glycogenolysis and glycogenesis in winter, as evidenced by large glycogen reserves, high levels of GP and GS proteins, and high GS activity, which likely allows for rapid mobilization of cryoprotectant during freezing and replenishing of glycogen reserves during thawing. Alaskan frogs also achieved a near-maximal liver glycogen concentration by summer and displayed high glycogenic and glycogenolytic potential in winter, but, unlike Ohioan frogs, started replenishing their energy reserves early in spring. We conclude that variation in levels of both glycogenolytic and glycogenic enzymes likely happens in response to seasonal changes in energetic strategies and demands, with winter survival being a key component to understanding the regulation of glycogen cycling in this species.

  15. Tissue glycogen and blood glucose in irradiated rats. II

    International Nuclear Information System (INIS)

    Ahlersova, E.; Ahlers, I.; Praslicka, M.

    1980-01-01

    Male rats of the Wistar strain were continuously irradiated with 0.57 Gy (60 R) of gamma rays from a 60 Co source. Irradiation lasted from 1 to 50 days in an experimental field where also control animals shielded from radiation were placed. After a 16 h starvation, the concentration of glucose in the blood and of glycogen in the liver and the heart was determined 1, 3, 7, 14, 21, 25, 32, 39 and 50 days after the beginning of irradiation. The concentration of blood glucose in irradiated rats did not practically differ from that of control animals during the whole period of investigation. The concentration of liver glycogen in irradiated animals was higher than that in the controls during all time intervals, except for day 1. The values of glycogen in the heart muscle were approximately identical in the irradiated and control rats, except for day 21 when they sharply increased in the irradiated animals. In addition to the investigation of blood glucose and tissue glycogen during continuous irradiation, these parameters were studied immediately, and 1, 6 and 12 months after continuous irradiation with a daily exposure of 0.57 Gy (60 R) up to a total exposure of 14.35 Gy (1500 R) of gamma rays. Considerably higher values of liver glycogen were detected in the irradiated rats immediately, and 1 and 6 months after the end of irradiation. (author)

  16. Glycogen synthase activation by sugars in isolated hepatocytes.

    Science.gov (United States)

    Ciudad, C J; Carabaza, A; Bosch, F; Gòmez I Foix, A M; Guinovart, J J

    1988-07-01

    We have investigated the activation by sugars of glycogen synthase in relation to (i) phosphorylase a activity and (ii) changes in the intracellular concentration of glucose 6-phosphate and adenine nucleotides. All the sugars tested in this work present the common denominator of activating glycogen synthase. On the other hand, phosphorylase a activity is decreased by mannose and glucose, unchanged by galactose and xylitol, and increased by tagatose, glyceraldehyde, and fructose. Dihydroxyacetone exerts a biphasic effect on phosphorylase. These findings provide additional evidence proving that glycogen synthase can be activated regardless of the levels of phosphorylase a, clearly establishing that a nonsequential mechanism for the activation of glycogen synthase occurs in liver cells. The glycogen synthase activation state is related to the concentrations of glucose 6-phosphate and adenine nucleotides. In this respect, tagatose, glyceraldehyde, and fructose deplete ATP and increase AMP contents, whereas glucose, mannose, galactose, xylitol, and dihydroxyacetone do not alter the concentration of these nucleotides. In addition, all these sugars, except glyceraldehyde, increase the intracellular content of glucose 6-phosphate. The activation of glycogen synthase by sugars is reflected in decreases on both kinetic constants of the enzyme, M0.5 (for glucose 6-phosphate) and S0.5 (for UDP-glucose). We propose that hepatocyte glycogen synthase is activated by monosaccharides by a mechanism triggered by changes in glucose 6-phosphate and adenine nucleotide concentrations which have been described to modify glycogen synthase phosphatase activity. This mechanism represents a metabolite control of the sugar-induced activation of hepatocyte glycogen synthase.

  17. Body mass dependence of glycogen stores in the anoxia-tolerant crucian carp ( Carassius carassius L.)

    Science.gov (United States)

    Vornanen, Matti; Asikainen, Juha; Haverinen, Jaakko

    2011-03-01

    Glycogen is a vital energy substrate for anaerobic organisms, and the size of glycogen stores can be a limiting factor for anoxia tolerance of animals. To this end, glycogen stores in 12 different tissues of the crucian carp ( Carassius carassius L.), an anoxia-tolerant fish species, were examined. Glycogen content of different tissues was 2-10 times higher in winter (0.68-18.20% of tissue wet weight) than in summer (0.12-4.23%). In scale, bone and brain glycogen stores were strongly dependent on body mass (range between 0.6 and 785 g), small fish having significantly more glycogen than large fish ( p glycogen reserves, measured as a sum of glycogen from different tissues, varied from 6.1% of the body mass in the 1-g fish to 2.0% in the 800-g fish. Since anaerobic metabolic rate scales down with body size, the whole body glycogen reserves could provide energy for approximately 79 and 88 days of anoxia in small and large fish, respectively. There was, however, a drastic difference in tissue distribution of glycogen between large and small fish: in the small fish, the liver was the major glycogen store (68% of the stores), while in the large fish, the white myotomal muscle was the principal deposit of glycogen (57%). Since muscle glycogen is considered to be unavailable for blood glucose regulation, its usefulness in anoxia tolerance of the large crucian carp might be limited, although not excluded. Therefore, mobilization of muscle glycogen under anoxia needs to be rigorously tested.

  18. Selective accumulation of 147Pm in organism on induction of PCE's micronucleus and SCE of bone marrow cells as well as the chromosome aberrations on fetal liver and spleen

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Zheng Siying; Wang Liuyi; Lu Zhongyan; Yang Shuqin

    1989-01-01

    Study of accumulation peculiarity of 147 Pm showed that I.V. different doses of 147 Pm were the same selectively localized in skeleton and liver. Retention of 147 Pm in skeleton and liver was elevated when the radioactive doses of 147 Pm were increased. At the same time absorption does of 147 Pm radiation was heightened. The ability of 147 Pm to induce sister chromatid exchanges (SCEs) has been investigated by IdU labelling methods. A statistically significant elevation of SCEs was observed after 147 Pm intake.In mice the number of SCEs per cell in bone marrow cells was always higher when the animals were maintained on the doses of 37 Bq/g. The injurious effects of 147 Pm, using PCE's micronucleus rates in bone marrow cells were observed. 147 Pm was dominantly deposited on maternal liver. Deposition of 147 Pm in maternal spleen was about quandrantal of the maternal liver. Studies indicated that maternal contamination of 147 Pm could induced chromosome aberrations in fetal liver and spleen cells. Among the type of aberrations induced by 147 Pm, chromatid breakage were predominant. The incidence of chromosome aberrations on fetal liver cells induced by 147 Pm was higher on fetal spleen cells

  19. Hemolysis, Elevated Liver Enzymes, and Low Platelets, Severe Fetal Growth Restriction, Postpartum Subarachnoid Hemorrhage, and Craniotomy: A Rare Case Report and Systematic Review

    Directory of Open Access Journals (Sweden)

    Shadi Rezai

    2017-01-01

    Full Text Available Introduction. Hemolysis, elevated liver enzymes, and low platelets (HELLP syndrome is a relatively uncommon but traumatic condition occurring in the later stage of pregnancy as a complication of severe preeclampsia or eclampsia. Prompt brain computed tomography (CT or magnetic resonance imaging (MRI and a multidisciplinary management approach are required to improve perinatal outcome. Case. A 37-year-old, Gravida 6, Para 1-0-4-1, Hispanic female with a history of chronic hypertension presented at 26 weeks and 6 days of gestational age. She was noted to have hemolysis, elevated liver enzymes, and low platelets (HELLP syndrome accompanied by fetal growth restriction (FGR, during ultrasound evaluation, warranting premature delivery. The infant was delivered in stable condition suffering no permanent neurological deficit. Conclusion. HELLP syndrome is an uncommon and traumatic obstetric event which can lead to neurological deficits if not managed in a responsive and rapid manner. The central aggravating factor seems to be hypertension induced preeclamptic or eclamptic episode and complications thereof. The syndrome itself is manifested by hemolytic anemia, increased liver enzymes, and decreasing platelet counts with a majority of neurological defects resulting from hemorrhagic stroke or subarachnoid hemorrhage (SAH. To minimize adverse perinatal outcomes, obstetric management of this medical complication must include rapid clinical assessment, diagnostic examination, and neurosurgery consultation.

  20. Accuracy of liver function tests for predicting adverse maternal and fetal outcomes in women with preeclampsia: a systematic review

    NARCIS (Netherlands)

    Thangaratinam, Shakila; Koopmans, Corine M.; Iyengar, Shalini; Zamora, Javier; Ismail, Khaled M. K.; Mol, Ben W. J.; Khan, Khalid S.

    2011-01-01

    Background. Liver function tests are routinely performed in women as part of a battery of investigations to assess severity at admission and later to guide appropriate management. Objective. To determine the accuracy with which liver function tests predict complications in women with preeclampsia by

  1. Accuracy of liver function tests for predicting adverse maternal and fetal outcomes in women with preeclampsia : a systematic review

    NARCIS (Netherlands)

    Thangaratinam, Shakila; Koopmans, Corine M.; Iyengar, Shalini; Zamora, Javier; Ismail, Khaled M. K.; Mol, Ben W. J.; Khan, Khalid S.

    Background. Liver function tests are routinely performed in women as part of a battery of investigations to assess severity at admission and later to guide appropriate management. Objective. To determine the accuracy with which liver function tests predict complications in women with preeclampsia by

  2. 13C Mrs Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields

    Science.gov (United States)

    Miller, Corin O.; Cao, Jin; Zhu, He; Chen, Li M.; Wilson, George; Kennan, Richard; Gore, John C.

    2017-06-01

    Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs) using 13C MRS. Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz) NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys) were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal), along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion) half way through the study on the second study session. Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e. monotonic increases in the 13C-glycogen NMR signal) was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen synthesis

  3. Glycogen phosphorylation and Lafora disease.

    Science.gov (United States)

    Roach, Peter J

    2015-12-01

    Covalent phosphorylation of glycogen, first described 35 years ago, was put on firm ground through the work of the Whelan laboratory in the 1990s. But glycogen phosphorylation lay fallow until interest was rekindled in the mid 2000s by the finding that it could be removed by a glycogen-binding phosphatase, laforin, and that mutations in laforin cause a fatal teenage-onset epilepsy, called Lafora disease. Glycogen phosphorylation is due to phosphomonoesters at C2, C3 and C6 of glucose residues. Phosphate is rare, ranging from 1:500 to 1:5000 phosphates/glucose depending on the glycogen source. The mechanisms of glycogen phosphorylation remain under investigation but one hypothesis to explain C2 and perhaps C3 phosphate is that it results from a rare side reaction of the normal synthetic enzyme glycogen synthase. Lafora disease is likely caused by over-accumulation of abnormal glycogen in insoluble deposits termed Lafora bodies in neurons. The abnormality in the glycogen correlates with elevated phosphorylation (at C2, C3 and C6), reduced branching, insolubility and an enhanced tendency to aggregate and become insoluble. Hyperphosphorylation of glycogen is emerging as an important feature of this deadly childhood disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism.

    Science.gov (United States)

    Soares, Ana Francisca; Gruetter, Rolf; Lei, Hongxia

    2017-07-15

    In the brain, glycogen is a source of glucose not only in emergency situations but also during normal brain activity. Altered brain glycogen metabolism is associated with energetic dysregulation in pathological conditions, such as diabetes or epilepsy. Both in humans and animals, brain glycogen levels have been assessed non-invasively by Carbon-13 Magnetic Resonance Spectroscopy ( 13 C-MRS) in vivo. With this approach, glycogen synthesis and degradation may be followed in real time, thereby providing valuable insights into brain glycogen dynamics. However, compared to the liver and muscle, where glycogen is abundant, the sensitivity for detection of brain glycogen by 13 C-MRS is inherently low. In this review we focus on strategies used to optimize the sensitivity for 13 C-MRS detection of glycogen. Namely, we explore several technical perspectives, such as magnetic field strength, field homogeneity, coil design, decoupling, and localization methods. Furthermore, we also address basic principles underlying the use of 13 C-labeled precursors to enhance the detectable glycogen signal, emphasizing specific experimental aspects relevant for obtaining kinetic information on brain glycogen. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Identification of Factors Interacting with hMSH2 and hMLH1 in the Fetal Liver and Investigations of how Mitochondrial Dysfunction Creates a Mutator Phenotype

    DEFF Research Database (Denmark)

    Rasmussen, Anne Karin

    mutations. Mutations in MMR genes cause hereditary non-polyposis colon cancer. In an effort to identify unidentified genes involved in MMR and tissue-specific MMRassociated factors, we employed the yeast two-hybrid system, using the human hMSH2 as bait and a human fetal liver cDNA library as prey. We...... between mitochondrial activity and genomic instability. Mitochondrial dysfunction and genetic instability are characteristic features of cancer cells. Furthermore, mitochondrial dysfunction is a key feature of aging due to accumulation of mutations in mtDNA. Our studies in a yeast model system suggest......Increased spontaneous mutation frequency is associated with increased cancer risk. However, the relative contribution of spontaneous endogenous mutagenesis to carcinogenesis is not known today. Defects in the postreplication DNA mismatch repair (MMR) pathway are recognized to increase spontaneous...

  6. Increased hepatic glycogen synthetase and decreased phosphorylase in trained rats

    DEFF Research Database (Denmark)

    Galbo, H; Saugmann, P; Richter, Erik

    1979-01-01

    Rats were either physically trained by a 12 wk swimming program or were freely eating or weight matched, sedentary controls. Trained rats had a higher relative liver weight and total hepatic glycogen synthetase (EC 2.4.1.11) activity and a lower phosphorylase (EC 2.4.1.1) activity than the other...

  7. Surrogate markers of the kidney and liver in the assessment of gestational diabetes mellitus and fetal outcome.

    Science.gov (United States)

    Liu, Hong; Shao-Gang, Ma; Liang, Cheng; Feng, Bai; Wei, Xu

    2015-01-01

    To investigate whether serum levels of butyrylcho-linesterase activity, cystatin C, and pre-albumin has the potential value as γ-glutamyl transferase in reflecting gestational diabetes mellitus and its fetal outcome. Seventy-six gestational diabetes mellitus women and 76 pregnancies with normal glucose tolerance in the second trimester were enrolled. Maternal serum parameters of butyrylcholinesterase activity, γ-glutamyl transferase, cystatin C, and pre-albumin were detected and evaluated. The pregnant complications and fetal outcome were also evaluated. Levels of butyrylcholinesterase activity, γ-glutamyl transferase, cystatin C, pre-albumin and glycemic variables were higher in the gestational diabetes mellitus patients than in the controls. Levels of butyrylcholinesterase activity were significantly correlated to the levels of fasting plasma glucose, cystatin C, and γ- glutamyl transferase (p gestational diabetes mellitus group. There were statistical differences in cases of preterm delivery, preeclampsia and postpartum hemorrhage. Higher levels of γ-glutamyl transferase and pre-albumin were risk markers for gestational diabetes mellitus (p gestational diabetes mellitus status but not with the fetal outcome. Pre-albumin can be equivalent as γ-glutamyl transferase in reflecting the presence of gestational diabetes mellitus.

  8. Ontogenic differences in human liver 4-hydroxynonenal detoxification are associated with in vitro injury to fetal hematopoietic stem cells

    International Nuclear Information System (INIS)

    Gardner, James L.; Doi, Adriana M.; Pham, Robert T.; Huisden, Christiaan M.; Gallagher, Evan P.

    2003-01-01

    4-hydroxynonenal (4HNE) is a highly mutagenic and cytotoxic α,β-unsaturated aldehyde that can be produced in utero during transplacental exposure to prooxidant compounds. Cellular protection against 4HNE injury is provided by alcohol dehydrogenases (ADH), aldehyde reductases (ALRD), aldehyde dehydrogenases (ALDH), and glutathione S-transferases (GST). In the present study, we examined the comparative detoxification of 4HNE by aldehyde-metabolizing enzymes in a panel of adult and second-trimester prenatal liver tissues and report the toxicological ramifications of ontogenic 4HNE detoxification in vitro. The initial rates of 4HNE oxidation and reduction were two- to fivefold lower in prenatal liver subcellular fractions as compared to adult liver, and the rates of GST conjugation of 4HNE were not detectable in either prenatal or adult cytosolic fractions. GSH-affinity purification of hepatic cytosol yielded detectable and roughly equivalent rates of GST-4HNE conjugation for the two age groups. Consistent with the inefficient oxidative and reductive metabolism of 4HNE in prenatal liver, cytosolic fractions prepared from prenatal liver exhibited a decreased ability to protect against 4HNE-protein adduct formation relative to adults. Prenatal liver hematopoietic stem cells (HSC), which constitute a significant percentage of prenatal liver cell populations, exhibited ALDH activities toward 4HNE, but little reductive or conjugative capacity toward 4HNE through ALRD, ADH, and GST. Cultured HSC exposed to 5 μM 4HNE exhibited a loss in viability and readily formed one or more high molecular weight 4HNE-protein adduct(s). Collectively, our results indicate that second trimester prenatal liver has a lower ability to detoxify 4HNE relative to adults, and that the inefficient detoxification of 4HNE underlies an increased susceptibility to 4HNE injury in sensitive prenatal hepatic cell targets

  9. A new non-degradative method to purify glycogen.

    Science.gov (United States)

    Tan, Xinle; Sullivan, Mitchell A; Gao, Fei; Li, Shihan; Schulz, Benjamin L; Gilbert, Robert G

    2016-08-20

    Liver glycogen, a complex branched glucose polymer containing a small amount of protein, is important for maintaining glucose homeostasis (blood-sugar control) in humans. It has recently been found that glycogen molecular structure is impaired in diabetes. Isolating the carbohydrate polymer and any intrinsically-attached protein(s) is an essential prerequisite for studying this structural impairment. This requires an effective, non-degradative and efficient purification method to exclude the many other proteins present in liver. Proteins and glycogen have different ranges of molecular sizes. Despite the plethora of proteins that might still be present in significant abundance after other isolation techniques, SEC (size exclusion chromatography, also known as GPC), which separates by molecular size, should separate those extraneous to glycogen from glycogen with any intrinsically associated protein(s). A novel purification method is developed for this, based on preparative SEC following sucrose gradient centrifugation. Proteomics is used to show that the new method compares favourably with current methods in the literature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Fetal abdominal magnetic resonance imaging

    International Nuclear Information System (INIS)

    Brugger, Peter C.; Prayer, Daniela

    2006-01-01

    This review deals with the in vivo magnetic resonance imaging (MRI) appearance of the human fetal abdomen. Imaging findings are correlated with current knowledge of human fetal anatomy and physiology, which are crucial to understand and interpret fetal abdominal MRI scans. As fetal MRI covers a period of more than 20 weeks, which is characterized not only by organ growth, but also by changes and maturation of organ function, a different MR appearance of the fetal abdomen results. This not only applies to the fetal intestines, but also to the fetal liver, spleen, and adrenal glands. Choosing the appropriate sequences, various aspects of age-related and organ-specific function can be visualized with fetal MRI, as these are mirrored by changes in signal intensities. Knowledge of normal development is essential to delineate normal from pathological findings in the respective developmental stages

  11. Fetal abdominal magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, Peter C. [Center of Anatomy and Cell Biology, Integrative Morphology Group, Medical University of Vienna, Waehringerstrasse 13, 1090 Vienna (Austria)]. E-mail: peter.brugger@meduniwien.ac.at; Prayer, Daniela [Department of Radiology, Medical University of Vienna, Waehringerguertel 18-20, 1090 Vienna (Austria)

    2006-02-15

    This review deals with the in vivo magnetic resonance imaging (MRI) appearance of the human fetal abdomen. Imaging findings are correlated with current knowledge of human fetal anatomy and physiology, which are crucial to understand and interpret fetal abdominal MRI scans. As fetal MRI covers a period of more than 20 weeks, which is characterized not only by organ growth, but also by changes and maturation of organ function, a different MR appearance of the fetal abdomen results. This not only applies to the fetal intestines, but also to the fetal liver, spleen, and adrenal glands. Choosing the appropriate sequences, various aspects of age-related and organ-specific function can be visualized with fetal MRI, as these are mirrored by changes in signal intensities. Knowledge of normal development is essential to delineate normal from pathological findings in the respective developmental stages.

  12. Glycogen branching enzyme (GBE1) mutation causing equine glycogen storage disease IV.

    Science.gov (United States)

    Ward, Tara L; Valberg, Stephanie J; Adelson, David L; Abbey, Colette A; Binns, Matthew M; Mickelson, James R

    2004-07-01

    Comparative biochemical and histopathological evidence suggests that a deficiency in the glycogen branching enzyme, encoded by the GBE1 gene, is responsible for a recently identified recessive fatal fetal and neonatal glycogen storage disease (GSD) in American Quarter Horses termed GSD IV. We have now derived the complete GBE1 cDNA sequences for control horses and affected foals, and identified a C to A substitution at base 102 that results in a tyrosine (Y) to stop (X) mutation in codon 34 of exon 1. All 11 affected foals were homozygous for the X34 allele, their 11 available dams and sires were heterozygous, and all 16 control horses were homozygous for the Y34 allele. The previous findings of poorly branched glycogen, abnormal polysaccharide accumulation, lack of measurable GBE1 enzyme activity and immunodetectable GBE1 protein, coupled with the present observation of abundant GBE1 mRNA in affected foals, are all consistent with the nonsense mutation in the 699 amino acid GBE1 protein. The affected foal pedigrees have a common ancestor and contain prolific stallions that are likely carriers of the recessive X34 allele. Defining the molecular basis of equine GSD IV will allow for accurate DNA testing and the ability to prevent occurrence of this devastating disease affecting American Quarter Horses and related breeds.

  13. Short and long-term effects of internal irradiation on the murine hepatic glycogen and its metabolizing enzymes

    International Nuclear Information System (INIS)

    Gupta, N.K.

    1990-01-01

    Glycogen content and the activities of phosphorylase, phosphorhexose isomerase, glucose 6-phosphatase, glycogen synthesis' phosphorylase and succinate dehydrogenase have been biochemically determined in the liver of Swiss albino mice after radiocalcium internal irradiation up to 225 days posttreatment. Increase in the glycogen content and glycogen synthesis phosphorylase with a concomitant decrease in the activities of phosphorylase, glucose 6-phosphatase, phosphohexose isomerase and succinate dehydrogenase reveals inhibited glycolysis in the presence of normal glyogenesis and inhibited Kreb's cycle in the liver during early intervals. Decrease in the glycogen content at later stages along with decrease in the activities of all these enzymes is probably because of an inhibited glycogen biosynthesis and its catabolism through HMP shunt. (orig.)

  14. Glycogen Storage Disease Type IV

    DEFF Research Database (Denmark)

    Bendroth-Asmussen, Lisa; Aksglaede, Lise; Gernow, Anne B

    2016-01-01

    molecular genetic analyses confirmed glycogen storage disease Type IV with the finding of compound heterozygosity for 2 mutations (c.691+2T>C and c.1570C>T, p.R524X) in the GBE1 gene. We conclude that glycogen storage disease Type IV can cause early miscarriage and that diagnosis can initially be made...

  15. Muscle glycogen stores and fatigue

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Westerblad, Håkan; Nielsen, Joachim

    2013-01-01

      Studies performed at the beginning of the last century revealed the importance of carbohydrate as a fuel during exercise, and the importance of muscle glycogen on performance has subsequently been confirmed in numerous studies. However, the link between glycogen depletion and impaired muscle...... function during fatigue is not well understood and a direct cause-and-effect relationship between glycogen and muscle function remains to be established. The use of electron microscopy has revealed that glycogen is not homogeneously distributed in skeletal muscle fibres, but rather localized in distinct...... pools. Furthermore, each glycogen granule has its own metabolic machinery with glycolytic enzymes and regulating proteins. One pool of such glycogenolytic complexes is localized within the myofibrils in close contact with key proteins involved in the excitation-contraction coupling and Ca2+ release from...

  16. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    OpenAIRE

    E. Ruchti; P.J. Roach; A.A. DePaoli-Roach; P.J. Magistretti; I. Allaman

    2016-01-01

    The storage and use of glycogen, the main energy reserve in the brain, is a metabolic feature of astrocytes. Glycogen synthesis is regulated by Protein Targeting to Glycogen (PTG), a member of specific glycogen-binding subunits of protein phosphatase-1 (PPP1). It positively regulates glycogen synthesis through de-phosphorylation of both glycogen synthase (activation) and glycogen phosphorylase (inactivation). In cultured astrocytes, PTG mRNA levels were previously shown to be enhanced by the ...

  17. Human fetal anatomy: MR imaging.

    Science.gov (United States)

    Weinreb, J C; Lowe, T; Cohen, J M; Kutler, M

    1985-12-01

    Twenty-four pregnant women carrying 26 fetuses (two sets of twins) were imaged with magnetic resonance (MR) imaging at 0.35 T following sonographic evaluation. Each study was retrospectively evaluated to determine which of 33 normal fetal structures were visible on the images and which imaging parameters were most useful for depicting fetal anatomy. Fetal motion degraded fetal images in all but two cases, both with oligohydramnios and in the third trimester of gestation. Nevertheless, many fetal structures were identifiable, particularly in the third trimester. Visualization of fetal anatomy improved with intravenous maternal sedation in five cases. Relatively T1-weighted images occasionally offered the advantage of less image degradation owing to fetal motion and improved contrast between different fetal structures. More T2 weighting was believed to be advantageous in one case for outlining the fetal head and in one case for delineation of the brain. In many cases, structures were similarly identifiable (though with different signal intensities) regardless of the parameters selected. The authors conclude that MR imaging of many fetal structures is currently unsatisfactory and is probably of limited value, particularly in the first and second trimesters. However, the relative frequency and detail with which the fetal head and liver can be depicted indicate that these may be areas for further investigation, and the potential utility of imaging fetal fat warrants further investigation.

  18. Effect of carbon tetrachloride on glycogen metabolism in fasted and refed mice

    Energy Technology Data Exchange (ETDEWEB)

    Pushpendran, C K; Shenoy, B V; Eapen, J [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1977-11-01

    Hepatic glycogen was depleted rapidly in fasted mice treated with CCl/sub 4/. Glycogen breakdown was slow when CCl/sub 4/ was administered after 1 hr of refeeding. There was an initial increase and then a reduction in liver glycogen of mice refed for 2 hr prior to CCl/sub 4/ injection. The incorporation of glucose-U-/sup 14/C into glycogen was higher in mice which were refed before CCl/sub 4/ administration than in fasted mice treated with the hepatotoxin. The specific activity of lactate was higher in CCl/sub 4/ treated mice. The data suggested differences in glycogen metabolism of fasted and refed mice in response to CCl/sub 4/ treatment.

  19. Is Glycogenin Essential for Glycogen Synthesis?

    Science.gov (United States)

    Oldfors, Anders

    2017-07-05

    Glycogen synthesis requires a priming oligosaccharide, formed by autoglucosylation of glycogenin, a core protein in glycogen particles. In this edition of Cell Metabolism, Testoni et al. (2017) challenge this generally accepted concept by demonstrating that glycogenin inactivation in mice results in an increased amount of glycogen and not glycogen depletion. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Liver

    International Nuclear Information System (INIS)

    Bernardino, M.E.; Sones, P.J. Jr.; Barton Price, R.; Berkman, W.A.

    1984-01-01

    Evaluation of the liver for focal lesions is extremely important because the liver is one of the most common sites for metastatic disease. Most patients with metastatic deposits to the liver have a survival rate of about 6 months. Thus, metastatic disease to the liver has an extremely grave prognosis. In the past patients with hepatic lesions had no therapeutic recourse. However, with recent aggressive surgical advances (such as partial hepatectomies) and hepatic artery embolization, survival of patients with hepatic metastases has increased. Thus it is important for noninvasive imaging not only to detect lesions early in their course, but also to give their true hepatic involvement and the extent of the neoplastic process elsewhere in the body. Recent advances in imaging have been rapidly changing over the past 5 years. These changes have been more rapid in computed tomography (CT) and ultrasound than in radionuclide imaging. Thus, the question addressed in this chapter is: What is the relationship of hepatic ultrasound to the other current diagnostic modalities in detecting metastatic liver disease and other focal liver lesions? Also, what is its possible future relationship to nuclear magnetic resonance?

  1. Impact of embryo number and maternal undernutrition around the time of conception on insulin signaling and gluconeogenic factors and microRNAs in the liver of fetal sheep.

    Science.gov (United States)

    Lie, Shervi; Morrison, Janna L; Williams-Wyss, Olivia; Suter, Catherine M; Humphreys, David T; Ozanne, Susan E; Zhang, Song; MacLaughlin, Severence M; Kleemann, David O; Walker, Simon K; Roberts, Claire T; McMillen, I Caroline

    2014-05-01

    This study aimed to determine whether exposure of the oocyte and/or embryo to maternal undernutrition results in the later programming of insulin action in the liver and factors regulating gluconeogenesis. To do this, we collect livers from singleton and twin fetal sheep that were exposed to periconceptional (PCUN; -60 to 7 days) or preimplantation (PIUN; 0-7 days) undernutrition at 136-138 days of gestation (term = 150 days). The mRNA and protein abundance of insulin signaling and gluconeogenic factors were then quantified using qRT-PCR and Western blotting, respectively, and global microRNA expression was quantified using deep sequencing methodology. We found that hepatic PEPCK-C mRNA (P < 0.01) and protein abundance and the protein abundance of IRS-1 (P < 0.01), p110β (P < 0.05), PTEN (P < 0.05), CREB (P < 0.01), and pCREB (Ser(133); P < 0.05) were decreased in the PCUN and PIUN singletons. In contrast, hepatic protein abundance of IRS-1 (P < 0.01), p85 (P < 0.01), p110β (P < 0.001), PTEN (P < 0.01), Akt2 (P < 0.01), p-Akt (Ser(473); P < 0.01), and p-FOXO-1 (Thr24) (P < 0.01) was increased in twins. There was a decrease in PEPCK-C mRNA (P < 0.01) but, paradoxically, an increase in PEPCK-C protein (P < 0.001) in twins. Both PCUN and PIUN altered the hepatic expression of 23 specific microRNAs. We propose that the differential impact of maternal undernutrition in the presence of one or two embryos on mRNAs and proteins involved in the insulin signaling and gluconeogenesis is explained by changes in the expression of a suite of specific candidate microRNAs.

  2. Glycogen storage disease type Ia: linkage of glucose, glycogen, lactic acid, triglyceride, and uric acid metabolism.

    Science.gov (United States)

    Sever, Sakine; Weinstein, David A; Wolfsdorf, Joseph I; Gedik, Reyhan; Schaefer, Ernst J

    2012-01-01

    A female presented in infancy with hypotonia, undetectable serum glucose, lactic acidosis, and triglycerides >5000 mg/dL. The diagnosis of type 1A glycogen storage disease was made via the result of a liver biopsy, which showed increased glycogen and absent glucose-6-phosphatase enzyme activity. The patient was treated with dextrose administered orally, which was replaced by frequent feedings of cornstarch, which resulted in an improvement of her metabolic parameters. At age 18 years of age, she had marked hypertriglyceridemia (3860 mg/dL) and eruptive xanthomas and was treated with fenofibrate, atorvastatin, and fish oil. At age 29 years she was noted to have multiple liver adenomas, severe anemia, and hyperuricemia. Aggressive cornstarch therapy was commenced with a goal of maintaining her blood glucose levels >75 mg/dL and lactate levels triglycerides 179, high-density lipoprotein cholesterol 32, and calculated low-density lipoprotein cholesterol 154. Her weight was stable with a body mass index of 24.8 kg/m(2). Her liver adenomas had decreased in size, and her anemia and hyperuricemia had improved. She was homozygous for the R83C missense mutation in G6PC. Our data indicate that optimized metabolic control to maintain blood glucose levels >75 mg/dL is critical in the management of this disease. Copyright © 2012. Published by Elsevier Inc.

  3. Type I Glycogen Storage Disease

    Science.gov (United States)

    ... Liver Function Tests Clinical Trials Liver Transplant FAQs Medical Terminology Diseases of the Liver Alagille Syndrome Alcohol-Related ... the Liver The Progression of Liver Disease FAQs Medical Terminology HOW YOU CAN HELP Sponsorship Ways to Give ...

  4. TAB2 Is Essential for Prevention of Apoptosis in Fetal Liver but Not for Interleukin-1 Signaling

    Science.gov (United States)

    Sanjo, Hideki; Takeda, Kiyoshi; Tsujimura, Tohru; Ninomiya-Tsuji, Jun; Matsumoto, Kunihiro; Akira, Shizuo

    2003-01-01

    The proinflammatory cytokine interleukin-1 (IL-1) transmits a signal via several critical cytoplasmic proteins such as MyD88, IRAKs and TRAF6. Recently, serine/threonine kinase TAK1 and TAK1 binding protein 1 and 2 (TAB1/2) have been identified as molecules involved in IL-1-induced TRAF6-mediated activation of AP-1 and NF-κB via mitogen-activated protein (MAP) kinases and IκB kinases, respectively. However, their physiological functions remain to be clarified. To elucidate their roles in vivo, we generated TAB2-deficient mice. The TAB2 deficiency was embryonic lethal due to liver degeneration and apoptosis. This phenotype was similar to that of NF-κB p65-, IKKβ-, and NEMO/IKKγ-deficient mice. However, the IL-1-induced activation of NF-κB and MAP kinases was not impaired in TAB2-deficient embryonic fibroblasts. These findings demonstrate that TAB2 is essential for embryonic development through prevention of liver apoptosis but not for the IL-1 receptor-mediated signaling pathway. PMID:12556483

  5. In Vitro Large Scale Production of Human Mature Red Blood Cells from Hematopoietic Stem Cells by Coculturing with Human Fetal Liver Stromal Cells

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    2013-01-01

    Full Text Available In vitro models of human erythropoiesis are useful in studying the mechanisms of erythroid differentiation in normal and pathological conditions. Here we describe an erythroid liquid culture system starting from cord blood derived hematopoietic stem cells (HSCs. HSCs were cultured for more than 50 days in erythroid differentiation conditions and resulted in a more than 109-fold expansion within 50 days under optimal conditions. Homogeneous erythroid cells were characterized by cell morphology, flow cytometry, and hematopoietic colony assays. Furthermore, terminal erythroid maturation was improved by cosculturing with human fetal liver stromal cells. Cocultured erythroid cells underwent multiple maturation events, including decrease in size, increase in glycophorin A expression, and nuclear condensation. This process resulted in extrusion of the pycnotic nuclei in up to 80% of the cells. Importantly, they possessed the capacity to express the adult definitive β-globin chain upon further maturation. We also show that the oxygen equilibrium curves of the cord blood-differentiated red blood cells (RBCs are comparable to normal RBCs. The large number and purity of erythroid cells and RBCs produced from cord blood make this method useful for fundamental research in erythroid development, and they also provide a basis for future production of available RBCs for transfusion.

  6. Fetal MRI; Fetales MRT

    Energy Technology Data Exchange (ETDEWEB)

    Blondin, D. [Inst. fuer Diagn. Radiologie, Uniklinikum Duesseldorf (Germany); Turowski, B. [Inst. fuer Diagn. Radiologie, Neuroradiologie, Uniklinikum Duesseldorf (Germany); Schaper, J. [Inst. fuer Diagn. Radiologie, Kinderradiologie, Uniklinikum Duesseldorf (Germany)

    2007-02-15

    Ultrasonography is the method of choice for prenatal malformation screening, but it does not always provide sufficient information for correct diagnosis or adequate abnormality evaluation. Fetal MRI is increasingly being used to complete sonographic findings. It was initially used for evaluation of cerebral abnormalities but is increasingly being applied to other fetal areas. In vivo investigation of fetal brain maturation has been enhanced by MRI. An adequate analysis of fetal chest and abdomen can be achieved with fast T2-, T1-weighted and diffusion-weighted imaging (DWI). The advantages include the great field of view and the excellent soft tissue contrast. This allows correct diagnosis of congenital diaphragmatic hernia and evaluation of the consequences on pulmonary growth. Other pulmonary malformations, such as cystic adenomatoid malformation, sequestration and brochogenic cysts, can also be easily identified. Renal position can be quickly determined using DWI sequences and renal agenesia can be easily diagnosed with only one sequence. Prenatal MRI is virtually as effective as postnatal examination, dispenses with transport of a potentially very ill newborn, and provides logistic advantages. Therefore, prenatal MRI is useful for adequate postnatal treatment of newborns with malformations. (orig.)

  7. Type I Glycogen Storage Disease

    Science.gov (United States)

    ... Legacy Society Make Gifts of Stock Donate Your Car Personal Fundraising Partnership & Support Share Your Story Spread the Word Give While You Shop Contact Us Donate Now Glycogen Storage Disease Type ...

  8. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    KAUST Repository

    Ruchti, E.; Roach, P.J.; DePaoli-Roach, A.A.; Magistretti, Pierre J.; Allaman, I.

    2016-01-01

    to induce glycogen synthesis and accumulation. In contrast, siRNA-mediated downregulation of PTG resulted in a 2-fold decrease in glycogen levels. Interestingly, PTG downregulation strongly impaired long-term astrocytic glycogen synthesis induced by insulin

  9. A Ketone Ester Drink Increases Postexercise Muscle Glycogen Synthesis in Humans.

    Science.gov (United States)

    Holdsworth, David A; Cox, Peter J; Kirk, Tom; Stradling, Huw; Impey, Samuel G; Clarke, Kieran

    2017-09-01

    Physical endurance can be limited by muscle glycogen stores, in that glycogen depletion markedly reduces external work. During carbohydrate restriction, the liver synthesizes the ketone bodies, D-β-hydroxybutyrate, and acetoacetate from fatty acids. In animals and in the presence of glucose, D-β-hydroxybutyrate promotes insulin secretion and increases glycogen synthesis. Here we determined whether a dietary ketone ester, combined with plentiful glucose, can increase postexercise glycogen synthesis in human skeletal muscle. After an interval-based glycogen depletion exercise protocol, 12 well-trained male athletes completed a randomized, three-arm, blinded crossover recovery study that consisted of consumption of either a taste-matched, zero-calorie control or a ketone monoester drink, followed by a 10-mM glucose clamp or saline infusion for 2 h. The three postexercise conditions were control drink then saline infusion, control drink then hyperglycemic clamp, or ketone ester drink then hyperglycemic clamp. Skeletal muscle glycogen content was determined in muscle biopsies of vastus lateralis taken before and after the 2-h clamps. The ketone ester drink increased blood D-β-hydroxybutyrate concentrations to a maximum of 5.3 versus 0.7 mM for the control drink (P glycogen was 50% higher (246 vs 164 mmol glycosyl units per kilogram dry weight, P glycogen synthesis.

  10. Fetal echocardiography

    International Nuclear Information System (INIS)

    Chaubal, Nitin G.; Chaubal, Jyoti

    2009-01-01

    USG performed with a high-end machine, using a good cine-loop facility is extremely helpful in the diagnosis of fetal cardiac anomalies. In fetal echocardiography, the four-chamber view and the outflow-tract view are used to diagnose cardiac anomalies. The most important objective during a targeted anomaly scan is to identify those cases that need a dedicated fetal echocardiogram. Associated truncal and chromosomal anomalies need to be identified. This review shows how fetal echocardiography, apart from identifying structural defects in the fetal heart, can be used to look at rhythm abnormalities and other functional aspects of the fetal heart

  11. Molecular cloning and characterization of glycogen synthase in Eriocheir sinensis.

    Science.gov (United States)

    Li, Ran; Zhu, Li-Na; Ren, Li-Qi; Weng, Jie-Yang; Sun, Jin-Sheng

    2017-12-01

    Glycogen plays an important role in glucose and energy homeostasis at cellular and organismal levels. In glycogen synthesis, glycogen synthase (GS) is a rate-limiting enzyme catalysing the addition of α-1,4-linked glucose units from (UDP) 3 -glucose to a nascent glycogen chain using glycogenin (GN) as a primer. While studies on mammalian liver GS (GYS2) are numerous, enzymes from crustaceans, which also use glycogen and glucose as their main energy source, have received less attention. In the present study, we amplified full-length GS cDNA from Eriocheir sinensis. Tissue expression profiling revealed the highest expression of GS in the hepatopancreas. During moulting, GS expression and activity declined, and glycogen levels in the hepatopancreas were reduced. Recombinant GS was expressed in Escherichia coli Rosetta (DE3), and induction at 37°C or 16°C yielded EsGS in insoluble inclusion bodies (EsGS-I) or in soluble form (EsGS-S), respectively. Enzyme activity was measured in a cell-free system containing glucose-6-phosphate (G6P), and both forms possessed glycosyltransferase activity, but refolded EsGS-I was more active. Enzyme activity of both GS and EsGS-I in the hepatopancreas was optimum at 25°C, which is coincident with the optimum growth temperature of Chinese mitten crab, and higher (37°C) or lower (16°C) temperatures resulted in lower enzyme activity. Taken together, the results suggest that GS may be important for maintaining normal physiological functions such as growth and reproduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Characterization of a canine model of glycogen storage disease type IIIa

    Directory of Open Access Journals (Sweden)

    Haiqing Yi

    2012-11-01

    Glycogen storage disease type IIIa (GSD IIIa is an autosomal recessive disease caused by deficiency of glycogen debranching enzyme (GDE in liver and muscle. The disorder is clinically heterogeneous and progressive, and there is no effective treatment. Previously, a naturally occurring dog model for this condition was identified in curly-coated retrievers (CCR. The affected dogs carry a frame-shift mutation in the GDE gene and have no detectable GDE activity in liver and muscle. We characterized in detail the disease expression and progression in eight dogs from age 2 to 16 months. Monthly blood biochemistry revealed elevated and gradually increasing serum alanine transaminase (ALT, aspartate transaminase (AST and alkaline phosphatase (ALP activities; serum creatine phosphokinase (CPK activity exceeded normal range after 12 months. Analysis of tissue biopsy specimens at 4, 12 and 16 months revealed abnormally high glycogen contents in liver and muscle of all dogs. Fasting liver glycogen content increased from 4 months to 12 months, but dropped at 16 months possibly caused by extended fibrosis; muscle glycogen content continually increased with age. Light microscopy revealed significant glycogen accumulation in hepatocytes at all ages. Liver histology showed progressive, age-related fibrosis. In muscle, scattered cytoplasmic glycogen deposits were present in most cells at 4 months, but large, lake-like accumulation developed by 12 and 16 months. Disruption of the contractile apparatus and fraying of myofibrils was observed in muscle at 12 and 16 months by electron microscopy. In conclusion, the CCR dogs are an accurate model of GSD IIIa that will improve our understanding of the disease progression and allow opportunities to investigate treatment interventions.

  13. Fetal echocardiography

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007340.htm Fetal echocardiography To use the sharing features on this page, please enable JavaScript. Fetal echocardiography is a test that uses sound waves ( ultrasound ) ...

  14. Immortalization of Human Fetal Hepatocyte by Ectopic Expression of Human Telomerase Reverse Transcriptase, Human Papilloma Virus (E7) and Simian Virus 40 Large T (SV40 T) Antigen Towards Bioartificial Liver Support.

    Science.gov (United States)

    Giri, Shibashish; Bader, Augustinus

    2014-09-01

    Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5-7 days. The remaining transfected hepatocytes persisted for 2-4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose consumption. We established a

  15. Pemulihan Kadar Glikogen Serta Peningkatan Konsumsi Glukosa dan Trigliserida Saat Aktivitas Fisik Pascapemberian Ekstrak Kulit Buah Manggis (GLYCOGEN RECOVERY AND INCREASE CONSUMPTION OF GLUCOSE AND TRIGLYCERIDE DURING PHYSICAL ACTIVITIES AFTER ADMINISTRA

    OpenAIRE

    I Nyoman Arsana; Ni Ketut Ayu Juliasih

    2016-01-01

    This study was aimed to investigate the effect of mangosteen rind on the glycogen recovery of themuscle and the liver, and the glucose and the triglyceride consumption during physical activities. ARandomized Block Design was applied with four treatments: control (K), physical activity (KF), physicalactivity and extract (FE),extract (E). The extract dosage was 400 mg/kg bodyweight/day administered forfour weeks. The assessed variables were the muscle glycogen, the liver glycogen, the blood gly...

  16. Pulmonary Hypoplasia Caused by Fetal Ascites in Congenital Cytomegalovirus Infection Despite Fetal Therapy

    Directory of Open Access Journals (Sweden)

    Kazumichi Fujioka

    2017-11-01

    Full Text Available We report two cases of pulmonary hypoplasia due to fetal ascites in symptomatic congenital cytomegalovirus (CMV infections despite fetal therapy. The patients died soon after birth. The pathogenesis of pulmonary hypoplasia in our cases might be thoracic compression due to massive fetal ascites as a result of liver insufficiency. Despite aggressive fetal treatment, including multiple immunoglobulin administration, which was supposed to diminish the pathogenic effects of CMV either by neutralization or immunomodulatory effects, the fetal ascites was uncontrollable. To prevent development of pulmonary hypoplasia in symptomatic congenital CMV infections, further fetal intervention to reduce ascites should be considered.

  17. Hexokinase 2, glycogen synthase and phosphorylase play a key role in muscle glycogen supercompensation

    DEFF Research Database (Denmark)

    Irimia, José M; Rovira, Jordi; Nielsen, Jakob N

    2012-01-01

    Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood.......Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood....

  18. In vivo Magnetic Resonance Spectroscopy of cerebral glycogen metabolism in animals and humans

    Science.gov (United States)

    Khowaja, Ameer; Choi, In-Young; Seaquist, Elizabeth R.; Öz, Gülin

    2015-01-01

    Glycogen serves as an important energy reservoir in the human body. Despite the abundance of glycogen in the liver and skeletal muscles, its concentration in the brain is relatively low, hence its significance has been questioned. A major challenge in studying brain glycogen metabolism has been the lack of availability of non-invasive techniques for quantification of brain glycogen in vivo. Invasive methods for brain glycogen quantification such as post mortem extraction following high energy microwave irradiation are not applicable in the human brain. With the advent of 13C Magnetic Resonance Spectroscopy (MRS), it has been possible to measure brain glycogen concentrations and turnover in physiological conditions, as well as under the influence of stressors such as hypoglycemia and visual stimulation. This review presents an overview of the principles of the 13C MRS methodology and its applications in both animals and humans to further our understanding of glycogen metabolism under normal physiological and pathophysiological conditions such as hypoglycemia unawareness. PMID:24676563

  19. Supplementation of glycerol or fructose via drinking water to grazing lambs on tissue glycogen level and lipogenesis.

    Science.gov (United States)

    Volpi-Lagreca, G; Duckett, S K

    2017-06-01

    Lambs ( = 18; 40.1 ± 7.4 kg BW) were used to assess supplementation of glycerol or fructose via drinking water on growth, tissue glycogen levels, postmortem glycolysis, and lipogenesis. Lambs were blocked by BW and allocated to alfalfa paddocks (2 lambs/paddock and 3 paddocks/treatment). Each paddock within a block was assigned randomly to drinking water treatments for 30 d: 1) control (CON), 2) 120 g fructose/L of drinking water (FRU), or 3) 120 g glycerol/L of drinking water (GLY). Lambs grazed alfalfa with free access to water treatments for 28 d and then were fasted in indoor pens for a final 2 d with access to only water treatments. Data were analyzed using the MIXED procedure of SAS with water treatment and time (when appropriate) in the model. During the 28-d grazing period, ADG was greater ( glycogen content × postmortem time was significant ( = 0.003) in LM and semitendinosus (ST) muscles. Glycogen content in the LM was greater ( Glycogen content in ST did not differ between treatments ( > 0.05). Liver glycogen content was over 14-fold greater ( glycogen branching enzyme in the liver. Overall, glycerol supplementation improved growth, reduced BW shrink during fasting, increased glycogen content in muscle and the liver, and stimulated de novo lipogenesis.

  20. Swelling of rat hepatocytes stimulates glycogen synthesis

    NARCIS (Netherlands)

    Baquet, A.; Hue, L.; Meijer, A. J.; van Woerkom, G. M.; Plomp, P. J.

    1990-01-01

    In hepatocytes from fasted rats, several amino acids are known to stimulate glycogen synthesis via activation of glycogen synthase. The hypothesis that an increase in cell volume resulting from amino acid uptake may be involved in the stimulation of glycogen synthesis is supported by the following

  1. Direct vs. indirect pathway of hepatic glycogen synthesis as a function of glucose infusion rate

    International Nuclear Information System (INIS)

    Bagby, G.J.; Lang, C.H.; Johnson, J.L.; Blakesly, H.L.; Spitzer, J.J.

    1986-01-01

    This study was initiated to determine the influence of the rate of exogenous glucose administration on liver glycogen synthesis by the direct (glucose uptake and incorporation into glycogen) vs the indirect pathway (glucose degradation to 3-carbon intermediates, e.g., lactate, prior to incorporation into glycogen). Catheterized rats were fasted 2 days prior to receiving a 3 hr infusion of glucose at rates of 0 to 230 μmol/min/kg containing tracer [6- 3 H]- and [U- 14 C]-glucose. Plasma glucose (r = 0.80), insulin (r = 0.90) and lactate (r = 0.84) were correlated with glucose infusion rate. The rate of liver glycogen deposition (0.46 +/- 0.03 μmol/min/g) did not differ between a glucose infusion rate of 20 and 230 μmol/min/kg. At the lowest and highest glucose infusion rates hepatic glycogenesis accounted for 87 +/- 6 and 9 +/- 1% of the total glucose load, respectively. The percent contribution of the direct pathways to glycogen deposition ([ 3 H] specific activity in hepatic glycogen/[ 3 H] specific activity in plasma glucose) increased from 16 +/- 3 to 83 +/- 5% from lowest to highest glucose infusion rates (prevailing plasma glucose concentrations: 9 +/- 1 and 21 +/- 2 mM, respectively). The results indicate that the relative contribution of the direct and indirect pathways of glucogen synthesis are dependent upon the glucose load or plasma glucose concentration

  2. The subcellular localization of yeast glycogen synthase is dependent upon glycogen content

    OpenAIRE

    Wilson, Wayne A.; Boyer, Michael P.; Davis, Keri D.; Burke, Michael; Roach, Peter J.

    2010-01-01

    The budding yeast, Saccharomyces cerevisiae, accumulates the storage polysaccharide glycogen in response to nutrient limitation. Glycogen synthase, the major form of which is encoded by the GSY2 gene, catalyzes the key regulated step in glycogen storage. Here, we utilize Gsy2p fusions to green fluorescent protein (GFP) to determine where glycogen synthase is located within cells. We demonstrate that the localization pattern of Gsy2-GFP depends upon the glycogen content of the cell. When glyco...

  3. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    KAUST Repository

    Ruchti, E.

    2016-10-08

    The storage and use of glycogen, the main energy reserve in the brain, is a metabolic feature of astrocytes. Glycogen synthesis is regulated by Protein Targeting to Glycogen (PTG), a member of specific glycogen-binding subunits of protein phosphatase-1 (PPP1). It positively regulates glycogen synthesis through de-phosphorylation of both glycogen synthase (activation) and glycogen phosphorylase (inactivation). In cultured astrocytes, PTG mRNA levels were previously shown to be enhanced by the neurotransmitter noradrenaline. To achieve further insight into the role of PTG in the regulation of astrocytic glycogen, its levels of expression were manipulated in primary cultures of mouse cortical astrocytes using adenovirus-mediated overexpression of tagged-PTG or siRNA to downregulate its expression. Infection of astrocytes with adenovirus led to a strong increase in PTG expression and was associated with massive glycogen accumulation (>100 fold), demonstrating that increased PTG expression is sufficient to induce glycogen synthesis and accumulation. In contrast, siRNA-mediated downregulation of PTG resulted in a 2-fold decrease in glycogen levels. Interestingly, PTG downregulation strongly impaired long-term astrocytic glycogen synthesis induced by insulin or noradrenaline. Finally, these effects of PTG downregulation on glycogen metabolism could also be observed in cultured astrocytes isolated from PTG-KO mice. Collectively, these observations point to a major role of PTG in the regulation of glycogen synthesis in astrocytes and indicate that conditions leading to changes in PTG expression will directly impact glycogen levels in this cell type.

  4. Liver Immunology

    Science.gov (United States)

    Bogdanos, Dimitrios P.; Gao, Bin; Gershwin, M. Eric

    2014-01-01

    The liver is the largest organ in the body and is generally regarded by non-immunologists as not having lymphoid function. However, such is far from accurate. This review highlights the importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the role of liver as a lymphoid organ. The liver facilitates a tolerance rather than immunoreactivity, which protects the host from antigenic overload of dietary components and drugs derived from the gut and is also instrumental to fetal immune tolerance. Loss of liver tolerance leads to autoaggressive phenomena which if are not controlled by regulatory lymphoid populations may lead to the induction of autoimmune liver diseases. Liver-related lymphoid subpopulations also act as critical antigen-presenting cells. The study of the immunological properties of liver and delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers provides a platform to understand the hierarchy of a series of detrimental events which lead to immune-mediated destruction of the liver and the rejection of liver allografts. The majority of emphasis within this review will be on the normal mononuclear cell composition of the liver. However, within this context, we will discus select, but not all, immune mediated liver disease and attempt to place these data in the context of human autoimmunity. PMID:23720323

  5. Putative role of glycogen as a peripheral biomarker of GSK3β activity.

    Science.gov (United States)

    Frizzo, Marcos Emilio

    2013-09-01

    Glycogen synthase kinase 3-β (GSK3β) has a pivotal role in several intracellular signaling cascades that are involved in gene transcription, cytoskeletal reorganization, energy metabolism, cell cycle regulation, and apoptosis. This kinase has pleiotropic functions, and the importance of its activity has recently been shown in neurons and platelets. In addition to its regulatory function in several physiological events, changes in GSK3β activity have been associated with many psychiatric and neurodegenerative illnesses, such as Alzheimer's disease, schizophrenia and autism-spectrum disorders. Beside the reports of its involvement in several pathologies, it has become increasingly apparent that GSK3β might be a common therapeutic target for different classes of psychiatric drugs, and also that the GSK3β ratio may be a useful parameter to determine the biochemical changes that might occur during antidepressant treatment. Although GSK3β is commonly described as a key enzyme in a plethora of signaling cascades, originally it was identified as playing an important role in the regulation of glycogen synthesis, given its ability to inactivate glycogen synthase (GS) by phosphorylation. Acting as a constitutively active kinase, GSK3β phosphorylates GS, which results in a decrease of glycogen production. GSK3β phosphorylation increases glycogen synthesis and storage, while its dephosphorylation decreases glycogen synthesis. Inactivation of GSK3β leads to dephosphorylation of GS and increase in glycogen synthesis in the adipose tissue, muscle and liver. Glycogen levels are reduced by antidepressant treatment, and this effect seems to be related to an effect of drugs on GSK3β activity. Peripherally, glycogen is also abundantly found in platelets, where it is considered a major energy source, required for a variety of its functions, including the release reaction. Recently, analysis of platelets from patients with late-life major depression showed that active forms of

  6. Pluralistic roles for glycogen in the central and peripheral nervous systems.

    Science.gov (United States)

    Fryer, Kirsty L; Brown, Angus M

    2015-02-01

    Glycogen is present in the mammalian nervous system, but at concentrations of up to one hundred times lower than those found in liver and skeletal muscle. This relatively low concentration has resulted in neglect of assigning a role(s) for brain glycogen, but in the last 15 years enormous progress has been made in revealing the multifaceted roles that glycogen plays in the mammalian nervous system. Initial studies highlighted a role for glycogen in supporting neural elements (neurons and axons) during aglycemia, where glycogen supplied supplementary energy substrate in the form of lactate to fuel neural oxidative metabolism. The appropriate enzymes and membrane bound transporters have been localized to cellular locations consistent with astrocyte to neuron energy substrate shuttling. A role for glycogen in supporting the induction of long term potential (LTP) in the hippocampus has recently been described, where glycogen is metabolized to lactate and shuttled to neurons via the extracellular space by monocarboxylate transporters, where it plays an integral role in the induction process of LTP. This is the first time that glycogen has been assigned a role in a distinct, complex physiological brain function, where the lack of glycogen, in the presence of normoglycemia, results in disturbance of the function. The signalling pathway that alerts astrocytes to increased neuronal activity has been recently described, highlighting a pivotal role for increased extracellular potassium ([K(+)]o) that routinely accompanies increased neural activity. An astrocyte membrane bound bicarbonate transporter is activated by the [K(+)]o, the resulting increase in intracellular bicarbonate alkalizing the cell's interior and activating soluble adenyl cyclase (sAC). The sAC promotes glycogenolysis via increases in cyclic AMP, ultimately producing lactate, which is shuttled out of the astrocyte and presumably taken up by neurons from the extracellular space.

  7. Increasing fetal ovine number per gestation alters fetal plasma clinical chemistry values.

    Science.gov (United States)

    Zywicki, Micaela; Blohowiak, Sharon E; Magness, Ronald R; Segar, Jeffrey L; Kling, Pamela J

    2016-08-01

    Intrauterine growth restriction (IUGR) is interconnected with developmental programming of lifelong pathophysiology. IUGR is seen in human multifetal pregnancies, with stepwise rises in fetal numbers interfering with placental nutrient delivery. It remains unknown whether fetal blood analyses would reflect fetal nutrition, liver, and excretory function in the last trimester of human or ovine IUGR In an ovine model, we hypothesized that fetal plasma biochemical values would reflect progressive placental, fetal liver, and fetal kidney dysfunction as the number of fetuses per gestation rose. To determine fetal plasma biochemical values in singleton, twin, triplet, and quadruplet/quintuplet ovine gestation, we investigated morphometric measures and comprehensive metabolic panels with nutritional measures, liver enzymes, and placental and fetal kidney excretory measures at gestational day (GD) 130 (90% gestation). As anticipated, placental dysfunction was supported by a stepwise fall in fetal weight, fetal plasma glucose, and triglyceride levels as fetal number per ewe rose. Fetal glucose and triglycerides were directly related to fetal weight. Plasma creatinine, reflecting fetal renal excretory function, and plasma cholesterol, reflecting placental excretory function, were inversely correlated with fetal weight. Progressive biochemical disturbances and growth restriction accompanied the rise in fetal number. Understanding the compensatory and adaptive responses of growth-restricted fetuses at the biochemical level may help explain how metabolic pathways in growth restriction can be predetermined at birth. This physiological understanding is important for clinical care and generating interventional strategies to prevent altered developmental programming in multifetal gestation. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  8. Muscle glycogen synthesis before and after exercise.

    Science.gov (United States)

    Ivy, J L

    1991-01-01

    The importance of carbohydrates as a fuel source during endurance exercise has been known for 60 years. With the advent of the muscle biopsy needle in the 1960s, it was determined that the major source of carbohydrate during exercise was the muscle glycogen stores. It was demonstrated that the capacity to exercise at intensities between 65 to 75% VO2max was related to the pre-exercise level of muscle glycogen, i.e. the greater the muscle glycogen stores, the longer the exercise time to exhaustion. Because of the paramount importance of muscle glycogen during prolonged, intense exercise, a considerable amount of research has been conducted in an attempt to design the best regimen to elevate the muscle's glycogen stores prior to competition and to determine the most effective means of rapidly replenishing the muscle glycogen stores after exercise. The rate-limiting step in glycogen synthesis is the transfer of glucose from uridine diphosphate-glucose to an amylose chain. This reaction is catalysed by the enzyme glycogen synthase which can exist in a glucose-6-phosphate-dependent, inactive form (D-form) and a glucose-6-phosphate-independent, active form (I-form). The conversion of glycogen synthase from one form to the other is controlled by phosphorylation-dephosphorylation reactions. The muscle glycogen concentration can vary greatly depending on training status, exercise routines and diet. The pattern of muscle glycogen resynthesis following exercise-induced depletion is biphasic. Following the cessation of exercise and with adequate carbohydrate consumption, muscle glycogen is rapidly resynthesised to near pre-exercise levels within 24 hours. Muscle glycogen then increases very gradually to above-normal levels over the next few days. Contributing to the rapid phase of glycogen resynthesis is an increase in the percentage of glycogen synthase I, an increase in the muscle cell membrane permeability to glucose, and an increase in the muscle's sensitivity to insulin

  9. Fetal MSCs

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Derived from extra embryonic tissues (amniotic fluid, placenta, cord blood, Wharton's Jelly) and fetal tissues (aborted fetuses). Derived from extra embryonic tissues (amniotic fluid, placenta, cord blood, Wharton's Jelly) and fetal tissues (aborted fetuses). In comparison ...

  10. Glycogen resynthesis rate following cross-country skiing is closely correlated to skeletal muscle glycogen content

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Nielsen, Joachim; Saltin, Bengt

    on an optimal glycogen resynthesis rate before a subsequent exercise session. The purpose of present study was to evaluate the glycogen resynthesis rate in elite cross-country (cc) skiers, following exhaustive exercise, and to examine the role of muscular glycogen content on the resynthesis rate. METHOD: Ten...... as 4h and 22h after the race and analyzed for glycogen content. Figure 1. Correlation between muscle glycogen resynthesis rate and glycogen content after and in the rocery period after exercise. Line indicate best fit of all the data points (r2 = 0.41, p

  11. Lowering Temperature is the Trigger for Glycogen Build-Up and Winter Fasting in Crucian Carp (Carassius carassius).

    Science.gov (United States)

    Varis, Joonas; Haverinen, Jaakko; Vornanen, Matti

    2016-02-01

    Seasonal changes in physiology of vertebrate animals are triggered by environmental cues including temperature, day-length and oxygen availability. Crucian carp (Carassius carassius) tolerate prolonged anoxia in winter by using several physiological adaptations that are seasonally activated. This study examines which environmental cues are required to trigger physiological adjustments for winter dormancy in crucian carp. To this end, crucian carp were exposed to changing environmental factors under laboratory conditions: effects of declining water temperature, shortening day-length and reduced oxygen availability, separately and in different combinations, were examined on glycogen content and enzyme activities involved in feeding (alkaline phosphatase, AP) and glycogen metabolism (glycogen synthase, GyS; glycogen phosphorylase, GP). Lowering temperature induced a fall in activity of AP and a rise in glycogen content and rate of glycogen synthesis. Relative mass of the liver, and glycogen concentration of liver, muscle and brain increased with lowering temperature. Similarly activity of GyS in muscle and expression of GyS transcripts in brain were up-regulated by lowering temperature. Shortened day-length and oxygen availability had practically no effects on measured variables. We conclude that lowering temperature is the main trigger in preparation for winter anoxia in crucian carp.

  12. Ablation of PPP1R3G reduces glycogen deposition and mitigates high-fat diet induced obesity.

    Science.gov (United States)

    Zhang, Yongxian; Gu, Jin; Wang, Lin; Zhao, Zilong; Pan, Yi; Chen, Yan

    2017-01-05

    Glycogen and triglyceride are two major forms of energy storage in the body and provide the fuel during different phases of food deprivation. However, how glycogen metabolism is linked to fat deposition in adipose tissue has not been clearly characterized. We generated a mouse model with whole-body deletion of PPP1R3G, a glycogen-targeting subunit of protein phosphatase-1 required for glycogen synthesis. Upon feeding with high-fat diet, the body weight and fat composition are significantly reduced in the PPP1R3G -/- mice compared to the wild type controls. The metabolic rate of the mice as measured by O 2 consumption and CO 2 production is accelerated by PPP1R3G deletion. The high-fat diet-induced liver steatosis is also slightly relieved by PPP1R3G deletion. The glycogen level in adipose tissue is reduced by PPP1R3G deletion. In 3T3L1 cells, overexpression of PPP1R3G leads to increases of both glycogen and triglyceride levels. In conclusion, our study indicates that glycogen is actively involved in fat accumulation in adipose tissue and obesity development upon high-fat diet. Our study also suggests that PPP1R3G is an important player that links glycogen metabolism to lipid metabolism in vivo. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Revisiting Glycogen Content in the Human Brain.

    Science.gov (United States)

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R

    2015-12-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain.

  14. Lafora disease offers a unique window into neuronal glycogen metabolism.

    Science.gov (United States)

    Gentry, Matthew S; Guinovart, Joan J; Minassian, Berge A; Roach, Peter J; Serratosa, Jose M

    2018-05-11

    Lafora disease (LD) is a fatal, autosomal recessive, glycogen-storage disorder that manifests as severe epilepsy. LD results from mutations in the gene encoding either the glycogen phosphatase laforin or the E3 ubiquitin ligase malin. Individuals with LD develop cytoplasmic, aberrant glycogen inclusions in nearly all tissues that more closely resemble plant starch than human glycogen. This Minireview discusses the unique window into glycogen metabolism that LD research offers. It also highlights recent discoveries, including that glycogen contains covalently bound phosphate and that neurons synthesize glycogen and express both glycogen synthase and glycogen phosphorylase. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Green Tea Polyphenol Epigallocatechin-3-Gallate Enhance Glycogen Synthesis and Inhibit Lipogenesis in Hepatocytes

    Directory of Open Access Journals (Sweden)

    Jane J. Y. Kim

    2013-01-01

    Full Text Available The beneficial effects of green tea polyphenols (GTP against metabolic syndrome and type 2 diabetes by suppressing appetite and nutrient absorption have been well reported. However the direct effects and mechanisms of GTP on glucose and lipid metabolism remain to be elucidated. Since the liver is an important organ involved in glucose and lipid metabolism, we examined the effects and mechanisms of GTP on glycogen synthesis and lipogenesis in HepG2 cells. Concentrations of GTP containing 68% naturally occurring (−-epigallocatechin-3-gallate (EGCG were incubated in HepG2 cells with high glucose (30 mM under 100 nM of insulin stimulation for 24 h. GTP enhanced glycogen synthesis in a dose-dependent manner. 10 μM of EGCG significantly increased glycogen synthesis by 2fold (P<0.05 compared with insulin alone. Western blotting revealed that phosphorylation of Ser9 glycogen synthase kinase 3β and Ser641 glycogen synthase was significantly increased in GTP-treated HepG2 cells compared with nontreated cells. 10 μM of EGCG also significantly inhibited lipogenesis (P<0.01. We further demonstrated that this mechanism involves enhanced expression of phosphorylated AMP-activated protein kinase α and acetyl-CoA carboxylase in HepG2 cells. Our results showed that GTP is capable of enhancing insulin-mediated glucose and lipid metabolism by regulating enzymes involved in glycogen synthesis and lipogenesis.

  16. Nature of complexing of glycogen with iodine in presence of CaCl2

    International Nuclear Information System (INIS)

    Bobrova, L.N.

    1986-01-01

    The absorption and dichroic absorbance of an iodine complex of muscle glycogen were studied as a function of the CaCl 2 concentration. It was found that high CaCl 2 concentrations, at which the staining of glycogen upon interaction with iodine increases sharply, destabilize the α-glucan helix and lead to a disturbance in the formation of a specific chromophore of the iodine-glycogen complex, which is indicated by the loss of dichroism. The stained chromophore appearing upon a simultaneous decrease in the dichroism is evidently produced by a nonhelical mechanism and is therefore nonspecific. This nonspecific chromophore may be the source of errors in spectrophotometric characterization of the structure of glycogens. It was shown using rabbit skeletal muscle and liver glycogens that the Krisman method, in which concentrated solutions of CaCl 2 are used, does not reveal the differences in the structure of the glycogens that are found at low CaCl 2 concentrations. The unfavorable effect of high CaCl 2 concentrations on helix formation must be kept in mind in a determination of the stoichiometry of the interaction of iodine with α-glucan

  17. N-cadherin{sup +} HSCs in fetal liver exhibit higher long-term bone marrow reconstitution activity than N-cadherin{sup -} HSCs

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Hirofumi; Arai, Fumio; Hosokawa, Kentaro; Ikushima, Yoshiko Matsumoto [Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Suda, Toshio, E-mail: sudato@z3.keio.jp [Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer High N-cad expression was detected in E12.5 mouse FL LT-HSCs (EPCR{sup +} LSK cells). Black-Right-Pointing-Pointer Immunohistochemically, N-cad{sup +} HSCs co-localized with sinusoidal ECs (Lyve-1{sup +} cells) in E12.5 FL, but these gradually detached in E15.5 and E18.5 FL. Black-Right-Pointing-Pointer N-cad{sup +} LSK cells in E12.5 FL exhibited higher LTR activity versus N-cad{sup -} LSK cells, which decreased in E15.5 and E18.5. Black-Right-Pointing-Pointer N-cad expression may confer high LTR activity to HSCs by facilitating interactions with the perisinusoidal niche in FL. -- Abstract: Adult hematopoietic stem cells (HSCs) are maintained in a microenvironment known as the stem cell niche. The regulation of HSCs in fetal liver (FL) and their niche, however, remains to be elucidated. In this study, we investigated the role of N-cadherin (N-cad) in the maintenance of HSCs during FL hematopoiesis. By using anti-N-cad antibodies (Abs) produced by our laboratory, we detected high N-cad expression in embryonic day 12.5 (E12.5) mouse FL HSCs, but not in E15.5 and E18.5 FL. Immunofluorescence staining revealed that N-cad{sup +}c-Kit{sup +} and N-cad{sup +} endothelial protein C receptor (EPCR){sup +} HSCs co-localized with Lyve-1{sup +} sinusoidal endothelial cells (ECs) in E12.5 FL and that some of these cells also expressed N-cad. However, N-cad{sup +} HSCs were also observed to detach from the perisinusoidal niche at E15.5 and E18.5, concomitant with a down-regulation of N-cad and an up-regulation of E-cadherin (E-cad) in hepatic cells. Moreover, EPCR{sup +} long-term (LT)-HSCs were enriched in the N-cad{sup +}Lin{sup -}Sca-1{sup +}c-Kit{sup +} (LSK) fraction in E12.5 FL, but not in E15.5 or E18.5 FL. In a long-term reconstitution (LTR) activity assay, higher engraftment associated with N-cad{sup +} LSK cells versus N-cad{sup -} LSK cells in E12.5 FL when transplanted into lethally irradiated recipient mice. However, the

  18. N-cadherin+ HSCs in fetal liver exhibit higher long-term bone marrow reconstitution activity than N-cadherin− HSCs

    International Nuclear Information System (INIS)

    Toyama, Hirofumi; Arai, Fumio; Hosokawa, Kentaro; Ikushima, Yoshiko Matsumoto; Suda, Toshio

    2012-01-01

    Highlights: ► High N-cad expression was detected in E12.5 mouse FL LT-HSCs (EPCR + LSK cells). ► Immunohistochemically, N-cad + HSCs co-localized with sinusoidal ECs (Lyve-1 + cells) in E12.5 FL, but these gradually detached in E15.5 and E18.5 FL. ► N-cad + LSK cells in E12.5 FL exhibited higher LTR activity versus N-cad − LSK cells, which decreased in E15.5 and E18.5. ► N-cad expression may confer high LTR activity to HSCs by facilitating interactions with the perisinusoidal niche in FL. -- Abstract: Adult hematopoietic stem cells (HSCs) are maintained in a microenvironment known as the stem cell niche. The regulation of HSCs in fetal liver (FL) and their niche, however, remains to be elucidated. In this study, we investigated the role of N-cadherin (N-cad) in the maintenance of HSCs during FL hematopoiesis. By using anti-N-cad antibodies (Abs) produced by our laboratory, we detected high N-cad expression in embryonic day 12.5 (E12.5) mouse FL HSCs, but not in E15.5 and E18.5 FL. Immunofluorescence staining revealed that N-cad + c-Kit + and N-cad + endothelial protein C receptor (EPCR) + HSCs co-localized with Lyve-1 + sinusoidal endothelial cells (ECs) in E12.5 FL and that some of these cells also expressed N-cad. However, N-cad + HSCs were also observed to detach from the perisinusoidal niche at E15.5 and E18.5, concomitant with a down-regulation of N-cad and an up-regulation of E-cadherin (E-cad) in hepatic cells. Moreover, EPCR + long-term (LT)-HSCs were enriched in the N-cad + Lin − Sca-1 + c-Kit + (LSK) fraction in E12.5 FL, but not in E15.5 or E18.5 FL. In a long-term reconstitution (LTR) activity assay, higher engraftment associated with N-cad + LSK cells versus N-cad − LSK cells in E12.5 FL when transplanted into lethally irradiated recipient mice. However, the higher engraftment of N-cad + LSK cells decreased subsequently in E15.5 and E18.5 FL. It is possible that N-cad expression conferred higher LTR activity to HSCs by facilitating

  19. Glycogen storage disease type I: clinical and laboratory profile

    Directory of Open Access Journals (Sweden)

    Berenice L. Santos

    2014-12-01

    Full Text Available OBJECTIVES: To characterize the clinical, laboratory, and anthropometric profile of a sample of Brazilian patients with glycogen storage disease type I managed at an outpatient referral clinic for inborn errors of metabolism. METHODS: This was a cross-sectional outpatient study based on a convenience sampling strategy. Data on diagnosis, management, anthropometric parameters, and follow-up were assessed. RESULTS: Twenty-one patients were included (median age 10 years, range 1-25 years, all using uncooked cornstarch therapy. Median age at diagnosis was 7 months (range, 1-132 months, and 19 patients underwent liver biopsy for diagnostic confirmation. Overweight, short stature, hepatomegaly, and liver nodules were present in 16 of 21, four of 21, nine of 14, and three of 14 patients, respectively. A correlation was found between height-for-age and BMI-for-age Z-scores (r = 0.561; p = 0.008. CONCLUSIONS: Diagnosis of glycogen storage disease type I is delayed in Brazil. Most patients undergo liver biopsy for diagnostic confirmation, even though the combination of a characteristic clinical presentation and molecular methods can provide a definitive diagnosis in a less invasive manner. Obesity is a side effect of cornstarch therapy, and appears to be associated with growth in these patients.

  20. Nardostachys Jatamansi root extract protects of radiation induced glycogen depletion in Albino Wistar rats

    International Nuclear Information System (INIS)

    Damodara Gowda, K.M.; Krishna, A.P.; Shetty, Lathika; Suchetha Shetty, N.; Sanjeev, Ganesh

    2013-01-01

    Exposure to ionizing radiation cause variety of pathological processes in irradiated cells. The killing action of ionizing radiation is mainly mediated through the free radicals generated from the radiolysis of cellular water. In the present study, protective effects of Nardostachys Jatamansi root extract (NJE) on radiation induced depletion of glycogen in rats exposed to 3 Gy whole body electron beam irradiation (EBR) was investigated. EBR was performed at Microtron centre, Mangalore University. Treatment of rats with NJE at a dosage of 100, 200 and 400 mg/kg bw respectively once daily for 15 days before, after and both before and after irradiation was done. The liver, kidney and muscle was separated and used for the estimation of total glycogen content using standard procedures and also for the histochemical localization of glycogen by PAS staining method. The data was analyzed by paired t test and Kruskal Wallis test. P<0.05 was the level of significance. The irradiated rats exhibited significant decline (p=0.000) in the level of total glycogen content in the tissues of liver, kidney and muscle whereas, a nonsignificant variation was recorded in rats treated with NJE. This study indicated that treatment with NJE both before and after irradiation for 15 consecutive days provided significant protection against irradiation induced depletion of glycogen. (author)

  1. Ultrastructure and cytochemistry of cardiac intramitochondrial glycogen.

    Science.gov (United States)

    Sótonyi, P; Somogyi, E; Nemes, A; Juhász-Nagy, S

    1976-01-01

    Authors have observed abnormalities of glycogen localization in cardiac muscle, after normothermic cardiac arrest. The identification of these intramitrochondrial particles as glycogen was confirmed by selective staining with periodic acid-lead citrat, periodic acid-thiosemicarbazide protein methods and by their selective removal from tissue sections by alfa-amylase. The intramitochondrial glycogen particles were of beta-type. Some intramitochondrial particles were surrounded by paired membranes which resulted from protrusion of parts of mitochondrial membrane.

  2. Estimation of liver glucose metabolism after refeeding

    International Nuclear Information System (INIS)

    Rognstad, R.

    1987-01-01

    Refeeding or infusing glucose to rats fasted for 24 hr or more causes rapid liver glycogen synthesis, the carbon source now considered to be largely from gluconeogenesis. While substrate cycling between plasma glucose and liver glucose-6P is known to occur, this cycling has apparently been ignored when calculations are made of % contribution of direct and indirect pathways to liver glycogen synthesis, or when hepatic glucose output is calculated from glucose turnover minus the glucose infusion rate. They show that, isotopically, an estimate of the fluxes of liver glucokinase and glucose-6-phosphatase is required to quantitate sources of carbon for liver glycogen synthesis, and to measure hepatic glucose output (or uptake). They propose a method to estimate these fluxes, involving a short infusion of a 14 C labelled gluconeogenic precursor plus (6T)glucose, with determination of isotopic yields in liver glycogen and total glucose. Given also the rate of liver glycogen synthesis, this procedure permits the estimation of net gluconeogenesis and hepatic glucose output or uptake. Also, in vitro evidence against the notion of a drastic zonation of liver carbohydrate metabolism is presented, e.g. raising the glucose concentration from 10 to 25 mM increases the 14 C yield from H 14 CO 3 - in lactate, with the increased pyruvate kinase flux and decreased gluconeogenesis occurring in the same cell type, not opposing pathways in different hepatocyte types (as has been postulated by some to occur in vivo after refeeding

  3. Determination of the Glycogen Content in Cyanobacteria.

    Science.gov (United States)

    De Porcellinis, Alice; Frigaard, Niels-Ulrik; Sakuragi, Yumiko

    2017-07-17

    Cyanobacteria accumulate glycogen as a major intracellular carbon and energy storage during photosynthesis. Recent developments in research have highlighted complex mechanisms of glycogen metabolism, including the diel cycle of biosynthesis and catabolism, redox regulation, and the involvement of non-coding RNA. At the same time, efforts are being made to redirect carbon from glycogen to desirable products in genetically engineered cyanobacteria to enhance product yields. Several methods are used to determine the glycogen contents in cyanobacteria, with variable accuracies and technical complexities. Here, we provide a detailed protocol for the reliable determination of the glycogen content in cyanobacteria that can be performed in a standard life science laboratory. The protocol entails the selective precipitation of glycogen from the cell lysate and the enzymatic depolymerization of glycogen to generate glucose monomers, which are detected by a glucose oxidase-peroxidase (GOD-POD) enzyme coupled assay. The method has been applied to Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002, two model cyanobacterial species that are widely used in metabolic engineering. Moreover, the method successfully showed differences in the glycogen contents between the wildtype and mutants defective in regulatory elements or glycogen biosynthetic genes.

  4. Postexercise muscle glycogen resynthesis in humans.

    Science.gov (United States)

    Burke, Louise M; van Loon, Luc J C; Hawley, John A

    2017-05-01

    Since the pioneering studies conducted in the 1960s in which glycogen status was investigated using the muscle biopsy technique, sports scientists have developed a sophisticated appreciation of the role of glycogen in cellular adaptation and exercise performance, as well as sites of storage of this important metabolic fuel. While sports nutrition guidelines have evolved during the past decade to incorporate sport-specific and periodized manipulation of carbohydrate (CHO) availability, athletes attempt to maximize muscle glycogen synthesis between important workouts or competitive events so that fuel stores closely match the demands of the prescribed exercise. Therefore, it is important to understand the factors that enhance or impair this biphasic process. In the early postexercise period (0-4 h), glycogen depletion provides a strong drive for its own resynthesis, with the provision of CHO (~1 g/kg body mass) optimizing this process. During the later phase of recovery (4-24 h), CHO intake should meet the anticipated fuel needs of the training/competition, with the type, form, and pattern of intake being less important than total intake. Dietary strategies that can enhance glycogen synthesis from suboptimal amounts of CHO or energy intake are of practical interest to many athletes; in this scenario, the coingestion of protein with CHO can assist glycogen storage. Future research should identify other factors that enhance the rate of synthesis of glycogen storage in a limited time frame, improve glycogen storage from a limited CHO intake, or increase muscle glycogen supercompensation. Copyright © 2017 the American Physiological Society.

  5. Fetal Ultrasound

    Science.gov (United States)

    ... isn't recommended simply to determine a baby's sex. Similarly, fetal ultrasound isn't recommended solely for the purpose of producing keepsake videos or pictures. If your health care provider doesn' ...

  6. Fetal Macrosomia

    Science.gov (United States)

    ... re more likely to have a large baby. Maternal obesity. Fetal macrosomia is more likely if you're ... is more likely to be a result of maternal diabetes, obesity or weight gain during pregnancy than other causes. ...

  7. Genetics Home Reference: glycogen storage disease type VII

    Science.gov (United States)

    ... Home Health Conditions Glycogen storage disease type VII Glycogen storage disease type VII Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description Glycogen storage disease type VII (GSDVII) is an inherited ...

  8. Genetics Home Reference: glycogen storage disease type IV

    Science.gov (United States)

    ... Home Health Conditions Glycogen storage disease type IV Glycogen storage disease type IV Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description Glycogen storage disease type IV (GSD IV) is an ...

  9. The effects of X-irradiation, N-ethyl-N-nitrosourea or combined treatment on O6-alkylguanine-DNA alkyltransferase activity in fetal rat brain and liver and the induction of CNS tumours

    International Nuclear Information System (INIS)

    Stammberger, I.; Nice, L.; Schmahl, W.

    1990-01-01

    Wistar rats were treated in utero on day 16 of gestation either by X-irradiation, N-ethyl-N-nitrosourea (ENU), or both in combination. The O 6 -alkylguanine-DNA alkyltransferase (AT) activity of the fetal brain and liver was analyzed and long-term observations were made to reveal any relationship between the O 6 -ethylguanine repair capability and tumour incidence in the organs of the offspring. The AT activity in the brain was affected to the same extent in the fetuses as in the dams. There was a 60.9% decrease in AT activity in fetuses 24 h after ENU treatment. This correlates with a significant increase in the incidence of brain tumours in the treated offspring (44.1%) compared to control animals. The inductive effect of X-irradiation on AT activity corresponded in turn with a reduction of the incidence of tumours after the combined treatment. In the liver of the rat fetuses, there was generally no effect of treatment on AT activity in contrast to the results obtained for the dams, where an increased AT activity was observed. There were no tumours of the liver observed in the offspring after either treatment alone or after combined treatment. It is suggested that the combined treatment of rat fetuses could significantly reduce the incidence of brain tumours in adult life. (author)

  10. The effects of X-irradiation, N-ethyl-N-nitrosourea or combined treatment on O sup 6 -alkylguanine-DNA alkyltransferase activity in fetal rat brain and liver and the induction of CNS tumours

    Energy Technology Data Exchange (ETDEWEB)

    Stammberger, I.; Nice, L. (Muenchen Univ. (Germany, F.R.). Walter-Straub-Institut fuer Pharmakologie und Toxikologie); Schmahl, W. (Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany, F.R.). Inst. fuer Pathologie)

    1990-02-01

    Wistar rats were treated in utero on day 16 of gestation either by X-irradiation, N-ethyl-N-nitrosourea (ENU), or both in combination. The O{sup 6}-alkylguanine-DNA alkyltransferase (AT) activity of the fetal brain and liver was analyzed and long-term observations were made to reveal any relationship between the O{sup 6}-ethylguanine repair capability and tumour incidence in the organs of the offspring. The AT activity in the brain was affected to the same extent in the fetuses as in the dams. There was a 60.9% decrease in AT activity in fetuses 24 h after ENU treatment. This correlates with a significant increase in the incidence of brain tumours in the treated offspring (44.1%) compared to control animals. The inductive effect of X-irradiation on AT activity corresponded in turn with a reduction of the incidence of tumours after the combined treatment. In the liver of the rat fetuses, there was generally no effect of treatment on AT activity in contrast to the results obtained for the dams, where an increased AT activity was observed. There were no tumours of the liver observed in the offspring after either treatment alone or after combined treatment. It is suggested that the combined treatment of rat fetuses could significantly reduce the incidence of brain tumours in adult life. (author).

  11. Gestational age dependent changes of the fetal brain, liver and adipose tissue fatty acid compositions in a population with high fish intakes

    NARCIS (Netherlands)

    Kuipers, Remko S.; Luxwolda, Martine F.; Offringa, Pieter J.; Boersma, E. Rudy; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2012-01-01

    Introduction: There are no data on the intrauterine fatty acid (FA) compositions of brain, liver and adipose tissue of infants born to women with high fish intakes. Subjects and methods: We analyzed the brain (n = 18), liver (n = 14) and adipose tissue (n = 11) FA compositions of 20 stillborn

  12. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs

    Science.gov (United States)

    Ramnanan, Christopher J.; Saraswathi, Viswanathan; Smith, Marta S.; Donahue, E. Patrick; Farmer, Ben; Farmer, Tiffany D.; Neal, Doss; Williams, Philip E.; Lautz, Margaret; Mari, Andrea; Cherrington, Alan D.; Edgerton, Dale S.

    2011-01-01

    In rodents, acute brain insulin action reduces blood glucose levels by suppressing the expression of enzymes in the hepatic gluconeogenic pathway, thereby reducing gluconeogenesis and endogenous glucose production (EGP). Whether a similar mechanism is functional in large animals, including humans, is unknown. Here, we demonstrated that in canines, physiologic brain hyperinsulinemia brought about by infusion of insulin into the head arteries (during a pancreatic clamp to maintain basal hepatic insulin and glucagon levels) activated hypothalamic Akt, altered STAT3 signaling in the liver, and suppressed hepatic gluconeogenic gene expression without altering EGP or gluconeogenesis. Rather, brain hyperinsulinemia slowly caused a modest reduction in net hepatic glucose output (NHGO) that was attributable to increased net hepatic glucose uptake and glycogen synthesis. This was associated with decreased levels of glycogen synthase kinase 3β (GSK3β) protein and mRNA and with decreased glycogen synthase phosphorylation, changes that were blocked by hypothalamic PI3K inhibition. Therefore, we conclude that the canine brain senses physiologic elevations in plasma insulin, and that this in turn regulates genetic events in the liver. In the context of basal insulin and glucagon levels at the liver, this input augments hepatic glucose uptake and glycogen synthesis, reducing NHGO without altering EGP. PMID:21865644

  13. Fetal cardiology

    International Nuclear Information System (INIS)

    Meijboom, E.J.; Rijsterborgh, N.; Bom, N.

    1986-01-01

    Doppler echocardiography makes it possible to diagnose congenital heart disease in early pregnancy. It allows us to study the anatomical configuration of the fetal heart, and additionally, to evaluate the physiological conditions of the fetus. Evaluation of the direction, velocity, wave form pattern, and quantification of blood flow at the various sites in the fetal heart helps us to assess the characteristics of the fetal circulation and condition of the fetal heart. In order to use this technique in pathological situations, an initial study of the developing normal human fetal circulation was necessary. The authors studied 34 uncomplicated pregnancies by serial Doppler echocardiography. The studies were performed every 4 weeks from 16-weeks gestation to term. The pulsed Doppler sector scanner provided cardiac cross-sectional images, mitral and tricuspid blood velocities were obtained from apical four-chamber views. Angle corrected maximal and mean temporal velocities were calculated by digitizing the Doppler frequency shift recording on a graphic tablet computed with a minicomputer. The angle between the Doppler interrogation beam and the direction of blood flow was kept as small as possible in order to minimize the error

  14. Systemic Correction of Murine Glycogen Storage Disease Type IV by an AAV-Mediated Gene Therapy.

    Science.gov (United States)

    Yi, Haiqing; Zhang, Quan; Brooks, Elizabeth D; Yang, Chunyu; Thurberg, Beth L; Kishnani, Priya S; Sun, Baodong

    2017-03-01

    Deficiency of glycogen branching enzyme (GBE) causes glycogen storage disease type IV (GSD IV), which is characterized by the accumulation of a less branched, poorly soluble form of glycogen called polyglucosan (PG) in multiple tissues. This study evaluates the efficacy of gene therapy with an adeno-associated viral (AAV) vector in a mouse model of adult form of GSD IV (Gbe1 ys/ys ). An AAV serotype 9 (AAV9) vector containing a human GBE expression cassette (AAV-GBE) was intravenously injected into 14-day-old Gbe1 ys/ys mice at a dose of 5 × 10 11 vector genomes per mouse. Mice were euthanized at 3 and 9 months of age. In the AAV-treated mice at 3 months of age, GBE enzyme activity was highly elevated in heart, which is consistent with the high copy number of the viral vector genome detected. GBE activity also increased significantly in skeletal muscles and the brain, but not in the liver. The glycogen content was reduced to wild-type levels in muscles and significantly reduced in the liver and brain. At 9 months of age, though GBE activity was only significantly elevated in the heart, glycogen levels were significantly reduced in the liver, brain, and skeletal muscles of the AAV-treated mice. In addition, the AAV treatment resulted in an overall decrease in plasma activities of alanine transaminase, aspartate transaminase, and creatine kinase, and a significant increase in fasting plasma glucose concentration at 9 months of age. This suggests an alleviation of damage and improvement of function in the liver and muscles by the AAV treatment. This study demonstrated a long-term benefit of a systemic injection of an AAV-GBE vector in Gbe1 ys/ys mice.

  15. Pathways of hepatic glycogen formation in humans following ingestion of a glucose load in the fed state

    International Nuclear Information System (INIS)

    Magnusson, I.; Chandramouli, V.; Schumann, W.C.; Kumaran, K.; Wahren, J.; Landau, B.R.

    1989-01-01

    The relative contributions of the direct and the indirect pathways to hepatic glycogen formation following a glucose load given to humans four hours after a substantial breakfast have been examined. Glucose loads labeled with [6-( 14 )C]glucose were given to six healthy volunteers along with diflunisal (1 g) or acetaminophen (1.5 g), drugs excreted in urine as glucuronides. Distribution of 14 C in the glucose unit of the glucuronide was taken as a measure of the extent to which glucose was deposited directly in liver glycogen (ie, glucose----glucose-6-phosphate----glycogen) rather than indirectly (ie, glucose----C3-compound----glucose-6-phosphate----glycogen). The maximum contribution to glycogen formation by the direct pathway was estimated to be 77% +/- 4%, which is somewhat higher than previous estimates in humans fasted overnight (65% +/- 1%, P less than 0.05). Thus, the indirect pathway of liver glycogen formation following a glucose load is operative in both the overnight fasted and the fed state, although its contribution may be somewhat less in the fed state

  16. Inherent lipid metabolic dysfunction in glycogen storage disease IIIa.

    Science.gov (United States)

    Li, Xin-Hua; Gong, Qi-Ming; Ling, Yun; Huang, Chong; Yu, De-Min; Gu, Lei-Lei; Liao, Xiang-Wei; Zhang, Dong-Hua; Hu, Xi-Qi; Han, Yue; Kong, Xiao-Fei; Zhang, Xin-Xin

    2014-12-05

    We studied two patients from a nonconsanguineous family with life-long abnormal liver function, hepatomegaly and abnormal fatty acid profiles. Abnormal liver function, hypoglycemia and muscle weakness are observed in various genetic diseases, including medium-chain acyl-CoA dehydrogenase (MCAD) deficiency and glycogen storage diseases. The proband showed increased free fatty acids, mainly C8 and C10, resembling fatty acid oxidation disorder. However, no mutation was found in ACADM and ACADL gene. Sequencing of theamylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase (AGL) gene showed that both patients were compound heterozygotes for c.118C > T (p.Gln40X) and c.753_756 del CAGA (p.Asp251Glufsx29), whereas their parents were each heterozygous for one of these mutations. The AGL protein was undetectable in EBV-B cells from the two patients. Transcriptome analysis demonstrated a significant different pattern of gene expression in both of patients’ cells, including genes involving in the PPAR signaling pathway, fatty acid biosynthesis, lipid synthesis and visceral fat deposition and metabolic syndrome. This unique gene expression pattern is probably due to the absence of AGL, which potentially accounts for the observed clinical phenotypes of hyperlipidemia and hepatocyte steatosis in glycogen storage disease type IIIa.

  17. Fetal MRI

    International Nuclear Information System (INIS)

    Prayer, D.; Brugger, P.C.

    2004-01-01

    New, ultrafast sequences have made it possible to obtain MR images of the fetus without maternal sedation or immobilization of the fetus itself. While fetal MRI began as an adjunct to ultrasound, it has now been shown that MRI can provide additional information that may change prognosis, the management of pregnancy, or the treatment of the newborn child. It is of particular value in the assessment of malformations of the central nervous system. The steady development and adaptation of MR-sequences to the needs of fetal imaging has led to new indications that can support prognostic and therapeutic decisions. (orig.)

  18. Fetal MRI

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, D.; Brugger, P.C. [University Hospital of Vienna (Austria). Division of Neuroradiology

    2004-07-01

    New, ultrafast sequences have made it possible to obtain MR images of the fetus without maternal sedation or immobilization of the fetus itself. While fetal MRI began as an adjunct to ultrasound, it has now been shown that MRI can provide additional information that may change prognosis, the management of pregnancy, or the treatment of the newborn child. It is of particular value in the assessment of malformations of the central nervous system. The steady development and adaptation of MR-sequences to the needs of fetal imaging has led to new indications that can support prognostic and therapeutic decisions. (orig.)

  19. Fetal pain

    NARCIS (Netherlands)

    Adama van Scheltema, Phebe

    2011-01-01

    Recent studies have suggested that the fetus is capable of exhibiting a stress response to intrauterine needling, resulting in alterations in fetal stress hormone levels. Intrauterine transfusions are performed by inserting a needle either in the umbilical cord root at the placental surface (PCI),

  20. Refeeding-induced brown adipose tissue glycogen hyper-accumulation in mice is mediated by insulin and catecholamines.

    Directory of Open Access Journals (Sweden)

    Christopher M Carmean

    Full Text Available Brown adipose tissue (BAT generates heat during adaptive thermogenesis through a combination of oxidative metabolism and uncoupling protein 1-mediated electron transport chain uncoupling, using both free-fatty acids and glucose as substrate. Previous rat-based work in 1942 showed that prolonged partial fasting followed by refeeding led to a dramatic, transient increase in glycogen stores in multiple fat depots. In the present study, the protocol was replicated in male CD1 mice, resulting in a 2000-fold increase in interscapular BAT (IBAT glycogen levels within 4-12 hours (hr of refeeding, with IBAT glycogen stores reaching levels comparable to fed liver glycogen. Lesser effects occurred in white adipose tissues (WAT. Over the next 36 hr, glycogen levels dissipated and histological analysis revealed an over-accumulation of lipid droplets, suggesting a potential metabolic connection between glycogenolysis and lipid synthesis. 24 hr of total starvation followed by refeeding induced a robust and consistent glycogen over-accumulation similar in magnitude and time course to the prolonged partial fast. Experimentation demonstrated that hyperglycemia was not sufficient to drive glycogen accumulation in IBAT, but that elevated circulating insulin was sufficient. Additionally, pharmacological inhibition of catecholamine production reduced refeeding-induced IBAT glycogen storage, providing evidence of a contribution from the central nervous system. These findings highlight IBAT as a tissue that integrates both canonically-anabolic and catabolic stimulation for the promotion of glycogen storage during recovery from caloric deficit. The preservation of this robust response through many generations of animals not subjected to food deprivation suggests that the over-accumulation phenomenon plays a critical role in IBAT physiology.

  1. Refeeding-Induced Brown Adipose Tissue Glycogen Hyper-Accumulation in Mice Is Mediated by Insulin and Catecholamines

    Science.gov (United States)

    Carmean, Christopher M.; Bobe, Alexandria M.; Yu, Justin C.; Volden, Paul A.; Brady, Matthew J.

    2013-01-01

    Brown adipose tissue (BAT) generates heat during adaptive thermogenesis through a combination of oxidative metabolism and uncoupling protein 1-mediated electron transport chain uncoupling, using both free-fatty acids and glucose as substrate. Previous rat-based work in 1942 showed that prolonged partial fasting followed by refeeding led to a dramatic, transient increase in glycogen stores in multiple fat depots. In the present study, the protocol was replicated in male CD1 mice, resulting in a 2000-fold increase in interscapular BAT (IBAT) glycogen levels within 4–12 hours (hr) of refeeding, with IBAT glycogen stores reaching levels comparable to fed liver glycogen. Lesser effects occurred in white adipose tissues (WAT). Over the next 36 hr, glycogen levels dissipated and histological analysis revealed an over-accumulation of lipid droplets, suggesting a potential metabolic connection between glycogenolysis and lipid synthesis. 24 hr of total starvation followed by refeeding induced a robust and consistent glycogen over-accumulation similar in magnitude and time course to the prolonged partial fast. Experimentation demonstrated that hyperglycemia was not sufficient to drive glycogen accumulation in IBAT, but that elevated circulating insulin was sufficient. Additionally, pharmacological inhibition of catecholamine production reduced refeeding-induced IBAT glycogen storage, providing evidence of a contribution from the central nervous system. These findings highlight IBAT as a tissue that integrates both canonically-anabolic and catabolic stimulation for the promotion of glycogen storage during recovery from caloric deficit. The preservation of this robust response through many generations of animals not subjected to food deprivation suggests that the over-accumulation phenomenon plays a critical role in IBAT physiology. PMID:23861810

  2. Cholesterol synthesis by human fetal hepatocytes: effect of lipoproteins

    International Nuclear Information System (INIS)

    Carr, B.R.; Simpson, E.R.

    1984-01-01

    The purpose of the present investigation was to determine the effect of various lipoproteins on the rate of cholesterol synthesis of human fetal liver cells maintained in culture. This was accomplished by measuring the rate of incorporation of tritium from tritiated water or carbon 14-labeled acetate into cholesterol in human fetal liver cells. Optimal conditions for each assay were determined. When human fetal liver cells were maintained in the presence of low-density lipoprotein, cholesterol synthesis was inhibited in a concentration-dependent fashion. Intermediate--density lipoprotein and very-low-density lipoprotein also suppressed cholesterol synthesis in human fetal liver cells. In contrast, high-density lipoprotein stimulated cholesterol synthesis in human fetal liver cells. The results of the present as well as our previous investigations suggest that multiple interrelationships exist between fetal liver cholesterol synthesis and lipoprotein-cholesterol utilization by the human fetal adrenal gland and that these processes serve to regulate the lipoprotein-cholesterol levels in fetal plasma

  3. Carcass glycogen repletion on carbohydrate re-feeding after starvation.

    OpenAIRE

    Cox, D J; Palmer, T N

    1987-01-01

    In mice, the response of carcass glycogen to glucose re-feeding after starvation is biphasic. The initial repletive phase is followed by partial (greater than 50%) glycogen mobilization. This turnover of carcass glycogen in response to carbohydrate re-feeding may play an important role in the provision of C3 precursors for hepatic glycogen synthesis.

  4. Nuclear Glycogen Inclusions in Canine Parietal Cells.

    Science.gov (United States)

    Silvestri, S; Lepri, E; Dall'Aglio, C; Marchesi, M C; Vitellozzi, G

    2017-05-01

    Nuclear glycogen inclusions occur infrequently in pathologic conditions but also in normal human and animal tissues. Their function or significance is unclear. To the best of the authors' knowledge, no reports of nuclear glycogen inclusions in canine parietal cells exist. After initial observations of nuclear inclusions/pseudoinclusions during routine histopathology, the authors retrospectively examined samples of gastric mucosa from dogs presenting with gastrointestinal signs for the presence of intranuclear inclusions/pseudoinclusions and determined their composition using histologic and electron-microscopic methods. In 24 of 108 cases (22%), the authors observed various numbers of intranuclear inclusions/pseudoinclusions within scattered parietal cells. Nuclei were characterized by marked karyomegaly and chromatin margination around a central optically empty or slightly eosinophilic area. The intranuclear inclusions/pseudoinclusions stained positive with periodic acid-Schiff (PAS) and were diastase sensitive, consistent with glycogen. Several PAS-positive/diastase-sensitive sections were further examined by transmission electron microscopy, also using periodic acid-thiocarbohydrazide-silver proteinate (PA-TCH-SP) staining to identify polysaccharides. Ultrastructurally, the nuclear inclusions were composed of electron-dense particles that were not membrane bound, without evidence of nuclear membrane invaginations or cytoplasmic organelles in the nuclei, and positive staining with PA-TCH-SP, confirming a glycogen composition. No cytoplasmic glycogen deposits were observed, suggesting that the intranuclear glycogen inclusions were probably synthesized in loco. Nuclear glycogen inclusions were not associated with gastritis or colonization by Helicobacter-like organisms ( P > .05). Our findings suggest that nuclear glycogen inclusions in canine parietal cells could be an incidental finding. Nevertheless, since nuclear glycogen is present in several pathologic

  5. Glycogen Synthase Kinase-3β

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Lenskjold, Toke; Jacoby, Anne Sophie

    2016-01-01

    cells were quantitated using enzyme immunometric assays. The activity of GSK-3β (serine-9-phosphorylated GSK-3β/total GSK-3β) was lower at baseline compared with follow-up. No significant mean change over time was observed in levels of total GSK-3β and serine-9-phosphorylated GSK-3β. Exploratory......Evidence indicates a role for glycogen synthase kinase-3β (GSK-3β) in the pathophysiology of mood disorders and in cognitive disturbances; however, the natural variation in GSK-3β activity over time is unknown. We aimed to investigate GSK-3β activity over time and its possible correlation...... with emotional lability, subjective mood fluctuations and cognitive function in healthy individuals. Thirty-seven healthy subjects were evaluated with neuropsychological tests and blood samples at baseline and 12-week follow-up. Total GSK-3β and serine-9-phosphorylated GSK-3β in peripheral blood mononuclear...

  6. Hepatic glycogen levels in female rats submitted to aquatic therapy after muscle disuse

    Directory of Open Access Journals (Sweden)

    Jefferson Pacheco Amaral Fortes

    2017-12-01

    Full Text Available The aim of the present study was to analyse the changes in liver glycogen content in rats subjected to aquatic therapy post-disuse of the paw. 32 wistar adult female rats were equally divided: Control (C, kept in the cage for two weeks without interventions; Disuse (D had the right paw immobilized with hip extension, knee and plantar flexion for two weeks; Aquatic Therapy (AT underwent aquatic therapy with increments of 3 minutes daily for two weeks, totalizing 36 minutes of training; Disused Aquatic Therapy (DTA was first subjected to immobilization for two weeks and 24 hours after withdrawal of immobilization aquatic therapy was started for two more weeks, in same protocols of D and AT groups. At the end of the experiment, the animals were sacrificed, and tissues were dissected, weighed and stored. The liver tissues were referred analysis of glycogen content. It was observed that the blood glucose levels of the AT group (104 mg/dL were different from the C group (86 mg/dL; p = 0.0213. Regarding hepatic glycogen, the D (2.35mg±0.07 and AT (2.73mg±0.07 groups had hepatic glycogen reduction by 22% and 15%, relative to C (2.51mg±0.03; p <0.0001. The DTA group presented no differences when compared to the control, suggesting the normalization of the finding. Muscle disuse by two weeks promoted changes in glycogen levels, however, two weeks after disuse condition, the aquatic therapy were able to correct the energetic reserve in liver.

  7. Malin decreases glycogen accumulation by promoting the degradation of protein targeting to glycogen (PTG)

    OpenAIRE

    Worby, Carolyn A.; Gentry, Matthew S.; Dixon, Jack E.

    2007-01-01

    Lafora disease (LD) is an autosomal recessive neurodegenerative disease that results in progressive myoclonus epilepsy and death. LD is caused by mutations in either the E3 ubiquitin ligase malin or the dual-specificity phosphatase laforin. A hallmark of LD is the accumulation of insoluble glycogen in the cytoplasm of cells from most tissues. Glycogen metabolism is regulated by phosphorylation of key metabolic enzymes. One regulator of this phosphorylation is protein targeting to glycogen (PT...

  8. Global Liver Proteome Analysis Using iTRAQ Reveals AMPK-mTOR-Autophagy Signaling Is Altered by Intrauterine Growth Restriction in Newborn Piglets.

    Science.gov (United States)

    Long, Baisheng; Yin, Cong; Fan, Qiwen; Yan, Guokai; Wang, Zhichang; Li, Xiuzhi; Chen, Changqing; Yang, Xingya; Liu, Lu; Zheng, Zilong; Shi, Min; Yan, Xianghua

    2016-04-01

    Intrauterine growth restriction (IUGR) impairs fetal growth and development, perturbs nutrient metabolism, and increases the risk of developing diseases in postnatal life. However, the underlying mechanisms by which IUGR affects fetal liver development and metabolism remain incompletely understood. Here, we applied a high-throughput proteomics approach and biochemical analysis to investigate the impact of IUGR on the liver of newborn piglets. As a result, we identified 78 differentially expressed proteins in the three biological replicates, including 31 significantly up-regulated proteins and 47 significantly down-regulated proteins. Among them, a majority of differentially expressed proteins were related to nutrient metabolism and mitochondrial function. Additionally, many significantly down-regulated proteins participated in the mTOR signaling pathway and the phagosome maturation signaling pathway. Further analysis suggested that glucose concentration and hepatic glycogen storage were both reduced in IUGR newborn piglets, which may contribute to AMPK activation and mTORC1 inhibition. However, AMPK activation and mTORC1 inhibition failed to induce autophagy in the liver of IUGR neonatal pigs. A possible reason is that PP2Ac, a potential candidate in autophagy regulation, is significantly down-regulated in the liver of IUGR newborn piglets. These findings may provide implications for preventing and treating IUGR in human beings and domestic animals.

  9. Muerte fetal

    Directory of Open Access Journals (Sweden)

    G. Andrés Pons, DR

    2014-11-01

    Full Text Available La muerte fetal es un evento poco frecuente pero de gran repercusión afectiva para los padres involucrados y su entorno. En el presente artículo revisaremos la epidemiología, las causas, orientaremos a los médicos en los pasos a seguir para realizar adecuadamente el estudio, la resolución del embarazo y el manejo del embarazo siguiente junto con las estrategias para prevenirlo.

  10. Muerte fetal

    OpenAIRE

    Andrés Pons, G.; Eduardo Sepúlveda, S.; Juan Luis Leiva, B.; Gustavo Rencoret, P.; Alfredo Germain, A.

    2014-01-01

    La muerte fetal es un evento poco frecuente pero de gran repercusión afectiva para los padres involucrados y su entorno. En el presente artículo revisaremos la epidemiología, las causas, orientaremos a los médicos en los pasos a seguir para realizar adecuadamente el estudio, la resolución del embarazo y el manejo del embarazo siguiente junto con las estrategias para prevenirlo.

  11. Quantitative estimation of the pathways followed in the conversion to glycogen of glucose administered to the fasted rat

    International Nuclear Information System (INIS)

    Scofield, R.F.; Kosugi, K.; Schumann, W.C.; Kumaran, K.; Landau, B.R.

    1985-01-01

    When [6- 3 H,6- 14 C]glucose was given in glucose loads to fasted rats, the average 3 H/ 14 C ratios in the glycogens deposited in their livers, relative to that in the glucoses administered, were 0.85 and 0.88. When [3- 3 H,3- 14 C]lactate was given in trace quantity along with unlabeled glucose loads, the average 3 H/ 14 C ratio in the glycogens deposited was 0.08. This indicates that a major fraction of the carbons of the glucose loads was converted to liver glycogen without first being converted to lactate. When [3- 3 H,6- 14 C]glucose was given in glucose loads, the 3 H/ 14 C ratios in the glycogens deposited averaged 0.44. This indicates that a significant amount of H bound to C-3, but not C-6, of glucose is removed within liver in the conversion of the carbons of the glucose to glycogen. This can occur in the pentose cycle and by cycling of glucose-6-P via triose phosphates. The contributions of these pathways were estimated by giving glucose loads labeled with [1- 14 C]glucose, [2- 14 C]glucose, [5- 14 C]glucose, and [6- 14 C]glucose and degrading the glucoses obtained by hydrolyzing the glycogens that deposited. Between 4 and 9% of the glucose utilized by the liver was utilized in the pentose cycle. While these are relatively small percentages a major portion of the difference between the ratios obtained with [3- 3 H]glucose and with [6- 3 H]glucose is attributable to metabolism in the pentose cycle

  12. Compartmentation of glycogen metabolism revealed from 13C isotopologue distributions

    Directory of Open Access Journals (Sweden)

    Marin de Mas Igor

    2011-10-01

    Full Text Available Abstract Background Stable isotope tracers are used to assess metabolic flux profiles in living cells. The existing methods of measurement average out the isotopic isomer distribution in metabolites throughout the cell, whereas the knowledge of compartmental organization of analyzed pathways is crucial for the evaluation of true fluxes. That is why we accepted a challenge to create a software tool that allows deciphering the compartmentation of metabolites based on the analysis of average isotopic isomer distribution. Results The software Isodyn, which simulates the dynamics of isotopic isomer distribution in central metabolic pathways, was supplemented by algorithms facilitating the transition between various analyzed metabolic schemes, and by the tools for model discrimination. It simulated 13C isotope distributions in glucose, lactate, glutamate and glycogen, measured by mass spectrometry after incubation of hepatocytes in the presence of only labeled glucose or glucose and lactate together (with label either in glucose or lactate. The simulations assumed either a single intracellular hexose phosphate pool, or also channeling of hexose phosphates resulting in a different isotopic composition of glycogen. Model discrimination test was applied to check the consistency of both models with experimental data. Metabolic flux profiles, evaluated with the accepted model that assumes channeling, revealed the range of changes in metabolic fluxes in liver cells. Conclusions The analysis of compartmentation of metabolic networks based on the measured 13C distribution was included in Isodyn as a routine procedure. The advantage of this implementation is that, being a part of evaluation of metabolic fluxes, it does not require additional experiments to study metabolic compartmentation. The analysis of experimental data revealed that the distribution of measured 13C-labeled glucose metabolites is inconsistent with the idea of perfect mixing of hexose

  13. Early Life Exposure to Fructose Alters Maternal, Fetal and Neonatal Hepatic Gene Expression and Leads to Sex-Dependent Changes in Lipid Metabolism in Rat Offspring

    Science.gov (United States)

    Clayton, Zoe E.; Vickers, Mark H.; Bernal, Angelica; Yap, Cassandra; Sloboda, Deborah M.

    2015-01-01

    Aim Fructose consumption is associated with altered hepatic function and metabolic compromise and not surprisingly has become a focus for perinatal studies. We have previously shown that maternal fructose intake results in sex specific changes in fetal, placental and neonatal outcomes. In this follow-up study we investigated effects on maternal, fetal and neonatal hepatic fatty acid metabolism and immune modulation. Methods Pregnant rats were randomised to either control (CON) or high-fructose (FR) diets. Fructose was given in solution and comprised 20% of total caloric intake. Blood and liver samples were collected at embryonic day 21 (E21) and postnatal day (P)10. Maternal liver samples were also collected at E21 and P10. Liver triglyceride and glycogen content was measured with standard assays. Hepatic gene expression was measured with qPCR. Results Maternal fructose intake during pregnancy resulted in maternal hepatic ER stress, hepatocellular injury and increased levels of genes that favour lipogenesis. These changes were associated with a reduction in the NLRP3 inflammasome. Fetuses of mothers fed a high fructose diet displayed increased hepatic fructose transporter and reduced fructokinase mRNA levels and by 10 days of postnatal age, also have hepatic ER stress, and elevated IL1β mRNA levels. At P10, FR neonates demonstrated increased hepatic triglyceride content and particularly in males, associated changes in the expression of genes regulating beta oxidation and the NLRP3 inflammasome. Further, prenatal fructose results in sex-dependant changes in levels of key clock genes. Conclusions Maternal fructose intake results in age and sex-specific alterations in maternal fetal and neonatal free fatty acid metabolism, which may be associated in disruptions in core clock gene machinery. How these changes are associated with hepatic inflammatory processes is still unclear, although suppression of the hepatic inflammasome, as least in mothers and male neonates may

  14. Electron autoradiographic study of intracellular conversion of fatty acids into glycogen in rats with alloxan diabetes

    International Nuclear Information System (INIS)

    Lebkova, N.P.; Bobkov, Y.I.; Gorbonova, V.D.; Kolesova, O.E.

    1985-01-01

    An electron-autoradiographic study was undertaken of the intracellular distribution of hydrogen of fatty acids in alloxan diabetes. Alloxan diabetes was induced in rats; between 2 weeks and 2 months after development of the disease 0.1 ml of tritium-oleic or tritium-arachidonic acid was injected into the caudel vein of the rats. After decapitation, myocardial tissue from the subendocardial zone of the left ventricle, liver tissue, and glycogen isolated from the liver by a biochemical method, were taken for electron-autoradiographic investigation. Analysis of the data showed that a radioactive isotope, injected into the blood stream of the animals in the form of oleic or arachidonic acids, is incorporated into various structures of hepatocytes and cardiomyocytes. Direct proof is obtained to show that glycogen in hepatocytes and cardiomyoctyes of diabetic rats may be formed from fatty acids

  15. Maternal feeding controls fetal biological clock.

    Directory of Open Access Journals (Sweden)

    Hidenobu Ohta

    Full Text Available BACKGROUND: It is widely accepted that circadian physiological rhythms of the fetus are affected by oscillators in the maternal brain that are coupled to the environmental light-dark (LD cycle. METHODOLOGY/PRINCIPAL FINDINGS: To study the link between fetal and maternal biological clocks, we investigated the effects of cycles of maternal food availability on the rhythms of Per1 gene expression in the fetal suprachiasmatic nucleus (SCN and liver using a transgenic rat model whose tissues express luciferase in vitro. Although the maternal SCN remained phase-locked to the LD cycle, maternal restricted feeding phase-advanced the fetal SCN and liver by 5 and 7 hours respectively within the 22-day pregnancy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that maternal feeding entrains the fetal SCN and liver independently of both the maternal SCN and the LD cycle. This indicates that maternal-feeding signals can be more influential for the fetal SCN and particular organ oscillators than hormonal signals controlled by the maternal SCN, suggesting the importance of a regular maternal feeding schedule for appropriate fetal molecular clockwork during pregnancy.

  16. Maternal-fetal hepatic and placental metabolome profiles are associated with reduced fetal growth in a rat model of maternal obesity

    DEFF Research Database (Denmark)

    Mumme, Karen; Gray, Clint; Reynolds, Clare M.

    2016-01-01

    : Metabolomic profiling was used to reveal altered maternal and fetal metabolic pathways in a model of diet induced obesity during pregnancy, leading to reduced fetal growth. Methods: We examined the metabolome of maternal and fetal livers, and placenta following a high fat and salt intake. Sprague–Dawley rats...

  17. Hyper-hippocampal glycogen induced by glycogen loading with exhaustive exercise.

    Science.gov (United States)

    Soya, Mariko; Matsui, Takashi; Shima, Takeru; Jesmin, Subrina; Omi, Naomi; Soya, Hideaki

    2018-01-19

    Glycogen loading (GL), a well-known type of sports conditioning, in combination with exercise and a high carbohydrate diet (HCD) for 1 week enhances individual endurance capacity through muscle glycogen supercompensation. This exercise-diet combination is necessary for successful GL. Glycogen in the brain contributes to hippocampus-related memory functions and endurance capacity. Although the effect of HCD on the brain remains unknown, brain supercompensation occurs following exhaustive exercise (EE), a component of GL. We thus employed a rat model of GL and examined whether GL increases glycogen levels in the brain as well as in muscle, and found that GL increased glycogen levels in the hippocampus and hypothalamus, as well as in muscle. We further explored the essential components of GL (exercise and/or diet conditions) to establish a minimal model of GL focusing on the brain. Exercise, rather than a HCD, was found to be crucial for GL-induced hyper-glycogen in muscle, the hippocampus and the hypothalamus. Moreover, EE was essential for hyper-glycogen only in the hippocampus even without HCD. Here we propose the EE component of GL without HCD as a condition that enhances brain glycogen stores especially in the hippocampus, implicating a physiological strategy to enhance hippocampal functions.

  18. High glycogen levels enhance glycogen breakdown in isolated contracting skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Galbo, H

    1986-01-01

    and after 15 min of intermittent electrical muscle stimulation. Before stimulation, glycogen was higher in rats that swam on the preceding day (supercompensated rats) compared with controls. During muscle contractions, glycogen breakdown in fast-twitch red and white fibers was larger in supercompensated...

  19. Acoustically accessible window determination for ultrasound mediated treatment of glycogen storage disease type Ia patients

    Science.gov (United States)

    Wang, Shutao; Raju, Balasundar I.; Leyvi, Evgeniy; Weinstein, David A.; Seip, Ralf

    2012-10-01

    Glycogen storage disease type Ia (GSDIa) is caused by an inherited single-gene defect resulting in an impaired glycogen to glucose conversion pathway. Targeted ultrasound mediated delivery (USMD) of plasmid DNA (pDNA) to liver in conjunction with microbubbles may provide a potential treatment for GSDIa patients. As the success of USMD treatments is largely dependent on the accessibility of the targeted tissue by the focused ultrasound beam, this study presents a quantitative approach to determine the acoustically accessible liver volume in GSDIa patients. Models of focused ultrasound beam profiles for transducers of varying aperture and focal lengths were applied to abdomen models reconstructed from suitable CT and MRI images. Transducer manipulations (simulating USMD treatment procedures) were implemented via transducer translations and rotations with the intent of targeting and exposing the entire liver to ultrasound. Results indicate that acoustically accessible liver volumes can be as large as 50% of the entire liver volume for GSDIa patients and on average 3 times larger compared to a healthy adult group due to GSDIa patients' increased liver size. Detailed descriptions of the evaluation algorithm, transducer-and abdomen models are presented, together with implications for USMD treatments of GSDIa patients and transducer designs for USMD applications.

  20. Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes.

    Science.gov (United States)

    Zhang, Chongben; Fennel, Emily M J; Douillet, Christelle; Stýblo, Miroslav

    2017-12-01

    Environmental exposure to inorganic arsenic (iAs) has been shown to disturb glucose homeostasis, leading to diabetes. Previous laboratory studies have suggested several mechanisms that may underlie the diabetogenic effects of iAs exposure, including (i) inhibition of insulin signaling (leading to insulin resistance) in glucose metabolizing peripheral tissues, (ii) inhibition of insulin secretion by pancreatic β cells, and (iii) dysregulation of the methylation or expression of genes involved in maintenance of glucose or insulin metabolism and function. Published studies have also shown that acute or chronic iAs exposures may result in depletion of hepatic glycogen stores. However, effects of iAs on pathways and mechanisms that regulate glycogen metabolism in the liver have never been studied. The present study examined glycogen metabolism in primary murine hepatocytes exposed in vitro to arsenite (iAs 3+ ) or its methylated metabolite, methylarsonite (MAs 3+ ). The results show that 4-h exposures to iAs 3+ and MAs 3+ at concentrations as low as 0.5 and 0.2 µM, respectively, decreased glycogen content in insulin-stimulated hepatocytes by inhibiting insulin-dependent activation of glycogen synthase (GS) and by inducing activity of glycogen phosphorylase (GP). Further investigation revealed that both iAs 3+ and MAs 3+ inhibit insulin-dependent phosphorylation of protein kinase B/Akt, one of the mechanisms involved in the regulation of GS and GP by insulin. Thus, inhibition of insulin signaling (i.e., insulin resistance) is likely responsible for the dysregulation of glycogen metabolism in hepatocytes exposed to iAs 3+ and MAs 3+ . This study provides novel information about the mechanisms by which iAs exposure impairs glucose homeostasis, pointing to hepatic metabolism of glycogen as one of the targets.

  1. Phosphorylation-dependent translocation of glycogen synthase to a novel structure during glycogen resynthesis

    DEFF Research Database (Denmark)

    Prats, Clara; Cadefau, Joan A; Cussó, Roser

    2005-01-01

    Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively....... Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed...... that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ...

  2. Neuronal glycogen synthesis contributes to physiological aging.

    Science.gov (United States)

    Sinadinos, Christopher; Valles-Ortega, Jordi; Boulan, Laura; Solsona, Estel; Tevy, Maria F; Marquez, Mercedes; Duran, Jordi; Lopez-Iglesias, Carmen; Calbó, Joaquim; Blasco, Ester; Pumarola, Marti; Milán, Marco; Guinovart, Joan J

    2014-10-01

    Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora's disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans. © 2014 The Authors. Aging cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Relationship between single nucleotide polymorphism of glycogen synthase gene of Pacific oyster Crassostrea gigas and its glycogen content

    Science.gov (United States)

    Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng

    2017-02-01

    Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P glycogen content ( P glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.

  4. [Fetal urology].

    Science.gov (United States)

    Jakobovits, Akos; Jakobovits, Antal

    2009-06-14

    Although it becomes vitally important only after birth, renal function already plays significant role in maintaining fetal metabolic equilibrium. The kidneys significantly contribute to production of amniotic fluid. Adequate amount of amniotic fluid is needed to stimulate the intrauterine fetal respiratory activity. Intrauterine breathing is essential for lung development. As a result, oligohydramnion is conducive to pulmonary hypoplasia. The latter may lead to neonatal demise soon after birth. In extrauterine life kidneys eliminate nitrogen containing metabolic byproducts. Inadequate renal function results therefore lethal uremia. Integrity of ureters and the urethra is essential for the maintenance of renal function. Retention of urine causes degeneration of the functional units of the kidneys and ensuing deterioration of renal function. Intrauterine kidney puncture or shunt procedure may delay this process in some cases. On the other hand, once renal function has been damaged, no therapy can restart it. Certain anomalies of renal excretory pathways may also be associated with other congenital abnormalities, making the therapeutic efforts pointless. Presence of these associated intrauterine defects makes early pregnancy termination a management alternative, as well as it affects favorably perinatal mortality rates.

  5. Exercise in muscle glycogen storage diseases.

    Science.gov (United States)

    Preisler, Nicolai; Haller, Ronald G; Vissing, John

    2015-05-01

    Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase in glycogen storage that disrupts contractile function and/or 2) a reduced substrate turnover below the block, which inhibits skeletal muscle ATP production. Immobility is associated with metabolic alterations in muscle leading to an increased dependence on glycogen use and a reduced capacity for fatty acid oxidation. Such changes may be detrimental for persons with GSD from a metabolic perspective. However, exercise may alter skeletal muscle substrate metabolism in ways that are beneficial for patients with GSD, such as improving exercise tolerance and increasing fatty acid oxidation. In addition, a regular exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.

  6. The structure of brain glycogen phosphorylase-from allosteric regulation mechanisms to clinical perspectives.

    Science.gov (United States)

    Mathieu, Cécile; Dupret, Jean-Marie; Rodrigues Lima, Fernando

    2017-02-01

    Glycogen phosphorylase (GP) is the key enzyme that regulates glycogen mobilization in cells. GP is a complex allosteric enzyme that comprises a family of three isozymes: muscle GP (mGP), liver GP (lGP), and brain GP (bGP). Although the three isozymes display high similarity and catalyze the same reaction, they differ in their sensitivity to the allosteric activator adenosine monophosphate (AMP). Moreover, inactivating mutations in mGP and lGP have been known to be associated with glycogen storage diseases (McArdle and Hers disease, respectively). The determination, decades ago, of the structure of mGP and lGP have allowed to better understand the allosteric regulation of these two isoforms and the development of specific inhibitors. Despite its important role in brain glycogen metabolism, the structure of the brain GP had remained elusive. Here, we provide an overview of the human brain GP structure and its relationship with the two other members of this key family of the metabolic enzymes. We also summarize how this structure provides valuable information to understand the regulation of bGP and to design specific ligands of potential pharmacological interest. © 2016 Federation of European Biochemical Societies.

  7. Muscle Glycogen Remodeling and Glycogen Phosphate Metabolism following Exhaustive Exercise of Wild Type and Laforin Knockout Mice*

    Science.gov (United States)

    Irimia, Jose M.; Tagliabracci, Vincent S.; Meyer, Catalina M.; Segvich, Dyann M.; DePaoli-Roach, Anna A.; Roach, Peter J.

    2015-01-01

    Glycogen, the repository of glucose in many cell types, contains small amounts of covalent phosphate, of uncertain function and poorly understood metabolism. Loss-of-function mutations in the laforin gene cause the fatal neurodegenerative disorder, Lafora disease, characterized by increased glycogen phosphorylation and the formation of abnormal deposits of glycogen-like material called Lafora bodies. It is generally accepted that the phosphate is removed by the laforin phosphatase. To study the dynamics of skeletal muscle glycogen phosphorylation in vivo under physiological conditions, mice were subjected to glycogen-depleting exercise and then monitored while they resynthesized glycogen. Depletion of glycogen by exercise was associated with a substantial reduction in total glycogen phosphate and the newly resynthesized glycogen was less branched and less phosphorylated. Branching returned to normal on a time frame of days, whereas phosphorylation remained suppressed over a longer period of time. We observed no change in markers of autophagy. Exercise of 3-month-old laforin knock-out mice caused a similar depletion of glycogen but no loss of glycogen phosphate. Furthermore, remodeling of glycogen to restore the basal branching pattern was delayed in the knock-out animals. From these results, we infer that 1) laforin is responsible for glycogen dephosphorylation during exercise and acts during the cytosolic degradation of glycogen, 2) excess glycogen phosphorylation in the absence of laforin delays the normal remodeling of the branching structure, and 3) the accumulation of glycogen phosphate is a relatively slow process involving multiple cycles of glycogen synthesis-degradation, consistent with the slow onset of the symptoms of Lafora disease. PMID:26216881

  8. Exercise in muscle glycogen storage diseases

    DEFF Research Database (Denmark)

    Preisler, Nicolai Rasmus; Haller, Ronald G; Vissing, John

    2015-01-01

    exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies...... that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.......Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase...

  9. Medio ambiente fetal Fetal environment

    Directory of Open Access Journals (Sweden)

    César Bernardo Ospina Arcila

    1996-04-01

    Full Text Available Con base en el artículo clásico "Monte Everest in utero" se hace un análisis de la situación que afronta el feto con respecto a la disponibilidad de oxígeno; para una mejor comprensión del sufrimiento fetal se revisan los siguientes conceptos: presión barométrica, presión parcial del oxígeno atmosférico, presión parcial del oxígeno inspirado, presión barométrica intranasal, ecuación del gas alveolar y difusión de gases a través de la membrana alvéolo capilar. Based on the classical paper by Eastman "Mount Everest in utero" an analysis is made of the situation faced by the fetus with respect to the availability of oxygen; for a better under. standing of fetal distress the following concepts are reviewed: barometric pressure, partial pressure of atmosferic oxygen, partial pressure of inspired oxygen, barometric intranasal pressure, alveolar gas equation and gas diffusion through alveolo-capilar membrane.

  10. Use of fetal tissues for immunoreconstitution in horses with severe combined immunodeficiency

    International Nuclear Information System (INIS)

    Perryman, L.E.

    1980-01-01

    The authors have initiated studies designed to identify and characterize those parameters which must be considered in order to optimize immunoreconstitution following fetal tissue transplantation. The objectives of the first phase of experiments were to define ontogeny of lymphocyte function in equine fetal tissues and to determine if fetal liver and thymus, in combination, would immunologically reconstitute horses with combined immunodeficiency. (Auth.)

  11. No effect of glycogen level on glycogen metabolism during high intensity exercise

    DEFF Research Database (Denmark)

    Vandenberghe, Katleen; Hespel, P.; Eynde, Bart Vanden

    1995-01-01

    , either for 1 min 45 s (protocol 1; N = 18) or to exhaustion (protocol 2; N = 14). The exercise tests were preceded by either 5 d on a controlled normal (N) diet, or by 2 d of glycogen-depleting exercise accompanied by the normal diet followed by 3 d on a carbohydrate-rich (CHR) diet. In protocol 1......This study examined the effect of glycogen supercompensation on glycogen breakdown, muscle and blood lactate accumulation, blood-pH, and performance during short-term high-intensity exercise. Young healthy volunteers performed two supramaximal (125% of VO2max) exercise tests on a bicycle ergometer...

  12. Glycogen metabolism in aerobic mixed cultures

    DEFF Research Database (Denmark)

    Dircks, Klaus; Beun, J.J.; van Loosdrecht, M.C.M.

    2001-01-01

    In this study, the metabolism of glycogen storage and consumption in mixed cultures under aerobic conditions is described. The experimental results are used to calibrate a metabolic model, which as sole stoichiometric variables has the efficiency of oxidative phosphorylation (delta) and maintenance...... of glycogen and subsequent growth occur without significant loss of energy, as compared with direct growth on glucose. For kinetic modeling, Monod kinetics is used most commonly in activated sludge models to describe the rate of microbial transformation. Monod kinetics, however, does not provide a good...

  13. Cell swelling and glycogen metabolism in hepatocytes from fasted rats

    NARCIS (Netherlands)

    Gustafson, L. A.; Jumelle-Laclau, M. N.; van Woerkom, G. M.; van Kuilenburg, A. B.; Meijer, A. J.

    1997-01-01

    Cell swelling is known to increase net glycogen production from glucose in hepatocytes from fasted rats by activating glycogen synthase. Since both active glycogen synthase and phosphorylase are present in hepatocytes, suppression of flux through phosphorylase may also contribute to the net increase

  14. Effects of Petrol Exposure on Glucose, Liver and Muscle glycogen ...

    African Journals Online (AJOL)

    olayemitoyin

    Alford, R.A. and Richards, S. J. (1999). Global amphibian declines: a problem in applied ecology. Annual. Rev.Ecol. Systematics 30 (1): 133-165. Almeida, J. A., Novelli, E. L. B., Dal-Pai Silva, M.,. Alves- Junior, R. (2001). Environmental cadmium exposure and metabolic responses of the Nile tilapia Oreochromis niloticus.

  15. Glycogen Shunt Activity and Glycolytic Supercompensation in Astrocytes May Be Distinctly Mediated via the Muscle Form of Glycogen Phosphorylase

    DEFF Research Database (Denmark)

    Jakobsen, Emil; Bak, Lasse K; Walls, Anne B

    2017-01-01

    Glycogen is the main storage form of glucose in the brain. In contrast with previous beliefs, brain glycogen has recently been shown to play important roles in several brain functions. A fraction of metabolized glucose molecules are being shunted through glycogen before reentering the glycolytic ...

  16. Determination of the glycogen content in cyanobacteria

    DEFF Research Database (Denmark)

    Porcellinis, Alice De; Frigaard, Niels-Ulrik; Sakuragi, Yumiko

    2017-01-01

    of glycogen to generate glucose monomers, which are detected by a glucose oxidase-peroxidase (GOD-POD) enzyme coupled assay. The method has been applied to Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002, two model cyanobacterial species that are widely used in metabolic engineering. Moreover...

  17. Pregnancies in glycogen storage disease type Ia

    NARCIS (Netherlands)

    Martens, Danielle H. J.; Rake, Jan Peter; Schwarz, Martin; Ullrich, Kurt; Weinstein, David A.; Merkel, Martin; Sauer, Pieter J. J.; Smit, G. Peter A.

    OBJECTIVE: Reports on pregnancies in women with glycogen storage disease type Ia (GSD-Ia) are scarce. Because of improved life expectancy, pregnancy is becoming an important issue. We describe 15 pregnancies by focusing on dietary treatment, biochemical parameters, and GSD-Ia complications. STUDY

  18. Why does the brain (not) have glycogen?

    Science.gov (United States)

    DiNuzzo, Mauro; Maraviglia, Bruno; Giove, Federico

    2011-05-01

    In the present paper we formulate the hypothesis that brain glycogen is a critical determinant in the modulation of carbohydrate supply at the cellular level. Specifically, we propose that mobilization of astrocytic glycogen after an increase in AMP levels during enhanced neuronal activity controls the concentration of glucose phosphates in astrocytes. This would result in modulation of glucose phosphorylation by hexokinase and upstream cell glucose uptake. This mechanism would favor glucose channeling to activated neurons, supplementing the already rich neuron-astrocyte metabolic and functional partnership with important implications for the energy compounds used to sustain neuronal activity. The hypothesis is based on recent modeling evidence suggesting that rapid glycogen breakdown can profoundly alter the short-term kinetics of glucose delivery to neurons and astrocytes. It is also based on review of the literature relevant to glycogen metabolism during physiological brain activity, with an emphasis on the metabolic pathways identifying both the origin and the fate of this glucose reserve. Copyright © 2011 WILEY Periodicals, Inc.

  19. Modelo experimental para restrição do crescimento fetal em ratos: efeito sobre o glicogênio hepático e morfometria intestinal e renal Experimental rat model for fetal growth restriction: effects on liver glycogen and intestinal and renal morphometry

    OpenAIRE

    Márcia Pereira Bueno; Ricardo Barini; Frances Lilian Lanhellas Gonçalves; Rilde Plutarco Veríssimo; Lourenço Sbragia

    2010-01-01

    OBJETIVO: avaliar a eficácia do modelo de RCIU por ligadura da artéria uterina simulando insuficiência placentária em ratos. MÉTODOS: fetos de ratas prenhes Sprague-Dawley foram divididos em três grupos: RCIU (restrição de crescimento intrauterino), com fetos submetidos à ligadura da artéria uterina com 18,5 dias de gestação (termo = 22 dias), C-RCIU (controle da restrição), com fetos do corno contralateral à ligadura, CE (Controle Externo), com fetos de ratas sem manipulação. Com 21,5 dias d...

  20. Glycogen with short average chain length enhances bacterial durability

    Science.gov (United States)

    Wang, Liang; Wise, Michael J.

    2011-09-01

    Glycogen is conventionally viewed as an energy reserve that can be rapidly mobilized for ATP production in higher organisms. However, several studies have noted that glycogen with short average chain length in some bacteria is degraded very slowly. In addition, slow utilization of glycogen is correlated with bacterial viability, that is, the slower the glycogen breakdown rate, the longer the bacterial survival time in the external environment under starvation conditions. We call that a durable energy storage mechanism (DESM). In this review, evidence from microbiology, biochemistry, and molecular biology will be assembled to support the hypothesis of glycogen as a durable energy storage compound. One method for testing the DESM hypothesis is proposed.

  1. Comparison of methods for glycogen analysis of in vitro fermentation pellets produced with strained ruminal inoculum.

    Science.gov (United States)

    Hall, Mary Beth; Hatfield, Ronald D

    2015-11-01

    Microbial glycogen measurement is used to account for fates of carbohydrate substrates. It is commonly applied to washed cells or pure cultures which can be accurately subsampled, allowing the use of smaller sample sizes. However, the nonhomogeneous fermentation pellets produced with strained rumen inoculum cannot be accurately subsampled, requiring analysis of the entire pellet. In this study, two microbial glycogen methods were compared for analysis of such fermentation pellets: boiling samples for 3h in 30% KOH (KOH) or for 15min in 0.2M NaOH (NaOH), followed by enzymatic hydrolysis with α-amylase and amyloglucosidase, and detection of released glucose. Total α-glucan was calculated as glucose×0.9. KOH and NaOH did not differ in the α-glucan detected in fermentation pellets (29.9 and 29.6mg, respectively; P=0.61). Recovery of different control α-glucans was also tested using KOH, NaOH, and a method employing 45min of bead beating (BB). For purified beef liver glycogen (water-soluble) recovery, BB (95.0%)>KOH (91.4%)>NaOH (87.4%; PBB (93.8%)>KOH (91.0%; Pglycogen (water-insoluble granules) did not differ among KOH (87.0%), NaOH (87.6%), and BB (86.0%; P=0.81), but recoveries for all were below 90%. Differences among substrates in the need for gelatinization and susceptibility to destruction by alkali likely affected the results. In conclusion, KOH and NaOH glycogen methods provided comparable determinations of fermentation pellet α-glucan. The tests on purified α-glucans indicated that assessment of recovery in glycogen methods can differ by the control α-glucan selected. Published by Elsevier B.V.

  2. Radiometric assays for glycerol, glucose, and glycogen

    International Nuclear Information System (INIS)

    Bradley, D.C.; Kaslow, H.R.

    1989-01-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with [32P]ATP and glycerokinase, residual [32P]ATP is hydrolyzed by heating in acid, and free [32P]phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays

  3. Comparison of 3H-galactose and 3H-glucose as precursors of hepatic glycogen in control-fed rats

    International Nuclear Information System (INIS)

    Michaels, J.E.; Garfield, S.A.; Hung, J.T.; Cardell, R.R. Jr.

    1989-01-01

    Labeling of hepatic glycogen derived from 3H-galactose and 3H-glucose was compared shortly after intravenous injection in control-fed rats. The rats were allowed to accumulate 5-8% glycogen prior to receiving label. Fifteen minutes to 2 hours after labeling, liver was excised and processed for routine light (LM) and electron microscopic (EM) radioautography (RAG) or biochemical analysis. After injection of 3H-galactose, LM-RAGs revealed that the percentage of heavily labeled hepatocytes increased from 37% after 15 minutes to 68% after 1 hour but showed no further increase after 2 hours. alpha-Amylase treatment removed most glycogen and incorporated label; thus few silver grains were observed, indicating little incorporation of label except into glycogen. EM-RAGs demonstrated that most label occurred where glycogen was located. Biochemical analysis showed initially a high blood level of label that rapidly plateaued at a reduced level by 5 minutes. Concomitantly, glycogen labeling determined by liquid scintillation counting reflected the increases observed in the RAGs. After injection of 3H-glucose, LM-RAGs revealed that only 12% of the hepatocytes were heavily labeled at 1 hour and 20% at 2 hours. In tissue treated with alpha-amylase, glycogen was depleted and label was close to background level at each interval observed. EM-RAGs showed most grains associated with glycogen deposits. Biochemically, blood levels of label persisted at a high level for 30 minutes and tissue levels increased slowly over the 2-hour period. This study shows that incorporation from 3H-galactose was more rapid than incorporation of 3H-glucose; however, label derived from both carbohydrates appeared to be incorporated mainly into glycogen

  4. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function

    Science.gov (United States)

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-01-01

    Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913

  5. Glycogen and its metabolism: some new developments and old themes

    Science.gov (United States)

    Roach, Peter J.; Depaoli-Roach, Anna A.; Hurley, Thomas D.; Tagliabracci, Vincent S.

    2016-01-01

    Glycogen is a branched polymer of glucose that acts as a store of energy in times of nutritional sufficiency for utilization in times of need. Its metabolism has been the subject of extensive investigation and much is known about its regulation by hormones such as insulin, glucagon and adrenaline (epinephrine). There has been debate over the relative importance of allosteric compared with covalent control of the key biosynthetic enzyme, glycogen synthase, as well as the relative importance of glucose entry into cells compared with glycogen synthase regulation in determining glycogen accumulation. Significant new developments in eukaryotic glycogen metabolism over the last decade or so include: (i) three-dimensional structures of the biosynthetic enzymes glycogenin and glycogen synthase, with associated implications for mechanism and control; (ii) analyses of several genetically engineered mice with altered glycogen metabolism that shed light on the mechanism of control; (iii) greater appreciation of the spatial aspects of glycogen metabolism, including more focus on the lysosomal degradation of glycogen; and (iv) glycogen phosphorylation and advances in the study of Lafora disease, which is emerging as a glycogen storage disease. PMID:22248338

  6. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment.

    Science.gov (United States)

    Testoni, Giorgia; Duran, Jordi; García-Rocha, Mar; Vilaplana, Francisco; Serrano, Antonio L; Sebastián, David; López-Soldado, Iliana; Sullivan, Mitchell A; Slebe, Felipe; Vilaseca, Marta; Muñoz-Cánoves, Pura; Guinovart, Joan J

    2017-07-05

    Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effects of radiosensibilization by metronidazole on liver tissue in patients with gastric carcinomas

    International Nuclear Information System (INIS)

    D'yakova, A.M.; Stefani, N.V.; Zagrebin, V.M.; Senokosov, N.I.; Berdov, B.A.

    1985-01-01

    Metronidazole, used as radiosensitizer in preoperative radiotherapy of gastric carcinoma caused an increased glycogen accumulation in the left lobe of the liver with a radiation dose of 80-100 % of the isodose. The glycogen level was higher not only in comparison with the same liver area in patients without radiosensitizer but also with the right lobe of the own liver within in the area of stray radiation. The effect observed after radiation was considered as result of the sensitizing influence on liver tissue. The sensitizing effect of metronidazole depended on its concentration in the patient's serum. In the right lobe of the liver the glycogen level showed no alteration under metronidazole. Metronidazole reduced the activity of lactate dehydrogenase and cholinesterase in liver tissue independently of its concentration in the serum and of the radiation dose on particular parts of the liver. (author)

  8. Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens.

    Science.gov (United States)

    Martinez-Garcia, Marta; Stuart, Marc C A; van der Maarel, Marc J E C

    2016-08-01

    The thermoacidophilic red microalga Galdieria sulphuraria synthesizes glycogen when growing under heterotrophic conditions. Structural characterization revealed that G. sulphuraria glycogen is the most highly branched glycogen described to date, with 18% of α-(1→6) linkages. Moreover, it differs from other glycogens because it is composed of short chains only and has a substantially smaller molecular weight and particle size. The physiological role of this highly branched glycogen in G. sulphuraria is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Processivity and Subcellular Localization of Glycogen Synthase Depend on a Non-catalytic High Affinity Glycogen-binding Site*

    OpenAIRE

    Díaz, Adelaida; Martínez-Pons, Carlos; Fita, Ignacio; Ferrer, Juan C.; Guinovart, Joan J.

    2011-01-01

    Glycogen synthase, a central enzyme in glucose metabolism, catalyzes the successive addition of α-1,4-linked glucose residues to the non-reducing end of a growing glycogen molecule. A non-catalytic glycogen-binding site, identified by x-ray crystallography on the surface of the glycogen synthase from the archaeon Pyrococcus abyssi, has been found to be functionally conserved in the eukaryotic enzymes. The disruption of this binding site in both the archaeal and the human muscle glycogen synth...

  10. Apelin ameliorates TNF-α-induced reduction of glycogen synthesis in the hepatocytes through G protein-coupled receptor APJ.

    Directory of Open Access Journals (Sweden)

    Jiaojiao Chu

    Full Text Available Apelin, a novel adipokine, is the specific endogenous ligand of G protein-coupled receptor APJ. Consistent with its putative role as an adipokine, apelin has been linked to states of insulin resistance. However, the function of apelin in hepatic insulin resistance, a vital part of insulin resistance, and its underlying mechanisms still remains unclear. Here we define the impacts of apelin on TNF-α-induced reduction of glycogen synthesis in the hepatocytes. Our studies indicate that apelin reversed TNF-α-induced reduction of glycogen synthesis in HepG2 cells, mouse primary hepatocytes and liver tissues of C57BL/6J mice by improving JNK-IRS1-AKT-GSK pathway. Moreover, Western blot revealed that APJ, but not apelin, expressed in the hepatocytes and liver tissues of mice. We found that F13A, a competitive antagonist for G protein-coupled receptor APJ, suppressed the effects of apelin on TNF-α-induced reduction of glycogen synthesis in the hepatocytes, suggesting APJ is involved in the function of apelin. In conclusion, we show novel evidence suggesting that apelin ameliorates TNF-α-induced reduction of glycogen synthesis in the hepatocytes through G protein-coupled receptor APJ. Apelin appears as a beneficial adipokine with anti-insulin resistance properties, and thus as a promising therapeutic target in metabolic disorders.

  11. Epinephrine-stimulated glycogen breakdown activates glycogen synthase and increases insulin-stimulated glucose uptake in epitrochlearis muscles

    DEFF Research Database (Denmark)

    Kolnes, Anders J; Birk, Jesper Bratz; Eilertsen, Einar

    2015-01-01

    Adrenaline increases glycogen synthase (GS) phosphorylation and decreases GS activity but also stimulates glycogen breakdown and low glycogen content normally activates GS. To test the hypothesis that glycogen content directly regulates GS phosphorylation, glycogen breakdown was stimulated...... in condition with decreased GS activation. Saline or adrenaline (0.02mg/100g rat) was injected subcutaneously in Wistar rats (~130 g) with low (24 h fasted), normal (normal diet) and high glycogen content (fasted-refed) and epitrochlearis muscles were removed after 3 h and incubated ex vivo eliminating...... adrenaline action. Adrenaline injection reduced glycogen content in epitrochlearis muscles with high (120.7±17.8 vs 204.6±14.5 mmol•kg(-1); pglycogen (89.5±7.6 vs 152.6±8.1 mmol•kg(-1); pglycogen (90.0±5.0 vs 102.8±7.8 mmol•kg(-1); p=0...

  12. Functional significance of brain glycogen in sustaining glutamatergic neurotransmission.

    Science.gov (United States)

    Sickmann, Helle M; Walls, Anne B; Schousboe, Arne; Bouman, Stephan D; Waagepetersen, Helle S

    2009-05-01

    The involvement of brain glycogen in sustaining neuronal activity has previously been demonstrated. However, to what extent energy derived from glycogen is consumed by astrocytes themselves or is transferred to the neurons in the form of lactate for oxidative metabolism to proceed is at present unclear. The significance of glycogen in fueling glutamate uptake into astrocytes was specifically addressed in cultured astrocytes. Moreover, the objective was to elucidate whether glycogen derived energy is important for maintaining glutamatergic neurotransmission, induced by repetitive exposure to NMDA in co-cultures of cerebellar neurons and astrocytes. In the astrocytes it was shown that uptake of the glutamate analogue D-[3H]aspartate was impaired when glycogen degradation was inhibited irrespective of the presence of glucose, signifying that energy derived from glycogen degradation is important for the astrocytic compartment. By inhibiting glycogen degradation in co-cultures it was evident that glycogen provides energy to sustain glutamatergic neurotransmission, i.e. release and uptake of glutamate. The relocation of glycogen derived lactate to the neuronal compartment was investigated by employing d-lactate, a competitive substrate for the monocarboxylate transporters. Neurotransmitter release was affected by the presence of d-lactate indicating that glycogen derived energy is important not only in the astrocytic but also in the neuronal compartment.

  13. Glycogen storage disease type I: clinical and laboratory profile

    Directory of Open Access Journals (Sweden)

    Berenice L. Santos

    2014-11-01

    Full Text Available Objectives: To characterize the clinical, laboratory, and anthropometric profile of a sample of Brazilian patients with glycogen storage disease type I managed at an outpatient referral clinic for inborn errors of metabolism. Methods: This was a cross-sectional outpatient study based on a convenience sampling strategy. Data on diagnosis, management, anthropometric parameters, and follow-up were assessed. Results: Twenty-one patients were included (median age 10 years, range 1–25 years, all using uncooked cornstarch therapy. Median age at diagnosis was 7 months (range, 1–132 months, and 19 patients underwent liver biopsy for diagnostic confirmation. Overweight, short stature, hepatomegaly, and liver nodules were present in 16 of 21, four of 21, nine of 14, and three of 14 patients, respectively. A correlation was found between height-for-age and BMI-for-age Z-scores (r = 0.561; p = 0.008. Conclusions: Diagnosis of glycogen storage disease type I is delayed in Brazil. Most patients undergo liver biopsy for diagnostic confirmation, even though the combination of a characteristic clinical presentation and molecular methods can provide a definitive diagnosis in a less invasive manner. Obesity is a side effect of cornstarch therapy, and appears to be associated with growth in these patients. Resumo: Objetivos: Caracterizar o perfil clínico, laboratorial e antropométrico de uma amostra de pacientes brasileiros com doença de depósito de glicogênio tipo I tratados em um ambulatório de referência para erros inatos do metabolismo. Métodos: Este foi um estudo ambulatorial transversal com base em uma estratégia de amostragem de conveniência. Foram avaliados os dados com relação ao diagnóstico, tratamento, parâmetros antropométricos e acompanhamento. Resultados: Foram incluídos 21 pacientes (idade média de 10 anos, faixa 1-25 anos de idade, e todos se encontravam em terapia de amido de milho cru. A idade média na época do diagn

  14. Role of Maltose Enzymes in Glycogen Synthesis by Escherichia coli▿

    Science.gov (United States)

    Park, Jong-Tae; Shim, Jae-Hoon; Tran, Phuong Lan; Hong, In-Hee; Yong, Hwan-Ung; Oktavina, Ershita Fitria; Nguyen, Hai Dang; Kim, Jung-Wan; Lee, Tae Soo; Park, Sung-Hoon; Boos, Winfried; Park, Kwan-Hwa

    2011-01-01

    Mutants with deletion mutations in the glg and mal gene clusters of Escherichia coli MC4100 were used to gain insight into glycogen and maltodextrin metabolism. Glycogen content, molecular mass, and branch chain distribution were analyzed in the wild type and in ΔmalP (encoding maltodextrin phosphorylase), ΔmalQ (encoding amylomaltase), ΔglgA (encoding glycogen synthase), and ΔglgA ΔmalP derivatives. The wild type showed increasing amounts of glycogen when grown on glucose, maltose, or maltodextrin. When strains were grown on maltose, the glycogen content was 20 times higher in the ΔmalP strain (0.97 mg/mg protein) than in the wild type (0.05 mg/mg protein). When strains were grown on glucose, the ΔmalP strain and the wild type had similar glycogen contents (0.04 mg/mg and 0.03 mg/mg protein, respectively). The ΔmalQ mutant did not grow on maltose but showed wild-type amounts of glycogen when grown on glucose, demonstrating the exclusive function of GlgA for glycogen synthesis in the absence of maltose metabolism. No glycogen was found in the ΔglgA and ΔglgA ΔmalP strains grown on glucose, but substantial amounts (0.18 and 1.0 mg/mg protein, respectively) were found when they were grown on maltodextrin. This demonstrates that the action of MalQ on maltose or maltodextrin can lead to the formation of glycogen and that MalP controls (inhibits) this pathway. In vitro, MalQ in the presence of GlgB (a branching enzyme) was able to form glycogen from maltose or linear maltodextrins. We propose a model of maltodextrin utilization for the formation of glycogen in the absence of glycogen synthase. PMID:21421758

  15. Fetal behavioral teratology.

    Science.gov (United States)

    Visser, Gerard H A; Mulder, Eduard J H; Tessa Ververs, F F

    2010-10-01

    Ultrasound studies of fetal motor behavior provide direct – in vivo – insight in the functioning of the motor component of the fetal central nervous system. In this article, studies are reviewed showing changes in the first timetable of appearance of fetal movements, changes in quality and/or quantity of movements and disturbances in the development of fetal behavioral states in case of endogenous malfunctions, maternal diseases and exogenous behavioral teratogens.

  16. Tumours of the fetal body: a review

    Energy Technology Data Exchange (ETDEWEB)

    Avni, Fred E.; Massez, Anne; Cassart, Marie [University Clinics of Brussels - Erasme Hospital, Department of Medical Imaging, Brussels (Belgium)

    2009-11-15

    Tumours of the fetal body are rare, but lesions have been reported in all spaces, especially in the mediastinum, the pericardial space, the adrenals, the kidney, and the liver. Lymphangioma and teratoma are the commonest histological types encountered, followed by cardiac rhabdomyoma. Adrenal neuroblastoma is the commonest malignant tumour. Imaging plays an essential role in the detection and work-up of these tumours. In addition to assisting clinicians it also helps in counselling parents. Most tumours are detected by antenatal US, but fetal MRI is increasingly used as it brings significant additional information in terms of tumour extent, composition and complications. (orig.)

  17. Inability to fully suppress sterol synthesis rates with exogenous sterol in embryonic and extraembyronic fetal tissues

    OpenAIRE

    Yao, Lihang; Jenkins, Katie; Horn, Paul S.; Lichtenberg, M. Hayden; Woollett, Laura A.

    2007-01-01

    The requirement for cholesterol is greater in developing tissues (fetus, placenta, and yolk sac) as compared to adult tissues. Here, we compared cholesterol-induced suppression of sterol synthesis rates in the adult liver to the fetal liver, fetal body, placenta, and yolk sac of the Golden Syrian hamster. Sterol synthesis rates were suppressed maximally in non-pregnant adult livers when cholesterol concentrations were increased. In contrast, sterol synthesis rates were suppressed only margina...

  18. Liver transplant

    Science.gov (United States)

    Hepatic transplant; Transplant - liver; Orthotopic liver transplant; Liver failure - liver transplant; Cirrhosis - liver transplant ... The donated liver may be from: A donor who has recently died and has not had liver injury. This type of ...

  19. Gene expression profile and functionality of ESC-derived Lin-ckit+Sca-1+ cells are distinct from Lin-ckit+Sca-1+ cells isolated from fetal liver or bone marrow.

    Directory of Open Access Journals (Sweden)

    Irina Fernandez

    Full Text Available In vitro bioreactor-based cultures are being extensively investigated for large-scale production of differentiated cells from embryonic stem cells (ESCs. However, it is unclear whether in vitro ESC-derived progenitors have similar gene expression profiles and functionalities as their in vivo counterparts. This is crucial in establishing the validity of ESC-derived cells as replacements for adult-isolated cells for clinical therapies. In this study, we compared the gene expression profiles of Lin-ckit+Sca-1+ (LKS cells generated in vitro from mouse ESCs using either static or bioreactor-based cultures, with that of native LKS cells isolated from mouse fetal liver (FL or bone marrow (BM. We found that in vitro-generated LKS cells were more similar to FL- than to BM LKS cells in gene expression. Further, when compared to cells derived from bioreactor cultures, static culture-derived LKS cells showed fewer differentially expressed genes relative to both in vivo LKS populations. Overall, the expression of hematopoietic genes was lower in ESC-derived LKS cells compared to cells from BM and FL, while the levels of non-hematopoietic genes were up-regulated. In order to determine if these molecular profiles correlated with functionality, we evaluated ESC-derived LKS cells for in vitro hematopoietic-differentiation and colony formation (CFU assay. Although static culture-generated cells failed to form any colonies, they did differentiate into CD11c+ and B220+ cells indicating some hematopoietic potential. In contrast, bioreactor-derived LKS cells, when differentiated under the same conditions failed to produce any B220+ or CD11c+ cells and did not form colonies, indicating that these cells are not hematopoietic progenitors. We conclude that in vitro culture conditions significantly affect the transcriptome and functionality of ESC-derived LKS cells and although in vitro differentiated LKS cells were lineage negative and expressed both ckit and Sca-1

  20. In vivo hepatic glycogen metabolism in the baboon

    International Nuclear Information System (INIS)

    Jehenson, P.; Canioni, P.; Hantraye, P.; Gueron, M.; Syrota, A.

    1988-01-01

    This paper describes hepatic glycogen synthesis from glucose studied in the baboon by C-13 MR spectroscopy at 2 T. Glycogen synthesis was followed for 3 hours on natural abundance spectra during glucose infusion. (1-C-13)-glucose (3g) was then injected. It produced a ten times larger rate of increase of glycogen-C 1 , which is much lower than expected, suggesting that glycogen synthesis mainly occurred from unlabeled gluconeogenic substrates. Signal-to-noise ratio was 50 for glycogen-C 1 on 2-minute H-1 decoupled spectra. Labeling of C 1 but also C 2 , C 5 and C 6 of glycogen indicated a 15% contribution of indirect pathways to its synthesis from glucose

  1. Analysis of genes involved in glycogen degradation in Escherichia coli.

    Science.gov (United States)

    Strydom, Lindi; Jewell, Jonathan; Meier, Michael A; George, Gavin M; Pfister, Barbara; Zeeman, Samuel; Kossmann, Jens; Lloyd, James R

    2017-02-01

    Escherichia coli accumulate or degrade glycogen depending on environmental carbon supply. Glycogen phosphorylase (GlgP) and glycogen debranching enzyme (GlgX) are known to act on the glycogen polymer, while maltodextrin phosphorylase (MalP) is thought to remove maltodextrins released by GlgX. To examine the roles of these enzymes in more detail, single, double and triple mutants lacking all their activities were produced. GlgX and GlgP were shown to act directly on the glycogen polymer, while MalP most likely catabolised soluble malto-oligosaccharides. Interestingly, analysis of a triple mutant lacking all three enzymes indicates the presence of another enzyme that can release maltodextrins from glycogen. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Qualitative and Quantitative Analyses of Glycogen in Human Milk.

    Science.gov (United States)

    Matsui-Yatsuhashi, Hiroko; Furuyashiki, Takashi; Takata, Hiroki; Ishida, Miyuki; Takumi, Hiroko; Kakutani, Ryo; Kamasaka, Hiroshi; Nagao, Saeko; Hirose, Junko; Kuriki, Takashi

    2017-02-22

    Identification as well as a detailed analysis of glycogen in human milk has not been shown yet. The present study confirmed that glycogen is contained in human milk by qualitative and quantitative analyses. High-performance anion exchange chromatography (HPAEC) and high-performance size exclusion chromatography with a multiangle laser light scattering detector (HPSEC-MALLS) were used for qualitative analysis of glycogen in human milk. Quantitative analysis was carried out by using samples obtained from the individual milks. The result revealed that the concentration of human milk glycogen varied depending on the mother's condition-such as the period postpartum and inflammation. The amounts of glycogen in human milk collected at 0 and 1-2 months postpartum were higher than in milk collected at 3-14 months postpartum. In the milk from mothers with severe mastitis, the concentration of glycogen was about 40 times higher than that in normal milk.

  3. Glycogen distribution in adult and geriatric mice brains

    KAUST Repository

    Alrabeh, Rana

    2017-05-01

    Astrocytes, the most abundant glial cell type in the brain, undergo a number of roles in brain physiology; among them, the energetic support of neurons is the best characterized. Contained within astrocytes is the brain’s obligate energy store, glycogen. Through glycogenolysis, glycogen, a storage form of glucose, is converted to pyruvate that is further reduced to lactate and transferred to neurons as an energy source via MCTs. Glycogen is a multi-branched polysaccharide synthesized from the glucose uptaken in astrocytes. It has been shown that glycogen accumulates with age and contributes to the physiological ageing process in the brain. In this study, we compared glycogen distribution between young adults and geriatric mice to understand the energy consumption of synaptic terminals during ageing using computational tools. We segmented and densely reconstructed neuropil and glycogen granules within six (three 4 month old old and three 24 month old) volumes of Layer 1 somatosensory cortex mice brains from FIB-SEM stacks, using a combination of semi-automated and manual tools, ilastik and TrakEM2. Finally, the 3D visualization software, Blender, was used to analyze the dataset using the DBSCAN and KDTree Nearest neighbor algorithms to study the distribution of glycogen granules compared to synapses, using a plugin that was developed for this purpose. The Nearest Neighbors and clustering results of 6 datasets show that glycogen clusters around excitatory synapses more than inhibitory synapses and that, in general, glycogen is found around axonal boutons more than dendritic spines. There was no significant accumulation of glycogen with ageing within our admittedly small dataset. However, there was a homogenization of glycogen distribution with age and that is consistent with published literature. We conclude that glycogen distribution in the brain is not a random process but follows a function distribution.

  4. Novel method for detection of glycogen in cells.

    Science.gov (United States)

    Skurat, Alexander V; Segvich, Dyann M; DePaoli-Roach, Anna A; Roach, Peter J

    2017-05-01

    Glycogen, a branched polymer of glucose, functions as an energy reserve in many living organisms. Abnormalities in glycogen metabolism, usually excessive accumulation, can be caused genetically, most often through mutation of the enzymes directly involved in synthesis and degradation of the polymer leading to a variety of glycogen storage diseases (GSDs). Microscopic visualization of glycogen deposits in cells and tissues is important for the study of normal glycogen metabolism as well as diagnosis of GSDs. Here, we describe a method for the detection of glycogen using a renewable, recombinant protein which contains the carbohydrate-binding module (CBM) from starch-binding domain containing protein 1 (Stbd1). We generated a fusion protein containing g lutathione S-transferase, a cM c eptitope and the tbd1 BM (GYSC) for use as a glycogen-binding probe, which can be detected with secondary antibodies against glutathione S-transferase or cMyc. By enzyme-linked immunosorbent assay, we demonstrate that GYSC binds glycogen and two other polymers of glucose, amylopectin and amylose. Immunofluorescence staining of cultured cells indicate a GYSC-specific signal that is co-localized with signals obtained with anti-glycogen or anti-glycogen synthase antibodies. GYSC-positive staining inside of lysosomes is observed in individual muscle fibers isolated from mice deficient in lysosomal enzyme acid alpha-glucosidase, a well-characterized model of GSD II (Pompe disease). Co-localized GYSC and glycogen signals are also found in muscle fibers isolated from mice deficient in malin, a model for Lafora disease. These data indicate that GYSC is a novel probe that can be used to study glycogen metabolism under normal and pathological conditions. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  5. A Different Perspective for Management of Diabetes Mellitus: Controlling Viral Liver Diseases.

    Science.gov (United States)

    Zhao, Yingying; Xing, Huichun

    2017-01-01

    Knowing how to prevent and treat diabetes mellitus (DM) earlier is essential to improving outcomes. Through participating in synthesis and catabolism of glycogen, the liver helps to regulate glucose homeostasis. Viral related liver diseases are associated with glycometabolism disorders, which means effective management of viral liver diseases may be a therapeutic strategy for DM. The present article reviews the correlation between DM and liver diseases to give an update of the management of DM rooted by viral liver diseases.

  6. High glycogen levels in the hippocampus of patients with epilepsy

    DEFF Research Database (Denmark)

    Dalsgaard, Mads K; Madsen, Flemming F; Secher, Niels H

    2006-01-01

    During intense cerebral activation approximately half of the glucose plus lactate taken up by the human brain is not oxidized and could replenish glycogen deposits, but the human brain glycogen concentration is unknown. In patients with temporal lobe epilepsy, undergoing curative surgery, brain......, glycogen was similarly higher than in grey and white matter. Consequently, in human grey and white matter and, particularly, in the hippocampus of patients with temporal lope epilepsy, glycogen constitutes a large, active energy reserve, which may be of importance for energy provision during sustained...

  7. Tyrosine glycosylation is involved in muscle-glycogen synthesis

    International Nuclear Information System (INIS)

    Rodriguez, I.R.; Tandecarz, J.S.; Kirkman, B.R.; Whelan, W.J.

    1986-01-01

    Rabbit-muscle glycogen contains a covalently bound protein having Mr 37,000 that the authors will henceforth refer to as glycogenin. It is completely insoluble in water at pH 5, and may be generated as a precipitate as a result of the combined action on glycogen of α-amylase and glucoamylase, or by treatment with anhydrous hydrogen fluoride. In the former case the protein still carries some of the glucose residues of glycogen (10-30 per mole of glycogenin). The linkage between glycogen and glycogenin has been identified as a novel glycosidic-amino acid bond. The authors demonstrated glucosylation with UDP[/sup 14/C]glucose by a muscle extract of two rabbit-muscle proteins contained in the same extract. The relation of these proteins to glycogenin, and whether the amino acid undergoing glucosylation is tyrosine, remains to be explored. The discovery of glycogenin is, the authors believe, an important clue to the mechanism of biogenesis of glycogen and may represent a previously unsuspected means of metabolic control of the glycogen content of the cell and the location of glycogen within the cell. The facts that the linkage between glycogen and glycogenin is via tyrosine, that insulin stimulates glycogen synthesis, and acts on its receptor by causing it to become an active tyrosine kinase, may be linked by a common thread

  8. Drug induced exocytosis of glycogen in Pompe disease.

    Science.gov (United States)

    Turner, Christopher T; Fuller, Maria; Hopwood, John J; Meikle, Peter J; Brooks, Doug A

    2016-10-28

    Pompe disease is caused by a deficiency in the lysosomal enzyme α-glucosidase, and this leads to glycogen accumulation in the autolysosomes of patient cells. Glycogen storage material is exocytosed at a basal rate in cultured Pompe cells, with one study showing up to 80% is released under specific culture conditions. Critically, exocytosis induction may reduce glycogen storage in Pompe patients, providing the basis for a therapeutic strategy whereby stored glycogen is redirected to an extracellular location and subsequently degraded by circulating amylases. The focus of the current study was to identify compounds capable of inducing rapid glycogen exocytosis in cultured Pompe cells. Here, calcimycin, lysophosphatidylcholine and α-l-iduronidase each significantly increased glycogen exocytosis compared to vehicle-treated controls. The most effective compound, calcimycin, induced exocytosis through a Ca 2+ -dependent mechanism, although was unable to release a pool of vesicular glycogen larger than the calcimycin-induced exocytic pore. There was reduced glycogen release from Pompe compared to unaffected cells, primarily due to increased granule size in Pompe cells. Drug induced exocytosis therefore shows promise as a therapeutic approach for Pompe patients but strategies are required to enhance the release of large molecular weight glycogen granules. Copyright © 2016. Published by Elsevier Inc.

  9. Abnormal Glycogen Storage by Retinal Neurons in Diabetes.

    Science.gov (United States)

    Gardiner, Tom A; Canning, Paul; Tipping, Nuala; Archer, Desmond B; Stitt, Alan W

    2015-12-01

    It is widely held that neurons of the central nervous system do not store glycogen and that accumulation of the polysaccharide may cause neurodegeneration. Since primary neural injury occurs in diabetic retinopathy, we examined neuronal glycogen status in the retina of streptozotocin-induced diabetic and control rats. Glycogen was localized in eyes of streptozotocin-induced diabetic and control rats using light microscopic histochemistry and electron microscopy, and correlated with immunohistochemical staining for glycogen phosphorylase and phosphorylated glycogen synthase (pGS). Electron microscopy of 2-month-old diabetic rats (n = 6) showed massive accumulations of glycogen in the perinuclear cytoplasm of many amacrine neurons. In 4-month-old diabetic rats (n = 11), quantification of glycogen-engorged amacrine cells showed a mean of 26 cells/mm of central retina (SD ± 5), compared to 0.5 (SD ± 0.2) in controls (n = 8). Immunohistochemical staining for glycogen phosphorylase revealed strong expression in amacrine and ganglion cells of control retina, and increased staining in cell processes of the inner plexiform layer in diabetic retina. In control retina, the inactive pGS was consistently sequestered within the cell nuclei of all retinal neurons and the retinal pigment epithelium (RPE), but in diabetics nuclear pGS was reduced or lost in all classes of retinal cell except the ganglion cells and cone photoreceptors. The present study identifies a large population of retinal neurons that normally utilize glycogen metabolism but show pathologic storage of the polysaccharide during uncontrolled diabetes.

  10. Muscle glycogen metabolism changes in rats fed early postnatal a fructose-rich diet after maternal protein malnutrition: effects of acute physical exercise at the maximal lactate steady-state intensity.

    Science.gov (United States)

    Cambri, Lucieli T; Ribeiro, Carla; Botezelli, José D; Ghezzi, Ana C; Mello, Maria Ar

    2014-01-01

    The objective was to evaluate the muscle glucose metabolism in rats fed a fructose-rich diet after fetal protein malnutrition, at rest and after acute physical exercise at maximal lactate steady-state intensity. The male offspring born of mothers fed on a balanced or low-protein diet were split in four groups until 60 days: Balanced (B): balanced diet during the whole period; Balanced/Fructose (BF): balanced diet in utero and fructose-rich diet after birth; Low protein/Balanced (LB): low-protein diet in utero and balanced diet after birth; Low protein/Fructose (LF): low protein diet in utero and fructose-rich diet after birth. Acute physical exercise reduced the muscle glycogen concentrations in all groups, although the LF group showed higher concentrations at rest. There was no difference among the groups in the glucose uptake and oxidation rates in the isolated soleus muscle neither at rest nor after acute exercise. However, glycogen synthesis was higher in the LF muscle than in the others at rest. Acute physical exercise increased glycogen synthesis in all groups, and the LF group showed the highest values. The fructose-rich diet administered in rats after fetal protein malnutrition alters muscle glycogen concentrations and glycogen synthesis in the rest and after acute exercise at maximal lactate steady-state intensity.

  11. Polyamine and amino acid content, and activity of polyamine-synthesizing decarboxylases, in liver of streptozotocin-induced diabetic and insulin-treated diabetic rats

    OpenAIRE

    Brosnan, Margaret E.; Roebothan, Barbara V.; Hall, Douglas E.

    1980-01-01

    1. Concentrations of polyamines, amino acids, glycogen, nucleic acids and protein, and activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase, were measured in livers from control, streptozotocin-diabetic and insulin-treated diabetic rats. 2. Total DNA per liver and protein per mg of DNA were unaffected by diabetes, whereas RNA per mg of DNA and glycogen per g of liver were decreased. Insulin treatment of diabetic rats induced both hypertrophy and hyperplasia, as indicat...

  12. A highly prevalent equine glycogen storage disease is explained by constitutive activation of a mutant glycogen synthase

    DEFF Research Database (Denmark)

    Maile, C A; Hingst, Janne Rasmuss; Mahalingan, K K

    2017-01-01

    BACKGROUND: Equine type 1 polysaccharide storage myopathy (PSSM1) is associated with a missense mutation (R309H) in the glycogen synthase (GYS1) gene, enhanced glycogen synthase (GS) activity and excessive glycogen and amylopectate inclusions in muscle. METHODS: Equine muscle biochemical...... had significantly higher glycogen content than control horse muscle despite no difference in GS expression. GS activity was significantly higher in muscle from homozygous mutants than from heterozygote and control horses, in the absence and presence of the allosteric regulator, glucose 6 phosphate (G6...

  13. Hepatic protein phosphatase 1 regulatory subunit 3B (Ppp1r3b) promotes hepatic glycogen synthesis and thereby regulates fasting energy homeostasis.

    Science.gov (United States)

    Mehta, Minal B; Shewale, Swapnil V; Sequeira, Raymond N; Millar, John S; Hand, Nicholas J; Rader, Daniel J

    2017-06-23

    Maintenance of whole-body glucose homeostasis is critical to glycemic function. Genetic variants mapping to chromosome 8p23.1 in genome-wide association studies have been linked to glycemic traits in humans. The gene of known function closest to the mapped region, PPP1R3B (protein phosphatase 1 regulatory subunit 3B), encodes a protein (G L ) that regulates glycogen metabolism in the liver. We therefore sought to test the hypothesis that hepatic PPP1R3B is associated with glycemic traits. We generated mice with either liver-specific deletion ( Ppp1r3b Δ hep ) or liver-specific overexpression of Ppp1r3b The Ppp1r3b deletion significantly reduced glycogen synthase protein abundance, and the remaining protein was predominantly phosphorylated and inactive. As a consequence, glucose incorporation into hepatic glycogen was significantly impaired, total hepatic glycogen content was substantially decreased, and mice lacking hepatic Ppp1r3b had lower fasting plasma glucose than controls. The concomitant loss of liver glycogen impaired whole-body glucose homeostasis and increased hepatic expression of glycolytic enzymes in Ppp1r3b Δ hep mice relative to controls in the postprandial state. Eight hours of fasting significantly increased the expression of two critical gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, above the levels in control livers. Conversely, the liver-specific overexpression of Ppp1r3b enhanced hepatic glycogen storage above that of controls and, as a result, delayed the onset of fasting-induced hypoglycemia. Moreover, mice overexpressing hepatic Ppp1r3b upon long-term fasting (12-36 h) were protected from blood ketone-body accumulation, unlike control and Ppp1r3b Δ hep mice. These findings indicate a major role for Ppp1r3b in regulating hepatic glycogen stores and whole-body glucose/energy homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    Science.gov (United States)

    Dienel, Gerald A.; Cruz, Nancy F.

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K+ level, oxidative stress management, and memory consolidation; it is a multi-functional compound. PMID:24515302

  15. Contributions of glycogen to astrocytic energetics during brain activation.

    Science.gov (United States)

    Dienel, Gerald A; Cruz, Nancy F

    2015-02-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 μmol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K(+) level, oxidative stress management, and memory consolidation; it is a multi-functional compound.

  16. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis.

    NARCIS (Netherlands)

    Serlie, M.J.; Haan, J.H.A. de; Tack, C.J.J.; Verberne, H.J.; Ackermans, M.T.; Heerschap, A.; Sauerwein, H.P.

    2005-01-01

    The introduction of 13C magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  17. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis

    NARCIS (Netherlands)

    Serlie, Mireille J. M.; de Haan, Jacco H.; Tack, Cees J.; Verberne, Hein J.; Ackermans, Mariette T.; Heerschap, Arend; Sauerwein, Hans P.

    2005-01-01

    The introduction of C-13 magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  18. Glycogen Synthase Kinase-3 is involved in glycogen metabolism control and embryogenesis of Rhodnius prolixus.

    Science.gov (United States)

    Mury, Flávia B; Lugon, Magda D; DA Fonseca, Rodrigo Nunes; Silva, Jose R; Berni, Mateus; Araujo, Helena M; Fontenele, Marcio Ribeiro; Abreu, Leonardo Araujo DE; Dansa, Marílvia; Braz, Glória; Masuda, Hatisaburo; Logullo, Carlos

    2016-10-01

    Rhodnius prolixus is a blood-feeding insect that transmits Trypanosoma cruzi and Trypanosoma rangeli to vertebrate hosts. Rhodnius prolixus is also a classical model in insect physiology, and the recent availability of R. prolixus genome has opened new avenues on triatomine research. Glycogen synthase kinase 3 (GSK-3) is classically described as a key enzyme involved in glycogen metabolism, also acting as a downstream component of the Wnt pathway during embryogenesis. GSK-3 has been shown to be highly conserved among several organisms, mainly in the catalytic domain region. Meanwhile, the role of GSK-3 during R. prolixus embryogenesis or glycogen metabolism has not been investigated. Here we show that chemical inhibition of GSK-3 by alsterpaullone, an ATP-competitive inhibitor of GSK3, does not affect adult survival rate, though it alters oviposition and egg hatching. Specific GSK-3 gene silencing by dsRNA injection in adult females showed a similar phenotype. Furthermore, bright field and 4'-6-diamidino-2-phenylindole (DAPI) staining analysis revealed that ovaries and eggs from dsGSK-3 injected females exhibited specific morphological defects. We also demonstrate that glycogen content was inversely related to activity and transcription levels of GSK-3 during embryogenesis. Lastly, after GSK-3 knockdown, we observed changes in the expression of the Wingless (Wnt) downstream target β-catenin as well as in members of other pathways such as the receptor Notch. Taken together, our results show that GSK-3 regulation is essential for R. prolixus oogenesis and embryogenesis.

  19. Muscular glycogen storage diseases without increased glycogen content on histoplathological examination

    NARCIS (Netherlands)

    Hoeksma, M.; den Dunnen, W. F. A.; Niezen-Koning, K. E.; van Diggelen, O. P.; van Spronsen, F. J.

    Histopathological findings of muscle biopsies from five patients with two different muscular glycogen storage diseases (mGSD) were presented. From these investigations it emerged that the yield of histopathology in mGSD is low. In only one of five patients histopathological findings gave a clue

  20. Functional significance of brain glycogen in sustaining glutamatergic neurotransmission

    DEFF Research Database (Denmark)

    Sickmann, Helle M; Walls, Anne B; Schousboe, Arne

    2009-01-01

    The involvement of brain glycogen in sustaining neuronal activity has previously been demonstrated. However, to what extent energy derived from glycogen is consumed by astrocytes themselves or is transferred to the neurons in the form of lactate for oxidative metabolism to proceed is at present u...

  1. Glycogen metabolism and the homeostatic regulation of sleep

    KAUST Repository

    Petit, Jean-Marie; Burlet-Godinot, Sophie; Magistretti, Pierre J.; Allaman, Igor

    2014-01-01

    In 1995 Benington and Heller formulated an energy hypothesis of sleep centered on a key role of glycogen. It was postulated that a major function of sleep is to replenish glycogen stores in the brain that have been depleted during wakefulness which

  2. Free fatty acids increase hepatic glycogen content in obese males

    NARCIS (Netherlands)

    Allick, G.; Sprangers, F.; Weverling, G. J.; Ackermans, M. T.; Meijer, A. J.; Romijn, J. A.; Endert, E.; Bisschop, P. H.; Sauerwein, H. P.

    2004-01-01

    Obesity is associated with increased hepatic glycogen content. In vivo and in vitro data suggest that plasma free fatty acids (FFA) may cause this increase. In this study we investigated the effect of physiological plasma FFA levels on hepatic glycogen metabolism by studying intrahepatic glucose

  3. Muscle glycogen and cell function--Location, location, location.

    Science.gov (United States)

    Ørtenblad, N; Nielsen, J

    2015-12-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates that the subcellular localization of glycogen has to be considered to fully understand the role of glycogen metabolism and signaling in skeletal muscle function. Here, we propose that the effect of low muscle glycogen on excitation-contraction coupling may serve as a built-in mechanism, which links the energetic state of the muscle fiber to energy utilization. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Exercise intolerance in Glycogen Storage Disease Type III

    DEFF Research Database (Denmark)

    Preisler, Nicolai; Pradel, Agnès; Husu, Edith

    2013-01-01

    Myopathic symptoms in Glycogen Storage Disease Type IIIa (GSD IIIa) are generally ascribed to the muscle wasting that these patients suffer in adult life, but an inability to debranch glycogen likely also has an impact on muscle energy metabolism. We hypothesized that patients with GSD IIIa can...

  5. Muscle glycogen and cell function - Location, location, location

    DEFF Research Database (Denmark)

    Ørtenblad, N; Nielsen, Joachim

    2015-01-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available...... evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status......, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates...

  6. Erythroid differentiation of fetal, newborn and adult haemopoietic stem cells

    International Nuclear Information System (INIS)

    Rencricca, N.J.; Howard, D.; Kubanek, B.; Stohlman, F.; Department of Biological Sciences, University of Lowell, Lowell, Massachusetts, USA)

    1976-01-01

    Erythroid regeneration was studied in lethally irradiated mice given transplants containing equivalent numbers of haemopoietic stem cells (i.e. CFU) from fetal liver, neonatal marrow or adult marrow. Adult marrow was taken from normal control mice, whose CFU for the most part were not in active cell cycle, as well as from phenylhydrazine-treated groups whose CFU were in similar state of proliferation (i.e. approximately 40-50% in DNA synthesis) as those derived from fetal liver and neonatal marrow. Splenic and femoral radioiron ( 59 Fe) incorporation were measured at intervals after transplantation and were found to begin earliest in mice given fetal liver, then in animals given neonatal marrow and latest in recipients of adult marrow. Peripheral reticulocytes showed a similar pattern of recovery. The data reported herein suggest that the differences in erythroid regeneration evoked by transplants of fetal liver, neonatal marrow or adult marrow, are not solely attributed to the degree of proliferation in the pluripotential stem cell compartment. These data may, however, suggest a shorter doubling time for cells comprising the fetal and newborn committed erythroid compartments. (author)

  7. Erythroid differentiation of fetal, newborn, and adult haemopoietic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Rencricca, N J; Howard, D; Kubanek, B; Stohlman, F [Boston Univ., Mass. (USA). School of Medicine; Department of Biological Sciences, University of Lowell, Lowell, Massachusetts, USA)

    1976-01-01

    Erythroid regeneration was studied in lethally irradiated mice given transplants containing equivalent numbers of haemopoietic stem cells (i.e. CFU) from fetal liver, neonatal marrow or adult marrow. Adult marrow was taken from normal control mice, whose CFU for the most part were not in active cell cycle, as well as from phenylhydrazine-treated groups whose CFU were in similar state of proliferation (i.e. approximately 40-50% in DNA synthesis) as those derived from fetal liver and neonatal marrow. Splenic and femoral radioiron (/sup 59/Fe) incorporation were measured at intervals after transplantation and were found to begin earliest in mice given fetal liver, then in animals given neonatal marrow and latest in recipients of adult marrow. Peripheral reticulocytes showed a similar pattern of recovery. The data reported herein suggest that the differences in erythroid regeneration evoked by transplants of fetal liver, neonatal marrow or adult marrow, are not solely attributed to the degree of proliferation in the pluripotential stem cell compartment. These data may, however, suggest a shorter doubling time for cells comprising the fetal and newborn committed erythroid compartments.

  8. Synthesis of glycogen from fructose in the presence of elevated levels of glycogen phosphorylase a in rat hepatocytes.

    Science.gov (United States)

    Ciudad, C J; Massagué, J; Salavert, A; Guinovart, J J

    1980-03-20

    Incubation of hepatocytes with glucose promoted the increase in the glycogen synthase (-glucose 6-phosphate/+glucose 6-phosphate) activity ratio, the decrease in the levels of phosphorylase a and a marked increase in the intracellular glycogen level. Incubation with fructose alone promoted the simultaneous activation of glycogen synthase and increase in the levels of phosphorylase a. Strikingly, glycogen deposition occurred in spite of the elevated levels of phosphorylase a. When glucose and fructose were added to the media the activation of glycogen synthase was always higher than when the hexoses were added separately. On the other hand the effects on glycogen phosphorylase were a function of the relative concentrations of both sugars. Inactivation of glycogen phosphorylase occurred when the fructose to glucose ratio was low while activation took place when the ratio was high. The simultaneous presence of glucose and fructose resulted, in all cases, in an enhancement in the deposition of glycogen. The effects described were not limited to fructose as D-glyceraldehyde, dihydroxyacetone, L-sorbose, D-tagatose and sorbitol, compounds metabolically related to fructose, provoked the same behaviour.

  9. GLYCOGEN IN BACILLUS-SUBTILIS - MOLECULAR CHARACTERIZATION OF AN OPERON ENCODING ENZYMES INVOLVED IN GLYCOGEN BIOSYNTHESIS AND DEGRADATION

    NARCIS (Netherlands)

    KIEL, JAKW; BOELS, JM; BELDMAN, G; VENEMA, G

    Although it has never been reported that Bacillus subtilis is capable of accumulating glycogen, we have isolated a region from the chromosome of B. subtilis containing a glycogen operon. The operon is located directly downstream from trnB, which maps at 275 degrees on the B. subtilis chromosome. It

  10. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family.

    Science.gov (United States)

    Wilson, Wayne A; Pradhan, Prajakta; Madhan, Nayasha; Gist, Galen C; Brittingham, Andrew

    2017-07-01

    Trichomonas vaginalis, a parasitic protist, is the causative agent of the common sexually-transmitted infection trichomoniasis. The organism has long been known to synthesize substantial glycogen as a storage polysaccharide, presumably mobilizing this compound during periods of carbohydrate limitation, such as might be encountered during transmission between hosts. However, little is known regarding the enzymes of glycogen metabolism in T. vaginalis. We had previously described the identification and characterization of two forms of glycogen phosphorylase in the organism. Here, we measure UDP-glucose-dependent glycogen synthase activity in cell-free extracts of T. vaginalis. We then demonstrate that the TVAG_258220 open reading frame encodes a glycosyltransferase that is presumably responsible for this synthetic activity. We show that expression of TVAG_258220 in a yeast strain lacking endogenous glycogen synthase activity is sufficient to restore glycogen accumulation. Furthermore, when TVAG_258220 is expressed in bacteria, the resulting recombinant protein has glycogen synthase activity in vitro, transferring glucose from either UDP-glucose or ADP-glucose to glycogen and using both substrates with similar affinity. This protein is also able to transfer glucose from UDP-glucose or ADP-glucose to maltose and longer oligomers of glucose but not to glucose itself. However, with these substrates, there is no evidence of processivity and sugar transfer is limited to between one and three glucose residues. Taken together with our earlier work on glycogen phosphorylase, we are now well positioned to define both how T. vaginalis synthesizes and utilizes glycogen, and how these processes are regulated. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. Accounting for Fetal Origins

    DEFF Research Database (Denmark)

    Dalgaard, Carl-Johan Lars; Hansen, Casper Worm; Strulik, Holger

    2017-01-01

    The Fetal Origins hypothesis has received considerable empirical support, both within epidemiology and economics. The present study compares the ability of two rival theoretical frameworks in accounting for the kind of path dependence implied by the Fetal Origins Hypothesis. We argue that while...

  12. Phosphorylation of sites 3 and 2 in rabbit skeletal muscle glycogen synthase by a multifunctional protein kinase (ATP-citrate lyase kinase)

    International Nuclear Information System (INIS)

    Sheorain, V.S.; Ramakrishna, S.; Benjamin, W.B.; Soderling, T.R.

    1985-01-01

    A multifunctional protein kinase, purified from rat liver as ATP-citrate lyase kinase, has been identified as a glycogen synthase kinase. This kinase catalyzed incorporation of up to 1.5 mol of and]2number 2 PO 4 /mol of synthase subunit associated with a decrease in the glycogen synthase activity ratio from 0.85 to a value of 0.15. Approximately 65-70% of the 34 PO 4 was incorporated into site 3 and 30-35% into site 2 as determined by reverse phase high performance liquid chromatography. This multifunctional kinase was distinguished from glycogen synthase kinase-3 on the basis of nucleotide and protein substrate specificities. Since the phosphate contents in glycogen synthase of sites 3 and 2 are altered in diabetes and by insulin administration, the possible involvement of the multifunctional kinase was explored. Glycogen synthase purified from diabetic rabbits was phosphorylated in vitro by this multifunctional kinase at only 10% of the rate compared to synthase purified from control rabbits. Treatment of the diabetics with insulin restored the synthase to a form that was readily phosphorylated in vitro

  13. Fetal scalp pH testing

    Science.gov (United States)

    Fetal scalp blood; Scalp pH testing; Fetal blood testing - scalp; Fetal distress - fetal scalp testing; Labor - fetal scalp testing ... a baby. In these cases, testing the scalp pH can help the doctor decide whether the fetus ...

  14. Metabolism of lipoproteins by human fetal hepatocytes

    International Nuclear Information System (INIS)

    Carr, B.R.

    1987-01-01

    The rate of clearance of lipoproteins from plasma appears to play a role in the development of atherogenesis. The liver may account for as much as two thirds of the removal of low-density lipoprotein and one third of the clearance of high-density lipoprotein in certain animal species and humans, mainly by receptor-mediated pathways. The purpose of the present investigation was to determine if human fetal hepatocytes maintained in vitro take up and degrade lipoproteins. We first determined that the maximal binding capacity of iodine 125-iodo-LDL was approximately 300 ng of low-density lipoprotein protein/mg of membrane protein and an apparent dissociation constant of approximately 60 micrograms low-density lipoprotein protein/ml in membranes prepared from human fetal liver. We found that the maximal uptake of [ 125 I]iodo-LDL and [ 125 I]iodo-HDL by fetal hepatocytes occurred after 12 hours of incubation. Low-density lipoprotein uptake preceded the appearance of degradation products by 4 hours, and thereafter the degradation of low-density lipoprotein increased linearly for at least 24 hours. In contrast, high-density lipoprotein was not degraded to any extent by fetal hepatocytes. [ 125 I]Iodo-LDL uptake and degradation were inhibited more than 75% by preincubation with low-density lipoprotein but not significantly by high-density lipoprotein, whereas [ 125 I]iodo-HDL uptake was inhibited 70% by preincubation with high-density lipoprotein but not by low-density lipoprotein. In summary, human fetal hepatocytes take up and degrade low-density lipoprotein by a receptor-mediated process similar to that described for human extrahepatic tissues

  15. Glycogen metabolism and the homeostatic regulation of sleep

    KAUST Repository

    Petit, Jean-Marie

    2014-11-16

    In 1995 Benington and Heller formulated an energy hypothesis of sleep centered on a key role of glycogen. It was postulated that a major function of sleep is to replenish glycogen stores in the brain that have been depleted during wakefulness which is associated to an increased energy demand. Astrocytic glycogen depletion participates to an increase of extracellular adenosine release which influences sleep homeostasis. Here, we will review some evidence obtained by studies addressing the question of a key role played by glycogen metabolism in sleep regulation as proposed by this hypothesis or by an alternative hypothesis named “glycogenetic” hypothesis as well as the importance of the confounding effect of glucocorticoïds. Even though actual collected data argue in favor of a role of sleep in brain energy balance-homeostasis, they do not support a critical and direct involvement of glycogen metabolism on sleep regulation. For instance, glycogen levels during the sleep-wake cycle are driven by different physiological signals and therefore appear more as a marker-integrator of brain energy status than a direct regulator of sleep homeostasis. In support of this we provide evidence that blockade of glycogen mobilization does not induce more sleep episodes during the active period while locomotor activity is reduced. These observations do not invalidate the energy hypothesis of sleep but indicate that underlying cellular mechanisms are more complex than postulated by Benington and Heller.

  16. Heteropoly acid catalyzed hydrolysis of glycogen to glucose

    International Nuclear Information System (INIS)

    Klein, Miri; Pulidindi, Indra Neel; Perkas, Nina; Gedanken, Aharon

    2015-01-01

    Complete conversion of glycogen to glucose is achieved by using H 3 PW 12 O 40 ·nH 2 O (HPW) and H 4 SiW 12 O 40 ·nH 2 O (HSiW) as catalysts for the hydrolysis under optimized hydrothermal conditions (mass fraction of catalyst 2.4%, 373 K and 2 h reaction time). The reusability of the catalyst (HPW) was demonstrated. In addition to carrying out the glycogen hydrolysis in an autoclave, other novel methods such as microwave irradiation and sonication have also been investigated. At higher mass fraction of the heteropoly acids (10.5%), glycogen could be completely converted to glucose under microwave irradiation. Sonication of an aqueous solution of glycogen in the presence of HPW and HSiW also yielded glucose. Thus, heteropoly acids are efficient, environmentally friendly and reusable catalysts for the conversion of glycogen to glucose. - Highlights: • Hydrothermal, microwave and sonication based methods of hydrolysis. • Heteropoly acids are green catalysts for glycogen hydrolysis. • Glycogen from cyanobacteria is demonstrated as a potential feedstock for glucose

  17. Liver Transplant

    Science.gov (United States)

    ... Liver Function Tests Clinical Trials Liver Transplant FAQs Medical Terminology Diseases of the Liver Alagille Syndrome Alcohol-Related ... the Liver The Progression of Liver Disease FAQs Medical Terminology HOW YOU CAN HELP Sponsorship Ways to Give ...

  18. Normal renal development investigated with fetal MRI

    Energy Technology Data Exchange (ETDEWEB)

    Witzani, Linde [Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: linde.witzani@aon.at; Brugger, Peter Christian [Center of Anatomy and Cell Biology, Integrative Morphology Group, Medical University of Vienna, Waehringerstrasse 13, A-1090 Vienna (Austria); Hoermann, Marcus [Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Kasprian, Gregor [Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Csapone-Balassy, Csilla [Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Prayer, Daniela [Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-02-15

    Objective: To evaluate age-dependent changes in fetal kidney measurements with MRI. Patients and methods: Fetal MRI examinations were used to study the kidney length (218 fetuses), signal intensities of renal tissue, renal pelvis, and liver tissue on T2-weighted images (223 fetuses), and the whole-kidney apparent diffusion coefficient (107 fetuses). A 1.5 T superconducting unit with a phased array coil was used in patients from 16 to 39 weeks' gestation. The imaging protocol included T2-weighted single-shot fast spin-echo, T2-weighted balanced angiography and diffusion-weighted sequences. Slice thickness ranged from 3 to 5 mm. Results: Fetal kidney length as a function of gestational age was expressed by the linear regression: kidney length (mm) = 0.190 x gestational age (d) - 8.034 (R {sup 2} 0.883, p < 0.001). Paired t-test analysis showed a highly statistically significant difference between the ratio of renal tissue signal intensity to renal pelvis signal intensity and the ratio of liver signal intensity to renal pelvis signal intensity on T2-weighted images (t = -50.963, d.f. = 162, p < 0.001), with renal tissue hyperintense to liver tissue. The apparent diffusion coefficient in relation to gestational age was described by the equation: ADC ({mu}m{sup 2}/s) = 0.0302 x square (gestational age (d)) - 14.202 x gestational age (d) + 2728.6 (R {sup 2} = 0.225, p < 0.001). Conclusion: The length, signal intensity on T2-weighted images, and apparent diffusion coefficient of the fetal kidney change significantly with gestational age. The presented data may help in the prenatal diagnosis of renal anomalies.

  19. Preactivated thiolated glycogen as mucoadhesive polymer for drug delivery.

    Science.gov (United States)

    Perrone, Mara; Lopalco, Antonio; Lopedota, Angela; Cutrignelli, Annalisa; Laquintana, Valentino; Douglas, Justin; Franco, Massimo; Liberati, Elisa; Russo, Vincenzo; Tongiani, Serena; Denora, Nunzio; Bernkop-Schnürch, Andreas

    2017-10-01

    The purpose of this study was to synthesize and characterize a novel thiolated glycogen, so-named S-preactivated thiolated glycogen, as a mucosal drug delivery systems and the assessment of its mucoadhesive properties. In this regard, glycogen-cysteine and glycogen-cysteine-2-mercaptonicotinic acid conjugates were synthesized. Glycogen was activated by an oxidative ring opening with sodium periodate resulting in reactive aldehyde groups to which cysteine was bound via reductive amination. The obtained thiolated polymer displayed 2203.09±200μmol thiol groups per gram polymer. In a second step, the thiol moieties of thiolated glycogen were protected by disulfide bond formation with the thiolated aromatic residue 2-mercaptonicotinic acid (2MNA). In vitro screening of mucoadhesive properties was performed on porcine intestinal mucosa using different methods. In particular, in terms of rheology investigations of mucus/polymer mixtures, the S-preactivated thiolated glycogen showed a 4.7-fold increase in dynamic viscosity over a time period of 5h, in comparison to mucus/Simulated Intestinal Fluid control. The S-preactivated polymer remained attached on freshly excised porcine mucosa for 45h. Analogous results were obtained with tensile studies demonstrating a 2.7-fold increase in maximum detachment force and 3.1- fold increase in total work of adhesion for the S-preactivated polymer compared to unmodified glycogen. Moreover, water-uptake studies showed an over 4h continuing weight gain for the S-preactivated polymer, whereas disintegration took place for the unmodified polymer within the first hour. Furthermore, even in the highest tested concentration of 2mg/ml the new conjugates did not show any cytotoxicity on Caco-2 cell monolayer using an MTT assay. According to these results, S-preactivated glycogen represents a promising type of mucoadhesive polymers useful for the development of various mucosal drug delivery systems. Copyright © 2017 Elsevier B.V. All rights

  20. Alternative splicing of the porcine glycogen synthase kinase 3β (GSK-3β gene with differential expression patterns and regulatory functions.

    Directory of Open Access Journals (Sweden)

    Linjie Wang

    Full Text Available Glycogen synthase kinase 3 (GSK3α and GSK3β are serine/threonine kinases involved in numerous cellular processes and diverse diseases including mood disorders, Alzheimer's disease, diabetes, and cancer. However, in pigs, the information on GSK3 is very limited. Identification and characterization of pig GSK3 are not only important for pig genetic improvement, but also contribute to the understanding and development of porcine models for human disease prevention and treatment.Five different isoforms of GSK3β were identified in porcine different tissues, in which three isoforms are novel. These isoforms had differential expression patterns in the fetal and adult of the porcine different tissues. The mRNA expression level of GSK3β isoforms was differentially regulated during the course of the insulin treatment, suggesting that different GSK3β isoforms may have different roles in insulin signaling pathway. Moreover, GSK3β5 had a different role on regulating the glycogen synthase activity, phosphorylation and the expression of porcine GYS1 and GYS2 gene compared to other GSK3β isoforms.We are the first to report five different isoforms of GSK3β identified from the porcine different tissues. Splice variants of GSK3β exhibit differential activity towards glycogen synthase. These results provide new insight into roles of the GSK3β on regulating glycogen metabolism.

  1. Non-invasive pulsed cavitational ultrasound for fetal tissue ablation: feasibility study in a fetal sheep model.

    Science.gov (United States)

    Kim, Y; Gelehrter, S K; Fifer, C G; Lu, J C; Owens, G E; Berman, D R; Williams, J; Wilkinson, J E; Ives, K A; Xu, Z

    2011-04-01

    Currently available fetal intervention techniques rely on invasive procedures that carry inherent risks. A non-invasive technique for fetal intervention could potentially reduce the risk of fetal and obstetric complications. Pulsed cavitational ultrasound therapy (histotripsy) is an ablation technique that mechanically fractionates tissue at the focal region using extracorporeal ultrasound. In this study, we investigated the feasibility of using histotripsy as a non-invasive approach to fetal intervention in a sheep model. The experiments involved 11 gravid sheep at 102-129 days of gestation. Fetal kidney, liver, lung and heart were exposed to ultrasound pulses (bones. Histological assessment confirmed lesion locations and sizes corresponding to regions where cavitation was monitored, with no lesions found when cavitation was absent. Inability to generate cavitation was primarily associated with increased depth to target and obstructing structures such as fetal limbs. Extracorporeal histotripsy therapy successfully created targeted lesions in fetal sheep organs without significant damage to overlying structures. With further improvements, histotripsy may evolve into a viable technique for non-invasive fetal intervention procedures. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  2. Mechanisms limiting glycogen storage in muscle during prolonged insulin stimulation

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, S A; Hansen, B F

    1988-01-01

    increased muscle glycogen concentrations to maximal values 2, 3, and 3.5 times above normal fed levels in fast-twitch white, slow-twitch red, and fast-twitch red fibers, respectively. Glucose uptake decreased (mean +/- SE) from 34.9 +/- 1.2 mumol.g-1.h-1 at 0 h to 7.5 +/- 0.7 after 7 h of perfusion. During...... compared with initial values. Total muscle water concentration decreased during glycogen loading of the muscles. Mechanisms limiting glycogen storage under maximal insulin stimulation include impaired insulin-stimulated membrane transport of glucose as well as impaired intracellular glucose disposal....

  3. Rumen papillae keratinization, cell glycogen and chemical composition of the meat from young bulls fed different levels of concentrate and babassu mesocarp bran

    Directory of Open Access Journals (Sweden)

    Simone Santos Barros

    2015-06-01

    Full Text Available This study aimed to assess the rumen papillae keratinization, cellular levels of liver and muscle glycogen, and the chemical composition of meat from feedlot-finished Nellore young bulls fed with levels of concentrate and babassu mesocarp bran. Twenty-eight animals with initial age of 21 months and initial body weight of 356.7 ± 19 kg were randomized to the following treatments: two levels of concentrate in the diet (65% and 71%, with or without inclusion of 35% of babassu mesocarp bran. Fragments of liver, muscle and rumen were obtained after slaughter of the animals. Levels of concentrate and babassu mesocarp bran in the diet did not affect the quantities of liver and muscle glycogen, and did not induce hyperkeratinization of rumen papillae. The chemical composition of the meat was not affected by the studied factors. The inclusion of 35% babassu mesocarp bran in high concentrate diets does not induce hyperkeratinization of rumen papillae, and does not change the amount of muscle and liver glycogen or the chemical characteristics of meat of Nellore young bulls.

  4. Deleterious effects of neuronal accumulation of glycogen in flies and mice

    OpenAIRE

    Duran, Jordi; Tevy, María Florencia; Garcia-Rocha, Mar; Calbó, Joaquim; Milán, Marco; Guinovart, Joan J

    2012-01-01

    Under physiological conditions, most neurons keep glycogen synthase (GS) in an inactive form and do not show detectable levels of glycogen. Nevertheless, aberrant glycogen accumulation in neurons is a hallmark of patients suffering from Lafora disease or other polyglucosan disorders. Although these diseases are associated with mutations in genes involved in glycogen metabolism, the role of glycogen accumulation remains elusive. Here, we generated mouse and fly models expressing an active form...

  5. Fetal Echocardiography and Indications

    Directory of Open Access Journals (Sweden)

    Melih Atahan Güven

    2008-09-01

    Full Text Available Congenital heart diseases are encountered in 0.8% of live births and are among the most frequently diagnosed malformations. At least half of these anomalies end up with death or require surgical interventions and are responsible for 30% of the perinatal mortality. Fetal echocardiography is the sum of knowledge, skill and orientation rather than knowing the embryologic details of the fetal heart. The purpose of fetal echocardiography is to document the presence of normal fetal cardiac anatomy and rhythm in high risk group and to define the anomaly and arrhythmia if present. A certain sequence should be followed during the evaluation of fetal heart. Sequential segmental analysis (SSA and basic definition terminology made it possible to determine a lot of complex cardiac anomalies during prenatal period. By the end of 1970’s, Shinebourne started using sequential segmental analysis for fetal cardiac evaluation and today, prenatal diagnosis of congenital heart disease is possible without any confusion. In this manner, whole fetal heart can be evaluated as the relation of three segments (atria, ventricles and the great arteries with each other, irrelevant of complexity of a possible cardiac anomaly. Presence of increased nuchal thickness during early gestation and abnormal four-chamber-view during ultrasonography by the obstetrician presents a clear indication for fetal echocardiography,however, one should keep in mind that 80-90% of the babies born with a congenital heart disease do not have a familial or maternal risk factor. In addition, it should be remembered that expectant mothers with diabetes mellitus pose an indication for fetal echocardiography.

  6. Fetal tachycardia : diagnosis and treatment

    NARCIS (Netherlands)

    Oudijk, Martijn Alexander

    2003-01-01

    Part I: Fetal tachyarrhythmias Diagnosis Fetal tachycardia is a serious condition warranting specialized evaluation. In chapter 2, methods of diagnosis of fetal tachycardia are described, including doppler and M-mode echocardiography and fetal magnetocardiography. The study presented in chapter 3

  7. Fetal body movement monitoring.

    Science.gov (United States)

    Rayburn, W F

    1990-03-01

    Recording fetal activity serves as an indirect measure of central nervous system integrity and function. The coordination of whole body movement, which requires complex neurologic control, is likely similar to that of the newborn infant. Short-term observations of the fetus are best performed using real-time ultrasound imaging. Monitoring fetal motion has been shown to be clinically worthwhile in predicting impending death or compromise, especially when placental insufficiency is longstanding. The presence of a vigorous fetus is reassuring. Perceived inactivity requires a reassessment of any underlying antepartum complication and a more precise evaluation by fetal heart rate testing or real-time ultrasonography before delivery is contemplated.

  8. Fetal blood drawing.

    Science.gov (United States)

    Hobbins, J C; Mahoney, M J

    1975-07-19

    A small sample of fetal blood suitable for studies of haemoglobin synthesis was obtained from a placental vessel under endoscopic visualisation in 23 of 26 patients in whom the procedure was attempted prior to second-trimester abortion. Fetal blood loss, calculated in 23 cases, was between 0-2 ml. and 2-5 ml., and fetal blood-volume depletion varied from 0-5% to 15%. No short-term ill-effects were demonstrated in mother or fetus in any of 16 patients in whom the injection of aborti-facient was postponed for between 16 and 24 hours after the procedure.

  9. Fetal MRI in experimental tracheal occlusion

    Energy Technology Data Exchange (ETDEWEB)

    Wedegaertner, Ulrike [Department of Diagnostic and Interventional Radiology, Universitaetsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg (Germany)]. E-mail: wedegaer@uke.uni-hamburg.de; Schroeder, Hobe J. [Experimental Gynecology, Department of Obstetrics and Prenatal Medicine, Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany); Adam, Gerhard [Department of Diagnostic and Interventional Radiology, Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany)

    2006-02-15

    Congenital diaphragmatic hernia (CDH) is associated with a high mortality, which is mainly due to pulmonary hypoplasia and secondary pulmonary hypertension. In severely affected fetuses, tracheal occlusion (TO) is performed prenatally to reverse pulmonary hypoplasia, because TO leads to accelerated lung growth. Prenatal imaging is important to identify fetuses with pulmonary hypoplasia, to diagnose high-risk fetuses who would benefit from TO, and to monitor the effect of TO after surgery. In fetal imaging, ultrasound (US) is the method of choice, because it is widely available, less expensive, and less time-consuming to perform than magnetic resonance imaging (MRI). However, there are some limitations for US in the evaluation of CDH fetuses. In those cases, MRI is helpful because of a better tissue contrast between liver and lung, which enables evaluation of liver herniation for the diagnosis of a high-risk fetus. MRI provides the ability to determine absolute lung volumes to detect lung hypoplasia. In fetal sheep with normal and hyperplastic lungs after TO, lung growth was assessed on the basis of cross-sectional US measurements, after initial lung volume determination by MRI. To monitor fetal lung growth after prenatal TO, both MRI and US seem to be useful methods.

  10. Genetics Home Reference: glycogen storage disease type IX

    Science.gov (United States)

    ... or elevated levels of ketones in the blood (ketosis). Ketones are molecules produced during the breakdown of ... down glycogen for glucose contributes to hypoglycemia and ketosis. Reduced energy production in muscle cells leads to ...

  11. Human skeletal muscle glycogen utilization in exhaustive exercise

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik Daa

    2011-01-01

    Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis...... to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. ....... that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, VO2 max = 68 ± 5 ml kg-1 min-1, mean ± SD...

  12. Genetics Home Reference: glycogen storage disease type V

    Science.gov (United States)

    ... with GSDV experience mild symptoms such as poor stamina; others do not experience any symptoms. Related Information ... myophosphorylase. This enzyme is found only in muscle cells, where it breaks down glycogen into a simpler ...

  13. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    Insulin resistance in skeletal muscle is a major hallmark of type 2 diabetes and an early detectable abnormality in the development of this disease. The cellular mechanisms of insulin resistance include impaired insulin-mediated muscle glycogen synthesis and increased intramyocellular lipid content......, whereas impaired insulin activation of muscle glycogen synthase represents a consistent, molecular defect found in both type 2 diabetic and high-risk individuals. Despite several studies of the insulin signaling pathway believed to mediate dephosphorylation and hence activation of glycogen synthase......, the molecular mechanisms responsible for this defect remain unknown. Recently, the use of phospho-specific antibodies in human diabetic muscle has revealed hyperphosphorylation of glycogen synthase at sites not regulated by the classical insulin signaling pathway. In addition, novel approaches such as gene...

  14. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Vigelsø Hansen, Andreas

    2011-01-01

    The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism...... and insulin signalling transduction remain elusive. We believe that one of the reasons is that the role of intracellular compartmentalization as a regulator of metabolic pathways and signalling transduction has been rather ignored. This paper briefly reviews the literature to discuss the role of intracellular...... compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss...

  15. The effect of glycogen phosphorolysis on basal glutaminergic transmission.

    Science.gov (United States)

    Mozrzymas, Jerzy; Szczęsny, Tomasz; Rakus, Darek

    2011-01-14

    Astrocytic glycogen metabolism sustains neuronal activity but its impact on basal glutamatergic synaptic transmission is not clear. To address this issue, we have compared the effect of glycogen breakdown inhibition on miniature excitatory postsynaptic currents (mEPSCs) in rat hippocampal pure neuronal culture (PNC) and in astrocyte-neuronal co-cultures (ANCC). Amplitudes of mEPSC in ANCC were nearly twice as large as in PNC with no difference in current kinetics. Inhibition of glycogen phosphorylase reduced mEPSC amplitude by roughly 40% in ANCC being ineffective in PNC. Altogether, these data indicate that astrocyte-neuronal interaction enhances basal mEPSCs in ANCC mainly due to astrocytic glycogen metabolism. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Normal renal development investigated with fetal MRI

    International Nuclear Information System (INIS)

    Witzani, Linde; Brugger, Peter Christian; Hoermann, Marcus; Kasprian, Gregor; Csapone-Balassy, Csilla; Prayer, Daniela

    2006-01-01

    Objective: To evaluate age-dependent changes in fetal kidney measurements with MRI. Patients and methods: Fetal MRI examinations were used to study the kidney length (218 fetuses), signal intensities of renal tissue, renal pelvis, and liver tissue on T2-weighted images (223 fetuses), and the whole-kidney apparent diffusion coefficient (107 fetuses). A 1.5 T superconducting unit with a phased array coil was used in patients from 16 to 39 weeks' gestation. The imaging protocol included T2-weighted single-shot fast spin-echo, T2-weighted balanced angiography and diffusion-weighted sequences. Slice thickness ranged from 3 to 5 mm. Results: Fetal kidney length as a function of gestational age was expressed by the linear regression: kidney length (mm) = 0.190 x gestational age (d) - 8.034 (R 2 0.883, p 2 /s) = 0.0302 x square (gestational age (d)) - 14.202 x gestational age (d) + 2728.6 (R 2 = 0.225, p < 0.001). Conclusion: The length, signal intensity on T2-weighted images, and apparent diffusion coefficient of the fetal kidney change significantly with gestational age. The presented data may help in the prenatal diagnosis of renal anomalies

  17. O6-methylguanine DNA methyltransferase in human fetal tissues: fetal and maternal factors

    International Nuclear Information System (INIS)

    D'Ambrosio, S.M.; Samuel, M.J.; Dutta-Choudhury, T.A.; Wani, A.A.

    1986-01-01

    O 6 -Methylguanine methyltransferase (O 6 -MT) was measured and compared in extracts of 7 human fetal tissues obtained from 21 different fetal specimens as a function of fetal age and race, and maternal smoking and drug usage. Activity was determined from the proteinase-K solubilized radioactivity transferred from the DNA to the O 6 -MT. S9 homogenates were incubated with a heat depurinated [ 3 H]-methylnitrosourea alkylated DNA. Liver exhibited the highest activity followed by kidney, lung, small intestine, large intestine, skin and brain. Each of the tissues exhibited a 3- to 5-fold level of interindividual variation of O 6 -MT. There did not appear to be any significant difference of O 6 -MT in the tissues obtained from mothers who smoked cigarettes during pregnancy. Also, fetal race and age did not appear to account for the level of variation of O 6 -MT. The fetal tissues obtained from an individual using phenobarbital and smoking exhibited 4-fold increases in O 6 -MT activity. The tissues obtained from another individual on kidney dialysis were 2- to 3-fold higher than the normal population. These data suggest that the variation in human O 6 -MT can not be explained by racial or smoking factors, but may be modulated by certain drugs

  18. Glycogen-bound polyphosphate kinase from the archaebacterium Sulfolobus acidocaldarius.

    OpenAIRE

    Skórko, R; Osipiuk, J; Stetter, K O

    1989-01-01

    Glycogen-bound polyphosphate kinase has been isolated from a crude extract of Sulfolobus acidocaldarius by isopycnic centrifugation in CsCl. Divalent cations (Mn2+ greater than Mg2+) stimulated the reaction. The enzyme does not require the presence of histones for its activity; it is inhibited strongly by phosphate and slightly by fluoride. The protein from the glycogen complex migrated in a sodium dodecyl sulfate-polyacrylamide gel as a 57-kilodalton protein band; after isoelectric focusing ...

  19. Inadequate Brain Glycogen or Sleep Increases Spreading Depression Susceptibility

    KAUST Repository

    Kilic, Kivilcim; Karatas, Hulya; Donmez-Demir, Buket; Eren-Kocak, Emine; Gursoy-Ozdemir, Yasemin; Can, Alp; Petit, Jean-Marie; Magistretti, Pierre J.; Dalkara, Turgay

    2017-01-01

    Glycogen in astrocyte endfeet contributes to maintenance of low extracellular glutamate and K+ concentrations around synapses. Sleep deprivation (SD), a common migraine trigger induces transcriptional changes in astrocytes reducing glycogen breakdown. We hypothesize that when glycogen utilization cannot match synaptic energy demand, extracellular K+ can rise to levels that activate neuronal pannexin-1 channels and downstream inflammatory pathway, which might be one of the mechanisms initiating migraine headaches.We suppressed glycogen breakdown by inhibiting glycogen phosphorylation with 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and by SD.DAB caused neuronal pannexin-1 large-pore opening and activation of the downstream inflammatory pathway as shown by procaspase-1 cleavage and HMGB1 release from neurons. Six-hour SD induced pannexin-1 mRNA. DAB and SD also lowered the cortical spreading depression (CSD) induction threshold, which was reversed by glucose or lactate supplement, suggesting that glycogen-derived energy substrates are needed to prevent CSD generation. Supporting this, knocking-down neuronal lactate transporter, MCT2 with an anti-sense oligonucleotide or inhibiting glucose transport from vessels to astrocytes with intracerebroventricularly given phloretin reduced the CSD threshold. In vivo recordings with a K+ -sensitive/selective fluoroprobe, APG-4 disclosed that DAB treatment or SD caused significant rise in extracellular K+ during whisker-stimulation, illustrating the critical role of glycogen in extracellular K+ clearance.Synaptic metabolic stress caused by insufficient glycogen-derived energy substrate supply can activate neuronal pannexin-1 channels as well as lowering the CSD threshold. Therefore, conditions that limit energy supply to synapse (e.g. SD) may predispose to migraine attacks as suggested by genetic studies associating glucose or lactate transporter deficiency with migraine. This article is protected by copyright. All rights reserved.

  20. Inadequate Brain Glycogen or Sleep Increases Spreading Depression Susceptibility

    KAUST Repository

    Kilic, Kivilcim

    2017-12-16

    Glycogen in astrocyte endfeet contributes to maintenance of low extracellular glutamate and K+ concentrations around synapses. Sleep deprivation (SD), a common migraine trigger induces transcriptional changes in astrocytes reducing glycogen breakdown. We hypothesize that when glycogen utilization cannot match synaptic energy demand, extracellular K+ can rise to levels that activate neuronal pannexin-1 channels and downstream inflammatory pathway, which might be one of the mechanisms initiating migraine headaches.We suppressed glycogen breakdown by inhibiting glycogen phosphorylation with 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and by SD.DAB caused neuronal pannexin-1 large-pore opening and activation of the downstream inflammatory pathway as shown by procaspase-1 cleavage and HMGB1 release from neurons. Six-hour SD induced pannexin-1 mRNA. DAB and SD also lowered the cortical spreading depression (CSD) induction threshold, which was reversed by glucose or lactate supplement, suggesting that glycogen-derived energy substrates are needed to prevent CSD generation. Supporting this, knocking-down neuronal lactate transporter, MCT2 with an anti-sense oligonucleotide or inhibiting glucose transport from vessels to astrocytes with intracerebroventricularly given phloretin reduced the CSD threshold. In vivo recordings with a K+ -sensitive/selective fluoroprobe, APG-4 disclosed that DAB treatment or SD caused significant rise in extracellular K+ during whisker-stimulation, illustrating the critical role of glycogen in extracellular K+ clearance.Synaptic metabolic stress caused by insufficient glycogen-derived energy substrate supply can activate neuronal pannexin-1 channels as well as lowering the CSD threshold. Therefore, conditions that limit energy supply to synapse (e.g. SD) may predispose to migraine attacks as suggested by genetic studies associating glucose or lactate transporter deficiency with migraine. This article is protected by copyright. All rights reserved.

  1. In vitro variation of glycogen content in three sheep nematodes.

    Science.gov (United States)

    Premvati, G; Chopra, A K

    1979-06-01

    In vitro variation of glycogen content under aerobic conditions was measured on fresh weight basis in 3 sheep nematodes inhabiting different niches; Haemonchus contortus, Oesophagostomum columbianum and Trichuris ovis. The parasites were saparated into species and then sexes and starved for varying periods of time up to 24 h in glucose-free physiological saline. The differences between females and males and among the species with respect to glycogen content and its rate of change with time are discussed.

  2. Autoradiography in fetal golden hamsters treated with tritiated diethylnitrosamine

    International Nuclear Information System (INIS)

    Reznik-Schueller, H.M.; Hague, B.F. Jr.

    1981-01-01

    Tritiated diethylnitrosamine was administered to female Syrian golden hamsters on each of the last 4 days (days 12-15) of pregnancy. The distribution of bound radioactivity was monitored by light microscopic autoradiography of fetal tracheas and livers, the placentas, and the maternal livers. In the trachea, the fetal target organ, bound radioactivity was restricted to the respiratory epithelium, where diethylnitrosamine-induced tracheal tumors arise. Mucous cells and nonciliated stem cells were identified as the principal sites of binding; other cell types within the tracheal epithelium contained only small amounts of bound radioactivity. The level of binding observed in the fetal trachea increased steadily from day 12 to day 15, which correlated well with the levels of differentiation of this tissue during this period. This observation also agrees with the previously reported observation that tumor incidence increases from 40 to 95% in Syrian golden hamsters between days 12 and 15

  3. Direct observation of hematopoietic progenitor chimerism in fetal freemartin cattle

    Directory of Open Access Journals (Sweden)

    Taponen Juhani

    2007-11-01

    Full Text Available Abstract Background Cattle twins are well known as blood chimeras. However, chimerism in the actual hematopoietic progenitor compartment has not been directly investigated. Here, we analyzed fetal liver of chimeric freemartin cattle by combining a new anti-bovine CD34 antibody and Y-chromosome specific in situ hybridization. Results Bull-derived CD34+ cells were detected in the liver of the female sibling (freemartin at 60 days gestation. The level of bull-derived CD34+ cells was lower in the freemartin than in its male siblings. Bull (Y+ and cow hematopoietic cells often occurred in separate clusters. Around clusters of Y+CD34+ cells, Y+CD34- cells were typically observed. The thymi were also strongly chimeric at 60 days of gestation. Conclusion The fetal freemartin liver contains clusters of bull-derived hematopoietic progenitors, suggesting clonal expansion and differentiation. Even the roots of the hematopoietic system in cattle twins are thus strongly chimeric from the early stages of fetal development. However, the hematopoietic seeding of fetal liver apparently started already before the onset of functional vascular anastomosis.

  4. A new peroxisomal disorder with fetal and neonatal adrenal insufficiency

    NARCIS (Netherlands)

    Vanhole, C.; de Zegher, F.; Casaer, P.; Devlieger, H.; Wanders, R. J.; Vanhove, G.; Jaeken, J.

    1994-01-01

    A boy with a new type of adrenoleukodystrophy is described. This was characterised by fetal and neonatal adrenal insufficiency, a neurological picture as seen in neonatal adrenoleukodystrophy, but with a normal number of peroxisomes in the liver and a peroxisomal dysfunction limited to the very long

  5. Fetal Alcohol Spectrum Disorders

    Science.gov (United States)

    Alcohol can harm your baby at any stage during a pregnancy. That includes the earliest stages, before ... can cause a group of conditions called fetal alcohol spectrum disorders (FASDs). Children who are born with ...

  6. Parvovirus infection: an immunohistochemical study using fetal and placental tissue.

    Science.gov (United States)

    Li, Jing Jing; Henwood, Tony; Van Hal, Sebastian; Charlton, Amanda

    2015-01-01

    Parvovirus B19 infection causes 5% to 15% of cases of nonimmune hydrops fetalis. The aim of our study was to evaluate the use of immunohistochemistry in diagnosing parvovirus infection in fetal and placental tissue during routine fetal and perinatal autopsies. Histology slides of 20 cases of confirmed parvovirus infection were reviewed, and immunohistochemistry was applied to selected blocks of fetal and placental tissue. Immunohistochemistry was positive in all 20 cases, and histologic viral inclusions were seen in 19 cases. Immunohistochemical staining was closely correlated with histology and was more sensitive than histology in detecting virally infected cells, especially in autolyzed tissue. All cases also had confirmatory evidence of parvovirus infection by polymerase chain reaction of fetal liver and positive maternal serology, where it was available. We conclude that parvovirus immunohistochemistry is a reliable method for diagnosing parvovirus infection, especially in autolyzed tissue where histologic assessment may be suboptimal.

  7. Fetal and neonatal thyrotoxicosis

    Science.gov (United States)

    Batra, Chandar Mohan

    2013-01-01

    Fetal thyrotoxicosis is a rare disease occurring in 1 out of 70 pregnancies with Grave's disease or in 1 out of 4000-50,000 deliveries. The mortality is 12-20%, usually from heart failure, but other complications are tracheal compression, infections and thrombocytopenia. It results from transfer of thyroid stimulating immunoglobulins from mother to fetus through the placenta. This transplacental transfer begins around 20th week of pregnancy and reaches its maximum by 30th week. These autoantibodies bind to the fetal thyroid stimulating hormone (TSH) receptors and increase the secretion of the thyroid hormones. The mother has an active autoimmune thyroid disease or has been treated for it in the past. She may be absolutely euthyroid due to past treatment by drugs, surgery or radioiodine ablation, but still have active TSH receptor stimulating autoantibodies, which can cause fetal thyrotoxicosis. The other features of this disease are fetal tachycardia, fetal goiter and history of spontaneous abortions and findings of goiter, ascites, craniosyntosis, fetal growth retardation, maceration and hydrops at fetal autopsy. If untreated, this disease can result in intrauterine death. The treatment for this disease consists of giving carbimazole to the mother, which is transferred through the placenta to the fetus. The dose of carbimazole is titrated with the fetal heart rate. If the mother becomes hypothyroid due to carbimazole, thyroxine is added taking advantage of the fact that very little of thyroxine is transferred across the placenta. Neonatal thyrotoxicosis patients are very sick and require emergency treatment. The goal of the treatment is to normalize thyroid functions as quickly as possible, to avoid iatrogenic hypothyroidism while providing management and supportive therapy for the infant's specific signs and symptoms. PMID:24251220

  8. Ultrasonographic and clinical features of fetal cholelithiasis. Three case reports

    International Nuclear Information System (INIS)

    Agnifili, Alessio; Gola, Piersante; Marino, Maria; Verzaro, Roberto; Carducci, Giuseppe; Mancini, Ermanno; Rizzo, Franz Maria; Carducci, Augusto; Biasini, Giancarlo

    1997-01-01

    Fetal cholelithiasis was first diagnosed in 1983 and since then there have been only few reports about the presence of gallstones in the fetus. Maternal conditions, fetal or obstetrical predisposing risk factors have been proposed to have a causative role, by the pathogenesis of fetal gallstones remains unknown. Clinical sequelae of fetal gallstones are poorly understood as well as the role of fetal cholelithiasis in predisposing the adult to gallstones. They report on 3 patients whose cholelithiasis was diagnosed by obstetrical ultrasonography. Repeated ultrasound scans were performed in each patient until resolution of the US images. The goal of US was to correctly identify the number, size and US features of the material within the gallbladder. The presence of distal shadowing or comet-tail artifact was assess. Multiple, small echogenic foci without distal shadowing were recognized in the fetal gallbladder in their patients. In the third case echogenic foci disappeared during pregnancy. In all the cases, US showed no biliary tract abnormality, and neither the mothers nor the patients had clinical or laboratory findings consistent with liver or biliary diseases. The authors discuss a diagnostic protocol to detect and follow-up gallstones in the perinatal period by ultrasonography. In their experience, fetal cholelithiasis confirmed to be a self-limiting disease without complications and did not require any form of therapy. However a close follow-up is indicated in these patients until spontaneous resolution is demonstrated by US

  9. Assessment of fetal activity concentration and fetal dose for selected radionuclides based on animal and human data

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1987-01-01

    Biokinetic data of selected radionuclide compounds from investigations in man and animal were taken from literature references with the purpose to provide a basis for a comparative assessment of fetal and adult radiation doses after intake or administration of radionuclides. The following ratios of fetal to adult doses were derived from human data: 0.5 for caesium 137 and total body, 2.3 for iron 59 and liver, 0.06 - 0.3 - 1.1 for iodine 131 and thyroid, and 0.1 - 0.3 for strontium 90 and bone. The ratios of activity concentrations in fetal and adult tissues are of considerable variability - up to three orders of magnitude. Further studies on fetal and adult biokinetics specifically designed for comparative dose assessment are indispensable. 106 refs.; 6 tabs

  10. Functional magnetic resonance imaging (fMRI) for fetal oxygenation during maternal hypoxia: initial results

    International Nuclear Information System (INIS)

    Wedegaertner, U.; Adam, G.; Tchirikov, M.; Schroeder, H.; Koch, M.

    2002-01-01

    Purpose: To investigate the potential of fMRI to measure changes in fetal tissue oxygenation during acute maternal hypoxia in fetal lambs. Material and Methods: Two ewes carrying singleton fetuses (gestational age 125 and 131 days) underwent MR imaging under inhalation anesthesia. BOLD imaging of the fetal brain, liver and myocardium was performed during acute maternal hypoxia (oxygen replaced by N 2 O). Maternal oxygen saturation and heart rate were monitored by a pulse-oxymeter attached to the maternal tongue. Results: Changes of fetal tissue oxygenation during maternal hypoxia were clearly visible with BOLD MRI. Signal intensity decreases were more distinct in liver and heart (∝40%) from control than in the fetal brain (∝10%). Conclusions: fMRI is a promising diagnostic tool to determine fetal tissue oxygenation and may open new opportunities in monitoring fetal well being in high risk pregnancies complicated by uteroplacentar insufficiency. Different signal changes in liver/heart and brain may reflect a centralization of the fetal blood flow. (orig.) [de

  11. Homogenization versus homogenization-free method to measure muscle glycogen fractions.

    Science.gov (United States)

    Mojibi, N; Rasouli, M

    2016-12-01

    The glycogen is extracted from animal tissues with or without homogenization using cold perchloric acid. Three methods were compared for determination of glycogen in rat muscle at different physiological states. Two groups of five rats were kept at rest or 45 minutes muscular activity. The glycogen fractions were extracted and measured by using three methods. The data of homogenization method shows that total glycogen decreased following 45 min physical activity and the change occurred entirely in acid soluble glycogen (ASG), while AIG did not change significantly. Similar results were obtained by using "total-glycogen-fractionation methods". The findings of "homogenization-free method" indicate that the acid insoluble fraction (AIG) was the main portion of muscle glycogen and the majority of changes occurred in AIG fraction. The results of "homogenization method" are identical with "total glycogen fractionation", but differ with "homogenization-free" protocol. The ASG fraction is the major portion of muscle glycogen and is more metabolically active form.

  12. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia

    Science.gov (United States)

    Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J

    2014-01-01

    Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that—against general belief—neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress. PMID:24569689

  13. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations

    DEFF Research Database (Denmark)

    Hespel, P; Richter, Erik

    1990-01-01

    1. Glucose uptake and transport, muscle glycogen, free glucose and glucose-6-phosphate concentrations were studied in perfused resting and contracting rat skeletal muscle with different pre-contraction glycogen concentrations. Rats were pre-conditioned by a combination of swimming exercise and diet......, resulting in either low (glycogen-depleted rats), normal (control rats) or high (supercompensated rats) muscle glycogen concentrations at the time their hindlimbs were perfused. 2. Compared with control rats, pre-contraction muscle glycogen concentration was approximately 40% lower in glycogen-depleted rats......, whereas it was 40% higher in supercompensated rats. Muscle glycogen break-down correlated positively (r = 0.76; P less than 0.001) with pre-contraction muscle glycogen concentration. 3. Glucose uptake during contractions was approximately 50% higher in glycogen-depleted hindquarters than in control...

  14. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia.

    Science.gov (United States)

    Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J

    2014-06-01

    Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that-against general belief-neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress.

  15. Chronic intermittent hypoxia predisposes to liver injury.

    Science.gov (United States)

    Savransky, Vladimir; Nanayakkara, Ashika; Vivero, Angelica; Li, Jianguo; Bevans, Shannon; Smith, Philip L; Torbenson, Michael S; Polotsky, Vsevolod Y

    2007-04-01

    Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH). OSA is associated with nonalcoholic steatohepatitis (NASH) in obese subjects. The aim of this study was to investigate the effects of CIH on the liver in the absence of obesity. Lean C57BL/6J mice (n = 15) on a regular chow diet were exposed to CIH for 12 weeks and compared with pair-fed mice exposed to intermittent air (IA, n = 15). CIH caused liver injury with an increase in serum ALT (224 +/- 39 U/l versus 118 +/- 22 U/l in the IA group, P fasting serum insulin levels, and mild elevation of fasting serum total cholesterol and triglycerides (TG). Liver TG content was unchanged, whereas cholesterol content was decreased. Histology showed swelling of hepatocytes, no evidence of hepatic steatosis, and marked accumulation of glycogen in hepatocytes. CIH led to lipid peroxidation of liver tissue with a malondialdehyde (MDA)/free fatty acids (FFA) ratio of 0.54 +/- 0.07 mmol/mol versus 0.30 +/- 0.01 mmol/mol in control animals (P obesity, CIH leads to mild liver injury via oxidative stress and excessive glycogen accumulation in hepatocytes and sensitizes the liver to a second insult, whereas NASH does not develop.

  16. Short and Long Term Effects of High-Intensity Interval Training on Hormones, Metabolites, Antioxidant System, Glycogen Concentration, and Aerobic Performance Adaptations in Rats

    OpenAIRE

    de Araujo, Gustavo G.; Papoti, Marcelo; dos Reis, Ivan Gustavo Masselli; de Mello, Maria A. R.; Gobatto, Claudio A.

    2016-01-01

    The purpose of the study was to investigate the effects of short and long term High-Intensity Interval Training (HIIT) on anaerobic and aerobic performance, creatinine, uric acid, urea, creatine kinase, lactate dehydrogenase, catalase, superoxide dismutase, testosterone, corticosterone, and glycogen concentration (liver, soleus, and gastrocnemius). The Wistar rats were separated in two groups: HIIT and sedentary/control (CT). The lactate minimum (LM) was used to evaluate the aerobic and anaer...

  17. Transcriptional ontogeny of the developing liver

    Directory of Open Access Journals (Sweden)

    Lee Janice S

    2012-01-01

    Full Text Available Abstract Background During embryogenesis the liver is derived from endodermal cells lining the digestive tract. These endodermal progenitor cells contribute to forming the parenchyma of a number of organs including the liver and pancreas. Early in organogenesis the fetal liver is populated by hematopoietic stem cells, the source for a number of blood cells including nucleated erythrocytes. A comprehensive analysis of the transcriptional changes that occur during the early stages of development to adulthood in the liver was carried out. Results We characterized gene expression changes in the developing mouse liver at gestational days (GD 11.5, 12.5, 13.5, 14.5, 16.5, and 19 and in the neonate (postnatal day (PND 7 and 32 compared to that in the adult liver (PND67 using full-genome microarrays. The fetal liver, and to a lesser extent the neonatal liver, exhibited dramatic differences in gene expression compared to adults. Canonical pathway analysis of the fetal liver signature demonstrated increases in functions important in cell replication and DNA fidelity whereas most metabolic pathways of intermediary metabolism were under expressed. Comparison of the dataset to a number of previously published microarray datasets revealed 1 a striking similarity between the fetal liver and that of the pancreas in both mice and humans, 2 a nucleated erythrocyte signature in the fetus and 3 under expression of most xenobiotic metabolism genes throughout development, with the exception of a number of transporters associated with either hematopoietic cells or cell proliferation in hepatocytes. Conclusions Overall, these findings reveal the complexity of gene expression changes during liver development and maturation, and provide a foundation to predict responses to chemical and drug exposure as a function of early life-stages.

  18. Maternal bisphenol a exposure impacts the fetal heart transcriptome.

    Directory of Open Access Journals (Sweden)

    Kalyan C Chapalamadugu

    Full Text Available Conditions during fetal development influence health and disease in adulthood, especially during critical windows of organogenesis. Fetal exposure to the endocrine disrupting chemical, bisphenol A (BPA affects the development of multiple organ systems in rodents and monkeys. However, effects of BPA exposure on cardiac development have not been assessed. With evidence that maternal BPA is transplacentally delivered to the developing fetus, it becomes imperative to examine the physiological consequences of gestational exposure during primate development. Herein, we evaluate the effects of daily, oral BPA exposure of pregnant rhesus monkeys (Macaca mulatta on the fetal heart transcriptome. Pregnant monkeys were given daily oral doses (400 µg/kg body weight of BPA during early (50-100 ± 2 days post conception, dpc or late (100 ± 2 dpc--term, gestation. At the end of treatment, fetal heart tissues were collected and chamber specific transcriptome expression was assessed using genome-wide microarray. Quantitative real-time PCR was conducted on select genes and ventricular tissue glycogen content was quantified. Our results show that BPA exposure alters transcription of genes that are recognized for their role in cardiac pathophysiologies. Importantly, myosin heavy chain, cardiac isoform alpha (Myh6 was down-regulated in the left ventricle, and 'A Disintegrin and Metalloprotease 12', long isoform (Adam12-l was up-regulated in both ventricles, and the right atrium of the heart in BPA exposed fetuses. BPA induced alteration of these genes supports the hypothesis that exposure to BPA during fetal development may impact cardiovascular fitness. Our results intensify concerns about the role of BPA in the genesis of human metabolic and cardiovascular diseases.

  19. Estradiol stimulates glycogen synthesis whereas progesterone promotes glycogen catabolism in the uterus of the American mink (Neovison vison).

    Science.gov (United States)

    Bowman, Kole; Rose, Jack

    2017-01-01

    Glycogen synthesis by mink uterine glandular and luminal epithelia (GE and LE) is stimulated by estradiol (E 2 ) during estrus. Subsequently, the glycogen deposits are mobilized to near completion to meet the energy requirements of pre-embryonic development and implantation by as yet undetermined mechanisms. We hypothesized that progesterone (P 4 ) was responsible for catabolism of uterine glycogen reserves as one of its actions to ensure reproductive success. Mink were treated with E 2 , P 4 or vehicle (controls) for 3 days and uteri collected 24 h (E 2 , P 4 and vehicle) and 96 h (E 2 ) later. To evaluate E 2 priming, mink were treated with E 2 for 3 days, then P 4 for an additional 3 days (E 2 →P 4 ) and uteri collected 24 h later. Percent glycogen content of uterine epithelia was greater at E 2 + 96 h (GE = 5.71 ± 0.55; LE = 11.54 ± 2.32) than E 2 +24 h (GE = 3.63 ± 0.71; LE = 2.82 ± 1.03), and both were higher than controls (GE = 0.27 ± 0.15; LE = 0.54 ± 0.30; P glycogen content (GE = 0.61 ± 0.16; LE = 0.51 ± 0.13), to levels not different from controls, while concomitantly increasing catabolic enzyme (glycogen phosphorylase m and glucose-6-phosphatase) gene expression and amount of phospho-glycogen synthase protein (inactive) in uterine homogenates. Interestingly, E 2 →P 4 increased glycogen synthase 1 messenger RNA (mRNA) and hexokinase 1mRNA and protein. Our findings suggest to us that while E 2 promotes glycogen accumulation by the mink uterus during estrus and pregnancy, it is P 4 that induces uterine glycogen catabolism, releasing the glucose that is essential to support pre-embryonic survival and implantation. © 2016 Japanese Society of Animal Science.

  20. Intrapartum fetal heart rate profiles with and without fetal asphyxia.

    Science.gov (United States)

    Low, J A; Pancham, S R; Worthington, D N

    1977-04-01

    Fetal heart rate profiles for periods up to 12 hours prior to delivery have been reviewed in 515 patients with a fetus at risk. Mechanisms other than fetal asphyxia will cause fetal heart rate decelerations, and fetal asphyxia may in some instances develop in the absence of total or late decelerations. However, an increasing incidence of total decelerations and late decelerations and particularly a marked pattern of total decelerations and late decelerations are of value in the prediction of fetal asphyxia. Fetal heart rate deceleration patterns can predict the probability of fetal asphyxia at the time of initial intervention, while a progression of fetal heart rate deceleration patterns in the individual fetus can be of assistance in the subsequent scheduling of serial acid-base assessments during labor.

  1. Hepatorenal correction in murine glycogen storage disease type I with a double-stranded adeno-associated virus vector.

    LENUS (Irish Health Repository)

    Luo, Xiaoyan

    2011-11-01

    Glycogen storage disease type Ia (GSD-Ia) is caused by the deficiency of glucose-6-phosphatase (G6Pase). Long-term complications of GSD-Ia include life-threatening hypoglycemia and proteinuria progressing to renal failure. A double-stranded (ds) adeno-associated virus serotype 2 (AAV2) vector encoding human G6Pase was pseudotyped with four serotypes, AAV2, AAV7, AAV8, and AAV9, and we evaluated efficacy in 12-day-old G6pase (-\\/-) mice. Hypoglycemia during fasting (plasma glucose <100 mg\\/dl) was prevented for >6 months by the dsAAV2\\/7, dsAAV2\\/8, and dsAAV2\\/9 vectors. Prolonged fasting for 8 hours revealed normalization of blood glucose following dsAAV2\\/9 vector administration at the higher dose. The glycogen content of kidney was reduced by >65% with both the dsAAV2\\/7 and dsAAV2\\/9 vectors, and renal glycogen content was stably reduced between 7 and 12 months of age for the dsAAV2\\/9 vector-treated mice. Every vector-treated group had significantly reduced glycogen content in the liver, in comparison with untreated G6pase (-\\/-) mice. G6Pase was expressed in many renal epithelial cells of with the dsAAV2\\/9 vector for up to 12 months. Albuminuria and renal fibrosis were reduced by the dsAAV2\\/9 vector. Hepatorenal correction in G6pase (-\\/-) mice demonstrates the potential of AAV vectors for the correction of inherited diseases of metabolism.

  2. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon

    Science.gov (United States)

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-01-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus. PMID:23879596

  3. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    Science.gov (United States)

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  4. Mechanisms limiting glycogen storage in muscle during prolonged insulin stimulation

    International Nuclear Information System (INIS)

    Richter, E.A.; Hansen, S.A.; Hansen, B.F.

    1988-01-01

    The extent to which muscle glycogen concentrations can be increased during exposure to maximal insulin concentrations and abundant glucose was investigated in the isolated perfused rat hindquarter preparation. Perfusion for 7 h in the presence of 20,000 μU/ml insulin and 11-13 mM glucose increased muscle glycogen concentrations to maximal values 2, 3, and 3.5 times above normal fed levels in fast-twitch white, slow-twitch red, and fast-twitch red fibers, respectively. Glucose uptake decreased from 34.9 μmol·g -1 ·h -1 at 0 h to 7.5 after 7 h of perfusion. During the perfusion muscle glycogen synthase activity decreased and free intracellular glucose and glucose 6-phosphate increased indicating that glucose disposal was impaired. However, glucose transport as measured by the uptake of 3-O-[ 14 C]methyl-D-glucose was also markedly decreased after 5 and 7 h of perfusion compared with initial values. Total muscle water concentration decreased during glycogen loading of the muscles. Mechanisms limiting glycogen storage under maximal insulin stimulation include impaired insulin-stimulated membrane transport of glucose as well as impaired intracellular glucose disposal

  5. Livers from fasted rats acquire resistance to warm and cold ischemia injury.

    Science.gov (United States)

    Sumimoto, R; Southard, J H; Belzer, F O

    1993-04-01

    Successful liver transplantation is dependent upon many factors, one of which is the quality of the donor organ. Previous studies have suggested that the donor nutritional status may affect the outcome of liver transplantation and starvation, due to prolonged stay in the intensive care unit, may adversely affect the liver. In this study we have used the orthotopic rat liver transplant model to measure how fasting the donor affects the outcome of liver transplantation. Rat livers were preserved with UW solution either at 37 degrees C (warm ischemia for 45-60 min) or at 4 degrees C (cold ischemia for 30 or 44 hr). After preservation the livers were orthotopically transplanted and survival (for 7 days) was measured, as well as liver functions 6 hr after transplantation. After 45 min of warm ischemia 50% (3 of 6) animals survived when the liver was obtained from a fed donor about 80% (4 of 5) survived when the liver was obtained from a three-day-fasted donor. After 60 min warm ischemia no animal survived (0 of 8, fed group). However, if the donor was fasted for 3 days 89% (8 of 9) of the animals survived for 7 days. Livers cold-stored for 30 hr were 50% viable (3 of 6) and fasting for 1-3 days did not affect this outcome. However, if the donor was fasted for 4 days 100% (9 of 9) survival was obtained. After 44-hr preservation only 29% (2/7) of the recipients survived for 7 days. If the donor was fasted for 4 days, survival increased to 83% (5/6). Liver functions, bile production, and serum enzymes were better in livers from the fasted rats than from the fed rats. Fasting caused a 95% decrease in liver glycogen content. Even with this low concentration of glycogen, liver viability (animal survival) after warm or cold ischemia was not affected, and livers with a low glycogen content were fully viable. Thus liver glycogen does not appear to be important in liver preservation. This study shows that fasting the donor does not cause injury to the liver after warm or cold

  6. Magnetic resonance imaging of the fetal gallbladder and bile

    International Nuclear Information System (INIS)

    Brugger, Peter C.; Weber, Michael; Prayer, Daniela

    2010-01-01

    To study the magnetic resonance imaging (MRI) appearance of the fetal gallbladder with special reference to fetal gallbladder sludge. In a retrospective study of 512 fetuses without gastrointestinal abnormalities, we classified the gallbladder MR appearances into patterns based on the signal intensity (SI) of bile on T1-weighted and T2-weighted sequences. We analysed the ratio of T1-weighted SI of bile. Maximum gallbladder width was correlated with gestational weeks (GW) using non-linear regression analysis and compared between various imaging patterns with one-way ANOVA. Five age-dependent patterns of the MRI appearance were found: (1) SI of bile was T2-weighted hyperintense and T1-weighted hypointense (78.5%); (2) presented with T2-weighted hyperintensity and T1-weighted signal isointense to liver (10.4%); (3) moderate hyperintense T2-weighted SI, T1-weighted SI hyperintense to liver (4.9%); (4) SI was T2-weighted isointense and T1-weighted hyperintense to liver (3.7%); (5) pronounced T2-weighted hypointensity and marked T1-weighted hyperintensity (2.5%). Pattern 1 was exclusively found before 27 GW, while patterns 2-5 increased in frequency after 30 GW. The MRI appearance of the fetal gallbladder is variable; fetal bile shows age-dependent SI changes that may cause non-visualisation of the gallbladder. This may be due to sludge and/or accumulation of paramagnetic substances suspended within gallbladder mucus. (orig.)

  7. Magnetic resonance imaging of the fetal gallbladder and bile

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, Peter C. [Medical University of Vienna, Integrative Morphology Group, Center for Anatomy and Cell Biology, Vienna (Austria); Weber, Michael [Medical University of Vienna, Department of Radiology, Vienna (Austria); Prayer, Daniela [Medical University of Vienna, Department of Radiology, Division of Neuroradiology and Musculoskeletal Radiology, Vienna (Austria)

    2010-12-15

    To study the magnetic resonance imaging (MRI) appearance of the fetal gallbladder with special reference to fetal gallbladder sludge. In a retrospective study of 512 fetuses without gastrointestinal abnormalities, we classified the gallbladder MR appearances into patterns based on the signal intensity (SI) of bile on T1-weighted and T2-weighted sequences. We analysed the ratio of T1-weighted SI of bile. Maximum gallbladder width was correlated with gestational weeks (GW) using non-linear regression analysis and compared between various imaging patterns with one-way ANOVA. Five age-dependent patterns of the MRI appearance were found: (1) SI of bile was T2-weighted hyperintense and T1-weighted hypointense (78.5%); (2) presented with T2-weighted hyperintensity and T1-weighted signal isointense to liver (10.4%); (3) moderate hyperintense T2-weighted SI, T1-weighted SI hyperintense to liver (4.9%); (4) SI was T2-weighted isointense and T1-weighted hyperintense to liver (3.7%); (5) pronounced T2-weighted hypointensity and marked T1-weighted hyperintensity (2.5%). Pattern 1 was exclusively found before 27 GW, while patterns 2-5 increased in frequency after 30 GW. The MRI appearance of the fetal gallbladder is variable; fetal bile shows age-dependent SI changes that may cause non-visualisation of the gallbladder. This may be due to sludge and/or accumulation of paramagnetic substances suspended within gallbladder mucus. (orig.)

  8. Ultrasonic prediction of fetal mass

    African Journals Online (AJOL)

    1983-02-19

    Feb 19, 1983 ... Summary. A clinically accurate method for estimating fetal. mass from fetal body parameters is reviewed. The abdominal circumference is first calculated from ... reliable clinical parameter is the impression of uterine volume,.

  9. Unexplained fetal death

    OpenAIRE

    Sepúlveda, Janer; Quintero, Eliana Maribel

    2004-01-01

    El porcentaje de muertes fetales inexplicadas oscila entre un 21% a 50%; se define como la muerte que ocurre en fetos con edad gestacional mayor de 20 semanas o peso superior a 500 g, en la cual ni la autopsia ni el examen histológico del cordón umbilical, placenta y membranas, se logra identificar la causa. Los factores asociados con muerte fetal inexplicada son edad materna mayor de 35 años, sobrepeso, nivel educativo menor de 10 años, cigarrillo y bajo nivel socioeconómico, entre otros. La...

  10. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise

    NARCIS (Netherlands)

    Knuiman, Pim; Hopman, Maria T.E.; Mensink, Marco

    2015-01-01

    It is well established that glycogen depletion affects endurance exercise performance negatively. Moreover, numerous studies have demonstrated that post-exercise carbohydrate ingestion improves exercise recovery by increasing glycogen resynthesis. However, recent research into the effects of

  11. Mountain-bike racing – the influence of prior glycogen- reducing ...

    African Journals Online (AJOL)

    bout of glycogen-reducing exercise on the general stress and immune response to ..... interaction effect of glutamine supplementation and glycogen reduction on the .... Hammarqvist F, Ejesson B, Wernerman J. Stress hormones initiate pro-.

  12. Structural mechanism of laforin function in glycogen dephosphorylation and lafora disease.

    Science.gov (United States)

    Raththagala, Madushi; Brewer, M Kathryn; Parker, Matthew W; Sherwood, Amanda R; Wong, Brian K; Hsu, Simon; Bridges, Travis M; Paasch, Bradley C; Hellman, Lance M; Husodo, Satrio; Meekins, David A; Taylor, Adam O; Turner, Benjamin D; Auger, Kyle D; Dukhande, Vikas V; Chakravarthy, Srinivas; Sanz, Pascual; Woods, Virgil L; Li, Sheng; Vander Kooi, Craig W; Gentry, Matthew S

    2015-01-22

    Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Deleterious effects of neuronal accumulation of glycogen in flies and mice.

    Science.gov (United States)

    Duran, Jordi; Tevy, María Florencia; Garcia-Rocha, Mar; Calbó, Joaquim; Milán, Marco; Guinovart, Joan J

    2012-08-01

    Under physiological conditions, most neurons keep glycogen synthase (GS) in an inactive form and do not show detectable levels of glycogen. Nevertheless, aberrant glycogen accumulation in neurons is a hallmark of patients suffering from Lafora disease or other polyglucosan disorders. Although these diseases are associated with mutations in genes involved in glycogen metabolism, the role of glycogen accumulation remains elusive. Here, we generated mouse and fly models expressing an active form of GS to force neuronal accumulation of glycogen. We present evidence that the progressive accumulation of glycogen in mouse and Drosophila neurons leads to neuronal loss, locomotion defects and reduced lifespan. Our results highlight glycogen accumulation in neurons as a direct cause of neurodegeneration. Copyright © 2012 EMBO Molecular Medicine.

  14. Modified glycogen as construction material for functional biomimetic microfibers.

    Science.gov (United States)

    Rabyk, Mariia; Hruby, Martin; Vetrik, Miroslav; Kucka, Jan; Proks, Vladimir; Parizek, Martin; Konefal, Rafal; Krist, Pavel; Chvatil, David; Bacakova, Lucie; Slouf, Miroslav; Stepanek, Petr

    2016-11-05

    We describe a conceptually new, microfibrous, biodegradable functional material prepared from a modified storage polysaccharide also present in humans (glycogen) showing strong potential as direct-contact dressing/interface material for wound healing. Double bonds were introduced into glycogen via allylation and were further exploited for crosslinking of the microfibers. Triple bonds were introduced by propargylation and served for further click functionalization of the microfibers with bioactive peptide. A simple solvent-free method allowing the preparation of thick layers was used to produce microfibers (diameter ca 2μm) from allylated and/or propargylated glycogen. Crosslinking of the samples was performed by microtron beta-irradiation, and the irradiation dose was optimized to 2kGy. The results from biological testing showed that these highly porous, hydrophilic, readily functionalizable materials were completely nontoxic to cells growing in their presence. The fibers were gradually degraded in the presence of cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Muscle glycogen depletion and lactate concentration during downhill skiing.

    Science.gov (United States)

    Tesch, P; Larsson, L; Eriksson, A; Karlsson, J

    1978-01-01

    Skilled and unskilled skiers were studied during downhill skiing. Muscle glycogen and muscle lactate concentrations in the vastus lateralis muscle were determined following different skiing conditions. Heavy glycogen utilization was found in the groups studied during a day of skiing. The skilled and unskilled skiers differed with respect to selective glycogen depletion pattern and the skilled subjects demonstrated greater depletion of slow twitch fibers than the unskilled subjects. Lactate concentrations ranged from approximately 5-26 mmoles x kg-1 wet muscle after approximately one minute of maximal skiing. This wide range was not found to be related to the level of skiing proficiency. However, skiing with varyingly angled boots, resulting in different knee angles, did affect lactate concentration. Lactate concentration was positively correlated to individual muscle fiber composition expressed as a percent of fast twitch fibers. The results suggest more pronounced involvement of aerobic energy metabolism in skilled skiers than in unskilled skiers.

  16. 不同浓度胎牛血清肝浸汤培养基培养阴道毛滴虫效果观察%Observation of Trichomonas vaginalis cultured in liver extract medium with different concentrations of fetal bovine serum

    Institute of Scientific and Technical Information of China (English)

    李兴武

    2009-01-01

    Three strains of Trichomonas vaginalis were cultured for 48 hours in liver extract medium, the respective trophozoite density of T. vaginalis was 0. 7× 10~5/ml, 1. 5× 10~5/ml, and 2.0× 10~5/ml. Culturing in the medium with fetal bovine serum at final concentrations of 1% , 5% , and 10% resulted in trophozoite density of 6. 0× 10~5/ml, 640× 10~5/ ml, and 1 280. 0× 10~5/ml for the first strain, 16.0× 10~5/ml, 1 600. 0× 10~5/ml, and 2 400 × 10~5/ml for the second strain, and 65. 0× 10~5/ml, 840. 0×10~5/ml, and 520.0× 10~5/ml for the third strain. Results indicated that a liver extract medium with the appropriate concentration of fetal bovine serum provides a good culture medium.%3株阴道毛滴虫用肝浸汤培养48 h,虫体密度分别为0.7×10~5/ml、1.5×10~5/ml和2.0×10~5/ml;用含终浓度为1%、5%、10%的胎牛血清肝浸汤培养48 h,虫株Ⅰ的密度分别为6.0×10~5/ml、640.0×10~5/ml和1 280.0×10~5/ml,虫株Ⅱ分别为16.0×10~5/ml、1 600.0×10~5/ml和2 400.0×10~5/ml,虫株Ⅲ分别为65.0×10~5/ml、840.0×10~5/ml和520.0×10~5/ml.表明肝浸汤添加适量胎牛血清后培养效果良好.

  17. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon

    OpenAIRE

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-01-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L.?acidophilus?NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP - amy - pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and gro...

  18. Molecular Basis of Impaired Glycogen Metabolism during Ischemic Stroke and Hypoxia

    Science.gov (United States)

    Hossain, Mohammed Iqbal; Roulston, Carli Lorraine; Stapleton, David Ian

    2014-01-01

    Background Ischemic stroke is the combinatorial effect of many pathological processes including the loss of energy supplies, excessive intracellular calcium accumulation, oxidative stress, and inflammatory responses. The brain's ability to maintain energy demand through this process involves metabolism of glycogen, which is critical for release of stored glucose. However, regulation of glycogen metabolism in ischemic stroke remains unknown. In the present study, we investigate the role and regulation of glycogen metabolizing enzymes and their effects on the fate of glycogen during ischemic stroke. Results Ischemic stroke was induced in rats by peri-vascular application of the vasoconstrictor endothelin-1 and forebrains were collected at 1, 3, 6 and 24 hours post-stroke. Glycogen levels and the expression and activity of enzymes involved in glycogen metabolism were analyzed. We found elevated glycogen levels in the ipsilateral hemispheres compared with contralateral hemispheres at 6 and 24 hours (25% and 39% increase respectively; PGlycogen synthase activity and glycogen branching enzyme expression were found to be similar between the ipsilateral, contralateral, and sham control hemispheres. In contrast, the rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 58% lower activity (Pglycogen debranching enzyme expression 24 hours post-stroke was 77% (Pglycogen phosphorylase activity and increased glycogen accumulation but did not alter glycogen synthase activity. Furthermore, elevated glycogen levels provided metabolic support to astrocytes during hypoxia. Conclusion Our study has identified that glycogen breakdown is impaired during ischemic stroke, the molecular basis of which includes reduced glycogen debranching enzyme expression level together with reduced glycogen phosphorylase and PKA activity. PMID:24858129

  19. Glycogen-bound polyphosphate kinase from the archaebacterium Sulfolobus acidocaldarius.

    Science.gov (United States)

    Skórko, R; Osipiuk, J; Stetter, K O

    1989-09-01

    Glycogen-bound polyphosphate kinase has been isolated from a crude extract of Sulfolobus acidocaldarius by isopycnic centrifugation in CsCl. Divalent cations (Mn2+ greater than Mg2+) stimulated the reaction. The enzyme does not require the presence of histones for its activity; it is inhibited strongly by phosphate and slightly by fluoride. The protein from the glycogen complex migrated in a sodium dodecyl sulfate-polyacrylamide gel as a 57-kilodalton protein band; after isoelectric focusing it separated into several spots in the pH range of 5.6 to 6.7.

  20. Enzymatic description of the anhydrofructose pathway of glycogen degradation. I

    DEFF Research Database (Denmark)

    Yu, Shukun; Refdahl, Charlotte; Lundt, Inge

    2004-01-01

    The anhydrofructose pathway describes the degradation of glycogen and starch to metabolites via 1,5-anhydro-D-fructose (1,5AnFru). The enzyme catalyzing the first reaction step of this pathway, i.e., a-1,4-glucan lyase (EC 4.2.1.13), has been purified, cloned and characterized from fungi and red...... possessed all enzymes needed for conversion of glycogen to APP, an a-1,4-glucan lyase from this fungus was isolated and partially sequenced. Based on this work, a scheme of the enzymatic description of the anhydrofructose pathway in A. melaloma was proposed. Keywords: Anhydrofructose pathway; Anthracobia...

  1. Ovine fetal necrobacillosis

    DEFF Research Database (Denmark)

    Agerholm, J.S.; Boye, Mette; Aalbæk, B.

    2007-01-01

    were found in several tissues. Histologically, placental lesions were characterized by locally diffuse infiltration of neutrophils, closely associated with abundant small Gram-negative and FISH-positive rods, thrombosis and necrosis. Lesions in the fetal-maternal interface were multifocal and consisted...

  2. Fetal Alcohol Syndrome.

    Science.gov (United States)

    Zerrer, Peggy

    The paper reviews Fetal Alcohol Syndrome (FAS), a series of effects seen in children whose mothers drink alcohol to excess during pregnancy. The identification of FAS and its recognition as a major health problem in need of prevention are traced. Characteristics of children with FAS are described and resultant growth retardation, abnormal physical…

  3. Fetal Alcohol Exposure

    Science.gov (United States)

    ... categories: 4 » Fetal Alcohol Syndrome (FAS) » Partial FAS (pFAS) » Alcohol-Related Neurodevelopmental Disorder (ARND) » Alcohol-Related Birth ... either prenatally, after birth, or both Partial FAS (pFAS) Partial FAS (pFAS) involves prenatal alcohol exposure, and ...

  4. Liver Hemangioma

    Science.gov (United States)

    Liver hemangioma Overview A liver hemangioma (he-man-jee-O-muh) is a noncancerous (benign) mass in the liver. A liver hemangioma is made up of a tangle of blood vessels. Other terms for a liver hemangioma are hepatic hemangioma and cavernous hemangioma. Most ...

  5. Differences between glycogen biogenesis in fast- and slow-twitch rabbit muscle

    DEFF Research Database (Denmark)

    Cussó, R; Lerner, L R; Cadefau, J

    2003-01-01

    Skeletal muscle glycogen is an essential energy substrate for muscular activity. The biochemical properties of the enzymes involved in de novo synthesis of glycogen were analysed in two types of rabbit skeletal muscle fiber (fast- and slow-twitch). Glycogen concentration was higher in fast...

  6. Glycogen metabolism in Schistosoma mansoni worms after their isolation from the host

    NARCIS (Netherlands)

    Tiolens, A.G.M.; Bergh, S.G. van den

    Adult Schistosoma mansoni worms rapidly degrade their endogenous glycogen stores immediately after isolation from the host. In NCTC 109 or in a diphasic culture medium the glycogen levels slowly recovered again after the initial decrease. The rapid degradation of glycogen could be prevented, even in

  7. Isolating the role of elevated Phlda2 in asymmetric late fetal growth restriction in mice

    Directory of Open Access Journals (Sweden)

    Simon J. Tunster

    2014-10-01

    Full Text Available Pleckstrin homology-like domain family A member 2 (PHLDA2 is a maternally expressed imprinted gene whose elevated expression has been linked to fetal growth restriction in a number of human studies. In mice, Phlda2 negatively regulates placental growth and limits the accumulation of placental glycogen. We previously reported that a three-copy transgene spanning the Phlda2 locus drove a fetal growth restriction phenotype late in gestation, suggesting a causative role for PHLDA2 in human growth restriction. However, in this mouse model, Phlda2 was overexpressed by fourfold, alongside overexpression of a second imprinted gene, Slc22a18. Here, we genetically isolate the role of Phlda2 in driving late fetal growth restriction in mice. We furthermore show that this Phlda2-driven growth restriction is asymmetrical, with a relative sparing of the brain, followed by rapid catch-up growth after birth, classic features of placental insufficiency. Strikingly, fetal growth restriction showed strain-specific differences, being apparent on the 129S2/SvHsd (129 genetic background and absent on the C57BL6 (BL6 background. A key difference between these two strains is the placenta. Specifically, BL6 placentae possess a more extensive endocrine compartment and substantially greater stores of placental glycogen. Taken together, these data support a direct role for elevated Phlda2 in limiting fetal growth but also suggest that growth restriction only manifests when there is limited placental reserve. These findings should be taken into account in interpreting the results from human studies.

  8. Liver biopsy

    Science.gov (United States)

    Biopsy - liver; Percutaneous biopsy ... the biopsy needle to be inserted into the liver. This is often done by using ultrasound. The ... the chance of damage to the lung or liver. The needle is removed quickly. Pressure will be ...

  9. The effect of fetal sex on customized fetal growth charts.

    Science.gov (United States)

    Rizzo, Giuseppe; Prefumo, Federico; Ferrazzi, Enrico; Zanardini, Cristina; Di Martino, Daniela; Boito, Simona; Aiello, Elisa; Ghi, Tullio

    2016-12-01

    To evaluate the effect of fetal sex on singleton pregnancy growth charts customized for parental characteristics, race, and parity Methods: In a multicentric cross-sectional study, 8070 ultrasonographic examinations from low-risk singleton pregnancies between 16 and 40 weeks of gestation were considered. The fetal measurements obtained were biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL). Quantile regression was used to examine the impact of fetal sex across the biometric percentiles of the fetal measurements considered together with parents' height, weight, parity, and race. Fetal gender resulted to be a significant covariate for BDP, HC, and AC with higher values for male fetuses (p ≤ 0.0009). Minimal differences were found among sexes for FL. Parity, maternal race, paternal height and maternal height, and weight resulted significantly related to the fetal biometric parameters considered independently from fetal gender. In this study, we constructed customized biometric growth charts for fetal sex, parental, and obstetrical characteristics using quantile regression. The use of gender-specific charts offers the advantage to define individualized normal ranges of fetal biometric parameters at each specific centile. This approach may improve the antenatal identification of abnormal fetal growth.

  10. Energy Metabolism in the Liver

    Science.gov (United States)

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and cholesterol esters in hepatocytes, and these complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as VLDL particles. In the fasted state, the liver secretes glucose through both breakdown of glycogen (glycogenolysis) and de novo glucose synthesis (gluconeogenesis). During pronged fasting, hepatic gluconeogenesis is the primary source of endogenous glucose production. Fasting also promotes lipolysis in adipose tissue to release nonesterified fatty acids which are converted into ketone bodies in the liver though mitochondrial β oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver metabolic processes are tightly regulated by neuronal and hormonal systems. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis, but suppresses gluconeogenesis; glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze the rate-limiting steps of liver metabolic processes, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases (NAFLD). PMID:24692138

  11. Regulation of glucose and glycogen metabolism during and after exercise

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Richter, Erik

    2012-01-01

    Utilization of carbohydrate in the form of intramuscular glycogen stores and glucose delivered from plasma becomes an increasingly important energy substrate to the working muscle with increasing exercise intensity. This review gives an update on the molecular signals by which glucose transport...

  12. Mountain bike racing - the influence of prior glycogen-inducing ...

    African Journals Online (AJOL)

    Objective. To investigate the effect of pre-exercise glutamine supplementation and the influence of a prior acute bout of glycogen-reducing exercise on the general stress and immune response to acute high-intensity cycling. Design. Randomised, double-blind, cross-over supplementation study. Setting and intervention.

  13. Muscle glycogen depletion patterns during draught work in Standardbred horses.

    Science.gov (United States)

    Gottlieb, M

    1989-03-01

    Muscle fibre recruitment was investigated during draught loaded exercise by studying glycogen depletion patterns from histochemical stains of muscle biopsies from the gluteus and semitendinosus muscles. Three Standardbred trotters performed several intervals of draught loaded exercise on a treadmill with 34 kp at a trot (7 m/sec) and with 34 and 80 kp, respectively at a walk (2m/sec). Exercise was continued until the horses were unwilling to continue. Glycogen depletion was seen in all three fibre types when trotting with 34 kp for 5 or 10 mins. When an equal weight resistance was pulled at a walk, glycogen depletion was first seen in type I fibres only, then followed by a small percentage of type IIA fibres after at least 1 h. When 80 kp was pulled at a walk both type I and IIA fibres showed glycogen depletion, and after at least 30 mins exercise a small percentage of type IIB fibres was also depleted. These results indicate that the muscle fibres are depleted, in order, from type I through IIA to IIB as the intensity or duration of draught work increases.

  14. Nerve-independent and ectopically additional induction of taste buds in organ culture of fetal tongues.

    Science.gov (United States)

    Honda, Kotaro; Tomooka, Yasuhiro

    2016-10-01

    An improved organ culture system allowed to observe morphogenesis of mouse lingual papillae and taste buds relatively for longer period, in which fetal tongues were analyzed for 6 d. Taste cells were defined as eosinophobic epithelial cells expressing CK8 and Sox2 within lingual epithelium. Addition of glycogen synthase kinase 3 beta inhibitor CHIR99021 induced many taste cells and buds in non-gustatory and gustatory stratified lingual epithelium. The present study clearly demonstrated induction of taste cells and buds ectopically and without innervation.

  15. Oxidative metabolites of diethylstilbestrol in the fetal Syrian golden hamster

    International Nuclear Information System (INIS)

    Maydl, R.; Metzler, M.

    1984-01-01

    14 C-Diethylstilbestrol was administered orally, intraperitoneally, and intrafetally to 15-day pregnant hamsters at a dose of 20 mg/kg body weight, and the radioactivity was determined in the fetus, placenta, and maternal liver after 6 hours. Significant amounts of radioactivity were found in these tissues in every case, indicating maternal-fetal and fetal-maternal transfer of diethylstilbestrol. Part of the radioactivity found in the tissues could not be extracted even after excessive washing. This implied the presence of reactive metabolites. In the fetal and placental extracts, eight oxidative metabolites of diethylstilbestrol were identified by mass fragmentography as hydroxy- and methoxy-derivatives of diethylstilbestrol, pseudodiethylstilbestrol, and dienestrol. The presence of oxidative metabolites in the hamster fetus and the covalent binding to tissue macromolecules are possibly associated with the fetotoxic effects of diethylstilbestrol

  16. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Nielsen, Joachim; Saltin, Bengt

    2011-01-01

    Glucose is stored as glycogen in skeletal muscle. The importance of glycogen as a fuel during exercise has been recognized since the 1960s; however, little is known about the precise mechanism that relates skeletal muscle glycogen to muscle fatigue. We show that low muscle glycogen is associated...... with an impairment of muscle ability to release Ca(2+), which is an important signal in the muscle activation. Thus, depletion of glycogen during prolonged, exhausting exercise may contribute to muscle fatigue by causing decreased Ca(2+) release inside the muscle. These data provide indications of a signal...

  17. Fetal to adult transplant in sheep: a model for study of hemoglobin switching

    International Nuclear Information System (INIS)

    Zanjani, E.D.; McGlave, P.B.; Stamatoyannopoulus, G.

    1980-01-01

    The authors have employed the sheep as an animal model for the study of conditions favoring successful engraftment of fetal hematopoietic stem cells into the adult. The results of the studies demonstrated that fetal stem cells can repopulate the hematopoietic system in the total body-irradiated adult sheep; successful reconstruction occurred with a mixture of fetal hematopoietic cells (liver and marrow) composed of at least 20% bone marrow-derived cells. Engraftment did not occur when liver cells alone were used. This was independent of cell dose and gestational age of the donor animal. The findings are also informative with regard to factors which are involved in the regulation of fetal to adult hemoglobin switching. (Auth.)

  18. Effects of naphthenic acid exposure on development and liver metabolic processes in anuran tadpoles

    International Nuclear Information System (INIS)

    Melvin, Steven D.; Lanctôt, Chantal M.; Craig, Paul M.; Moon, Thomas W.; Peru, Kerry M.; Headley, John V.; Trudeau, Vance L.

    2013-01-01

    Naphthenic acids (NA) are used in a variety of commercial and industrial applications, and are primary toxic components of oil sands wastewater. We investigated developmental and metabolic responses of tadpoles exposed to sub-lethal concentrations of a commercial NA blend throughout development. We exposed Lithobates pipiens tadpoles to 1 and 2 mg/L NA for 75 days and monitored growth and development, condition factor, gonad and liver sizes, and levels of liver glucose, glycogen, lipids and cholesterol following exposure. NA decreased growth and development, significantly reduced glycogen stores and increased triglycerides, indicating disruption to processes associated with energy metabolism and hepatic glycolysis. Effects on liver function may explain reduced growth and delayed development observed in this and previous studies. Our data highlight the need for greater understanding of the mechanisms leading to hepatotoxicity in NA-exposed organisms, and indicate that strict guidelines may be needed for the release of NA into aquatic environments. -- Highlights: ► We exposed Lithobates pipiens tadpoles to 1–2 mg/L NA in the laboratory. ► We monitored survival, growth and development for 75 days. ► We measured liver glycogen, glucose, triglycerides, and cholesterol levels. ► NA significantly reduced growth and development compared to controls. ► NA significantly reduced glycogen levels and increased triglycerides. -- Leopard frog (Lithobates pipiens) tadpoles chronically exposed to sub-lethal NA concentrations (1–2 mg/L) suffered decreased growth and development and disruption to liver metabolic processes

  19. Fetal cardiac assessment

    International Nuclear Information System (INIS)

    Greene, K.R.

    1983-01-01

    The better understanding of fetal cardiovascular physiology coupled with improved technology for non-invasive study of the fetus now enable much more detailed assessment of fetal cardiac status than by heart rate alone. Even the latter, relatively simple, measurement contains much more information than was previously realized. It is also increasingly clear that no single measurement will provide the answer to all clinical dilemmas either on cardiac function or the welfare of the fetus as a whole. There are obvious clinical advantages in measuring several variables from one signal and the measurement of heart rate, heart rate variation and waveform from the ECG in labour is a potentially useful combination. Systolic time intervals or flow measurements could easily be added or used separately by combining real-time and Doppler ultrasound probes

  20. Fetal chromosome analysis

    DEFF Research Database (Denmark)

    Philip, J; Tabor, A; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  1. Glycogen Synthase in Sertoli Cells: More Than Glycogenesis?

    Science.gov (United States)

    Maldonado, Rodrigo; Mancilla, Héctor; Villarroel-Espíndola, Franz; Slebe, Felipe; Slebe, Juan Carlos; Méndez, Raúl; Guinovart, Joan J; Concha, Ilona I

    2016-11-01

    Sertoli cell metabolism actively maintains the nutritional needs of germ cells. It has been described that after glucose incorporation in Sertoli cells, less than 1% is converted to glycogen suggesting low levels of glycogen synthase activity. Phosphorylation of muscle glycogen synthase (MGS) at serine 640 (pS640MGS) decreases its activity, and this form of the enzyme was discovered as a non-ribosomal protein that modulates the translation of a subset of transcripts in HeLa cells. The aim of our study was to functionally characterize MGS in cultured Sertoli cells, as well as to explore this new feature related to RNA molecules. We detected MGS in the cytoplasm of Sertoli cells as well as in the nuclei. The activity rates of the enzyme were extremely low indicating that MGS is expressed but almost inactive. Protein targeting to glycogen (PTG) overexpression was performed to activate MGS by dephosphorylation. PTG induced glycogen synthesis massively, confirming that this enzyme is present but inactive. This finding correlates with high levels of pS640MGS, which were assayed by phosphatase treatment. To explore a putative new function for MGS in Sertoli cells, we performed RNA immunoprecipitation coupled to microarray studies. The results revealed that MGS co-immunoprecipitated with the several mRNAs and also rRNAs. These findings indicate that MGS is expressed Sertoli cells but in an inactive form, and also support a possibly novel feature of this metabolic enzyme associated with RNA-related molecules. J. Cell. Biochem. 117: 2597-2607, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Pediatric liver transplantation in 31 consecutive children

    Institute of Scientific and Technical Information of China (English)

    SHEN Zhong-yang; WANG Zi-fa; ZHU Zhi-jun; ZANG Yun-jin; ZHENG Hong; DENG Yong-lin; PAN Cheng; CHEN Xin-guo

    2008-01-01

    Background Although liver transplantation has become a standard therapy for end-stage liver diseases, the experience of pediatric liver transplantation is limited in China. In this article we report our experience in pediatric liver transplantation, and summarize its characters in their indications, surgical techniques, and postoperative managements. Methods Thirty-one children (≤18 years old) underwent liver transplantation in our centers. The mean age at transplantation was 12.4 years old (ranged from 5 months to 18 years) with 7 children being less than 4 years of age at transplantation. The most common diagnosis of patients who underwent liver transplantation were biliary atresia, Wilson's disease, primary biliary cirrhosis, glycogen storage disease, hepatoblastoma, urea cycle defects, fulminant hepatic failure, etc. The surgical procedures included 12 standard (without venovenous bypass), 6 pigyback, 6 reduced-size, 3 split, 3 living donor liver transplantation, and 1 Domino liver transplantation. The triple-drug (FK506, steroid, and mycophenolate mofetil) immunosuppressive regimen was used in most of patients. Patients were followed up for a mean of 21.8 months. Results Five of the 31 patients died during perioperative time; mortality rate was 16.1%. The reasons of death were infections, primary non-function, heart failure, and hypovolemic shock. Postoperative complications in 10 patients included biliary leakage, acute rejection, abdominal infection, hepatitis B virus (HBV) or hepatitis C virus (HCV) infection, and pulmonary infection. Overall patient cumulative survival rate at 1-, 3-, and 5-year was 78.1%, 62.6%, 62.6%, respectively.Conclusions The most common indications of pediatric liver transplantation were congenital end-stage liver diseases. According to patients' age and body weight, standard, piggyback, reduced-size, split, or living donor liver transplantation should be performed. Pediatric liver transplantation especially requires higher

  3. Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns.

    Science.gov (United States)

    Oe, Yuki; Baba, Otto; Ashida, Hitoshi; Nakamura, Kouichi C; Hirase, Hajime

    2016-09-01

    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well-defined glycogen immunoreactive signals compared with the conventional periodic acid-Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3-CA1 and striatum had a 'patchy' appearance with glycogen-rich and glycogen-poor astrocytes appearing in alternation. The glycogen patches were more evident with large-molecule glycogen in young adult mice but they were hardly observable in aged mice (1-2 years old). Our results reveal brain region-dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532-1545. © 2016 The Authors. Glia Published by Wiley Periodicals, Inc.

  4. Insoluble glycogen, a metabolizable internal adsorbent, decreases the lethality of endotoxin shock in rats

    Directory of Open Access Journals (Sweden)

    S. Sipka

    1997-01-01

    Full Text Available Insoluble glycogen is an enzymatically modified form of naturally occurring soluble glycogen with a great adsorbing capacity. It can be metabolized by phagocytes to glucose. In this study we used insoluble glycogen intravenously in the experimental endotoxin shock of rats. Wistar male rats were sensitized to endotoxin by Pb acetate. The survival of rats were compared in groups of animals endotoxin shock treated and non-treated with insoluble glycogen. Furthermore, we have determined in vitro the binding capacity of insoluble glycogen for endotoxin, tumour necrosis factor alpha, interleukin-1 and secretable phospholipase A2. Use of 10 mg/kg dose of insoluble glycogen could completely prevent the lethality of shock induced by LD50 quantity of endotoxin in rats. All animals treated survived. Insoluble glycogen is a form of ‘metabolizable internal adsorbents’. It can potentially be used for treatment of septic shock.

  5. Glycogen in the Nervous System. I; Methods for Light and Electron Microscopy

    Science.gov (United States)

    Estable, Rosita F. De; Estable-Puig, J. F.; Miquel, J.

    1964-01-01

    'l'he relative value of different methods for combined light and electron microscopical studies of glycogen in the nervous tissue was investigated. Picroalcoholic fixatives preserve glycogen in a considerable amount but give an inadequate morphological image of glycogen distribution and are unsuitable for ultrastructural studies. Fixation by perfusion, with Dalton's chromeosmic fluid seems adequate for ultrastructural cytochemistry of glycogen. Furthermore it permits routine paraffin embedding of brain slices adjacent to those used for electron microscopy. Dimedone blocking is a necessary step for a selective staining of glycogen with PAS after osmic fixation. Enzymatic removal of glycogen in osmic fixed nervous tissue can be done In paraffin-embedded tissue. It can also be performed in glycolmethacrylate-embedded tissue without removal of the embedding medium. Paraphenylenediamine stains glycogen following periodic acid oxidation.

  6. Glycogen metabolism in the glucose-sensing and supply-driven β-cell.

    Science.gov (United States)

    Andersson, Lotta E; Nicholas, Lisa M; Filipsson, Karin; Sun, Jiangming; Medina, Anya; Al-Majdoub, Mahmoud; Fex, Malin; Mulder, Hindrik; Spégel, Peter

    2016-12-01

    Glycogen metabolism in β-cells may affect downstream metabolic pathways controlling insulin release. We examined glycogen metabolism in human islets and in the rodent-derived INS-1 832/13 β-cells and found them to express the same isoforms of key enzymes required for glycogen metabolism. Our findings indicate that glycogenesis is insulin-independent but influenced by extracellular glucose concentrations. Levels of glycogen synthase decrease with increasing glucose concentrations, paralleling accumulation of glycogen. We did not find cAMP-elicited glycogenolysis and insulin secretion to be causally related. In conclusion, our results reveal regulated glycogen metabolism in human islets and insulin-secreting cells. Whether glycogen metabolism affects insulin secretion under physiological conditions remains to be determined. © 2016 Federation of European Biochemical Societies.

  7. The Normal Fetal Pancreas.

    Science.gov (United States)

    Kivilevitch, Zvi; Achiron, Reuven; Perlman, Sharon; Gilboa, Yinon

    2017-10-01

    The aim of the study was to assess the sonographic feasibility of measuring the fetal pancreas and its normal development throughout pregnancy. We conducted a cross-sectional prospective study between 19 and 36 weeks' gestation. The study included singleton pregnancies with normal pregnancy follow-up. The pancreas circumference was measured. The first 90 cases were tested to assess feasibility. Two hundred ninety-seven fetuses of nondiabetic mothers were recruited during a 3-year period. The overall satisfactory visualization rate was 61.6%. The intraobserver and interobserver variability had high interclass correlation coefficients of of 0.964 and 0.967, respectively. A cubic polynomial regression described best the correlation of pancreas circumference with gestational age (r = 0.744; P pancreas circumference percentiles for each week of gestation were calculated. During the study period, we detected 2 cases with overgrowth syndrome and 1 case with an annular pancreas. In this study, we assessed the feasibility of sonography for measuring the fetal pancreas and established a normal reference range for the fetal pancreas circumference throughout pregnancy. This database can be helpful when investigating fetomaternal disorders that can involve its normal development. © 2017 by the American Institute of Ultrasound in Medicine.

  8. Low birth weight and zygosity status is associated with defective muscle glycogen and glycogen synthase regulation in elderly twins

    DEFF Research Database (Denmark)

    Poulsen, Pernille; Wojtaszewski, Jørgen; Richter, Erik

    2007-01-01

    OBJECTIVE: An adverse intrauterine environment indicated by both low birth weight and monozygosity is associated with an age- or time-dependent reduction in glucose disposal and nonoxidative glucose metabolism in twins, suggesting impaired regulation of muscle glycogen synthesis. RESEARCH DESIGN ...

  9. Consensus guidelines for management of glycogen storage disease type 1b - European Study on Glycogen Storage Disease Type 1

    NARCIS (Netherlands)

    Visser, G; Rake, JP; Labrune, P; Leonard, JV; Moses, S; Ullrich, K; Wendel, U; Smit, GPA

    2002-01-01

    Life expectancy in glycogen storage disease type 1 (GSD-1) has improved considerably. Its relative rarity implies that no metabolic centre has experience of large series of patients and therefore experience with long-term management and follow-up at each centre is limited. There is wide variation in

  10. Guidelines for management of glycogen storage disease type I - European study on glycogen storage disease type I (ESGSD I)

    NARCIS (Netherlands)

    Rake, JP; Visser, G; Labrune, P; Leonard, JV; Ullrich, K; Smit, GPA

    2002-01-01

    Life-expectancy in glycogen storage disease type I (GSD I) has improved considerably. Its relative rarity implies that no metabolic centre has experience of large series of patients and experience with long-term management and follow-up at each centre is limited. There is wide variation in methods

  11. Fetal magnetic resonance: technique applications and normal fetal anatomy

    International Nuclear Information System (INIS)

    Martin, C.; Darnell, A.; Duran, C.; Mellado, F.; Corona, M

    2003-01-01

    Ultrasonography is the preferred diagnostic imaging technique for intrauterine fetal examination. Nevertheless, circumstances sometimes dictate the use of other techniques in order to analyze fetal structures. The advent of ultra rapid magnetic resonance (MR) sequencing has led to the possibility of doing MR fetal studies, since images are obtained in an extradordiarily short time and are not affected by either maternal or fetal movements. It does not employ ionizing radiations, it provides high-contrast images and it can obtain such images in any plane of space without being influenced by either the child bearer's physical characteristics of fetal position. MR provides good quality images of most fetal organs. It is extremely useful in analysing distinct structures, as well as permitting an evaluation of cervical structures, lungs, diaphragms, intra-abdominal and retroperitoneal structures, and fetal extremities. It can also provide useful information regarding the placenta,umbilical cord, amniotic fluid and uterus. The objective of this work is to describe MR technique as applied to intrauterine fetal examination, and to illustrate normal fetal anatomy as manifested by MR and its applications. (Author) 42 refs

  12. The extracellular redox state modulates mitochondrial function, gluconeogenesis, and glycogen synthesis in murine hepatocytes.

    Science.gov (United States)

    Nocito, Laura; Kleckner, Amber S; Yoo, Elsia J; Jones Iv, Albert R; Liesa, Marc; Corkey, Barbara E

    2015-01-01

    Circulating redox state changes, determined by the ratio of reduced/oxidized pairs of different metabolites, have been associated with metabolic diseases. However, the pathogenic contribution of these changes and whether they modulate normal tissue function is unclear. As alterations in hepatic gluconeogenesis and glycogen metabolism are hallmarks that characterize insulin resistance and type 2 diabetes, we tested whether imposed changes in the extracellular redox state could modulate these processes. Thus, primary hepatocytes were treated with different ratios of the following physiological extracellular redox couples: β-hydroxybutyrate (βOHB)/acetoacetate (Acoc), reduced glutathione (GSH)/oxidized glutathione (GSSG), and cysteine/cystine. Exposure to a more oxidized ratio via extracellular βOHB/Acoc, GSH/GSSG, and cysteine/cystine in hepatocytes from fed mice increased intracellular hydrogen peroxide without causing oxidative damage. On the other hand, addition of more reduced ratios of extracellular βOHB/Acoc led to increased NAD(P)H and maximal mitochondrial respiratory capacity in hepatocytes. Greater βOHB/Acoc ratios were also associated with decreased β-oxidation, as expected with enhanced lipogenesis. In hepatocytes from fasted mice, a more extracellular reduced state of βOHB/Acoc led to increased alanine-stimulated gluconeogenesis and enhanced glycogen synthesis capacity from added glucose. Thus, we demonstrated for the first time that the extracellular redox state regulates the major metabolic functions of the liver and involves changes in intracellular NADH, hydrogen peroxide, and mitochondrial respiration. Because redox state in the blood can be communicated to all metabolically sensitive tissues, this work confirms the hypothesis that circulating redox state may be an important regulator of whole body metabolism and contribute to alterations associated with metabolic diseases.

  13. The extracellular redox state modulates mitochondrial function, gluconeogenesis, and glycogen synthesis in murine hepatocytes.

    Directory of Open Access Journals (Sweden)

    Laura Nocito

    Full Text Available Circulating redox state changes, determined by the ratio of reduced/oxidized pairs of different metabolites, have been associated with metabolic diseases. However, the pathogenic contribution of these changes and whether they modulate normal tissue function is unclear. As alterations in hepatic gluconeogenesis and glycogen metabolism are hallmarks that characterize insulin resistance and type 2 diabetes, we tested whether imposed changes in the extracellular redox state could modulate these processes. Thus, primary hepatocytes were treated with different ratios of the following physiological extracellular redox couples: β-hydroxybutyrate (βOHB/acetoacetate (Acoc, reduced glutathione (GSH/oxidized glutathione (GSSG, and cysteine/cystine. Exposure to a more oxidized ratio via extracellular βOHB/Acoc, GSH/GSSG, and cysteine/cystine in hepatocytes from fed mice increased intracellular hydrogen peroxide without causing oxidative damage. On the other hand, addition of more reduced ratios of extracellular βOHB/Acoc led to increased NAD(PH and maximal mitochondrial respiratory capacity in hepatocytes. Greater βOHB/Acoc ratios were also associated with decreased β-oxidation, as expected with enhanced lipogenesis. In hepatocytes from fasted mice, a more extracellular reduced state of βOHB/Acoc led to increased alanine-stimulated gluconeogenesis and enhanced glycogen synthesis capacity from added glucose. Thus, we demonstrated for the first time that the extracellular redox state regulates the major metabolic functions of the liver and involves changes in intracellular NADH, hydrogen peroxide, and mitochondrial respiration. Because redox state in the blood can be communicated to all metabolically sensitive tissues, this work confirms the hypothesis that circulating redox state may be an important regulator of whole body metabolism and contribute to alterations associated with metabolic diseases.

  14. Fetal lung interstitial tumor: the first Japanese case report and a comparison with fetal lung tissue and congenital cystic adenomatoid malformation/congenital pulmonary airway malformation type 3.

    Science.gov (United States)

    Yoshida, Mariko; Tanaka, Mio; Gomi, Kiyoshi; Iwanaka, Tadashi; Dehner, Louis P; Tanaka, Yukichi

    2013-10-01

    Fetal lung interstitial tumor, a newly recognized lung lesion in infants, was first reported in 2010. Here, we report the first Japanese case of fetal lung interstitial tumor which was originally diagnosed as atypical congenital cystic adenomatoid malformation/congenital pulmonary airway malformation type 3. A 7-day-old girl was referred to our hospital with respiratory distress and a left lung mass and she subsequently underwent left lower lobectomy. The specimen showed a 5 cm solid mass with a fibrous capsule. Histological examination revealed immature airspaces and interstitium, containing bronchioles and cartilage. The epithelial and interstitial cells contained abundant glycogen granules. Immunohistochemistry showed nuclear/cytoplasmic expression of β-catenin in the epithelial and interstitial cells. β-catenin gene mutations and trisomy 8 were not detected, so a neoplastic origin could not be confirmed. The histological findings were partly consistent with normal fetal lung at the canalicular stage, pulmonary interstitial glycogenosis, and congenital cystic adenomatoid malformation/congenital pulmonary airway malformation type 3. In this report, we compare the above conditions and discuss the pathogenesis of fetal lung interstitial tumor. © 2013 The Authors. Pathology International © 2013 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd.

  15. Exercise Training-Induced Adaptations Associated with Increases in Skeletal Muscle Glycogen Content

    Science.gov (United States)

    Manabe, Yasuko; Gollisch, Katja S.C.; Holton, Laura; Kim, Young–Bum; Brandauer, Josef; Fujii, Nobuharu L.; Hirshman, Michael F.; Goodyear, Laurie J.

    2012-01-01

    Chronic exercise training results in numerous skeletal muscle adaptations, including increases in insulin sensitivity and glycogen content. To understand the mechanism for increased muscle glycogen, we studied the effects of exercise training on glycogen regulatory proteins in rat skeletal muscle. Female Sprague Dawley rats performed voluntary wheel running for 1, 4, or 7 weeks. After 7 weeks of training, insulin-stimulated glucose uptake was increased in epitrochlearis muscle. Compared to sedentary control rats, muscle glycogen did not change after 1 week of training, but increased significantly after 4 and 7 weeks. The increases in muscle glycogen were accompanied by elevated glycogen synthase activity and protein expression. To assess the regulation of glycogen synthase, we examined its major activator, protein phosphatase 1 (PP1), and its major deactivator, glycogen synthase kinase 3 (GSK3). Consistent with glycogen synthase activity, PP1 activity was unchanged after 1 week of training but significantly increased after 4 and 7 weeks of training. Protein expression of RGL(GM), another regulatory PP1 subunit, significantly decreased after 4 and 7 weeks of training. Unlike PP1, GSK3 phosphorylation did not follow the pattern of glycogen synthase activity. The ~40% decrease in GSK-3α phosphorylation after 1 week of exercise training persisted until 7 weeks and may function as a negative feedback to elevated glycogen. Our findings suggest that exercise training-induced increases in muscle glycogen content could be regulated by multiple mechanisms including enhanced insulin sensitivity, glycogen synthase expression, allosteric activation of glycogen synthase and PP1activity. PMID:23206309

  16. Maternal-fetal distribution studies of two radiolabeled compounds in miniature Hormel pigs

    International Nuclear Information System (INIS)

    Ikeda, G.J.; Michel, T.C.; Miller, E.; Sager, A.O.; Sapienza, P.P.

    1986-01-01

    Distribution patterns of two radiolabeled compounds were determined in miniature Hormel pigs and their litters late in pregnancy. Seven sows (45 fetuses) were administered (1- 14 C) acrylamide (5 mg/kg IV) and four sows (30 fetuses) were administered (N-methyl- 14 C) betaine (5 mg/kg IV). Acrylamide was distributed readily to both maternal and fetal tissues; a placental factor of 31% was calculated. A blood/brain factor was insignificant in sows and nonexistent in fetal pigs. The placental factor for betaine was calculated to be 97.8% for maternal and fetal tissues. The blood/brain factor was 89% in sows but nonexistent in fetuses. Maternal liver and kidney accounted for the highest levels of radioactivity for both compounds. Although placenta protects the minipig fetus to some degree from substances in maternal blood, the fetal brain is unprotected from possible injury or damage if a foreign substance enters the fetal blood stream

  17. Studies On Some Fetal Rat Organs Following Maternal Hyperthermia

    OpenAIRE

    El Shabaka, H. A. [حمزة احمد الشبكة

    1993-01-01

    The present investigation was carried out to determine the histological changes in brain, liver and kidneys of rat fetuses maternally heatstressed at early stage of pregnancy to either high "spiking" temperature of short duration or low temperature of long duration. The number of viable fetuses as well as the fetal weight of the heatstressed groups was significantly reduced compared with corresponding controls. Edema and microphthalmia are the only malformations detected among the viable 18 d...

  18. MRI of the fetal spine

    International Nuclear Information System (INIS)

    Simon, Erin M.

    2004-01-01

    Magnetic resonance imaging of the fetal spine is a vital complement to fetal sonographic examination. Assessing the wide spectrum of spinal dysraphism, as well as spinal neoplasia, allows for more correct prenatal diagnoses, patient care planning, and patient counselling. Proper appraisal of the value of experimental procedures, such as fetal myelomeningocoele repair, requires a high level of diagnostic accuracy for the selection and follow-up of appropriate candidates. (orig.)

  19. MRI of the fetal spine

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Erin M. [Departement of Radiology, Children' s Hospital of Philadelphia, PA (United States)

    2004-09-01

    Magnetic resonance imaging of the fetal spine is a vital complement to fetal sonographic examination. Assessing the wide spectrum of spinal dysraphism, as well as spinal neoplasia, allows for more correct prenatal diagnoses, patient care planning, and patient counselling. Proper appraisal of the value of experimental procedures, such as fetal myelomeningocoele repair, requires a high level of diagnostic accuracy for the selection and follow-up of appropriate candidates. (orig.)

  20. Zhx2 and Zbtb20: Novel regulators of postnatal alpha-fetoprotein repression and their potential role in gene reactivation during liver cancer

    Science.gov (United States)

    Peterson, Martha L.; Ma, Chunhong; Spear, Brett T.

    2012-01-01

    The mouse alpha-fetoprotein (AFP) gene is abundantly expressed in the fetal liver, normally silent in the adult liver but is frequently reactivated in hepatocellular carcinoma. The basis for AFP expression in the fetal liver has been studied extensively. However, the basis for AFP reactivation during hepatocarcinogenesis is not well understood. Two novel factors that control postnatal AFP repression, Zhx2 and Zbtb20, were recently identified. Here, we review the transcription factors that regulate AFP in the fetal liver, as well as Zhx2 and Zbtb20, and raise the possibility that the loss of these postnatal repressors may be involved in AFP reactivation in liver cancer. PMID:21216289

  1. Fetal Echocardiography/Your Unborn Baby's Heart

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Fetal Echocardiography / Your Unborn Baby's Heart Updated:Oct 6,2016 ... Your Risk • Symptoms & Diagnosis Introduction Common Tests Fetal Echocardiography/Your Unborn Baby's Heart - Fetal Echocardiogram Test - Detection ...

  2. Fetal Alcohol Syndrome and Fetal Alcohol Effects in Child Development.

    Science.gov (United States)

    Pancratz, Diane R.

    This literature review defines Fetal Alcohol Syndrome (FAS) and Fetal Alcohol Effects (FAE) and considers their causes, diagnoses, prevalence, and educational ramifications. Effects of alcohol during each of the trimesters of pregnancy are summarized. Specific diagnostic characteristics of FAS are listed: (1) growth deficiency, (2) a…

  3. Free Glycogen in Vaginal Fluids Is Associated with Lactobacillus Colonization and Low Vaginal pH

    Science.gov (United States)

    Mirmonsef, Paria; Hotton, Anna L.; Gilbert, Douglas; Burgad, Derick; Landay, Alan; Weber, Kathleen M.; Cohen, Mardge; Ravel, Jacques; Spear, Gregory T.

    2014-01-01

    Objective Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH. Methods Free glycogen in lavage samples was quantified. Pyrosequencing of the 16S rRNA gene was used to identify microbiota from 21 African American women collected over 8–11 years. Results Free glycogen levels varied greatly between women and even in the same woman. Samples with the highest free glycogen had a corresponding median genital pH that was significantly lower (pH 4.4) than those with low glycogen (pH 5.8; pglycogen versus those with low glycogen (median = 0.97 vs. 0.05, pglycogen. High concentrations of glycogen corresponded to higher levels of L. crispatus and L. jensenii, but not L. iners. Conclusion These findings show that free glycogen in genital fluid is associated with a genital microbiota dominated by Lactobacillus, suggesting glycogen is important for maintaining genital health. Treatments aimed at increasing genital free glycogen might impact Lactobacillus colonization. PMID:25033265

  4. Cerebral glycogen in humans following acute and recurrent hypoglycemia: Implications on a role in hypoglycemia unawareness.

    Science.gov (United States)

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Khowaja, Ameer; Kubisiak, Kristine; Eberly, Lynn E; Seaquist, Elizabeth R

    2017-08-01

    Supercompensated brain glycogen levels may contribute to the development of hypoglycemia-associated autonomic failure (HAAF) following recurrent hypoglycemia (RH) by providing energy for the brain during subsequent periods of hypoglycemia. To assess the role of glycogen supercompensation in the generation of HAAF, we estimated the level of brain glycogen following RH and acute hypoglycemia (AH). After undergoing 3 hyperinsulinemic, euglycemic and 3 hyperinsulinemic, hypoglycemic clamps (RH) on separate occasions at least 1 month apart, five healthy volunteers received [1- 13 C]glucose intravenously over 80+ h while maintaining euglycemia. 13 C-glycogen levels in the occipital lobe were measured by 13 C magnetic resonance spectroscopy at ∼8, 20, 32, 44, 56, 68 and 80 h at 4 T and glycogen levels estimated by fitting the data with a biophysical model that takes into account the tiered glycogen structure. Similarly, prior 13 C-glycogen data obtained following a single hypoglycemic episode (AH) were fitted with the same model. Glycogen levels did not significantly increase after RH relative to after euglycemia, while they increased by ∼16% after AH relative to after euglycemia. These data suggest that glycogen supercompensation may be blunted with repeated hypoglycemic episodes. A causal relationship between glycogen supercompensation and generation of HAAF remains to be established.

  5. The primary defect in glycogen synthase activity is not based on increased glycogen synthase kinase-3a activity in diabetic myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael; Brusgaard, Klaus; Handberg, Aa.

    2004-01-01

    The mechanism responsible for the diminished activation of glycogen synthase (GS) in diabetic myotubes remains unclear, but may involve increased activity and/or expression of glycogen synthase kinase-3 (GSK-3). In myotubes established from type 2 diabetic and healthy control subjects we determined...

  6. Glycogenolysis during short-term fasting in malaria and healthy subjects - the potential regulatory role of glycogen content on glycogen breakdown: a hypothesis

    NARCIS (Netherlands)

    Sprangers, F.; Thien, H. V.; Ackermans, M. T.; Endert, E.; Sauerwein, H. P.

    2004-01-01

    Background & aims: During short-term starvation ( <24h), glucose production decreases 10-20% due to a decrease in glycogenolysis. In the fed state glycogen regulates its rate of breakdown, in order to limit glycogen accumulation. Whether in the fasted state a similar mechanism exists to preserve

  7. Variations in Glycogen Synthesis in Human Pluripotent Stem Cells with Altered Pluripotent States

    Science.gov (United States)

    Chen, Richard J.; Zhang, Guofeng; Garfield, Susan H.; Shi, Yi-Jun; Chen, Kevin G.; Robey, Pamela G.; Leapman, Richard D.

    2015-01-01

    Human pluripotent stem cells (hPSCs) represent very promising resources for cell-based regenerative medicine. It is essential to determine the biological implications of some fundamental physiological processes (such as glycogen metabolism) in these stem cells. In this report, we employ electron, immunofluorescence microscopy, and biochemical methods to study glycogen synthesis in hPSCs. Our results indicate that there is a high level of glycogen synthesis (0.28 to 0.62 μg/μg proteins) in undifferentiated human embryonic stem cells (hESCs) compared with the glycogen levels (0 to 0.25 μg/μg proteins) reported in human cancer cell lines. Moreover, we found that glycogen synthesis was regulated by bone morphogenetic protein 4 (BMP-4) and the glycogen synthase kinase 3 (GSK-3) pathway. Our observation of glycogen bodies and sustained expression of the pluripotent factor Oct-4 mediated by the potent GSK-3 inhibitor CHIR-99021 reveals an altered pluripotent state in hPSC culture. We further confirmed glycogen variations under different naïve pluripotent cell growth conditions based on the addition of the GSK-3 inhibitor BIO. Our data suggest that primed hPSCs treated with naïve growth conditions acquire altered pluripotent states, similar to those naïve-like hPSCs, with increased glycogen synthesis. Furthermore, we found that suppression of phosphorylated glycogen synthase was an underlying mechanism responsible for altered glycogen synthesis. Thus, our novel findings regarding the dynamic changes in glycogen metabolism provide new markers to assess the energetic and various pluripotent states in hPSCs. The components of glycogen metabolic pathways offer new assays to delineate previously unrecognized properties of hPSCs under different growth conditions. PMID:26565809

  8. HEPATITIS ALOINMUNE FETAL

    Directory of Open Access Journals (Sweden)

    Fernando Álvarez C., Dr.

    2015-07-01

    Full Text Available La hepatitis aloinmune fetal, conocida anteriormente como hemocromatosis neonatal, ha demostrado en los últimos años ser una enfermedad completamente distinta a la hemocromatosis del adulto, tanto en su etiología como en su la fisiopatología. Este conocimiento abre nuevas perspectivas tanto en la prevención de la enfermedad en futuros embarazos, así como en el tratamiento con inmunoglobulina endovenosa en la madre durante el embarazo y eventualmente el tratamiento postnatal, en el que el trasplante de hígado juega un rol primordial.

  9. Sirtuin signaling controls mitochondrial function in glycogen storage disease type Ia.

    Science.gov (United States)

    Cho, Jun-Ho; Kim, Goo-Young; Mansfield, Brian C; Chou, Janice Y

    2018-05-08

    Glycogen storage disease type Ia (GSD-Ia) deficient in glucose-6-phosphatase-α (G6Pase-α) is a metabolic disorder characterized by impaired glucose homeostasis and a long-term complication of hepatocellular adenoma/carcinoma (HCA/HCC). Mitochondrial dysfunction has been implicated in GSD-Ia but the underlying mechanism and its contribution to HCA/HCC development remain unclear. We have shown that hepatic G6Pase-α deficiency leads to downregulation of sirtuin 1 (SIRT1) signaling that underlies defective hepatic autophagy in GSD-Ia. SIRT1 is a NAD + -dependent deacetylase that can deacetylate and activate peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), a master regulator of mitochondrial integrity, biogenesis, and function. We hypothesized that downregulation of hepatic SIRT1 signaling in G6Pase-α-deficient livers impairs PGC-1α activity, leading to mitochondrial dysfunction. Here we show that the G6Pase-α-deficient livers display defective PGC-1α signaling, reduced numbers of functional mitochondria, and impaired oxidative phosphorylation. Overexpression of hepatic SIRT1 restores PGC-1α activity, normalizes the expression of electron transport chain components, and increases mitochondrial complex IV activity. We have previously shown that restoration of hepatic G6Pase-α expression normalized SIRT1 signaling. We now show that restoration of hepatic G6Pase-α expression also restores PGC-1α activity and mitochondrial function. Finally, we show that HCA/HCC lesions found in G6Pase-α-deficient livers contain marked mitochondrial and oxidative DNA damage. Taken together, our study shows that downregulation of hepatic SIRT1/PGC-1α signaling underlies mitochondrial dysfunction and that oxidative DNA damage incurred by damaged mitochondria may contribute to HCA/HCC development in GSD-Ia.

  10. Impaired glycogen breakdown and synthesis in phosphoglucomutase 1 deficiency

    DEFF Research Database (Denmark)

    Preisler, Nicolai; Cohen, Jonathan; Vissing, Christoffer Rasmus

    2017-01-01

    contracture. Comparable to patients with McArdle disease, the patient developed a 'second wind' with a spontaneous fall in exercise heart rate and perceived exertion. Like in McArdle disease, this was attributable to an increase in muscle oxidative capacity. Carbohydrate oxidation was blocked during exercise......, and the patient had exaggerated oxidation of fat to fuel exercise. Exercise heart rate and perceived exertion were lower after IV glucose and oral sucrose. Muscle glycogen level was low normal. CONCLUSIONS: The second wind phenomenon has been considered to be pathognomonic for McArdle disease, but we demonstrate...... that it can also be present in PGM1 deficiency. We show that severe loss of PGM1 activity causes blocked muscle glycogenolysis that mimics McArdle disease, but may also limit glycogen synthesis, which broadens the phenotypic spectrum of this disorder....

  11. Muscle and Liver Carbohydrates: Response to Military Task Performance by Women and Men

    Science.gov (United States)

    2000-10-01

    rapidly synthesize glycogen from three-carbon compounds generated by muscle metabolism and taken up by the liver ( gluconeogenesis ). 20 UNPUBLISHED DATA...49008 Glial cell line-derived neturotrophic factor (GDNF) is a recently discovered nerrotrophic factor that afflets peripheral motor neurons . Increased

  12. Muscle glycogen storage after different amounts of carbohydrate ingestion.

    Science.gov (United States)

    Ivy, J L; Lee, M C; Brozinick, J T; Reed, M J

    1988-11-01

    The purpose of this study was to determine whether the rate of muscle glycogen storage could be enhanced during the initial 4-h period postexercise by substantially increasing the amount of the carbohydrate consumed. Eight subjects cycled for 2 h on three separate occasions to deplete their muscle glycogen stores. Immediately and 2 h after exercise they consumed either 0 (P), 1.5 (L), or 3.0 g glucose/kg body wt (H) from a 50% glucose polymer solution. Blood samples were drawn from an antecubital vein before exercise, during exercise, and throughout recovery. Muscle biopsies were taken from the vastus lateralis immediately, 2 h, and 4 h after exercise. Blood glucose and insulin declined significantly during exercise in each of the three treatments. They remained below the preexercise concentrations during recovery in the P treatment but increased significantly above the preexercise concentrations during the L and H treatments. By the end of the 4 h-recovery period, blood glucose and insulin were still significantly above the preexercise concentrations in both treatments. Muscle glycogen storage was significantly increased above the basal rate (P, 0.5 mumol.g wet wt-1.h-1) after ingestion of either glucose polymer supplement. The rates of muscle glycogen storage, however, were not different between the L and H treatments during the first 2 h (L, 5.2 +/- 0.9 vs. H, 5.8 +/- 0.7 mumol.g wet wt-1.h-1) or the second 2 h of recovery (L, 4.0 +/- 0.9 vs. H, 4.5 +/- 0.6 mumol.g wet wt-1. h-1).(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Glycogen synthase kinase 3: more than a namesake.

    Science.gov (United States)

    Rayasam, Geetha Vani; Tulasi, Vamshi Krishna; Sodhi, Reena; Davis, Joseph Alex; Ray, Abhijit

    2009-03-01

    Glycogen synthase kinase 3 (GSK3), a constitutively acting multi-functional serine threonine kinase is involved in diverse physiological pathways ranging from metabolism, cell cycle, gene expression, development and oncogenesis to neuroprotection. These diverse multiple functions attributed to GSK3 can be explained by variety of substrates like glycogen synthase, tau protein and beta catenin that are phosphorylated leading to their inactivation. GSK3 has been implicated in various diseases such as diabetes, inflammation, cancer, Alzheimer's and bipolar disorder. GSK3 negatively regulates insulin-mediated glycogen synthesis and glucose homeostasis, and increased expression and activity of GSK3 has been reported in type II diabetics and obese animal models. Consequently, inhibitors of GSK3 have been demonstrated to have anti-diabetic effects in vitro and in animal models. However, inhibition of GSK3 poses a challenge as achieving selectivity of an over achieving kinase involved in various pathways with multiple substrates may lead to side effects and toxicity. The primary concern is developing inhibitors of GSK3 that are anti-diabetic but do not lead to up-regulation of oncogenes. The focus of this review is the recent advances and the challenges surrounding GSK3 as an anti-diabetic therapeutic target.

  14. Amaryllidaceae Alkaloids as Potential Glycogen Synthase Kinase-3β Inhibitors

    Directory of Open Access Journals (Sweden)

    Daniela Hulcová

    2018-03-01

    Full Text Available Glycogen synthase kinase-3β (GSK-3β is a multifunctional serine/threonine protein kinase that was originally identified as an enzyme involved in the control of glycogen metabolism. It plays a key role in diverse physiological processes including metabolism, the cell cycle, and gene expression by regulating a wide variety of well-known substances like glycogen synthase, tau-protein, and β-catenin. Recent studies have identified GSK-3β as a potential therapeutic target in Alzheimer´s disease, bipolar disorder, stroke, more than 15 types of cancer, and diabetes. GSK-3β is one of the most attractive targets for medicinal chemists in the discovery, design, and synthesis of new selective potent inhibitors. In the current study, twenty-eight Amaryllidaceae alkaloids of various structural types were studied for their potency to inhibit GSK-3β. Promising results have been demonstrated by alkaloids of the homolycorine-{9-O-demethylhomolycorine (IC50 = 30.00 ± 0.71 µM, masonine (IC50 = 27.81 ± 0.01 μM}, and lycorine-types {caranine (IC50 = 30.75 ± 0.04 μM}.

  15. Dietary Management of the Ketogenic Glycogen Storage Diseases

    Directory of Open Access Journals (Sweden)

    Kaustuv Bhattacharya MBBS, MRCPCH, FRACP, MD

    2016-08-01

    Full Text Available The glycogen storage diseases (GSDs comprise a group of rare inherited disorders of glycogen metabolism. The hepatic glycogenolytic forms of these disorders are typically associated with hypoglycemia and hepatomegaly. For GSD I, secondary metabolic disturbances include fasting hyperlactatemia, hyperuricemia, and hyperlipidemia. Glycogen storage disease III is caused by reduced activity of the debrancher enzyme, GSD VI by phosphorylase, and GSD IX by phosphorylase kinase. It has often been reported that the non-GSD I group of disorders have a benign course. However, myopathy, cardiomyopathy, and cirrhosis have been reported significant clinical morbidities associated with GSD III and IX in particular. There have been a range of reports indicating high-protein diets, high-fat diets, medium chain triglyceride (MCT, modified Atkins diet, and therapeutic ketones as rescuing severe phenotypes of GSD III in particular. The etiology of these severe phenotypes has not been defined. Cases presented in this report indicate potential harm from excessive simple sugar use in GSD IX C. Review of the literature indicates that most interventions have reduced the glycemic load and provide alternate substrates for energy in rescue situations. Prevention of complications is most likely to occur with a mixed balanced low glycemic index diet potentially with relative increases in protein.

  16. Labeling of hepatic glycogen after short- and long-term stimulation of glycogen synthesis in rats injected with 3H-galactose

    International Nuclear Information System (INIS)

    Michaels, J.E.; Garfield, S.A.; Hung, J.T.; Cardell, R.R. Jr.

    1990-01-01

    The effects of short- and long-term stimulation of glycogen synthesis elicited by dexamethasone were studied by light (LM) and electron (EM) microscopic radioautography (RAG) and biochemical analysis. Adrenalectomized rats were fasted overnight and pretreated for short- (3 hr) or long-term (14 hr) periods with dexamethasone prior to intravenous injection of tracer doses of 3H-galactose. Analysis of LM-RAGs from short-term rats revealed that about equal percentages (44%) of hepatocytes became heavily or lightly labeled 1 hr after labeling. The percentage of heavily labeled cells increased slightly 6 hr after labeling, and unlabeled glycogen became apparent in some hepatocytes. The percentage of heavily labeled cells had decreased somewhat 12 hr after labeling, and more unlabeled glycogen was evident. In the long-term rats 1 hr after labeling, a higher percentage of heavily labeled cells (76%) was observed compared to short-term rats, and most glycogen was labeled. In spite of the high amount of labeling seen initially, the percentage of heavily labeled hepatocytes had decreased considerably to 55% by 12 hr after injection; and sparsely labeled and unlabeled glycogen was prevalent. The EM-RAGs of both short- and long-term rats were similar. Silver grains were associated with glycogen patches 1 hr after labeling; 12 hr after labeling, the glycogen patches had enlarged; and label, where present, was dispersed over the enlarged glycogen clumps. Analysis of DPM/mg tissue corroborated the observed decrease in label 12 hr after administration in the long-term animals. The loss of label observed 12 hr after injection in the long-term pretreated rats suggests that turnover of glycogen occurred during this interval despite the net accumulation of glycogen that was visible morphologically and evident from biochemical measurement

  17. Clinical presentation and biochemical findings children with glycogen storage disease type 1A

    International Nuclear Information System (INIS)

    Saeed, A.; Suleman, H.; Arshad, H.

    2015-01-01

    To determine the clinical pattern of presentation and biochemical characteristics of glycogen storage disease (GSD) type 1a in children at a tertiary referral centre. Study Design: Descriptive/ cross sectional study. Place and Duration of Study: Department of Pediatric, division of Gastroenterology and Hepatology of the Children's hospital, Lahore over a period of 11 years. Patients and Methods: Confirmed cases of glycogen storage disease (clinical plus biochemical findings consistent with GSD 1a and proven on liver biopsy) were enrolled in this study from neonatal age till 18 years. Data was retrieved from files and electronic record for these cases. Diagnosis was made on the basis of history, clinical findings including hepatomegaly, hypertriglyceridemia, hypercholesterolemia, hypoglycemia and hyperuricemia (if present). Diagnosis was confirmed on liver biopsy. Patients with other storage disorders and benign and malignant tumours were excluded from the study. Results: Total patients included in the study were 360 with male to female ratio of 1.25:1. Median age at the time of diagnosis was 25.6 months (age range from one month to 18 years). Most common presentation was abdominal distension (83%) followed by failure to thrive (69%) and recurrent wheezing and diarrhoea (44%) each. Seizures were present in only 1/3rd of children. Other presentations included vomiting, respiratory distress, altered sensorium, nephrocalcinosis, epistaxis and hypothyroidism. Few patients around 11% presented with acute hepatitis and later were diagnosed as GSD. Significant hepatomegaly was evident in almost all patients but nephromegaly was present in only 5.5% patients. All children had marked hypertriglyceridemia but cholesterol levels were raised in 1/3rd of children. A large majority of children had deranged ALT more than 2 times of normal and around 38% children had marked anemia. Significant hypoglycemia and metabolic acidosis was documented in around 1/3rd of children

  18. A possible contribution of retinoids to regulation of fetal B lymphopoiesis.

    Science.gov (United States)

    Chen, Xinrong; Welner, Robert S; Kincade, Paul W

    2009-09-01

    We recently found that all trans retinoic acid (ATRA) accelerated B lymphocyte formation. In the current study, we address the question whether retinoids account for the rapid lymphopoiesis that is characteristic of fetal progenitors. Surprisingly, addition of ATRA to fetal liver cultures actually reduced B lymphopoiesis. A pan-retinoid receptor antagonist selectively suppressed lymphocyte formation from fetal and adult progenitors, suggesting some normal contribution of retinoids to this process. Consistent with this role, B lymphopoiesis was compromised in the marrow of mice with prolonged vitamin A deficiency. Recently identified B1 progenitors from adult marrow were similar to adult B2 progenitors in that their differentiation was stimulated by ATRA. The inhibitory response observed with fetal cells was seen when adult progenitors were exposed to high doses in culture or when adult mice were treated with ATRA for 2 wk. In addition to explosive lymphocyte generation, fetal progenitors tend to be less IL-7 dependent than their adult counterparts, but ATRA did not make fetal progenitors IL-7 independent. We conclude that all known categories of B lineage progenitors are responsive to retinoids and probably regulated by these compounds under physiological conditions. Retinoids may account in part for rapid differentiation in fetal life, but not all unique features of fetal progenitors.

  19. Impact of fetal echocardiography

    International Nuclear Information System (INIS)

    Simpson, John M

    2009-01-01

    Prenatal diagnosis of congenital heart disease is now well established for a wide range of cardiac anomalies. Diagnosis of congenital heart disease during fetal life not only identifies the cardiac lesion but may also lead to detection of associated abnormalities. This information allows a detailed discussion of the prognosis with parents. For continuing pregnancies, appropriate preparation can be made to optimize the postnatal outcome. Reduced morbidity and mortality, following antenatal diagnosis, has been reported for coarctation of the aorta, hypoplastic left heart syndrome, and transposition of the great arteries. With regard to screening policy, most affected fetuses are in the “low risk” population, emphasizing the importance of appropriate training for those who undertake such obstetric anomaly scans. As a minimum, the four chamber view of the fetal heart should be incorporated into midtrimester anomaly scans, and where feasible, views of the outflow tracts should also be included, to increase the diagnostic yield. Newer screening techniques, such as measurement of nuchal translucency, may contribute to identification of fetuses at high risk for congenital heart disease and prompt referral for detailed cardiac assessment

  20. Hibiscus rosa sinensis Linn. Petals Modulates Glycogen Metabolism and Glucose Homeostasis Signalling Pathway in Streptozotocin-Induced Experimental Diabetes.

    Science.gov (United States)

    Pillai, Sneha S; Mini, S

    2016-03-01

    The prevalence of diabetes mellitus is becoming more and more serious and reaches epidemic proportions worldwide. Scientific research is constantly looking for new agents that could be used as dietary functional ingredients in the fight against diabetes. The objective of the present study was to evaluate the effect of ethyl acetate fraction of Hibiscus rosa sinensis Linn. petals on experimental diabetes at a dose of 25 mg/kg body weight and it was compared with standard anti-diabetic drug metformin. The elevated levels of serum glucose (398.56 ± 35.78) and glycated haemoglobin (12.89 ± 1.89) in diabetic rats were significantly decreased (156.89 ± 14.45 and 6.12 ± 0.49, respectively) by Hibiscus rosa sinensis petals (EHRS) administration. Hepatotoxicity marker enzyme levels in serum were normalized. The fraction supplementation restored the glycogen content by regulating the activities of glycogen metabolizing enzymes. It significantly modulated the expressions of marker genes involved in glucose homeostasis signalling pathway. Histopathological analysis of liver and pancreas supported our findings. The overall effect was comparable with metformin. Hence, our study reveals the role of hibiscus petals for alleviation of diabetes complications, thus it can be propagated as a nutraceutical agent.

  1. Synthesis of substituted 2-(β-D-glucopyranosyl)-benzimidazoles and their evaluation as inhibitors of glycogen phosphorylase.

    Science.gov (United States)

    Bokor, Éva; Szilágyi, Enikő; Docsa, Tibor; Gergely, Pál; Somsák, László

    2013-11-15

    Microwave assisted condensation of O-perbenzoylated C-(β-d-glucopyranosyl)formic acid with 1,2-diaminobenzenes in the presence of triphenylphosphite gave the corresponding O-protected 2-(β-d-glucopyranosyl)-benzimidazoles in moderate yields. O-Perbenzoylated C-(β-d-glucopyranosyl)formamide and -thioformamide were transformed into the corresponding ethyl C-(β-d-glucopyranosyl)formimidate and -thioformimidate, respectively, by Et3O·BF4. Treatment of the formimidate with 1,2-diaminobenzenes afforded O-protected 2-(β-d-glucopyranosyl)-benzimidazoles in good to excellent yields. Similar reaction of the thioformimidate gave these compounds in lower yields. The O-benzoyl protecting groups were removed by the Zemplén protocol. These test compounds were assayed against rabbit muscle glycogen phosphorylase (GP) b, the prototype of liver GP, the rate limiting enzyme of glycogen degradation. The best inhibitors were 2-(β-d-glucopyranosyl)-4-methyl-benzimidazole (Ki=2.8μM) and 2-(β-d-glucopyranosyl)-naphtho[2,3-d]imidazole (Ki=2.1μM) exhibiting a ∼3-4 times stronger binding than the unsubstituted parent compound. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Role of Autophagy in Glycogen Breakdown and Its Relevance to Chloroquine Myopathy

    Science.gov (United States)

    Zirin, Jonathan; Nieuwenhuis, Joppe; Perrimon, Norbert

    2013-01-01

    Several myopathies are associated with defects in autophagic and lysosomal degradation of glycogen, but it remains unclear how glycogen is targeted to the lysosome and what significance this process has for muscle cells. We have established a Drosophila melanogaster model to study glycogen autophagy in skeletal muscles, using chloroquine (CQ) to simulate a vacuolar myopathy that is completely dependent on the core autophagy genes. We show that autophagy is required for the most efficient degradation of glycogen in response to starvation. Furthermore, we show that CQ-induced myopathy can be improved by reduction of either autophagy or glycogen synthesis, the latter possibly due to a direct role of Glycogen Synthase in regulating autophagy through its interaction with Atg8. PMID:24265594

  3. Correlation between the mechanical and histological properties of liver tissue.

    Science.gov (United States)

    Yarpuzlu, Berkay; Ayyildiz, Mehmet; Tok, Olgu Enis; Aktas, Ranan Gulhan; Basdogan, Cagatay

    2014-01-01

    In order to gain further insight into the mechanisms of tissue damage during the progression of liver diseases as well as the liver preservation for transplantation, an improved understanding of the relation between the mechanical and histological properties of liver is necessary. We suggest that this relation can only be established truly if the changes in the states of those properties are investigated dynamically as a function of post mortem time. In this regard, we first perform mechanical characterization experiments on three bovine livers to investigate the changes in gross mechanical properties (stiffness, viscosity, and fracture toughness) for the preservation periods of 5, 11, 17, 29, 41 and 53h after harvesting. Then, the histological examination is performed on the samples taken from the same livers to investigate the changes in apoptotic cell count, collagen accumulation, sinusoidal dilatation, and glycogen deposition as a function of the same preservation periods. Finally, the correlation between the mechanical and histological properties is investigated via the Spearman's Rank-Order Correlation method. The results of our study show that stiffness, viscosity, and fracture toughness of bovine liver increase as the preservation period is increased. These macroscopic changes are very strongly correlated with the increase in collagen accumulation and decrease in deposited glycogen level at the microscopic level. Also, we observe that the largest changes in mechanical and histological properties occur after the first 11-17h of preservation. © 2013 Elsevier Ltd. All rights reserved.

  4. Liver spots

    Science.gov (United States)

    ... skin changes - liver spots; Senile or solar lentigines; Skin spots - aging; Age spots ... Liver spots are changes in skin color that occur in older skin. The coloring may be due to aging, exposure to the sun ...

  5. Liver Diseases

    Science.gov (United States)

    Your liver is the largest organ inside your body. It helps your body digest food, store energy, and remove poisons. There are many kinds of liver diseases: Diseases caused by viruses, such as hepatitis ...

  6. Liver disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000205.htm Liver disease To use the sharing features on this page, please enable JavaScript. The term "liver disease" applies to many conditions that stop the ...

  7. Sodium valproate increases the brain isoform of glycogen phosphorylase: looking for a compensation mechanism in McArdle disease using a mouse primary skeletal-muscle culture in vitro

    Directory of Open Access Journals (Sweden)

    Noemí de Luna

    2015-05-01

    Full Text Available McArdle disease, also termed ‘glycogen storage disease type V’, is a disorder of skeletal muscle carbohydrate metabolism caused by inherited deficiency of the muscle-specific isoform of glycogen phosphorylase (GP-MM. It is an autosomic recessive disorder that is caused by mutations in the PYGM gene and typically presents with exercise intolerance, i.e. episodes of early exertional fatigue frequently accompanied by rhabdomyolysis and myoglobinuria. Muscle biopsies from affected individuals contain subsarcolemmal deposits of glycogen. Besides GP-MM, two other GP isoforms have been described: the liver (GP-LL and brain (GP-BB isoforms, which are encoded by the PYGL and PYGB genes, respectively; GP-BB is the main GP isoform found in human and rat foetal tissues, including the muscle, although its postnatal expression is dramatically reduced in the vast majority of differentiated tissues with the exception of brain and heart, where it remains as the major isoform. We developed a cell culture model from knock-in McArdle mice that mimics the glycogen accumulation and GP-MM deficiency observed in skeletal muscle from individuals with McArdle disease. We treated mouse primary skeletal muscle cultures in vitro with sodium valproate (VPA, a histone deacetylase inhibitor. After VPA treatment, myotubes expressed GP-BB and a dose-dependent decrease in glycogen accumulation was also observed. Thus, this in vitro model could be useful for high-throughput screening of new drugs to treat this disease. The immortalization of these primary skeletal muscle cultures could provide a never-ending source of cells for this experimental model. Furthermore, VPA could be considered as a gene-expression modulator, allowing compensatory expression of GP-BB and decreased glycogen accumulation in skeletal muscle of individuals with McArdle disease.

  8. Possible mechanism for changes in glycogen metabolism in unloaded soleus muscle

    Science.gov (United States)

    Henriksen, E. J.; Tischler, M. E.

    1985-01-01

    Carbohydrate metabolism has been shown to be affected in a number of ways by different models of hypokinesia. In vivo glycogen levels in the soleus muscle are known to be increased by short-term denervation and harness suspension. In addition, exposure to 7 days of hypogravity also caused a dramatic increase in glycogen concentration in this muscle. The biochemical alterations caused by unloading that may bring about these increases in glycogen storage in the soleus were sought.

  9. Free glycogen in vaginal fluids is associated with Lactobacillus colonization and low vaginal pH.

    Directory of Open Access Journals (Sweden)

    Paria Mirmonsef

    Full Text Available Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH.Free glycogen in lavage samples was quantified. Pyrosequencing of the 16S rRNA gene was used to identify microbiota from 21 African American women collected over 8-11 years.Free glycogen levels varied greatly between women and even in the same woman. Samples with the highest free glycogen had a corresponding median genital pH that was significantly lower (pH 4.4 than those with low glycogen (pH 5.8; p<0.001. The fraction of the microbiota consisting of Lactobacillus was highest in samples with high glycogen versus those with low glycogen (median = 0.97 vs. 0.05, p<0.001. In multivariable analysis, having 1 vs. 0 male sexual partner in the past 6 months was negatively associated, while BMI ≥30 was positively associated with glycogen. High concentrations of glycogen corresponded to higher levels of L. crispatus and L. jensenii, but not L. iners.These findings show that free glycogen in genital fluid is associated with a genital microbiota dominated by Lactobacillus, suggesting glycogen is important for maintaining genital health. Treatments aimed at increasing genital free glycogen might impact Lactobacillus colonization.

  10. Glycogen Phosphomonoester Distribution in Mouse Models of the Progressive Myoclonic Epilepsy, Lafora Disease*

    Science.gov (United States)

    DePaoli-Roach, Anna A.; Contreras, Christopher J.; Segvich, Dyann M.; Heiss, Christian; Ishihara, Mayumi; Azadi, Parastoo; Roach, Peter J.

    2015-01-01

    Glycogen is a branched polymer of glucose that acts as an energy reserve in many cell types. Glycogen contains trace amounts of covalent phosphate, in the range of 1 phosphate per 500–2000 glucose residues depending on the source. The function, if any, is unknown, but in at least one genetic disease, the progressive myoclonic epilepsy Lafora disease, excessive phosphorylation of glycogen has been implicated in the pathology by disturbing glycogen structure. Some 90% of Lafora cases are attributed to mutations of the EPM2A or EPM2B genes, and mice with either gene disrupted accumulate hyperphosphorylated glycogen. It is, therefore, of importance to understand the chemistry of glycogen phosphorylation. Rabbit skeletal muscle glycogen contained covalent phosphate as monoesters of C2, C3, and C6 carbons of glucose residues based on analyses of phospho-oligosaccharides by NMR. Furthermore, using a sensitive assay for glucose 6-P in hydrolysates of glycogen coupled with measurement of total phosphate, we determined the proportion of C6 phosphorylation in rabbit muscle glycogen to be ∼20%. C6 phosphorylation also accounted for ∼20% of the covalent phosphate in wild type mouse muscle glycogen. Glycogen phosphorylation in Epm2a−/− and Epm2b−/− mice was increased 8- and 4-fold compared with wild type mice, but the proportion of C6 phosphorylation remained unchanged at ∼20%. Therefore, our results suggest that C2, C3, and/or C6 phosphate could all contribute to abnormal glycogen structure or to Lafora disease. PMID:25416783

  11. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type

    Science.gov (United States)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik D; Saltin, Bengt; Ørtenblad, Niels

    2011-01-01

    Abstract Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, = 68 ± 5 ml kg−1 min−1, mean ± SD) performed one hour of exhaustive arm and leg exercise, transmission electron microscopy revealed more pronounced depletion of intramyofibrillar than of intermyofibrillar and subsarcolemmal glycogen. This phenomenon was the same for type I and II fibres, although at rest prior to exercise, the former contained more intramyofibrillar and subsarcolemmal glycogen than the latter. In highly glycogen-depleted fibres, the remaining small intermyofibrillar and subsarcolemmal glycogen particles were often found to cluster in groupings. In the recovery period, when the athletes received either a carbohydrate-rich meal or only water the impaired resynthesis of glycogen with water alone was associated primarily with intramyofibrillar glycogen. In conclusion, after prolonged high-intensity exercise the depletion of glycogen is dependent on subcellular localization. In addition, the localization of glycogen appears to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. PMID:21486810

  12. Detection of human muscle glycogen by natural abundance 13C NMR

    International Nuclear Information System (INIS)

    Avison, M.J.; Rothman, D.L.; Nadel, E.; Shulman, R.G.

    1988-01-01

    Natural abundance 13 C nuclear magnetic resonance spectroscopy was used to detect signals from glycogen in the human gastrocnemius muscle. The reproducibility of the measurement was demonstrated, and the ability to detect dynamic changes was confirmed by measuring a decrease in muscle glycogen levels after exercise and its subsequent repletion. Single frequency gated 1 H decoupling was used to obtain decoupled natural abundance 13 C NMR spectra of the C-1 position of muscle glycogen

  13. Glycogen accumulation in normal and irradiated minced muscle autografts on frog gastrocnemius

    International Nuclear Information System (INIS)

    Malhotra, R.K.; Kaul, R.; Malhotra, N.

    1989-01-01

    Alterations induced in glycogen content and phosphorylase activity have been studied in normal and irradiated minced muscle autografts on frog gastrocnemius at days 1, 3, 5, 7, 10, 15 and 30 postgrafting. The changes observed in the glycogen content and phosphorylase activity conform to the degeneration and regeneration phases of muscle repair. An attempt has been made to explain the altered glycogen utilizing capacities of the frog skeletal muscle during its repair and regeneration. (author)

  14. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes.

    Science.gov (United States)

    Baxter, Melissa; Withey, Sarah; Harrison, Sean; Segeritz, Charis-Patricia; Zhang, Fang; Atkinson-Dell, Rebecca; Rowe, Cliff; Gerrard, Dave T; Sison-Young, Rowena; Jenkins, Roz; Henry, Joanne; Berry, Andrew A; Mohamet, Lisa; Best, Marie; Fenwick, Stephen W; Malik, Hassan; Kitteringham, Neil R; Goldring, Chris E; Piper Hanley, Karen; Vallier, Ludovic; Hanley, Neil A

    2015-03-01

    Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  15. The effect of N-2-cyano-ethylamphetamine. HCl on total lipid contents of placenta and some material and fetal tissues of the rat.

    Science.gov (United States)

    Kulay, L; Oliveira-Filho, R M; Siciliano, S F; Kulay, M N

    1978-12-01

    Female rats received 1.25 mg/kg body weight of N-2-cyano-ethylamphetamine. HCl (Fenproporex chlorhydrate) by oral route, once daily from the 5th to the 21st day of pregnancy, and compared to untreated pregnant rats, showed an increased total lipid content in maternal blood and fetal hearts; liver and heart have had total lipids decrease, while in placenta and fetal livers they were not observed significant differences.

  16. Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres.

    Science.gov (United States)

    Gejl, Kasper D; Ørtenblad, Niels; Andersson, Erik; Plomgaard, Peter; Holmberg, Hans-Christer; Nielsen, Joachim

    2017-05-01

    Glycogen is stored in local spatially distinct compartments within skeletal muscle fibres and is the main energy source during supramaximal exercise. Using quantitative electron microscopy, we show that supramaximal exercise induces a differential depletion of glycogen from these compartments and also demonstrate how this varies with fibre types. Repeated exercise alters this compartmentalized glycogen depletion. The results obtained in the present study help us understand the muscle metabolic dynamics of whole body repeated supramaximal exercise, and suggest that the muscle has a compartmentalized local adaptation to repeated exercise, which affects glycogen depletion. Skeletal muscle glycogen is heterogeneously distributed in three separated compartments (intramyofibrillar, intermyofibrillar and subsarcolemmal). Although only constituting 3-13% of the total glycogen volume, the availability of intramyofibrillar glycogen is of particular importance to muscle function. The present study aimed to investigate the depletion of these three subcellular glycogen compartments during repeated supramaximal exercise in elite athletes. Ten elite cross-country skiers (aged 25 ± 4 years, V̇O2 max : 65 ± 4 ml kg -1  min -1 ; mean ± SD) performed four ∼4 min supramaximal sprint time trials (STT 1-4) with 45 min of recovery. The subcellular glycogen volumes in musculus triceps brachii were quantified from electron microscopy images before and after both STT 1 and 4. During STT 1, the depletion of intramyofibrillar glycogen was higher in type 1 fibres [-52%; (-89:-15%)] than type 2 fibres [-15% (-52:22%)] (P = 0.02), whereas the depletion of intermyofibrillar glycogen [main effect: -19% (-33:0%), P = 0.006] and subsarcolemmal glycogen [main effect: -35% (-66:0%), P = 0.03] was similar between fibre types. By contrast, only intermyofibrillar glycogen volume was significantly reduced during STT 4, in both fibre types [main effect: -31% (-50:-11%), P = 0

  17. Glycogen supercompensation in rat soleus muscle during recovery from nonweight bearing

    Science.gov (United States)

    Henriksen, Erik J.; Kirby, Christopher R.; Tischler, Marc E.

    1989-01-01

    Events leading to the normalization of the glycogen metabolism in the soleus muscle of rat, altered by 72-h three days of hind-limb suspension, were investigated during the 72-h recovery period when the animals were allowed to bear weight on all four limbs. Relative importance of the factors affecting glycogen metabolism in skeletal muscle during the recovery period was also examined. Glycogen concentration was found to decrease within 15 min and up to 2 h of recovery, while muscle glucose 6-phosphate, and the fractional activities of glycogen phosphorylase and glycogen synthase increased. From 2 to 4 h, when the glycogen synthase activity remained elevated and the phosphorylase activity declined, glycogen concentration increased, until it reached maximum values at about 24 h, after which it started to decrease, reaching control values by 72 h. At 12 and 24 h, the inverse relationship between glycogen concentration and the synthase activity ratio was lost, indicating that the reloading transiently uncoupled glycogen control of this enzyme.

  18. Glycogen distribution in the microwave‐fixed mouse brain reveals heterogeneous astrocytic patterns

    Science.gov (United States)

    Baba, Otto; Ashida, Hitoshi; Nakamura, Kouichi C.

    2016-01-01

    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well‐defined glycogen immunoreactive signals compared with the conventional periodic acid‐Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3‐CA1 and striatum had a ‘patchy’ appearance with glycogen‐rich and glycogen‐poor astrocytes appearing in alternation. The glycogen patches were more evident with large‐molecule glycogen in young adult mice but they were hardly observable in aged mice (1–2 years old). Our results reveal brain region‐dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532–1545 PMID:27353480

  19. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation.

    Science.gov (United States)

    Kadouche, Derifa; Ducatez, Mathieu; Cenci, Ugo; Tirtiaux, Catherine; Suzuki, Eiji; Nakamura, Yasunori; Putaux, Jean-Luc; Terrasson, Amandine Durand; Diaz-Troya, Sandra; Florencio, Francisco Javier; Arias, Maria Cecilia; Striebeck, Alexander; Palcic, Monica; Ball, Steven G; Colleoni, Christophe

    2016-07-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. MR evaluation of fetal demise

    International Nuclear Information System (INIS)

    Victoria, Teresa; Chauvin, Nancy Anne; Johnson, Ann M.; Kramer, Sandra Sue; Epelman, Monica; Capilla, Elena

    2011-01-01

    Fetal demise is an uncommon event encountered at MR imaging. When it occurs, recognition by the interpreting radiologist is important to initiate appropriate patient management. To identify MR findings of fetal demise. Following IRB approval, a retrospective search of the radiology fetal MR database was conducted searching the words ''fetal demise'' and ''fetal death.'' Fetuses with obvious maceration or no sonographic confirmation of death were excluded. Eleven cases formed the study group. These were matched randomly to live fetuses of similar gestational age. Images were reviewed independently by three pediatric radiologists. The deceased fetus demonstrates decreased MR soft-tissue contrast and definition of tissue planes, including loss of gray-white matter differentiation in the brain. The signal within the cardiac chambers, when visible, is bright on HASTE sequences from the stagnant blood; the heart is small. Pleural effusions and decreased lung volumes may be seen. Interestingly, the fetal orbits lose their anatomical round shape and become smaller and more elliptical; a dark, irregular rim resembling a mask may be seen. Although fetal demise is uncommonly encountered at MR imaging, radiologists should be aware of such imaging findings so prompt management can be instituted. (orig.)

  1. In utero exposure to chloroquine alters sexual development in the male fetal rat

    International Nuclear Information System (INIS)

    Clewell, Rebecca A.; Pluta, Linda; Thomas, Russell S.; Andersen, Melvin E.

    2009-01-01

    Chloroquine (CQ), a drug that has been used extensively for the prevention and treatment of malaria, is currently considered safe for use during pregnancy. However, CQ has been shown to disrupt steroid homeostasis in adult rats and similar compounds, such as quinacrine, inhibit steroid production in the Leydig cell in vitro. To explore the effect of in utero CQ exposure on fetal male sexual development, pregnant Sprague-Dawley rats were given a daily dose of either water or chloroquine diphosphate from GD 16-18 by oral gavage. Chloroquine was administered as 200 mg/kg CQ base on GD 16, followed by two maintenance doses of 100 mg/kg CQ base on GD 16 and 18. Three days of CQ treatment resulted in reduced maternal and fetal weight on GD 19 and increased necrosis and steatosis in the maternal liver. Fetal livers also displayed mild lipid accumulation. Maternal serum progesterone was increased after CQ administration. Fetal testes testosterone, however, was significantly decreased. Examination of the fetal testes revealed significant alterations in vascularization and seminiferous tubule development after short-term CQ treatment. Anogenital distance was not altered. Microarray and RT-PCR showed down-regulation of several genes associated with cholesterol transport and steroid synthesis in the fetal testes. This study indicates that CQ inhibits testosterone synthesis and normal testis development in the rat fetus at human relevant doses.

  2. 21 CFR 884.2900 - Fetal stethoscope.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal stethoscope. 884.2900 Section 884.2900 Food... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart... conventional stethoscopes. (b) Classification. Class I (general controls). The device is exempt from the...

  3. [Incidence of fetal macrosomia: maternal and fetal morbidity].

    Science.gov (United States)

    Rodríguez-Rojas, R R; Cantú-Esquivel, M G; Benavides-de la Garza, L; Benavides-de Anda, L

    1996-06-01

    The macrosomia is an obstetric eventuality associated to high maternal-fetal morbidity-mortality. This assay was planned in order to know the incidence of macrosomia in our institution, the relation between vaginal and abdominal deliveries and the fetal-maternal morbidity we reviewed 3590 records and we found 5.6% incidence of macrosomia in the global obstetric population. There was 58% of vaginal deliveries, 68% of the newborn were male. The main complications were in the C. sections, 2 laceration of the hysterectomy, and 2 peroperative atonias. In the vaginal deliveries, the lacerations of III and IV grade were 9 of each grade. The main fetal complications were 5 slight to severe asphyxia and 4 shoulder dystocias. This assay concludes that the macrosomia in our service is similar to the already published ones, a 42% were C. section and the maternal-fetal morbidity was low.

  4. Digital communication with fetal monitors.

    Science.gov (United States)

    Bozóki, Z

    1997-11-01

    Fetal heart rate (FHR) values in the averaged format that are provided by commercial computed cardiotocography analysis systems may be unsuitable for special analysis purposes. I developed a communication software program to obtain any measured values of fetal monitors for individual analysis of computed cardiotocography. The software program was used to study the data continuity of beat-to-beat FHR values as an experiment for chaos theory and power spectrum analysis. The results indicated that the signal loss was recognized at a precision of 95%. The described method of digital communication with fetal monitors was found to be useful for individual purposes in the field of computed cardiotocography analysis.

  5. Ultrasonographic determination of fetal gender

    International Nuclear Information System (INIS)

    Kim, Il Young; Kim, Dae Ho; Lee, Byung Ho; Bae, Dong Han

    1985-01-01

    Sonographic determination of fetal gender was attempted prospectively in most pregnancies of more than 26 weeks. We studied 193 cases of pregnancies with ultrasound for recent 9 months from June 1984 to February 1985 at department of radiology, Soonchunhyang university, Soonchunhyang Chunan hospital, and analysed ultrasonographic finding of fetal gender. The results were as follows; 1. Overall accuracy rate for fetal gender is 90%. 2. Accuracy rate for male fetus is 97.8%. 3. Accuracy rate for female fetus is 88.2%

  6. MRI of the fetal abdomen

    International Nuclear Information System (INIS)

    Hoermann, M.; Brugger, P.C.; Witzani, L.; Prayer, D.

    2006-01-01

    Magnetic resonance imaging (MRI) is an important diagnostic component for central nervous system and thoracic diseases during fetal development. Although ultrasound remains the method of choice for observing the fetus during pregnancy, fetal MRI is being increasingly used as an additional technique for the accurate diagnosis of abdominal diseases. Recent publications confirm the value of MRI in the diagnosis of fetal gastrointestinal tract and urogenital system diseases. The following report provides an overview of MRI-examination techniques for the most frequent diseases of the abdomen. (orig.) [de

  7. The Danish fetal medicine database

    DEFF Research Database (Denmark)

    Ekelund, Charlotte Kvist; Kopp, Tine Iskov; Tabor, Ann

    2016-01-01

    trimester ultrasound scan performed at all public hospitals in Denmark are registered in the database. Main variables/descriptive data: Data on maternal characteristics, ultrasonic, and biochemical variables are continuously sent from the fetal medicine units’Astraia databases to the central database via...... analyses are sent to the database. Conclusion: It has been possible to establish a fetal medicine database, which monitors first-trimester screening for chromosomal abnormalities and second-trimester screening for major fetal malformations with the input from already collected data. The database...

  8. Metformin normalizes the structural changes in glycogen preceding prediabetes in mice overexpressing neuropeptide Y in noradrenergic neurons.

    Science.gov (United States)

    Ailanen, Liisa; Bezborodkina, Natalia N; Virtanen, Laura; Ruohonen, Suvi T; Malova, Anastasia V; Okovityi, Sergey V; Chistyakova, Elizaveta Y; Savontaus, Eriika

    2018-04-01

    Hepatic insulin resistance and increased gluconeogenesis are known therapeutic targets of metformin, but the role of hepatic glycogen in the pathogenesis of diabetes is less clear. Mouse model of neuropeptide Y (NPY) overexpression in noradrenergic neurons (OE-NPY D βH ) with a phenotype of late onset obesity, hepatosteatosis, and prediabetes was used to study early changes in glycogen structure and metabolism preceding prediabetes. Furthermore, the effect of the anti-hyperglycemic agent, metformin (300 mg/kg/day/4 weeks in drinking water), was assessed on changes in glycogen metabolism, body weight, fat mass, and glucose tolerance. Glycogen structure was characterized by cytofluorometric analysis in isolated hepatocytes and mRNA expression of key enzymes by qPCR. OE-NPY D βH mice displayed decreased labile glycogen fraction relative to stabile fraction (the intermediate form of glycogen) suggesting enhanced glycogen cycling. This was supported by decreased filling of glucose residues in the 10th outer tier of the glycogen molecule, which suggests accelerated glycogen phosphorylation. Metformin reduced fat mass gain in both genotypes, but glucose tolerance was improved mostly in wild-type mice. However, metformin inhibited glycogen accumulation and normalized the ratio between glycogen structures in OE-NPY D βH mice indicating decreased glycogen synthesis. Furthermore, the presence of glucose residues in the 11th tier together with decreased glycogen phosphorylase expression suggested inhibition of glycogen degradation. In conclusion, structural changes in glycogen of OE-NPY D βH mice point to increased glycogen metabolism, which may predispose them to prediabetes. Metformin treatment normalizes these changes and suppresses both glycogen synthesis and phosphorylation, which may contribute to its preventive effect on the onset of diabetes.

  9. Recent development and gene therapy for glycogen storage disease type Ia.

    Science.gov (United States)

    Chou, Janice Y; Kim, Goo-Young; Cho, Jun-Ho

    2017-09-01

    Glycogen storage disease type Ia (GSD-Ia) is an autosomal recessive metabolic disorder caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC) that is expressed primarily in the liver, kidney, and intestine. G6Pase-α catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose and phosphate in the terminal step of gluconeogenesis and glycogenolysis, and is a key enzyme for endogenous glucose production. The active site of G6Pase-α is inside the endoplasmic reticulum (ER) lumen. For catalysis, the substrate G6P must be translocated from the cytoplasm into the ER lumen by a G6P transporter (G6PT). The functional coupling of G6Pase-α and G6PT maintains interprandial glucose homeostasis. Dietary therapies for GSD-Ia are available, but cannot prevent the long-term complication of hepatocellular adenoma that may undergo malignant transformation to hepatocellular carcinoma. Animal models of GSD-Ia are now available and are being exploited to both delineate the disease more precisely and develop new treatment approaches, including gene therapy.

  10. CHANGES OF MYOCARDIAL GLYCOGEN CONTENT IN RATS ADMINISTERED WITH MODERATE DOSES OF FURFURAL

    Directory of Open Access Journals (Sweden)

    Dragana Veličković

    2014-03-01

    Full Text Available Furfural is produced by dehydration process when strong acids react with pentoses and formation of furfural occurs. It is used as a solvent for extracting mineral oils in many industrial branches and can also be found in orange juice or in brandy. Furfural is not toxic, but its oxidative by-product, pyromucic acid that is conjugated to glycine in the liver and excreted mostly in urine, has harmful effects. The experiments were performed on 9-week old Wistar rats with body weight of about 259 gr. The animals were treated with furfuraldehyde C4C3OCHO, “Sigma chemical Co”, as 1% solution in drinking water, first at a dose of 20mg/kg body weight for seven days, then the dosage was gradually increased for 45 days when the animals were sacrificed. The analysis was performed on the myocardium of experimental animals. The methods of Hematoksilin-oesin staining (HE and PAS (periodic acid Shiff staining were used. Toxic changes were detected in myocardiocytes, showing partial loss of striation, sporadic discoloration of the nucleus and cytoplasm coagulation associated with the presence of expressed hyperemia and the massive loss of glycogen in cardiomyocytes as well.

  11. Clinical implications from monitoring fetal activity.

    Science.gov (United States)

    Rayburn, W F

    1982-12-15

    The monitoring of fetal motion in high-risk pregnancies has been shown to be worthwhile in predicting fetal distress and impending fetal death. The maternal recording of perceived fetal activity is an inexpensive surveillance technique which is most useful when there is chronic uteroplacental insufficiency or when a stillbirth may be expected. The presence of an active, vigorous fetus is reassuring, but documented fetal inactivity required a reassessment of the underlying antepartum complication and further fetal evaluation with real-time ultrasonography, fetal heart rate testing, and biochemical testing. Fetal distress from such acute changes as abruptio placentae or umbilical cord compression may not be predicted by monitoring fetal motion. Although not used for routine clinical investigation, electromechanical devices such as tocodynamometry have provided much insight into fetal behavioral patterns at many stages of pregnancy and in pregnancies with an antepartum complication.

  12. POST-EXERCISE MUSCLE GLYCOGEN REPLETION IN THE EXTREME: EFFECT OF FOOD ABSENCE AND ACTIVE RECOVERY

    Directory of Open Access Journals (Sweden)

    Paul A. Fournier

    2004-09-01

    Full Text Available Glycogen plays a major role in supporting the energy demands of skeletal muscles during high intensity exercise. Despite its importance, the amount of glycogen stored in skeletal muscles is so small that a large fraction of it can be depleted in response to a single bout of high intensity exercise. For this reason, it is generally recommended to ingest food after exercise to replenish rapidly muscle glycogen stores, otherwise one's ability to engage in high intensity activity might be compromised. But what if food is not available? It is now well established that, even in the absence of food intake, skeletal muscles have the capacity to replenish some of their glycogen at the expense of endogenous carbon sources such as lactate. This is facilitated, in part, by the transient dephosphorylation-mediated activation of glycogen synthase and inhibition of glycogen phosphorylase. There is also evidence that muscle glycogen synthesis occurs even under conditions conducive to an increased oxidation of lactate post-exercise, such as during active recovery from high intensity exercise. Indeed, although during active recovery glycogen resynthesis is impaired in skeletal muscle as a whole because of increased lactate oxidation, muscle glycogen stores are replenished in Type IIa and IIb fibers while being broken down in Type I fibers of active muscles. This unique ability of Type II fibers to replenish their glycogen stores during exercise should not come as a surprise given the advantages in maintaining adequate muscle glycogen stores in those fibers that play a major role in fight or flight responses

  13. Fetal outcomes in pregnancies complicated by intrahepatic cholestasis of pregnancy in a Northern California cohort.

    Directory of Open Access Journals (Sweden)

    Michelle Rook

    Full Text Available Intrahepatic cholestasis of pregnancy (ICP has important fetal implications. There is increased risk for poor fetal outcomes, including preterm delivery, meconium staining of amniotic fluid, respiratory distress, fetal distress and demise.One hundred and one women diagnosed with ICP between January 2005 and March 2009 at San Francisco General Hospital were included in this study. Single predictor logistic regression models were used to assess the associations of maternal clinical and biochemical predictors with fetal complications. Clinical predictors analyzed included age, race/ethnicity, gravidity, parity, history of liver or biliary disease, history of ICP in previous pregnancies, and induction. Biochemical predictors analyzed included serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total bilirubin, direct bilirubin, albumin, total protein, and total bile acids (TBA.The prevalence of ICP was 1.9%. Most were Latina (90%. Labor was induced in the majority (87% and most were delivered by normal spontaneous vaginal delivery (84%. Fetal complications occurred in 33% of the deliveries, with respiratory distress accounting for the majority of complications. There were no statistically significant clinical or biochemical predictors associated with an increased risk of fetal complications. Elevated TBA had little association with fetal complications until reaching greater than 100 µmoL/L, with 3 out of 5 having reported complications. ICP in previous pregnancies was associated with decreased risk of fetal complications (OR 0.21, p = 0.046. There were no cases of late term fetal demise.Maternal clinical and laboratory features, including elevated TBA, did not appear to be substantial predictors of fetal complications in ICP.

  14. Fatty Liver

    International Nuclear Information System (INIS)

    Filippone, A.; Digiovandomenico, V.; Digiovandomenico, E.; Genovesi, N.; Bonomo, L.

    1991-01-01

    The authors report their experience with the combined use of US and CT in the study of diffuse and subtotal fatty infiltration of the liver. An apparent disagreement was initially found between the two examinations in the study of fatty infiltration. Fifty-five patients were studied with US and CT of the upper abdomen, as suggested by clinics. US showed normal liver echogenicity in 30 patients and diffuse increased echogenicity (bright liver) in 25 cases. In 5 patients with bright liver, US demonstrated a solitary hypoechoic area, appearing as a 'skip area', in the quadrate lobe. In 2 patients with bright liver, the hypoechoic area was seen in the right lobe and exhibited no typical US features of 'Skip area'. Bright liver was quantified by measuring CT density of both liver and spleen. The relative attenuation values of spleen and liver were compared on plain and enhanced CT scans. In 5 cases with a hypoechoic area in the right lobe, CT findings were suggestive of hemangioma. A good correlation was found between broght liver and CT attenuation values, which decrease with increasing fat content of the liver. Moreover, CT attenuation values confirmed US findings in the study of typical 'skip area', by demonstrating normal density - which suggests that CT can characterize normal tissue in atypical 'skip area'

  15. Glycogen storage disease type II (Pompe disease in children

    Directory of Open Access Journals (Sweden)

    A. N. Semyachkina

    2014-01-01

    Full Text Available The paper gives the data available in the literature, which reflect the manifestations, diagnosis, and current treatments of the rare (orphan inherited disease glycogen storage disease type II or Pomp disease in children, as well as its classification. The infant form is shown to be most severe, resulting in death from cardiovascular or pulmonary failure generally within the first year of a child’s life. Emphasis is laid on major difficulties in the differential and true diagnosis of this severe disease. Much attention is given to the new pathogenetic treatment — genetically engineered enzyme replacement drug Myozyme®. The authors describe their clinical case of a child with the juvenile form of glycogen storage disease type II (late-onset Pompe disease. Particular emphasis is laid on the clinical symptoms of the disease and its diagnostic methods, among which the morphological analysis of a muscle biopsy specimen by light and electron microscopies, and enzyme and DNA diagnoses are of most importance. The proband was found to have significant lysosomal glycogen accumulation in the muscle biopsy specimen, reduced lymphocyte acid α-1,4-glucosidase activity to 4,2 nM/mg/h (normal value, 13,0—53,6 nM/mg/h, described in the HGMD missense mutation database from 1000 G>A p.Gly334er of the GAA in homozygous state, which verified the diagnosis of Pompe disease. 

  16. Muscle glycogen storage postexercise: effect of mode of carbohydrate administration.

    Science.gov (United States)

    Reed, M J; Brozinick, J T; Lee, M C; Ivy, J L

    1989-02-01

    The primary purpose of this study was to determine whether gastric emptying limits the rate of muscle glycogen storage during the initial 4 h after exercise when a carbohydrate supplement is provided. A secondary purpose was to determine whether liquid (L) and solid (S) carbohydrate (CHO) feedings result in different rates of muscle glycogen storage after exercise. Eight subjects cycled for 2 h on three separate occasions to deplete their muscle glycogen stores. After each exercise bout they received 3 g CHO/kg body wt in L (50% glucose polymer) or S (rice/banana cake) form or by intravenous infusion (I; 20% sterile glucose). The L and S supplements were divided into two equal doses and administered immediately after and 120 min after exercise, whereas the I supplement was administered continuously during the first 235 min of the 240-min recovery period. Blood samples were drawn from an antecubital vein before exercise, during exercise, and throughout recovery. Muscle biopsies were taken from the vastus lateralis immediately after and 120 and 240 min after exercise. Blood glucose and insulin declined during exercise and increased significantly above preexercise levels during recovery in all treatments. The increase in blood glucose during the I treatment, however, was three times greater than during the L or S treatments. The average insulin response of the L treatment (61.7 +/- 4.9 microU/ml) was significantly greater than that of the S treatment (47.5 +/- 4.2 microU/ml) but not that of the I (55.3 +/- 4.5 microU/ml) treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Fetal MRI: techniques and protocols

    International Nuclear Information System (INIS)

    Prayer, Daniela; Brugger, Peter Christian; Prayer, Lucas

    2004-01-01

    The development of ultrafast sequences has led to a significant improvement in fetal MRI. Imaging protocols have to be adjusted to the rapidly developing fetal central nervous system (CNS) and to the clinical question. Sequence parameters must be changed to cope with the respective developmental stage, to produce images free from motion artefacts and to provide optimum visualization of the region and focus of interest. In contrast to postnatal studies, every suspect fetal CNS abnormality requires examination of the whole fetus and the extrafetal intrauterine structures including the uterus. This approach covers both aspects of fetal CNS disorders: isolated and complex malformations and cerebral lesions arising from the impaired integrity of the feto-placental unit. (orig.)

  18. Fetal programming of renal function.

    Science.gov (United States)

    Dötsch, Jörg; Plank, Christian; Amann, Kerstin

    2012-04-01

    Results from large epidemiological studies suggest a clear relation between low birth weight and adverse renal outcome evident as early as during childhood. Such adverse outcomes may include glomerular disease, hypertension, and renal failure and contribute to a phenomenon called fetal programming. Other factors potentially leading to an adverse renal outcome following fetal programming are maternal diabetes mellitus, smoking, salt overload, and use of glucocorticoids during pregnancy. However, clinical data on the latter are scarce. Here, we discuss potential underlying mechanisms of fetal programming, including reduced nephron number via diminished nephrogenesis and other renal (e.g., via the intrarenal renin-angiotensin-aldosterone system) and non-renal (e.g., changes in endothelial function) alterations. It appears likely that the outcomes of fetal programming may be influenced or modified postnatally, for example, by the amount of nutrients given at critical times.

  19. Fetal MRI: techniques and protocols

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Neuroradiology, University Clinics of Radiodiagnostics, Medical University Vienna, Waehringerguertel 18-10, 1090, Vienna (Austria); Brugger, Peter Christian [Department of Anatomy, Integrative Morphology Group, Medical University Vienna (Austria); Prayer, Lucas [Diagnosezentrum Urania, Vienna (Austria)

    2004-09-01

    The development of ultrafast sequences has led to a significant improvement in fetal MRI. Imaging protocols have to be adjusted to the rapidly developing fetal central nervous system (CNS) and to the clinical question. Sequence parameters must be changed to cope with the respective developmental stage, to produce images free from motion artefacts and to provide optimum visualization of the region and focus of interest. In contrast to postnatal studies, every suspect fetal CNS abnormality requires examination of the whole fetus and the extrafetal intrauterine structures including the uterus. This approach covers both aspects of fetal CNS disorders: isolated and complex malformations and cerebral lesions arising from the impaired integrity of the feto-placental unit. (orig.)

  20. Glycogen as a biodegradable construction nanomaterial for in vivo use

    Czech Academy of Sciences Publication Activity Database

    Filippov, Sergey K.; Sedláček, Ondřej; Bogomolova, Anna; Vetrík, Miroslav; Jirák, D.; Kovář, J.; Kučka, Jan; Bals, S.; Turner, S.; Štěpánek, Petr; Hrubý, Martin

    2012-01-01

    Roč. 12, č. 12 (2012), s. 1731-1738 ISSN 1616-5187 R&D Projects: GA ČR GA202/09/2078; GA ČR GAP108/12/0640; GA ČR GAP208/10/1600; GA ČR GPP207/10/P054 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : nanoparticles * in vivo imaging * glycogen Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.742, year: 2012