WorldWideScience

Sample records for fetal cell screening

  1. Committee Opinion No. 640: Cell-Free DNA Screening For Fetal Aneuploidy.

    Science.gov (United States)

    2015-09-01

    Noninvasive prenatal screening that uses cell-free DNA from the plasma of pregnant women offers tremendous potential as a screening method for fetal aneuploidy. A number of laboratories have validated different techniques for the use of cell-free DNA as a screening test for fetal aneuploidy. All tests have a high sensitivity and specificity for trisomy 18 and trisomy 21, regardless of which molecular technique is used. Women whose results are not reported, indeterminate, or uninterpretable (a "no call" test result) from cell-free DNA screening should receive further genetic counseling and be offered comprehensive ultrasound evaluation and diagnostic testing because of an increased risk of aneuploidy. Patients should be counseled that cell-free DNA screening does not replace the precision obtained with diagnostic tests, such as chorionic villus sampling or amniocentesis and, therefore, is limited in its ability to identify all chromosome abnormalities. Cell-free DNA screening does not assess risk of fetal anomalies such as neural tube defects or ventral wall defects. Patients who are undergoing cell-free DNA screening should be offered maternal serum alpha-fetoprotein screening or ultrasound evaluation for risk assessment. The cell-free DNA screening test should not be considered in isolation from other clinical findings and test results. Management decisions, including termination of the pregnancy, should not be based on the results of the cell-free DNA screening alone. Patients should be counseled that a negative cell-free DNA test result does not ensure an unaffected pregnancy. Given the performance of conventional screening methods, the limitations of cell-free DNA screening performance, and the limited data on cost-effectiveness in the low-risk obstetric population, conventional screening methods remain the most appropriate choice for first-line screening for most women in the general obstetric population.

  2. Committee Opinion Summary No. 640: Cell-Free DNA Screening For Fetal Aneuploidy.

    Science.gov (United States)

    2015-09-01

    Noninvasive prenatal screening that uses cell-free DNA from the plasma of pregnant women offers tremendous potential as a screening method for fetal aneuploidy. A number of laboratories have validated different techniques for the use of cell-free DNA as a screening test for fetal aneuploidy. All tests have a high sensitivity and specificity for trisomy 18 and trisomy 21, regardless of which molecular technique is used. Women whose results are not reported, indeterminate, or uninterpretable (a "no call" test result) from cell-free DNA screening should receive further genetic counseling and be offered comprehensive ultrasound evaluation and diagnostic testing because of an increased risk of aneuploidy. Patients should be counseled that cell-free DNA screening does not replace the precision obtained with diagnostic tests, such as chorionic villus sampling or amniocentesis and, therefore, is limited in its ability to identify all chromosome abnormalities. Cell-free DNA screening does not assess risk of fetal anomalies such as neural tube defects or ventral wall defects. Patients who are undergoing cell-free DNA screening should be offered maternal serum alpha-fetoprotein screening or ultrasound evaluation for risk assessment. The cell-free DNA screening test should not be considered in isolation from other clinical findings and test results. Management decisions, including termination of the pregnancy, should not be based on the results of the cell-free DNA screening alone. Patients should be counseled that a negative cell-free DNA test result does not ensure an unaffected pregnancy. Given the performance of conventional screening methods, the limitations of cell-free DNA screening performance, and the limited data on cost-effectiveness in the low-risk obstetric population, conventional screening methods remain the most appropriate choice for first-line screening for most women in the general obstetric population.

  3. Screening for fetal aneuploidy.

    Science.gov (United States)

    Rink, Britton D; Norton, Mary E

    2016-02-01

    Screening is currently recommended in pregnancy for a number of genetic disorders, chromosomal aneuploidy, and structural birth defects in the fetus regardless of maternal age or family history. There is an overwhelming array of sonographic and maternal serum-based options available for carrying out aneuploidy risk assessment in the first and/or second trimester. As with any screening test, the patient should be made aware that a "negative" test or "normal" ultrasound does not guarantee a healthy baby and a "positive" test does not mean the fetus has the condition. The woman should have both pre- and post-test counseling to discuss the benefits, limitations, and options for additional testing. Rapid advancements of genetic technologies have made it possible to screen for the common aneuploidies traditionally associated with advanced maternal age with improved levels of accuracy beyond serum and ultrasound based testing. Prenatal screening for fetal genetic disorders with cell-free DNA has transformed prenatal care with yet unanswered questions related to the financial, ethical, and appropriate application in the provision of prenatal risk assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. [Combined first trimester screening and cell-free fetal DNA - “next generation screening”].

    Science.gov (United States)

    Kagan, K O; Eiben, B; Kozlowski, P

    2014-06-01

    In the last decades, prenatal screening for aneuploidy has become increasingly effective. While first trimester combined screening is considered to be the current gold standard, the use of cell-free fetal DNA (cffDNA), which is also called noninvasive prenatal testing (NIPT), will result in a change of paradigm. Respective studies indicate that in screening for trisomy 21, the detection and false-positive rates are 99 % and 0.1 %, respectively. For trisomies 18 and 13, there is less evidence but recent studies report detection rates of 98 % and 86 %. Despite the excellent results in screening for trisomy 21, NIPT should not be considered as a diagnostic test. Due to the costs of NIPT, it is unlikely that NIPT will be applied in the near future in population-based screening for trisomy. In addition, the scope of the current approach in first trimester screening exceeds the screening for aneuploidy as it is possible to assess the risk for various pregnancy complications. Therefore, a combination of both NIPT and first trimester combined screening seems reasonable. Both examinations could be applied in a contingent model where the latter is offered to everyone and NIPT is restricted to women with an intermediate risk after first trimester combined screening. Such a policy would result in a detection rate of about 97 % for a false-positive rate of about 1 %. While NIPT currently focuses on screening for trisomy 21, 18, 13 and sex chromosomal abnormalities, the scope of NIPT will soon become broader. In this respect, some study groups have managed to examine the whole fetal genome within the course of the pregnancy. However, moral and ethical considerations need to be taken into account. © Georg Thieme Verlag KG Stuttgart · New York.

  5. [Advance in clinical application of non-invasive prenatal screening using cell-free fetal DNA].

    Science.gov (United States)

    Hu, Jilin; Zhu, Baosheng

    2017-12-10

    Non-invasive prenatal screening using cell-free fetal DNA (NIPS) has been integrated into the prenatal health care only in a short span of five years, and the guidelines provided by professional bodies have been continuously updated. The American College of Medical Genetics and Genomics has made a statement on NIPS in July, 2016, suggesting that the NIPS can replace conventional screening for Patau, Edwards and Down syndromes in a continuum of gestational age and for any maternal age, except those who are significantly obese. The scope of target diseases of NIPS are also growing. Meanwhile, pre- and post-test counseling for NIPS has put forward a greater challenge for medical professionals.

  6. Maternal cell-free DNA-based screening for fetal microdeletion and the importance of careful diagnostic follow-up.

    Science.gov (United States)

    Yatsenko, Svetlana A; Peters, David G; Saller, Devereux N; Chu, Tianjiao; Clemens, Michelle; Rajkovic, Aleksandar

    2015-10-01

    Noninvasive prenatal screening (NIPS) by next-generation sequencing of cell-free DNA (cfDNA) in maternal plasma is used to screen for common aneuploidies such as trisomy 21 in high risk pregnancies. NIPS can identify fetal genomic microdeletions; however, sensitivity and specificity have not been systematically evaluated. Commercial companies have begun to offer expanded panels including screening for common microdeletion syndromes such as 22q11.2 deletion (DiGeorge syndrome) without reporting the genomic coordinates or whether the deletion is maternal or fetal. Here we describe a phenotypically normal mother and fetus who tested positive for atypical 22q deletion via maternal plasma cfDNA testing. We performed cfDNA sequencing on saved maternal plasma obtained at 11 weeks of gestation from a phenotypically normal woman with a singleton pregnancy whose earlier screening at a commercial laboratory was reported to be positive for a 22q11.2 microdeletion. Fluorescence in situ hybridization and chromosomal microarray diagnostic genetic tests were done postnatally. NIPS detected a 22q microdeletion that, upon diagnostic workup, did not include the DiGeorge critical region. Diagnostic prenatal or postnatal testing with chromosomal microarray and appropriate parental studies to determine precise genomic coordinates and inheritance should follow a positive microdeletion NIPS result.

  7. Utility of ultrasound examination at 10–14 weeks prior to cell-free DNA screening for fetal aneuploidy

    Science.gov (United States)

    VORA, N. L.; ROBINSON, S.; HARDISTY, E. E.; STAMILIO, D. M.

    2017-01-01

    Objective To estimate the frequency of unexpected first-trimester ultrasound findings that would alter prenatal management in pregnant women eligible for cell-free (cf) DNA screening because of advanced maternal age (AMA). Methods This was a retrospective cohort study of all AMA women at a tertiary care center who had a 10–14-week ultrasound examination between 1 January 2012 and 27 April 2015. Information on pregnancy dating, obstetric ultrasound examination, prenatal screening and genetic testing were collected from a perinatal database. The primary outcome was an unexpected ultrasound finding in the first trimester that would alter the prenatal screening/testing strategy. Results In total, 2337 women met the inclusion criteria, with a total of 2462 fetuses. Sixty-eight (2.9%) women had an anomalous fetus, of which 44 (64.7%) had diagnostic testing. In the entire cohort, a non-viable pregnancy was identified in 153 (6.5%) women. Multiple gestation was identified in 32 (1.4%) women; five had a cotwin demise. Gestational dating was revised for 126 (5.4%) women. Among those who opted for aneuploidy screening (n = 1806), 68.5% had cfDNA screening and 31.5% had first-trimester screening by analysis of maternal serum biomarkers and nuchal translucency thickness. Among those eligible for cfDNA screening, 16.1% (95% CI, 15.0–18.0%; 377/2337) had an ultrasound finding (anomaly, incorrect dating, multiple gestation, non-viable pregnancy) at the time of testing that would have altered the provider’s counseling regarding the prenatal screening/testing strategy. Conclusions A substantial proportion of AMA women eligible for cfDNA screening have fetal ultrasound findings that could alter genetic testing strategy and clinical management. This study recommends ultrasound examination prior to cfDNA screening in AMA women. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. PMID:27300317

  8. Utility of ultrasound examination at 10-14 weeks prior to cell-free DNA screening for fetal aneuploidy.

    Science.gov (United States)

    Vora, N L; Robinson, S; Hardisty, E E; Stamilio, D M

    2017-04-01

    To estimate the frequency of unexpected first-trimester ultrasound findings that would alter prenatal management in pregnant women eligible for cell-free (cf) DNA screening because of advanced maternal age (AMA). This was a retrospective cohort study of all AMA women at a tertiary care center who had a 10-14-week ultrasound examination between 1 January 2012 and 27 April 2015. Information on pregnancy dating, obstetric ultrasound examination, prenatal screening and genetic testing were collected from a perinatal database. The primary outcome was an unexpected ultrasound finding in the first trimester that would alter the prenatal screening/testing strategy. In total, 2337 women met the inclusion criteria, with a total of 2462 fetuses. Sixty-eight (2.9%) women had an anomalous fetus, of which 44 (64.7%) had diagnostic testing. In the entire cohort, a non-viable pregnancy was identified in 153 (6.5%) women. Multiple gestation was identified in 32 (1.4%) women; five had a cotwin demise. Gestational dating was revised for 126 (5.4%) women. Among those who opted for aneuploidy screening (n = 1806), 68.5% had cfDNA screening and 31.5% had first-trimester screening by analysis of maternal serum biomarkers and nuchal translucency thickness. Among those eligible for cfDNA screening, 16.1% (95% CI, 15.0-18.0%; 377/2337) had an ultrasound finding (anomaly, incorrect dating, multiple gestation, non-viable pregnancy) at the time of testing that would have altered the provider's counseling regarding the prenatal screening/testing strategy. A substantial proportion of AMA women eligible for cfDNA screening have fetal ultrasound findings that could alter genetic testing strategy and clinical management. This study recommends ultrasound examination prior to cfDNA screening in AMA women. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  9. The usage and current approaches of cell free fetal DNA (cffDNA as a prenatal diagnostic method in fetal aneuploidy screening

    Directory of Open Access Journals (Sweden)

    Hülya Erbaba

    2015-12-01

    Full Text Available Prenatal diagnosis of invasive and noninvasive tests can be done in a way (NIPT, but because of the invasive methods have risks of infection and abortion, diagnosing non-invasive procedure increasing day by day. One of the widespread cell free fetal DNA in maternal blood test (cffDNA that is increasing in clinical use has been drawing attention. The incidence of aneuploidy chromosomal anomaly of the kind in which all live births; Trisomy 21 (Down Syndrome 1/800, trisomy 13 (Patau syndrome 1 /10,000, trisomy 18 (Edwards syndrome is a form of 1/6000. Because of the high mortality and morbidity, it is vital that congenital anomalies should be diagnosed in prenatal period. Aneuploidy testing for high-risk pregnant women after the 10th week of pregnancy in terms of the blood sample is taken and free fetal DNA in maternal plasma is based on the measurement of the relative amount. Knowledge of the current criteria for use by healthcare professionals in the field test will allow the exclusion of maternal and fetal risks. In this study, it is aimed to demonstrate current international approaches related to the positive and negative sides of non-invasive that is one of the prenatal diagnostic methods of cffDNA test. J Clin Exp Invest 2015; 6 (4: 414-417

  10. [MODELS OF CLINICAL IMPLEMENTATION OF CELL FREE FETAL DNA IN THE MATERNAL SERUM SCREENING TEST-ANALYSIS].

    Science.gov (United States)

    Yankova, M; Chaveeva, P; Stratieva, V

    2015-01-01

    Prenatal screening by definition is a way of identifying pregnancies, with a high enough risk to specific fetal damage as to justify the subsequent invasive diagnosis among the seemingly normal pregnancies. [1] The aim of the prenatal screening test is to reach the high diagnostic frequency (DR > 95%), with low false-positive rate (FPR tests (NIPT) are widely adopted and use in clinical practice: 1st Trimester Combined screening (First trimester Combined Screening) and 2nd trimester biochemical screening (Second trimester biochemical screening) and in the last few years through screening Fetal DNA in Maternal serum (cfDNA screening). Since the introduction of the sfDNA test were examined and discussed the results of several ways of application: (1) as a primary screening method without preceding the result of 1st trimester combined screening for chromosomal abnormalities, (2) as a contingent test after 1st trimester combined screening in high risk pregnancies (> 1:100) (3) as a contingent test after 1st trimester combined screening, when the calculated risk is between ( 1:10 to 1:2500). The purpose of the study: to compare the results of different ways of application screening through cfDNA: detection rate (DR) for Tri21, Tri18 and Tri13, procentage of invasive diagnostics and cost-effectiveness ratio of cfDNA test in comparison with the 1st trimester combined screening. To establish the most suitable algorithm for application of cfDNA test. Analyzed were the results of several randomized multi-center clinical studies whose data are processed through a meta-analysis. cfDNA-test has a higher DR for Tri21 for lower FPR, compared to the combined screening in 1st trimester (cfDNA-DR 99%, 1st trimester screening-DR 96% and 0.4%FPR, respectively FPR 5%), but although it is with better results and reduces the incidence of invasive tests, does not justify the significant difference in price-performance ratio. On the other hand cfDNA-test is with a lower detection rate for

  11. [Performance of prenatal screening by non-invasive cell-free fetal DNA testing for women with various indications].

    Science.gov (United States)

    Zhang, Bin; Pan, Lingyan; Wang, Huiyan; Liu, Jianbing; Lu, Beiyi; Chen, Yingping; Long, Wei; Yu, Bin

    2018-02-10

    OBJECTIVE To assess the performance of non-invasive prenatal testing (NIPT) based on massive parallel sequencing. METHODS A total of 10 275 maternal blood samples were collected. Fetal chromosomal aneuploides were subjected to low coverage whole genome sequencing. Patients with high risks received further prenatal diagnosis. The outcome of all patients were followed up. RESULTS High-throughput sequencing detected 72 pregnancies with fetal autosomal chromosomal aneuploidy, including 57 cases of trisomy 21, 14 cases of trisomy 18, and 1 case of trisomy 13. The positive predictive value for trisomies 21 and 18 were 98.25% and 91.67%, respectively. Comparing its performance in intermediate or high risk pregnancies, advanced maternal age pregnancies and volunteering to test pregnancies, the positive predictive value were 100%, 95%, 90% and 50%, respectively. The follow up result was only 1 case of 21 trisomy false negative with high risk. For the 56 cases of trisomy 21, the high risk group accounted for 55%, advanced maternal age accounted for 29%, the intermediate risk referred to 14%, the volunteering to test group accounted for 2%. CONCLUSION The performance of NIPT for trisomies 21, 18 and 13 was satisfactory. The method can be used for women with advanced gestational age. NIPT has offered an ideal secondary screening method for those with an intermediate or high risk, and can reduce the rate of birth defects.

  12. First trimester diagnosis and screening for fetal aneuploidy

    OpenAIRE

    Driscoll, Deborah A.; Gross, Susan J.

    2008-01-01

    Maternal serum screening for neural tube defects and fetal aneuploidy in the second trimester has been incorporated into obstetrical practice over the past two decades. Now, as a result of several multicenter trials, first trimester screening between 11 and 14 weeks has been shown to be an effective and reliable screening test for Down syndrome and trisomy 18. Benefits of first trimester screening include earlier identification of the pregnancy at risk for fetal aneuploidy and anatomic defect...

  13. Ethical dimensions of first-trimester fetal aneuploidy screening.

    Science.gov (United States)

    Chervenak, Frank A; McCullough, Laurence B

    2014-03-01

    Noninvasive first-trimester fetal aneuploidy screening provides pregnant women with risk assessment information early in pregnancy. Noninvasive first-trimester aneuploidy screening includes imaging of the fetus and maternal serum analyte and assessment of fetal genetic material in the maternal circulation. The ethical challenges of noninvasive first-trimester fetal aneuploidy screening concern the physician's role in the informed consent process for risk assessment, the goal of which is to empower pregnant women to make informed decisions about noninvasive aneuploidy screening. This article provides physicians with an ethical framework for the professionally responsible management of these ethical challenges and for those related to emerging technologies.

  14. Clinical implementation of routine screening for fetal trisomies in the UK NHS: cell-free DNA test contingent on results from first-trimester combined test.

    Science.gov (United States)

    Gil, M M; Revello, R; Poon, L C; Akolekar, R; Nicolaides, K H

    2016-01-01

    Cell-free DNA (cfDNA) analysis of maternal blood for detection of trisomies 21, 18 and 13 is superior to other methods of screening but is expensive. One strategy to maximize performance at reduced cost is to offer cfDNA testing contingent on the results of the first-trimester combined test that is used currently. The objectives of this study were to report the feasibility of implementing such screening, to examine the factors affecting patient decisions concerning their options for screening and decisions on the management of affected pregnancies and to report the prenatal diagnosis of fetal trisomies and outcome of affected pregnancies following the introduction of contingent screening. We examined routine clinical implementation of contingent screening in 11,692 singleton pregnancies in two National Health Service (NHS) hospitals in the UK. Women with a risk ≥ 1 in 100 (high-risk group) were offered options of invasive testing, cfDNA testing or no further testing, and those with a risk between 1 in 101 and 1 in 2500 (intermediate-risk group) were offered cfDNA testing or no further testing. The trisomic status of the pregnancies was determined by prenatal or postnatal karyotyping or by examination of the neonates. In the study population of 11,692 pregnancies, there were 47 cases of trisomy 21 and 28 of trisomies 18 or 13. Screening with the combined test followed by invasive testing for all patients in the high-risk group potentially could have detected 87% of trisomy 21 and 93% of trisomies 18 or 13, at a false-positive rate of 3.4%; the respective values for cfDNA testing in the high- and intermediate-risk groups were 98%, 82% and 0.25%. However, in the high-risk group, 38% of women chose invasive testing and 60% chose cfDNA testing; in the intermediate-risk group 92% opted for cfDNA testing. A prenatal diagnosis was made in 43 (91.5%) pregnancies with trisomy 21 and all pregnancies with trisomies 18 or 13. In many affected pregnancies the parents chose

  15. First trimester diagnosis and screening for fetal aneuploidy

    Science.gov (United States)

    Driscoll, Deborah A.; Gross, Susan J.

    2008-01-01

    Maternal serum screening for neural tube defects and fetal aneuploidy in the second trimester has been incorporated into obstetrical practice over the past two decades. Now, as a result of several multicenter trials, first trimester screening between 11 and 14 weeks has been shown to be an effective and reliable screening test for Down syndrome and trisomy 18. Benefits of first trimester screening include earlier identification of the pregnancy at risk for fetal aneuploidy and anatomic defects, in particular, cardiac anomalies, and the option of earlier diagnosis by chorionic villus sampling, if available. This policy updates the American College of Medical Genetics policy statement entitled Second Trimester Maternal Serum Screening for Fetal Open Neural Tube Defects and Aneuploidy (2004) and complements the sections of American College of Medical Genetic’s Standards and Guidelines for Clinical Genetics Laboratories entitled “Prenatal screening for Down syndrome that includes first trimester biochemistry and/or ultrasound measurements.” PMID:18197059

  16. Noninvasive Prenatal Screening of Fetal Aneuploidy without Massively Parallel Sequencing.

    Science.gov (United States)

    Xu, Chenming; Wang, Ting; Liu, Chao; Li, Hong; Chen, Xiaoyan; Zhu, Huanhuan; Chen, Songchang; Xin, Qiuhong; Tao, Jing; Huang, Liming; Jiang, Zhengwen

    2017-04-01

    Noninvasive prenatal screening (NIPS) using plasma cell-free DNA has gained tremendous popularity in the clinical assessment of fetal aneuploidy. Most, if not all, of these tests rely on complex and expensive massively parallel sequencing (MPS) techniques, hindering the use of NIPS as a common screening procedure. We have developed and optimized an MPS-independent noninvasive genetic test that can rapidly detect fetal aneuploidy at considerably lower costs. We used the high-throughput ligation-dependent probe amplification (HLPA) assay with standard z score statistics to identify the minute copy number change of targeted chromosomal regions. HLPA was modified from multiplex ligation-dependent probe amplification to allow quantification of up to 200 genomic loci in a single multiplex PCR. As a proof of principle, we conducted Down syndrome screening in 1182 women with singleton pregnancies [maternal age (SD): 32.7 (4.6)] using whole-genome sequencing-based NIPS and our method. Nineteen fetuses with trisomy 21 were detected by both methods and confirmed by karyotyping of amniotic fluid. Overall, our method showed 100.0% sensitivity (19/19) and 99.7% specificity (1076/1079) in trisomy 21 screening, generating a positive predictive value of 86.4% (19/22) and a 7.1% (84/1182) no-call rate. Our technique potentially opens new avenues for the development of inexpensive, yet effective, prenatal aneuploidy tests. The simplicity and accuracy of this method make it a good candidate for clinical implementation as a standard screening procedure. © 2016 American Association for Clinical Chemistry.

  17. Early Biochemical Screening for Fetal Aneuploidy in the First Trimester

    DEFF Research Database (Denmark)

    Tørring, Niels

    2013-01-01

    8+0 to 14+0 weeks, and clinical test performance of risk assesment was conducted. Results The in-between day imprecision of the Elecsys® free βhCG and PAPP-A assays were between 1.0 and 2.8%. Comparison (Passing/Bablok regression) of free βhCG and PAPP-A from Roche Elecsys® and the Brahms Kryptor...... with the standards for biochemical assays for prenatal screening set by the Fetal Medicine Foundation, with low assay imprecision, and a high clinical performance of prenatal screening for fetal trisomy in the first trimester....

  18. Screening for fetal chromosome abnormalities during the second trimester

    International Nuclear Information System (INIS)

    Dong Hui; Li Ming; Li Ping

    2005-01-01

    Objective: To develop a pre -natal screening program for fetal chromosome abnormalities based on risk values calculated from maternal serum markers levels during the second trimester. Methods: Serum levels of AFP, β-HCG, uE 3 were determined with CLIA in 1048 pregnant women during 14-21w gestation period and the results were analyzed with a specific software (screening program for Down' s syndrome developed by Beckman) for the risk rate. In those women defined as being of high risk rate, cells from amniotic fluid or umbilical cord blood were studied for karyotype analysis. Results: Of these 1048 women, 77 were designated as being of high risk rate for several chromosome abnormalities i.e. Down's syndrome, open spina bifida and trisomy -18 syndrome (overall positive rate 7.3%). Further fetal chromosome study in 31 of them revealed three proven cases of abnormality. Another cord blood study was performed in a calculated low risk rate case but with abnormal sonographic finding at 31 w gestation and proved to be abnormal (software study false negative). The remaining 46 high risk rate cases either refused future study (n=35) or were lost for follow-up (n=11). Fortunately, all the 35 women refused further study gave birth to normal babies without any chromosome abnormalities discovered on peripheral blood study. Besides, in a trial study, five high risk rate women were again evaluated a few weeks later but with tremendous difference between the results. Conclusion: The present program proves to be clinically useful but needs further study and revision. Many factors may influence the result of the analysis and the duration of gestation period in weeks should be as accurate as possible. At present, in order to avoid getting false negatives, we don't advise a second check in 'high risk' cases. (authors)

  19. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J

    1983-01-01

    with women without elevated risk. Spontaneous abortion rate and prematurity rate did not differ from rates expected without amniocentesis. It is concluded that current indications may be characterized as a mixture of evident high risk factors and factors with only a minor influence on risk. Indications......The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...

  20. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J

    1983-01-01

    with women without elevated risk. Spontaneous abortion rate and prematurity rate did not differ from rates expected without amniocentesis. It is concluded that current indications may be characterized as a mixture of evident high risk factors and factors with only a minor influence on risk. Indications...... who want it, is discussed. Screening for chromosome disease in all pregnancies is not without problems, but may be reasonable in some localities....

  1. Prenatal screening for fetal aneuploidy in singleton pregnancies.

    Science.gov (United States)

    Chitayat, David; Langlois, Sylvie; Douglas Wilson, R

    2011-07-01

    To develop a Canadian consensus document on maternal screening for fetal aneuploidy (e.g., Down syndrome and trisomy 18) in singleton pregnancies. Pregnancy screening for fetal aneuploidy started in the mid 1960s, using maternal age as the screening test. New developments in maternal serum and ultrasound screening have made it possible to offer all pregnant patients a non-invasive screening test to assess their risk of having a fetus with aneuploidy to determine whether invasive prenatal diagnostic testing is necessary. This document reviews the options available for non-invasive screening and makes recommendations for Canadian patients and health care workers. To offer non-invasive screening for fetal aneuploidy (trisomy 13, 18, 21) to all pregnant women. Invasive prenatal diagnosis would be offered to women who screen above a set risk cut-off level on non-invasive screening or to pregnant women whose personal, obstetrical, or family history places them at increased risk. Currently available non-invasive screening options include maternal age combined with one of the following: (1) first trimester screening (nuchal translucency, maternal age, and maternal serum biochemical markers), (2) second trimester serum screening (maternal age and maternal serum biochemical markers), or (3) 2-step integrated screening, which includes first and second trimester serum screening with or without nuchal translucency (integrated prenatal screen, serum integrated prenatal screening, contingent, and sequential). These options are reviewed, and recommendations are made. Studies published between 1982 and 2009 were retrieved through searches of PubMed or Medline and CINAHL and the Cochrane Library, using appropriate controlled vocabulary and key words (aneuploidy, Down syndrome, trisomy, prenatal screening, genetic health risk, genetic health surveillance, prenatal diagnosis). Results were restricted to systematic reviews, randomized controlled trials, and relevant observational

  2. No. 261-Prenatal Screening for Fetal Aneuploidy in Singleton Pregnancies.

    Science.gov (United States)

    Chitayat, David; Langlois, Sylvie; Wilson, R Douglas

    2017-09-01

    To develop a Canadian consensus document on maternal screening for fetal aneuploidy (e.g., Down syndrome and trisomy 18) in singleton pregnancies. Pregnancy screening for fetal aneuploidy started in the mid 1960s, using maternal age as the screening test. New developments in maternal serum and ultrasound screening have made it possible to offer all pregnant patients a non-invasive screening test to assess their risk of having a fetus with aneuploidy to determine whether invasive prenatal diagnostic testing is necessary. This document reviews the options available for non-invasive screening and makes recommendations for Canadian patients and health care workers. To offer non-invasive screening for fetal aneuploidy (trisomy 13, 18, 21) to all pregnant women. Invasive prenatal diagnosis would be offered to women who screen above a set risk cut-off level on non-invasive screening or to pregnant women whose personal, obstetrical, or family history places them at increased risk. Currently available non-invasive screening options include maternal age combined with one of the following: (1) first trimester screening (nuchal translucency, maternal age, and maternal serum biochemical markers), (2) second trimester serum screening (maternal age and maternal serum biochemical markers), or (3) 2-step integrated screening, which includes first and second trimester serum screening with or without nuchal translucency (integrated prenatal screen, serum integrated prenatal screening, contingent, and sequential). These options are reviewed, and recommendations are made. Studies published between 1982 and 2009 were retrieved through searches of PubMed or Medline and CINAHL and the Cochrane Library, using appropriate controlled vocabulary and key words (aneuploidy, Down syndrome, trisomy, prenatal screening, genetic health risk, genetic health surveillance, prenatal diagnosis). Results were restricted to systematic reviews, randomized controlled trials, and relevant observational

  3. [Analysis of non-invasive prenatal screening detection in fetal chromosome aneuploidy].

    Science.gov (United States)

    Cai, A J; Zhu, C F; Xue, S W; Cui, S Y; Qu, S Z; Liu, N; Kong, X D

    2017-11-25

    Objective: To evaluate the efficacy of non-invasive prenatal screening (NIPS) in the detection of fetal aneuploidies. Methods: Cell free DNA was sequenced in 5 566 pregnant women to identify the fetal aneuploidies in the First Affiliated Hospital of Zhengzhou University from January 1(st), 2015 to March 15(th), 2016. Among them, 5 230 (93.96%, 5 230/5 566) were singleton pregnancies and 336 (6.04%, 336/5 566) were twin pregnancies. In singleton pregnancies, 1 809 (34.59%, 1 809/5 230) were women with advanced maternal age, and 3 421 (65.41%, 3 421/5 230) were young women. The positive results of NIPS were validated by karyotyping through invasive procedures and neonatal outcomes were followed up by telephone. Results: Among the 5 566 women, 69 (1.24%, 69/5 566) got positive NIPS results, with 66 in singleton pregnancies and 3 in twin pregnancies. Two were monochorionic diamniotic twins and 1 was dichorionic twin pregnancy. The positive predictive value of NIPS for trisomy 21, 18 and 13 were 100.0%, 90.9% and 100.0%, and was 55.6% for sex chromosome aneuploidies. There was no false negative case found during the follow-up. In the advanced maternal age group and young women group, the prevalence rates of fetal chromosomal aneuploidies were 1.11%(20/1 809) and 0.94%(32/3 421), respectively. In the young women with soft markers in fetal ultrasound, the prevalence of fetal chromosomal aneuploidies was 1.44% (7/487), and in serum high risk women, it was 0.94% (7/747). In women with the serum screening risk with cut-off value, 0.89%(9/1 016) had fetal aneuploidies, and the prevalence was 0.77%(9/1 171) in volunteers. There was no statistically significant difference among these groups ( P= 0.636). Conclusions: There is no difference in the detection rate of fetal aneuploidies between high-risk women in serum screening and volunteers in NIPS. NIPS is more suitable as a first line screening test for women without fetal ultrasound abnormalities. It should be used carefully

  4. Maternal sickle cell trait and fetal hypoxia.

    Science.gov (United States)

    Manzar, S

    2000-01-01

    Patients with sickle cell trait (SCT) usually run a benign course. But they may develop vaso-occlusive crisis, which may lead to hypoxia. During these episodes, pregnant women with SCT may effect the developing fetus. This report describes an interesting finding of subtle degree of fetal hypoxia associated with maternal SCT. Twenty mothers with SCT were compared with 20 controls for the amount of circulating nucleated red blood cells (NRBC) and marker of fetal hypoxia at birth. Elevated number of circulating NRBC were noted in the cord blood of neonates born to mother with SCT as compared with controls, suggesting evidence of intrauterine fetal hypoxia. A larger prospective study is needed to elaborate further on this association.

  5. Identification of circulating fetal cell markers by microarray analysis

    DEFF Research Database (Denmark)

    Brinch, Marie; Hatt, Lotte; Singh, Ripudaman

    2012-01-01

    OBJECTIVE: Different fetal cell types have been found in the maternal blood during pregnancy in the past, but fetal cells are scarce, and the proportions of the different cell types are unclear. The objective of the present study was to identify specific fetal cell markers from fetal cells found...... identified by XY fluorescence in situ hybridization and confirmed by reverse-color fluorescence in situ hybridization were shot off microscope slides by laser capture microdissection. The expression pattern of a subset of expressed genes was compared between fetal cells and maternal blood cells using stem...

  6. Cell-free fetal DNA versus maternal serum screening for trisomy 21 in pregnant women with and without assisted reproduction technology: a prospective interventional study.

    Science.gov (United States)

    Costa, Jean-Marc; Letourneau, Alexandra; Favre, Romain; Bidat, Laurent; Belaisch-Allart, Joelle; Jouannic, Jean-Marie; Quarello, Edwin; Senat, Marie-Victoire; Broussin, Bernard; Tsatsaris, Vassilis; Demain, Adèle; Kleinfinger, Pascale; Lohmann, Laurence; Agostini, Hélène; Bouyer, Jean; Benachi, Alexandra

    2018-03-01

    PurposeCell-free DNA (cfDNA) as a primary screening test has been available for years but few studies have addressed this option in a prospective manner. The question is of interest after reports that maternal serum screening (MSS) is less accurate for pregnancies resulting from assisted reproduction technologies (ART) than for spontaneous pregnancies (SP).MethodsA prospective interventional study was designed to address the performances of cfDNA compared with MSS in pregnancies with or without ART. Each patient was offered both MSS and cfDNA testing. The primary analysis cohort ultimately included 794 patients with a spontaneous pregnancy (SP) (n = 472) or pregnancy obtained after ART (n = 322).ResultsOverall, the false-positive rate and positive predictive value were 6.6% and 8.8% for MSS but 0% and 100% for cfDNA. MSS false-positive rate and positive predictive values were clearly poorer in the ART group (11.7% and 2.6%) than in the SP group (3.2% and 21.1%). The global rates of invasive procedures were 1.9% (15/794) with cfDNA but 8.4% (65/794) if MSS alone was proposed.ConclusioncfDNA achieved better performance than MSS in both spontaneous and ART pregnancies, thus decreasing the number of invasive procedures. Our findings suggest that cfDNA should be considered for primary screening, especially in pregnancies obtained after ART.GENETICS in MEDICINE advance online publication, 1 March 2018; doi:10.1038/gim.2018.4.

  7. Fetal monitor for non-stress-test screening at home.

    Science.gov (United States)

    Horio, H; Murakami, M; Chiba, Y; Inada, H

    1998-01-01

    A fetal monitoring device developed for non-stress-test (NST) screening at home works on battery power, and is so small and lightweight (152 x 120 x 64 mm, 600 g) that a pregnant woman can monitor fetal Doppler ultra-sound and record fetal heart rate (FHR) and uterine contraction (UC) data on an attached memory IC card at any time and in any place away from a hospital. The physician can evaluate these data, transmitted via public telephone lines, using a built-in modem in the monitor. The combination of the memory IC card as a temporary storage device with the intermittent data transmission to the host provides endless data storage. The input-output relationship of the device was quantitatively evaluated using a Doppler ultrasound heart rate simulator. Forty pregnant women participated in an evaluation of this system. The total number of NST data transmissions was 648, and the total amount of data received was more than 6.7 Mbytes. Of the 648 transmissions, 475 were adequate for clinical interpretation. Of the 101 failed NST data transmissions, 85 resulted from patient handling errors. However, 82.4% of these errors resulted in reexamination and transfer of new data by the patients, who were aware of the insufficiency of the original data. The main cause of the noise in the data was zero-count data; this noise rate accounted for 4.1% of the data abnormalities. A questionnaire survey found that 96% of the participants wanted to use the monitor again in their next pregnancies, and 83% would recommend its use to pregnant friends. The system was easily used and accepted by pregnant women, and the NST data obtained were sufficient for clinical interpretation.

  8. Cell-free fetal DNA and cell-free total DNA levels in spontaneous abortion with fetal chromosomal aneuploidy.

    Directory of Open Access Journals (Sweden)

    Ji Hyae Lim

    Full Text Available Cell-free fetal DNA and cell-free total DNA in maternal circulation have been proposed as potential markers for noninvasive monitoring of the placental condition during the pregnancy. However, the correlation of and change in cell-free fetal DNA and cell-free total DNA in spontaneous abortion (SA with fetal chromosomal aneuploidy have not yet been reported. Therefore, we investigated cell-free fetal DNA and cell-free total DNA levels in SA women with fetal chromosomal aneuploidy.A nested case-control study was conducted with maternal plasma collected from 268 women in their first trimester of pregnancy. Subjects included 41 SA with normal fetal karyotype, 26 SA with fetal chromosomal aneuploidy, and 201 normal controls. The unmethylated PDE9A gene was used to measure the maternal plasma levels of cell-free fetal DNA. The GAPDH gene was used to measure the maternal plasma levels of cell-free total DNA. The diagnostic accuracy was measured using receiver-operating characteristic (ROC curves. Levels of cell-free fetal DNA and cell-free total DNA were significantly higher in both SA women with normal fetal karyotype and SA women with fetal chromosomal aneuploidy in comparison with the normal controls (P<0.001 in both. The correlation between cell-free fetal DNA and cell-free total DNA levels was stronger in the normal controls (r = 0.843, P<0.001 than in SA women with normal karyotype (r = 0.465, P = 0.002 and SA women with fetal chromosomal aneuploidy (r = 0.412, P = 0.037. The area under the ROC curve for cell-free fetal DNA and cell-free total DNA was 0.898 (95% CI, 0.852-0.945 and 0.939 (95% CI, 0.903-0.975, respectively.Significantly high levels of cell-free fetal DNA and cell-free total DNA were found in SA women with fetal chromosomal aneuploidy. Our findings suggest that cell-free fetal DNA and cell-free total DNA may be useful biomarkers for the prediction of SA with fetal chromosomal aneuploidy, regardless of fetal

  9. Fetal Cell Based Prenatal Diagnosis: Perspectives on the Present and Future

    Directory of Open Access Journals (Sweden)

    Morris Fiddler

    2014-09-01

    Full Text Available The ability to capture and analyze fetal cells from maternal circulation or other sources during pregnancy has been a goal of prenatal diagnostics for over thirty years. The vision of replacing invasive prenatal diagnostic procedures with the prospect of having the entire fetal genome in hand non-invasively for chromosomal and molecular studies for both clinical and research use has brought many investigators and innovations into the effort. While the object of this desire, however, has remained elusive, the aspiration for this approach to non-invasive prenatal diagnosis remains and the inquiry has continued. With the advent of screening by cell-free DNA analysis, the standards for fetal cell based prenatal diagnostics have been sharpened. Relevant aspects of the history and the current status of investigations to meet the goal of having an accessible and reliable strategy for capturing and analyzing fetal cells during pregnancy are reviewed.

  10. Towards Early Biochemical screening for Fetal Aneupliody in the First Trimester

    DEFF Research Database (Denmark)

    Tørring, Niels

    2011-01-01

    Objectives At Aarhus University Hospital, Denmark, the first trimester screening has been performed with the blood sample taken as early as gestational week 7 since 2003. We hereby present the status for the screening program. Methods: The study includes singleton pregnancies with complete first......: Screening for fetal aneuploidy can be performed with good results with the blood sample taken as early as the 7th week of gestation. Taking the blood sample before the 10th gestational week showed a high detection rate of fetal trisomy 21, with no difference in the detection of fetal trisomy 18, 13...

  11. Screening for fetal spina bifida by ultrasound examination in the first trimester of pregnancy using fetal biparietal diameter.

    Science.gov (United States)

    Bernard, Jean-Pierre; Cuckle, Howard S; Stirnemann, Julien J; Salomon, Laurent J; Ville, Yves

    2012-10-01

    Prenatal screening for aneuploidies is best achieved in the first trimester when there is no reliable screening test for spina bifida. Early ultrasound features may be too complex for routine screening. We assessed screening potential of simple and reproducible fetal biometric measurements at 11-14 weeks of gestation. A total of 34,951 unselected consecutive pregnancies included 18 with spina bifida. Another 28 cases were referred for assessment. Biometric measurements were expressed in multiples of the median for crown-rump length. Biparietal diameter (BPD) was smaller in spina bifida (P bifida aperta had a BPD bifida by identifying 5% of pregnancies for expert scanning in first- and second-trimester examinations of the fetal spine and cranium. Copyright © 2012 Mosby, Inc. All rights reserved.

  12. Screening in pregnancy for fetal or neonatal alloimmune thrombocytopenia: systematic review

    NARCIS (Netherlands)

    Kamphuis, M. M.; Paridaans, N.; Porcelijn, L.; de Haas, M.; van der Schoot, C. E.; Brand, A.; Bonsel, G. J.; Oepkes, D.

    2010-01-01

    Background Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a potentially devastating disease, which may lead to intracranial haemorrhage (ICH), with neurological damage as a consequence. In the absence of screening, FNAIT is only diagnosed after bleeding symptoms, with preventive options

  13. Comparison of Prenatal Risk Calculation (PRC) with PIA Fetal Database software in first-trimester screening for fetal aneuploidy.

    Science.gov (United States)

    Hörmansdörfer, C; Scharf, A; Golatta, M; Vaske, B; Corral, A; Hillemanns, P; Schmidt, P

    2009-02-01

    In February 2007 new software, Prenatal Risk Calculation (PRC), for calculating the risk of fetal aneuploidy was introduced in Germany. Our aim was to investigate its test performance and compare it with that of the PIA Fetal Database (PIA) software developed and used by The Fetal Medicine Foundation. Between 31 August 1999 and 30 June 2004 at the Women's Hospital of the Medical University of Hanover in Germany, 3120 singleton pregnancies underwent combined first-trimester screening at 11 + 0 to 13 + 6 weeks of gestation. Calculation of risk for fetal aneuploidy was computed prospectively using the PIA software. In a subsequent retrospective analysis, we recalculated risks for the 2653 of these datasets with known fetal outcome using the PRC software and compared the results. Of the 2653 datasets analyzed, 17 were cases of aneuploidy. At a cut-off of 1 : 230, for the detection of fetal aneuploidy, the respective sensitivity, false-positive rate and positive predictive value were 70.6%, 4.1% and 9.9% for PRC and 76.5%, 2.9% and 14.6% for PIA. At a cut-off of 1 : 300, the equivalent values were 70.6%, 5.6% and 7.5% for PRC and 76.5%, 4.0% and 11.0% for PIA. The differences in test performance between the two types of software were highly significant (P < 0.0001). The test performance of PRC was inferior to that of PIA, the sensitivity for detection of fetal aneuploidy being lower and the false-positive rate higher. Had PRC been employed prospectively in our study, 40% more women examined would have been offered unnecessarily an invasive procedure for fetal karyotyping.

  14. Fetal hemoglobin during infancy and in sickle cell adults | Edoh ...

    African Journals Online (AJOL)

    Background: Fetal hemoglobin has been implicated in the modulation of sickle cell crisis though it is functional during infancy. Objective: The purpose of this study was to determine the waning time of fetal hemoglobin (HbF) and its persistence in later life. Method: Ninety infants aged 0-12 months, admitted at hospital, were ...

  15. Reduced fetal androgen exposure compromises Leydig cell function in adulthood

    NARCIS (Netherlands)

    Teerds, K.J.; Keijer, J.

    2015-01-01

    Disruption of normal fetal development can influence functioning of organs and cells in adulthood. Circumstantial evidence suggests that subtle reductions in fetal androgen production may be the cause of adult male reproductive disorders due to reduced testosterone production. The mechanisms through

  16. Interstitial pregnancy undetected during earlier first-trimester screening for fetal aneuploidy at 13 weeks' gestation.

    Science.gov (United States)

    Sherer, David M; Dalloul, Mudar; Sokolovski, Margarita; Borawski, Dorota; Granderson, Freda; Abulafia, Ovadia

    2009-01-01

    First-trimester screening for fetal aneuploidy using nuchal translucency (NT), pregnancy-associated plasma protein A, free or total beta-hCG, and maternal age constitutes a very effective screening test for fetal Down syndrome. We describe a case in which a patient presented at 14 weeks' gestation with an acute abdomen 1 week after first-trimester screening (including NT measurement) performed elsewhere, which was negative for trisomies 21 and 18. Sonographic examination revealed an interstitial pregnancy with a singleton fetus with present cardiac activity, which had not been noted 1 week earlier at the time of earlier transabdominal NT measurement. This case indicates that successful acquisition of a NT measurement during first-trimester screening for fetal aneuploidy does not negate the rare possibility of an unusual ectopic pregnancy. 2008 Wiley Periodicals, Inc.

  17. Brief Communication: Maternal Plasma Autoantibodies Screening in Fetal Down Syndrome

    Directory of Open Access Journals (Sweden)

    Karol Charkiewicz

    2016-01-01

    Full Text Available Imbalance in the metabolites levels which can potentially be related to certain fetal chromosomal abnormalities can stimulate mother’s immune response to produce autoantibodies directed against proteins. The aim of the study was to determine the concentration of 9000 autoantibodies in maternal plasma to detect fetal Down syndrome. Method. We performed 190 amniocenteses and found 10 patients with confirmed fetal Down syndrome (15th–18th weeks of gestation. For the purpose of our control we chose 11 women without confirmed chromosomal aberration. To assess the expression of autoantibodies in the blood plasma, we used a protein microarray, which allows for simultaneous determination of 9000 proteins per sample. Results. We revealed 213 statistically significant autoantibodies, whose expression decreased or increased in the study group with fetal Down syndrome. The second step was to create a classifier of Down syndrome pregnancy, which includes 14 antibodies. The predictive value of the classifier (specificity and sensitivity is 100%, classification errors, 0%, cross-validation errors, 0%. Conclusion. Our findings suggest that the autoantibodies may play a role in the pathophysiology of Down syndrome pregnancy. Defining their potential as biochemical markers of Down syndrome pregnancy requires further investigation on larger group of patients.

  18. A systematic review of prenatal screening for congenital heart disease by fetal electrocardiography.

    Science.gov (United States)

    Verdurmen, Kim M J; Eijsvoogel, Noortje B; Lempersz, Carlijn; Vullings, Rik; Schroer, Christian; van Laar, Judith O E H; Oei, S Guid

    2016-11-01

    Congenital heart disease (CHD) is the most common severe congenital anomaly worldwide. Diagnosis early in pregnancy is important, but the detection rate by two-dimensional ultrasonography is only 65%-81%. To evaluate existing data on CHD and noninvasive abdominal fetal electrocardiography (ECG). A systematic review was performed through a search of the Cochrane Library, PubMed, and Embase for studies published up to April 2016 using the terms "congenital heart disease," "fetal electrocardiogram," and other similar keywords. Primary articles that described changes in fetal ECG among fetuses with CHD published in English were included. Outcomes of interest were changes in fetal ECG parameters observed for fetuses with congenital heart disease. Findings were reported descriptively. Only five studies described changes observed in the fetal electrocardiogram for fetuses with CHD, including heart rate, heart rate variability, and PR, QRS, and QT intervals. Fetal ECG reflects the intimate relationship between the cardiac nerve conduction system and the structural morphology of the heart. It seems particularly helpful in detecting the electrophysiological effects of cardiac anatomic defects (e.g. hypotrophy, hypertrophy, and conduction interruption). Fetal ECG might be a promising clinical tool to complement ultrasonography in the screening program for CHD. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Fetal Gender and Several Cytokines Are Associated with the Number of Fetal Cells in Maternal Blood - An Observational Study

    DEFF Research Database (Denmark)

    Schlütter, Jacob Mørup; Kirkegaard, Ida; Petersen, Olav Bjørn

    2014-01-01

    OBJECTIVE: To identify factors influencing the number of fetal cells in maternal blood. METHODS: A total of 57 pregnant women at a gestational age of weeks 11-14 were included. The number of fetal cells in maternal blood was assessed in 30 ml of blood using specific markers for both enrichment...... and subsequent identification. RESULTS: Participants carrying male fetuses had a higher median number of fetal cells in maternal blood than those carrying female fetuses (5 vs. 3, p = 0.04). Certain cytokines (RANTES, IL-2 and IL-5) were significantly associated with the number of fetal cells in maternal blood....... CONCLUSION: The number of fetal cells in maternal blood is associated with certain cytokines and fetal gender....

  20. Cell free fetal DNA testing in maternal blood of Romanian pregnant women

    Directory of Open Access Journals (Sweden)

    Viorica E Radoi

    2015-10-01

    Full Text Available Background: The discovery of circulating fetal DNA in maternal blood led to the discovery of new strategies to perform noninvasive testing for prenatal diagnosis. Objective: The purpose of the study was to detect fetal aneuploidy at chromosomes 13, 18, 21, X, and Y by analysis of fetal cell-free DNA from maternal blood, without endangering pregnancy. Materials and Methods: This retrospective study has been performed in Bucharest at Medlife Maternal and Fetal Medicine Department between 2013-2014. In total 201 women were offered noninvasive prenatal test. Maternal plasma samples were collected from women at greater than 9 weeks of gestation after informed consent and genetics counseling. Results: From 201 patients; 28 (13.93% had screening test with high risk for trisomy 21, 116 (57.71% had advanced maternal age, 1 (0.49% had second trimester ultrasound markers and the remaining 56 patients (27.86% performed the test on request. Of those patients, 189 (94.02% had a “low risk” result (99% risk all for trisomy 21 (T21. T21 was confirmed by amniocentesis in 1 patient and the other 4 patients declined confirmation. The 7 remaining patients (3.48% had a low fetal fraction of DNA. Conclusion: It is probably that prenatal diagnosis using fetal DNA in maternal blood would play an increasingly role in the future practice of prenatal testing because of high accuracy.

  1. Sensitivity of fetal RHD screening for safe guidance of targeted anti-D immunoglobulin prophylaxis: prospective cohort study of a nationwide programme in the Netherlands.

    Science.gov (United States)

    de Haas, Masja; Thurik, Florentine F; van der Ploeg, Catharina P B; Veldhuisen, Barbera; Hirschberg, Hoang; Soussan, Aicha Ait; Woortmeijer, Heleen; Abbink, Frithjofna; Page-Christiaens, Godelieve C M L; Scheffer, Peter G; Ellen van der Schoot, C

    2016-11-07

     To determine the accuracy of non-invasive fetal testing for the RHD gene in week 27 of pregnancy as part of an antenatal screening programme to restrict anti-D immunoglobulin use to women carrying a child positive for RHD DESIGN:  Prospectively monitoring of fetal RHD testing accuracy compared with serological cord blood typing on introduction of the test. Fetal RHD testing was performed with a duplex real time quantitative polymerase chain reaction, with cell-free fetal DNA isolated from 1 mL of maternal plasma The study period was between 4 July 2011 and 7 October 2012. The proportion of women participating in screening was determined.  Nationwide screening programme, the Netherlands. Tests are performed in a centralised setting.  25 789 RhD negative pregnant women.  Sensitivity, specificity, false negative rate, and false positive rate of fetal RHD testing compared with serological cord blood typing; proportion of technical failures; and compliance to the screening programme.  A fetal RHD test result and serological cord blood result were available for 25 789 pregnancies. Sensitivity for detection of fetal RHD was 99.94% (95% confidence interval 99.89% to 99.97%) and specificity was 97.74% (97.43% to 98.02%). Nine false negative results for fetal RHD testing were registered (0.03%, 95% confidence interval 0.01% to 0.06%). In two cases these were due to technical failures. False positive fetal RHD testing results were registered for 225 samples (0.87%, 0.76% to 0.99%). Weak RhD expression was shown in 22 of these cases, justifying anti-D immunoglobulin use. The negative and positive predictive values were 99.91% (95% confidence interval 99.82% to 99.95%) and 98.60% (98.40% to 98.77%), respectively. More than 98% of the women participated in the screening programme.  Fetal RHD testing in week 27 of pregnancy as part of a national antenatal screening programme is highly reliable and can be used to target both antenatal and postnatal anti

  2. Fetal Sex Determination Using Cell-Free Fetal Dna (cffDNA in Maternal Blood

    Directory of Open Access Journals (Sweden)

    I Nyoman Hariyasa Sanjaya

    2016-06-01

    Full Text Available Background: Prenatal test has routinely performed in antenatal care and has become a part of the obstetric care feature in many countries. Prenatal test is divided into screening and diagnostic test. Recently, the early noninvasive method in order to found and lessen the risk factors of pregnancy loss, has been studied. One of the methods is molecular test using cffDNA which has many screening purpose such as sex determination, aneuploidy, paternal inherited genetic disorder, fetus rhesus, and performed early at 7 weeks of pregnancy. Objective: The purpose of this study is to measure diagnostic value of cffDNA in determining fetal sex prenatally. Methods: In a diagnostic test study, 18 randomized samples were selected and divided based on fetal gender confirmed at birth. The group consisted of 9 pregnant women with male babies and 9 pregnant women with female babies. CffDNA then isolated from maternal blood sample and specific region in Y chromosome termed SRY is detected by PCR and electrophoresis. The data obtained analyzed both descriptively for baseline characteristic and analytically to determine its diagnostic value. Results: This study found significant correlation between SRY detection in cffDNA with male fetal phenotype (p<0.05. The sensitivity of the method is 100% with 89% specificity. In addition, we found 9.09 values for positive likelihood ratio (LR+ and 0 for negative likelihood ratio (LR-. Moreover, the result yielded 100% positive predictive value (PPV+ and 88.8% of negative predictive value (PPV-. Conclusion: This study proofed that cffDNA have a great diagnostic value to determine fetal sex prenatally. However, further study with several group of gestational age mother and better matching is required to further confirm the diagnostic potential of cffDNA 

  3. Sequential combined test, second trimester maternal serum markers, and circulating fetal cells to select women for invasive prenatal diagnosis.

    Directory of Open Access Journals (Sweden)

    Paolo Guanciali Franchi

    Full Text Available From January 1st 2013 to August 31st 2016, 24408 pregnant women received the first trimester Combined test and contingently offered second trimester maternal serum screening to identify those women who would most benefit from invasive prenatal diagnosis (IPD. The screening was based on first trimester cut-offs of ≥1:30 (IPD indicated, 1:31 to 1:899 (second trimester screening indicated and ≤1:900 (no further action, and a second trimester cut-off of ≥1:250. From January 2014, analysis of fetal cells from peripheral maternal blood was also offered to women with positive screening results. For fetal Down syndrome, the overall detection rate was 96.8% for a false-positive rate of 2.8% resulting in an odds of being affected given a positive result (OAPR of 1:11, equivalent to a positive predictive value (PPV of 8.1%. Additional chromosome abnormalities were also identified resulting in an OAPR for any chromosome abnormality of 1:6.6 (PPV 11.9%. For a sub-set of cases with positive contingent test results, FISH analysis of circulating fetal cells in maternal circulation identified 7 abnormal and 39 as normal cases with 100% specificity and 100% sensitivity. We conclude that contingent screening using conventional Combined and second trimester screening tests is effective but can potentially be considerably enhanced through the addition of fetal cell analysis.

  4. The impact of maternal obesity on completion of fetal anomaly screening.

    Science.gov (United States)

    Eastwood, Kelly-Ann; Daly, Ciara; Hunter, Alyson; McCance, David; Young, Ian; Holmes, Valerie

    2017-12-20

    To examine the impact of maternal obesity on completion of fetal anomaly screening. A retrospective analysis of 500 anomaly scans (19+0-21+6 weeks) was included. Women were categorised according to the World Health Organisation (WHO) body mass index (BMI) classification: normal weight (18.50-24.99 kg/m2), overweight (25.00-29.99 kg/m2), obese class I (30-34.99 kg/m2), obese class II (35.00-39.99 kg/m2) and obese class III (≥40.00 kg/m2). A fetal anomaly imaging scoring system was developed from the National Health Service (NHS) Fetal Anomaly Screening Programme standard to evaluate scans. Image quality deteriorated as BMI increased and was significantly different across the BMI categories (P<0.001). Performance was poorest in imaging of the fetal chest and was significantly different across BMI categories (P<0.001). In obese class III, 33% of four-chamber cardiac views and 38% of outflow tract views were not obtained. In total, 119 women (23.6%) had an incomplete scan. In obese class III, 44.1% of scans were incomplete compared with 10.2% in the normal BMI category (P<0.001). Of 117 women attending for repeat scans, 78.6% were complete, 11.1% were incomplete, 6.8% were advised to re-attend and 3.4% were referred to Fetal Medicine. Maternal obesity has a significant impact on completion of fetal anomaly screening.

  5. Fetal pancreatic beta-cell function in pregnancies complicated by maternal diabetes mellitus: relationship to fetal acidemia and macrosomia.

    Science.gov (United States)

    Salvesen, D R; Brudenell, J M; Proudler, A J; Crook, D; Nicolaides, K H

    1993-05-01

    Our purpose was to investigate the relationship between fetal pancreatic beta-cell function and fetal acidemia and macrosomia in pregnancies complicated by maternal diabetes mellitus. A cross-sectional study at the Harris Birthright Research Centre for Fetal Medicine, London, was performed. In 32 pregnancies complicated by maternal diabetes mellitus cordocentesis was performed at 36 to 39 weeks' gestation for the measurement of umbilical venous blood pH, PO2, PCO2, lactate, and glucose concentration; plasma insulin immunoreactivity; and insulin/glucose ratio. A reference range for plasma insulin and insulin/glucose ratio was constructed by studying fetal blood samples from 80 women who did not have diabetes mellitus. Mean umbilical venous blood pH was significantly lower and plasma insulin immunoreactivity and insulin/glucose ratio were significantly higher than the appropriate normal mean for gestation. There were significant associations between (1) maternal and fetal blood glucose concentrations (r = 0.95, p < 0.0001), (2) fetal blood glucose and plasma insulin immunoreactivity (r = 0.57, p < 0.01), (3) fetal plasma insulin immunoreactivity and blood pH (r = -0.39, p < 0.05), and (4) fetal insulin/glucose ratio and degree of macrosomia (r = 0.76, p < 0.0001). Fetal pancreatic beta-cell hyperplasia is implicated in the pathogenesis of both fetal acidemia and macrosomia.

  6. No. 348-Joint SOGC-CCMG Guideline: Update on Prenatal Screening for Fetal Aneuploidy, Fetal Anomalies, and Adverse Pregnancy Outcomes.

    Science.gov (United States)

    Audibert, Francois; De Bie, Isabelle; Johnson, Jo-Ann; Okun, Nanette; Wilson, R Douglas; Armour, Christine; Chitayat, David; Kim, Raymond

    2017-09-01

    To review the available prenatal screening options in light of the recent technical advances and to provide an update of previous guidelines in the field of prenatal screening. Health care providers involved in prenatal screening, including general practitioners, obstetricians, midwives, maternal fetal medicine specialists, geneticists, and radiologists. All pregnant women receiving counselling and providing informed consent for prenatal screening. Published literature was retrieved through searches of Medline, PubMed, and the Cochrane Library in and prior to March 2016 using an appropriate controlled vocabulary (prenatal diagnosis, amniocentesis, chorionic villi sampling, non-invasive prenatal screening) and key words (prenatal screening, prenatal genetic counselling). Results were restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies written in English and published from January 1985 to May 2016. Searches were updated on a regular basis and incorporated in the guideline. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical speciality societies. Evidence will be reviewed 5 years after publication to determine whether all or part of the guideline should be updated. However, if important new evidence is published prior to the 5-year cycle, the review process may be accelerated for a more rapid update of some recommendations. Copyright © 2017 The Society of Obstetricians and Gynaecologists of Canada/La Société des obstétriciens et gynécologues du Canada. Published by Elsevier Inc. All rights reserved.

  7. Fetal adrenal gland volume and preterm birth: a prospective third-trimester screening evaluation.

    Science.gov (United States)

    Hoffman Sage, Yael; Lee, Lydia; Thomas, Ann M; Benson, Carol B; Shipp, Thomas D

    2016-01-01

    Given the importance of the fetal adrenal gland in producing hormones critical to labor, we sought to evaluate whether sonographic three-dimensional measurements of the adrenal gland are a useful screening tool for spontaneous preterm birth (SPTB). We prospectively screened 128 non-anomalous singletons from 24 to 36 weeks' gestation with volumetric measurements of the fetal adrenal gland at their indicated antenatal sonogram. Labor and delivery outcomes were assessed and compared with respect to adrenal volume. When corrected for estimated fetal weight, the 11 women (9%) who delivered following SPTB had smaller adrenals than those who did not, 0.33 cm(3)/kg compared with 0.57 cm(3)/kg, respectively (p = 0.006). There was no difference in volumes between those who delivered by SPTB within 7 days or greater than 14 days from measurement (0.34 cm(3)/kg versus 0.33 cm(3)/kg, p = 0.79). Among women at increased risk of SPTB, those with SPTB had smaller adrenals than those who did not: 0.32 cm(3)/kg versus 0.53 cm(3)/kg, p = 0.06. We found fetal adrenal glands significantly smaller for those delivering preterm. Given the prior literature and our asymptomatic population, our data support multiple pathways leading to SPTB.

  8. Noninvasive prenatal screening for fetal common sex chromosome aneuploidies from maternal blood.

    Science.gov (United States)

    Zhang, Bin; Lu, Bei-Yi; Yu, Bin; Zheng, Fang-Xiu; Zhou, Qin; Chen, Ying-Ping; Zhang, Xiao-Qing

    2017-04-01

    Objective To explore the feasibility of high-throughput massively parallel genomic DNA sequencing technology for the noninvasive prenatal detection of fetal sex chromosome aneuploidies (SCAs). Methods The study enrolled pregnant women who were prepared to undergo noninvasive prenatal testing (NIPT) in the second trimester. Cell-free fetal DNA (cffDNA) was extracted from the mother's peripheral venous blood and a high-throughput sequencing procedure was undertaken. Patients identified as having pregnancies associated with SCAs were offered prenatal fetal chromosomal karyotyping. Results The study enrolled 10 275 pregnant women who were prepared to undergo NIPT. Of these, 57 pregnant women (0.55%) showed fetal SCA, including 27 with Turner syndrome (45,X), eight with Triple X syndrome (47,XXX), 12 with Klinefelter syndrome (47,XXY) and three with 47,XYY. Thirty-three pregnant women agreed to undergo fetal karyotyping and 18 had results consistent with NIPT, while 15 patients received a normal karyotype result. The overall positive predictive value of NIPT for detecting SCAs was 54.54% (18/33) and for detecting Turner syndrome (45,X) was 29.41% (5/17). Conclusion NIPT can be used to identify fetal SCAs by analysing cffDNA using massively parallel genomic sequencing, although the accuracy needs to be improved particularly for Turner syndrome (45,X).

  9. Risk of fetal loss associated with invasive testing following combined first-trimester screening for Down syndrome

    DEFF Research Database (Denmark)

    Wulff, C. B.; Gerds, T. A.; Rode, L

    2016-01-01

    OBJECTIVE: To assess prospectively the risk of fetal loss associated with chorionic villus sampling (CVS) and amniocentesis (AC) following combined first-trimester screening (cFTS) for Down syndrome. METHODS: This was a nationwide population-based study (Danish Fetal Medicine Database, 2008...

  10. Risk of Fetal Loss Associated With Invasive Testing Following Combined First-Trimester Screening for Down Syndrome

    DEFF Research Database (Denmark)

    Wulff, C. B.; Gerds, T. A.; Rode, L.

    2016-01-01

    from being based on maternal age to combined first-trimester screening (cFTS) for trisomy 21. The aim of the study was to assess prospectively the risk of fetal loss associated with CVS and AC after cFTS for Down syndrome. A nationwide population-based study (Danish Fetal Medicine Database, 2008...

  11. T cell progenitors in the mouse fetal liver

    International Nuclear Information System (INIS)

    Rabinowich, H.; Umiel, T.; Globerson, A.

    1983-01-01

    Fourteen-day mouse fetal liver was found to contain cells capable of giving rise to T as well as B cell functions. The experimental system consisted of congenic C3H/DiSn and (C3H/DiSn X C3H.SW)F1 lethally irradiated (900 R) mice reconstituted with C3H/DiSn fetal liver or bone marrow cells. Assays included thyroid allograft rejection as well as in vitro measurement of reactivity to phytohemagglutinin (PHA) and concanavalin A (Con A) and in a mixed lymphocyte culture (MLC) system in spleen, lymph node, and thymus cells. The fetal liver chimeras were found to become as capable as the bone marrow chimeras in responding in these various assays. The T cell responses lagged behind the responses to the B cell mitogens dextran sulfate (DXS) and lipopolysaccharide (LPS) (30 days after reconstitution, as compared with 14 days for DXS and 21 for LPS). The reacting cells were of the donor genotype, as revealed after treatment with C3H/DiSn (H-2k) anti-C3H.SW (H-2b) congenic sera. T cell responses were not manifest in thymectomized (TX) chimeras. Hence, the liver seems to contain cells capable of developing into T cell lineages in a thymus-dependent process

  12. Fetal liver stromal cells promote hematopoietic cell expansion

    International Nuclear Information System (INIS)

    Zhou, Kun; Hu, Caihong; Zhou, Zhigang; Huang, Lifang; Liu, Wenli; Sun, Hanying

    2009-01-01

    Future application of hematopoietic stem and progenitor cells (HSPCs) in clinical therapies largely depends on their successful expansion in vitro. Fetal liver (FL) is a unique hematopoietic organ in which hematopoietic cells markedly expand in number, but the mechanisms involved remain unclear. Stromal cells (StroCs) have been suggested to provide a suitable cellular environment for in vitro expansion of HSPCs. In this study, murine StroCs derived from FL at E14.5, with a high level of Sonic hedgehog (Shh) and Wnt expression, were found to have an increased ability to support the proliferation of HSPCs. This effect was inhibited by blocking Shh signaling. Supplementation with soluble Shh-N promoted the proliferation of hematopoietic cells by activating Wnt signaling. Our findings suggest that FL-derived StroCs support proliferation of HSPCs via Shh inducing an autocrine Wnt signaling loop. The use of FL-derived StroCs and regulation of the Shh pathway might further enhance HPSC expansion.

  13. Towards Early Biochemical screening for Fetal Aneupliody in the First Trimester

    DEFF Research Database (Denmark)

    Tørring, Niels

    2011-01-01

    trimester screening and the blood sample taken between 7 weeks + 5 days to 13 weeks + 6 days from November 2003 to March 2011. Results: 159 out of 173 cases of trisomy 21 were diagnosed in the first trimester screening (detection rate 92%). When the blood sample was taken before the 10th gestational week......, the detection rate of trisomy 21 was 96% (99 out of 103), whereas 86% were detected (50 out of 60) after 10th week (Chi square = 0.03). For trisomy 18 and trisomy 13, 26 out of 32 (81%) were detected before 10th gestational week, and 9 out of 13 (69%) after the 10th gestational week (N.S). Conclusions......: Screening for fetal aneuploidy can be performed with good results with the blood sample taken as early as the 7th week of gestation. Taking the blood sample before the 10th gestational week showed a high detection rate of fetal trisomy 21, with no difference in the detection of fetal trisomy 18, 13...

  14. The number of fetal cells in maternal blood is associated to exercise and fetal gender

    DEFF Research Database (Denmark)

    Schlütter, Jacob Mørup; Kirkegaard, Ida; Christensen, Connie Britta

    Introduction: We have established a robust method to specifically identify and isolate a placental fetal cell in maternal blood (fcmbs) at a gestational age of 12 weeks. The concentration of these cells, however, varies considerably among pregnant women (median 3 fcmbs/30 mL blood, range 0......-18), which is a challenge for the implementation of the method for prenatal diagnostic purposes. We conducted a study to identify factors influencing the number of fcmbs at a gestational age of 11-14 weeks. Methods: 59 pregnant women at weeks 11-14 were included, and information about lifestyle and daily...

  15. [Risk assessment for fetal trisomy 21 based on nuchal translucency measurement and biochemical screening at 11-13 weeks.].

    Science.gov (United States)

    Harðardóttir, H

    2001-05-01

    Screening for fetal aneuploidy during the first trimester using fetal nuchal translucency measurement and maternal serum free ss-hCG (ss-human chorionic gonadotropin) and PAPP-A (pregnancy associated plasma protein A) is commonly practised. An approach with a one stop clinic for assessment of risk for fetal anomalies, where pre-test counseling, blood test, ultrasound and post-test counseling is offered in one hour visit is described. Based on maternal age, biochemistry and fetal nuchal translucency measurement an estimated risk for fetal trisomies 13,18 and 21 is calculated. The main benefit of this approach in screening for fetal aneuploidy is the short turnaround time, with immediate results and a low screen positive rate. This approach leads to diagnosis of the majority (95%) of fetal aneuploidy cases. If screening is positive a diagnostic test is available with chorionic villous sampling or amniocentesis. In Iceland, fetal karyotyping is offered to women 35 years and older and performed during the second trimester, but by using this approach prenatal diagnosis can be moved to the first trimester and also offered to women of all ages. A screening approach with a series of steps from 10-15 weeks, including maternal blood test at 10 and again at 15 weeks, as well as an ultrasound and nuchal translucency measurement at 11-13 weeks, with integrated results at 15+ weeks has been proposed. This method offers even lower screen positive rate (1%) while detection rates of fetal aneuploides are high (>90%) but it requires four visits instead of one and the prolonged approach is likely to cause excess anxiety for the parents to be. If all women are to be offered prenatal sreening in the first trimester the structure of prenatal care in Iceland needs some modifications including scheduling the first prenatal visit at 8-10 weeks and teaching healthcare providers counseling regarding prenatal testing.

  16. Maternal attitude towards first trimester screening for fetal abnormalities.

    Science.gov (United States)

    Maiz, Nerea; Burgos, Jorge; Barbazán, Maria José; Recio, Virginia; Martínez-Astorquiza, Txanton

    2016-05-01

    To explore the maternal attitude towards the screening for structural abnormalities at the 11-13-week scan, according to the severity of the abnormality. A secondary aim was to analyse which maternal characteristics influence in the maternal response. This is a descriptive study based on the responses to 300 self-administrated questionnaires completed immediately before routine ultrasounds scan. A totally of 296 (98.7%) women participated in the study. If the baby had any abnormality 93.9% would prefer to know at 12 weeks, 96.6% if the abnormality was lethal, 95.3% if the abnormality involves severe handicap, 91.2% if the abnormality can only be suspected, but not confirmed until the pregnancy is more advanced (16 or 20 weeks), 77.0% if the abnormality was minor and 79.4% women would like to know at 12 weeks if the baby appeared normal. Maternal age, gestational age at the time of the questionnaire and maternal attitude towards termination of pregnancy were the only factors affecting maternal responses. Pregnant women prefer to be informed in the first trimester about any abnormality in their fetuses, even in cases of minor or only suspected abnormalities. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  17. A new marker set that identifies fetal cells in maternal circulation with high specificity

    DEFF Research Database (Denmark)

    Hatt, Lotte; Brinch, Marie; Singh, Ripudaman

    2014-01-01

    were used for testing the marker-set CD105 and CD141 for fetal cell enrichment. Fetal cell candidates were subsequently stained by a cocktail of cytokeratin antibodies, and the gender of the fetal cells was explored by fluorescence in situ hybridization (FISH) of the X and Y chromosomes. RESULTS: Fetal...... cell candidates could be detected in 91% of the samples, and in 85% of the samples, it was possible to obtain X and Y chromosomal FISH results for gender determination. The concordance between gender determined by FISH on fetal cells in maternal blood and gender found at birth reached 100% if three...

  18. Methods for Screening Live Cells.

    Science.gov (United States)

    Gordeev, A A; Chetverin, A B

    2018-01-01

    Cell screening or, in other words, identification of cells with certain properties is now increasingly used in scientific and medical research, e.g., in diagnostics, drug testing, and production of cell clones with desired characteristics. In this review, we discuss existing methods of cell screening and their classification according to the cell presentation format. We describe the principles of the one-dimensional and two-dimensional formats and compare the main advantages and drawbacks of these formats. The first part describes the methods based on the 2D-format of cell presentation, when cells are immobilized in the same plane by various techniques. The second part describes the methods of the 1D-screening, when cells are aligned in a line in a stream of fluid and scanned one-by-one while passing through a detector. The final part of the review describes the method of high-performance cell analysis based on the merged gel technique. This technique combines the advantages of both 1D and 2D formats and, according to the authors, might become an effective alternative to many modern methods of cell screening.

  19. Screening in high-risk group of gestational diabetes mellitus with its maternal and fetal outcomes

    Directory of Open Access Journals (Sweden)

    Angadi Rajasab Nilofer

    2012-01-01

    Full Text Available Background: Gestational diabetes mellitus (GDM is a metabolic disorder defined as glucose intolerance with the onset or first recognition during pregnancy. Women with GDM are at increased risk for adverse obstetric and perinatal outcome. The complications associated with GDM can be prevented by early recognition, intense monitoring and proper treatment. Aims: The present study was done to screen the high-risk pregnancy group for GDM, to find the incidence of abnormal results on screening and to correlate the abnormal results with the maternal and fetal outcomes. The study was done in a tertiary care hospital and teaching institute. It was a prospective cohort study. Materials and Methods: Selective screening for GDM was done in 150 pregnant women with high-risk factors. Screening was done with 50 g glucose challenge test (GCT after 18 weeks, and if GCT was negative then the test was repeated after 28 weeks of pregnancy. The patients who were having an abnormal GCT were subjected to 100 g oral glucose tolerance test (OGTT. All GDM patients were followed up and treated with diet and/or insulin therapy till delivery to know maternal and fetal outcomes. The period of study was from April 2008 to March 2009. Results: 7.3% of study population was OGCT positive. 6% of the study population was OGTT positive. Age >25 years, obesity, family history of DM, and past history of GDM were the risk factors significantly associated with GDM. One newborn had hypoglycemia and one had hyperbilirubinemia. The fetal and maternal outcome in GDM patients was good in our study due to early diagnosis and intervention. Conclusion: Women with GDM are at an increased risk for adverse obstetric and perinatal outcome. The increased morbidity in GDM is preventable by meticulous antenatal care.

  20. Contingent non-invasive prenatal testing: an opportunity to improve non-genetic aspects of fetal aneuploidy screening.

    Science.gov (United States)

    Gyselaers, Wilfried; Hulstaert, Frank; Neyt, Mattias

    2015-12-01

    Several countries today struggle with suboptimal performances in many aspects of the fetal aneuploidy screening process and consider introducing non-invasive prenatal screening (NIPT) as a solution. In this study, costs and benefits of different scenarios for contingent NIPT screening in Belgium are evaluated with respect to partial redistribution of the national screening budget into quality improving measures for those screening activities that will be maintained when full NIPT screening is implemented. Data from the Belgian National Institute for Health and Disability Insurance and the Study Centre for Perinatal Epidemiology were used in modeled calculations of medical and economic impact of NIPT after prior conventional screening (1) at thresholds 1:300 and 1:600, and (2) at current and improved screening sensitivity. Contingent NIPT screening under current screening conditions would maintain today's 7.9(0)/000 live birth prevalence of Down syndrome (LBPD) at an 11% reduction of overall short-term costs. Lowering the screening threshold to 1:600 or increasing sensitivity by 10% would reduce LBPD to 7(0)/000 at a maximum 3% increase of overall short-term costs. Today, in Belgium and in many other countries, full NIPT screening is considered too expensive for immediate introduction into the national fetal aneuploidy screening program. Contingent NIPT screening is both clinically and economically beneficial. A temporary contingent NIPT protocol allows for reinvesting economic savings into optimization of those screening aspects, which are to be maintained in parallel to full NIPT screening. © 2015 John Wiley & Sons, Ltd.

  1. Gene expression profiling in a mouse model identifies fetal liver- and placenta-derived potential biomarkers for Down syndrome screening

    NARCIS (Netherlands)

    Pennings, J.L.A.; Rodenburg, W.; Imholz, S.; Koster, M.P.H.; van Oostrom, C.T.M.; Breit, T.M.; Schielen, P.C.J.I.; de Vries, A.

    2011-01-01

    Background: As a first step to identify novel potential biomarkers for prenatal Down Syndrome screening, we analyzed gene expression in embryos of wild type mice and the Down Syndrome model Ts1Cje. Since current Down Syndrome screening markers are derived from placenta and fetal liver, these tissues

  2. New screen on the block: non-invasive prenatal testing for fetal chromosomal abnormalities.

    Science.gov (United States)

    Filoche, Sara; Lawton, Beverley; Beard, Angela; Dowell, Anthony; Stone, Peter

    2017-12-01

    Non-invasive prenatal testing (NIPT) is a new screen for fetal chromosomal abnormalities. It is a screening test based on technology that involves the analysis of feto-placental DNA that is present in maternal blood. This DNA is then analysed for abnormalities of specific chromosomes (eg 13, 18, 21, X, Y). NIPT has a much higher screening capability for chromosomal abnormalities than current combined first trimester screening, with ~99% sensitivity for trisomy 21 (Down syndrome) and at least a 10-fold higher positive predictive value. The low false-positive rate (1-3%) is one of the most advertised advantages of NIPT. In practice, this could lead to a significant reduction in the number of false-positive tests and the need for invasive diagnostic procedures. NIPT is now suitable for singleton and twin pregnancies and can be performed from ~10 weeks in a pregnancy. NIPT is not currently publicly funded in most countries. However, the increasing availability of NIPT commercially will likely lead to an increase in demand for this as a screening option. Given the high numbers of women who visit a general practitioner (GP) in their first trimester, GPs are well-placed to also offer NIPT as a screening option. A GP's role in facilitating access to this service will likely be crucial in ensuring equity in access to this technology, and it is important to ensure that they are well supported to do so.

  3. A modified Delphi study of screening for fetal alcohol spectrum disorders in Australia

    Directory of Open Access Journals (Sweden)

    Watkins Rochelle E

    2013-01-01

    Full Text Available Abstract Background There is little reliable information on the prevalence of fetal alcohol spectrum disorders (FASD in Australia and no coordinated national approach to facilitate case detection. The aim of this study was to identify health professionals’ perceptions about screening for FASD in Australia. Method A modified Delphi process was used to assess perceptions of the need for, and the process of, screening for FASD in Australia. We recruited a panel of 130 Australian health professionals with experience or expertise in FASD screening or diagnosis. A systematic review of the literature was used to develop Likert statements on screening coverage, components and assessment methods which were administered using an online survey over two survey rounds. Results Of the panel members surveyed, 95 (73% responded to the questions on screening in the first survey round and, of these, 81 (85% responded to the second round. Following two rounds there was consensus agreement on the need for targeted screening at birth (76% and in childhood (84%. Participants did not reach consensus agreement on the need for universal screening at birth (55% or in childhood (40%. Support for targeted screening was linked to perceived constraints on service provision and the need to examine the performance, costs and benefits of screening. For targeted screening of high risk groups, we found highest agreement for siblings of known cases of FASD (96% and children of mothers attending alcohol treatment services (93%. Participants agreed that screening for FASD primarily requires assessment of prenatal alcohol exposure at birth (86% and in childhood (88%, and that a checklist is needed to identify the components of screening and criteria for referral at birth (84% and in childhood (90%. Conclusions There is an agreed need for targeted but not universal screening for FASD in Australia, and sufficient consensus among health professionals to warrant development and

  4. Fetal stem cells and skeletal muscle regeneration: a therapeutic approach

    Directory of Open Access Journals (Sweden)

    Michela ePozzobon

    2014-08-01

    Full Text Available More than 40% of the body mass is represented by muscle tissue, which possesses the innate ability to regenerate after damage through the activation of muscle specific stem cell, namely satellite cells. Muscle diseases, in particular chronic degenerative state of skeletal muscle such as dystrophies, lead to a perturbation of the regenerative process, which causes the premature exhaustion of satellite cell reservoir due to continue cycles of degeneration/regeneration. Nowadays, the research is focused on different therapeutic approaches, ranging from gene and cell to pharmacological therapy, but still there is not a definitive cure in particular for genetic muscle disease. Taking this in mind, in this article we will give special consideration to muscle diseases and the use of fetal derived stem cells as new approach for therapy. Cells of fetal origin, from cord blood to placenta and amniotic fluid, can be easily obtained without ethical concern, expanded and differentiated in culture, and possess immunemodulatory properties. The in vivo approach in animal models can be helpful to study the mechanism underneath the operating principle of the stem cell reservoir, namely the niche, which holds great potential to understand the onset of muscle pathologies.

  5. Cell-free placental DNA beyond Down syndrome: Lessons learned from fetal RHD genotyping

    NARCIS (Netherlands)

    Thurik, F.F.

    2016-01-01

    In this thesis research is presented on cell-free fetal DNA (cffDNA), which is present in plasma and serum of pregnant women. This fetal DNA can be used for fetal genotyping, but may also give indirect information on pregnancy and pregnancy outcome. The research consists of two sections. In the

  6. Fetal red blood cell parameters in thalassemia and hemoglobinopathies.

    Science.gov (United States)

    Karnpean, Rossarin; Fucharoen, Goonnapa; Fucharoen, Supan; Ratanasiri, Thawalwong

    2013-01-01

    With the lack of fetal blood specimens in routine practice, little is known about red blood cell (RBC) parameters of fetuses with various thalassemia syndromes. This study aimed to describe these in various forms of thalassemia. The study was performed on 93 fetal blood specimens obtained from pregnant women by cordocentesis during 18-24 weeks of gestation. RBC parameters were recorded on automated analyzer. Hemoglobin (Hb) and DNA analyses were performed for definite genotyping. No significant difference in RBC parameters was observed between non-thalassemic fetuses and those with β-thalassemia trait, Hb E trait, homozygous Hb E and β-thalassemia/Hb E disease. However, in those with α(0)-thalassemia trait and double heterozygous α(0)-thalassemia/Hb E, slight reduction in mean corpuscular volume (MCV) was noted. Fetuses with the Hb H disease showed significant reductions in Hb, MCV and mean corpuscular Hb (MCH). Marked reductions in Hb, hematocrit, MCH and mean cell Hb concentration and increased RBC distribution width with numerous nucleated RBC were clearly observed in Hb Bart's hydrops fetalis. Simple analysis of fetal RBC parameters is useful for making presumptive prenatal diagnosis of α-thalassemia syndromes including Hb H disease and Hb Bart's hydrops fetalis which can then be confirmed by Hb and DNA analyses. Copyright © 2013 S. Karger AG, Basel.

  7. Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells.

    Science.gov (United States)

    Kilcoyne, Karen R; Smith, Lee B; Atanassova, Nina; Macpherson, Sheila; McKinnell, Chris; van den Driesche, Sander; Jobling, Matthew S; Chambers, Thomas J G; De Gendt, Karel; Verhoeven, Guido; O'Hara, Laura; Platts, Sophie; Renato de Franca, Luiz; Lara, Nathália L M; Anderson, Richard A; Sharpe, Richard M

    2014-05-06

    Fetal growth plays a role in programming of adult cardiometabolic disorders, which in men, are associated with lowered testosterone levels. Fetal growth and fetal androgen exposure can also predetermine testosterone levels in men, although how is unknown, because the adult Leydig cells (ALCs) that produce testosterone do not differentiate until puberty. To explain this conundrum, we hypothesized that stem cells for ALCs must be present in the fetal testis and might be susceptible to programming by fetal androgen exposure during masculinization. To address this hypothesis, we used ALC ablation/regeneration to identify that, in rats, ALCs derive from stem/progenitor cells that express chicken ovalbumin upstream promoter transcription factor II. These stem cells are abundant in the fetal testis of humans and rodents, and lineage tracing in mice shows that they develop into ALCs. The stem cells also express androgen receptors (ARs). Reduction in fetal androgen action through AR KO in mice or dibutyl phthalate (DBP) -induced reduction in intratesticular testosterone in rats reduced ALC stem cell number by ∼40% at birth to adulthood and induced compensated ALC failure (low/normal testosterone and elevated luteinizing hormone). In DBP-exposed males, this failure was probably explained by reduced testicular steroidogenic acute regulatory protein expression, which is associated with increased histone methylation (H3K27me3) in the proximal promoter. Accordingly, ALCs and ALC stem cells immunoexpressed increased H3K27me3, a change that was also evident in ALC stem cells in fetal testes. These studies highlight how a key component of male reproductive development can fundamentally reprogram adult hormone production (through an epigenetic change), which might affect lifetime disease risk.

  8. Fetal cells in the pregnant mouse are diverse and express a variety of progenitor and differentiated cell markers.

    Science.gov (United States)

    Fujiki, Yutaka; Johnson, Kirby L; Peter, Inga; Tighiouart, Hocine; Bianchi, Diana W

    2009-07-01

    To better understand fetomaternal cell trafficking during pregnancy, we used a mouse model to determine the cell surface markers expressed on fetal cells, based on the hypothesis that fetal progenitor cells have the capacity to repair maternal organs, whereas more differentiated cells might initiate graft versus host disease. Wild-type females were mated to either homozygous or hemizygous transgenic males and euthanized in the peripartum period. Using dual color flow cytometry, we analyzed fetal transgene positive cells for the presence of nine markers (ITGAM, ITGB1, PECAM, CD34, CD44, PTPRC, ENG, SLAMF1, and CXCR4) to begin to identify the phenotype and degree of differentiation of fetal cells in nine maternal organs (lung, liver, spleen, blood, bone marrow, kidney, heart, thymus, and brain). Fetal cells were found in all maternal organs following either type of mating, albeit always at a higher frequency following mating with homozygous males. Some organs (e.g., lung and liver) had a wide variety of fetal cell markers present, while other organs (e.g., bone marrow and spleen) had a skewed distribution of fetal cell markers. Fetal cells in the murine pregnant female are diverse. Our results suggest that the fetal cells comprise a mixed population of progenitor and differentiated cells, with different relative proportions in different maternal organs. Future studies will address whether fetal cells cross the placental barrier in a differentiated state or as a homogenous population and subsequently differentiate in target maternal organs.

  9. Is it time for Newborn Screening for Fetal Alcohol Spectrum Disorders: A Commentary?

    Directory of Open Access Journals (Sweden)

    Kenneth A PASS

    2009-11-01

    Full Text Available Fetal Alcohol Spectrum Disorder (FASD is one of the most common causes of acquired mental retardation in the United States and worldwide. The fetal brain is highly susceptible to the teratogenic effects of alcohol from maternal consumption during pregnancy resulting in newborns with mental deficits and congenital malformations. FAS diagnosis is difficult to diagnose in newborns where distinct anatomical defects are not apparent from mothers of moderate to light alcohol use. Hence, medical diagnoses are often not ascertained until mid-childhood after irreparable brain damage has already occurred. Such infants will have been deprived of available socioclinical interventions, trainings, measures, and future treatments that may someday be implemented soon after birth. Presently, there are no FASD newborn biomarker screening programs in place despite cost benefit analyses revealing an annual societal cost of $1.3 million per FASD incident case. Since newborn biomarkers have been reported in the biomedical literature, can we afford not to implement newborn screening for FASD?

  10. Foreign fetal cells persist in the maternal circulation.

    Science.gov (United States)

    Williams, Zev; Zepf, Dimity; Longtine, Janina; Anchan, Raymond; Broadman, Betsy; Missmer, Stacey A; Hornstein, Mark D

    2009-06-01

    To determine whether allogenic fetal cells resulting from donor egg pregnancies persist in maternal circulation. Nested polymerase chain reaction (PCR) amplification of the DYS14 sequence, a region of the Y chromosome, from DNA purified from peripheral blood cells. Academic medical center. Healthy 18-60-year-old women who have had donor egg pregnancies resulting in a male offspring (n = 11) or, as a control, female offspring (n = 8), at least 1 year previously and without any other source for male cells in their peripheral blood or a healthy male. None. Detection of DYS14 sequence by nested PCR. DYS14 was detected in 5/11 (45%) of women who had donor egg pregnancies resulting in a male offspring, but in 0/8 (0) of women who had donor egg pregnancies resulting in a female offspring. The longest interval between delivery of a male offspring and detection of the DYS14 gene was 9 years. Unmatched, allogenic fetal cells from donor egg pregnancies are able to persist in the circulation of healthy women for at least 9 years after delivery. This implies a novel mechanism by which immunologic detection is avoided by these cells and may impact on how they may be used for regenerative and transplant medicine.

  11. Pre-analytical conditions in non-invasive prenatal testing of cell-free fetal RHD.

    Directory of Open Access Journals (Sweden)

    Frederik Banch Clausen

    Full Text Available Non-invasive prenatal testing of cell-free fetal DNA (cffDNA in maternal plasma can predict the fetal RhD type in D negative pregnant women. In Denmark, routine antenatal screening for the fetal RhD gene (RHD directs the administration of antenatal anti-D prophylaxis only to women who carry an RhD positive fetus. Prophylaxis reduces the risk of immunization that may lead to hemolytic disease of the fetus and the newborn. The reliability of predicting the fetal RhD type depends on pre-analytical factors and assay sensitivity. We evaluated the testing setup in the Capital Region of Denmark, based on data from routine antenatal RHD screening.Blood samples were drawn at gestational age 25 weeks. DNA extracted from 1 mL of plasma was analyzed for fetal RHD using a duplex method for exon 7/10. We investigated the effect of blood sample transportation time (n = 110 and ambient outdoor temperatures (n = 1539 on the levels of cffDNA and total DNA. We compared two different quantification methods, the delta Ct method and a universal standard curve. PCR pipetting was compared on two systems (n = 104.The cffDNA level was unaffected by blood sample transportation for up to 9 days and by ambient outdoor temperatures ranging from -10 °C to 28 °C during transport. The universal standard curve was applicable for cffDNA quantification. Identical levels of cffDNA were observed using the two automated PCR pipetting systems. We detected a mean of 100 fetal DNA copies/mL at a median gestational age of 25 weeks (range 10-39, n = 1317.The setup for real-time PCR-based, non-invasive prenatal testing of cffDNA in the Capital Region of Denmark is very robust. Our findings regarding the transportation of blood samples demonstrate the high stability of cffDNA. The applicability of a universal standard curve facilitates easy cffDNA quantification.

  12. Gene expression profiling in a mouse model identifies fetal liver- and placenta-derived potential biomarkers for Down Syndrome screening.

    Directory of Open Access Journals (Sweden)

    Jeroen L A Pennings

    Full Text Available BACKGROUND: As a first step to identify novel potential biomarkers for prenatal Down Syndrome screening, we analyzed gene expression in embryos of wild type mice and the Down Syndrome model Ts1Cje. Since current Down Syndrome screening markers are derived from placenta and fetal liver, these tissues were chosen as target. METHODOLOGY/PRINCIPAL FINDINGS: Placenta and fetal liver at 15.5 days gestation were analyzed by microarray profiling. We confirmed increased expression of genes located at the trisomic chromosomal region. Overall, between the two genotypes more differentially expressed genes were found in fetal liver than in placenta. Furthermore, the fetal liver data are in line with the hematological aberrations found in humans with Down Syndrome as well as Ts1Cje mice. Together, we found 25 targets that are predicted (by Gene Ontology, UniProt, or the Human Plasma Proteome project to be detectable in human serum. CONCLUSIONS/SIGNIFICANCE: Fetal liver might harbor more promising targets for Down Syndrome screening studies. We expect these new targets will help focus further experimental studies on identifying and validating human maternal serum biomarkers for Down Syndrome screening.

  13. Cell surface carbohydrate changes during embryonic and fetal skin development

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Holbrook, K; Clausen, H

    1986-01-01

    Monoclonal antibodies to four type 2 chain carbohydrate antigens were used for immunohistochemical studies of embryonic and fetal skin. The antibodies detected N-acetyllactosamine and 3 fucosyl substitutes of this, blood group antigen H, Lex, and Ley. Periderm consistently stained for N-acetyllac......Monoclonal antibodies to four type 2 chain carbohydrate antigens were used for immunohistochemical studies of embryonic and fetal skin. The antibodies detected N-acetyllactosamine and 3 fucosyl substitutes of this, blood group antigen H, Lex, and Ley. Periderm consistently stained for N......-acetyllactosamine, Lex and Ley. The H antigen showed a variable and weak expression on peridermal cells from day 57 to day 84 estimated gestation age (EGA). After this period the H antigen was no longer expressed at peridermal cells. In the epidermis, N-acetyllactosamine was present on all cells until the age of 15...... weeks EGA. After this period N-acetyllactosamine could only be demonstrated on basal cells after treatment with neuraminidase, indicating a masking of N-acetyllactosamine by sialic acid. The H antigen could not be demonstrated in the epithelium before 14 weeks EGA. At this time it appeared on spinous...

  14. Identifying mild and severe preeclampsia in asymptomatic pregnant women by levels of cell-free fetal DNA

    DEFF Research Database (Denmark)

    Jakobsen, Tanja Roien; Clausen, Frederik Banch; Rode, Line

    2013-01-01

    AND METHODS: D- women participating in the routine antenatal RHD screening program in the capital region of Denmark were retrospectively studied. We used a standard dilution curve to quantify the amounts of cell-free fetal DNA (cffDNA) and divided women into groups according to cffDNA levels. PAPP......BACKGROUND: The objective was to investigate whether women who develop preeclampsia can be identified in a routine analysis when determining fetal RHD status at 25 weeks' gestation in combination with PAPP-A levels at the first-trimester combined risk assessment for Trisomy 21. STUDY DESIGN......-A was measured at 11 to 14 weeks. Information about pregnancy outcome and complications was obtained from the National Fetal Medicine Database, medical charts, and discharge letters. RESULTS: The odds ratio (OR) of developing severe preeclampsia given a cffDNA level above the 90th percentile compared to cff...

  15. Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow.

    Science.gov (United States)

    Potocnik, A J; Brakebusch, C; Fässler, R

    2000-06-01

    Homing of hematopoietic stem cells (HSCs) into hematopoietic organs is a prerequisite for the establishment of hematopoiesis during embryogenesis and after bone marrow transplantation. We show that beta1 integrin-deficient HSCs from the para-aortic splanchnopleura and the fetal blood had hematolymphoid differentiation potential in vitro and in fetal organ cultures but were unable to seed fetal and adult hematopoietic tissues. Adult beta1 integrin null HSCs isolated from mice carrying loxP-tagged beta1 integrin alleles and ablated for beta1 integrin expression by retroviral cre transduction failed to engraft irradiated recipient mice. Moreover, absence of beta1 integrin resulted in sequestration of HSCs in the circulation and their reduced adhesion to endothelioma cells. These findings define beta1 integrin as an essential adhesion receptor for the homing of HSCs.

  16. Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow

    DEFF Research Database (Denmark)

    Potocnik, A J; Brakebusch, C; Fässler, R

    2000-01-01

    Homing of hematopoietic stem cells (HSCs) into hematopoietic organs is a prerequisite for the establishment of hematopoiesis during embryogenesis and after bone marrow transplantation. We show that beta1 integrin-deficient HSCs from the para-aortic splanchnopleura and the fetal blood had...... failed to engraft irradiated recipient mice. Moreover, absence of beta1 integrin resulted in sequestration of HSCs in the circulation and their reduced adhesion to endothelioma cells. These findings define beta1 integrin as an essential adhesion receptor for the homing of HSCs....... hematolymphoid differentiation potential in vitro and in fetal organ cultures but were unable to seed fetal and adult hematopoietic tissues. Adult beta1 integrin null HSCs isolated from mice carrying loxP-tagged beta1 integrin alleles and ablated for beta1 integrin expression by retroviral cre transduction...

  17. Increased fetal cell trafficking in murine lung following complete pregnancy loss from exposure to lipopolysaccharide.

    Science.gov (United States)

    Johnson, Kirby L; Tao, Kai; Stroh, Helene; Kallenbach, Lisa; Peter, Inga; Richey, Lauren; Rust, Daniel; Bianchi, Diana W

    2010-03-15

    To determine whether chemically induced miscarriage affects fetomaternal trafficking in a mouse model, we measured the amount of fetal DNA present in various maternal organs by polymerase chain reaction amplification following exposure to lipopolysaccharide (LPS). As the frequency of fetal cells and the number of animals with detectable microchimerism following LPS injection were significantly increased, particularly in lung tissue compared to controls, with no signs of an inflammatory response, we conclude that LPS-induced miscarriage results in increased murine fetomaternal cell trafficking, supporting a relationship between fetal loss and the establishment of fetal cell microchimerism. Copyright 2010. Published by Elsevier Inc.

  18. Analysis of gene expression in fetal and adult cells infected with rubella virus

    International Nuclear Information System (INIS)

    Adamo, Maria Pilar; Zapata, Marta; Frey, Teryl K.

    2008-01-01

    Congenital infection with rubella virus (RUB) leads to persistent infection and congenital defects and we showed previously that primary human fetal fibroblasts did not undergo apoptosis when infected with RUB, which could promote fetal virus persistence [Adamo, P., Asis, L., Silveyra, P., Cuffini, C., Pedranti, M., Zapata, M., 2004. Rubella virus does not induce apoptosis in primary human embryo fibroblasts cultures: a possible way of viral persistence in congenital infection. Viral Immunol. 17, 87-100]. To extend this observation, gene chip analysis was performed on a line of primary human fetal fibroblasts (10 weeks gestation) and a line of human adult lung fibroblasts (which underwent apoptosis in response to RUB infection) to compare gene expression in infected and uninfected cells. A total of 632 and 516 genes were upregulated or downregulated in the infected fetal and adult cells respectively in comparison to uninfected cells, however only 52 genes were regulated in both cell types. Although the regulated genes were different, across functional gene categories the patterns of gene regulation were similar. In general, regulation of pro- and anti-apoptotic genes following infection appeared to favor apoptosis in the adult cells and lack of apoptosis in the fetal cells, however there was a greater relative expression of anti-apoptotic genes and reduced expression of pro-apoptotic genes in uninfected fetal cells versus uninfected adult cells and thus the lack of apoptosis in fetal cells following RUB infection was also due to the prevailing background of gene expression that is antagonistic to apoptosis. In support of this hypothesis, it was found that of a battery of five chemicals known to induce apoptosis, two induced apoptosis in the adult cells, but not in fetal cells, and two induced apoptosis more rapidly in the adult cells than in fetal cells (the fifth did not induce apoptosis in either). A robust interferon-stimulated gene response was induced

  19. Human fetal radial glia cells generate oligodendrocytes in vitro.

    Science.gov (United States)

    Mo, Zhicheng; Zecevic, Nada

    2009-04-01

    Limited knowledge about human oligodendrogenesis prompted us to explore the lineage relationship between cortical radial glia (RG) cells and oligodendrocytes (OLs) in the human fetal forebrain. RG cells were isolated from cortical ventricular/subventricular zone and their progeny was followed in vitro. One portion of RG cells differentiated into cells of OL lineage identified by cell-type specific antibodies, including platelet-derived growth factor receptor-alpha (PDGFRalpha), NG2, O4, myelin basic protein, and myelin oligodendrocyte glycoprotein. Moreover, using Cre Lox fate mapping (brain lipid binding protein-Cre/Floxed-yellow fluorescent protein) we established a direct link between RG cells and OL progenitors. In vitro generation of RG-derived O4(+) OL progenitors was enhanced by addition of sonic hedgehog (SHH) and reduced by the SHH inhibitor, cyclopamine, suggesting the role of SHH signaling in this process. In summary, our in vitro experiments revealed that a portion of cortical RG cells isolated from human forebrain at the second trimester of gestation generates OL progenitors and this suggests a role of SHH in this process. (c) 2008 Wiley-Liss, Inc.

  20. Single Nucleotide Polymorphism-Based Analysis of Cell-Free Fetal DNA in 3000 Cases from Germany and Austria.

    Science.gov (United States)

    Eiben, B; Krapp, M; Borth, H; Kutur, N; Kreiselmaier, P; Glaubitz, R; Deutinger, J; Merz, E

    2015-07-01

    Data from 3 008 patients, who underwent single-nucleotide-polymorphism (SNP)-based noninvasive prenatal testing (NIPT) are presented. The PanoramaTM test (Natera, San Carlos, CA) was used to analyze cell-free fetal DNA from maternal blood for trisomies 21, 18, and 13, triploidy and sex-chromosome aneuploidies. In 2 942 (97.8%) cases, a result was obtained. The average fetal fraction was 10.2%. A high-risk result for fetal aneuploidy was made for 65 (2.2%) cases. In 59 (90.8%) of these cases, invasive testing confirmed the aneuploidy. There were 6 false-positive cases. In the false-positive group, the fetal fraction was significantly lower. The overall positive predictive value was 90.8%. No false-negative cases were reported but many patients in this study have not delivered yet. Therefore, exact data cannot be given for potential false-negative cases. SNP-based NIPT is a reliable screening method for evaluating the risk of aneuploidies of chromosomes 21, 18 and 13. By using NIPT, the number of invasive procedures may be reduced significantly compared to maternal age and first-trimester screening.

  1. Fetal microchimeric cells in autoimmune thyroid diseases: harmful, beneficial or innocent for the thyroid gland?

    Science.gov (United States)

    Lepez, Trees; Vandewoestyne, Mado; Deforce, Dieter

    2013-01-01

    Autoimmune thyroid diseases (AITD) show a female predominance, with an increased incidence in the years following parturition. Fetal microchimerism has been suggested to play a role in the pathogenesis of AITD. However, only the presence of fetal microchimeric cells in blood and in the thyroid gland of these patients has been proven, but not an actual active role in AITD. Is fetal microchimerism harmful for the thyroid gland by initiating a Graft versus Host reaction (GvHR) or being the target of a Host versus Graft reaction (HvGR)? Is fetal microchimerism beneficial for the thyroid gland by being a part of tissue repair or are fetal cells just innocent bystanders in the process of autoimmunity? This review explores every hypothesis concerning the role of fetal microchimerism in AITD.

  2. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lee-Chuan C.; Ford, Jeffery J. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); Lee, John C. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States); Adamo, Martin L., E-mail: adamo@biochem.uthscsa.edu [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States)

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  3. Screening fetal losses for monosomy X with a simple PCR-based procedure

    Directory of Open Access Journals (Sweden)

    Pereira Rinaldo W.

    2000-01-01

    Full Text Available To screen for monosomy X in spontaneous fetal losses we explored a simple molecular strategy based on loss of heterozygosity at highly polymorphic X-linked loci. We developed a multiplex fluorescent procedure that allows the simultaneous amplification of five dinucleotide repeat polymorphisms in a large low-recombination region in the long arm of the X chromosome. Analysis was performed by computer-assisted laser densitometry. We did not find any instances of homozygosity at all five loci in 30 normal females tested, nor among 37 women whose typing data were retrieved from the Fondation Jean Dausset - CEPH genotype database. In addition, all cases of monosomy X previously diagnosed by conventional cytogenetics presented the anticipated loss of heterozygosity at all loci. We studied 19 spontaneously aborted female fetuses and we found four samples homozygous for the five loci (21%, in good agreement with the expected rate of monosomy X in first trimester spontaneous abortions. We conclude that the loci have high diversity and high efficiency in PCR-amplification and that our multiplex procedure constitutes a simple and useful molecular screening test for monosomy X in abortions and stillbirths.

  4. Beyond screening for chromosomal abnormalities: Advances in non-invasive diagnosis of single gene disorders and fetal exome sequencing.

    Science.gov (United States)

    Hayward, Jane; Chitty, Lyn S

    2018-04-01

    Emerging genomic technologies, largely based around next generation sequencing (NGS), are offering new promise for safer prenatal genetic diagnosis. These innovative approaches will improve screening for fetal aneuploidy, allow definitive non-invasive prenatal diagnosis (NIPD) of single gene disorders at an early gestational stage without the need for invasive testing, and improve our ability to detect monogenic disorders as the aetiology of fetal abnormalities. This presents clinicians and scientists with novel challenges as well as opportunities. In addition, the transformation of prenatal genetic testing arising from the introduction of whole genome, exome and targeted NGS produces unprecedented volumes of data requiring complex analysis and interpretation. Now translating these technologies to the clinic has become the goal of clinical genomics, transforming modern healthcare and personalized medicine. The achievement of this goal requires the most progressive technological tools for rapid high-throughput data generation at an affordable cost. Furthermore, as larger proportions of patients with genetic disease are identified we must be ready to offer appropriate genetic counselling to families and potential parents. In addition, the identification of novel treatment targets will continue to be explored, which is likely to introduce ethical considerations, particularly if genome editing techniques are included in these targeted treatments and transferred into mainstream personalized healthcare. Here we review the impact of NGS technology to analyse cell-free DNA (cfDNA) in maternal plasma to deliver NIPD for monogenic disorders and allow more comprehensive investigation of the abnormal fetus through the use of exome sequencing. Copyright © 2017. Published by Elsevier Ltd.

  5. Non-invasive prenatal diagnosis using cell-free fetal DNA technology: applications and implications.

    Science.gov (United States)

    Hall, Alison; Bostanci, A; Wright, C F

    2010-01-01

    Cell-free fetal DNA and RNA circulating in maternal blood can be used for the early non-invasive prenatal diagnosis (NIPD) of an increasing number of genetic conditions, both for pregnancy management and to aid reproductive decision-making. Here we present a brief review of the scientific and clinical status of the technology, and an overview of key ethical, legal and social issues raised by the analysis of cell-free fetal DNA for NIPD. We suggest that the less invasive nature of the technology brings some distinctive issues into focus, such as the possibility of broader uptake of prenatal diagnosis and access to the technology directly by the consumer via the internet, which have not been emphasised in previous work in this area. We also revisit significant issues that are familiar from previous debates about prenatal testing. Since the technology seems to transect existing distinctions between screening and diagnostic tests, there are important implications for the form and process involved in obtaining informed consent or choice. This analysis forms part of the work undertaken by a multidisciplinary group of experts which made recommendations about the implementation of this technology within the UK National Health Service. Copyright 2010 S. Karger AG, Basel.

  6. File list: DNS.Neu.10.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Fetal_neural_progenitor_cells hg19 DNase-seq Neural Fetal neural prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.10.AllAg.Fetal_neural_progenitor_cells.bed ...

  7. File list: Oth.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 TFs and others Neural Fetal neural prog...enitor cells SRX109477 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  8. File list: Pol.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 RNA polymerase Neural Fetal neural prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  9. File list: ALL.Neu.10.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Fetal_neural_progenitor_cells hg19 All antigens Neural Fetal neural prog...enitor cells SRX109477,SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.10.AllAg.Fetal_neural_progenitor_cells.bed ...

  10. File list: NoD.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 No description Neural Fetal neural prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  11. File list: ALL.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 All antigens Neural Fetal neural prog...enitor cells SRX109477,SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  12. File list: InP.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 Input control Neural Fetal neural prog...enitor cells SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  13. File list: Oth.Neu.20.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Fetal_neural_progenitor_cells hg19 TFs and others Neural Fetal neural prog...enitor cells SRX109477 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.20.AllAg.Fetal_neural_progenitor_cells.bed ...

  14. File list: Unc.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 Unclassified Neural Fetal neural prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  15. File list: InP.Neu.10.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Fetal_neural_progenitor_cells hg19 Input control Neural Fetal neural prog...enitor cells SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.10.AllAg.Fetal_neural_progenitor_cells.bed ...

  16. File list: Unc.Neu.05.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Fetal_neural_progenitor_cells hg19 Unclassified Neural Fetal neural... progenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.05.AllAg.Fetal_neural_progenitor_cells.bed ...

  17. File list: ALL.Neu.05.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Fetal_neural_progenitor_cells hg19 All antigens Neural Fetal neural... progenitor cells SRX109477,SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Fetal_neural_progenitor_cells.bed ...

  18. File list: Oth.Neu.05.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Fetal_neural_progenitor_cells hg19 TFs and others Neural Fetal neural... progenitor cells SRX109477 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.05.AllAg.Fetal_neural_progenitor_cells.bed ...

  19. File list: His.Neu.10.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Fetal_neural_progenitor_cells hg19 Histone Neural Fetal neural pro...genitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.10.AllAg.Fetal_neural_progenitor_cells.bed ...

  20. File list: Pol.Neu.05.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Fetal_neural_progenitor_cells hg19 RNA polymerase Neural Fetal neural... progenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.05.AllAg.Fetal_neural_progenitor_cells.bed ...

  1. File list: DNS.Neu.20.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Fetal_neural_progenitor_cells hg19 DNase-seq Neural Fetal neural p...rogenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.20.AllAg.Fetal_neural_progenitor_cells.bed ...

  2. File list: His.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 Histone Neural Fetal neural pro...genitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  3. File list: Pol.Neu.10.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Fetal_neural_progenitor_cells hg19 RNA polymerase Neural Fetal neural... progenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.10.AllAg.Fetal_neural_progenitor_cells.bed ...

  4. File list: InP.Neu.20.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Fetal_neural_progenitor_cells hg19 Input control Neural Fetal neural... progenitor cells SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.20.AllAg.Fetal_neural_progenitor_cells.bed ...

  5. File list: Pol.Neu.20.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Fetal_neural_progenitor_cells hg19 RNA polymerase Neural Fetal neural... progenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.20.AllAg.Fetal_neural_progenitor_cells.bed ...

  6. File list: DNS.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 DNase-seq Neural Fetal neural p...rogenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  7. Fetal microchimerism persists at high levels in c-kit stem cells in sensitized mothers.

    Science.gov (United States)

    Dutta, Partha; Dart, Melanie L; Schumacher, Steve M; Burlingham, William J

    2010-10-01

    We previously showed that fetal and maternal exposure to non-inherited maternal antigens (NIMA) during gestation and nursing resulted in lifelong tolerance to NIMA in some offspring. This NIMA-specific tolerance was mediated by regulatory T cells (Tregs) and was correlated with the level of multi-lineage maternal microchimerism (Mc) indicating a causative link between Mc and Treg development. To determine if transfer of fetal cells into mothers resulted in a similar tolerance to fetal cells, we used qPCR to detect rare fetal derived cells and a delayed type hypersensitivity (DTH) assay to detect fetal alloantigen-specific effector and regulatory T cells in mothers. We found that 5/8 B6 mothers of H2(b/d) offspring were sensitized to the alloantigens H2(d) and HY, indicating a dominance of alloantigen-specific effector T cells. Though these sensitized mothers did not have detectable fetal Mc (FMc) in any of the organs tested, they had very high levels of fetus-derived c-kit(+) stem cells in their bone marrow. The remaining 3/8 B6 mothers that were not sensitized to the fetal antigens had detectable FMc found mostly in heart, lungs and liver, and in 2/3, we could detect alloantigen-specific regulatory T cells. This data indicates that, as in NIMA-specific tolerance, tolerance in multiparous females to inherited paternal antigens (IPA) expressed by the fetus is associated with the presence of fetal Mc in differentiated cell subsets. Surprisingly, robust lin(-)c-kit(+) bone marrow cell fetal Mc can occur in sensitized mothers. This suggests a continuous source of allospecific priming, coupled with active elimination of mature IPA-expressing lin(+) cells by effector T cells of the maternal host.

  8. Human fetal cardiac progenitors: The role of stem cells and progenitors in the fetal and adult heart.

    Science.gov (United States)

    Bulatovic, Ivana; Månsson-Broberg, Agneta; Sylvén, Christer; Grinnemo, Karl-Henrik

    2016-02-01

    The human fetal heart is formed early during embryogenesis as a result of cell migrations, differentiation, and formative blood flow. It begins to beat around gestation day 22. Progenitor cells are derived from mesoderm (endocardium and myocardium), proepicardium (epicardium and coronary vessels), and neural crest (heart valves, outflow tract septation, and parasympathetic innervation). A variety of molecular disturbances in the factors regulating the specification and differentiation of these cells can cause congenital heart disease. This review explores the contribution of different cardiac progenitors to the embryonic heart development; the pathways and transcription factors guiding their expansion, migration, and functional differentiation; and the endogenous regenerative capacity of the adult heart including the plasticity of cardiomyocytes. Unfolding these mechanisms will become the basis for understanding the dynamics of specific congenital heart disease as well as a means to develop therapy for fetal as well as postnatal cardiac defects and heart failure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Forskolin and the meiosis inducing substance synergistically initiate meiosis in fetal male germ cells

    DEFF Research Database (Denmark)

    Byskov, A G; Fenger, M; Westergaard, L

    1993-01-01

    We have shown that Meiosis Inducing Substance (MIS) and forskolin synergistically and dose dependently induce meiosis in germ cells of cultured fetal mouse testes. We used a bioassay which consists of fetal mouse testes and ovaries cultured for 6 days. In this study MIS media are spent culture...... in male germ cells during culture. We found that MIS media as well as forskolin induced meiosis in fetal male germ cells in a dose-dependent manner. In addition, MIS media and forskolin acted synergistically by inducing meiosis. Female germ cells seem to be unaffected by the various culture media...

  10. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  11. Evaluation of prenatal RHD typing strategies on cell-free fetal DNA from maternal plasma

    NARCIS (Netherlands)

    Grootkerk-Tax, Martine G. H. M.; Soussan, Aicha Ait; de Haas, Masja; Maaskant-van Wijk, Petra A.; van der Schoot, C. Ellen

    2006-01-01

    BACKGROUND: The discovery of cell-free fetal DNA in maternal plasma led to the development of assays to predict the fetal D status with RHD-specific sequences. Few assays are designed in such a way that the fetus can be typed in RHDpsi mothers and that RHDpsi fetuses are correctly typed. Owing to

  12. Clinical applications of cell-free fetal DNA from maternal plasma

    NARCIS (Netherlands)

    Rijnders, Robbert J. P.; Christiaens, Godelieve C. M. L.; Bossers, Bernadette; van der Smagt, Jasper J.; van der Schoot, C. Ellen; de Haas, Masja

    2004-01-01

    OBJECTIVE: To describe our clinical experience with detection and analysis of cell-free fetal DNA derived from maternal plasma for prenatal sexing and fetal rhesus-D typing. METHODS: Real-time quantitative polymerase chain reactions (PCRs) of rhesus-D sequences and the SRY gene were validated and

  13. Neurogenic potential of hESC-derived human radial glia is amplified by human fetal cells.

    Science.gov (United States)

    Reinchisi, Gisela; Limaye, Pallavi V; Singh, Mandakini B; Antic, Srdjan D; Zecevic, Nada

    2013-07-01

    The efficient production of human neocortical neurons from human embryonic stem cells (hESC) is the primary requirement for studying early stages of human cortical development. We used hESC to obtain radial glial cells (hESC-RG) and then compared them with RG cells isolated from human fetal forebrain. Fate of hESC-RG cells critically depends on intrinsic and extrinsic factors. The expression of Pax6 (intrinsic factor) has a similar neurogenic effect on hESC-RG differentiation as reported for human fetal RG cells. Factors from the microenvironment also play a significant role in determining hESC-RG cell fate. In contrast to control cultures, wherein hESC-RG generate mainly astroglia and far fewer neurons, in co-cultures with human fetal forebrain cells, the reverse was found to be true. This neurogenic effect was partly due to soluble factors from human fetal brain cultures. The detected shift towards neurogenesis has significance for developing future efficient neuro-differentiation protocols. Importantly, we established that hESC-RG cells are similar in many respects to human fetal RG cells, including their proliferative capacity, neurogenic potential, and ability to generate various cortical neuronal sub-types. Unlike fetal RG cells, the hESC-RG cells are readily available and can be standardized, features that have considerable practical advantages in research and clinics. Published by Elsevier B.V.

  14. Diagnostic accuracy of fundal height and handheld ultrasound-measured abdominal circumference to screen for fetal growth abnormalities

    Science.gov (United States)

    Haragan, Adriane F.; Hulsey, Thomas C.; Hawk, Angela F.; Newman, Roger B.; Chang, Eugene Y.

    2015-01-01

    OBJECTIVE We sought to compare fundal height and handheld ultrasound–measured fetal abdominal circumference (HHAC) for the prediction of fetal growth restriction (FGR) or large for gestational age. STUDY DESIGN This was a diagnostic accuracy study in nonanomalous singleton pregnancies between 24 and 40 weeks’ gestation. Patients underwent HHAC and fundal height measurement prior to formal growth ultrasound. FGR was defined as estimated fetal weight less than 10%, whereas large for gestational age was defined as estimated fetal weight greater than 90%. Sensitivity and specificity were calculated and compared using methods described elsewhere. RESULTS There were 251 patients included in this study. HHAC had superior sensitivity and specificity for the detection of FGR (sensitivity, 100% vs 42.86%) and (specificity, 92.62% vs 85.24%). HHAC had higher specificity but lower sensitivity when screening for LGA (specificity, 85.66% vs 66.39%) and (sensitivity, 57.14% vs 71.43%). CONCLUSION HHAC could prove to be a valuable screening tool in the detection of FGR. Further studies are needed in a larger population. PMID:25818672

  15. Expression of stem cell markers in the human fetal kidney.

    Directory of Open Access Journals (Sweden)

    Sally Metsuyanim

    Full Text Available In the human fetal kidney (HFK self-renewing stem cells residing in the metanephric mesenchyme (MM/blastema are induced to form all cell types of the nephron till 34(th week of gestation. Definition of useful markers is crucial for the identification of HFK stem cells. Because wilms' tumor, a pediatric renal cancer, initiates from retention of renal stem cells, we hypothesized that surface antigens previously up-regulated in microarrays of both HFK and blastema-enriched stem-like wilms' tumor xenografts (NCAM, ACVRIIB, DLK1/PREF, GPR39, FZD7, FZD2, NTRK2 are likely to be relevant markers. Comprehensive profiling of these putative and of additional stem cell markers (CD34, CD133, c-Kit, CD90, CD105, CD24 in mid-gestation HFK was performed using immunostaining and FACS in conjunction with EpCAM, an epithelial surface marker that is absent from the MM and increases along nephron differentiation and hence can be separated into negative, dim or bright fractions. No marker was specifically localized to the MM. Nevertheless, FZD7 and NTRK2 were preferentially localized to the MM and emerging tubules (50% of HFK cells and predominantly co-express EpCAM(bright, indicating they are mostly markers of differentiation. Furthermore, localization of NCAM exclusively in the MM and in its nephron progenitor derivatives but also in stroma and the expression pattern of significantly elevated renal stem/progenitor genes Six2, Wt1, Cited1, and Sall1 in NCAM(+EpCAM(- and to a lesser extent in NCAM(+EpCAM(+ fractions confirmed regional identity of cells and assisted us in pinpointing the presence of subpopulations that are putative MM-derived progenitor cells (NCAM(+EpCAM(+FZD7(+, MM stem cells (NCAM(+EpCAM(-FZD7(+ or both (NCAM(+FZD7(+. These results and concepts provide a framework for developing cell selection strategies for human renal cell-based therapies.

  16. Psychological distress among Plains Indian mothers with children referred to screening for Fetal Alcohol Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Parker Tassy

    2010-09-01

    Full Text Available Abstract Background Psychological distress (PD includes symptoms of depression and anxiety and is associated with considerable emotional suffering, social dysfunction and, often, with problematic alcohol use. The rate of current PD among American Indian women is approximately 2.5 times higher than that of U.S. women in general. Our study aims to fill the current knowledge gap about the prevalence and characteristics of PD and its association with self-reported current drinking problems among American Indian mothers whose children were referred to screening for fetal alcohol spectrum disorders (FASD. Methods Secondary analysis of cross-sectional data was conducted from maternal interviews of referred American Indian mothers (n = 152 and a comparison group of mothers (n = 33 from the same Plains culture tribes who participated in an NIAAA-funded epidemiology study of FASD. Referred women were from one of six Plains Indian reservation communities and one urban area who bore children suspected of having an FASD. A 6-item PD scale (PD-6, Cronbach's alpha = .86 was constructed with a summed score range of 0-12 and a cut-point of 7 indicating serious PD. Multiple statistical tests were used to examine the characteristics of PD and its association with self-reported current drinking problems. Results Referred and comparison mothers had an average age of 31.3 years but differed (respectively on: education ( Conclusions Psychological distress among referred mothers is significantly associated with having a self-reported drinking problem. FASD prevention requires multi-level prevention efforts that provide real opportunities for educational attainment and screening and monitoring of PD and alcohol use during the childbearing years. Mixed methods studies are needed to illuminate the social and cultural determinants at the base of the experience of PD and to identify the strengths and protective factors of unaffected peers who reside within the same

  17. Prospective assessment of early fetal loss using an immunoenzymometric screening assay for detection of urinary human chorionic gonadotropin.

    Science.gov (United States)

    Taylor, C A; Overstreet, J W; Samuels, S J; Boyers, S P; Canfield, R E; O'Connor, J F; Hanson, F W; Lasley, B L

    1992-06-01

    To develop an economical, nonradiometric immunoenzymometric assay (IEMA) for the detection of urinary human chorionic gonadotropin (hCG) in studies of early fetal loss. To be effective, the IEMA must have a sensitivity equal to the standard immunoradiometric assay (IRMA) and sufficient specificity to eliminate the need for screening most nonconceptive cycles with the expensive and labor-intensive IRMA. Two different assays were used to measure hCG in daily early morning urine samples from potential conceptive cycles. Women undergoing donor artificial insemination (AI) were evaluated in a prospective study. Ninety-two women volunteers were selected on the basis of apparent normal reproductive health. Artificial insemination with nonfrozen donor semen was performed by cervical cup twice each menstrual cycle at 48-hour intervals, and daily urine samples were self-collected throughout the menstrual cycle. An IEMA was developed to detect urinary hCG using the same antibodies as in the standard IRMA; a study was designed to determine whether this nonradiometric assay could successfully detect the early fetal loss that was detected by the IRMA. Of 224 menstrual cycles analyzed by both assays, a total of six early fetal losses were detected by the IRMA. When the tentative screening rule was set to allow all six of these losses and 95% of future losses to be detected by the IEMA, an additional 34 false-positive results were detected by the IEMA. The specificity of the IEMA with this rule was calculated to be 84%. An IEMA based on the same antibodies used for the standard IRMA can serve as an efficient screening assay for the detection of early fetal loss. When the IEMA is used in this manner, nearly 80% of screened menstrual cycles can be eliminated without further testing by the IRMA.

  18. Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Chan-Jung Chang

    Full Text Available We have previously shown that human embryonic stem cells can be differentiated into embryonic and fetal type of red blood cells that sequentially express three types of hemoglobins recapitulating early human erythropoiesis. We report here that we have produced iPS from three somatic cell types: adult skin fibroblasts as well as embryonic and fetal mesenchymal stem cells. We show that regardless of the age of the donor cells, the iPS produced are fully reprogrammed into a pluripotent state that is undistinguishable from that of hESCs by low and high-throughput expression and detailed analysis of globin expression patterns by HPLC. This suggests that reprogramming with the four original Yamanaka pluripotency factors leads to complete erasure of all functionally important epigenetic marks associated with erythroid differentiation regardless of the age or the tissue type of the donor cells, at least as detected in these assays. The ability to produce large number of erythroid cells with embryonic and fetal-like characteristics is likely to have many translational applications.

  19. Reactivation of fetal hemoglobin in thalassemia and sickle cell disease

    Directory of Open Access Journals (Sweden)

    Sandro Eridani

    2014-09-01

    Full Text Available Considerable attention has been recently devoted to mechanisms involved in the perinatal hemoglobin switch, as it was long ago established that the survival of fetal hemoglobin (HbF production in significant amount can reduce the severity of the clinical course in severe disorders like β-thalassemia and sickle cell disease (SCD. For instance, when β-thalassemia is associated with hereditary persistence of fetal hemoglobin (HPFH the disease takes a mild course, labeled as thalassemia intermedia. The same clinical amelioration occurs for the association between HPFH and SCD. As for the mechanism of this effect, some information has been obtained from the study of natural mutations at the human β-globin locus in patients with increased HbF, like the Corfu thalassemia mutations. Important evidence came from the discovery that drugs capable of improving the clinical picture of SCD, like decitabine ad hydroxycarbamide, are acting through the reactivation, to some extent, of HbF synthesis. The study of the mechanism of action of these compounds was followed by the identification of some genetic determinants, which promote this event. In particular, among a few genetic factors involved in this process, the most relevant appears the BCL11A gene, which is now credited to be able to silence γ-globin genes in the perinatal period by interaction with several erythroid-specific transcription factors and is actually considered as a barrier to HbF reactivation by known HbF inducing agents. Epigenetics is also a player in the process, mainly through DNA demethylation. This is certified by the recent demonstration that hypomethylating agents such as 5-azacytidine and decitabine, the first compounds used for HbF induction by pharmacology, act as irreversible inhibitors of demethyltransferase enzymes. Great interest has also been raised by the finding that several micro-RNAs, which act as negative regulators of gene expression, have been implicated in the

  20. Prenatal paradox: an integrative review of women's experiences with prenatal screening for fetal aneuploidy and neural tube defects.

    Science.gov (United States)

    Shea, Tamra L

    2017-04-01

    As prenatal screening for fetal aneuploidy and neural tube defects evolves technologically and becomes increasingly utilized worldwide, an evaluation of the available evidence on women's experiences with prenatal screening is warranted. To conduct an integrative review to enhance understanding of women's experiences with prenatal screening for fetal aneuploidy and neural tube defects. Systematic literature searches from January 2005 through January 2016, using the CINAHL, PubMed, and PsychInfo electronic databases and ancestry searches of included studies were performed to identify previously published, peer-reviewed quantitative and qualitative studies. The integrative review method as proposed by Whittemore and Knafl was selected. Thirty-nine studies were included in the review. The literature reveals that prenatal screening occurs in a complex social, ethical, and political reality. A theme of paradox emerged indicating the incongruity between reported and perceived risk, the tension between informational utility and moral decisions concerning pregnancy management, and the pervasive influences of authoritative and experiential knowledge. There is a need for future inquiry to critically examine the interrelationships of individual, biomedical, ethical, and sociopolitical factors surrounding prenatal screening.

  1. Forskolin and the meiosis inducing substance synergistically initiate meiosis in fetal male germ cells

    DEFF Research Database (Denmark)

    Byskov, A G; Fenger, M; Westergaard, L

    1993-01-01

    are fixed, squashed, and DNA-stained. In these preparations germ cells and somatic cells can be distinguished, and the number of germ cells in the different stages of meiosis is counted as is the number of somatic cells in mitosis. MIS activity is defined to be present in a medium when meiosis is induced......We have shown that Meiosis Inducing Substance (MIS) and forskolin synergistically and dose dependently induce meiosis in germ cells of cultured fetal mouse testes. We used a bioassay which consists of fetal mouse testes and ovaries cultured for 6 days. In this study MIS media are spent culture...... in male germ cells during culture. We found that MIS media as well as forskolin induced meiosis in fetal male germ cells in a dose-dependent manner. In addition, MIS media and forskolin acted synergistically by inducing meiosis. Female germ cells seem to be unaffected by the various culture media...

  2. Optimal non-invasive diagnosis of fetal achondroplasia combining ultrasonography and circulating cell-free fetal DNA analysis.

    Science.gov (United States)

    Vivanti, Alexandre J; Costa, Jean-Marc; Rosefort, Audrey; Kleinfinger, Pascale; Lohmann, Laurence; Cordier, Anne-Gael; Benachi, Alexandra

    2018-01-30

    To assess the performance of non-invasive prenatal testing of achondroplasia using high-resolution melting (HRM) analysis. To propose an optimal diagnosis strategy combining ultrasound scan and cell-free fetal DNA (cffDNA) analysis. Prospective multicenter study. CffDNA was extracted from maternal blood from women at risk for fetal achondroplasia (paternal achondroplasia, previous affected child or suspected rhizomelic shortening). The presence of one of the two main FGFR3 mutations was determined by HRM combined with confirmation by SNaPshot minisequencing. Results were compared with phenotypes obtained by 3D computed tomography, post-natal examination and/or molecular diagnosis by an invasive procedure. Fetal biometry was also analyzed (head circumference and femur length) in order to offer cffDNA for achondroplasia in selected cases. Eighty-six blood samples from women at risk were collected (and sixty-five from control women). The overall sensitivity and specificity of the test were respectively 1.00 (95% CI [0.87-1.00]) and 1.00 (95% CI [0.96-1.00]). Critical reduction of femur length for affected fetuses can be observed from 26 weeks of gestation. HRM combined with SNaPshot minisequencing is a reliable method for non-invasive prenatal testing of achondroplasia. Its implementation in routine clinical care combined with ultrasonography is an efficient strategy for non-invasive diagnosis of achondroplasia. This article is protected by copyright. All rights reserved.

  3. Overall evaluation of the clinical value of prenatal screening for fetal-free DNA in maternal blood.

    Science.gov (United States)

    Yu, Bin; Lu, Bei-Yi; Zhang, Bin; Zhang, Xiao-Qing; Chen, Ying-Ping; Zhou, Qin; Jiang, Jian; Wang, Hui-Yan

    2017-07-01

    To explore the clinical value of prenatal screening for fetal-free DNA in maternal blood. A total of 10,275 maternal blood samples were collected from October 2012 to May 2016 at the prenatal diagnosis center of Changzhou Woman and Children Health Hospital. Among 10,275 pregnant women accepted noninvasive prenatal testing (NIPT), 9 cases could not get the results after collected the blood second times. The rate of NIPT failure was 0.09%. Seventy-two cases got the NIPT positive results of trisomy 21/trisomy 18/trisomy 13, and the detection rate, specificity, positive predictive value (PPV), and false positive rate were 98.59%, 99.99%, 97.22%, and 0.02%. The top-3 indications of the study were advanced age women (34.90%), high risk (25.22%), and intermediate risk (19.56%). They all had the satisfactory results of NIPT. Fifty-seven pregnant women had the high risk of fetal sex chromosomal aneuploidies (SCA). After informed consent, 33 cases accepted prenatal diagnosis. Eighteen cases were confirmed as sex chromosome aneuploidies. The PPV was 54.54%. Compared with other SCA, the PPV of Turner syndrome was lower. One case was false negative after followed up. NIPT showed a broad application prospects for prenatal screening and diagnosis of fetal chromosomal diseases. We should deepen mining and analyzing the clinical data, and explore the use of NIPT more reasonably from the perspective of evidence-based medicine.

  4. Predictive value of increased nuchal translucency as a screening test for the detection of fetal chromosomal abnormalities.

    Science.gov (United States)

    Alexioy, Eleni; Alexioy, Eleni; Trakakis, Eftihios; Kassanos, Demetrios; Farmakidis, George; Kondylios, Antonios; Laggas, Demetrios; Salamalekis, Emmanuel; Florentin, Lia; Kanavakis, Emmanuel; Basios, George; Trompoukis, Pantelis; Georgiadoy, Lina; Panagiotopoulos, Takis

    2009-10-01

    The study aimed to estimate the incidence of increased nuchal translucency in the first trimester ultrasound scan results (cut-off limit 2.5 mm) and to evaluate the predictive value of increased nuchal translucency as a screening test for the detection of fetal chromosomal abnormalities. We used the ultrasound scan results of nuchal translucency evaluation and the results of chromosomal analysis of the invasive prenatal control performed as a result of increased nuchal translucency. We collected 2183 nuchal translucency ultrasound scans in which we detected 21 embryos with a pathologic value (0.96%). We collected the data of 168 cases of invasive prenatal control due to increased nuchal translucency from which 122 cases were found. A total of 122 cases of pregnant women undergone an invasive prenatal diagnostic method due to increased nuchal translucency, of which 11 fetuses were found with trisomy 21 (Down syndrome) (9%), 3 fetuses with trisomy 13 (Patau syndrome) (2.45%), 3 fetuses with monosomy 45XO (Turner syndrome) (2.45%) and 1 fetus with translocation (0.8%). The positive predictive value of the increased fetal nuchal translucency as a screening test for the detection of fetal chromosomal abnormalities based on the results of the chromosomal-genetic analysis of the invasive prenatal diagnostic procedures is 14.8%.

  5. Routine noninvasive prenatal screening for fetal RHD in plasma of RhD-negative pregnant women-2years of screening experience from Denmark

    DEFF Research Database (Denmark)

    Clausen, F. Banch; Steffensen, R.; Christiansen, M.

    2014-01-01

    Objective: Prenatal and postnatal RhD prophylaxis reduces the risk of RhD immunization in pregnancies of RhD-negative women. Based on the result from prenatal screening for the fetal RHD gene, prenatal RhD prophylaxis in Denmark is targeted to RhD-negative women who carry an RhD-positive fetus...... of newborns in 12,668 pregnancies. Early compliance was assessed for 690 pregnancies. Results: The sensitivity for the detection of fetal RHD was 99.9% (95% CI: 99.7-99.9%). Unnecessary recommendation of prenatal RhD prophylaxis was avoided in 97.3% of the women carrying an RhD-negative fetus. Fetuses...... that were seropositive for RhD were not detected in 11 pregnancies (0.087%). The sample uptake percentage was 84.2%, and the compliance for prenatal anti-D administration was 93.2%. Conclusion: The high sensitivity, maintained over 2years, underlines the reliability of routine prenatal fetal RHD screening...

  6. DNA repair and induction of plasminogen activator in human fetal cells treated with ultraviolet light

    International Nuclear Information System (INIS)

    Ben-Ishai, R.; Sharon, R.; Rothman, M.; Miskin, R.

    1984-01-01

    We have tested human fetal fibroblasts for development associated changes in DNA repair by utilizing nucleoid sedimentation as an assay for excision repair. Among skin fibroblasts the rate of excision repair was significantly higher in non-fetal cells than in fibroblasts derived from an 8 week fetus; this was evident by a delay in both the relaxation and the restoration of DNA supercoiling in nucleoids after irradiation. Skin fibroblasts derived at 12 week gestation were more repair proficient than those derived at 8 week gestation. However, they exhibited a somewhat lower rate of repair than non-fetal cells. The same fetal and non-fetal cells were also tested for induction of the protease plasminogen activator (PA) after u.v. irradiation. Enhancement of PA was higher in skin fibroblasts derived at 8 week than in those derived at 12 week gestation and was absent in non-fetal skin fibroblasts. These results are consistent with our previous findings that in human cells u.v. light-induced PA synthesis is correlated with reduced DNA repair capacity. Excision repair and PA inducibility were found to depend on tissue of origin in addition to gestational stage, as shown for skin and lung fibroblasts from the same 12 week fetus. Lung compared to skin fibroblasts exhibited lower repair rates and produced higher levels of PA after irradiation. The sedimentation velocity of nucleoids, prepared from unirradiated fibroblasts, in neutral sucrose gradients with or without ethidium bromide, indicated the presence of DNA strand breaks in fetal cells. It is proposed that reduced DNA repair in fetal cells may result from alterations in DNA supercoiling, and that persistent DNA strand breaks enhance transcription of PA gene(s)

  7. False Negative Cell-Free DNA Screening Result in a Newborn with Trisomy 13

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2016-01-01

    Full Text Available Background. Noninvasive prenatal screening (NIPS is revolutionizing prenatal screening as a result of its increased sensitivity, specificity. NIPS analyzes cell-free fetal DNA (cffDNA circulating in maternal plasma to detect fetal chromosome abnormalities. However, cffDNA originates from apoptotic placental trophoblast; therefore cffDNA is not always representative of the fetus. Although the published data for NIPS testing states that the current technique ensures high sensitivity and specificity for aneuploidy detection, false positives are possible due to isolated placental mosaicism, vanishing twin or cotwin demise, and maternal chromosome abnormalities or malignancy. Results. We report a case of false negative cell-free DNA (cfDNA screening due to fetoplacental mosaicism. An infant male with negative cfDNA screening result was born with multiple congenital abnormalities. Postnatal chromosome and FISH studies on a blood specimen revealed trisomy 13 in 20/20 metaphases and 100% interphase nuclei, respectively. FISH analysis on tissues collected after delivery revealed extraembryonic mosaicism. Conclusions. Extraembryonic tissue mosaicism is likely responsible for the false negative cfDNA screening result. This case illustrates that a negative result does not rule out the possibility of a fetus affected with a trisomy, as cffDNA is derived from the placenta and therefore may not accurately represent the fetal genetic information.

  8. Characterization of Fetal Keratinocytes, Showing Enhanced Stem Cell-Like Properties: A Potential Source of Cells for Skin Reconstruction

    Directory of Open Access Journals (Sweden)

    Kenneth K.B. Tan

    2014-08-01

    Full Text Available Epidermal stem cells have been in clinical application as a source of culture-generated grafts. Although applications for such cells are increasing due to aging populations and the greater incidence of diabetes, current keratinocyte grafting technology is limited by immunological barriers and the time needed for culture amplification. We studied the feasibility of using human fetal skin cells for allogeneic transplantation and showed that fetal keratinocytes have faster expansion times, longer telomeres, lower immunogenicity indicators, and greater clonogenicity with more stem cell indicators than adult keratinocytes. The fetal cells did not induce proliferation of T cells in coculture and were able to suppress the proliferation of stimulated T cells. Nevertheless, fetal keratinocytes could stratify normally in vitro. Experimental transplantation of fetal keratinocytes in vivo seeded on an engineered plasma scaffold yielded a well-stratified epidermal architecture and showed stable skin regeneration. These results support the possibility of using fetal skin cells for cell-based therapeutic grafting.

  9. Comparison of measured concentration values of biochemical serum markers with two immunoassay systems in first trimester screening for fetal aneuploidy.

    Science.gov (United States)

    Hörmansdörfer, Cindy; Soergel, Philipp; Hillemanns, Peter; Schmidt, Peter

    2012-02-01

    Non-invasive first trimester screening for fetal aneuploidy is based on the consideration of fetal nuchal translucency, biochemical serum markers 'pregnancy associated plasma protein A' (PAPP-A), and 'free beta-humane chorionic gonadotropin' (fβ-hCG). The blood sera of 168 pregnant women in 11 + 0 to 13 + 6 weeks of gestation were examined by both the COBAS (Roche Holding GmbH, Germany) and KRYPTOR (Brahms GmbH, Germany) immunoassay systems in two quality controlled laboratories. The concentration values were converted into multiple of median (MoM) values and compared through a two-tailed t test. The concentration values of PAPP-A differed significantly from each other (p pregnancy outcomes.

  10. Dynamic Changes in Fetal Microchimerism in Maternal Peripheral Blood Mononuclear Cells, CD4+ and CD8+ Cells in Normal Pregnancy

    Science.gov (United States)

    Adams Waldorf, Kristina M.; Gammill, Hilary S.; Lucas, Joëlle; Aydelotte, Tessa M.; Leisenring, Wendy M.; Lambert, Nathalie C.; Nelson, J. Lee

    2010-01-01

    Objective Cell trafficking during pregnancy results in persistence of small populations of fetal cells in the mother, known as fetal microchimerism (FMc). Changes in cell-free fetal DNA during gestation have been well-described, however, less is known about dynamic changes in fetal immune cells in maternal blood. We investigated FMc in maternal peripheral blood mononuclear cells (PBMC) longitudinally across gestation. Study Design Thirty-five women with normal pregnancies were studied. FMc was identified in PBMC, CD4+ and CD8+ subsets employing quantitative PCR assays targeting fetal-specific genetic polymorphisms. FMc quantities were reported as fetal genome equivalents (gEq) per 1,000,000 gEq mother’s cells. Poisson regression modeled the rate of FMc detection. Main Outcome Measure FMc in PBMC Results The probability of detecting one fetal cell equivalent increased 6.2-fold each trimester [Incidence Rate Ratio (IRR) 95% CI: 1.73, 21.91; p=0.005]. Although FMC in PBMC was not detected for the majority of time points, 7 of 35 women had detectable FMc during pregnancy at one or more time points, with the majority of positive samples being from the third trimester. There was a suggestion of greater HLA-sharing in families where women had FMc in PBMC. FMc was detected in 9% of CD4+ (2/23) and 18% of CD8+ (3/25) subsets. Conclusions FMc in PBMC increased as gestation progressed and was found within CD4+ and CD8+ subsets in some women in the latter half of gestation. A number of factors could influence cellular FMc levels including subclinical fetal-maternal interface changes and events related to parturition. Whether FMc during pregnancy predicts persistent FMc and/or correlates with fetal-maternal HLA-relationships also merits further study. PMID:20569981

  11. Cell-free fetal DNA in maternal plasma and noninvasive prenatal diagnosis.

    Science.gov (United States)

    Ramos, Ester Silveira

    2006-01-01

    The noninvasive nature of the detection of fetal DNA in the maternal circulation represents the greatest advantage over the conventional methods of prenatal diagnosis. The applications of this methodology involve the detection of the fetal sex, and diagnosis, intra-uterine treatment, and evaluation of the prognosis of many diseases. Fetal cells detected in the maternal circulation have also been shown to be implicated in autoimmune diseases and to represent a potential source of stem cells. On the other hand, with the introduction of a technology that detects the fetal sex as early as at 6-8 weeks of gestation, there is the possibility of early abortion based on sex selection for social purposes. This implies an ethical discussion about the question. The introduction of new noninvasive techniques of prenatal diagnosis and the knowledge of the Nursing Team regarding new methodologies can be of great benefit to the mother and her children, and can help the Genetic Counseling of the families.

  12. Antenatal ultrasound screening using check list before delivery for predicting a non-reassuring fetal status during labor.

    Science.gov (United States)

    Takita, Hiroko; Hasegawa, Junichi; Arakaki, Tatsuya; Nakamura, Masamitsu; Tokunaka, Mayumi; Oba, Tomohiro; Sekizawa, Akihiko

    2018-01-01

    To clarify the effectiveness of ultrasound screening at 36 weeks' gestation for predicting a non-reassuring fetal status during labor (NRFS). A prospective cohort study was conducted between 2012 and 2013. Ultrasound evaluations of umbilical cord and placental abnormalities and fetal biometry were performed among pregnant females at 36 weeks' gestation. Patients who underwent ultrasound screening were divided into three risk level groups according to their abnormalities. After delivery, NRFS and emergency Cesarean section (eCS) rate were compared between the risk groups. A total of 790 subjects were analyzed. Elective Cesarean section was performed in 111 cases. Consequently, 34 cases in the high-risk group, 45 cases in the middle-risk group and 600 cases in the low-risk group were analyzed. NRFS was diagnosed in 17.6%* of the patients in the high-risk group, 11.1%* of the patients in the middle-risk group and 5.6% of the patient's in the low-risk group. eCS was performed in 8.8%* of the high-risk subjects, 4.4%* of the middle-risk subjects and 0.8% of the low-risk subjects (*p < 0.05 compared to the low-risk group). The use of antenatal ultrasound screening and risk classification effectively identifies cases of NRFS during delivery.

  13. Fetal MRI; Fetales MRT

    Energy Technology Data Exchange (ETDEWEB)

    Blondin, D. [Inst. fuer Diagn. Radiologie, Uniklinikum Duesseldorf (Germany); Turowski, B. [Inst. fuer Diagn. Radiologie, Neuroradiologie, Uniklinikum Duesseldorf (Germany); Schaper, J. [Inst. fuer Diagn. Radiologie, Kinderradiologie, Uniklinikum Duesseldorf (Germany)

    2007-02-15

    Ultrasonography is the method of choice for prenatal malformation screening, but it does not always provide sufficient information for correct diagnosis or adequate abnormality evaluation. Fetal MRI is increasingly being used to complete sonographic findings. It was initially used for evaluation of cerebral abnormalities but is increasingly being applied to other fetal areas. In vivo investigation of fetal brain maturation has been enhanced by MRI. An adequate analysis of fetal chest and abdomen can be achieved with fast T2-, T1-weighted and diffusion-weighted imaging (DWI). The advantages include the great field of view and the excellent soft tissue contrast. This allows correct diagnosis of congenital diaphragmatic hernia and evaluation of the consequences on pulmonary growth. Other pulmonary malformations, such as cystic adenomatoid malformation, sequestration and brochogenic cysts, can also be easily identified. Renal position can be quickly determined using DWI sequences and renal agenesia can be easily diagnosed with only one sequence. Prenatal MRI is virtually as effective as postnatal examination, dispenses with transport of a potentially very ill newborn, and provides logistic advantages. Therefore, prenatal MRI is useful for adequate postnatal treatment of newborns with malformations. (orig.)

  14. Overall evaluation of the clinical value of prenatal screening for fetal-free DNA in maternal blood

    OpenAIRE

    Yu, Bin; Lu, Bei-Yi; Zhang, Bin; Zhang, Xiao-Qing; Chen, Ying-Ping; Zhou, Qin; Jiang, Jian; Wang, Hui-Yan

    2017-01-01

    Abstract Objective: To explore the clinical value of prenatal screening for fetal-free DNA in maternal blood. Methods: A total of 10,275 maternal blood samples were collected from October 2012 to May 2016 at the prenatal diagnosis center of Changzhou Woman and Children Health Hospital. Results: Among 10,275 pregnant women accepted noninvasive prenatal testing (NIPT), 9 cases could not get the results after collected the blood second times. The rate of NIPT failure was 0.09%. Seventy-two cases...

  15. Screening for aneuploidies by maternal age, fetal nuchal translucency and maternal serum biochemistry at 11-13+6 gestational weeks

    Directory of Open Access Journals (Sweden)

    Karadžov-Orlić Nataša

    2012-01-01

    Full Text Available Introduction. Aneuploidies are the major cause of perinatal death and early psychophysical disorders. Objective. In this study, we analyzed detection and false-positive rates of screening for aneuploidies in the first trimester by the combination of maternal age, fetal nuchal translucency (NT thickness and maternal serum free beta-human chorionic gonadotrophin (β-hCG, and pregnancy-associated plasma protein-A (PAPP-A at 11-13+6 weeks of gestation, using the appropriate software developed by the Fetal Medicine Foundation. Methods. Our screening study for aneuploidies analyzed 4172 singleton pregnancies from January 2006 to December 2010. The sensitivities and false-positive rates using the combined aneuploidies determination for the risk cut-off of 1:275 were evaluated. Results. In the trisomy 21 pregnancies, the fetal NT was higher than 95th centile, in 72.8%, serum free b-hCG concentration it was above the 95th centile in 55% and serum PAPP-A was below the 5th centile in 47% of the cases. In the trisomy 18 and 13, the fetal NT was above 95th centile in 66.6% and 44.4% of the cases, respectively. The serum free b-hCG concentration was above the 95th centile in 0 and 10%, but serum PAPP-A was below 5th centile in 80.9% and 88.8% of pregnancies. In the trisomy 21 pregnancies the median free beta-hCG was 2.3 MoM and the median PAPP-A was 0.45 MoM. Chromosomal abnormalities were detected in 169 fetuses: trisomy 21 (97, Turner syndrome (19, trisomy 18 (28, trisomy 13 (11 and others (14. Detection rate of combined screening for aneuploides were 86.0% with false positive rate of 5.3% (mean age 33±4.9 years, >35 years in 35% of pregnancies. Conclusion. Our study suggests that the strategy of first-trimester combined screening of biochemical values and ultrasonographic parameters at 12 gestational weeks identifies higher percentage of aneuploidies with a lower false-positive rate than a single parameter strategy.

  16. Telomere-to-centromere ratio of bovine clones, embryos, gametes, fetal cells, and adult cells.

    Science.gov (United States)

    Meerdo, Lora N; Reed, William A; White, Kenneth L

    2005-01-01

    In 1997, Dolly, the first animal cloned from an adult cell, was born. It was announced in 1999 that Dolly might be aging faster than normal because her telomeres were shorter than age-matched control sheep. Telomeres, a repeated DNA sequence located at the ends of linear chromosomes, allow for base pair loss during DNA replication. Telomere shortening acts as a "mitotic clock," leading to replicative senescence. By using whole cell lysate and slot-blot analysis, we determined the telomere-to-centromere ratio (T/C) for bovine gametes, embryos, fetal tissues (brain, heart, lung, kidney, uterus, ovary, and skin), adult donor cells, and cloned embryos. Our data indicates a consistency in T/C among the various fetal tissues. The T/C of sperm is significantly lower than in oocytes. The T/C decreases from the oocyte to the 2-8-cell stage embryo, increases dramatically at the morula stage, and decreases at the blastocyst stage. Our data shows no significant difference in T/C between cloned embryos and in vitro fertilized (IVF) embryos, but there is a significant difference between cloned embryos and adult donor cells. In conclusion, the enucleated bovine oocyte has the ability to reestablish the telomere length of adult somatic cell donor nuclei.

  17. Cell surface carbohydrate changes during embryonic and fetal skin development

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Holbrook, K; Clausen, H

    1986-01-01

    Monoclonal antibodies to four type 2 chain carbohydrate antigens were used for immunohistochemical studies of embryonic and fetal skin. The antibodies detected N-acetyllactosamine and 3 fucosyl substitutes of this, blood group antigen H, Lex, and Ley. Periderm consistently stained for N-acetyllac...

  18. Hydroxyurea-Increased Fetal Hemoglobin Is Associated with Less Organ Damage and Longer Survival in Adults with Sickle Cell Anemia.

    Science.gov (United States)

    Fitzhugh, Courtney D; Hsieh, Matthew M; Allen, Darlene; Coles, Wynona A; Seamon, Cassie; Ring, Michael; Zhao, Xiongce; Minniti, Caterina P; Rodgers, Griffin P; Schechter, Alan N; Tisdale, John F; Taylor, James G

    2015-01-01

    Adults with sickle cell anemia (HbSS) are inconsistently treated with hydroxyurea. We retrospectively evaluated the effects of elevating fetal hemoglobin with hydroxyurea on organ damage and survival in patients enrolled in our screening study between 2001 and 2010. An electronic medical record facilitated development of a database for comparison of study parameters based on hydroxyurea exposure and dose. This study is registered with ClinicalTrials.gov, number NCT00011648. Three hundred eighty-three adults with homozygous sickle cell disease were analyzed with 59 deaths during study follow-up. Cox regression analysis revealed deceased subjects had more hepatic dysfunction (elevated alkaline phosphatase, Hazard Ratio = 1.005, 95% CI 1.003-1.006, phydroxyurea, although only 66% of those received a dose within the recommended therapeutic range. Hydroxyurea use was associated with improved survival (Hazard Ratio = 0.58, 95% CI 0.34-0.97, p = 0.040). This effect was most pronounced in those taking the recommended dose of 15-35 mg/kg/day (Hazard Ratio 0.36, 95% CI 0.17-0.73, p = 0.0050). Hydroxyurea use was not associated with changes in organ function over time. Further, subjects with higher fetal hemoglobin responses to hydroxyurea were more likely to survive (p = 0.0004). While alkaline phosphatase was lowest in patients with the best fetal hemoglobin response (95.4 versus 123.6, p = 0.0065 and 96.1 versus 113.6U/L, p = 0.041 at first and last visits, respectively), other markers of organ damage were not consistently improved over time in patients with the highest fetal hemoglobin levels. Our data suggest that adults should be treated with the maximum tolerated hydroxyurea dose, ideally before organ damage occurs. Prospective studies are indicated to validate these findings.

  19. Maternal Plasma and Amniotic Fluid Chemokines Screening in Fetal Down Syndrome

    Directory of Open Access Journals (Sweden)

    Piotr Laudanski

    2014-01-01

    Full Text Available Objective. Chemokines exert different inflammatory responses which can potentially be related to certain fetal chromosomal abnormalities. The aim of the study was to determine the concentration of selected chemokines in plasma and amniotic fluid of women with fetal Down syndrome. Method. Out of 171 amniocentesis, we had 7 patients with confirmed fetal Down syndrome (15th–18th weeks of gestation. For the purpose of our control, we chose 14 women without confirmed chromosomal aberration. To assess the concentration of chemokines in the blood plasma and amniotic fluid, we used a protein macroarray, which allows the simultaneous determination of 40 chemokines per sample. Results. We showed significant decrease in the concentration of 4 chemokines, HCC-4, IL-28A, IL-31, and MCP-2, and increase in the concentration of CXCL7 (NAP-2 in plasma of women with fetal Down syndrome. Furthermore, we showed decrease in concentration of 3 chemokines, ITAC, MCP-3, MIF, and increase in concentration of 4 chemokines, IP-10, MPIF-1, CXCL7, and 6Ckine, in amniotic fluid of women with fetal Down syndrome. Conclusion. On the basis of our findings, our hypothesis is that the chemokines may play role in the pathogenesis of Down syndrome. Defining their potential as biochemical markers of Down syndrome requires further investigation on larger group of patients.

  20. Array-CGH analysis of cell-free fetal DNA in 10 mL of amniotic fluid supernatant.

    Science.gov (United States)

    Lapaire, Olav; Lu, Xin-Yan; Johnson, Kirby L; Jarrah, Zina; Stroh, Helene; Cowan, Janet M; Tantravahi, Umadevi; Bianchi, Diana W

    2007-07-01

    Previously, we showed that analysis of amniotic fluid (AF) supernatant cell-free fetal (cff) DNA using DNA microarrays (array-CGH) allows for detection of whole chromosome differences between test and reference DNA. Subsequent technical advances have increased both the yield and quality of extracted cffDNA. Here we determined whether array-CGH using smaller volumes of both fresh and frozen AF cffDNA could identify fetal aneuploidy. CffDNA was extracted from 10 mL of residual AF supernatant. The test AF samples (n = 10) included one with a normal karyotype, and nine with the following fetal aneuploidies: trisomies 13 (n = 1), 18 (n = 3), 21 (n = 2), trisomy 9 mosaicism (47,XX,+ 9[18]/46,XX[2]), triploidy (69,XXY) and Turner syndrome (45,X). Array-CGH using AF cffDNA from aneuploid fetuses, compared to euploid reference AF cffDNA, detected whole chromosome aneuploidy in 8 of 9 cases tested, including the case of trisomy 9 mosaicism. The case of triploidy was not detected. CffDNA extracted from 10 mL AF supernatant can be analyzed using array-CGH to correctly identify human chromosome abnormalities. This technology allows for rapid screening of AF samples for whole chromosomal changes by using routinely discarded supernatant, and may augment standard prenatal karyotyping techniques by providing additional molecular information.

  1. Regulation of fetal male germ cell development by members of the TGFβ superfamily

    Directory of Open Access Journals (Sweden)

    Cassy Spiller

    2017-10-01

    Full Text Available There is now substantial evidence that members of the transforming growth factor-β (TGFβ family regulate germ cell development in the mouse fetal testis. Correct development of germ cells during fetal life is critical for establishment of effective spermatogenesis and for avoiding the formation of testicular germ cell cancer in later life. Here we consider the evidence for involvement of various TGFβ family members, attempt to reconcile discrepancies and clarify what we believe to be the likely in vivo roles of these factors.

  2. Regulation of fetal male germ cell development by members of the TGFβ superfamily.

    Science.gov (United States)

    Spiller, Cassy; Burnet, Guillaume; Bowles, Josephine

    2017-10-01

    There is now substantial evidence that members of the transforming growth factor-β (TGFβ family) regulate germ cell development in the mouse fetal testis. Correct development of germ cells during fetal life is critical for establishment of effective spermatogenesis and for avoiding the formation of testicular germ cell cancer in later life. Here we consider the evidence for involvement of various TGFβ family members, attempt to reconcile discrepancies and clarify what we believe to be the likely in vivo roles of these factors. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  3. DNA identification of fetal cells isolated from cervical mucus: potential for early non-invasive prenatal diagnosis.

    Science.gov (United States)

    Katz-Jaffe, Mandy G; Mantzaris, Debbie; Cram, David S

    2005-05-01

    To develop a reliable method to isolate fetal cells for genetic diagnosis. Aspiration of cervical mucus from pregnant women in the first trimester. Pregnant women were recruited before an elective termination of pregnancy. Sixty pregnant women (7-10 weeks of gestation). Fetal cells were isolated from aspirated cervical mucus of pregnant women using a combination of enzymatic digestion, fluorescent immunohistochemistry, micromanipulation and single-cell DNA allelic profiling. The isolation and identification of fetal cells. The transformation of the tenacious cervical mucus into a single-cell suspension enabled the isolation and identification of fetal cells by fluorescent immunohistochemistry. Confirmation of fetal origin was accomplished by single-cell DNA allelic profiling alongside known maternal cells. This novel non-invasive method is rapid and efficient with results attainable within 24 hours as early as seven weeks of gestation. The technique would offer earlier reassurance and the option of first trimester therapeutic abortions to both high and low risk pregnant women.

  4. Sensitivity of Fetal RhD Screening for Safe Guidance of Targeted Anti-D Immunoglobulin Prophylaxis: Prospective Cohort Study of a Nationwide Programme in the Netherlands

    NARCIS (Netherlands)

    de Haas, Masja; Thurik, Florentine F.; van der Ploeg, Catharina P. B.; Veldhuisen, Barbera; Hirschberg, Hoang; Soussan, Aicha Ait; Woortmeijer, Heleen; Abbink, Frithjofna; Page-Christiaens, Godelieve C. M. L.; Scheffer, Peter G.; van der Schoot, C. Ellen

    2017-01-01

    The risk ofmaternal alloimmunization due to RhD incompatibility has decreased with use of antenatal and postnatal anti-D immunoglobulin prophylaxis. The discovery of cell-free fetal (cff) DNA in maternal plasma during pregnancy and the feasibility of fetal RhD testing using this source of DNA make

  5. Dissecting human cerebral organoids and fetal neocortex using single-cell RNAseq

    Science.gov (United States)

    Treutlein, Barbara

    Cerebral organoids - three-dimensional cultures of human cerebral tissue derived from pluripotent stem cells - have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and novel interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages, and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue in order to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures.

  6. Novel Inducers of Fetal Globin Identified through High Throughput Screening (HTS Are Active In Vivo in Anemic Baboons and Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Michael S Boosalis

    Full Text Available High-level fetal (γ globin expression ameliorates clinical severity of the beta (β hemoglobinopathies, and safe, orally-bioavailable γ-globin inducing agents would benefit many patients. We adapted a LCR-γ-globin promoter-GFP reporter assay to a high-throughput robotic system to evaluate five diverse chemical libraries for this activity. Multiple structurally- and functionally-diverse compounds were identified which activate the γ-globin gene promoter at nanomolar concentrations, including some therapeutics approved for other conditions. Three candidates with established safety profiles were further evaluated in erythroid progenitors, anemic baboons and transgenic mice, with significant induction of γ-globin expression observed in vivo. A lead candidate, Benserazide, emerged which demonstrated > 20-fold induction of γ-globin mRNA expression in anemic baboons and increased F-cell proportions by 3.5-fold in transgenic mice. Benserazide has been used chronically to inhibit amino acid decarboxylase to enhance plasma levels of L-dopa. These studies confirm the utility of high-throughput screening and identify previously unrecognized fetal globin inducing candidates which can be developed expediently for treatment of hemoglobinopathies.

  7. An adaptive detection method for fetal chromosomal aneuploidy using cell-free DNA from 447 Korean women.

    Science.gov (United States)

    Kim, Sunshin; Jung, HeeJung; Han, Sung Hee; Lee, SeungJae; Kwon, JeongSub; Kim, Min Gyun; Chu, Hyungsik; Han, Kyudong; Kwak, Hwanjong; Park, Sunghoon; Joo, Hee Jae; An, Minae; Ha, Jungsu; Lee, Kyusang; Kim, Byung Chul; Zheng, Hailing; Zhu, Xinqiang; Chen, Hongliang; Bhak, Jong

    2016-10-03

    Noninvasive prenatal testing (NIPT) using massively parallel sequencing of cell-free DNA (cfDNA) is increasingly being used to predict fetal chromosomal abnormalities. However, concerns over erroneous predictions which occur while performing NIPT still exist in pregnant women at high risk for fetal aneuploidy. We performed the largest-scale clinical NIPT study in Korea to date to assess the risk of false negatives and false positives using next-generation sequencing. A total of 447 pregnant women at high risk for fetal aneuploidy were enrolled at 12 hospitals in Korea. They underwent definitive diagnoses by full karyotyping by blind analysis and received aneuploidy screening at 11-22 weeks of gestation. Three steps were employed for cfDNA analyses. First, cfDNA was sequenced. Second, the effect of GC bias was corrected using normalization of samples as well as LOESS and linear regressions. Finally, statistical analysis was performed after selecting a set of reference samples optimally adapted to a test sample from the whole reference samples. We evaluated our approach by performing cfDNA testing to assess the risk of trisomies 13, 18, and 21 using the sets of extracted reference samples. The adaptive selection algorithm presented here was used to choose a more optimized reference sample, which was evaluated by the coefficient of variation (CV), demonstrated a lower CV and higher sensitivity than standard approaches. Our adaptive approach also showed that fetal aneuploidies could be detected correctly by clearly splitting the z scores obtained for positive and negative samples. We show that our adaptive reference selection algorithm for optimizing trisomy detection showed improved reliability and will further support practitioners in reducing both false negative and positive results.

  8. An adaptive detection method for fetal chromosomal aneuploidy using cell-free DNA from 447 Korean women

    Directory of Open Access Journals (Sweden)

    Sunshin Kim

    2016-10-01

    Full Text Available Abstract Background Noninvasive prenatal testing (NIPT using massively parallel sequencing of cell-free DNA (cfDNA is increasingly being used to predict fetal chromosomal abnormalities. However, concerns over erroneous predictions which occur while performing NIPT still exist in pregnant women at high risk for fetal aneuploidy. We performed the largest-scale clinical NIPT study in Korea to date to assess the risk of false negatives and false positives using next-generation sequencing. Methods A total of 447 pregnant women at high risk for fetal aneuploidy were enrolled at 12 hospitals in Korea. They underwent definitive diagnoses by full karyotyping by blind analysis and received aneuploidy screening at 11–22 weeks of gestation. Three steps were employed for cfDNA analyses. First, cfDNA was sequenced. Second, the effect of GC bias was corrected using normalization of samples as well as LOESS and linear regressions. Finally, statistical analysis was performed after selecting a set of reference samples optimally adapted to a test sample from the whole reference samples. We evaluated our approach by performing cfDNA testing to assess the risk of trisomies 13, 18, and 21 using the sets of extracted reference samples. Results The adaptive selection algorithm presented here was used to choose a more optimized reference sample, which was evaluated by the coefficient of variation (CV, demonstrated a lower CV and higher sensitivity than standard approaches. Our adaptive approach also showed that fetal aneuploidies could be detected correctly by clearly splitting the z scores obtained for positive and negative samples. Conclusions We show that our adaptive reference selection algorithm for optimizing trisomy detection showed improved reliability and will further support practitioners in reducing both false negative and positive results.

  9. Non-invasive prenatal cell-free fetal DNA testing for down syndrome and other chromosomal abnormalities

    Directory of Open Access Journals (Sweden)

    Darija Strah

    2015-12-01

    Full Text Available Background: Chorionic villus sampling and amniocentesis as definitive diagnostic procedures represent a gold standard for prenatal diagnosis of chromosomal abnormalities. The methods are invasive and lead to a miscarriage and fetal loss in approximately 0.5–1 %. Non-invasive prenatal DNA testing (NIPT is based on the analysis of cell-free fetal DNA from maternal blood. It represents a highly accurate screening test for detecting the most common fetal chromosomal abnormalities. In our study we present the results of NIPT testing in the Diagnostic Center Strah, Slovenia, over the last 3 years.Methods: In our study, 123 pregnant women from 11th to 18th week of pregnancy were included. All of them had First trimester assessment of risk for trisomy 21, done before NIPT testing.Results: 5 of total 6 high-risk NIPT cases (including 3 cases of Down syndrome and 2 cases of Klinefelter’s syndrome were confirmed by fetal karyotyping. One case–Edwards syndrome was false positive. Patau syndrome, triple X syndrome or Turner syndrome were not observed in any of the cases. Furthermore, there were no false negative cases reported. In general, NIPT testing had 100 % sensitivity (95 % confidence interval: 46.29 %–100.00 % and 98.95 % specificity (95 % confidence interval: 93.44 %–99.95 %. In determining Down syndrome alone, specificity (95 % confidence interval: 95.25 %- 100.00 % and sensitivity (95 % confidence interval: 31.00 %–100.00 % turned out to be 100 %. In 2015, the average turnaround time for analysis was 8.3 days from the day when the sample was taken. Repeated blood sampling was required in 2 cases (redraw rate = 1.6 %.Conclusions: Our results confirm that NIPT represents a fast, safe and highly accurate advanced screening test for most common chromosomal abnormalities. In current clinical practice, NIPT would significantly decrease the number of unnecessary invasive procedures and the rate of fetal

  10. B and T cell screen

    Science.gov (United States)

    E-rosetting; T and B lymphocyte assays; B and T lymphocyte assays ... identifiers are added to distinguish between T and B cells. ... the following, which might affect your T and B cell count: Chemotherapy HIV/AIDS Radiation therapy Recent ...

  11. Distribution and development of peripheral glial cells in the human fetal cochlea.

    Science.gov (United States)

    Locher, Heiko; de Groot, John C M J; van Iperen, Liesbeth; Huisman, Margriet A; Frijns, Johan H M; Chuva de Sousa Lopes, Susana M

    2014-01-01

    The adult human cochlea contains various types of peripheral glial cells that envelop or myelinate the three different domains of the spiral ganglion neurons: the central processes in the cochlear nerve, the cell bodies in the spiral ganglia, and the peripheral processes in the osseous spiral lamina. Little is known about the distribution, lineage separation and maturation of these peripheral glial cells in the human fetal cochlea. In the current study, we observed peripheral glial cells expressing SOX10, SOX9 and S100B as early as 9 weeks of gestation (W9) in all three neuronal domains. We propose that these cells are the common precursor to both mature Schwann cells and satellite glial cells. Additionally, the peripheral glial cells located along the peripheral processes expressed NGFR, indicating a phenotype distinct from the peripheral glial cells located along the central processes. From W12, the spiral ganglion was gradually populated by satellite glial cells in a spatiotemporal gradient. In the cochlear nerve, radial sorting was accomplished by W22 and myelination started prior to myelination of the peripheral processes. The developmental dynamics of the peripheral glial cells in the human fetal cochlea is in support of a neural crest origin. Our study provides the first overview of the distribution and maturation of peripheral glial cells in the human fetal cochlea from W9 to W22.

  12. The natural history of fetal cells in postpartum murine maternal lung and bone marrow

    Science.gov (United States)

    Pritchard, Stephanie; Peter, Inga; Johnson, Kirby L.; Bianchi, Diana W.

    2012-01-01

    During pregnancy, fetal cells cross into the maternal organs where they reside postpartum. Evidence from multiple laboratories suggests that these microchimeric fetal cells contribute to maternal tissue repair after injury. In mouse models, most injury experiments are performed during pregnancy; however, in a clinical setting most injuries or diseases occur postpartum. Therefore, experiments using animal models should be designed to address questions in the time period following delivery. In order to provide a baseline for such experiments, we analyzed the natural history of fetal cells in the postpartum maternal organs. Female C57BL/6J mice were mated to males homozygous for the enhanced green fluorescent protein gene. Fetal cells in the maternal lungs and bone marrow were identified by their green fluorescence using in a high-speed flow cytometer and their counts were compared between the lung and bone marrow. Spearman correlation analysis was used to identify relationships between the duration of time postpartum and the cell counts and ratio of live and dead cells. Our results show that fetal cells persist in these organs until at least three months postpartum in healthy female mice. We show a two-stage decline, with an initial two and a half-week rapid clearance followed by a trend of gradual decrease. Additionally, an increase in the ratio of live to dead cells within the lung over time suggests that these cells may replicate in vivo. The results presented here will inform the design of future experiments and may have implications for women’s health. PMID:23128065

  13. The cell-free fetal DNA fraction in maternal blood decreases after physical activity

    DEFF Research Database (Denmark)

    Schlütter, Jacob Mørup; Hatt, Lotte; Bach, Cathrine

    2014-01-01

    OBJECTIVE: If noninvasive prenatal testing using next generation sequencing is to be effective for pregnant women, a cell-free fetal DNA (cffDNA) fraction above 4% is essential unless the depth of sequencing is increased. This study's objective is to determine whether physical activity has...... an effect on the proportion of cell-free DNA (cfDNA) arising from the fetus (fetal fraction). METHODS: Nine pregnant women carrying male fetuses at gestational age 12(+0)  weeks to 14(+6)  weeks were included. Plasma from nine pregnant women was drawn prior to, immediately after, and 30 min after 30 min...... of cycling with a pulse-rate of 150 beats per minute. The concentrations of cffDNA (DYS14) and cfDNA (RASSF1A) were assessed using quantitative real-time polymerase chain reaction. RESULTS: The fetal fraction decreased significantly in all participants after physical activity (p 

  14. Insights in spatio-temporal characterization of human fetal neural stem cells.

    Science.gov (United States)

    Martín-Ibáñez, Raquel; Guardia, Inés; Pardo, Mónica; Herranz, Cristina; Zietlow, Rike; Vinh, Ngoc-Nga; Rosser, Anne; Canals, Josep M

    2017-05-01

    Primary human fetal cells have been used in clinical trials of cell replacement therapy for the treatment of neurodegenerative disorders such as Huntington's disease (HD). However, human fetal primary cells are scarce and difficult to work with and so a renewable source of cells is sought. Human fetal neural stem cells (hfNSCs) can be generated from human fetal tissue, but little is known about the differences between hfNSCs obtained from different developmental stages and brain areas. In the present work we characterized hfNSCs, grown as neurospheres, obtained from three developmental stages: 4-5, 6-7 and 8-9weeks post conception (wpc) and four brain areas: forebrain, cortex, whole ganglionic eminence (WGE) and cerebellum. We observed that, as fetal brain development proceeds, the number of neural precursors is diminished and post-mitotic cells are increased. In turn, primary cells obtained from older embryos are more sensitive to the dissociation process, their viability is diminished and they present lower proliferation ratios compared to younger embryos. However, independently of the developmental stage of derivation proliferation ratios were very low in all cases. Improvements in the expansion rates were achieved by mechanical, instead of enzymatic, dissociation of neurospheres but not by changes in the seeding densities. Regardless of the developmental stage, neurosphere cultures presented large variability in the viability and proliferation rates during the initial 3-4 passages, but stabilized achieving significant expansion rates at passage 5 to 6. This was true also for all brain regions except cerebellar derived cultures that did not expand. Interestingly, the brain region of hfNSC derivation influences the expansion potential, being forebrain, cortex and WGE derived cells the most expandable compared to cerebellar. Short term expansion partially compromised the regional identity of cortical but not WGE cultures. Nevertheless, both expanded cultures were

  15. Fetal vs adult mesenchymal stem cells achieve greater gene expression, but less osteoinduction.

    Science.gov (United States)

    Santiago-Torres, Juan E; Lovasz, Rebecca; Bertone, Alicia L

    2015-01-26

    To investigate adenoviral transduction in mesenchymal stem cells (MSCs) and effects on stemness in vitro and function as a cell therapy in vivo. Bone marrow-derived adult and fetal MSC were isolated from an equine source and expanded in monolayer tissue culture. Polyethylenimine (PEI)-mediated transfection of pcDNA3-eGFP or adenoviral transduction of green fluorescent protein (GFP) was evaluated in fetal MSCs. Adenoviral-mediated transduction was chosen for subsequent experiments. All experiments were carried out at least in triplicate unless otherwise noted. Outcome assessment was obtained by flow cytometry or immunohystochemistry and included transduction efficiency, cell viability, stemness (i.e., cell proliferation, osteogenic and chondrogenic cell differentiation), and quantification of GFP expression. Fetal and adult MSCs were then transduced with an adenoviral vector containing the gene for the bone morphogenic protein 2 (BMP2). In vitro BMP2 expression was assessed by enzyme linked immunosorbent assay. In addition, MSC-mediated gene delivery of BMP2 was evaluated in vivo in an osteoinduction nude mouse quadriceps model. New bone formation was evaluated by microradiography and histology. PEI provided greater transfection and viability in fetal MSCs than other commercial chemical reagents. Adenoviral transduction efficiency was superior to PEI-mediated transfection of GFP in fetal MSCs (81.3% ± 1.3% vs 35.0% ± 1.6%, P < 0.05) and was similar in adult MSCs (78.1% ± 1.9%). Adenoviral transduction provided significantly greater expression of GFP in fetal than adult MSCs (7.4 ± 0.1 vs 4.4 ± 0.3 millions of mean fluorescence intensity units, P < 0.01) as well as significantly greater in vitro BMP2 expression (0.16 pg/cell-day vs 0.10 pg/cell-day, P < 0.01). Fraction of fetal MSC GFP positive cells decreased significantly faster than adult MSCs (1.15% ± 0.05% vs 11.4% ± 2.1% GFP positive at 2 wk post-transduction, P < 0.05). Cell proliferation and osteogenic

  16. Nonreassuring fetal heart rate patterns and nucleated red blood cells in term neonates.

    Science.gov (United States)

    Kovalak, E Ebru; Dede, F Suat; Gelisen, Orhan; Dede, Hulya; Haberal, Ali

    2011-05-01

    The aim of this study was to evaluate the association between nonreassuring fetal heart rate patterns during labor and umbilical cord nucleated red blood cell counts. Nucleated red blood cell data was collected prospectively from 41 singleton term neonates presented with nonreassuring fetal heart rate patterns and/or meconium stained amniotic fluid during labor (study group) and from 45 term neonates without any evidence of nonreassuring fetal status (controls). Umbilical artery pH, blood gases and base excess were also determined to investigate the correlation between independent variables. The median nucleated red blood cells per 100 white blood cells were 13 (range 0-37) in the study group and 8 (range 0-21) in the control group. Stepwise regression analysis have identified meconium stained amniotic fluid (R(2) = 0.15, p patterns. Nucleated red blood cells in the cord blood of newborns were found to be elevated in patients with nonreassuring FHR patterns during labor. However, the wide range and the poor correlation of NRBC count with umbilical artery pH and blood gas values limit its clinical utility as a marker for fetal hypoxia.

  17. Noninvasive prenatal testing using a novel analysis pipeline to screen for all autosomal fetal aneuploidies improves pregnancy management.

    Science.gov (United States)

    Bayindir, Baran; Dehaspe, Luc; Brison, Nathalie; Brady, Paul; Ardui, Simon; Kammoun, Molka; Van der Veken, Lars; Lichtenbelt, Klaske; Van den Bogaert, Kris; Van Houdt, Jeroen; Peeters, Hilde; Van Esch, Hilde; de Ravel, Thomy; Legius, Eric; Devriendt, Koen; Vermeesch, Joris R

    2015-10-01

    Noninvasive prenatal testing by massive parallel sequencing of maternal plasma DNA has rapidly been adopted as a mainstream method for detection of fetal trisomy 21, 18 and 13. Despite the relative high accuracy of current NIPT testing, a substantial number of false-positive and false-negative test results remain. Here, we present an analysis pipeline, which addresses some of the technical as well as the biologically derived causes of error. Most importantly, it differentiates high z-scores due to fetal trisomies from those due to local maternal CNVs causing false positives. This pipeline was retrospectively validated for trisomy 18 and 21 detection on 296 samples demonstrating a sensitivity and specificity of 100%, and applied prospectively to 1350 pregnant women in the clinical diagnostic setting with a result reported in 99.9% of cases. In addition, values indicative for trisomy were observed two times for chromosome 7 and once each for chromosomes 15 and 16, and once for a segmental trisomy 18. Two of the trisomies were confirmed to be mosaic, one of which contained a uniparental disomy cell line. As placental trisomies pose a risk for low-grade fetal mosaicism as well as uniparental disomy, genome-wide noninvasive aneuploidy detection is improving prenatal management.

  18. Fetal Nerve Cell Transplantation in Early Post-Resuscitation Period in Rats

    Directory of Open Access Journals (Sweden)

    Damira Tazhibayeva

    2015-02-01

    Full Text Available Introduction. Fetal cell transplantation is a promising biomedical approach for disease treatment; however, the use of fetal cell therapy is still experimental. This research was deemed a necessity to provide evidence-based research for the application of cell transplantation as a treatment method. The aim of this study was to evaluate the effect of fetal nerve cell transplantation in rat survivors (and non-survivors after clinical death by mechanical asphyxia.Methods. 68 white laboratory rats were divided into two groups of identical age and sex: a control group of 12-month adult male rats (n = 26 and an experimental group (n = 42. Rats were fixed under ether anesthesia. We then blocked the oral and nasal regions with cotton wool soaked in saline solution. A four-minute clinical death though acute mechanical asphyxia was simulated by applying the method of N. Shim. After the 4-minute clinical death, we resuscitated the rats using external cardiac massage and artifical respiration. Suspension of the fetal nerve cells was injected intraperitoneally at 1mm3 per 25g at the time of cardiac activity restoration. Lactate dehydrogenase (LDH and creatine phosphokinase (CPK levels were examined in the homogenate cerebral cortex of reanimated animals. We recorded the survival rate during the post-resuscitation period and analyzed the integrative brain functions using anxiety-phobic status and latent inhibition.Results. After fetal nerve cell transplantation, the enzymatic reactions in the experimental group became normal with a significant decrease in LDH and an increase in CPK levels compared to the control group. In the control group, 10 rats died and 16 lived (62% survival rate, while 7 rats died and 35 lived (83% survival rate in the experimental group during the first 7 days. Rats that did not receive the treatment tended to die sooner than those in the experimental group. As a result of transplantation, the anxiety level in the experimental group

  19. Equine dendritic cells generated with horse serum have enhanced functionality in comparison to dendritic cells generated with fetal bovine serum

    OpenAIRE

    Ziegler, Anja; Everett, Helen; Hamza, Eman; Garbani, Mattia; Gerber, Vinzenz; Marti, Eliane; Steinbach, Falko

    2016-01-01

    BACKGROUND: Dendritic cells are professional antigen-presenting cells that play an essential role in the initiation and modulation of T cell responses. They have been studied widely for their potential clinical applications, but for clinical use to be successful, alternatives to xenogeneic substances like fetal bovine serum (FBS) in cell culture need to be found. Protocols for the generation of dendritic cells ex vivo from monocytes are well established for several species, including hor...

  20. Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells.

    Directory of Open Access Journals (Sweden)

    Keun-A Chang

    2011-04-01

    Full Text Available The use of non-chemical methods to differentiate stem cells has attracted researchers from multiple disciplines, including the engineering and the biomedical fields. No doubt, growth factor based methods are still the most dominant of achieving some level of proliferation and differentiation control--however, chemical based methods are still limited by the quality, source, and amount of the utilized reagents. Well-defined non-chemical methods to differentiate stem cells allow stem cell scientists to control stem cell biology by precisely administering the pre-defined parameters, whether they are structural cues, substrate stiffness, or in the form of current flow. We have developed a culture system that allows normal stem cell growth and the option of applying continuous and defined levels of electric current to alter the cell biology of growing cells. This biphasic current stimulator chip employing ITO electrodes generates both positive and negative currents in the same culture chamber without affecting surface chemistry. We found that biphasic electrical currents (BECs significantly increased the proliferation of fetal neural stem cells (NSCs. Furthermore, BECs also promoted the differentiation of fetal NSCs into neuronal cells, as assessed using immunocytochemistry. Our results clearly show that BECs promote both the proliferation and neuronal differentiation of fetal NSCs. It may apply to the development of strategies that employ NSCs in the treatment of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.

  1. Reduced cell number in the neocortical part of the human fetal brain in Down syndrome

    DEFF Research Database (Denmark)

    Larsen, K.B.; Laursen, H.; Graem, N.

    2008-01-01

    Mental retardation is seen in all individuals with Down syndrome (DS) and different brain abnormalities are reported. The aim of this study was to investigate if mental retardation at least in part is a result of a lower cell number in the neocortical part of the human fetal forebrain. We therefore...

  2. Prenatal diagnosis of trisomy 13 on fetal cells obtained from maternal blood after minor enrichment

    NARCIS (Netherlands)

    Oosterwijk, JC; Mesker, WE; Ouwerkerk-Van Velzen, MCM; Knepfle, CFHM; Wiesmeijer, KC; Beverstock, GC; van Ommen, Gert-Jan B.; Tanke, HJ; Kanhai, HHH

    1998-01-01

    In a pilot study to establish fetal nucleated red blood cell (NRBC) detection in maternal blood, trisomy 13 was diagnosed by FISH analysis at 11 weeks' gestation. The NRBCs were detected after a single-step ficoll density gradient enrichment. In blood samples taken both before and after CVS, 52 and

  3. Cell cycle and tissue of origin contribute to the migratory behaviour of human fetal and adult mesenchymal stromal cells

    NARCIS (Netherlands)

    Maijenburg, Marijke W.; Noort, Willy A.; Kleijer, Marion; Kompier, Charlotte J. A.; Weijer, Kees; van Buul, Jaap D.; van der Schoot, C. Ellen; Voermans, Carlijn

    2010-01-01

    P>Mesenchymal stromal cells (MSC) are potential cells for cellular therapies, in which the recruitment and migration of MSC towards injured tissue is crucial. Our data show that culture-expanded MSC from fetal lung and bone marrow, adult bone marrow and adipose tissue contained a small percentage of

  4. Biosynthesis of the D2 cell adhesion molecule: pulse-chase studies in cultured fetal rat neuronal cells

    DEFF Research Database (Denmark)

    Lyles, J M; Norrild, B; Bock, E

    1984-01-01

    D2 is a membrane glycoprotein that is believed to function as a cell adhesion molecule (CAM) in neural cells. We have examined its biosynthesis in cultured fetal rat brain neurones. We found D2-CAM to be synthesized initially as two polypeptides: Mr 186,000 (A) and Mr 136,000 (B). With increasing...

  5. Prenatal Cell-Free DNA Screening

    Science.gov (United States)

    ... poses no physical risks for you or your baby. While prenatal cell-free DNA screening might cause anxiety, it might help you avoid the need for more invasive tests, treatment or monitoring during your pregnancy. Keep in mind, however, that ...

  6. Cellular Barcoding Links B-1a B Cell Potential to a Fetal Hematopoietic Stem Cell State at the Single-Cell Level

    DEFF Research Database (Denmark)

    Kristiansen, Trine A; Jaensson Gyllenbäck, Elin; Zriwil, Alya

    2016-01-01

    Hematopoietic stem cells (HSCs) undergo a functional switch in neonatal mice hallmarked by a decrease in self-renewing divisions and entry into quiescence. Here, we investigated whether the developmental attenuation of B-1a cell output is a consequence of a shift in stem cell state during ontogeny....... Using cellular barcoding for in vivo single-cell fate analyses, we found that fetal liver definitive HSCs gave rise to both B-1a and B-2 cells. Whereas B-1a potential diminished in all HSCs with time, B-2 output was maintained. B-1a and B-2 plasticity could be reinitiated in a subset of adult HSCs...... by ectopic expression of the RNA binding protein LIN28B, a key regulator of fetal hematopoiesis, and this coincided with the clonal reversal to fetal-like elevated self-renewal and repopulation potential. These results anchor the attenuation of B-1a cell output to fetal HSC behavior and demonstrate...

  7. A Cost-Effectiveness Analysis of First Trimester Non-Invasive Prenatal Screening for Fetal Trisomies in the United States.

    Directory of Open Access Journals (Sweden)

    Brandon S Walker

    Full Text Available Non-invasive prenatal testing (NIPT is a relatively new technology for diagnosis of fetal aneuploidies. NIPT is more accurate than conventional maternal serum screening (MSS but is also more costly. Contingent NIPT may provide a cost-effective alternative to universal NIPT screening. Contingent screening used a two-stage process in which risk is assessed by MSS in the first stage and, based on a risk cutoff, high-risk pregnancies are referred for NIPT. The objective of this study was to (1 determine the optimum MSS risk cutoff for contingent NIPT and (2 compare the cost effectiveness of optimized contingent NIPT to universal NIPT and conventional MSS.Decision-analytic model using micro-simulation and probabilistic sensitivity analysis. We evaluated cost effectiveness from three perspectives: societal, governmental, and payer.From a societal perspective, universal NIPT dominated both contingent NIPT and MSS. From a government and payer perspective, contingent NIPT dominated MSS. Compared to contingent NIPT, adopting a universal NIPT would cost $203,088 for each additional case detected from a government perspective and $263,922 for each additional case detected from a payer perspective.From a societal perspective, universal NIPT is a cost-effective alternative to MSS and contingent NIPT. When viewed from narrower perspectives, contingent NIPT is less costly than universal NIPT and provides a cost-effective alternative to MSS.

  8. Does diurnal variation affect the first trimester fetal aneuploidy screening test biochemical parameters of fetuses with normal nuchal translucency?

    Science.gov (United States)

    Karsli, Mehmet Fatih; Cakmak, Bulent; Seckin, Kerem Doga; Akkas Yilmaz, Elif; Akgul, Gurcan; Togrul, Cihan; Kucukozkan, Tuncay

    2016-01-01

    The purpose of this study was to investigate the effect of diurnal variation on biochemical results of first trimester aneuploidy screening test. A total of 2725 singleton pregnant female, who had normal fetal nuchal translucency (NT) thickness, were included in the study during this period. Individuals were divided into two groups according to the sampling time (morning group: 09:00-11:00 am and afternoon group: 02:00-04:00 pm). Hormonal parameters (free-beta human chorionic gonadotropin [free β-hCG] and pregnancy-associated plasma protein-A [PAPP-A] multiples of median [MoM] levels) of first trimester (11(+0)-13(+6) weeks) combined aneuploidy screening test were compared between morning and afternoon groups. PAPP-A MoM levels were significantly lower in the afternoon group when compared to the morning group (p = 0.001), whereas free β-hCG MoM levels were similar in the both groups (p = 0.392). Rate of high risk for Down syndrome (Combine risk >1/300) and amniocentesis ratio were found higher in the afternoon group than morning group, but there were no difference between groups for the number of fetuses with Down syndrome. Receiving the venous blood sample for first trimester aneuploidy screening test in the afternoon causes low PAPP-A MoM levels.

  9. Application of real-time PCR of sex-independent insertion-deletion polymorphisms to determine fetal sex using cell-free fetal DNA from maternal plasma.

    Science.gov (United States)

    Ho, Sherry Sze Yee; Barrett, Angela; Thadani, Henna; Asibal, Cecille Laureano; Koay, Evelyn Siew-Chuan; Choolani, Mahesh

    2015-07-01

    Prenatal diagnosis of sex-linked disorders requires invasive procedures, carrying a risk of miscarriage of up to 1%. Cell-free fetal DNA (cffDNA) present in cell-free DNA (cfDNA) from maternal plasma offers a non-invasive source of fetal genetic material for analysis. Detection of Y-chromosome sequences in cfDNA indicates presence of a male fetus; in the absence of a Y-chromosome signal a female fetus is inferred. We aimed to validate the clinical utility of insertion-deletion polymorphisms (INDELs) to confirm presence of a female fetus using cffDNA. Quantitative real-time PCR (qPCR) for the Y-chromosome-specific sequence, SRY, was performed on cfDNA from 82 samples at 6-39 gestational weeks. In samples without detectable SRY, qPCRs for eight INDELs were performed on maternal genomic DNA and cfDNA. Detection of paternally inherited fetal alleles in cfDNA negative for SRY confirmed a female fetus. Fetal sex was correctly determined in 77/82 (93.9%) cfDNA samples. SRY was detected in all 39 samples from male-bearing pregnancies, and none of the 43 female-bearing pregnancies (sensitivity and specificity of SRY qPCR is therefore 100%; 95% CI 91%-100%). Paternally inherited fetal alleles were detected in 38/43 samples with no SRY signal, confirming the presence of a female fetus (INDEL assay sensitivity is therefore 88.4%; 95% CI 74.1%-95.6%). Since paternally inherited fetal INDELs were not used in women bearing male fetuses, the specificity of INDELs cannot be calculated. Five cfDNA samples were negative for both SRY and INDELS. We have validated a non-invasive prenatal test to confirm fetal sex as early as 6 gestational weeks using cffDNA from maternal plasma.

  10. Responses of NBT-II bladder carcinoma cells to conditioned medium from normal fetal urogenital sinus.

    Science.gov (United States)

    Rowley, D R; Tindall, D J

    1987-06-01

    In vitro studies were conducted to determine whether conditioned medium from rat fetal urogenital sinus explants would affect phenotypic characteristics of NBT-II urinary bladder carcinoma cells in culture. NBT-II cells were exposed to medium (30%, v/v) conditioned for 48 h by intact urogenital sinus explants derived from 18-day fetal rats. Upon exposure for 23 h the [3H]thymidine incorporation by NBT-II cells was decreased by 40.3% relative to control cultures. This effect was paralleled by a similar decrease in proliferation. NBT-II cultures decreased in cell number by 32.1 and 45.8% on days 2 and 4, respectively, after exposure to conditioned medium. Although cell proliferation was inhibited, conditioned medium acted to induce an increase in protein secretion. An increase of 18.6% was observed in the incorporation of [35S]methionine into newly synthesized, secreted proteins by NBT-II cells exposed to conditioned medium for 23 h. Morphologically the NBT-II cells exposed to conditioned medium were larger, more spread out, and exhibited a greater array of lamellipodia and filopodia, although [35S]methionine incorporation into cellular proteins was decreased by 11.1%. These results suggest that diffusable factors produced by fetal urogenital sinus explants can induce changes in proliferation, protein synthesis, protein secretion, and phenotypic morphology of NBT-II carcinoma cells in culture.

  11. Ten years of experience with first-trimester screening for fetal aneuploidy employing biochemistry from gestational weeks 6+0 to 13+6.

    Science.gov (United States)

    Tørring, Niels; Petersen, Olav Bjørn; Uldbjerg, Niels

    2015-01-01

    To validate the performance of first-trimester screening for fetal aneuploidy employing blood samples drawn in gestational weeks 6-13. Prospective combined first-trimester screening for fetal aneuploidy in Denmark was validated in two large datasets: (1) a dataset from the Central Denmark Region including 147,768 pregnancies from October 2003 to October 2013, and (2) a national dataset including 220,739 pregnancies from January 2008 to August 2011. For trisomy 21, the weekly median multiple of the median (MoM) increased from 0.37 in week 6 to 0.70 in week 13 (pregnancy-associated plasma protein-A), and from 0.99 in week 6 to 2.68 in week 13 (free βhCG). The overall detection rate (DR) for fetal trisomy 21 was 91.2%. Employing blood samples from gestational week 9, the DR was 97% (p = 0.05). For fetal trisomy 18, trisomy 13 and triploidy, the overall DRs after first-trimester screening were 79.5, 86 and 85%. In the national dataset, the overall DR for trisomy 21 was 86.3% ranging from 89 (weeks 9 and 10) to 80% (weeks 12 and 13). The results from both datasets show that blood sampling in gestational weeks 9-10 is a robust and high-performance strategy, which can be applied for routine first-trimester screening in clinical practice. © 2014 S. Karger AG, Basel.

  12. Fetal Alcohol Syndrome (FAS) in C57BL/6 Mice Detected through Proteomics Screening of the Amniotic Fluid

    Science.gov (United States)

    Datta, Susmita; Turner, Delano; Singh, Reetu; Ruest, L. Bruno; Pierce, William M.; Knudsen, Thomas B.

    2009-01-01

    BACKGROUND Fetal Alcohol Syndrome (FAS), a severe consequence of the Fetal Alcohol Spectrum Disorders, is associated with craniofacial defects, mental retardation, and stunted growth. Previous studies in C57BL/6J and C57BL/6N mice provide evidence that alcohol-induced pathogenesis follows early changes in gene expression within specific molecular pathways in the embryonic headfold. Whereas the former (B6J) pregnancies carry a high-risk for dysmorphogenesis following maternal exposure to 2.9 g/kg alcohol (two injections spaced 4.0 h apart on gestation day 8), the latter (B6N) pregnancies carry a low-risk for malformations. The present study used this murine model to screen amniotic fluid for biomarkers that could potentially discriminate between FAS-positive and FAS-negative pregnancies. METHODS B6J and B6N litters were treated with alcohol (exposed) or saline (control) on day 8 of gestation. Amniotic fluid aspirated on day 17 (n = 6 replicate litters per group) was subjected to trypsin digestion for analysis by matrix-assisted laser desorption–time of flight mass spectrometry with the aid of denoising algorithms, statistical testing, and classification methods. RESULTS We identified several peaks in the proteomics screen that were reduced consistently and specifically in exposed B6J litters. Preliminary characterization by liquid chromatography tandem mass spectrometry and multidimensional protein identification mapped the reduced peaks to alpha fetoprotein (AFP). The predictive strength of AFP deficiency as a biomarker for FAS-positive litters was confirmed by area under the receiver operating characteristic curve. CONCLUSIONS These findings in genetically susceptible mice support clinical observations in maternal serum that implicate a decrease in AFP levels following prenatal alcohol damage. PMID:18240165

  13. Fetal Sex Determination using Non-Invasive Method of Cell-free Fetal DNA in Maternal Plasma of Pregnant Women During 6th– 10th Weeks of Gestation

    Science.gov (United States)

    Zargari, Maryam; Sadeghi, Mohammad Reza; Shahhosseiny, Mohammad Hassan; Kamali, Koroush; Saliminejad, Kyomars; Esmaeilzadeh, Ali; Khorshid, Hamid Reza Khorram

    2011-01-01

    In previous years, identification of fetal cells in maternal blood circulation has caused a new revolution in non-invasive method of prenatal diagnosis. Low number of fetal cells in maternal blood and long-term survival after pregnancy limited the use of fetal cells in diagnostic and clinical applications. With the discovery of cell-free fetal DNA (cffDNA) in plasma of pregnant women, access to genetic material of the fetus had become possible to determine early gender of a fetus in pregnancies at the risk of X-linked genetic conditions instead of applying invasive methods. Therefore in this study, the probability of detecting sequences on the Y chromosome in pregnant women has been evaluated to identify the gender of fetuses. Peripheral blood samples were obtained from 80 pregnant women at 6th to 10th weeks of gestation and then the fetal DNA was extracted from the plasma. Nested PCR was applied to detect the sequences of single copy SRY gene and multi copy DYS14 & DAZ genes on the Y chromosome of the male fetuses. At the end, all the obtained results were compared with the actual gender of the newborns. In 40 out of 42 born baby boys, the relevant gene sequences were identified and 95.2% sensitivity was obtained. Non-invasive early determination of fetal gender using cffDNA could be employed as a pre-test in the shortest possible time and with a high reliability to avoid applying invasive methods in cases where a fetus is at the risk of genetic diseases. PMID:23407464

  14. Purification of fetal liver stem/progenitor cells containing all the repopulation potential for normal adult rat liver

    DEFF Research Database (Denmark)

    Oertel, Michael; Menthena, Anuradha; Chen, Yuan-Qing

    2008-01-01

    BACKGROUND & AIMS: Previously, we showed high-level, long-term liver replacement after transplantation of unfractionated embryonic day (ED) 14 fetal liver stem/progenitor cells (FLSPC). However, for clinical applications, it will be essential to transplant highly enriched cells, while maintaining....... Rat ED14 FLSPC are alpha-fetoprotein(+)/cytokeratin-19(+) or alpha-fetoprotein(+)/cytokeratin-19(-) and contain all of the normal liver repopulation capacity found in fetal liver. Hematopoietic stem cells, a major component in crude fetal liver cell preparations that engraft in other organs...

  15. Prenatally engineered autologous amniotic fluid stem cell-based heart valves in the fetal circulation.

    Science.gov (United States)

    Weber, Benedikt; Emmert, Maximilian Y; Behr, Luc; Schoenauer, Roman; Brokopp, Chad; Drögemüller, Cord; Modregger, Peter; Stampanoni, Marco; Vats, Divya; Rudin, Markus; Bürzle, Wilfried; Farine, Marc; Mazza, Edoardo; Frauenfelder, Thomas; Zannettino, Andrew C; Zünd, Gregor; Kretschmar, Oliver; Falk, Volkmar; Hoerstrup, Simon P

    2012-06-01

    Prenatal heart valve interventions aiming at the early and systematic correction of congenital cardiac malformations represent a promising treatment option in maternal-fetal care. However, definite fetal valve replacements require growing implants adaptive to fetal and postnatal development. The presented study investigates the fetal implantation of prenatally engineered living autologous cell-based heart valves. Autologous amniotic fluid cells (AFCs) were isolated from pregnant sheep between 122 and 128 days of gestation via transuterine sonographic sampling. Stented trileaflet heart valves were fabricated from biodegradable PGA-P4HB composite matrices (n = 9) and seeded with AFCs in vitro. Within the same intervention, tissue engineered heart valves (TEHVs) and unseeded controls were implanted orthotopically into the pulmonary position using an in-utero closed-heart hybrid approach. The transapical valve deployments were successful in all animals with acute survival of 77.8% of fetuses. TEHV in-vivo functionality was assessed using echocardiography as well as angiography. Fetuses were harvested up to 1 week after implantation representing a birth-relevant gestational age. TEHVs showed in vivo functionality with intact valvular integrity and absence of thrombus formation. The presented approach may serve as an experimental basis for future human prenatal cardiac interventions using fully biodegradable autologous cell-based living materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Is there a place for human fetal-derived stem cells for cell replacement therapy in Huntington's disease?

    Science.gov (United States)

    Precious, Sophie V; Zietlow, Rike; Dunnett, Stephen B; Kelly, Claire M; Rosser, Anne E

    2017-06-01

    Huntington's disease (HD) is a neurodegenerative disease that offers an excellent paradigm for cell replacement therapy because of the associated relatively focal cell loss in the striatum. The predominant cells lost in this condition are striatal medium spiny neurons (MSNs). Transplantation of developing MSNs taken from the fetal brain has provided proof of concept that donor MSNs can survive, integrate and bring about a degree of functional recovery in both pre-clinical studies and in a limited number of clinical trials. The scarcity of human fetal tissue, and the logistics of coordinating collection and dissection of tissue with neurosurgical procedures makes the use of fetal tissue for this purpose both complex and limiting. Alternative donor cell sources which are expandable in culture prior to transplantation are currently being sought. Two potential donor cell sources which have received most attention recently are embryonic stem (ES) cells and adult induced pluripotent stem (iPS) cells, both of which can be directed to MSN-like fates, although achieving a genuine MSN fate has proven to be difficult. All potential donor sources have challenges in terms of their clinical application for regenerative medicine, and thus it is important to continue exploring a wide variety of expandable cells. In this review we discuss two less well-reported potential donor cell sources; embryonic germ (EG) cells and fetal neural precursors (FNPs), both are which are fetal-derived and have some properties that could make them useful for regenerative medicine applications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Cell signaling pathways involved in drug-mediated fetal hemoglobin induction: Strategies to treat sickle cell disease.

    Science.gov (United States)

    Pace, Betty S; Liu, Li; Li, Biaoru; Makala, Levi H

    2015-08-01

    The developmental regulation of globin gene expression has shaped research efforts to establish therapeutic modalities for individuals affected with sickle cell disease and β-thalassemia. Fetal hemoglobin has been shown to block sickle hemoglobin S polymerization to improve symptoms of sickle cell disease; moreover, fetal hemoglobin functions to replace inadequate hemoglobin A synthesis in β-thalassemia thus serving as an effective therapeutic target. In the perinatal period, fetal hemoglobin is synthesized at high levels followed by a decline to adult levels by one year of age. It is known that naturally occurring mutations in the γ-globin gene promoters and distant cis-acting transcription factors produce persistent fetal hemoglobin synthesis after birth to ameliorate clinical symptoms. Major repressor proteins that silence γ-globin during development have been targeted for gene therapy in β-hemoglobinopathies patients. In parallel effort, several classes of pharmacological agents that induce fetal hemoglobin expression through molecular and cell signaling mechanisms have been identified. Herein, we reviewed the progress made in the discovery of signaling molecules targeted by pharmacologic agents that enhance γ-globin expression and have the potential for future drug development to treat the β-hemoglobinopathies. © 2015 by the Society for Experimental Biology and Medicine.

  18. Role of pancreatic polypeptide as a market of transplanted insulin-producing fetal pig cells.

    Science.gov (United States)

    Tuch, B E; Tabiin, M T; Casamento, F M; Yao, M; Georges, P; Amaratunga, A; Pinto, A N

    2001-01-01

    Transplantation of insulin-producing fetal pancreatic tissue into diabetic recipients has been shown to normalize blood glucose levels after several months. This time period is required for the growth and maturation of the fetal tissue so insulin levels cannot be used as a marker of graft function while the beta-cell is immature. Therefore, we have examined the use of another pancreatic endocrine hormone, pancreatic polypeptide (PP), to monitor graft function. The cell that produces this hormone has been shown to be the first mature endocrine cell in the fetal pancreas. Fetal pig pancreatic tissue, both in the form of 1 mm3 explants and islet-like cell clusters (ICCs), was transplanted into immunodeficient SCID mice and the levels of PP and insulin were measured in plasma and in the graft for up to 12 weeks. PP was detected in the untransplanted explants (0.58 pmol/mg) and ICCs (0.06 pmol/ICC) and the PP to insulin ratio was 2.7% and 5.8%, respectively. PP (but not porcine C-peptide, a marker of insulin secretion) was detectable in the plasma of SCID mice from 4 days to 3 weeks after transplantation, but not thereafter. The highest values were obtained at 4 days to 1 week. In the grafted tissue PP and insulin were present at all time points and the ratio of PP to insulin was 59%, 87%, 75%, 56%, 7%, 8%, and 7% at 4 days, 1, 2, 3, 6, 9, and 12 weeks, respectively. The decline in PP levels 3 weeks after transplantation was associated with beta-cell development in the graft. PP was also secreted by fetal pig pancreatic explants transplanted into diabetic NOD/SCID mice, with plasma levels measurable in the first week after the tissue was grafted. In immunocompetent BALB/c mice transplanted with the tissue, PP was detectable in plasma for 2 days after transplantation but not at 4 days, when cellular rejection commenced, or thereafter. We conclude that plasma PP levels can be used as a marker of the viability of fetal porcine pancreatic tissue in the first 3 weeks after

  19. Fetal progenitor cell transplantation treats methylmalonic aciduria in a mouse model

    International Nuclear Information System (INIS)

    Buck, Nicole E.; Pennell, Samuel D.; Wood, Leonie R.; Pitt, James J.; Allen, Katrina J.; Peters, Heidi L.

    2012-01-01

    Highlights: ► Fetal cells were transplanted into a methylmalonic acid mouse model. ► Cell engraftment was detected in liver, spleen and bone marrow. ► Biochemical disease correction was measured in blood samples. ► A double dose of 5 million cells (1 week apart) proved more effective. ► Higher levels of engraftment may be required for greater disease correction. -- Abstract: Methylmalonic aciduria is a rare disorder caused by an inborn error of organic acid metabolism. Current treatment options are limited and generally focus on disease management. We aimed to investigate the use of fetal progenitor cells to treat this disorder using a mouse model with an intermediate form of methylmalonic aciduria. Fetal liver cells were isolated from healthy fetuses at embryonic day 15–17 and intravenously transplanted into sub-lethally irradiated mice. Liver donor cell engraftment was determined by PCR. Disease correction was monitored by urine and blood methylmalonic acid concentration and weight change. Initial studies indicated that pre-transplantation sub-lethal irradiation followed by transplantation with 5 million cells were suitable. We found that a double dose of 5 million cells (1 week apart) provided a more effective treatment. Donor cell liver engraftment of up to 5% was measured. Disease correction, as defined by a decrease in blood methylmalonic acid concentration, was effected in methylmalonic acid mice transplanted with a double dose of cells and who showed donor cell liver engraftment. Mean plasma methylmalonic acid concentration decreased from 810 ± 156 (sham transplanted) to 338 ± 157 μmol/L (double dose of 5 million cells) while mean blood C3 carnitine concentration decreased from 20.5 ± 4 (sham transplanted) to 5.3 ± 1.9 μmol/L (double dose of 5 million cells). In conclusion, higher levels of engraftment may be required for greater disease correction; however these studies show promising results for cell transplantation biochemical

  20. Identification of Fetal Inflammatory Cells in Eosinophilic/T-cell Chorionic Vasculitis Using Fluorescent In Situ Hybridization.

    Science.gov (United States)

    Katzman, Philip J; Li, LiQiong; Wang, Nancy

    2015-01-01

    Eosinophilic/T-cell chorionic vasculitis (ETCV) is an inflammatory lesion of placental fetal vessels. In contrast to acute chorionic vasculitis, inflammation in ETCV is seen in chorionic vessel walls opposite the amnionic surface. It is not known whether inflammation in ETCV consists of maternal cells from the intervillous space or fetal cells migrating from the vessel. We used fluorescent in situ hybridization (FISH) to differentiate fetal versus maternal cells in ETCV. Placentas with ETCV, previously identified for a published study, were used. Infant sex in each case was identified using the electronic medical record. For male infants, 3-μm sections were cut from archived tissue blocks from placentas involving ETCV and stained with fluorescent X- and Y-chromosome centromeric probes. A consecutive hematoxylin/eosin-stained section was used for correlation. FISH analysis was performed on 400 interphase nuclei at the site of ETCV to determine the proportion of XX, XY, X, and Y cells. Of 31 ETCV cases, 20 were female and 10 were male (1 sex not recorded). Six of 10 cases with male infants had recuts with visible ETCV. In these 6 cases the average percentages (ranges) of XY cells, X-only cells, and Y-only cells in the region of inflammation were 81 (70-90), 11 (6-17), and 8 (2-14), respectively. There was a 2:1 female:male infant ratio in ETCV. Similar to acute chorionic vasculitis, the inflammation in ETCV is of fetal origin. It is still unknown, however, whether the stimulus for ETCV is of fetal or maternal origin.

  1. [Clinical application of noninvasive prenatal diagnosis using cell free fetal DNA in maternal plasma].

    Science.gov (United States)

    Hou, Qiao-fang; Wu, Dong; Chu, Yan; Kang, Bing; Liao, Shi-xiu; Yang, Yan-li; Zhang, Chao-yang; Zhang, Ju-xin; Wu, Gang

    2012-11-01

    To investigate the clinical value of non-invasive prenatal diagnosis using cell free fetal DNA (cff-DNA) in maternal blood. From Sep. 2010 to Mar. 2012, 103 pregnant women who came to Henan Province People's Hospital in the first trimester for prenatal diagnosis of sex-linked inherited diseases were included in the first trimester group. From Oct. 2010 to Jan. 2012, 205 pregnant women undergoing amniotic fluid sampling for fetal karyotype analysis in the same hospital were included in the second trimester group. Real time quantitative PCR and fluorescent PCR were used to detect sex determining region of Y chromosome gene (SRY) and amelogenin gene (AML) on cff-DNA of the first trimester group. Moreover, 12 Y chromosome STR loci analysis were performed for 33 male fetuses and their fathers. Massively Parallel Signature Sequencing (MPSS) was used for aneuploidy analysis in cff-DNA of the second trimester group. (1) In the first trimester group, there were 53 SRY positive and 50 SRY negative. Compared with the results of cff-DNA of chorionic villus samples, there was one SRY false positive and one false negative results, with a sensitivity of 98% and specificity of 98%. For the AML gene test, there were two PCR products of male fetuses:102 bp fragment originating from X chromosome (AML X) and 108 bp fragment from Y chromosome (AML Y); but only AML X was found in products from female fetuses. In the first trimester group, 102 bp and 108 bp fragments were detected in 52 cases, and only 102 bp fragment was found in the other cases. Compared to AML results from chorionic villus samples, there were 2 false negative results, with a sensitivity of 96% and specificity of 100%. (2) For cff-DNA with plasma SRY over 30 copy/ml, Y STR loci were analyzed on cff-DNA of 33 fetuses and their fathers. The Y STR loci less then 200 bp were successfully detected, while Y STR loci with PCR products between 200-300 bp showed low signal or could not be amplicated; and no PCR products more

  2. Physical exercise decreases the number of fetal cells in maternal blood

    DEFF Research Database (Denmark)

    Schlütter, Jacob Mørup; Kirkegaard, Ida; Christensen, Connie Britta

    Physical exercise decreases the number of fetal cells in maternal blood J. M. Schlütter1, I. Kirkegaard1, B. Christensen2, S. Kølvraa3, N. Uldbjerg1 1. Department of Gynecology and Obstetrics, Aarhus University Hospital, Skejby, Aarhus N, Denmark. 2. FCMB ApS, Vejle, Denmark. 3. Department...... and 10-15 % have no cells in 30 mL, which is a challenge for the implementation of the method for prenatal diagnostic purposes. Considering the assumed fragility of circulating fetal cells we wondered if physical exercise prior to blood sampling might influence the number of fcmb. The objective...... in maternal blood. The explanation might be increased clearance of fcmb from the circulation during exercise. If analysis of fcmb is introduced as a clinical parameter pregnant women should avoid extensive physical activity 24 hours prior to blood sampling....

  3. Epigenetic modification differences between fetal fibroblast cells and mesenchymal stem cells of the Arbas Cashmere goat.

    Science.gov (United States)

    Wang, Xiao; Wang, Zhimin; Wang, Qing; Wang, Hefei; Liang, Hao; Liu, Dongjun

    2017-10-01

    To explore the epigenetic mechanisms regulating mesenchymal stem cells, we analyzed epigenetic patterns in control goat fetal fibroblast cells (gFFCs), adipose-derived stem cells (gADSCs), bone marrow stromal cells (gBMSCs), and muscle-derived satellite cells (gMDSCs). We found that the 5mC content of gBMSC genomes was lower than that of gFFC genomes, while the 5mC content of gADSC and gMDSC genomes surpassed that of gFFC genomes. H3K9 acetylation did not differ significantly among those cells; gFFCs, gADSCs, and gMDSCs contained acetylated H3K9, H3K14, H3K18, H4K5, and H4K12, but gBMSCs contained almost no acetylated H4K5 and H4K12. DNMT1, DNMT3A, and DNMT3B expression levels in gBMSCs and gMDSCs were relatively high; TET1 and TET2 expression levels in gFFCs, gADSCs, gBMSCs, and gMDSCs were relatively low; the TET3 expression level was relatively high, but was not statistically significant. The expression levels of HDAC1, HDAC6, SIRT1, Tip60, and PCAF in gADSCs, gBMSCs, and gMDSCs were higher than those in gFFCs; this observation was consistent with the real-time quantitative PCR results. P300 expression was not detected. We found that epigenetic modification was active in mesenchymal stem cells, which benefited the regulation of these cells. Copyright © 2017. Published by Elsevier Ltd.

  4. Hydrogel formulation determines cell fate of fetal and adult neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Emily R. Aurand

    2014-01-01

    Full Text Available Hydrogels provide a unique tool for neural tissue engineering. These materials can be customized for certain functions, i.e. to provide cell/drug delivery or act as a physical scaffold. Unfortunately, hydrogel complexities can negatively impact their biocompatibility, resulting in unintended consequences. These adverse effects may be combated with a better understanding of hydrogel chemical, physical, and mechanical properties, and how these properties affect encapsulated neural cells. We defined the polymerization and degradation rates and compressive moduli of 25 hydrogels formulated from different concentrations of hyaluronic acid (HA and poly(ethylene glycol (PEG. Changes in compressive modulus were driven primarily by the HA concentration. The in vitro biocompatibility of fetal-derived (fNPC and adult-derived (aNPC neural progenitor cells was dependent on hydrogel formulation. Acute survival of fNPC benefited from hydrogel encapsulation. NPC differentiation was divergent: fNPC differentiated into mostly glial cells, compared with neuronal differentiation of aNPC. Differentiation was influenced in part by the hydrogel mechanical properties. This study indicates that there can be a wide range of HA and PEG hydrogels compatible with NPC. Additionally, this is the first study comparing hydrogel encapsulation of NPC derived from different aged sources, with data suggesting that fNPC and aNPC respond dissimilarly within the same hydrogel formulation.

  5. Fetal muscle-derived cells can repair dystrophic muscles in mdx mice

    International Nuclear Information System (INIS)

    Auda-Boucher, Gwenola; Rouaud, Thierry; Lafoux, Aude; Levitsky, Dmitri; Huchet-Cadiou, Corinne; Feron, Marie; Guevel, Laetitia; Talon, Sophie; Fontaine-Perus, Josiane; Gardahaut, Marie-France

    2007-01-01

    We have previously reported that CD34 + cells purified from mouse fetal muscles can differentiate into skeletal muscle in vitro and in vivo when injected into muscle tissue of dystrophic mdx mice. In this study, we investigate the ability of such donor cells to restore dystrophin expression, and to improve the functional muscle capacity of the extensor digitorum longus muscle (EDL) of mdx mice. For this purpose green fluorescent-positive fetal GFP + /CD34 + cells or desmin + / - LacZ/CD34 + cells were transplanted into irradiated or non-irradiated mdx EDL muscle. Donor fetal muscle-derived cells predominantly fused with existing fibers. Indeed more than 50% of the myofibers of the host EDL contained donor nuclei delivering dystrophin along 80-90% of the length of their sarcolemma. The presence of significant amounts of dystrophin (about 60-70% of that found in a control wild-type mouse muscle) was confirmed by Western blot analyses. Dystrophin expression also outcompeted that of utrophin, as revealed by a spatial shift in the distribution of utrophin. At 1 month post-transplant, the recipient muscle appeared to have greater resistance to fatigue than control mdx EDL muscle during repeated maximal contractions

  6. Hydroxyurea-Increased Fetal Hemoglobin Is Associated with Less Organ Damage and Longer Survival in Adults with Sickle Cell Anemia.

    Directory of Open Access Journals (Sweden)

    Courtney D Fitzhugh

    Full Text Available Adults with sickle cell anemia (HbSS are inconsistently treated with hydroxyurea.We retrospectively evaluated the effects of elevating fetal hemoglobin with hydroxyurea on organ damage and survival in patients enrolled in our screening study between 2001 and 2010.An electronic medical record facilitated development of a database for comparison of study parameters based on hydroxyurea exposure and dose. This study is registered with ClinicalTrials.gov, number NCT00011648.Three hundred eighty-three adults with homozygous sickle cell disease were analyzed with 59 deaths during study follow-up. Cox regression analysis revealed deceased subjects had more hepatic dysfunction (elevated alkaline phosphatase, Hazard Ratio = 1.005, 95% CI 1.003-1.006, p<0.0.0001, kidney dysfunction (elevated creatinine, Hazard Ratio = 1.13, 95% CI 1.00-1.27, p = 0.043, and cardiopulmonary dysfunction (elevated tricuspid jet velocity on echocardiogram, Hazard Ratio = 2.22, 1.23-4.02, p = 0.0082. Sixty-six percent of subjects were treated with hydroxyurea, although only 66% of those received a dose within the recommended therapeutic range. Hydroxyurea use was associated with improved survival (Hazard Ratio = 0.58, 95% CI 0.34-0.97, p = 0.040. This effect was most pronounced in those taking the recommended dose of 15-35 mg/kg/day (Hazard Ratio 0.36, 95% CI 0.17-0.73, p = 0.0050. Hydroxyurea use was not associated with changes in organ function over time. Further, subjects with higher fetal hemoglobin responses to hydroxyurea were more likely to survive (p = 0.0004. While alkaline phosphatase was lowest in patients with the best fetal hemoglobin response (95.4 versus 123.6, p = 0.0065 and 96.1 versus 113.6U/L, p = 0.041 at first and last visits, respectively, other markers of organ damage were not consistently improved over time in patients with the highest fetal hemoglobin levels.Our data suggest that adults should be treated with the maximum tolerated hydroxyurea dose

  7. Frontline Science: Wnt/β-catenin pathway promotes early engraftment of fetal hematopoietic stem/progenitor cells.

    Science.gov (United States)

    Kwarteng, Edward O; Hétu-Arbour, Roxann; Heinonen, Krista M

    2018-03-01

    The switch from fetal to adult hematopoietic stem/progenitor cells (HSPCs) is associated with profound changes in several genetic programs. Although HSPC ageing corresponds to alterations in Wnt signaling, relatively little is known about the relative roles of different Wnt signaling pathways in HSPC ontogeny. We hypothesized that proliferating fetal HSPCs would be more dependent on canonical β-catenin-dependent Wnt signaling when compared to quiescent adult bone marrow HSPCs. We have compared here Wnt signaling activities in murine fetal and adult HSPCs and demonstrate a shift from Wnt/β-catenin-dependent signaling in fetal liver HSPCs to more predominantly noncanonical Wnt/polarity signaling in adult HSPCs. β-Catenin was selectively required for fetal HSPC competitiveness shortly after transplant, and protected cells from oxidative stress. Our results emphasize the complexity of Wnt signaling dynamics in HSPC maintenance and function. ©2018 Society for Leukocyte Biology.

  8. Effects of Exposure to Acetaminophen and Ibuprofen on Fetal Germ Cell Development in Both Sexes in Rodent and Human Using Multiple Experimental Systems

    DEFF Research Database (Denmark)

    Hurtado-Gonzalez, Pablo; Anderson, Richard A; Macdonald, Joni

    2018-01-01

    BACKGROUND: Analgesic exposure during pregnancy may affect aspects of fetal gonadal development that are targeted by endocrine disruptors. OBJECTIVES: We investigated whether therapeutically relevant doses of acetaminophen and ibuprofen affect germ cell (GC) development in human fetal testes/ovar...

  9. Correlation of low levels of nitrite and high levels of fetal hemoglobin in patients with sickle cell disease at baseline

    Directory of Open Access Journals (Sweden)

    Darcielle Bruna Dias Elias

    2012-01-01

    Full Text Available BACKGROUND: Sickle cell disease is a hemoglobinopathy characterized by hemolytic anemia, increased susceptibility to infections and recurrent vaso-occlusive crises that reduces the quality of life of sufferers. OBJECTIVE: To evaluate the correlation of the levels of lactate dehydrogenase, malonaldehyde and nitrite to fetal hemoglobin in patients with sickle cell disease not under treatment with hydroxyurea in outpatients at a university hospital in Fortaleza, Ceará, Brazil. METHODS: Forty-four patients diagnosed with sickle cell disease were enrolled at baseline. Diagnosis was confirmed by evaluating the beta globin gene using polymerase chain reaction-restriction fragment length polymorphism. The concentration of fetal hemoglobin was obtained by high-performance liquid chromatography. Serum levels of nitrite, malonaldehyde and lactate dehydrogenase were measured by biochemical methods. RESULTS: Significantly higher levels of lactate dehydrogenase, nitrite and malonaldehyde were observed in patients with sickle cell disease compared to a control group. The study of the correlation between fetal hemoglobin levels and these variables showed a negative correlation with nitrite levels. No correlation was found between fetal hemoglobin and malonaldehyde or lactate dehydrogenase. When the study population was stratified according to fetal hemoglobin levels, a decrease in the levels of nitrite was observed with higher levels of fetal hemoglobin (p-value = 0.0415. CONCLUSION: The results show that, similar to fetal hemoglobin levels, the concentration of nitrite can predict the clinical course of the disease, but should not be used alone as a modulator of prognosis in patients with sickle cell disease.

  10. Fetal myocardium in the kidney capsule: an in vivo model of repopulation of myocytes by bone marrow cells.

    Directory of Open Access Journals (Sweden)

    Eric Y Zhang

    Full Text Available Debate surrounds the question of whether the heart is a post-mitotic organ in part due to the lack of an in vivo model in which myocytes are able to actively regenerate. The current study describes the first such mouse model--a fetal myocardial environment grafted into the adult kidney capsule. Here it is used to test whether cells descended from bone marrow can regenerate cardiac myocytes. One week after receiving the fetal heart grafts, recipients were lethally irradiated and transplanted with marrow from green fluorescent protein (GFP-expressing C57Bl/6J (B6 donors using normal B6 recipients and fetal donors. Levels of myocyte regeneration from GFP marrow within both fetal myocardium and adult hearts of recipients were evaluated histologically. Fetal myocardium transplants had rich neovascularization and beat regularly after 2 weeks, continuing at checkpoints of 1, 2, 4, 6, 8 and12 months after transplantation. At each time point, GFP-expressing rod-shaped myocytes were found in the fetal myocardium, but only a few were found in the adult hearts. The average count of repopulated myocardium with green rod-shaped myocytes was 996.8 cells per gram of fetal myocardial tissue, and 28.7 cells per adult heart tissue, representing a thirty-five fold increase in fetal myocardium compared to the adult heart at 12 months (when numbers of green rod-shaped myocytes were normalized to per gram of myocardial tissue. Thus, bone marrow cells can differentiate to myocytes in the fetal myocardial environment. The novel in vivo model of fetal myocardium in the kidney capsule appears to be valuable for testing repopulating abilities of potential cardiac progenitors.

  11. Measurement of fetal fraction in cell-free DNA from maternal plasma using a panel of insertion/deletion polymorphisms.

    Directory of Open Access Journals (Sweden)

    Angela N Barrett

    Full Text Available Cell-free DNA from maternal plasma can be used for non-invasive prenatal testing for aneuploidies and single gene disorders, and also has applications as a biomarker for monitoring high-risk pregnancies, such as those at risk of pre-eclampsia. On average, the fractional cell-free fetal DNA concentration in plasma is approximately 15%, but can vary from less than 4% to greater than 30%. Although quantification of cell-free fetal DNA is straightforward in the case of a male fetus, there is no universal fetal marker; in a female fetus measurement is more challenging. We have developed a panel of multiplexed insertion/deletion polymorphisms that can measure fetal fraction in all pregnancies in a simple, targeted sequencing reaction.A multiplex panel of primers was designed for 35 indels plus a ZFX/ZFY amplicon. cfDNA was extracted from plasma from 157 pregnant women, and maternal genomic DNA was extracted for 20 of these samples for panel validation. Sixty-one samples from pregnancies with a male fetus were subjected to whole genome sequencing on the Ion Proton sequencing platform, and fetal fraction derived from Y chromosome counts was compared to fetal fraction measured using the indel panel. A total of 157 cell-free DNA samples were sequenced using the indel panel, and informativity was assessed, along with the proportion of fetal DNA.Using gDNA we optimised the indel panel, removing amplicons giving rise to PCR bias. Good correlation was found between fetal fraction using indels and using whole genome sequencing of the Y chromosome (Spearmans r = 0.69. A median of 12 indels were informative per sample. The indel panel was informative in 157/157 cases (mean fetal fraction 14.4% (±0.58%.Using our targeted next generation sequencing panel we can readily assess the fetal DNA percentage in male and female pregnancies.

  12. An Advanced Model to Precisely Estimate the Cell-Free Fetal DNA Concentration in Maternal Plasma.

    Directory of Open Access Journals (Sweden)

    Xiongbin Kang

    Full Text Available With the speedy development of sequencing technologies, noninvasive prenatal testing (NIPT has been widely applied in clinical practice for testing for fetal aneuploidy. The cell-free fetal DNA (cffDNA concentration in maternal plasma is the most critical parameter for this technology because it affects the accuracy of NIPT-based sequencing for fetal trisomies 21, 18 and 13. Several approaches have been developed to calculate the cffDNA fraction of the total cell-free DNA in the maternal plasma. However, most approaches depend on specific single nucleotide polymorphism (SNP allele information or are restricted to male fetuses.In this study, we present an innovative method to accurately deduce the concentration of the cffDNA fraction using only maternal plasma DNA. SNPs were classified into four maternal-fetal genotype combinations and three boundaries were added to capture effective SNP loci in which the mother was homozygous and the fetus was heterozygous. The median value of the concentration of the fetal DNA fraction was estimated using the effective SNPs. A depth-bias correction was performed using simulated data and corresponding regression equations for adjustments when the depth of the sequencing data was below 100-fold or the cffDNA fraction is less than 10%.Using our approach, the median of the relative bias was 0.4% in 18 maternal plasma samples with a median sequencing depth of 125-fold. There was a significant association (r = 0.935 between our estimations and the estimations inferred from the Y chromosome. Furthermore, this approach could precisely estimate a cffDNA fraction as low as 3%, using only maternal plasma DNA at the targeted region with a sequencing depth of 65-fold. We also used PCR instead of parallel sequencing to calculate the cffDNA fraction. There was a significant association (r = 98.2% between our estimations and those inferred from the Y chromosome.

  13. Differential effects of bisphenol A and diethylstilbestrol on human, rat and mouse fetal leydig cell function.

    Directory of Open Access Journals (Sweden)

    Thierry N'Tumba-Byn

    Full Text Available Endocrine disruptors (ED have been incriminated in the current increase of male reproductive alterations. Bisphenol A (BPA is a widely used weak estrogenic environmental ED and it is debated whether BPA concentrations within the average internal exposure are toxic. In the present study we investigated the effects of 10(-12 to 10(-5 M BPA concentrations on fetal Leydig cell function, as fetal life is a critical period of sensitivity to ED effects on male reproductive function. To this aim, fetal testes from human at 6.5-10.5 gestational weeks (GW or from rat and mouse at a comparable critical period of development (14.5 days post-coitum (dpc for rat and 12.5 dpc for mouse were explanted and cultured using our validated organotypic culture system in the presence or absence of BPA for 1-3 days. BPA concentrations as low as 10(-8 M reduced testosterone secretion by human testes from day 1 of culture onwards, but not by mouse and rat testes where concentrations equal to 10(-5 M BPA were required. Similarly, 10(-8 M BPA reduced INSL3 mRNA levels only in human cultured testes. On the contrary, 10(-5 and 10(-6 M diethylstilbestrol (DES, a classical estrogenic compound, affected testosterone secretion only in rat and mouse testis cultures, but not in human testis cultures. Lastly, contrarily to the DES effect, the negative effect of BPA on testosterone produced by the mouse fetal testis was maintained after invalidation of estrogen receptor α (ERα. In conclusion, these results evidenced i a deleterious effect of BPA on fetal Leydig cells function in human for concentrations from 10(-8 M upwards, ii species-specific differences raising concerns about extrapolation of data from rodent studies to human risk assessment, iii a specific signaling pathway for BPA which differs from the DES one and which does not involve ERα.

  14. Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours

    DEFF Research Database (Denmark)

    Hoei-Hansen, C E; Almstrup, K; Nielsen, J E

    2005-01-01

    AIMS: NANOG is a key regulator of embryonic stem cell (ESC) self-renewal and pluripotency. Our recent genome-wide gene expression profiling study of the precursor of testicular germ cell tumours, carcinoma in situ testis (CIS), showed close similarity between ESC and CIS, including high NANOG...... earlier than for OCT-4. We detected no expression at the protein level in normal testis. CONCLUSIONS: NANOG is a new marker for testicular CIS and germ cell tumours and the high level of NANOG along with OCT-4 are determinants of the stem cell-like pluripotency of the preinvasive CIS cell. Timing of NANOG......; seminoma and embryonal carcinoma were strongly positive, differentiated somatic elements of teratoma were negative. We provide evidence for the fetal origin of testicular cancer as we detected strong expression of NANOG in fetal gonocytes up to gestational week 20, with subsequent down-regulation occurring...

  15. Fetal and neonatal alloimmune thrombocytopenia : towards implementation of screening in pregnancy

    NARCIS (Netherlands)

    Kamphuis, M.M.

    2017-01-01

    This thesis describes new knowledge of FNAIT in preparation of a national wide screening program. It illustrates the prevalence of FNAIT among pregnant women and the risk of adverse outcome, outlines current management, evaluates risks of missing a diagnosis of FNAIT, studies the efficacy of a lower

  16. Early pregnancy screening for fetal aneuploidy with serum markers and nuchal translucency

    NARCIS (Netherlands)

    de Graaf, I. M.; Pajkrt, E.; Bilardo, C. M.; Leschot, N. J.; Cuckle, H. S.; van Lith, J. M.

    1999-01-01

    We determined the aneuploidy detection rate achievable by early pregnancy screening with pregnancy associated plasma protein (PAPP)-A, free beta human chorionic gonadotrophin (hCG) and ultrasound nuchal translucency (NT) measurement. Women having prenatal diagnosis were scanned, and a blood sample

  17. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Agneta Månsson-Broberg

    2016-04-01

    Full Text Available The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo.

  18. Hyperkalemia after irradiation of packed red blood cells: Possible effects with intravascular fetal transfusion

    International Nuclear Information System (INIS)

    Thorp, J.A.; Plapp, F.V.; Cohen, G.R.; Yeast, J.D.; O'Kell, R.T.; Stephenson, S.

    1990-01-01

    Plasma potassium, calcium, and albumin concentrations in irradiated blood, and in fetal blood before and after transfusion, were measured. Dangerously high plasma potassium levels were observed in some units of irradiated packed red blood cells (range, 13.9 to 66.5 mEq/L; mean, 44.7 mEq/L) and could be one possible explanation for the high incidence of fetal arrhythmia associated with fetal intravascular transfusion. There are many factors operative in the preparation of irradiated packed red blood cells that may predispose to high potassium levels: the age of the red blood cells, the number of procedures used to concentrate the blood, the duration of time elapsed from concentration, the duration of time elapsed from irradiation, and the hematocrit. Use of fresh blood, avoidance of multiple packing procedures, limiting the hematocrit in the donor unit to less than or equal to 80%, and minimizing the time between concentration, irradiation and transfusion may minimize the potassium levels, and therefore making an additional washing procedure unnecessary

  19. Reduction of the radiogenic tumor incidence by stimulation with lyophilized fetal cells

    International Nuclear Information System (INIS)

    Bause, R.; Gros, C.J.; Landsberger, A.; Renner, H.; Klinikum Nuernberg

    1983-01-01

    The effect of an immunization treatment with lyophilized xenogenic fetal cells was studied in 7 months old, female albino rats (strain Wistar). The tumor incidence was measured after a sublethal whole-body irradiation with 600 cGy. Furthermore, the spleen of the individual animals was histologically examined. 3,5 to 6 months after a whole-body irradiation with 600 cGy, the tumor incidence was 55%. The tumors found were tubular adenocarcinomas of the thyroid gland. A significant reduction of the tumor incidence can be achieved by an immunostimulation with xenogenic, lyophilized, fetal cells (connective tissue and bone marrow, respectively) administered twice, namely eight days before and four days after the whole-body irradiation. The tumor incidence measured after 3,5 months was 10% and 15%, respectively, and after 6 months 15% and 25%, respectively. No significant tumor protection is achieved, however, by a single stimulation before whole-body irradiation and by a stimulation performed one or two times after whole-body irradiation. Histologic examinations of the spleen show in the immunostimulized animals a strong regeneration of the immune system with a significantly increased number of follicles and a significant increase of lumphocytes in the red pulp. The authors stress the possible clinical importance for radio-oncology of an immunostimulation with lyophilized, xenogenic, fetal cells. (orig.) [de

  20. The benefits and limitations of cell-free DNA screening for 22q11.2 deletion syndrome.

    Science.gov (United States)

    Dugoff, Lorraine; Mennuti, Michael T; McDonald-McGinn, Donna M

    2017-01-01

    Cell-free DNA testing is increasingly being used to screen pregnant women for fetal aneuploidy. This technology may also identify microdeletion syndromes, including 22q11.2 deletion syndrome, the most common microdeletion syndrome, and the 22q11.2 duplication syndrome. The purpose of this paper is to provide an overview of the 22q11.2 deletion syndrome, to review the early experience with cell-free DNA screening for this deletion and to consider the potential benefits that may be associated with prenatal detection of the deletion. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  1. Mutator/hypermutable fetal/juvenile metakaryotic stem cells and human colorectal carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Lohith G. Kini

    2013-10-01

    Full Text Available Adult age-specific colorectal cancer incidence rates increase exponentially from maturity, reach a maximum, then decline in extreme old age. Armitage and Doll (1957 postulated that the exponential increase resulted from n mutations occurring throughout adult life in normal cells at risk that initiated the growth of a preneoplastic colony in which subsequent m mutations promoted one of the preneoplastic cells at risk to form a lethal neoplasia. We have reported cytologic evidence that these cells at risk are fetal/juvenile organogenic, then preneoplastic metakaryotic stem cells. Metakaryotic cells display stem-like behaviors of both symmetric and asymmetric nuclear divisions and peculiarities such as bell shaped nuclei and amitotic nuclear fission that distinguish them from embryonic, eukaryotic stem cells. Analyses of mutant colony sizes and numbers in adult lung epithelia supported the inferences that the metakaryotic organogenic stem cells are constitutively mutator/hypermutable and that their contributions to cancer initiation are limited to the fetal/juvenile period. We have amended the two-stage model of Armitage and Doll and incorporated these several inferences in a computer program CancerFit v.5.0. We compared the expectations of the amended model to adult (15-104 yr age-specific colon cancer rates for European American males born 1890-99 and observed remarkable concordance. When estimates of normal colonic fetal/juvenile APC and OAT gene mutation rates (~2-5 x 10-5 per stem cell doubling and preneoplastic colonic gene loss rates (~ 8 x 10-3 were applied, the model was in accordance only for the values of n = 2 and m = 4 or 5.

  2. Discarded human fetal tissue and cell cultures for transplantation research

    International Nuclear Information System (INIS)

    Hay, R.J.; Phillips, T.; Thompson, A.; Vilner, L.; Cleland, M.; Tchaw-ren Chen; Zabrenetzky, V.

    1999-01-01

    A feasibility study has been performed to explore the utility of various tissues from discarded human abortuses for transplantation and related research. Specifically, aborted fetuses plus parental blood samples and all relevant clinical data were obtained through a local hospital complex. Whenever possible, pancreas, skin and skeletal muscle, heart, liver, kidney, cartilage and lung tissues were removed, dissociated and subfractionated for cryopreservation, characterization and cultivation trials in vitro. Existing protocols for these manipulations were compared and improved upon as required. Clonal culture, cell aggregate maintenance techniques and use of feeder cell populations have been utilized where appropriate to develop quantitative comparative data. Histological and biochemical assays were applied both to evaluate separation/cultivation methods and to identify optimal culture conditions for maintaining functional cells. Immunochemical and molecular biological procedures were applied to study expression of Major Histocompatibility Vomplex (MHC) class 1 and 11 molecules on cell lines derived. Tissue and cell culture populations were examined for infections with bacteria, ftingi, mycoplasma, HIV, CMV, hepatitis B and other viruses. Only 1% of the abortuses tested were virally infected. Cytogenetic analyses confin-ned the normal diploid status in the vast majority (>98%) of lines tested. A total of over 250 abortuses have been obtained and processed. Only 25 were found to be contaminated with bacteria or fungi and unsuitable for further cultivation trials. A total of over 200 cell populations were isolated, characterized and cryopreserved for further study. Included were kidney, lung, liver and epidermal epithelia: cartilage-derived cells from the spine and epiphyses plus myogenic myoblasts. Selected lines have been immortalized using HPV I 6E6/E7 sequences. Epithelia from the liver and pancreas and cardiac myocytes were the most problematic in that initial

  3. Recirculation of lymphocyte subsets (CD5+, CD4+, CD8+, T19+ and B cells) through fetal lymph nodes.

    Science.gov (United States)

    Kimpton, W G; Washington, E A; Cahill, R N

    1989-01-01

    The experiments reported in this paper examine the cell-surface phenotype (CD5, CD4, CD8, T19, MHC class II and sIg) and cell output of lymphocyte subsets circulating through a subcutaneous lymph node in the sheep fetus, in an environment unaffected by foreign antigen and circulating immunoglobulins. CD4+ lymphocytes were the major T-cell subset in fetal lymph and were clearly enriched in lymph compared with blood, whereas T19+, CD8+ and B lymphocytes were not. It seems likely that in the fetus CD4+ lymphocytes are extracted from the blood at a faster rate than are other T-cell subsets and B cells. There was a much higher percentage of CD8+ and T null cells and a lower percentage of MHC class II+ and B cells circulating in the fetal lymph than in adult lymph, while the percentage of T19+ lymphocytes in fetal blood was twice that in the adult. Although the hourly cell output from an adult prescapular lymph node was far higher than that from a fetal lymph node, the circulation of lymphocytes through fetal lymph nodes was much greater per gram lymph node weight than that through adult lymph nodes. The wholesale recirculation in the fetus of all the major T-cell subsets found in the adult is paradoxical because it is not known what function they serve in the fetus in the absence of antigen and ongoing immune responses, although clearly they are not memory cells. PMID:2481644

  4. Screening for fetal spina bifida at the 11-13-week scan using three anatomical features of the posterior brain.

    Science.gov (United States)

    Mangione, R; Dhombres, F; Lelong, N; Amat, S; Atoub, F; Friszer, S; Khoshnood, B; Jouannic, J-M

    2013-10-01

    To evaluate the contribution of examination of specific anatomical features of the fetal posterior brain on mid-sagittal first-trimester ultrasound examination to the early detection of open spina bifida. Four independent observers reviewed a series of 260 mid-sagittal first-trimester ultrasound images from 52 cases of open spina bifida and 208 normal fetuses. The following analysis was performed by each reviewer for each image: Herman score calculation, intracranial translucency score (CFEF-IT) calculation and determination of presence or absence of three anatomical criteria: intracranial translucency (IT), caudal displacement of the brainstem and cisterna magna. The sensitivity and the false-positive rate for spina bifida detection were calculated for each of the latter three criteria. A secondary analysis was performed on the subset of images achieving a Herman score ≥ 7. The highest detection rate for spina bifida was achieved by non-visualization of the cisterna magna, with associated sensitivity of 50-73% and 39-76%, respectively, for all images and for the subset of images achieving a Herman score ≥ 7. Posterior shift of the brainstem achieved the highest detection rate (86%), but for a single reviewer only. The level of variation in performance between observers was also greatest for this sign. Absence of IT was associated with a lower detection rate for all observers. Overall, an abnormal posterior brain presenting at least one of these three criteria was associated with a detection rate ranging from 50 to 90%. In the detection of spina bifida, non-visualization of the cisterna magna achieved the best screening performance. Both non-visualization of the IT and posterior shift of the brainstem were associated with acceptable but lower detection rates. A prospective evaluation of changes in the posterior brain is needed to allow assessment of the most pertinent criteria for first-trimester screening for spina bifida. Copyright © 2013 ISUOG. Published by

  5. Selective analysis of cell-free DNA in maternal blood for evaluation of fetal trisomy.

    Science.gov (United States)

    Sparks, Andrew B; Wang, Eric T; Struble, Craig A; Barrett, Wade; Stokowski, Renee; McBride, Celeste; Zahn, Jacob; Lee, Kevin; Shen, Naiping; Doshi, Jigna; Sun, Michel; Garrison, Jill; Sandler, Jay; Hollemon, Desiree; Pattee, Patrick; Tomita-Mitchell, Aoy; Mitchell, Michael; Stuelpnagel, John; Song, Ken; Oliphant, Arnold

    2012-01-01

    To develop a novel prenatal assay based on selective analysis of cell-free DNA in maternal blood for evaluation of fetal Trisomy 21 (T21) and Trisomy 18 (T18). Two hundred ninety-eight pregnancies, including 39 T21 and seven T18 confirmed fetal aneuploidies, were analyzed using a novel, highly multiplexed assay, termed digital analysis of selected regions (DANSR™). Cell-free DNA from maternal blood samples was analyzed using DANSR assays for loci on chromosomes 21 and 18. Products from 96 separate patients were pooled and sequenced together. A standard Z-test of chromosomal proportions was used to distinguish aneuploid samples from average-risk pregnancy samples. DANSR aneuploidy discrimination was evaluated at various sequence depths. At the lowest sequencing depth, corresponding to 204,000 sequencing counts per sample, average-risk cases where distinguished from T21 and T18 cases, with Z statistics for all cases exceeding 3.6. Increasing the sequencing depth to 410,000 counts per sample substantially improved separation of aneuploid and average-risk cases. A further increase to 620,000 counts per sample resulted in only marginal improvement. This depth of sequencing represents less than 5% of that required by massively parallel shotgun sequencing approaches. Digital analysis of selected regions enables highly accurate, cost efficient, and scalable noninvasive fetal aneuploidy assessment. © 2012 John Wiley & Sons, Ltd.

  6. Positive predictive value estimates for cell-free noninvasive prenatal screening from data of a large referral genetic diagnostic laboratory.

    Science.gov (United States)

    Petersen, Andrea K; Cheung, Sau Wai; Smith, Janice L; Bi, Weimin; Ward, Patricia A; Peacock, Sandra; Braxton, Alicia; Van Den Veyver, Ignatia B; Breman, Amy M

    2017-12-01

    Since its debut in 2011, cell-free fetal DNA screening has undergone rapid expansion with respect to both utilization and coverage. However, conclusive data regarding the clinical validity and utility of this screening tool, both for the originally included common autosomal and sex-chromosomal aneuploidies as well as the more recently added chromosomal microdeletion syndromes, have lagged behind. Thus, there is a continued need to educate clinicians and patients about the current benefits and limitations of this screening tool to inform pre- and posttest counseling, pre/perinatal decision making, and medical risk assessment/management. The objective of this study was to determine the positive predictive value and false-positive rates for different chromosomal abnormalities identified by cell-free fetal DNA screening using a large data set of diagnostic testing results on invasive samples submitted to the laboratory for confirmatory studies. We tested 712 patient samples sent to our laboratory to confirm a cell-free fetal DNA screening result, indicating high risk for a chromosome abnormality. We compiled data from all cases in which the indication for confirmatory testing was a positive cell-free fetal DNA screen, including the common trisomies, sex chromosomal aneuploidies, microdeletion syndromes, and other large genome-wide copy number abnormalities. Testing modalities included fluorescence in situ hybridization, G-banded karyotype, and/or chromosomal microarray analysis performed on chorionic villus samples, amniotic fluid, or postnatally obtained blood samples. Positive predictive values and false-positive rates were calculated from tabulated data. The positive predictive values for trisomy 13, 18, and 21 were consistent with previous reports at 45%, 76%, and 84%, respectively. For the microdeletion syndrome regions, positive predictive values ranged from 0% for detection of Cri-du-Chat syndrome and Prader-Willi/Angelman syndrome to 14% for 1p36 deletion

  7. The natural history of fetal cells in postpartum murine maternal lung and bone marrow: a two-stage phenomenon.

    Science.gov (United States)

    Pritchard, Stephanie; Peter, Inga; Johnson, Kirby L; Bianchi, Diana W

    2012-01-01

    During pregnancy, fetal cells cross into the maternal organs where they reside postpartum. Evidence from multiple laboratories suggests that these microchimeric fetal cells contribute to maternal tissue repair after injury. In mouse models, most injury experiments are performed during pregnancy; however, in a clinical setting most injuries or diseases occur postpartum. Therefore, experiments using animal models should be designed to address questions in the time period following delivery. In order to provide a baseline for such experiments, we analyzed the natural history of fetal cells in the postpartum maternal organs. Female C57BL/6J mice were mated to males homozygous for the enhanced green fluorescent protein gene. Fetal cells in the maternal lungs and bone marrow were identified by their green fluorescence using in a high-speed flow cytometer and their counts were compared between the lung and bone marrow. Spearman correlation analysis was used to identify relationships between the duration of time postpartum and the cell counts and ratio of live and dead cells. Our results show that fetal cells persist in these organs until at least three months postpartum in healthy female mice. We show a two-stage decline, with an initial two and a half-week rapid clearance followed by a trend of gradual decrease. Additionally, an increase in the ratio of live to dead cells within the lung over time suggests that these cells may replicate in vivo. The results presented here will inform the design of future experiments and may have implications for women's health.

  8. Long-lasting inhibitory effects of fetal liver mesenchymal stem cells on T-lymphocyte proliferation.

    Directory of Open Access Journals (Sweden)

    Massimo Giuliani

    Full Text Available Human bone marrow mesenchymal stem cells (BM-MSC are multipotent progenitor cells that have transient immunomodulatory properties on Natural Killer (NK cells, Dendritic Cells (DC, and T cells. This study compared the use of MSC isolated from bone marrow and fetal liver (FL-MSC to determine which displayed the most efficient immunosuppressive effects on T cell activation. Although both types of MSC exhibit similar phenotype profile, FL-MSC displays a much more extended in vitro life-span and immunomodulatory properties. When co-cultured with CD3/CD28-stimulated T cells, both BM-MSC and FL-MSC affected T cell proliferation by inhibiting their entry into the cell cycle, by inducing the down-regulation of phospho-retinoblastoma (pRb, cyclins A and D1, as well as up-regulating p27(kip1 expression. The T cell inhibition by MSC was not due to the soluble HLA-G5 isoform, but to the surface expression of HLA-G1, as shown by the need of cell-cell contact and by the use of neutralizing anti-HLA-G antibodies. To note, in a HLA-G-mediated fashion, MSC facilitated the expansion of a CD4(low/CD8(low T subset that had decreased secretion of IFN-γ, and an induced secretion of the immunomodulatory cytokine IL-10. Because of their longer lasting in vitro immunosuppressive properties, mainly mediated by HLA-G, and their more efficient induction of IL-10 production and T cell apoptosis, fetal liver MSC could be considered a new tool for MSC therapy to prevent allograft rejection.

  9. Effect of screening for red cell antibodies, other than anti-D, to detect hemolytic disease of the fetus and newborn: a population study in the Netherlands

    NARCIS (Netherlands)

    Koelewijn, J. M.; Vrijkotte, T. G. M.; van der Schoot, C. E.; Bonsel, G. J.; de Haas, M.

    2008-01-01

    BACKGROUND: Hemolytic disease of the fetus and newborn (HDFN) is a severe disease, resulting from maternal red cell (RBC) alloantibodies directed against fetal RBCs. The effect of a first-trimester antibody screening program on the timely detection of HDFN caused by antibodies other than anti-D was

  10. Massively parallel signature sequencing profiling of fetal human neural precursor cells.

    Science.gov (United States)

    Cai, Jingli; Shin, Soojung; Wright, Lynda; Liu, Ying; Zhou, Daixing; Xue, Haipeng; Khrebtukova, Irina; Mattson, Mark P; Svendsen, Clive N; Rao, Mahendra S

    2006-04-01

    We have examined gene expression in multipotent neural precursor cells (NPCs) derived from human fetal (f) brain tissue and compared its expression profiles with embryonic stem (ESC) cells, embryoid body cell (EBC), and astrocyte precursors using the technique of massively parallel signature sequencing (MPSS). Gene expression profiles show that fNPCs express core neural stem cells markers and share expression profiles with astrocyte precursor cells (APCs) rather than ESC or EBC. Gene expression analysis shows that fNPCs differ from other adult stem and progenitor cells in their marker expression and activation of specific functional networks such as the transforming growth factorbeta (TGFbeta) and Notch signaling pathways. In addition, our results allow us to identify novel genes expressed in fNPCs and provide a detailed profile of fNPCs.

  11. Development of Eimeria nieschulzi (Coccidia, Apicomplexa Gamonts and Oocysts in Primary Fetal Rat Cells

    Directory of Open Access Journals (Sweden)

    Hong Chen

    2013-01-01

    Full Text Available The in vitro production of gametocytes and oocysts of the apicomplexan parasite genus Eimeria is still a challenge in coccidiosis research. Until today, an in vitro development of gametocytes or oocysts had only been shown in some Eimeria species. For several mammalian Eimeria species, partial developments could be achieved in different cell types, but a development up to gametocytes or oocysts is still lacking. This study compares several permanent cell lines with primary fetal cells of the black rat (Rattus norvegicus concerning the qualitative in vitro development of the rat parasite Eimeria nieschulzi. With the help of transgenic parasites, the developmental progress was documented. The selected Eimeria nieschulzi strain constitutively expresses the yellow fluorescent protein and a macrogamont specific upregulated red tandem dimer tomato. In the majority of all investigated host cells the development stopped at the second merozoite stage. In a mixed culture of cells derived from inner fetal organs the development of schizont generations I-IV, macrogamonts, and oocysts were observed in crypt-like organoid structures. Microgamonts and microgametes could not be observed and oocysts did not sporulate under air supply. By immunohistology, we could confirm that wild-type E. nieschulzi stages can be found in the crypts of the small intestine. The results of this study may be helpful for characterization of native host cells and for development of an in vitro cultivation system for Eimeria species.

  12. Abundance of a restricted fetal B cell repertoire in marrow transplant recipients.

    Science.gov (United States)

    Storek, J; King, L; Ferrara, S; Marcelo, D; Saxon, A; Braun, J

    1994-11-01

    Patients undergoing bone marrow transplantation are humorally immunodeficient for one or more years post-transplant. This immunodeficiency could be partially caused by B cell repertoire restriction similar to that observed in ontogeny. To test this idea, the abundance of rearranged genomic segments bearing five variable heavy chain (VH) genes was compared in patients at several timepoints post-transplant and in immunologically normal neonates, infants and adults. The genes evaluated in the study (VH6, VH4-58p2, VH3-56p1, VH3-20p1 and VH3-13-2) were selected from those commonly utilized by fetal B cells. The assay employed quantitative PCR and oligonucleotide hybridization detection under conditions designed to detect relatively unmutated forms of these genes. In blood B cells from early post-transplant (2-5 months) patients, these VH genes were markedly overutilized compared with normal adults. B cells from late post-transplant (6-21 months) patients and from normal neonates and infants also overutilized these genes; however, to a lesser degree than early post-transplant B cells. The data suggest that, as in ontogeny, the B cell repertoire is strikingly restricted to fetal-type VH genes early post-transplant, and may become normal only very late (years) post-transplant.

  13. Prolonged expression of the c-kit receptor in germ cells of intersex fetal testes

    DEFF Research Database (Denmark)

    Rajpert-De Meyts, Ewa; Jørgensen, N; Müller, Jørn

    1996-01-01

    conditions which included 45,X/46,XY mosaicism; androgen insensitivity syndrome; and 46,XY/iso(p)Y mosaicism. Individuals with such disorders of sexual differentiation and Y-chromosome material carry a very high risk of developing testicular neoplasms. Fetal testicular germ cells of the intersex subjects...... expressed Kit at a later developmental age than controls, in which no Kit protein was detectable beyond the 15th week of gestation. This finding may indicate a disturbance of the chronology of germ cell development, or it may suggest a change of the regulation of c-kit expression in subjects with disorders...

  14. Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts.

    Science.gov (United States)

    Ramkisoensing, Arti A; Pijnappels, Daniël A; Askar, Saïd F A; Passier, Robert; Swildens, Jim; Goumans, Marie José; Schutte, Cindy I; de Vries, Antoine A F; Scherjon, Sicco; Mummery, Christine L; Schalij, Martin J; Atsma, Douwe E

    2011-01-01

    Mesenchymal stem cells (MSCs) show unexplained differences in differentiation potential. In this study, differentiation of human (h) MSCs derived from embryonic, fetal and adult sources toward cardiomyocytes, endothelial and smooth muscle cells was investigated. Labeled hMSCs derived from embryonic stem cells (hESC-MSCs), fetal umbilical cord, bone marrow, amniotic membrane and adult bone marrow and adipose tissue were co-cultured with neonatal rat cardiomyocytes (nrCMCs) or cardiac fibroblasts (nrCFBs) for 10 days, and also cultured under angiogenic conditions. Cardiomyogenesis was assessed by human-specific immunocytological analysis, whole-cell current-clamp recordings, human-specific qRT-PCR and optical mapping. After co-culture with nrCMCs, significantly more hESC-MSCs than fetal hMSCs stained positive for α-actinin, whereas adult hMSCs stained negative. Furthermore, functional cardiomyogenic differentiation, based on action potential recordings, was shown to occur, but not in adult hMSCs. Of all sources, hESC-MSCs expressed most cardiac-specific genes. hESC-MSCs and fetal hMSCs contained significantly higher basal levels of connexin43 than adult hMSCs and co-culture with nrCMCs increased expression. After co-culture with nrCFBs, hESC-MSCs and fetal hMSCs did not express α-actinin and connexin43 expression was decreased. Conduction velocity (CV) in co-cultures of nrCMCs and hESC-MSCs was significantly higher than in co-cultures with fetal or adult hMSCs. In angiogenesis bioassays, only hESC-MSCs and fetal hMSCs were able to form capillary-like structures, which stained for smooth muscle and endothelial cell markers.Human embryonic and fetal MSCs differentiate toward three different cardiac lineages, in contrast to adult MSCs. Cardiomyogenesis is determined by stimuli from the cellular microenvironment, where connexin43 may play an important role.

  15. Dose-related estrogen effects on gene expression in fetal mouse prostate mesenchymal cells.

    Directory of Open Access Journals (Sweden)

    Julia A Taylor

    Full Text Available Developmental exposure of mouse fetuses to estrogens results in dose-dependent permanent effects on prostate morphology and function. Fetal prostatic mesenchyme cells express estrogen receptor alpha (ERα and androgen receptors and convert stimuli from circulating estrogens and androgens into paracrine signaling to regulate epithelial cell proliferation and differentiation. To obtain mechanistic insight into the role of different doses of estradiol (E2 in regulating mesenchymal cells, we examined E2-induced transcriptomal changes in primary cultures of fetal mouse prostate mesenchymal cells. Urogenital sinus mesenchyme cells were obtained from male mouse fetuses at gestation day 17 and exposed to 10 pM, 100 pM or 100 nM E2 in the presence of a physiological concentration of dihydrotestosterone (0.69 nM for four days. Gene ontology studies suggested that low doses of E2 (10 pM and 100 pM induce genes involved in morphological tissue development and sterol biosynthesis but suppress genes involved in growth factor signaling. Genes involved in cell adhesion were enriched among both up-regulated and down-regulated genes. Genes showing inverted-U-shape dose responses (enhanced by E2 at 10 pM E2 but suppressed at 100 pM were enriched in the glycolytic pathway. At the highest dose (100 nM, E2 induced genes enriched for cell adhesion, steroid hormone signaling and metabolism, cytokines and their receptors, cell-to-cell communication, Wnt signaling, and TGF- β signaling. These results suggest that prostate mesenchymal cells may regulate epithelial cells through direct cell contacts when estrogen level is low whereas secreted growth factors and cytokines might play significant roles when estrogen level is high.

  16. Differential behavioral outcomes following neonatal versus fetal human retinal pigment epithelial cell striatal implants in parkinsonian rats

    DEFF Research Database (Denmark)

    Russ, Kaspar; Flores, Joseph; Brudek, Tomasz

    2017-01-01

    Following the failure of a Phase II clinical study evaluating human retinal pigment epithelial (hRPE) cell implants as a potential treatment option for Parkinson's disease, speculation has centered on implant function and survival as possible contributors to the therapeutic outcomes. We recently...... reported that neonatal hRPE cells, similar to hRPE cells used in the Phase II clinical study, produced short-lived in vitro and limited in vivo trophic factors, which supports that assumption. We hypothesize that the switch from fetal to neonatal hRPE cells, between the Phase I and the Phase II clinical...... following unilateral striatal implantation in 6-hydroxydopamine-lesioned rats. The results showed that only fetal, not neonatal, hRPE cell implants, were able to improve behavioral outcomes following striatal implantation in the lesioned rats. These data suggest that fetal hRPE cells may be preferential...

  17. Early fetal gender determination using real-time PCR analysis of cell-free fetal DNA during 6th-10th weeks of gestation.

    Science.gov (United States)

    Khorram Khorshid, Hamid Reza; Zargari, Maryam; Sadeghi, Mohammad Reza; Edallatkhah, Haleh; Shahhosseiny, Mohammad Hassan; Kamali, Koorosh

    2013-05-07

    Nowadays, new advances in the use of cell free fetal DNA (cffDNA) in maternal plasma of pregnant women has provided the possibility of applying cffDNA in prenatal diagnosis as a non-invasive method. In contrary to the risks of invasive methods that affect both mother and fetus, applying cffDNA is proven to be highly effective with lower risk. One of the applications of prenatal diagnosis is fetal gender determination, which is important in fetuses at risk of sex-linked genetic diseases. In such cases by obtaining the basic information of the gender, necessary time management can be taken in therapeutic to significantly reduce the necessity of applying the invasive methods. Therefore in this study, the probability of detecting sequences on the human Y-chromosome in pregnant women has been evaluated to identify the gender of fetuses. Peripheral blood samples were obtained from 80 pregnant women with gestational age between 6th to 10th weeks and the fetal DNA was extracted from the plasma. Identification of SRY, DYS14 & DAZ sequences, which are not presentin the maternal genome, was performed using Real-Time PCR. All the obtained results were compared with the actual gender of the newborns to calculate the test accuracy. Considerable 97.3% sensitivity and 97.3% specificity were obtained in fetal gender determination which is significant in the first trimester of pregnancy. Only in one case, false positive result was obtained. Using non-invasive method of cffDNAs in the shortest time possible, as well as avoiding invasive tests for early determination of fetal gender, provides the opportunity of deciding and employing early treatment for fetuses at risk of genetic diseases.

  18. Screening for Fetal Spina Bifida Aperta by the Ultrasound and Intracranial Translucency Examinations at 11-13(+6) Weeks of Gestation.

    Science.gov (United States)

    Liu, Min; Liu, Ying; Li, Zhi-Hong; Yu, Ding

    2015-06-01

    The objective of the study is to evaluate the clinical significance of screening for fetal spina bifida aperta by ultrasound examination and intracranial translucency (IT) measurement at 11-13(+6) weeks of gestation. About 1,479 women at 11-13(+6) weeks of gestation in our hospital in 2012 were included as observation group, and 1,608 women at 11-13(+6) weeks of gestation without IT measurement in 2011 was included as controls. Detection rates of fetal spina bifida aperta in two groups were compared. The translucency thickness between the brain stem and choroid plexus and crown-rump length (CRL) in mid-sagittal view of the fetal face was measured, and translucency thickness and CRL in fetuses with spina bifida and healthy ones were compared. Detection rate of fetal spina bifida aperta in observation group was significantly higher than that in control group (six cases in observation group and one case in control group, p = 0.046). IT thickness was significantly lower in fetuses with spina bifida aperta (0.01 ± 1.25 mm) than that in healthy ones (1.73 ± 0.32 mm) (p spina bifida aperta (r = 0.001, p = 0.081). Ultrasound examination with IT measurement at 11-13(+6) weeks of gestation can be used to screen for fetal spina bifida aperta, and the reduction of IT thickness is an indicator of spina bifida aperta.

  19. Maternal obesity accelerates fetal pancreatic beta-cell but not alpha-cell development in sheep: prenatal consequences.

    Science.gov (United States)

    Ford, Stephen P; Zhang, Liren; Zhu, Meijun; Miller, Myrna M; Smith, Derek T; Hess, Bret W; Moss, Gary E; Nathanielsz, Peter W; Nijland, Mark J

    2009-09-01

    Maternal obesity affects offspring weight, body composition, and organ function, increasing diabetes and metabolic syndrome risk. We determined effects of maternal obesity and a high-energy diet on fetal pancreatic development. Sixty days prior to breeding, ewes were assigned to control [100% of National Research Council (NRC) recommendations] or obesogenic (OB; 150% NRC) diets. At 75 days gestation, OB ewes exhibited elevated insulin-to-glucose ratios at rest and during a glucose tolerance test, demonstrating insulin resistance compared with control ewes. In fetal studies, ewes ate their respective diets from 60 days before to 75 days after conception when animals were euthanized under general anesthesia. OB and control ewes increased in body weight by approximately 43% and approximately 6%, respectively, from diet initiation until necropsy. Although all organs were heavier in fetuses from OB ewes, only pancreatic weight increased as a percentage of fetal weight. Blood glucose, insulin, and cortisol were elevated in OB ewes and fetuses on day 75. Insulin-positive cells per unit pancreatic area were 50% greater in fetuses from OB ewes as a result of increased beta-cell mitoses rather than decreased programmed cell death. Lambs of OB ewes were born earlier but weighed the same as control lambs; however, their crown-to-rump length was reduced, and their fat mass was increased. We conclude that increased systemic insulin in fetuses from OB ewes results from increased glucose exposure and/or cortisol-induced accelerated fetal beta-cell maturation and may contribute to premature beta-cell function loss and predisposition to obesity and metabolic disease in offspring.

  20. Upregulated microRNA-92b regulates the differentiation and proliferation of EpCAM-positive fetal liver cells by targeting C/EBPß.

    Directory of Open Access Journals (Sweden)

    Nian-Song Qian

    Full Text Available microRNAs (miRNAs are short noncoding RNAs that negatively regulate gene expression. Although recent evidences have been indicated that their aberrant expression may play an important role in cancer stem cells, the mechanism of their deregulation in neoplastic transformation of liver cancer stem cells (LCSCs has not been explored. In our study, the HCC model was established in F344 rats by DEN induction. The EpCAM(+ cells were sorted out from unfractionated fetal liver cells and liver cancer cells using the FACS analysis and miRNA expression profiles of two groups were screened through microarray platform. Gain-of-function studies were performed in vitro and in vivo to determine the role of miR-92b on proliferation and differentiation of the hepatic progenitors. In addition, luciferase reporter system and gene function analysis were used to predict miR-92b target. we found that miR-92b was highly downregulated in EpCAM(+ fetal liver cells in expression profiling studies. RT-PCR analysis demonstrated reverse correlation between miR-92b expression and differentiation degree in human HCC samples. Overexpression of miR-92b in EpCAM(+ fetal liver cells significantly increased proliferation and inhibited differentiation as well as in vitro and in vivo studies. Moreover, we verified that C/EBPß is a direct target of miR-92b and contributes to its effects on proliferation and differentiation. We conclude that aberrant expression of miR-92b can result in proliferation increase and differentiation arrest of hepatic progenitors by targeting C/EBPß.

  1. Isolation and characterization of neural stem cells from human fetal striatum

    International Nuclear Information System (INIS)

    Li Xiaoxia; Xu Jinchong; Bai Yun; Wang Xuan; Dai Xin; Liu Yinan; Zhang Jun; Zou Junhua; Shen Li; Li Lingsong

    2005-01-01

    This paper described that neural stem cells (hsNSCs) were isolated and expanded rapidly from human fetal striatum in adherent culture. The population was serum- and growth factor-dependent and expressed neural stem cell markers. They were capable of multi-differentiation into neurons, astrocytes, and oligodendrocytes. When plated in the dopaminergic neuron inducing medium, human striatum neural stem cells could differentiate into tyrosine hydroxylase positive neurons. hsNSCs were morphologically homogeneous and possessed high proliferation ability. The population doubled every 44.28 h and until now it has divided for more than 82 generations in vitro. Normal human diploid karyotype was unchanged throughout the in vitro culture period. Together, this study has exploited a method for continuous and rapid expansion of human neural stem cells as pure population, which maintained the capacity to generate almost fifty percent neurons. The availability of such cells may hold great interest for basic and applied neuroscience

  2. An adaptive detection method for fetal chromosomal aneuploidy using cell-free DNA from 447 Korean women

    OpenAIRE

    Kim, Sunshin; Jung, HeeJung; Han, Sung Hee; Lee, SeungJae; Kwon, JeongSub; Kim, Min Gyun; Chu, Hyungsik; Han, Kyudong; Kwak, Hwanjong; Park, Sunghoon; Joo, Hee Jae; An, Minae; Ha, Jungsu; Lee, Kyusang; Kim, Byung Chul

    2016-01-01

    Background Noninvasive prenatal testing (NIPT) using massively parallel sequencing of cell-free DNA (cfDNA) is increasingly being used to predict fetal chromosomal abnormalities. However, concerns over erroneous predictions which occur while performing NIPT still exist in pregnant women at high risk for fetal aneuploidy. We performed the largest-scale clinical NIPT study in Korea to date to assess the risk of false negatives and false positives using next-generation sequencing. Methods A tota...

  3. Fetal fraction estimate in twin pregnancies using directed cell-free DNA analysis.

    Science.gov (United States)

    Struble, Craig A; Syngelaki, Argyro; Oliphant, Arnold; Song, Ken; Nicolaides, Kypros H

    2014-01-01

    To estimate fetal fraction (FF) in monozygotic and dizygotic twin pregnancies. Maternal plasma samples were obtained from 35 monochorionic twin pregnancies with male fetuses (monozygotic) and 35 dichorionic pregnancies discordant for fetal sex (dizygotic) at 11-13 weeks' gestation. Cell-free DNA was extracted and chromosome-selective sequencing with digital analysis of selected regions (DANSR™) was carried out. The fetal-fraction optimized risk of trisomy evaluation (FORTE™) algorithm was used to estimate FF using polymorphic alleles. In dizygotic twins the FORTE algorithm was modified to estimate the smallest FF contribution of the 2 fetuses. In both types of twins, FF was also determined by analysis of Y-chromosome sequences. In monozygotic twins, the median total FF was 14.0% (range 8.2-27.0%) and in dizygotic twins the median smallest FF was 7.9% (4.9-14.0%). There were significant associations in FF between the methods using polymorphic alleles and Y-chromosome sequences for both monozygotic (r=0.951, ptwins. The study demonstrates the feasibility of an approach for cfDNA testing in twin pregnancies. This involves estimation of total FF in monozygotic twins and estimation of the lower FF of the 2 fetuses in dizygotic twins. © 2013 S. Karger AG, Basel.

  4. New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell-free fetal DNA in maternal plasma

    NARCIS (Netherlands)

    Chitty, L. S.; Griffin, D. R.; Meaney, C.; Barrett, A.; Khalil, A.; Pajkrt, E.; Cole, T. J.

    2011-01-01

    To improve the prenatal diagnosis of achondroplasia by constructing charts of fetal size, defining frequency of sonographic features and exploring the role of non-invasive molecular diagnosis based on cell-free fetal deoxyribonucleic acid (DNA) in maternal plasma. Data on fetuses with a confirmed

  5. Timing of in utero malaria exposure influences fetal CD4 T cell regulatory versus effector differentiation

    Directory of Open Access Journals (Sweden)

    Mary Prahl

    2016-10-01

    Full Text Available Abstract Background In malaria-endemic areas, the first exposure to malaria antigens often occurs in utero when the fetal immune system is poised towards the development of tolerance. Children exposed to placental malaria have an increased risk of clinical malaria in the first few years of life compared to unexposed children. Recent work has suggested the potential of pregnancy-associated malaria to induce immune tolerance in children living in malaria-endemic areas. A study was completed to evaluate the effect of malaria exposure during pregnancy on fetal immune tolerance and effector responses. Methods Using cord blood samples from a cohort of mother-infant pairs followed from early in pregnancy until delivery, flow cytometry analysis was completed to assess the relationship between pregnancy-associated malaria and fetal cord blood CD4 and dendritic cell phenotypes. Results Cord blood FoxP3+ Treg counts were higher in infants born to mothers with Plasmodium parasitaemia early in pregnancy (12–20 weeks of gestation; p = 0.048, but there was no association between Treg counts and the presence of parasites in the placenta at the time of delivery (by loop-mediated isothermal amplification (LAMP; p = 0.810. In contrast, higher frequencies of activated CD4 T cells (CD25+FoxP3−CD127+ were observed in the cord blood of neonates with active placental Plasmodium infection at the time of delivery (p = 0.035. This population exhibited evidence of effector memory differentiation, suggesting priming of effector T cells in utero. Lastly, myeloid dendritic cells were higher in the cord blood of infants with histopathologic evidence of placental malaria (p < 0.0001. Conclusion Together, these data indicate that in utero exposure to malaria drives expansion of both regulatory and effector T cells in the fetus, and that the timing of this exposure has a pivotal role in determining the polarization of the fetal immune response.

  6. Expression of immunohistochemical markers for testicular carcinoma in situ by normal human fetal germ cells

    DEFF Research Database (Denmark)

    Jørgensen, N; Rajpert-De Meyts, E; Graem, N

    1995-01-01

    study. EXPERIMENTAL DESIGN: Normal human germ cells from 10 first-trimester fetuses and 76 second- and third-trimester testes were investigated for the immunohistochemical expression of the markers of testicular carcinoma in situ. The panel of markers included in the study consisted of placental......-like alkaline phosphatase, the protooncogene c-kit protein product, and the antigens for the monoclonal antibodies TRA-1-60 and M2A. The relative numbers of fetal germ cells that demonstrated positive reaction with the markers were calculated. RESULTS: The vast majority of the germ cells (75-100%) in the first......-trimester gonads were positive for placental-like alkaline phosphatase, TRA-1-60, and M2A. The c-kit protein was detected in three out of the ten first-trimester gonads. The relative number of germ cells positive for all the markers studied declined rapidly during the first part of the second trimester...

  7. Analysis of first-trimester combined test results in preparation for a cell-free fetal DNA era.

    Science.gov (United States)

    Kose, Semir; Cımrın, Dilek; Yıldırım, Nuri; Aksel, Ozge; Keskinoglu, Pembe; Bora, Elcin; Cankaya, Tufan; Altunyurt, Sabahattin

    2016-11-01

    To survey experience with the first-trimester combined test (FCT) for trisomy 21 (T21) in different risk score groups to determine the most useful clinical application of cell-free fetal DNA (cffDNA) screening. In a retrospective study, the records of FCT results obtained at a center in Turkey between January 2009 and January 2014 were reviewed. The FCT results and rates of uptake of invasive diagnostic testing were compared among different risk score groups. FCT results were available for 4804 pregnancies; 276 (5.7%) had IDT results. Ten (72.7%) of 11 cases of T21 had a risk score of 1:300 or more. The IDT uptake rates were 54.5%, 51.9%, and 47.4% at risk scores of 1:100 or more, 1:200 or more, and 1:300 or more, respectively. In the group at intermediate risk (1:1001-1:3000), no pregnancy had an FCT result of both low pregnancy-associated plasma protein A and high free β-human chorionic gonadotropin, but 30 (3.9%) of 766 pregnancies had both advanced maternal age and high β-human chorionic gonadotropin. cffDNA screening should be used to optimize IDT uptake in pregnancies with a risk score of 1:101-1:1000. The selective power of the FCT diminishes beyond the 1:1001 score and cffDNA screening cannot yet be recommended routinely. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Pathogens in Maternal Blood and Fetal Cord Blood Using Q-Pcr Assay

    Directory of Open Access Journals (Sweden)

    Guang Qiong Hou

    2006-06-01

    Conclusion: Our results revealed an unexpectedly high incidence of pathogens in fetal cord blood. Screening for the above pathogens in donor cord blood in cord blood banks using Q-PCR is strongly urged to decrease morbidity and mortality rates in fetal cord blood stem cell transplant recipients.

  9. The transcription factor Gli3 promotes B cell development in fetal liver through repression of Shh.

    Science.gov (United States)

    Solanki, Anisha; Lau, Ching-In; Saldaña, José Ignacio; Ross, Susan; Crompton, Tessa

    2017-07-03

    Before birth, B cells develop in the fetal liver (FL). In this study, we show that Gli3 activity in the FL stroma is required for B cell development. In the Gli3-deficient FL, B cell development was reduced at multiple stages, whereas the Sonic hedgehog (Hh [Shh])-deficient FL showed increased B cell development, and Gli3 functioned to repress Shh transcription. Use of a transgenic Hh-reporter mouse showed that Shh signals directly to developing B cells and that Hh pathway activation was increased in developing B cells from Gli3-deficient FLs. RNA sequencing confirmed that Hh-mediated transcription is increased in B-lineage cells from Gli3-deficient FL and showed that these cells expressed reduced levels of B-lineage transcription factors and B cell receptor (BCR)/pre-BCR-signaling genes. Expression of the master regulators of B cell development Ebf1 and Pax5 was reduced in developing B cells from Gli3-deficient FL but increased in Shh-deficient FL, and in vitro Shh treatment or neutralization reduced or increased their expression, respectively. © 2017 Solanki et al.

  10. A comparison of face to face and group education on informed choice and decisional conflict of pregnant women about screening tests of fetal abnormalities.

    Science.gov (United States)

    Kordi, Masoumeh; Riyazi, Sahar; Lotfalizade, Marziyeh; Shakeri, Mohammad Taghi; Suny, Hoseyn Jafari

    2018-01-01

    Screening of fetal anomalies is assumed as a necessary measurement in antenatal cares. The screening plans aim at empowerment of individuals to make the informed choice. This study was conducted in order to compare the effect of group and face-to-face education and decisional conflicts among the pregnant females regarding screening of fetal abnormalities. This study of the clinical trial was carried out on 240 pregnant women at education course were held in two weekly sessions for intervention groups during two consecutive weeks, and the usual care was conducted for the control group. The rate of informed choice and decisional conflict was measured in pregnant women before education and also at weeks 20-22 of pregnancy in three groups. The data analysis was executed using SPSS statistical software (version 16), and statistical tests were implemented including Chi-square test, Kruskal-Wallis test, Wilcoxon test, Mann-Whitney U-test, one-way analysis of variance test, and Tukey's range test. The P education group, 64 members (80%) in group education class, and 20 persons (25%) in control group had the informed choice regarding screening tests, but there was no statistically significant difference between two individual and group education classes. Similarly, during the postintervention phase, there was a statistically significant difference in mean score of decisional conflict scale among pregnant women regarding screening tests in three groups ( P = 0.001). With respect to effectiveness of group and face-to-face education methods in increasing the informed choice and reduced decisional conflict in pregnant women regarding screening tests, each of these education methods may be employed according to the clinical environment conditions and requirement to encourage the women for conducting the screening tests.

  11. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    Full Text Available In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs we isolated human fetal liver stromal cells (hFLSCs from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days. Basic fibroblast growth factor (bFGF is known to play an important role in promoting self-renewal of human embryonic stem (hES cells. So, we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF, insulin-like growth factor 2 (IGF-2, and transforming growth factor β (TGF-β, thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together, bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.

  12. Dysregulation of the DNA Damage Response and KMT2A Rearrangement in Fetal Liver Hematopoietic Cells.

    Directory of Open Access Journals (Sweden)

    Mai Nanya

    Full Text Available Etoposide, a topoisomerase 2 (TOP2 inhibitor, is associated with the development of KMT2A (MLL-rearranged infant leukemia. An epidemiological study suggested that in utero exposure to TOP2 inhibitors may be involved in generation of KMT2A (MLL rearrangement. The present study examined the mechanism underlying the development of KMT2A (MLL-rearranged infant leukemia in response to in utero exposure to etoposide in a mouse model. Fetal liver hematopoietic stem cells were more susceptible to etoposide than maternal bone marrow mononuclear cells. Etoposide-induced Kmt2a breakage was detected in fetal liver hematopoietic stem cells using a newly developed chromatin immunoprecipitation (ChIP assay. Assessment of etoposide-induced chromosomal translocation by next-generation RNA sequencing (RNA-seq identified several chimeric fusion messenger RNAs that were generated by etoposide treatment. However, Kmt2a (Mll-rearranged fusion mRNA was detected in Atm-knockout mice, which are defective in the DNA damage response, but not in wild-type mice. The present findings suggest that in utero exposure to TOP2 inhibitors induces Kmt2a rearrangement when the DNA damage response is defective.

  13. Exposure to perfluorooctane sulfonate in utero reduces testosterone production in rat fetal Leydig cells.

    Directory of Open Access Journals (Sweden)

    Binghai Zhao

    Full Text Available Perfluorooctane sulfonate (PFOS is a synthetic material that has been widely used in industrial applications for decades. Exposure to PFOS has been associated with decreased adult testosterone level, and Leydig cell impairment during the time of adulthood. However, little is known about PFOS effects in utero on fetal Leydig cells (FLC.The present study investigated effects of PFOS on FLC function. Pregnant Sprague Dawley female rats received vehicle (0.05% Tween20 or PFOS (5, 20 mg/kg by oral gavage from gestational day (GD 11-19. At GD20, testosterone (T production, FLC numbers and ultrastructure, testicular gene and protein expression levels were examined. The results indicate that exposures to PFOS have affected FLC function as evidenced by decreased T production, impaired FLC, reduced FLC number, and decreased steroidogenic capacity and cholesterol level in utero.The present study shows that PFOS is an endocrine disruptor of male reproductive system as it causes reduction of T production and impairment of rat fetal Leydig cells.

  14. Polyubiquitinated proteins, proteasome, and glycogen characterize the particle-rich cytoplasmic structure (PaCS) of neoplastic and fetal cells.

    Science.gov (United States)

    Necchi, Vittorio; Sommi, Patrizia; Vitali, Agostina; Vanoli, Alessandro; Savoia, Anna; Ricci, Vittorio; Solcia, Enrico

    2014-05-01

    A particle-rich cytoplasmic structure (PaCS) concentrating ubiquitin-proteasome system (UPS) components and barrel-like particles in clear, cytoskeleton- and organelle-free areas has recently been described in some neoplasms and in genetic or infectious diseases at risk of neoplasia. Ultrastructurally similar particulate cytoplasmic structures, interpreted as glycogen deposits, have previously been reported in clear-cell neoplasms and some fetal tissues. It remains to be investigated whether the two structures are the same, colocalize UPS components and polysaccharides, and have a role in highly proliferative cells such as fetal and neoplastic cells. We used immunogold electron microscopy and confocal immunofluorescence microscopy to examine human and mouse fetal tissues and human neoplasms. Fetal and neoplastic cells both showed colocalization of polyubiquitinated proteins, 19S and 20S proteasomes, and polysaccharides, both glycogen and chondroitin sulfate, inside cytoplasmic structures showing all distinctive features of PaCSs. Poorly demarcated and/or hybrid (ribosomes admixed) UPS- and glycogen-enriched areas, likely stages in PaCS development, were also seen in some fetal cells, with special reference to those, like primary alveolar pulmonary cells or pancreatic centroacinar cells, having a crucial role in organogenesis. UPS- and glycogen-rich PaCSs developed extensively in clear-cell neoplasms of the kidney, ovary, pancreas, and other organs, as well as, in infantile, development-related tumors replicating fetal patterns, such as choroid plexus papilloma. UPS-mediated, ATP-dependent proteolysis and its potential energy source, glycogen metabolism, may have a crucial, synergic role in embryo-/organogenesis and carcinogenesis.

  15. Cell-Free Fetal DNA in Plasma of Pregnant Women: Clinical Potential and Origin

    Directory of Open Access Journals (Sweden)

    Akihiko Sekizawa

    2005-06-01

    Full Text Available Circulating fetal DNA in maternal plasma can be used for both fetal genetic testing and evaluation of complications of pregnancy. As a prenatal genetic test, the greatest advantage of using circulating fetal DNA is the lack of risk. This approach has been applied to the diagnosis of fetal gender, fetal Rhesus D (RhD blood type, and fetal single-gene disorders. However, it only allows examination of disorders where the gene of interest is present in the fetal genome but absent from maternal DNA. Since most fetal DNA probably originates from villous trophoblasts, concentrations can be used to evaluate damage to trophoblasts, particularly in pathologic complications of pregnancy such as pre-eclampsia, invasive placenta, hyperemesis gravidarum, and trisomy 21. Fetal DNA in the plasma of pregnant women thus offers a new source of data that can be used in various clinical settings.

  16. Sustained Induction of Fetal Hemoglobin by Pulse Butyrate Therapy in Sickle Cell Disease

    Science.gov (United States)

    Atweh, George F.; Sutton, Millicent; Nassif, Imad; Boosalis, Vassiliki; Dover, George J.; Wallenstein, Sylvan; Wright, Elizabeth; McMahon, Lillian; Stamatoyannopoulos, George; Faller, Douglas V.; Perrine, Susan P.

    2014-01-01

    High levels of fetal hemoglobin (Hb F) protect from many of the complications of sickle cell disease and lead to improved survival. Butyrate and other short chain fatty acids were previously shown to increase Hb F production in erythroid cells in vitro and in animal models in vivo. However, butyrates are also known to inhibit the proliferation of many cell types, including erythroid cells. Experience with the use of butyrate in animal models and in early clinical trials demonstrated that the Hb F response may be lost after prolonged administration of high doses of butyrate. We hypothesized that this loss of response may be a result of the antiproliferative effects of butyrate. We designed a regimen consisting of intermittent or pulse therapy in which butyrate was administered for 4 days followed by 10 to 24 days with no drug exposure. This pulse regimen induced fetal globin gene expression in 9 of 11 patients. The mean Hb F in this group increased from 7.2% to 21.0% (P butyrate therapy for a mean duration of 29.9 weeks. This was associated with a parallel increase in the number of F cells and F reticulocytes. The total hemoglobin levels also increased from a mean of 7.8 g/dL to a mean of 8.8 g/dL (P butyrate therapy for more than 28 months. This regimen, which resulted in a marked and sustained increase in Hb F levels in more than two thirds of the adult sickle cell patients enrolled in this study, was well tolerated without adverse side effects. These encouraging results require confirmation along with an appropriate evaluation of clinical outcomes in a larger number of patients with sickle cell disease. PMID:10068649

  17. Model-based analysis of costs and outcomes of non-invasive prenatal testing for Down's syndrome using cell free fetal DNA in the UK National Health Service.

    Science.gov (United States)

    Morris, Stephen; Karlsen, Saffron; Chung, Nancy; Hill, Melissa; Chitty, Lyn S

    2014-01-01

    Non-invasive prenatal testing (NIPT) for Down's syndrome (DS) using cell free fetal DNA in maternal blood has the potential to dramatically alter the way prenatal screening and diagnosis is delivered. Before NIPT can be implemented into routine practice, information is required on its costs and benefits. We investigated the costs and outcomes of NIPT for DS as contingent testing and as first-line testing compared with the current DS screening programme in the UK National Health Service. We used a pre-existing model to evaluate the costs and outcomes associated with NIPT compared with the current DS screening programme. The analysis was based on a hypothetical screening population of 10,000 pregnant women. Model inputs were taken from published sources. The main outcome measures were number of DS cases detected, number of procedure-related miscarriages and total cost. At a screening risk cut-off of 1∶150 NIPT as contingent testing detects slightly fewer DS cases, has fewer procedure-related miscarriages, and costs the same as current DS screening (around UK£280,000) at a cost of £500 per NIPT. As first-line testing NIPT detects more DS cases, has fewer procedure-related miscarriages, and is more expensive than current screening at a cost of £50 per NIPT. When NIPT uptake increases, NIPT detects more DS cases with a small increase in procedure-related miscarriages and costs. NIPT is currently available in the private sector in the UK at a price of £400-£900. If the NHS cost was at the lower end of this range then at a screening risk cut-off of 1∶150 NIPT as contingent testing would be cost neutral or cost saving compared with current DS screening. As first-line testing NIPT is likely to produce more favourable outcomes but at greater cost. Further research is needed to evaluate NIPT under real world conditions.

  18. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics.

    Science.gov (United States)

    Gregg, Anthony R; Skotko, Brian G; Benkendorf, Judith L; Monaghan, Kristin G; Bajaj, Komal; Best, Robert G; Klugman, Susan; Watson, Michael S

    2016-10-01

    This statement is designed primarily as an educational resource for clinicians to help them provide quality medical services. Adherence to this statement is completely voluntary and does not necessarily assure a successful medical outcome. This statement should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed toward obtaining the same results. In determining the propriety of any specific procedure or test, the clinician should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. Clinicians are encouraged to document the reasons for the use of a particular procedure or test, whether or not it is in conformance with this statement. Clinicians also are advised to take notice of the date this statement was adopted and to consider other medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.Noninvasive prenatal screening using cell-free DNA (NIPS) has been rapidly integrated into prenatal care since the initial American College of Medical Genetics and Genomics (ACMG) statement in 2013. New evidence strongly suggests that NIPS can replace conventional screening for Patau, Edwards, and Down syndromes across the maternal age spectrum, for a continuum of gestational age beginning at 9-10 weeks, and for patients who are not significantly obese. This statement sets forth a new framework for NIPS that is supported by information from validation and clinical utility studies. Pretest counseling for NIPS remains crucial; however, it needs to go beyond discussions of Patau, Edwards, and Down syndromes. The use of NIPS to include sex chromosome aneuploidy screening and screening for selected copy-number variants (CNVs) is becoming commonplace because there are

  19. Plating efficiency for primary hamster embryo cells as an index of efficacy of fetal bovne serum for cell culture.

    Science.gov (United States)

    Goodheart, C R; Castro, B C; Giviers, A; Regnier, P R

    1973-10-01

    Attachment and growth of mammalian cells plated at low cell density require optimum conditions for the cells to form colonies. Reliability, reproducibility, and validity of the plating efficiency test for evaluating cell culture sera were determined by measuring the plating efficiency of 37 lots of fetal bovine serum obtained from 8 suppliers (5 lots from each of 7, 2 lots from 1 supplier), by using hamster embryo fibroblasts plated at low cell density. The test revealed considerable variation between lots of serum and between suppliers. The five lots from some suppliers had consistently high plating efficiencies, whereas one or more lots from other suppliers had quite low efficiencies. The results were reproducible in repeated tests, and control experiments indicated that the test measured the efficiency of the test serum independently of the efficiency of the serum used for the primary outgrowth of the hamster embryo cells.

  20. Plating Efficiency for Primary Hamster Embryo Cells as an Index of Efficacy of Fetal Bovine Serum for Cell Culture

    Science.gov (United States)

    Goodheart, C. R.; Casto, B. C.; Zwiers, A.; Regnier, P. R.

    1973-01-01

    Attachment and growth of mammalian cells plated at low cell density require optimum conditions for the cells to form colonies. Reliability, reproducibility, and validity of the plating efficiency test for evaluating cell culture sera were determined by measuring the plating efficiency of 37 lots of fetal bovine serum obtained from 8 suppliers (5 lots from each of 7, 2 lots from 1 supplier), by using hamster embryo fibroblasts plated at low cell density. The test revealed considerable variation between lots of serum and between suppliers. The five lots from some suppliers had consistently high plating efficiencies, whereas one or more lots from other suppliers had quite low efficiencies. The results were reproducible in repeated tests, and control experiments indicated that the test measured the efficiency of the test serum independently of the efficiency of the serum used for the primary outgrowth of the hamster embryo cells. PMID:4584591

  1. Transfer of an expression YAC into goat fetal fibroblasts by cell fusion for mammary gland bioreactor

    International Nuclear Information System (INIS)

    Zhang Xufeng; Wu Guoxiang; Chen, Jian-Quan; Zhang Aimin; Liu Siguo; Jiao Binghua; Cheng Guoxiang

    2005-01-01

    Yeast artificial chromosomes (YACs) as transgenes in transgenic animals are likely to ensure optimal expression levels. Microinjection of YACs is the exclusive technique used to produce YACs transgenic livestock so far. However, low efficiency and high cost are its critical restrictive factors. In this study, we presented a novel procedure to produce YACs transgenic livestock as mammary gland bioreactor. A targeting vector, containing the gene of interest-a human serum albumin minigene (intron 1, 2), yeast selectable marker (G418R), and mammalian cell resistance marker (neo r ), replaced the α-lactalbumin gene in a 210 kb human α-lactalbumin YAC by homogeneous recombination in yeasts. The chimeric YAC was introduced into goat fetal fibroblasts using polyethylene glycol-mediated spheroplast fusion. PCR and Southern analysis showed that intact YAC was integrated in the genome of resistant cells. Perhaps, it may offer a cell-based route by nuclear transfer to produce YACs transgenic livestock

  2. Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow.

    Directory of Open Access Journals (Sweden)

    Atsushi Nagai

    Full Text Available Human bone marrow contains two major cell types, hematopoietic stem cells (HSCs and mesenchymal stem cells (MSCs. MSCs possess self-renewal capacity and pluripotency defined by their ability to differentiate into osteoblasts, chondrocytes, adipocytes and muscle cells. MSCs are also known to differentiate into neurons and glial cells in vitro, and in vivo following transplantation into the brain of animal models of neurological disorders including ischemia and intracerebral hemorrhage (ICH stroke. In order to obtain sufficient number and homogeneous population of human MSCs, we have clonally isolated permanent and stable human MSC lines by transfecting primary cell cultures of fetal human bone marrow MSCs with a retroviral vector encoding v-myc gene. One of the cell lines, HM3.B10 (B10, was found to differentiate into neural cell types including neural stem cells, neurons, astrocytes and oligodendrocytes in vitro as shown by expression of genetic markers for neural stem cells (nestin and Musashi1, neurons (neurofilament protein, synapsin and MAP2, astrocytes (glial fibrillary acidic protein, GFAP and oligodendrocytes (myelin basic protein, MBP as determined by RT-PCR assay. In addition, B10 cells were found to differentiate into neural cell types as shown by immunocytochical demonstration of nestin (for neural stem cells, neurofilament protein and beta-tubulin III (neurons GFAP (astrocytes, and galactocerebroside (oligodendrocytes. Following brain transplantation in mouse ICH stroke model, B10 human MSCs integrate into host brain, survive, differentiate into neurons and astrocytes and induce behavioral improvement in the ICH animals. B10 human MSC cell line is not only a useful tool for the studies of organogenesis and specifically for the neurogenesis, but also provides a valuable source of cells for cell therapy studies in animal models of stroke and other neurological disorders.

  3. The rate-limiting reaction in phosphatidylcholine synthesis by alveolar type II cells isolated from fetal rat lung

    NARCIS (Netherlands)

    Post, M.; Batenburg, J.J.; Golde, L.M.G. van; Smith, B.T.

    1984-01-01

    1. 1. The rate-limiting reaction in the formation of phosphatidylcholine by type II cells isolated from fetal rat lung was examined. 2. 2. Studies on the uptake of [Me-3H]choline and its incorporation into its metabolites indicated that in these cells the choline phosphate pool was much larger

  4. Perspectives of treatment of anemias with cells of fetal liver, immobilized in macroporous alginate-gelatin carriers

    Directory of Open Access Journals (Sweden)

    Gritsay D.V.

    2014-06-01

    Full Text Available Aim of the work was to study possibility of erythropoiesis stimulation by transplantation of fetal liver cells, seeded into macro¬porous carriers to the rats with post-hemorrhargic anemia, induced by 70% hepatectomy. Fetal liver cells (FLC were isolated from fetuses of rats with 15 days’ gestation and were cryopreserved. Decryopreserved FLC were seeded into macroporous spongy alginate-gelatin scaffolds, which were covered by alginate capsule and implanted into omentum of rats with modeled liver insufficiency. It was shown that fetal liver cells, immobilized in macroporous scaffolds after implantation have positive effect on red blood count and hemoglobin content, indicating that this approach is promising for the development of new methods of anemia treatment.

  5. A Method to Quantify Cell-Free Fetal DNA Fraction in Maternal Plasma Using Next Generation Sequencing: Its Application in Non-Invasive Prenatal Chromosomal Aneuploidy Detection.

    Directory of Open Access Journals (Sweden)

    Xu-Ping Xu

    Full Text Available The fraction of circulating cell-free fetal (cff DNA in maternal plasma is a critical parameter for aneuploidy screening with non-invasive prenatal testing, especially for those samples located in equivocal zones. We developed an approach to quantify cff DNA fractions directly with sequencing data, and increased cff DNAs by optimizing library construction procedure.Artificial DNA mixture samples (360, with known cff DNA fractions, were used to develop a method to determine cff DNA fraction through calculating the proportion of Y chromosomal unique reads, with sequencing data generated by Ion Proton. To validate our method, we investigated cff DNA fractions of 2,063 pregnant women with fetuses who were diagnosed as high risk of fetal defects. The z-score was calculated to determine aneuploidies for chromosomes 21, 18 and 13. The relationships between z-score and parameters of pregnancies were also analyzed. To improve cff DNA fractions in our samples, two groups were established as follows: in group A, the large-size DNA fragments were removed, and in group B these were retained, during library construction.A method to determine cff DNA fractions was successfully developed using 360 artificial mixture samples in which cff DNA fractions were known. A strong positive correlation was found between z-score and fetal DNA fraction in the artificial mixture samples of trisomy 21, 18 and 13, as well as in clinical maternal plasma samples. There was a positive correlation between gestational age and the cff DNA fraction in the clinical samples, but no correlation for maternal age. Moreover, increased fetal DNA fractions were found in group A compared to group B.A relatively accurate method was developed to determine the cff DNA fraction in maternal plasma. By optimizing, we can improve cff DNA fractions in sequencing samples, which may contribute to improvements in detection rate and reliability.

  6. Awareness and acceptability of premarital screening of sickle cell ...

    African Journals Online (AJOL)

    Premarital screening for the diagnosis of Sickle Cell Disease is helpful in the prevention of the condition. It provides information about the health of the individual while assessing their health related reproductive risk. To evaluate the level of awareness and acceptability of premarital screening for sickle cell disease amongst ...

  7. Creation of an in vitro microenvironment to enhance human fetal synovium-derived stem cell chondrogenesis.

    Science.gov (United States)

    Li, Jingting; He, Fan; Pei, Ming

    2011-09-01

    Our aim was to assess the feasibility of the sequential application of extracellular matrix (ECM) and low oxygen to enhance chondrogenesis in human fetal synovium-derived stem cells (hfSDSCs). Human fetal synovial fibroblasts (hfSFs) were characterized and found to include hfSDSCs, as evidenced by their multi-differentiation capacity and the surface phenotype markers typical of mesenchymal stem cells. Passage-7 hfSFs were plated on either conventional plastic flasks (P) or ECM deposited by hfSFs (E) for one passage. Passage-8 hfSFs were then reseeded for an additional passage on either P or E. The pellets from expanded hfSFs were incubated in a serum-free chondrogenic medium supplemented with 10 ng/ml transforming growth factor-β3 under either normoxia (21% O(2); 21) or hypoxia (5% O(2); 5) for 14 days. Pellets were collected for evaluation of the treatments (EE21, EE5, EP21, EP5, PE21, PE5, PP21, and PP5) on expanded hfSF chondrogenesis by using histology, immunostaining, biochemistry, and real-time polymerase chain reaction. Our data suggest that, compared with seeding on conventional plastic flasks, hfSFs expanded on ECM exhibit a lower expression of senescence-associated β-galactosidase and an enhanced level of stage-specific embryonic antigen-4. ECM-expanded hfSFs also show increased cell numbers and an enhanced chondrogenic potential. Low oxygen (5% O(2)) during pellet culture enhances hfSF chondrogenesis. Thus, we demonstrate, for the first time, the presence of stem cells in hfSFs, and that modulation of the in vitro microenvironment can enhance hfSDSC chondrogenesis. hfSDSCs might represent a promising cell source for cartilage tissue engineering and regeneration.

  8. The ligand binding domain of GCNF is not required for repression of pluripotency genes in mouse fetal ovarian germ cells.

    Directory of Open Access Journals (Sweden)

    Leah M Okumura

    Full Text Available In mice, successful development and reproduction require that all cells, including germ cells, transition from a pluripotent to a differentiated state. This transition is associated with silencing of the pluripotency genes Oct4 and Nanog. Interestingly, these genes are repressed at different developmental timepoints in germ and somatic cells. Ovarian germ cells maintain their expression until about embryonic day (E 14.5, whereas somatic cells silence them much earlier, at about E8.0. In both somatic cells and embryonic stem cells, silencing of Oct4 and Nanog requires the nuclear receptor GCNF. However, expression of the Gcnf gene has not been investigated in fetal ovarian germ cells, and whether it is required for silencing Oct4 and Nanog in that context is not known. Here we demonstrate that Gcnf is expressed in fetal ovarian germ cells, peaking at E14.5, when Oct4 and Nanog are silenced. However, conditional ablation of the ligand-binding domain of Gcnf using a ubiquitous, tamoxifen-inducible Cre indicates that Gcnf is not required for the down-regulation of pluripotency genes in fetal ovarian germ cells, nor is it required for initiation of meiosis and oogenesis. These results suggest that the silencing of Oct4 and Nanog in germ cells occurs via a different mechanism from that operating in somatic cells during gastrulation.

  9. Nonhematopoietic stem cells of fetal origin--how much of today's enthusiasm will pass the time test?

    Directory of Open Access Journals (Sweden)

    Eugeniusz K Machaj

    2005-12-01

    Full Text Available Stem cells originating at fetal age are for many reasons superior as a material for the regenerative medicine purposes, when compared to their adult counterparts. While hematopoietic cells, isolated from fetal liver or cord blood, have been well known for a long time and have passed practical tests as clinical transplantation material, the non-hematopoietic cells are newly recognized, and the knowledge of their phenotype and differentiation potential is rather insufficient. We, and the others, have identified a subpopulation of cord blood cells phenotypically different from hematopoietic cells (CD34-, CD45-, CD29+, CD44+, CD51+, CD105+, SH-2, SH-3, in vitro plastic adherent, and capable of multilineage differentiation. The other candidates for multipotential stem cells are cells extracted from umbilical cord or placental tissue. The preliminary observations suggest, that these cells, phenotypically similar to the nonhematopoietic cord blood cells, are capable of extensive replication in vitro and of multilineage differentiation into a variety of tissues including cardiac muscle, bone and cartilage, adipocytes, and nerve cells. The other possible medical applications include "rejuvenation" of selected tissues and systems in senile patients, and therapeutical cloning - for both purposes, cells at the fetal stage of genetic regulation may be more useful than cells collected from adult donors. There is still, however, a high level of uncertainty concerning future medical applications of fetal stem cells. Their numbers and characteristics may differ from the preliminary observations, and their behavior in vivo may not fulfill the expectations originating from the in vitro studies. Finally, the autologous applications of stem cells collected at the stage of birth may need the involvement of technical and financial resources for the storage of frozen cell samples throughout the period of life of their potential user. Such procedure seems possible from

  10. Effects of environmental Bisphenol A exposures on germ cell development and Leydig cell function in the human fetal testis

    Science.gov (United States)

    Guerquin, Marie-Justine; Matilionyte, Gabriele; Kilcoyne, Karen; N’Tumba-Byn, Thierry; Messiaen, Sébastien; Deceuninck, Yoann; Pozzi-Gaudin, Stéphanie; Benachi, Alexandra; Livera, Gabriel; Antignac, Jean-Philippe; Mitchell, Rod; Rouiller-Fabre, Virginie

    2018-01-01

    Background Using an organotypic culture system termed human Fetal Testis Assay (hFeTA) we previously showed that 0.01 μM BPA decreases basal, but not LH-stimulated, testosterone secreted by the first trimester human fetal testis. The present study was conducted to determine the potential for a long-term antiandrogenic effect of BPA using a xenograft model, and also to study the effect of BPA on germ cell development using both the hFETA and xenograft models. Methods Using the hFeTA system, first trimester testes were cultured for 3 days with 0.01 to 10 μM BPA. For xenografts, adult castrate male nude mice were injected with hCG and grafted with first trimester testes. Host mice received 10 μM BPA (~ 500 μg/kg/day) in their drinking water for 5 weeks. Plasma levels of total and unconjugated BPA were 0.10 μM and 0.038 μM respectively. Mice grafted with second trimester testes received 0.5 and 50 μg/kg/day BPA by oral gavage for 5 weeks. Results With first trimester human testes, using the hFeTA model, 10 μM BPA increased germ cell apoptosis. In xenografts, germ cell density was also reduced by BPA exposure. Importantly, BPA exposure significantly decreased the percentage of germ cells expressing the pluripotency marker AP-2γ, whilst the percentage of those expressing the pre-spermatogonial marker MAGE-A4 significantly increased. BPA exposure did not affect hCG-stimulated androgen production in first and second trimester xenografts as evaluated by both plasma testosterone level and seminal vesicle weight in host mice. Conclusions Exposure to BPA at environmentally relevant concentrations impairs germ cell development in first trimester human fetal testis, whilst gonadotrophin-stimulated testosterone production was unaffected in both first and second trimester testis. Studies using first trimester human fetal testis demonstrate the complementarity of the FeTA and xenograft models for determining the respective short-term and long term effects of environmental

  11. Matrix metalloproteinase-14 mediates formation of bile ducts and hepatic maturation of fetal hepatic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Satoshi [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Kakinuma, Sei, E-mail: skakinuma.gast@tmd.ac.jp [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Kamiya, Akihide [Institute of Innovative Science and Technology, Tokai University, Isehara (Japan); Goto, Fumio; Kaneko, Shun; Miyoshi, Masato; Tsunoda, Tomoyuki; Asano, Yu; Kawai-Kitahata, Fukiko; Nitta, Sayuri; Nakata, Toru; Okamoto, Ryuichi; Itsui, Yasuhiro; Nakagawa, Mina; Azuma, Seishin [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Asahina, Yasuhiro [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Yamaguchi, Tomoyuki [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Koshikawa, Naohiko [Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Seiki, Motoharu [Medical School, Kanazawa University, Kanazawa (Japan); Nakauchi, Hiromitsu [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); and others

    2016-01-22

    Fetal hepatic stem/progenitor cells, called hepatoblasts, play central roles in liver development; however, the molecular mechanisms regulating the phenotype of these cells have not been completely elucidated. Matrix metalloproteinase (MMP)-14 is a type I transmembrane proteinase regulating pericellular proteolysis of the extracellular matrix and is essential for the activation of several MMPs and cytokines. However, the physiological functions of MMP-14 in liver development are unknown. Here we describe a functional role for MMP-14 in hepatic and biliary differentiation of mouse hepatoblasts. MMP-14 was upregulated in cells around the portal vein in perinatal stage liver. Formation of bile duct-like structures in MMP-14–deficient livers was significantly delayed compared with wild-type livers in vivo. In vitro biliary differentiation assays showed that formation of cholangiocytic cysts derived from MMP-14–deficient hepatoblasts was completely impaired, and that overexpression of MMP-14 in hepatoblasts promoted the formation of bile duct-like cysts. In contrast, the expression of molecules associated with metabolic functions in hepatocytes, including hepatic nuclear factor 4α and tryptophan 2,3-dioxygenase, were significantly increased in MMP-14–deficient livers. Expression of the epidermal growth factor receptor and phosphorylation of mitogen-activated protein kinases were significantly upregulated in MMP-14–deficient livers. We demonstrate that MMP-14–mediated signaling in fetal hepatic progenitor cells promotes biliary luminal formation around the portal vein and negatively controls the maturation of hepatocytes. - Highlights: • Loss of MMP-14 delayed formation of bile duct-like structures in perinatal liver. • Overexpression of MMP-14 in hepatobalsts promoted the biliary formation in vitro. • Loss of MMP-14 promoted hepatocyte maturation of hepatoblasts in vivo. • MMP-14–mediated signaling regulates terminal differentiation of

  12. Human autologous serum as a substitute for fetal bovine serum in human Schwann cell culture.

    Directory of Open Access Journals (Sweden)

    Parisa Goodarzi

    2014-04-01

    Full Text Available Nowadays, cell -based and tissue engineered products have opened new horizons in treatment of incurable nervous system disorders. The number of studies on the role of Schwann cells (SC in treating nervous disorders is higher than other cell types. Different protocols have been suggested for isolation and expansion of SC which most of them have used multiple growth factors, mitogens and fetal bovine sera (FBS in culture medium. Because of potential hazards of animal-derived reagents, this study was designed to evaluate the effect of replacing FBS with human autologous serum (HAS on SC's yield and culture parameters. Samples from 10 peripheral nerve biopsies were retrieved and processed under aseptic condition. The isolated cells cultured in FBS (1st group or autologous serum (2nd group. After primary culture the cells were seeded at 10000 cell/cm2 in a 12 wells cell culture plate for each group. At 100% confluency, the cell culture parameters (count, viability, purity and culture duration of 2 groups were compared using paired t-test. The average donors' age was 35.80 (SD=13.35 and except for 1 sample the others cultured successfully. In first group, the averages of cell purity, viability and culture duration were 97% (SD=1.32, 97/33% (SD=1.22 and 11.77 (SD=2.58 days respectively. This parameters were 97.33% (SD=1.00, 97.55% (SD=1.33 and 10.33 days (SD=1.65 in second group. The difference of cell count, purity and viability were not significant between 2 groups (P>0.05. The cells of second group reached to 100% confluency in shorter period of time (P=0.03. The results of this study showed that autologous serum can be a good substitute for FBS in human SC culture. This can reduce the costs and improve the safety of cell product for clinical application.

  13. Protection of lethally irradiated mice with allogeneic fetal liver cells: influence of irradiation dose on immunologic reconstitution

    International Nuclear Information System (INIS)

    Tulunay, O.; Good, R.A.; Yunis, E.J.

    1975-01-01

    After lethal irradiation long-lived, immunologically vigorous C3Hf mice were produced by treatment with syngeneic fetal liver cells or syngeneic newborn or adult spleen cells. Treatment of lethally irradiated mice with syngeneic or allogeneic newborn thymus cells or allogeneic newborn or adult spleen cells regularly led to fatal secondary disease or graft-versus-host reactions. Treatment of the lethally irradiated mice with fetal liver cells regularly yielded long-lived, immunologically vigorous chimeras. The introduction of the fetal liver cells into the irradiated mice appeared to be followed by development of immunological tolerance of the donor cells. The findings suggest that T-cells at an early stage of differentiation are more susceptible to tolerance induction than are T-lymphocytes at later stages of differentiation. These investigations turned up a perplexing paradox which suggests that high doses of irradiation may injure the thymic stroma, rendering it less capable of supporting certain T-cell populations in the peripheral lymphoid tissue. Alternatively, the higher and not the lower dose of irradiation may have eliminated a host cell not readily derived from fetal liver precursors which represents an important helper cell in certain cell-mediated immune functions, e.g., graft-versus-host reactions, but which is not important in others, e.g., allograft rejections. The higher dose of lethal irradiation did not permit development or maintenance of a population of spleen cells that could initiate graft-versus-host reactions but did permit the development of a population of donor cells capable of achieving vigorous allograft rejection

  14. Cell-Free DNA Screening for Aneuploidy and Microdeletion Syndromes.

    Science.gov (United States)

    Shaffer, Brian L; Norton, Mary E

    2018-03-01

    Cell-free DNA (cfDNA) screening for the common aneuploidies is an accurate noninvasive screen for the common autosomal and sex chromosome aneuploidies. However, cfDNA screening should not be considered a diagnostic test, and the positive predictive value should be used in counseling women with a positive test regarding the option for diagnostic testing. Compared with traditional screening, cfDNA may not detect as many chromosomal abnormalities of importance. Furthermore, due to the low prevalence of recurrent copy number variants, the clinical utility in screening for microdeletions and duplications is uncertain and is not recommended for the general obstetric population. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. [Interference of vitamin E on the brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats].

    Science.gov (United States)

    Gao, Xian; Luo, Rui; Ma, Bin; Wang, Hui; Liu, Tian; Zhang, Jing; Lian, Zhishun; Cui, Xi

    2013-07-01

    To investigate the interlerence ot vitamin E on brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats. 40 pregnant rats were randomly divided into five groups (positive control, negative control, low, middle and high dosage of vitamin E groups). The low, middle and high dosage of vitamin E groups were supplemented with 5, 15 and 30 mg/ml vitamin E respectively since the first day of pregnancy. And the negative control group and the positive control group were given peanut oil without vitamin E. All groups except for the negative control group were exposed to 900MHz intensity of cell phone radiation for one hour each time, three times per day for 21 days. After accouchement, the right hippocampus tissue of fetal rats in each group was taken and observed under electron microscope. The vitality of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the content of malondialdehyde (MDA) in pregnant and fetal rats' brain tissue were tested. Compared with the negative control group, the chondriosomes in neuron and neuroglia of brain tissues was swelling, mild edema was found around the capillary, chromatin was concentrated and collected, and bubbles were formed in vascular endothelial cells (VEC) in the positive fetal rat control group, whereas the above phenomenon was un-conspicuous in the middle and high dosage of vitamin E groups. We can see uniform chromatin, abundant mitochondrion, rough endoplasmic reticulum and free ribosomes in the high dosage group. The apoptosis has not fond in all groups'sections. In the antioxidase activity analysis, compared with the negative control group, the vitality of SOD and GSH-Px significantly decreased and the content of MDA significantly increased both in the pregnant and fetal rats positive control group (P electromagnetic radiation of cell phone in pregnant rats and fetal rats.

  16. Silkworm (Bombyx mori) hemolymph unable to substitute fetal bovine serum in insect cell culture

    Science.gov (United States)

    Suparto, Irma H.; Khalam, Chandra Nur; Praira, Willy; Sajuthi, Dondin

    2014-03-01

    Fetal Bovine Serum (FBS) in animal cell culture media is an important source of nutrients for cell growth. However, the harvest and collection of FBS cause bioethical concerns. Efforts to reduce and preferably replace FBS with synthetic or other natural alternatives are continually being explored. Hemolymph silkworm (Bombyx mori) contains many nutrients needed for the process of metamorphosis. Therefore, there is possibility as an alternative nutritional supplement for cell culture to reduce the use of FBS. The objective of this study was to evaluate the macrocomponent of hemolymph and the possibility as medium supplement for Spodoptera fugiperda (Sf9) cell culture. Proximate analyses showed that hemolymph contains 89.76% of water, 2.52 mg/mL carbohydrate, 2.35% fat and 55.61 mg/mL protein. Further protein analysis, it consists of 15 fractions containing molecular weight of 22 - 152 kDa. The use of hemolymph as FBS substitution in Sf9 cell culture with various concentrations was unable to maintain and support cell growth. Further research still needed by prior adaptation of the tissue culture to minimal nutrition media before introduction of the hemolymph as supplement.

  17. Prospective isolation of human embryonic stem cell-derived cardiovascular progenitors that integrate into human fetal heart tissue.

    Science.gov (United States)

    Ardehali, Reza; Ali, Shah R; Inlay, Matthew A; Abilez, Oscar J; Chen, Michael Q; Blauwkamp, Timothy A; Yazawa, Masayuki; Gong, Yongquan; Nusse, Roeland; Drukker, Micha; Weissman, Irving L

    2013-02-26

    A goal of regenerative medicine is to identify cardiovascular progenitors from human ES cells (hESCs) that can functionally integrate into the human heart. Previous studies to evaluate the developmental potential of candidate hESC-derived progenitors have delivered these cells into murine and porcine cardiac tissue, with inconclusive evidence regarding the capacity of these human cells to physiologically engraft in xenotransplantation assays. Further, the potential of hESC-derived cardiovascular lineage cells to functionally couple to human myocardium remains untested and unknown. Here, we have prospectively identified a population of hESC-derived ROR2(+)/CD13(+)/KDR(+)/PDGFRα(+) cells that give rise to cardiomyocytes, endothelial cells, and vascular smooth muscle cells in vitro at a clonal level. We observed rare clusters of ROR2(+) cells and diffuse expression of KDR and PDGFRα in first-trimester human fetal hearts. We then developed an in vivo transplantation model by transplanting second-trimester human fetal heart tissues s.c. into the ear pinna of a SCID mouse. ROR2(+)/CD13(+)/KDR(+)/PDGFRα(+) cells were delivered into these functioning fetal heart tissues: in contrast to traditional murine heart models for cell transplantation, we show structural and functional integration of hESC-derived cardiovascular progenitors into human heart.

  18. Evaluation of Fetal Intestinal Cell Growth and Antimicrobial Biofunctionalities of Donor Human Milk After Preparative Processes.

    Science.gov (United States)

    Kanaprach, Pasinee; Pongsakul, Nutkridta; Apiwattanakul, Nopporn; Muanprasat, Chatchai; Supapannachart, Sarayut; Nuntnarumit, Pracha; Chutipongtanate, Somchai

    2018-04-01

    Donor human milk is considered the next best nutrition following mother's own milk to prevent neonatal infection and necrotizing enterocolitis in preterm infants who are admitted at neonatal intensive care unit. However, donor milk biofunctionalities after preparative processes have rarely been documented. To evaluate biofunctionalities preserved in donor milk after preparative processes by cell-based assays. Ten pools of donor milk were produced from 40 independent specimens. After preparative processes, including bacterial elimination methods (holder pasteurization and cold-sterilization microfiltration) and storage conditions (-20°C freezing storage and lyophilization) with varied duration of storage (0, 3, and 6, months), donor milk biofunctionalities were examined by fetal intestinal cell growth and antimicrobial assays. At baseline, raw donor milk exhibited 193.1% ± 12.3% of fetal intestinal cell growth and 42.4% ± 11.8% of antimicrobial activities against Escherichia coli. After bacteria eliminating processes, growth promoting activity was better preserved in pasteurized donor milk than microfiltrated donor milk (169.5% ± 14.3% versus 146.0% ± 11.8%, respectively; p pasteurized donor milk was further examined for the effects of storage conditions at 3 and 6 months. Freezing storage, but not lyophilization, could preserve higher growth-promoting activity during 6 months of storage (163.0% ± 9.4% versus 72.8% ± 6.2%, respectively; p milk biofunctionalities and support the utilization of donor milk within 3 months after preparative processes.

  19. Adult, embryonic and fetal hemoglobin are expressed in human glioblastoma cells.

    Science.gov (United States)

    Emara, Marwan; Turner, A Robert; Allalunis-Turner, Joan

    2014-02-01

    Hemoglobin is a hemoprotein, produced mainly in erythrocytes circulating in the blood. However, non-erythroid hemoglobins have been previously reported in other cell types including human and rodent neurons of embryonic and adult brain, but not astrocytes and oligodendrocytes. Human glioblastoma multiforme (GBM) is the most aggressive tumor among gliomas. However, despite extensive basic and clinical research studies on GBM cells, little is known about glial defence mechanisms that allow these cells to survive and resist various types of treatment. We have shown previously that the newest members of vertebrate globin family, neuroglobin (Ngb) and cytoglobin (Cygb), are expressed in human GBM cells. In this study, we sought to determine whether hemoglobin is also expressed in GBM cells. Conventional RT-PCR, DNA sequencing, western blot analysis, mass spectrometry and fluorescence microscopy were used to investigate globin expression in GBM cell lines (M006x, M059J, M059K, M010b, U87R and U87T) that have unique characteristics in terms of tumor invasion and response to radiotherapy and hypoxia. The data showed that α, β, γ, δ, ζ and ε globins are expressed in all tested GBM cell lines. To our knowledge, we are the first to report expression of fetal, embryonic and adult hemoglobin in GBM cells under normal physiological conditions that may suggest an undefined function of those expressed hemoglobins. Together with our previous reports on globins (Ngb and Cygb) expression in GBM cells, the expression of different hemoglobins may constitute a part of series of active defence mechanisms supporting these cells to resist various types of treatments including chemotherapy and radiotherapy.

  20. Convergence of bone morphogenetic protein and laminin-1 signaling pathways promotes proliferation and colony formation by fetal mouse pancreatic cells

    International Nuclear Information System (INIS)

    Jiang Fangxu; Harrison, Leonard C.

    2005-01-01

    We previously reported that bone morphogenetic proteins (BMPs), members of the transforming growth factor superfamily, together with the basement membrane glycoprotein laminin-1 (Ln-1), promote proliferation of fetal pancreatic cells and formation of colonies containing peripheral insulin-positive cells. Here, we further investigate the cross-talk between BMP and Ln-1 signals. By RT-PCR, receptors for BMP (BMPR) (excepting BMPR-1B) and Ln-1 were expressed in the fetal pancreas between E13.5 and E17.5. Specific blocking antibodies to BMP-4 and -6 and selective BMP antagonists partially inhibited colony formation by fetal pancreas cells. Colony formation induced by BMP-6 and Ln-1 was completely abolished in a dose-dependent manner by blocking Ln-1 binding to its α 6 integrin and α-dystroglycan receptors or by blocking the Ln-1 signaling molecules, phosphatidyl-inositol-3-kinase (P13K) and MAP kinase kinase-1. These results demonstrate a convergence of BMP and Ln-1 signaling through P13K and MAP kinase pathways to induce proliferation and colony formation in E15.5 fetal mouse pancreatic cells

  1. Noninvasive prenatal testing using a novel analysis pipeline to screen for all autosomal fetal aneuploidies improves pregnancy management

    NARCIS (Netherlands)

    Bayindir, Baran; Dehaspe, Luc; Brison, Nathalie; Brady, Paul; Ardui, Simon; Kammoun, Molka; van der Veken, Lars|info:eu-repo/dai/nl/321773314; Lichtenbelt, Klaske|info:eu-repo/dai/nl/30481816X; van den Bogaert, Kris; van Houdt, Jeroen; Peeters, Hilde; van Esch, Hilde; de Ravel, Thomy; Legius, Eric; Devriendt, Koen; Vermeesch, Joris R.

    2015-01-01

    Noninvasive prenatal testing by massive parallel sequencing of maternal plasma DNA has rapidly been adopted as a mainstream method for detection of fetal trisomy 21, 18 and 13. Despite the relative high accuracy of current NIPT testing, a substantial number of false-positive and false-negative test

  2. Highly proliferative primitive fetal liver hematopoietic stem cells are fueled by oxidative metabolic pathways

    Directory of Open Access Journals (Sweden)

    Javed K. Manesia

    2015-11-01

    Full Text Available Hematopoietic stem cells (HSCs in the fetal liver (FL unlike adult bone marrow (BM proliferate extensively, posing different metabolic demands. However, metabolic pathways responsible for the production of energy and cellular building blocks in FL HSCs have not been described. Here, we report that FL HSCs use oxygen dependent energy generating pathways significantly more than their BM counterparts. RNA-Seq analysis of E14.5 FL versus BM derived HSCs identified increased expression levels of genes involved in oxidative phosphorylation (OxPhos and the citric acid cycle (TCA. We demonstrated that FL HSCs contain more mitochondria than BM HSCs, which resulted in increased levels of oxygen consumption and reactive oxygen species (ROS production. Higher levels of DNA repair and antioxidant pathway gene expression may prevent ROS-mediated (genotoxicity in FL HSCs. Thus, we here for the first time highlight the underestimated importance of oxygen dependent pathways for generating energy and building blocks in FL HSCs.

  3. Evaluation of the effect of gamma-irradiation on fetal erythropoiesis in rats using blood cell volume as the index

    International Nuclear Information System (INIS)

    Koshimoto, Chihiro; Takahashi, Sentaro; Kubota, Yoshihisa; Sato, Hiroshi

    1994-01-01

    Rat fetuses at day 14 of gestation were irradiated externally with gamma rays at doses of 0.5-8 Gy, and the effect of radiation on the transfer of the erythropoietic site with migration of stem cells from the blood islands of the yolk sac into the liver was investigated. The LD 50 was about 5 Gy for 16-day-old fetuses, 2 days after irradiation. Such fetal hematological parameters as the number of blood cells in the liver and the formation rate of micronuclei in erythrocytes, also were affected by irradiation. Two types of blood cells were present in the fetal circulating blood; small blood cells originating in the fetal liver and large blood cells originating in the blood islands of the yolk sac. The number of small blood cells in the circulating blood decreased with the increase in the radiation dose; but, the number of large blood cells remained relatively constant. This suggests that external doses of irradiation of more than 1 Gy impaired the normal transfer of the hematopoietic site (stem cell migration from the blood islands of the yolk sac into the liver). (author)

  4. Generation of human cortical neurons from a new immortal fetal neural stem cell line

    International Nuclear Information System (INIS)

    Cacci, E.; Villa, A.; Parmar, M.; Cavallaro, M.; Mandahl, N.; Lindvall, O.; Martinez-Serrano, A.; Kokaia, Z.

    2007-01-01

    Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markers like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology

  5. Fetal hemoglobin in sickle cell anemia: The Arab-Indian haplotype and new therapeutic agents.

    Science.gov (United States)

    Habara, Alawi H; Shaikho, Elmutaz M; Steinberg, Martin H

    2017-11-01

    Fetal hemoglobin (HbF) has well-known tempering effects on the symptoms of sickle cell disease and its levels vary among patients with different haplotypes of the sickle hemoglobin gene. Compared with sickle cell anemia haplotypes found in patients of African descent, HbF levels in Saudi and Indian patients with the Arab-Indian (AI) haplotype exceed that in any other haplotype by nearly twofold. Genetic association studies have identified some loci associated with high HbF in the AI haplotype but these observations require functional confirmation. Saudi patients with the Benin haplotype have HbF levels almost twice as high as African patients with this haplotype but this difference is unexplained. Hydroxyurea is still the only FDA approved drug for HbF induction in sickle cell disease. While most patients treated with hydroxyurea have an increase in HbF and some clinical improvement, 10 to 20% of adults show little response to this agent. We review the genetic basis of HbF regulation focusing on sickle cell anemia in Saudi Arabia and discuss new drugs that can induce increased levels of HbF. © 2017 Wiley Periodicals, Inc.

  6. A comparison of face to face and group education on informed choice and decisional conflict of pregnant women about screening tests of fetal abnormalities

    Science.gov (United States)

    Kordi, Masoumeh; Riyazi, Sahar; Lotfalizade, Marziyeh; Shakeri, Mohammad Taghi; Suny, Hoseyn Jafari

    2018-01-01

    BACKGROUND AND GOAL: Screening of fetal anomalies is assumed as a necessary measurement in antenatal cares. The screening plans aim at empowerment of individuals to make the informed choice. This study was conducted in order to compare the effect of group and face-to-face education and decisional conflicts among the pregnant females regarding screening of fetal abnormalities. METHODS: This study of the clinical trial was carried out on 240 pregnant women at pregnancy age in health care medical centers in Mashhad city in 2014. The form of individual-midwifery information and informed choice questionnaire and decisional conflict scale were used as tools for data collection. The face-to-face and group education course were held in two weekly sessions for intervention groups during two consecutive weeks, and the usual care was conducted for the control group. The rate of informed choice and decisional conflict was measured in pregnant women before education and also at weeks 20–22 of pregnancy in three groups. The data analysis was executed using SPSS statistical software (version 16), and statistical tests were implemented including Chi-square test, Kruskal–Wallis test, Wilcoxon test, Mann–Whitney U-test, one-way analysis of variance test, and Tukey's range test. The P education group, 64 members (80%) in group education class, and 20 persons (25%) in control group had the informed choice regarding screening tests, but there was no statistically significant difference between two individual and group education classes. Similarly, during the postintervention phase, there was a statistically significant difference in mean score of decisional conflict scale among pregnant women regarding screening tests in three groups (P = 0.001). DISCUSSION AND CONCLUSION: With respect to effectiveness of group and face-to-face education methods in increasing the informed choice and reduced decisional conflict in pregnant women regarding screening tests, each of these education

  7. Establishment and characterization of fetal and maternal mesenchymal stem/stromal cell lines from the human term placenta.

    Science.gov (United States)

    Qin, Sharon Q; Kusuma, Gina D; Al-Sowayan, Batla; Pace, Rishika A; Isenmann, Sandra; Pertile, Mark D; Gronthos, Stan; Abumaree, Mohamed H; Brennecke, Shaun P; Kalionis, Bill

    2016-03-01

    Human placental mesenchymal stem/stromal cells (MSC) are an attractive source of MSC with great therapeutic potential. However, primary MSC are difficult to study in vitro due to their limited lifespan and patient-to-patient variation. Fetal and maternal MSC were prepared from cells of the chorionic and basal plates of the placenta, respectively. Fetal and maternal MSC were transduced with the human telomerase reverse transcriptase (hTERT). Conventional stem cell assays assessed the MSC characteristics of the cell lines. Functional assays for cell proliferation, cell migration and ability to form colonies in soft agar were used to assess the whether transduced cells retained properties of primary MSC. Fetal chorionic and maternal MSC were successfully transduced with hTERT to create the cell lines CMSC29 and DMSC23 respectively. The lifespans of CMSC29 and DMSC23 were extended in cell culture. Both cell lines retained important MSC characteristics including cell surface marker expression and multipotent differentiation potential. Neither of the cell lines was tumourigenic in vitro. Gene expression differences were observed between CMSC29 and DMSC23 cells and their corresponding parent, primary MSC. Both cell lines show similar migration potential to their corresponding primary, parent MSC. The data show that transduced MSC retained important functional properties of the primary MSC. There were gene expression and functional differences between cell lines CMSC29 and DMSC23 that reflect their different tissue microenvironments of the parent, primary MSC. CMSC29 and DMSC23 cell lines could be useful tools for optimisation and functional studies of MSC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. In vitro effects of fetal rat cerebrospinal fluid on viability and neuronal differentiation of PC12 cells

    Directory of Open Access Journals (Sweden)

    Nabiuni Mohammad

    2012-06-01

    Full Text Available Abstract Background Fetal cerebrospinal fluid (CSF contains many neurotrophic and growth factors and has been shown to be capable of supporting viability, proliferation and differentiation of primary cortical progenitor cells. Rat pheochromocytoma PC12 cells have been widely used as an in vitro model of neuronal differentiation since they differentiate into sympathetic neuron-like cells in response to growth factors. This study aimed to establish whether PC12 cells were responsive to fetal CSF and therefore whether they might be used to investigate CSF physiology in a stable cell line lacking the time-specific response patterns of primary cells previously described. Methods In vitro assays of viability, proliferation and differentiation were carried out after incubation of PC12 cells in media with and without addition of fetal rat CSF. An MTT tetrazolium assay was used to assess cell viability and/or cell proliferation. Expression of neural differentiation markers (MAP-2 and β-III tubulin was determined by immunocytochemistry. Formation and growth of neurites was measured by image analysis. Results PC12 cells differentiate into neuronal cell types when exposed to bFGF. Viability and cell proliferation of PC12 cells cultured in CSF-supplemented medium from E18 rat fetuses were significantly elevated relative to the control group. Neuronal-like outgrowths from cells appeared following the application of bFGF or CSF from E17 and E19 fetuses but not E18 or E20 CSF. Beta-III tubulin was expressed in PC12 cells cultured in any media except that supplemented with E18 CSF. MAP-2 expression was found in control cultures and in those with E17 and E19 CSF. MAP2 was located in neurites except in E17 CSF when the whole cell was positive. Conclusions Fetal rat CSF supports viability and stimulates proliferation and neurogenic differentiation of PC12 cells in an age-dependent way, suggesting that CSF composition changes with age. This feature may be important

  9. Chorionic villus sampling in the cell-free DNA aneuploidy screening era: careful selection criteria can maximise the clinical utility of screening and invasive testing.

    Science.gov (United States)

    Kane, Stefan C; Reidy, Karen L; Norris, Fiona; Nisbet, Deborah L; Kornman, Louise H; Palma-Dias, Ricardo

    2017-04-01

    To quantify the impact of cell-free DNA (cfDNA) screening on chorionic villus sampling (CVS) test indications and outcomes in a tertiary maternity service. Retrospective cohort study of all CVS procedures performed for any indication on singleton pregnancies at The Royal Women's Hospital, Melbourne, and at Women's Ultrasound Melbourne, Australia, between August 2008 and February 2015. Karyotypes were classified according to pathogenicity and detectability by standard cfDNA screening panels. A total of 2051 CVS procedures, 25 373 twelve-week scans and 2394 cfDNA tests were performed. The CVS rate per 12-week scan fell from 9.8 to 3.9% following introduction of cfDNA screening. The yield of pathogenic chromosomal anomalies per CVS increased from 12.9 to 25.2%, with 70% of pathogenic results now comprising T21, up from 52%. Sixteen (5.3%) of the pathogenic chromosomal abnormalities identified on CVS would not have been predicted by current cfDNA tests. There is an evolving tension between improved screening performance for common aneuploidies offered by cfDNA testing, and the increasing diagnostic utility of molecular karyotyping. However, the risk of not identifying pathogenic chromosomal abnormalities is low if cfDNA screening is offered in the absence of a structural fetal anomaly, increased nuchal translucency or relevant family history. © 2017 John Wiley & Sons, Ltd. © 2017 John Wiley & Sons, Ltd.

  10. A fetal human heart cardiac-inducing RNA (CIR) promotes the differentiation of stem cells into cardiomyocytes.

    Science.gov (United States)

    Kochegarov, Andrei; Moses-Arms, Ashley; Lemanski, Larry F

    2015-08-01

    A specific human fetal heart RNA has been discovered, which has the ability to induce myocardial cell formation from mouse embryonic and human-induced pluripotent stem cells in culture. In this study, commercially obtained RNA from human fetal heart was cloned, sequenced, and synthesized using standard laboratory approaches. Molecular analyses of the specific fetal cardiac-inducing RNA (CIR), revealed that it is a fragment of N-sulfoglucosaminesulfohydrolase and the caspase recruitment domain family member 14 precursor. Stem cells transfected with CIRs often form into spindle-shaped cells characteristic of cardiomyocytes,and express the cardiac-specific contractile protein marker, troponin-T, in addition to tropomyosin and α-actinin as detected by immunohistochemical staining. Expression of these contractile proteins showed organization into sarcomeric myofibrils characteristic of striated cardiac muscle cells. Computer analyses of the RNA secondary structures of the active CIR show significant similarities to a RNA from salamander or myofibril-inducing RNA (MIR), which also promotes non-muscle cells to differentiate into cardiac muscle. Thus, these two RNAs, salamander MIR and the newly discovered human-cloned CIR reported here, appear to have evolutionarily conserved secondary structures suggesting that both play major roles in vertebrate heart development and, particularly, in the differentiation of cardiomyocytes from non-muscle cells during development.

  11. Growth-inhibitory effect of TGF-B on human fetal adrenal cells in primary monolayer culture.

    Science.gov (United States)

    Riopel, L; Branchaud, C L; Goodyer, C G; Adkar, V; Lefebvre, Y

    1989-08-01

    We examined the effects of transforming-growth factor-B (TGF-B) on growth ([3H]-thymidine uptake) and function (dehydroepiandrosterone sulfate [DHAS] and cortisol production) of human fetal zone adrenal cells. Results indicate that TGF-B significantly inhibits, in a dose-related manner, both basal and epidermal growth factor (EGF)-stimulated cell growth: IC50 = 0.1-0.25 ng/ml. EGF is ineffective in overcoming the inhibitory effect of TGF-B, suggesting a noncompetitive antagonism between the two factors. Also, the inhibitory effect of TGF-B is additive to that of adrenocorticotropic hormone (ACTH). On the other hand, TGF-B (1 ng/ml) does not significantly change basal or ACTH-stimulated DHAS or cortisol secretion. We conclude that, unlike its effect on other steroid-producing cells, TGF-B inhibits growth of fetal zone cells and does not appear to have a significant inhibitory effect on steroidogenesis.

  12. ROLE OF STEM CELL FACTOR IN THE REACTIVATION OF HUMAN FETAL HEMOGLOBIN

    Directory of Open Access Journals (Sweden)

    Ugo Testa

    2009-06-01

    Full Text Available

    In humans the switch from fetal to adult  hemoglobin (HbF→ HbA takes place in the perinatal and postnatal period, determining the progressive replacement of HbF with HbA synthesis ( i.e., the relative HbF content in red blood cells decreases from 80-90% to <1%. In spite of more than twenty years of intensive investigations on this classic model, the molecular mechanisms regulating the Hb switching, as well as HbF synthesis in adults, has been only in part elucidated. In adult life, the residual HbF, restricted to F cell compartment, may be reactivated up to 10-20% of total Hb synthesis in various conditions associated with “stress erythropoiesis”: this reactivation represented until now an interesting model of partial Hb switch reverse with important therapeutic implications in patients with hemoglobinopathies, and particularly in -thalassemia.
    In vitro and in vivo models have led to the identification of several chemical compounds able to reactivate HbF synthesis in adult erythroid cells. Although the impact of these HbF inducers, including hypomethylating agents, histone deacetylase inhibitors and hydroxyurea, was clear on the natural history of sickle cell anemia, the benefit on the clinical course of -thalassemia was only limited: particularly, the toxicity and the modest increase in γ-globin reactivation indicated the need for improved agents able to induce higher levels of HbF.
    In the present review we describe the biologic properties of Stem Cell Factor (SCF, a cytokine sustaining the survival and proliferation of erythroid cells, that at pharmacological doses acts as a potent stimulator of HbF synthesis in adult erythroid cells.

  13. Evaluating the Agreement of Risk Categorization for Fetal Down Syndrome Screening between Ultrasound-Based Gestational Age and Menstrual-Based Gestational Age by Maternal Serum Markers.

    Science.gov (United States)

    Chaksuwat, Pakorn; Sirichotiyakul, Supatra; Luewan, Suchaya; Tongsong, Theera

    2018-01-01

    To evaluate the agreement of risk categorization for Down syndrome screening between ultrasound scan-based gestational age (GA) and last menstrual period-based gestational age in both first and second trimesters by maternal serum markers. Data comprising 4,055 and 4,016 cases of first and second trimester screening were used. The maternal serum markers were analyzed using the ultrasound-based GA and menstrual age. The subjects whose menstrual age and ultrasound-based GA fell in different trimesters were excluded because the risk could not be calculated due to the different serum markers used in each trimester. The agreement of risk categorization for fetal Down syndrome was evaluated. The agreement of Down syndrome screening in the first and the second trimesters were 92.7% and 89%, respectively. The study found a good agreement of risk categorization by Kappa index, which was 0.615 for the overall screening. The menstrual age had a slight decrease in the detection rate and a lower false-positive rate. Menstrual age is acceptable in cases of accurate last menstrual period. However, in places where ultrasonography is not readily available, gestational age estimation by menstrual age along with clinical examination that corresponds to the gestational age can be reliable.

  14. Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells

    Science.gov (United States)

    Gill, Mark E.; Hu, Yueh-Chiang; Lin, Yanfeng; Page, David C.

    2011-01-01

    Mammalian oocytes and spermatozoa derive from fetal cells shared by the sexes. These primordial germ cells (PGCs) migrate to the developing somatic gonad, giving rise to oocytes or spermatozoa. These opposing sexual fates are determined not by the PGCs’ own sex chromosome constitution (XX or XY), but by the sexual identity of the fetal gonad that they enter. We asked whether PGCs undergo a developmental transition that enables them to respond to feminizing or masculinizing cues from fetal ovary or testis. We conducted in vivo genetic studies of DAZL, an RNA-binding protein expressed in both ovarian and testicular germ cells. We found that germ cells in C57BL/6 Dazl-deficient fetuses—whether XX or XY—migrate to the gonad but do not develop either male or female features. Instead, they remain in a sexually undifferentiated state similar to that of migrating PGCs. Thus, germ cells in C57BL/6 Dazl-deficient fetuses do not respond to sexual cues from ovary or testis, whereas the earlier processes of germ cell specification and migration are unaffected. We propose that PGCs of both XX and XY fetuses undergo licensing, an active developmental transition that enables the resultant gametogenesis-competent cells to respond to feminizing or masculinizing cues produced by the fetal ovary or testis and hence to embark on oogenesis or spermatogenesis. In C57BL/6 mice, Dazl is required for licensing. Licensing serves as a gateway from the embryonic processes shared between the sexes—germ cell specification and migration—to the sex-specific pathways of oogenesis and spermatogenesis. PMID:21504946

  15. Mesenchymal stem cells enhance the viability and proliferation of human fetal intestinal epithelial cells following hypoxic injury via paracrine mechanisms.

    Science.gov (United States)

    Weil, Brent R; Markel, Troy A; Herrmann, Jeremy L; Abarbanell, Aaron M; Meldrum, Daniel R

    2009-08-01

    Mesenchymal stem cells (MSCs) may be used to treat injured tissues. The ability of MSCs to treat injured fetal intestinal epithelial cells (FIEs), similar to those in infants with necrotizing enterocolitis, has not been elucidated. We hypothesized that MSCs would enhance FIE viability and proliferation after hypoxic injury via paracrine mechanisms. LLC-PK1 cells (differentiated control [DC]) and human MSCs were exposed to 1 hour of hypoxia. Cells were reoxygenated for 24 hours and cell-free conditioned media were collected. Human FIEs were exposed to 1 hour of hypoxia and plated for experiments. FIEs were reoxygenated in nonconditioned media, DC-conditioned media, or MSC-conditioned media. Supernatants were analyzed for interleukin-6 (IL-6), hepatocyte growth factor (HGF), fibroblast growth factor (FGF), and vascular endothelial growth factor (VEGF) via enzyme-linked immunosorbent assay. Cell viability was assessed by trypan blue exclusion and cell counting. Proliferation was determined via 5-bromo-2'-deoxyuridine (BrdU). Expression of caspases-3 and -8 was determined via Western blot. FIEs reoxygenated in MSC-conditioned media demonstrated enhanced viability and increased proliferation after hypoxic injury. Enhanced FIE viability and proliferation were associated with increased IL-6, HGF, and VEGF, as well as decreased expression of caspase-3. MSCs may increase the viability and proliferative capacity of FIEs after hypoxic injury via the paracrine release of IL-6, HGF, and VEGF, as well as downregulation of apoptotic signaling.

  16. Noninvasive prenatal testing using a novel analysis pipeline to screen for all autosomal fetal aneuploidies improves pregnancy management

    OpenAIRE

    Bayindir, Baran; Dehaspe, Luc; Brison, Nathalie; Brady, Paul; Ardui, Simon; Kammoun, Molka; Van der Veken, Lars; Lichtenbelt, Klaske; Van den Bogaert, Kris; Van Houdt, Jeroen; Peeters, Hilde; Van Esch, Hilde; de Ravel, Thomy; Legius, Eric; Devriendt, Koen

    2015-01-01

    Noninvasive prenatal testing by massive parallel sequencing of maternal plasma DNA has rapidly been adopted as a mainstream method for detection of fetal trisomy 21, 18 and 13. Despite the relative high accuracy of current NIPT testing, a substantial number of false-positive and false-negative test results remain. Here, we present an analysis pipeline, which addresses some of the technical as well as the biologically derived causes of error. Most importantly, it differentiates high z-scores d...

  17. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Erica L. McGrath

    2017-03-01

    Full Text Available Zika virus (ZIKV infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7, to infect primary human neural stem cells (hNSCs originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection.

  18. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection.

    Science.gov (United States)

    McGrath, Erica L; Rossi, Shannan L; Gao, Junling; Widen, Steven G; Grant, Auston C; Dunn, Tiffany J; Azar, Sasha R; Roundy, Christopher M; Xiong, Ying; Prusak, Deborah J; Loucas, Bradford D; Wood, Thomas G; Yu, Yongjia; Fernández-Salas, Ildefonso; Weaver, Scott C; Vasilakis, Nikos; Wu, Ping

    2017-03-14

    Zika virus (ZIKV) infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7), to infect primary human neural stem cells (hNSCs) originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. THE EFFECT OF FETAL CALF SERUM ON HUMAN DENTAL PULP STEM CELLS

    Directory of Open Access Journals (Sweden)

    Jakub Suchánek

    2013-01-01

    Full Text Available Aims: Authors studied potential side effects of fetal calf serum (FCS in cultivation media on human dental pulp stem cells (DPSC during long term cultivation. Methods: Two lines of DPSC obtained healthy donors (male 22 years, female 23 years were used. Both lines were cultivated under standard cultivation conditions in four different media containing 10% or 2% FCS and substituted with growth factors. During long term cultivation proliferation ability, karyotype and phenotype of DPSC were measured. Results: Both lines of DPSC cultivated in a media containing 2% FCS and ITS supplement showed the highest number of population doublings. On the other hand the proliferation rate of DPSC cultivated in a media with 2% FCS without ITS supplement was slowest. Proliferation rate of DPSC cultivated in 10% FCS media with or without FGF-2 was comparable. DPSC cultivated in a media with 10% FCS showed a significantly higher amount of chromosomal aberrations. These chromosomal aberrations do not seem to be clonal but surprisingly we found large amounts of tetraploid cells in the 9th passage in both media containing 10% FCS. Conclusions: Our study proved that cultivation of DPSC in media containing higher concentration of FCS has critical side effects on cell chromosomal stability.

  20. Transient HEXA expression in a transformed human fetal Tay-Sachs disease neuroglial cell line

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, M.J.; Hechtman, P.; Kaplan, F. [McGill Univ., Quebec (Canada)] [and others

    1994-09-01

    Tay-Sachs disease (TSD) is a severe neurodegenerative disorder characterized by the accumulation of GM{sub 2} ganglioside in the neurons of the central cortex. The recessively inherited disorder results from deficiency of hexosaminidase A (Hex A), a heterodimer of an {alpha} and {beta} subunit encoded by the HEXA and HEXB genes. Expression of HEXA mutations in COS cells has several disadvantages including high endogenous hexosaminidase activity. We report a new transient expression system with very low endogenous Hex A activity. An SV40-transformed fetal TSD neuroglial cell line was assessed for transient expression of the HEXA gene. pCMV{alpha}, a vector incorporating the cytomegalovirus promoter with the human {alpha}-subunit cDNA insert, proved to be the most efficient expression vector. Transfection of 4x10{sup 6} cells with 5-20 {mu}g of plasmid resulted in 100 to 500-fold Hex A activity (4MUGS hydrolysis) relative to mock-transfected cells. Use of pCMV{beta}-Gal as a control for transfection efficiency indicated that 10-20% of cells were transfected. Hex A specific activity increased for at least 72 h post-transfection. This new transient expression system should greatly improve the characterization of mutations in which low levels of HEXA expression result in milder clinical phenotypes and permit studies on enzymatic properties of mutant forms of Hex A. Since the cells used are of CNS origin and synthesize gangliosides, it should also be possible to study, in culture, the metabolic phenotype associated with TSD.

  1. Fetal hemoglobin and hydroxycarbamide moduate both plasma concentration and cellular origin of circulating microparticles in sickle cell anemia children.

    Science.gov (United States)

    Nébor, Danitza; Romana, Marc; Santiago, Raoul; Vachiery, Nathalie; Picot, Julien; Broquere, Cédric; Chaar, Vicky; Doumdo, Lydia; Odièvre, Marie-Hélène; Benkerrou, Malika; Elion, Jacques

    2013-06-01

    Microparticles are cell membrane-derived microvesicles released during cell apoptosis and activation processes. They have been described as bio-markers in various vascular diseases, including sickle cell anemia, and associated with an increased risk of thrombosis. We investigated the effects of fetal hemoglobin level, a factor known to modulate the clinical expression of sickle cell anemia, and that of hydroxycarbamide treatment which reduces the frequency of vasoocclusive crises, the canonical clinical manifestation of the disease, on both the plasma concentration and the cellular origin of circulating microparticles. Flow cytometry was used to characterize microparticles in 62 sickle cell anemia children at steady state aged 2 months-16 years; 13 of them were treated with hydroxycarbamide. In untreated children, we observed negative correlations between fetal hemoglobin levels and the absolute plasma concentration of microparticles as well as that of microparticles specifically derived from platelets, erythrocytes, and monocytes. Compared to untreated children, those treated with hydroxyurea showed lower concentrations of total microparticles as a consequence of decreased microparticles shed by platelets and erythrocytes. In conclusion, in our sickle cell patients, neonatal decline of fetal hemoglobin coincided with an increase in circulating microparticles derived from erythrocytes, platelets, and monocytes. Hydroxyurea treatment was associated with a decrease in microparticles derived from erythrocytes and platelets.

  2. Israeli Society of Medical Genetics NIPT Committee Opinion 072013: Non-invasive prenatal testing of cell-free DNA in maternal plasma for detection of fetal aneuploidy.

    Science.gov (United States)

    Michaelson-Cohen, Rachel; Gershoni-Baruch, Ruth; Sharoni, Reuven; Shochat, Mordechai; Yaron, Yuval; Singer, Amihood

    2014-01-01

    Non-invasive prenatal testing (NIPT) of cell-free fetal DNA in maternal plasma is a novel approach, designed for detecting common aneuploidies in the fetus. The Israeli Society of Medical Geneticists (ISMG) supports its use according to the guidelines stated herein. The clinical data collected thus far indicate that NIPT is highly sensitive in detecting trisomies 21 and 18, and fairly sensitive in detecting trisomy 13 and sex chromosome aneuploidies. Because false-positive results may occur, an abnormal result must be validated by invasive prenatal testing. At this juncture, NIPT does not replace existing prenatal screening tests for Down syndrome, as these are relatively inexpensive and cost-effective. Nonetheless, NIPT may be offered to women considered to be at high risk for fetal chromosomal abnormalities as early as 10 weeks of gestation. The ISMG states that NIPT should be an informed patient choice, and that pretest counseling regarding the limitations of NIPT is warranted. Women at high risk for genetic disorders not detected by NIPT should be referred for genetic counseling. A normal test result may be conveyed by a relevant healthcare provider, while an abnormal result should be discussed during a formal genetic consultation session.

  3. Applicability of first-trimester combined screening for fetal trisomy 21 in a resource-limited setting in mainland China.

    Science.gov (United States)

    Li, B; Sahota, D S; Lao, T T; Xu, J; Hu, S Q; Zhang, L; Liu, Q Y; Sun, Q; Tang, D; Ma, R M

    2016-09-01

    To assess the feasibility and performance of the first-trimester combined screening test for trisomy 21 in a resource-limited setting in mainland China. Prospective observational cohort study. First Affiliated Hospital of Kunming Medical University, China. Ten thousand four hundred and forty-two pregnant women requesting first-trimester screening. The combined screening test was performed from May 2012 to December 2014. Women with a high-risk result (≥1:600) were offered further confirmatory tests after counselling. The threshold for high risk was determined by Monte Carlo simulation to achieve a 5% false-positive rate according to the local age distribution. Pregnancy outcome and screening results were recorded for all women and monthly audits were conducted. Sensitivity, screen positive rate, cost per case of Down syndrome detected. Six hundred and ten women (5.8% of the total screened) had a high-risk screening test, of whom 274 (44.9%) underwent a diagnostic test and 169 (27.7%) opted for a noninvasive prenatal screening test (NIPT); 160 (26.2%) declined further testing after counselling. The pregnancy outcome was available for 10 174 (97.4%) of the women. The observed incidence of Down syndrome was 0.13% (1/750). All 14 women with a trisomy 21 pregnancy had a high-risk screening test result. The cost per Down syndrome detected was RMB596 686 compared with RMB1.79 million if all had been screened by NIPT. The combined screening test appears to be a more cost-effective strategy in mainland China. Screening performance in China would be improved by adopting Chinese-specific models, external quality control and assurance, and establishing risk thresholds appropriate for the age distribution of the population. Combined first-trimester Downs screening in China was improved by adopting Chinese-specific models and external QC. © 2016 Royal College of Obstetricians and Gynaecologists.

  4. Non‐invasive prenatal screening for chromosomal abnormalities ...

    African Journals Online (AJOL)

    Non‐invasive prenatal screening for chromosomal abnormalities using circulating cell-free fetal DNA in maternal plasma: Current applications, limitations and ... fetal DNAtesting is a matter of concern, because of the low positive predictive value for these changes, and the associated significant cumulative false-positive rate.

  5. New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell-free fetal DNA in maternal plasma.

    Science.gov (United States)

    Chitty, L S; Griffin, D R; Meaney, C; Barrett, A; Khalil, A; Pajkrt, E; Cole, T J

    2011-03-01

    To improve the prenatal diagnosis of achondroplasia by constructing charts of fetal size, defining frequency of sonographic features and exploring the role of non-invasive molecular diagnosis based on cell-free fetal deoxyribonucleic acid (DNA) in maternal plasma. Data on fetuses with a confirmed diagnosis of achondroplasia were obtained from our databases, records reviewed, sonographic features and measurements determined and charts of fetal size constructed using the LMS (lambda-mu-sigma) method and compared with charts used in normal pregnancies. Cases referred to our regional genetics laboratory for molecular diagnosis using cell-free fetal DNA were identified and results reviewed. Twenty-six cases were scanned in our unit. Fetal size charts showed that femur length was usually on or below the 3(rd) centile by 25 weeks' gestation, and always below the 3(rd) by 30 weeks. Head circumference was above the 50(th) centile, increasing to above the 95(th) when compared with normal for the majority of fetuses. The abdominal circumference was also increased but to a lesser extent. Commonly reported sonographic features were bowing of the femora, frontal bossing, short fingers, a small chest and polyhydramnios. Analysis of cell-free fetal DNA in six pregnancies confirmed the presence of the c.1138G > A mutation in the FGRF3 gene in four cases with achondroplasia, but not the two subsequently found to be growth restricted. These data should improve the accuracy of diagnosis of achondroplasia based on sonographic findings, and have implications for targeted molecular confirmation that can reliably and safely be carried out using cell-free fetal DNA. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  6. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors.

    Science.gov (United States)

    Karamitros, Dimitris; Patmanidi, Alexandra L; Kotantaki, Panoraia; Potocnik, Alexandre J; Bähr-Ivacevic, Tomi; Benes, Vladimir; Lygerou, Zoi; Kioussis, Dimitris; Taraviras, Stavros

    2015-01-01

    Balancing stem cell self-renewal and initiation of lineage specification programs is essential for the development and homeostasis of the hematopoietic system. We have specifically ablated geminin in the developing murine hematopoietic system and observed profound defects in the generation of mature blood cells, leading to embryonic lethality. Hematopoietic stem cells (HSCs) accumulated in the fetal liver following geminin ablation, while committed progenitors were reduced. Genome-wide transcriptome analysis identified key HSC transcription factors as being upregulated upon geminin deletion, revealing a gene network linked with geminin that controls fetal hematopoiesis. In order to obtain mechanistic insight into the ability of geminin to regulate transcription, we examined Hoxa9 as an example of a key gene in definitive hematopoiesis. We demonstrate that in human K562 cells geminin is associated with HOXA9 regulatory elements and its absence increases HOXA9 transcription similarly to that observed in vivo. Moreover, silencing geminin reduced recruitment of the PRC2 component SUZ12 to the HOXA9 locus and resulted in an increase in RNA polymerase II recruitment and H3K4 trimethylation (H3K4me3), whereas the repressive marks H3K9me3 and H3K27me3 were reduced. The chromatin landscape was also modified at the regulatory regions of HOXA10 and GATA1. K562 cells showed a reduced ability to differentiate to erythrocytes and megakaryocytes upon geminin silencing. Our data suggest that geminin is indispensable for fetal hematopoiesis and regulates the generation of a physiological pool of stem and progenitor cells in the fetal hematopoietic system. © 2015. Published by The Company of Biologists Ltd.

  7. Central sensitization associated with low fetal hemoglobin levels in adults with sickle cell anemia.

    Science.gov (United States)

    Darbari, Deepika S; Vaughan, Kathleen J; Roskom, Katherine; Seamon, Cassie; Diaw, Lena; Quinn, Meghan; Conrey, Anna; Schechter, Alan N; Haythornthwaite, Jennifer A; Waclawiw, Myron A; Wallen, Gwenyth R; Belfer, Inna; Taylor, James G

    2017-10-01

    Pain is the hallmark of sickle cell anemia (SCA), presenting as recurrent acute events or chronic pain. Central sensitization, or enhanced excitability of the central nervous system, alters pain processing and contributes to the maintenance of chronic pain. Individuals with SCA demonstrate enhanced sensitivity to painful stimuli however central mechanisms of pain have not been fully explored. We hypothesized that adults with SCA would show evidence of central sensitization as observed in other diseases of chronic pain. We conducted a prospective study of static and dynamic quantitative sensory tests in 30 adults with SCA and 30 matched controls. Static thermal testing using cold stimuli showed lower pain thresholds (p=0.04) and tolerance (p=0.04) in sickle cell subjects, but not for heat. However, SCA subjects reported higher pain ratings with random heat pulses (pcentral sensitization in SCA. The association with fetal hemoglobin suggests this known SCA modifier may have a therapeutic role in modulating central sensitization. Copyright © 2017 Scandinavian Association for the Study of Pain. All rights reserved.

  8. A clinically meaningful fetal hemoglobin threshold for children with sickle cell anemia during hydroxyurea therapy.

    Science.gov (United States)

    Estepp, Jeremie H; Smeltzer, Matthew P; Kang, Guolian; Li, Chen; Wang, Winfred C; Abrams, Christina; Aygun, Banu; Ware, Russell E; Nottage, Kerri; Hankins, Jane S

    2017-12-01

    Hydroxyurea has proven clinical benefits and is recommended to be offered to all children with sickle cell anemia (SCA), but the optimal dosing regimen remains controversial. Induction of red blood cell fetal hemoglobin (HbF) by hydroxyurea appears to be dose-dependent. However, it is unknown whether maximizing HbF% improves clinical outcomes. HUSTLE (NCT00305175) is a prospective observational study with a primary goal of describing the long-term clinical effects of hydroxyurea escalated to maximal tolerated dose (MTD) in children with SCA. In 230 children, providing 610 patient-years of follow up, the mean attained HbF% at MTD was >20% for up to 4 years of follow-up. When HbF% values were ≤20%, children had twice the odds of hospitalization for any reason (P 20% was associated with fewer hospitalizations without significant toxicity. These data support the use of hydroxyurea in children, and suggest that the preferred dosing strategy is one that targets a HbF endpoint >20%. © 2017 Wiley Periodicals, Inc.

  9. Regionally-specified second trimester fetal neural stem cells reveals differential neurogenic programming.

    Directory of Open Access Journals (Sweden)

    Yiping Fan

    Full Text Available Neural stem/progenitor cells (NSC have the potential for treatment of a wide range of neurological diseases such as Parkinson Disease and multiple sclerosis. Currently, NSC have been isolated only from hippocampus and subventricular zone (SVZ of the adult brain. It is not known whether NSC can be found in all parts of the developing mid-trimester central nervous system (CNS when the brain undergoes massive transformation and growth. Multipotent NSC from the mid-trimester cerebra, thalamus, SVZ, hippocampus, thalamus, cerebellum, brain stem and spinal cord can be derived and propagated as clonal neurospheres with increasing frequencies with increasing gestations. These NSC can undergo multi-lineage differentiation both in vitro and in vivo, and engraft in a developmental murine model. Regionally-derived NSC are phenotypically distinct, with hippocampal NSC having a significantly higher neurogenic potential (53.6% over other sources (range of 0%-27.5%, p<0.004. Whole genome expression analysis showed differential gene expression between these regionally-derived NSC, which involved the Notch, epidermal growth factor as well as interleukin pathways. We have shown the presence of phenotypically-distinct regionally-derived NSC from the mid-trimester CNS, which may reflect the ontological differences occurring within the CNS. Aside from informing on the role of such cells during fetal growth, they may be useful for different cellular therapy applications.

  10. Hemopoietic progenitor cell identification in fetal and adult blood Célula progenitora hamatopoética - identificação em sangue fetal e de adulto

    Directory of Open Access Journals (Sweden)

    Aixa Müller

    2008-06-01

    Full Text Available Hemopoietic progenitor cells give rise to all cellular elements of the blood and are of importance as a potential source of cells used for correction of various pathological conditions. The main objective of this study was to identify and quantitative hemopoietic progenitor cell in antenatal fetal blood, in cord blood at the time of delivery and in adult blood, using monoclonal antibodies to surface markers and flow cytometry. CD34+ cells, most of them probably representing progenitor cells, were detected in prenatal fetal blood as early as the 17th week of gestation. The proportion of these cells showed a tendency to decrease as the pregnancy progressed. Within the population of CD34+ cells, a relatively low proportion (less than 1% were negative for the surface marker CD33 or HLA-Dr, indicating a population of primitive stem cells, i.e., progenitor cells no committed to a specific lineage. On the contrary, another group coexpressed CD33 or HLA-Dr, being more mature progenitor cells already committed to differentiate along a specific lineage. The percentage of CD34+ obtained in blood of adult patients after mobilization with chemotherapeutic agents and growth factors showed an average value of 2.7± 3.1%. The percentage of CD34+ in the apheresis products of various patients varied from 0.58 to 1.48. In some cases the cells were reinfused in the patient with good results. Our findings are in agreement with previous studies suggesting that CD34+ stem cells is a heterogeneous population, with each subset having variable degree o commitment to differentiate toward a specific cell lineage.As células progenitoras hematopoéticas são as responsáveis pela produção de todos os elementos do sangue e são as potenciais fontes de células usadas para o tratamento de várias condições patológicas. O principal objetivo deste trabalho foi identificar e quantificar as células progenitoras hematopoiéticas no sangue fetal do período pré-natal, no

  11. A historical and practical review of first trimester aneuploidy screening.

    Science.gov (United States)

    Russo, Melissa L; Blakemore, Karin J

    2014-06-01

    There have been tremendous advancements over the past three decades in prenatal screening for aneuploidy and we have changed our practice from screening by maternal age alone to 'combined' first trimester screening and circulating cell-free fetal DNA. We currently use the nuchal translucency and biochemical markers of free β-hCG and PAPP-A to determine the risk of fetal aneuploidy. The primary goal is to identify higher risk women for fetal aneuploidy early in pregnancy and give them the option to pursue invasive testing in a timely manner if desired. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Results of screening over 200 pristine lithium-ion cells

    DEFF Research Database (Denmark)

    Varela Barreras, Jorge; Raj, Trishna; Howey, David

    2017-01-01

    This paper presents and analyses results from simplified screening tests conducted on more than 200 large format Kokam NMC lithium-ion pouch cells at their beginning of life. Such data are not common in the literature. The cells were sandwiched between two large heat sinks for testing, which was ...

  13. Newborn Screening for Sickle Cell Disease: Jamaican Experience.

    Science.gov (United States)

    Mason, K; Gibson, F; Gardner, R; Warren, L; Fisher, C; Higgs, D; Happich, M; Kulozik, A; Hambleton, I; Serjeant, B E; Serjeant, G R

    2015-09-22

    To review the history of newborn screening for sickle cell disease with especial reference to Jamaica. A summary was done of the history, the development of associated laboratory technology and the implementation of newborn screening for sickle cell disease in Jamaica. Screening was initiated at Victoria Jubilee Hospital, Kingston from 1973-1981, reactivated in 1995 and extended to the University Hospital of the West Indies in 1997 and to Spanish Town Hospital in 1998. From August 2008, there was a progressive recruitment of 12 hospitals in the south and west of Jamaica which has raised the frequency of islandwide newborn coverage from 25% in 1973 to 81%. The results of this extended programme in southwest Jamaica are presented. Dried blood spots collected from the umbilical cord proved stable, cheap and efficient; mean sample collection rates were 98%, maternal contamination occurred in sickle cell (SS) disease, 125 with sickle cell-haemoglobin C (SC) disease and 36 with sickle cell-beta thalassaemia. Of the 327 babies with clinically significant sickle cell syndromes, all except five who died within seven days of birth were confirmed by four to six weeks and recruited to local sickle cell clinics. Early detection of sickle cell disease and recruitment to clinics is known to reduce its morbidity and mortality. The methods currently detailed provide an effective and economic model of newborn screening which may be of value elsewhere.

  14. Results of screening over 200 pristine lithium-ion cells

    DEFF Research Database (Denmark)

    Varela Barreras, Jorge; Raj, Trishna; Howey, David

    2017-01-01

    was conducted using an automated dis/charge test system and thermal chambers. Analysis of the screening data gives valuable quantitative information, but also qualitative insights into the nature of cell-to-cell variations and the complex interactions between battery temperature, capacity, voltage or internal...

  15. Stem cell research: licit or complicit? Is a medical breakthrough based on embryonic and fetal tissue compatible with Catholic teaching?

    Science.gov (United States)

    Branick, V; Lysaught, M T

    1999-01-01

    In November 1998 biologists announced that they had discovered a way to isolate and preserve human stem cells. Since stem cells are capable of developing into any kind of human tissue or organ, this was a great scientific coup. Researchers envision using the cells to replace damaged organs and to restore tissue destroyed by, for example, Parkinson's disease, diabetes, or even Alzheimer's. But, since stem cells are taken from aborted embryonic and fetal tissue or "leftover" in vitro embryos, their use raises large ethical issues. The National Institutes of Health (NIH) recently decided to fund research employing, not stem cells, but "cell lines" derived from them. The NIH has essentially made an ethical determination, finding sufficient "distance" between cell lines and abortion. Can Catholic universities sponsoring biological research agree with this finding? Probably not. In Catholic teaching, the concept of "complicity" would likely preclude such research. However, Catholic teaching would probably allow research done with stem cells obtained from postpartum placental tissue and from adult bone marrow and tissue. These cells, which lack the pluripotency of embryonic and fetal stem cells, are nevertheless scientifically promising and do not involve the destruction of human life.

  16. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Protect the Fetal Brain After Hypoxia-Ischemia.

    Science.gov (United States)

    Ophelders, Daan R M G; Wolfs, Tim G A M; Jellema, Reint K; Zwanenburg, Alex; Andriessen, Peter; Delhaas, Tammo; Ludwig, Anna-Kristin; Radtke, Stefan; Peters, Vera; Janssen, Leon; Giebel, Bernd; Kramer, Boris W

    2016-06-01

    of living cells. The therapeutic efficacy of systemically administered mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) on hypoxia-ischemia-induced injury was assessed in the preterm ovine brain. Impaired function and structural injury of the fetal brain was improved following global hypoxia-ischemia. A cell-free preparation of MSC-EVs could substitute for the cellular counterpart in the treatment of preterm neonates with hypoxic-ischemic brain injury. This may open new clinical applications for "off-the-shelf" interventions with MSC-EVs. ©AlphaMed Press.

  17. Model-based analysis of costs and outcomes of non-invasive prenatal testing for Down's syndrome using cell free fetal DNA in the UK National Health Service.

    Directory of Open Access Journals (Sweden)

    Stephen Morris

    Full Text Available Non-invasive prenatal testing (NIPT for Down's syndrome (DS using cell free fetal DNA in maternal blood has the potential to dramatically alter the way prenatal screening and diagnosis is delivered. Before NIPT can be implemented into routine practice, information is required on its costs and benefits. We investigated the costs and outcomes of NIPT for DS as contingent testing and as first-line testing compared with the current DS screening programme in the UK National Health Service.We used a pre-existing model to evaluate the costs and outcomes associated with NIPT compared with the current DS screening programme. The analysis was based on a hypothetical screening population of 10,000 pregnant women. Model inputs were taken from published sources. The main outcome measures were number of DS cases detected, number of procedure-related miscarriages and total cost.At a screening risk cut-off of 1∶150 NIPT as contingent testing detects slightly fewer DS cases, has fewer procedure-related miscarriages, and costs the same as current DS screening (around UK£280,000 at a cost of £500 per NIPT. As first-line testing NIPT detects more DS cases, has fewer procedure-related miscarriages, and is more expensive than current screening at a cost of £50 per NIPT. When NIPT uptake increases, NIPT detects more DS cases with a small increase in procedure-related miscarriages and costs.NIPT is currently available in the private sector in the UK at a price of £400-£900. If the NHS cost was at the lower end of this range then at a screening risk cut-off of 1∶150 NIPT as contingent testing would be cost neutral or cost saving compared with current DS screening. As first-line testing NIPT is likely to produce more favourable outcomes but at greater cost. Further research is needed to evaluate NIPT under real world conditions.

  18. Six consecutive false positive cases from cell-free fetal DNA testing in a single referring centre

    Science.gov (United States)

    Dugo, Nella; Padula, Francesco; Mobili, Luisa; Brizzi, Cristiana; D’Emidio, Laura; Cignini, Pietro; Mesoraca, Alvaro; Bizzoco, Domenico; Cima, Antonella; Giorlandino, Claudio

    2014-01-01

    Introduction recent studies have proposed the introduction of cell-free fetal DNA testing (NIPT-Non Invasive Prenatal Testing) in routine clinical practice emphasizing its high sensibility and specificity. In any case, false positive and false negative findings may result from placental mosaicism, because cell-free fetal DNA originates mainly from placenta. Case we report six cases of women who underwent chorionic villus sampling (CVS) or amniocentesis to confirm the results from NIPT: two Turner syndromes, two Triple X, one Patau syndrome, one Edward syndrome. Results using classic cytogenetic analysis and, also, Array - Comparative Genomic Hybridization (Array CGH) the karyotype of all 5 fetuses was found to be normal. Conclusion results from NIPT must always be confirmed by invasive prenatal diagnosis. It is mandatory to inform the patient that the CVS and amniocentesis still represent the only form of prenatal diagnostic test available. PMID:25332757

  19. Equine dendritic cells generated with horse serum have enhanced functionality in comparison to dendritic cells generated with fetal bovine serum.

    Science.gov (United States)

    Ziegler, Anja; Everett, Helen; Hamza, Eman; Garbani, Mattia; Gerber, Vinzenz; Marti, Eliane; Steinbach, Falko

    2016-11-15

    Dendritic cells are professional antigen-presenting cells that play an essential role in the initiation and modulation of T cell responses. They have been studied widely for their potential clinical applications, but for clinical use to be successful, alternatives to xenogeneic substances like fetal bovine serum (FBS) in cell culture need to be found. Protocols for the generation of dendritic cells ex vivo from monocytes are well established for several species, including horses. Currently, the gold standard protocol for generating dendritic cells from monocytes across various species relies upon a combination of GM-CSF and IL-4 added to cell culture medium which is supplemented with FBS. The aim of this study was to substitute FBS with heterologous horse serum. For this purpose, equine monocyte-derived dendritic cells (eqMoDC) were generated in the presence of horse serum or FBS and analysed for the effect on morphology, phenotype and immunological properties. Changes in the expression of phenotypic markers (CD14, CD86, CD206) were assessed during dendritic cell maturation by flow cytometry. To obtain a more complete picture of the eqMoDC differentiation and assess possible differences between FBS- and horse serum-driven cultures, a transcriptomic microarray analysis was performed. Lastly, immature eqMoDC were primed with a primary antigen (ovalbumin) or a recall antigen (tetanus toxoid) and, after maturation, were co-cultured with freshly isolated autologous CD5 + T lymphocytes to assess their T cell stimulatory capacity. The microarray analysis demonstrated that eqMoDC generated with horse serum were indistinguishable from those generated with FBS. However, eqMoDC incubated with horse serum-supplemented medium exhibited a more characteristic dendritic cell morphology during differentiation from monocytes. A significant increase in cell viability was also observed in eqMoDC cultured with horse serum. Furthermore, eqMoDC generated in the presence of horse serum

  20. Fetal echocardiography

    International Nuclear Information System (INIS)

    Chaubal, Nitin G.; Chaubal, Jyoti

    2009-01-01

    USG performed with a high-end machine, using a good cine-loop facility is extremely helpful in the diagnosis of fetal cardiac anomalies. In fetal echocardiography, the four-chamber view and the outflow-tract view are used to diagnose cardiac anomalies. The most important objective during a targeted anomaly scan is to identify those cases that need a dedicated fetal echocardiogram. Associated truncal and chromosomal anomalies need to be identified. This review shows how fetal echocardiography, apart from identifying structural defects in the fetal heart, can be used to look at rhythm abnormalities and other functional aspects of the fetal heart

  1. Maternal and fetal mechanisms of B cell regulation during pregnancy: human Chorionic Gonadotropin stimulates B cells to produce IL-10 while alpha-fetoprotein drives them into apoptosis

    Directory of Open Access Journals (Sweden)

    Franziska Fettke

    2016-12-01

    Full Text Available Maternal immune tolerance towards the fetus is an essential requisite for pregnancy. While T cell functions are well documented, little is known about the participation of B cells. We have previously suggested that IL-10 producing B cells are involved in pregnancy tolerance in mice and humans. By employing murine and human systems, we report now that fetal trophoblasts positively regulate the generation of IL-10 producing B cells. We next studied the participation of hormones produced by the placenta as well as the fetal protein alpha-fetoprotein (AFP in B cell modulation. Human Chorionic Gonadotropin (hCG, but not progesterone, estrogen or a combination of both, was able to promote changes in B cell phenotype and boost their IL-10 production, which was abolished after blocking hCG. The hCG-induced B cell phenotype was not associated with augmented galactosylation, sialylation or fucosylation of IgG subclasses in their Fc. In vitro, hCG induced the synthesis of asymmetrically glycosylated antibodies in their Fab region. Interestingly, AFP had dual effects depending on the concentration. At concentrations corresponding to maternal serum levels, it did not modify the phenotype or IL-10 secretion of B cells. At fetal concentrations, however, AFP was able to drive B cells into apoptosis, which may indicate a protective mechanism to avoid maternal B cells to reach the fetus.Our data suggests that the fetus secrete factors that promote a pregnancy-friendly B cell phenotype, unraveling interesting aspects of B cell function and modulation by pregnancy hormones and fetal proteins.

  2. Evaluation of a recombinant yeast cell estrogen screening assay.

    OpenAIRE

    Coldham, N G; Dave, M; Sivapathasundaram, S; McDonnell, D P; Connor, C; Sauer, M J

    1997-01-01

    A wide range of chemicals with diverse structures derived from plant and environmental origins are reported to have hormonal activity. The potential for appreciable exposure of humans to such substances prompts the need to develop sensitive screening methods to quantitate and evaluate the risk to the public. Yeast cells transformed with plasmids encoding the human estrogen receptor and an estrogen responsive promoter linked to a reporter gene were evaluated for screening compounds for estroge...

  3. The use of small interfering RNAs to inhibit adipocyte differentiation in human preadipocytes and fetal-femur-derived mesenchymal cells

    International Nuclear Information System (INIS)

    Xu, Y.; Mirmalek-Sani, S.-H.; Yang, X.; Zhang, J.; Oreffo, R.O.C.

    2006-01-01

    RNA interference (RNAi) has been used in functional genomics and offers innovative approaches in the development of novel therapeutics. Human mesenchymal stem cells offer a unique cell source for tissue engineering/regeneration strategies. The current study examined the potential of small interfering RNAs (siRNA) against human peroxisome proliferator activated receptor gamma (PPARγ) to suppress adipocyte differentiation (adipogenesis) in human preadipocytes and fetal-femur-derived mesenchymal cells. Adipogenesis was investigated using cellular and biochemical analysis. Transient transfection with PPARγ-siRNA using a liposomal-based strategy resulted in a significant inhibition of adipogenesis in human preadipocytes and fetal-femur-derived mesenchymal cells, compared to controls (cell, liposomal and negative siRNA). The inhibitory effect of PPARγ-siRNA was supported by testing human PPARγ mRNA and adipogenic associated genes using reverse transcription polymerase chain reaction (RT-PCR) to adiponectin receptor 1 and 2 as well as examination of fatty acid binding protein 3 (FABP 3 ) expression, an adipocyte-specific marker. The current studies indicate that PPARγ-siRNA is a useful tool to study adipogenesis in human cells, with potential applications both therapeutic and in the elucidation of mesenchymal cell differentiation in the modulation of cell differentiation in human mesenchymal cells

  4. Macrophage colony-stimulating factor receptor marks and regulates a fetal myeloid-primed B-cell progenitor in mice.

    Science.gov (United States)

    Zriwil, Alya; Böiers, Charlotta; Wittmann, Lilian; Green, Joanna C A; Woll, Petter S; Jacobsen, Sten Eirik W; Sitnicka, Ewa

    2016-07-14

    Although it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19(+) B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular. These early embryonic CSF1R(+)CD19(+) ProB cells also express multiple other myeloid genes and, in line with this, possess residual myeloid as well as B-cell, but not T-cell lineage potential. Notably, these CSF1R(+) myeloid-primed ProB cells are uniquely present in a narrow window of embryonic fetal liver hematopoiesis and do not persist in adult bone marrow. Moreover, analysis of CSF1R-deficient mice establishes a distinct role of CSF1R in fetal B-lymphopoiesis. CSF1R(+) myeloid-primed embryonic ProB cells are relevant for infant and childhood PreB-ALLs, which frequently have a bi-phenotypic B-myeloid phenotype, and in which CSF1R-rearrangements have recently been reported. © 2016 by The American Society of Hematology.

  5. Sickle cell disease: time for a targeted neonatal screening programme.

    LENUS (Irish Health Repository)

    Gibbons, C

    2015-02-01

    Ireland has seen a steady increase in paediatric sickle cell disease (SCD). In 2005, only 25% of children with SCD were referred to the haemoglobinopathy service in their first year. A non-funded screening programme was implemented. This review aimed to assess the impact screening has had. All children referred to the haemoglobinopathy service born in Ireland after 2005 were identified. Data was collected from the medical chart and laboratory system. Information was analysed using Microsoft Excel. 77 children with SCD were identified. The median age at antibiotic commencement in the screened group was 56 days compared with 447 days in the unscreened group, p = < 0.0003. 22 (28%) of infants were born in centre\\'s that do not screen and 17 (81%) were over 6 months old at referral, compared with 14 (21%) in the screened group. 6 (27%) of those in the unscreened group presented in acute crisis compared with 2 (3%) in the screened population. The point prevalence of SCD in Ireland is 0.2% in children under 15 yr of African and Asian descent. We identified delays in referral and treatment, which reflect the lack of government funded support and policy. We suggest all maternity units commence screening for newborns at risk of SCD. It is a cost effective intervention with a number needed to screen of just 4 to prevent a potentially fatal crisis.

  6. Genome wide association study of fetal hemoglobin in sickle cell anemia in Tanzania.

    Directory of Open Access Journals (Sweden)

    Siana Nkya Mtatiro

    Full Text Available Fetal hemoglobin (HbF is an important modulator of sickle cell disease (SCD. HbF has previously been shown to be affected by variants at three loci on chromosomes 2, 6 and 11, but it is likely that additional loci remain to be discovered.We conducted a genome-wide association study (GWAS in 1,213 SCA (HbSS/HbSβ0 patients in Tanzania. Genotyping was done with Illumina Omni2.5 array and imputation using 1000 Genomes Phase I release data. Association with HbF was analysed using a linear mixed model to control for complex population structure within our study. We successfully replicated known associations for HbF near BCL11A and the HBS1L-MYB intergenic polymorphisms (HMIP, including multiple independent effects near BCL11A, consistent with previous reports. We observed eight additional associations with P<10(-6. These associations could not be replicated in a SCA population in the UK.This is the largest GWAS study in SCA in Africa. We have confirmed known associations and identified new genetic associations with HbF that require further replication in SCA populations in Africa.

  7. Distribution of Interstitial Cells of Cajal in the Esophagus of Fetal Rats with Esophageal Atresia

    Directory of Open Access Journals (Sweden)

    Caner Isbir

    2016-04-01

    Full Text Available Aim: Scarcity of the interstitial cells of Cajal (ICC is related to motility disorders. In the study, we aimed to evaluate the number and density of ICCs in the fetal rat esophagus in the adriamycin - esophageal atresia (EA model. Material and Method: Rat fetuses were divided into three groups as a control, adriamycin group without EA and adriamycin group with EA. Four doses of adriamycin, 2 mg/kg each, were injected intraperitoneally to the adriamycin group rats between on 6 and 9 days of gestation. The presence of ICCs in the esophagus of the rat fetuses was determined by using an immunohistochemistry technique (c-kit, CD117. The average numbers of ICCs were calculated with microscopic evaluation by using a visual scoring system (range1 to 3. Results: Seven fetuses were included in each group. The ICCs score 3 distributions of fetuses were 5 (72% fetuses in the control group, 3 (43% fetuses in the adriamycin group without EA, 1 (14% fetus in the adriamycin group with EA. It have been found that there was a marked reduction of ICCs distribution in the adriamycin group with EA compared to control group (p 0.05. Discussion: ICCs density was significantly decreased in the rat fetuses with EA compared to the fetuses without EA. These findings support the idea that ICCs density may be congenitally abnormal in EA. This may be led to dismotility seen in the operated esophagus due to EA.

  8. Perfluorooctane Sulfonate Concentrations in Amniotic Fluid, Biomarkers of Fetal Leydig Cell Function, and Cryptorchidism and Hypospadias in Danish Boys (1980-1996)

    DEFF Research Database (Denmark)

    Toft, Gunnar; Jönsson, Bo A; Bonde, Jens P

    2016-01-01

    BACKGROUND: Exposure to perfluorooctane sulfonate (PFOS) may potentially disturb fetal Leydig cell hormone production and male genital development. OBJECTIVES: We aimed to study the associations between levels of amniotic fluid PFOS, fetal steroid hormone, and insulin-like factor 3 (INSL3) and th...... Leydig cell function, and cryptorchidism and hypospadias in Danish boys (1980-1996). Environ Health Perspect 124:151-156; http://dx.doi.org/10.1289/ehp.1409288....

  9. Individual human serum differs in the amount of antibodies with affinity for pig fetal ventral mesencephalic cells and the ability to lyse these cells by complement activation

    NARCIS (Netherlands)

    Koopmans, J; de Haan, A; Bruin, E; van der Gun, Ieneke; van Dijk, H; Rozing, J; de Leij, L; Staal, M

    2004-01-01

    Xenografting pig fetal ventral mesencephalic (pfVM) cells to repair the dopamine deficit in patients with Parkinson's disease is the focus of both experimental and clinical investigations. Although there have been marked advances in the experimental and even clinical application of these xenogeneic

  10. Fetal antigen 1, an EGF multidomain protein in the sex hormone-producing cells of the gonads and the microenvironment of germ cells

    DEFF Research Database (Denmark)

    Jensen, Charlotte Harken; Erb, K; Westergaard, L G

    1999-01-01

    Fetal antigen 1 (FA1), an epidermal growth factor (EGF) multidomain glycoprotein, was investigated in the human reproductive system. Immunohistochemical analysis of the male reproductive system revealed staining for FA1 in the Leydig cells only. Concentrations of FA1 in seminal plasma and serum w...

  11. Comprehensive Characterization of Mesenchymal Stem Cells from Human Placenta and Fetal Membrane and Their Response to Osteoactivin Stimulation

    Directory of Open Access Journals (Sweden)

    C. M. Raynaud

    2012-01-01

    Full Text Available Mesenchymal stem cells (MSCs are the most promising seed cells for cell therapy and can be isolated from various sources of human adult tissues such as bone marrow (BM-MSC and adipose tissue. However, cells from these tissues must be obtained through invasive procedures. We, therefore, characterized MSCs isolated from fresh placenta (Pl-MSC and fetal membrane (Mb-MSC through morphological and fluorescent-activated cell sorting (FACS. MSC frequency is higher in membrane than placenta (2.14%  ± 0.65 versus 15.67%  ± 0.29%. Pl/Mb-MSCs in vitro expansion potential was significantly higher than BM-MSCs. We demonstrated that one of the MSC-specific marker is sufficient for MSC isolation and that culture in specific media is the optimal way for selecting very homogenous MSC population. These MSCs could be differentiated into mesodermal cells expressing cell markers and cytologic staining consistent with mature osteoblasts and adipocytes. Transcriptomic analysis and cytokine arrays demonstrated broad similarity between placenta- and membrane-derived MSCs and only discrete differences with BM-MSCs with enrichment of networks involved in bone differentiation. Pl/Mb-MSCs displayed higher osteogenic differentiation potential than BM-MSC when their response to osteoactivin was evaluated. Fetal-tissue-derived mesenchymal cells may, therefore, be considered as a major source of MSCs to reach clinical scale banking in particular for bone regeneration.

  12. Regulation of fetal hemoglobin expression during hematopoietic stem cell development and its importance in bone metabolism and osteoporosis.

    Science.gov (United States)

    Kos, O; Alexander, C; Brandenburg, K; Chen, Z; Heini, A; Heumann, D; Khatri, I; Mach, J P; Rietschel, E T; Tersikh, A; Ulmer, A J; Waelli, T; Yu, K; Zähringer, U; Gorczynski, R M

    2018-04-01

    We have shown that an altered tissue redox environment in mice lacking either murine beta Hemoglobin major (Hgbβ ma KO) or minor (Hgbβ mi KO) regulates inflammation. The REDOX environment in marrow stem cell niches also control differentiation pathways. We investigated osteoclastogenesis (OC)/osteoblastogenesis (OB), in bone cultures derived from untreated or FSLE-treated WT, Hgbβ ma KO or Hgbβ mi KO mice. Marrow mesenchymal cells from 10d pre-cultures were incubated on an osteogenic matrix for 21d prior to analysis of inflammatory cytokine release into culture supernatants, and relative OC:OB using (TRAP:BSP, RANKL:OPG) mRNA expression ratios and TRAP or Von Kossa staining. Cells from WT and Hgbβ ma KO mice show decreased IL-1β,TNFα and IL-6 production and enhanced osteoblastogenesis with altered mRNA expression ratios and increased bone nodules (Von Kossa staining) in vitro after in vivo stimulation of mRNA expression of fetal Hgb genes (Hgbε and Hgbβ mi ) by a fetal liver extract (FSLE). Marrow from Hgbβ mi KO showed enhanced cytokine release and preferential enhanced osteoclastogenesis relative to similar cells from WT or Hgbβ ma KO mice, with no increased osteoblastogenesis after mouse treatment with FSLE. Pre-treatment of WT or Hgbβ ma KO, but not Hgbβ mi KO mice, with other molecules (rapamycin; hydroxyurea) which increase expression of fetal Hgb genes also augmented osteoblastogenesis and decreased cytokine production in cells differentiating in vitro. Infusion of rabbit anti- Hgbε or anti- Hgbβ mi , but not anti-Hgbα or anti- Hgbβ ma into WT mice from day 13 gestation for 3 weeks led to attenuated osteoblastogenesis in cultured cells. We conclude that increased fetal hemoglobin expression, or use of agents which improve fetal hemoglobin expression, increases osteoblast bone differentiation in association with decreased inflammatory cytokine release. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Impact of in utero Exposure to Malaria on Fetal T cell Immunity

    OpenAIRE

    Odorizzi, Pamela M.; Feeney, Margaret E.

    2016-01-01

    Pregnancy-associated malaria, including placental malaria, causes significant morbidity and mortality worldwide. Recently, it has been suggested that in utero exposure of the fetus to malaria antigens may negatively impact the developing immune system and result in tolerance to malaria. Here, we review our current knowledge of fetal immunity to malaria, focusing on the dynamic interactions between maternal malaria infection, placental development and the fetal immune system. A better understa...

  14. Fetal echocardiography

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007340.htm Fetal echocardiography To use the sharing features on this page, please enable JavaScript. Fetal echocardiography is a test that uses sound waves ( ultrasound ) ...

  15. Does fetal gender affect cytotrophoblast cell activity in the human term placenta? Correlation with maternal hCG levels.

    Science.gov (United States)

    Gol, Mert; Tuna, Burçin; Dogan, Erbil; Gulekli, Bülent; Bagci, Mustafa; Altunyurt, Sabahattin; Saygili, Ugur

    2004-08-01

    Pregnant women with female fetuses have higher maternal serum human chorionic gonadotropin (hCG) levels than pregnant women with male fetuses. Ki-67, a cell proliferation and activity marker, is confined mostly in the nuclei of villous cytotrophoblasts of the human placenta. In this study, we examined the effect of fetal gender on the cytotrophoblast cell activity in human term placenta, with special regard to maternal serum and cord blood hCG levels. Thirty-four uncomplicated, singleton, term pregnancies (17 male and 17 female fetuses) were recruited in the study. hCG was measured in maternal peripheral serum and umbilical cord blood. Placental samples were collected in each patient during the cesarean section. Cytotrophoblast cell activity was measured by using immunohistochemistry for Ki-67 antigen. Ki-67 staining index values of the cytotrophoblasts were compared between the female and male placentas. Maternal serum and cord blood hCG levels were higher in pregnant women with female fetuses than in those carrying male fetuses. There was no sex difference in Ki-67 immunostaining rates of the cytotrophoblast cells. There was no correlation between maternal serum and cord blood hCG levels and Ki-67 staining index values of the cytotrophoblast cells. The difference in maternal serum and cord blood hCG levels in correlation with the fetal gender is not associated with cytotrophoblast cell activity in the human term placenta. The gender of the fetus does not seem to affect the regulation of cytotrophoblast cell proliferation.

  16. Lacking deoxygenation-linked interaction between cytoplasmic domain of band 3 and HbF from fetal red blood cells

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Aim: Several of the red blood cell's metabolic and membrane functions display dependence on haemoglobin oxygenation. In adult human red cells, the increased glycolytic rate at low O2 tension results from binding of deoxygenated HbA at negatively charged, N-terminal, cytoplasmic domain of the memb......Aim: Several of the red blood cell's metabolic and membrane functions display dependence on haemoglobin oxygenation. In adult human red cells, the increased glycolytic rate at low O2 tension results from binding of deoxygenated HbA at negatively charged, N-terminal, cytoplasmic domain...... of the membrane protein band 3, which liberates glycolytic enzymes from this site. This study aims to investigate the role of fetal HbF (that has lower anion-binding capacity than HbA) in fetal red cells (that are subjected to low O2 tensions), and to elucidate possible linkage (e.g. via the major red cell...... membrane organising centre, band 3) between the individual oxygenation-linked reactions encountered in red cells. Methods: The interaction between band 3 and Hb is analysed in terms of the effects, measured under different conditions, of a 10-mer peptide that corresponds to the N-terminus of human band 3...

  17. The Danish Fetal Medicine Database

    DEFF Research Database (Denmark)

    Ekelund, Charlotte K; Petersen, Olav B; Jørgensen, Finn S

    2015-01-01

    OBJECTIVE: To describe the establishment and organization of the Danish Fetal Medicine Database and to report national results of first-trimester combined screening for trisomy 21 in the 5-year period 2008-2012. DESIGN: National register study using prospectively collected first-trimester screening...... data from the Danish Fetal Medicine Database. POPULATION: Pregnant women in Denmark undergoing first-trimester screening for trisomy 21. METHODS: Data on maternal characteristics, biochemical and ultrasonic markers are continuously sent electronically from local fetal medicine databases (Astraia Gmbh......%. The national screen-positive rate increased from 3.6% in 2008 to 4.7% in 2012. The national detection rate of trisomy 21 was reported to be between 82 and 90% in the 5-year period. CONCLUSION: A national fetal medicine database has been successfully established in Denmark. Results from the database have shown...

  18. DEVELOPMENTAL EXPOSURE OF FETAL OVARIES AND FETAL GERM CELLS TO ENDOMETRIOSIS CAUSES DIFFERENTIAL GENE EXPRESSION IN PRE-IMPLANTATION EMBRYOS OF FIRST AND SECOND GENERATION EMBRYOS OFFSPRING IN AN ENDOMETRIOSIS MODEL

    Science.gov (United States)

    Birt, Julie A.; Taylor, Kristen H.; Davis, J. Wade; Sharpe-Timms, Kathy L.

    2013-01-01

    Objective Characterize multigenerational gene expression anomalies in 8-cell stage embryos associated with developmental exposure to endometriosis. Design Using an endometriosis model in rats (F0 founder generation), evaluate gene expression in F1 (fetal exposure) and F2 (fetal germ cell exposure) generation 8-cell stage embryos. Setting Laboratory Animals Endometriosis model in rats (Endo) and controls (Sham) Interventions F0 Endo and Sham rats were bred. Half of the pregnant rats were euthanatized on gestational day 3 (F1 8-cell stage embryos); the others gestated to term (F1 females). Adult F1 females were bred and F2 8-cell embryos collected. Main outcome measures Maintenance of differential gene expression in F1 and F2 generation 8-cell embryos in endometriosis. Results Developmental exposure to endometriosis altered gene signaling pathways including apoptosis, cell cycle process, response to oxidative stress, negative regulation of molecular function and RNA processing. Apoptotic genes Diablo, Casp3, Parp1, Cad and Dnaja3 were increased, Nfkbia transcripts decreased in F1 Endo versus F1 Sham embryos. In F2 Endo versus Sham embryos, Casp3 and Cad were significantly increased plus Parp1 and Nfkbia tended to be elevated. Conclusions Fetal and germ cell exposure to endometriosis alters apoptotic gene expression in first and second generation 8-cell stage embryos, supporting the hypothesis of multigenerational inheritance from exposure to endometriosis in utero. PMID:23954358

  19. Live-Cell High Content Screening in Drug Development.

    Science.gov (United States)

    Esner, Milan; Meyenhofer, Felix; Bickle, Marc

    2018-01-01

    In the past decade, automated microscopy has become an important tool for the drug discovery and development process. The establishment of imaging modalities as screening tools depended on technological breakthroughs in the domain of automated microscopy and automated image analysis. These types of assays are often referred to as high content screening or high content analysis (HCS/HCA). The driving force to adopt imaging for drug development is the quantity and quality of cellular information that can be collected and the enhanced physiological relevance of cellular screening compared to biochemical screening. Most imaging in drug development is performed on fixed cells as this allows uncoupling the preparation of the cells from the acquisition of the images. Live-cell imaging is technically challenging, but is very useful for many aspects of the drug development pipeline such as kinetic studies of compound mode of action or to analyze the motion of cellular components. Most vendors of HCS microscopy systems offer the option of environmental chambers and onboard pipetting on their platforms. This reflects the wish and desire of many customers to have the ability to perform live-cell assays on their HCS automated microscopes. This book chapter summarizes the challenges and advantages of live-cell imaging in drug discovery. Examples of applications are presented and the motivation to perform these assays in kinetic mode is discussed.

  20. Disruption of polyubiquitin gene Ubc leads to defective proliferation of hepatocytes and bipotent fetal liver epithelial progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyejin; Yoon, Min-Sik; Ryu, Kwon-Yul, E-mail: kyryu@uos.ac.kr

    2013-06-07

    Highlights: •Proliferation capacity of Ubc{sup −/−} FLCs was reduced during culture in vitro. •Ubc is required for proliferation of both hepatocytes and bipotent FLEPCs. •Bipotent FLEPCs exhibit highest Ubc transcription and proliferation capacity. •Cell types responsible for Ubc{sup −/−} fetal liver developmental defect were identified. -- Abstract: We have previously demonstrated that disruption of polyubiquitin gene Ubc leads to mid-gestation embryonic lethality most likely due to a defect in fetal liver development, which can be partially rescued by ectopic expression of Ub. In a previous study, we assessed the cause of embryonic lethality with respect to the fetal liver hematopoietic system. We confirmed that Ubc{sup −/−} embryonic lethality could not be attributed to impaired function of hematopoietic stem cells, which raises the question of whether or not FLECs such as hepatocytes and bile duct cells, the most abundant cell types in the liver, are affected by disruption of Ubc and contribute to embryonic lethality. To answer this, we isolated FLCs from E13.5 embryos and cultured them in vitro. We found that proliferation capacity of Ubc{sup −/−} cells was significantly reduced compared to that of control cells, especially during the early culture period, however we did not observe the increased number of apoptotic cells. Furthermore, levels of Ub conjugate, but not free Ub, decreased upon disruption of Ubc expression in FLCs, and this could not be compensated for by upregulation of other poly- or mono-ubiquitin genes. Intriguingly, the highest Ubc expression levels throughout the entire culture period were observed in bipotent FLEPCs. Hepatocytes and bipotent FLEPCs were most affected by disruption of Ubc, resulting in defective proliferation as well as reduced cell numbers in vitro. These results suggest that defective proliferation of these cell types may contribute to severe reduction of fetal liver size and potentially mid

  1. [Data analysis of non-invasive prenatal testing based on special loci in cell-free fetal DNA].

    Science.gov (United States)

    Xuan, Liming; Kong, Lingyin; Xia, Yingying; Mao, Yan; Shen, Jingjing; Zhu, Yijun; Xue, Yongfeng; Sun, Danfeng; Liu, Huimin; Liang, Bo

    2018-02-10

    OBJECTIVE To analyze the data of non-invasive prenatal testing based on specific loci of circulating cell-free fetal DNA (cffDNA). METHODS Selected loci of target chromosomes were analyzed by sequence capture and sequencing. Meanwhile, 600 loci were selected from other chromosomes for determining the concentration of cffDNA. RESULTS A total of 768 specific loci were captured on chromosomes 21 and 18, and used to determine whether the two were abnormal. When the minimum concentration of detected cffDNA was set at 3% and the threshold of Z score was set to [-6,6], the specificity of the analysis was 99.37% and the sensitivity was 100%. CONCLUSION A reliable, convenient and low-cost analytical method has been developed. The method requires less sequencing data for non-invasive prenatal testing, and can accurately detect abnormalities of fetal chromosomes 21 and 18, and simultaneously determine the concentration of cffDNA.

  2. Neonatal Screening and the Clinical Outcome in Children with Sickle Cell Disease in Central India.

    Directory of Open Access Journals (Sweden)

    Dipti S Upadhye

    Full Text Available Sickle cell disease (SCD is a major health burden in India. The objective of the study was to establish a neonatal screening program and to understand the clinical course of children with SCD in central India.Pregnant mothers were screened for sickle hemoglobin using the solubility test. Babies were screened by high performance liquid chromatography if the mother was positive for sickle hemoglobin. The diagnosis was confirmed by molecular analysis. They received early prophylactic treatment and vaccination. Of 2134 newborns screened, 104 were sickle homozygous (SS, seven had sickle β-thalassemia (S-β thal and 978 were sickle heterozygous (AS. The other hemoglobin abnormalities detected included HbS-δβ thalassemia-1, HbSD disease-2, HbE traits-5, β-thalassemia traits-4, alpha chain variants-3 and HbH disease-1.These babies were followed up regularly for hematological and clinical evaluation. Pain, severe anemia requiring blood transfusions and acute febrile illness were the major complications with 59.7, 45.1 and 42.6 cases per 100 person years. Fetal hemoglobin (HbF levels were inversely associated with vaso-oclussive crisis (VOC and severe anemia while presence of alpha thalassemia increased the rate of painful events and sepsis. Six early deaths occurred among the SS babies.A systematic follow up of this first newborn SCD cohort in central India showed that 47% of babies presented within 1 year of age. In spite of the presence of the Arab-Indian haplotype many babies had severe manifestations.

  3. STELLA collaborates in distinct mesendodermal cell subpopulations at the fetal-placental interface in the mouse gastrula.

    Science.gov (United States)

    Wolfe, Adam D; Rodriguez, Adriana M; Downs, Karen M

    2017-05-01

    The allantois-derived umbilical component of the chorio-allantoic placenta shuttles fetal blood to and from the chorion, thereby ensuring fetal-maternal exchange. The progenitor populations that establish and supply the fetal-umbilical interface lie, in part, within the base of the allantois, where the germ line is claimed to segregate from the soma. Results of recent studies in the mouse have reported that STELLA (DPPA-3, PGC7) co-localizes with PRDM1 (BLIMP1), the bimolecular signature of putative primordial germ cells (PGCs) throughout the fetal-placental interface. Thus, if PGCs form extragonadally within the posterior region of the mammal, they cannot be distinguished from the soma on the basis of these proteins. We used immunohistochemistry, immunofluorescence, and confocal microscopy of the mouse gastrula to co-localize STELLA with a variety of gene products, including pluripotency factor OCT-3/4, mesendoderm-associated T and MIXl1, mesendoderm- and endoderm-associated FOXa2 and hematopoietic factor Runx1. While a subpopulation of cells localizing OCT-3/4 was always found independently of STELLA, STELLA always co-localized with OCT-3/4. Despite previous reports that T is involved in specification of the germ line, co-localization of STELLA and T was detected only in a small subset of cells in the base of the allantois. Slightly later in the hindgut lip, STELLA+/(OCT-3/4+) co-localized with FOXa2, as well as with RUNX1, indicative of definitive endoderm and hemangioblasts, respectively. STELLA was never found with MIXl1. On the basis of these and previous results, we conclude that STELLA identifies at least five distinct cell subpopulations within the allantois and hindgut, where they may be involved in mesendodermal differentiation and hematopoiesis at the posterior embryonic-extraembryonic interface. These data provide a new point of departure for understanding STELLA's potential roles in building the fetal-placental connection. Copyright © 2017 Elsevier

  4. Role of sonic hedgehog in maintaining a pool of proliferating stem cells in the human fetal epidermis.

    Science.gov (United States)

    Zhou, Jia-xi; Jia, Li-wei; Liu, Wei-min; Miao, Cheng-lin; Liu, Shuang; Cao, Yu-jing; Duan, En-kui

    2006-07-01

    The mammalian epidermis is maintained by the ongoing proliferation of a subpopulation of keratinocytes known as epidermal stem cells. Sonic hedgehog (Shh) can regulate morphogenesis of hair follicles and several types of skin cancer, but the effect of Shh on proliferation of human putative epidermal stem cells (HPESCs) is poorly understood. We first found that Shh, its receptors Patched1 (Ptc1) as well as Smoothened (Smo) and its downstream transcription factor Gli-1 were expressed in the basal layer of human fetal epidermis and freshly sorted HPESCs. Next, treatment of HPESCs with media conditioned by Shh-N-expressing cells promoted cell proliferation, whereas inhibition of Shh by cyclopamine, a specific inhibitor of Shh signalling, had an opposite effect. Interestingly, the mitogenic effect of epidermal growth factor (EGF) on HPESCs was efficiently abolished by cyclopamine. Finally, bone morphogenetic protein 4 (BMP-4), a potential downstream effector of Shh signalling, increased HPESC proliferation in a concentration-dependent manner. Shh is an important regulator of HPESC proliferation in the basal layer of human fetal epidermis and modulates the cell responsiveness to EGF, which will assist to unravel the mechanisms that regulate stem cell proliferation and neoplasia in the human epidermis.

  5. TRANSPLANTATION OF CRYOPRESERVED FETAL LIVER CELLS SEEDED INTO MACROPOROUS ALGINATE-GELATIN SCAFFOLDS IN RATS WITH LIVER FAILURE

    Directory of Open Access Journals (Sweden)

    D. V. Grizay

    2015-01-01

    Full Text Available Aim. To study the therapeutic potential of cryopreserved fetal liver cells seeded into macroporous alginategelatin scaffolds after implantation to omentum of rats with hepatic failure.Materials and methods.Hepatic failure was simulated by administration of 2-acetyl aminofl uorene followed partial hepatectomy. Macroporous alginate-gelatin scaffolds, seeded with allogenic cryopreserved fetal liver cells (FLCs were implanted into rat omentum. To prevent from colonization of host cells scaffolds were coated with alginate gel shell. Serum transaminase activity, levels of albumin and bilirubin as markers of hepatic function were determined during 4 weeks after failure model formation and scaffold implantation. Morphology of liver and scaffolds after implantation were examined histologically. Results. Macroporous alginate-gelatin scaffolds after implantation to healthy rats were colonized by host cells. Additional formation of alginate gel shell around scaffolds prevented the colonization. Implantation of macroporous scaffolds seeded with cryopreserved rat FLCs and additionally coated with alginate gel shell into omentum of rats with hepatic failure resulted in signifi cant improvement of hepatospecifi c parameters of the blood serum and positive changes of liver morphology. The presence of cells with their extracellular matrix within the scaffolds was confi rmed after 4 weeks post implantation.Conclusion. The data above indicate that macroporous alginate-gelatin scaffolds coated with alginate gel shell are promising cell carriers for the development of bioengineered liver equivalents.

  6. Platelet-rich plasma can replace fetal bovine serum in human meniscus cell cultures.

    Science.gov (United States)

    Gonzales, Veronica K; de Mulder, Eric L W; de Boer, Trix; Hannink, Gerjon; van Tienen, Tony G; van Heerde, Waander L; Buma, Pieter

    2013-11-01

    Concerns over fetal bovine serum (FBS) limit the clinical application of cultured tissue-engineered constructs. Therefore, we investigated if platelet-rich plasma (PRP) can fully replace FBS for meniscus tissue engineering purposes. Human PRP and platelet-poor plasma (PPP) were isolated from three healthy adult donors. Human meniscal fibrochondrocytes (MFCs) were isolated from resected tissue after a partial meniscectomy on a young patient. Passage-4 MFCs were cultured in monolayer for 24 h, and 3 and 7 days. Six different culture media were used containing different amounts of either PRP or PPP and compared to a medium containing 10% FBS. dsDNA was quantified, and gene expression levels of collagen types I and II and aggrecan were measured at different time points with quantitative polymerase chain reaction in the cultured MFCs. After 7 days, the dsDNA quantity was significantly higher in MFCs cultured in 10% and 20% PRP compared to the other PRP and PPP conditions, but equal to 10% FBS. Collagen type I expression was lower in MFCs cultured with medium containing 5% PRP, 10% and 20% PPP compared to FBS. When medium with 10% PRP or 20% PRP was used, expressions were not significantly different from medium containing 10% FBS. Collagen type II expression was absent in all medium conditions. Aggrecan expression did not show differences between the different media used. However, after 7 days a higher aggrecan expression was measured in most culture conditions, except for 5% PRP, which was similar compared to FBS. Statistical significance was found between donors at various time points in DNA quantification and gene expression, but the same donors were not statistically different in all conditions. At 7 days cell cultured with 10% PRP and 20% PRP showed a higher density, with large areas of clusters, compared to other conditions. In an MFC culture medium, FBS can be replaced by 10% PRP or 20% PRP without altering proliferation and gene expression of human MFCs.

  7. Synthesis and secretion of glucagon-like peptide-1 by fetal rat intestinal cells in culture.

    Science.gov (United States)

    Jackson Huang, T H; Brubaker, P L

    1995-07-01

    Secretion of the intestinal proglucagon-derived peptides (PGDPs) including the incretin glucagon-like peptide-1 (GLP-1) is regulated, at least in part, by the duodenal hormone glucose-dependent insulinotropic peptide (GIP) through a protein kinase (PK) A-dependent pathway. It has been demonstrated that the activation of PKA increases the synthesis of some intestinal PGDPs, particularly the glucagon-like immunoreactive (GLI) peptides glicentin and oxyntomodulin. However, the effects of GIP on GLI and GLP-1 synthesis are not known. Fetal rat intestinal cells in culture were therefore treated for up to 24 h with 5MM: dbcAMP or 10(-6) M: GIP and the changes in glicentin, oxyntomodulin, GLP-1(x-37) and GLP-1(x-36NH2) secretion and synthesis were examined by RIA and HPLC. Both dbcAMP and GIP increased the acute (2 h; to 224±21 and 256±20% of controls, respectively,P<0.001) and chronic (24 h; to 230±22 and 130±6% of controls, respectively,P<0.001) secretion of intestinal PGDPs. In contrast, the total culture content of PGDPs was increased only after 24 h of incubation (to 156±15 and 125±7% of controls for dbcAMP and GIP, respectively,P<0.01). HPLC analysis confirmed that the intestinal cultures produced the GLI peptides glicentin and oxyntomodulin, as well as the biologically active forms of GLP-1, GLP-7(7-37) and GLP-1(7-36NH2). The relative proportion of these peptides was not altered by treatment with dbcAMP or GIP. Thus, in addition to its effects on GLP-1 release from the rat intestine, GIP appears to be an important regulator of the synthesis of this insulinotropic peptide.

  8. Fetal RHD Genotyping Using Real-Time Polymerase Chain Reaction Analysis of Cell-Free Fetal DNA in Pregnancy of RhD Negative Women in South of Iran

    Directory of Open Access Journals (Sweden)

    Leili Moezzi

    2016-05-01

    Full Text Available Background: Maternal-fetal RhD antigen incompatibility causes approximately 50% of clinically significant alloimmunization cases. The routine use of prophylactic anti-D immunoglobulin has dramatically reduced hemolytic disease of the fetus and newborn. Recently, fetal RHD genotyping in RhD negative pregnant women has been suggested for appropriate use of anti-D immunoglobulin antenatal prophylaxis and decrease unnecessary prenatal interventions. Materials and Methods: In this prospective cohort study, in order to develop a reliable and non-invasive method for fetal RHD genotyping, cell free fetal DNA (cffDNA was extracted from maternal plasma. Real-time quantitative polymerase chain reaction (qPCR for detection of RHD exons 7, 5, 10 and intron 4 was performed and the results were compared to the serological results of cord blood cells as the gold standard method. SRY gene and hypermethylated Ras-association domain family member 1 (RASSF1A gene were used to confirm the presence of fetal DNA in male and female fetuses, respectively. Results: Out of 48 fetuses between 8 and 32 weeks (wks of gestational age (GA, we correctly diagnosed 45 cases (93.75% of RHD positive fetuses and 2 cases (4.16% of the RHD negative one. Exon 7 was amplified in one sample, while three other RHD gene sequences were not detected; the sample was classified as inconclusive, and the RhD serology result after birth showed that the fetus was RhD-negative. Conclusion: Our results showed high accuracy of the qPCR method using cffDNA for fetal RHD genotyping and implicate on the efficiency of this technique to predict the competence of anti-D immunoglobulin administration.

  9. High Levels of Sample-to-Sample Variation Confound Data Analysis for Non-Invasive Prenatal Screening of Fetal Microdeletions.

    Directory of Open Access Journals (Sweden)

    Tianjiao Chu

    Full Text Available Our goal was to test the hypothesis that inter-individual genomic copy number variation in control samples is a confounding factor in the non-invasive prenatal detection of fetal microdeletions via the sequence-based analysis of maternal plasma DNA. The database of genomic variants (DGV was used to determine the "Genomic Variants Frequency" (GVF for each 50kb region in the human genome. Whole genome sequencing of fifteen karyotypically normal maternal plasma and six CVS DNA controls samples was performed. The coefficient of variation of relative read counts (cv.RTC for these samples was determined for each 50kb region. Maternal plasma from two pregnancies affected with a chromosome 5p microdeletion was also sequenced, and analyzed using the GCREM algorithm. We found strong correlation between high variance in read counts and GVF amongst controls. Consequently we were unable to confirm the presence of the microdeletion via sequencing of maternal plasma samples obtained from two sequential affected pregnancies. Caution should be exercised when performing NIPT for microdeletions. It is vital to develop our understanding of the factors that impact the sensitivity and specificity of these approaches. In particular, benign copy number variation amongst controls is a major confounder, and their effects should be corrected bioinformatically.

  10. The Danish Fetal Medicine database

    DEFF Research Database (Denmark)

    Ekelund, Charlotte; Kopp, Tine Iskov; Tabor, Ann

    2016-01-01

    trimester ultrasound scan performed at all public hospitals in Denmark are registered in the database. Main variables/descriptive data: Data on maternal characteristics, ultrasonic, and biochemical variables are continuously sent from the fetal medicine units’Astraia databases to the central database via...... analyses are sent to the database. Conclusion: It has been possible to establish a fetal medicine database, which monitors first-trimester screening for chromosomal abnormalities and second-trimester screening for major fetal malformations with the input from already collected data. The database...

  11. Responsiveness of fetal rat brain cells to glia maturation factor during neoplastic transformation in cell culture

    DEFF Research Database (Denmark)

    Haugen, A; Laerum, O D; Bock, E

    1981-01-01

    The effect of partially purified extracts from adult pig brains containing a glia maturation protein factor (BE) has been investigated on neural cells during carcinogenesis. Pregnant BD IX-rats were given a single transplacental dose of the carcinogen ethylnitrosourea (EtNU) on the 18th day...

  12. Human fetal colon cells and colon cancer cells respond differently to butyrate and PUFAs

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Vaculová, Alena; Koubková, Zuzana; Hýžďalová, Martina; Kozubík, Alois

    2009-01-01

    Roč. 53, č. 1 (2009), S102-S113 ISSN 1613-4125 R&D Projects: GA ČR(CZ) GA524/07/1178; GA AV ČR(CZ) 1QS500040507; GA ČR(CZ) GA301/07/1557 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : apoptosis * butyrate * cell differentiation Subject RIV: BO - Biophysics Impact factor: 4.356, year: 2009

  13. Distinct Molecular Signature of Murine Fetal Liver and Adult Hematopoietic Stem Cells Identify Novel Regulators of Hematopoietic Stem Cell Function.

    Science.gov (United States)

    Manesia, Javed K; Franch, Monica; Tabas-Madrid, Daniel; Nogales-Cadenas, Ruben; Vanwelden, Thomas; Van Den Bosch, Elisa; Xu, Zhuofei; Pascual-Montano, Alberto; Khurana, Satish; Verfaillie, Catherine M

    2017-04-15

    During ontogeny, fetal liver (FL) acts as a major site for hematopoietic stem cell (HSC) maturation and expansion, whereas HSCs in the adult bone marrow (ABM) are largely quiescent. HSCs in the FL possess faster repopulation capacity as compared with ABM HSCs. However, the molecular mechanism regulating the greater self-renewal potential of FL HSCs has not yet extensively been assessed. Recently, we published RNA sequencing-based gene expression analysis on FL HSCs from 14.5-day mouse embryo (E14.5) in comparison to the ABM HSCs. We reanalyzed these data to identify key transcriptional regulators that play important roles in the expansion of HSCs during development. The comparison of FL E14.5 with ABM HSCs identified more than 1,400 differentially expressed genes. More than 200 genes were shortlisted based on the gene ontology (GO) annotation term "transcription." By morpholino-based knockdown studies in zebrafish, we assessed the function of 18 of these regulators, previously not associated with HSC proliferation. Our studies identified a previously unknown role for tdg, uhrf1, uchl5, and ncoa1 in the emergence of definitive hematopoiesis in zebrafish. In conclusion, we demonstrate that identification of genes involved in transcriptional regulation differentially expressed between expanding FL HSCs and quiescent ABM HSCs, uncovers novel regulators of HSC function.

  14. Isolation of fetal DNA from nucleated erythrocytes in maternal blood

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, D.W.; Knoll, J.H.M. (Children' s Hospital, Boston, MA (USA) Harvard Medical School, Boston, MA (USA)); Flint, A.F. (Howard Hughes Medical Institute, Boston, MA (USA)); Pizzimenti, M.F. (Brigham and Women' s Hospital, Boston, MA (USA)); Latt, S.A. (Children' s Hospital, Boston, MA (USA) Harvard Medical School, Boston, MA (USA))

    1990-05-01

    Fetal nucleated cells within maternal blood represent a potential source of fetal genes obtainable by venipuncture. The authors used monoclonal antibody against the transferrin receptor (TIR) to identify nucleated erythrocytes in the peripheral blood of pregnant women. Candidate fetal cells from 19 pregnancies were isolated by flow sorting at 12 1/2-17 weeks gestation. The DNA in these cells was amplified for a 222-base-pair (bp) sequence present on the short arm of the Y chromosome as proof that the cells were derived from the fetus. The amplified DNA was compared with standardized DNA concentrations. In the case of the female fetus, DNA prepared from samples at 32 weeks of gestation and cord blood at delivery also showed the presence of the Y chromosomal sequence, suggesting Y sequence mosaicism or translocation. In 10/12 cases where the 222-bp band was absent, the fetuses were female. Thus, they were successful in detecting the Y chromosomal sequence in 75% of the male-bearing pregnancies, demonstrating that it is possible to isolate fetal gene sequences from cells in maternal blood. Further refinement in methodology should increase sensitivity and facilitate noninvasive screening for fetal gene mutations.

  15. Development of the fetal bone marrow niche and regulation of HSC quiescence and homing ability by emerging osteolineage cells

    Science.gov (United States)

    Coşkun, Süleyman; Chao, Hsu; Vasavada, Hema; Heydari, Kartoosh; Gonzales, Naomi; Zhou, Xin; de Crombrugghe, Benoit; Hirschi, Karen K.

    2014-01-01

    SUMMARY Hematopoietic stem cells (HSC) reside within a specialized niche where interactions with vasculature, osteoblasts and stromal components regulate their self-renewal and differentiation. Little is known about bone marrow niche formation or the role of its cellular components in HSC development; therefore, we established the timing of murine fetal long bone vascularization and ossification relative to the onset of HSC activity. Adult-repopulating HSC emerged at E16.5, coincident with marrow vascularization, and were contained within the c-Kit+Sca-1+Lin− (KSL) population. We used Osterix-null (Osx−/−) mice that form vascularized marrow, but lack osteolineage cells to dissect the role(s) of these cellular components in HSC development. Osx−/− fetal bone marrow cells formed multi-lineage colonies in vitro, but were hyper-proliferative and failed to home to and/or engraft transplant recipients. Thus, in developing bone marrow, the vasculature can sustain multi-lineage progenitors, but interactions with osteolineage cells are needed to regulate LT-HSC proliferation and potential. PMID:25310984

  16. Disrupted PI3K p110δ Signaling Dysregulates Maternal Immune Cells and Increases Fetal Mortality In Mice

    Directory of Open Access Journals (Sweden)

    Jens Kieckbusch

    2015-12-01

    Full Text Available Maternal immune cells are an integral part of reproduction, but how they might cause pregnancy complications remains elusive. Macrophages and their dual function in inflammation and tissue repair are thought to play key yet undefined roles. Altered perinatal growth underpins adult morbidity, and natural killer (NK cells may sustain fetal growth by establishing the placental blood supply. Using a mouse model of genetic inactivation of PI3K p110δ, a key intracellular signaling molecule in leukocytes, we show that p110δ regulates macrophage dynamics and NK-cell-mediated arterial remodeling. The uterus of dams with inactive p110δ had decreased IFN-γ and MHC class IIlow macrophages but enhanced IL-6. Poor vascular remodeling and a pro-inflammatory uterine milieu resulted in fetal death or growth retardation. Our results provide one mechanism that explains how imbalanced adaptations of maternal innate immune cells to gestation affect offspring well-being with consequence perinatally and possibly into adulthood.

  17. Development of the Fetal Bone Marrow Niche and Regulation of HSC Quiescence and Homing Ability by Emerging Osteolineage Cells

    Directory of Open Access Journals (Sweden)

    Süleyman Coşkun

    2014-10-01

    Full Text Available Hematopoietic stem cells (HSCs reside within a specialized niche where interactions with vasculature, osteoblasts, and stromal components regulate their self-renewal and differentiation. Little is known about bone marrow niche formation or the role of its cellular components in HSC development; therefore, we established the timing of murine fetal long bone vascularization and ossification relative to the onset of HSC activity. Adult-repopulating HSCs emerged at embryonic day 16.5 (E16.5, coincident with marrow vascularization, and were contained within the c-Kit+Sca-1+Lin− (KSL population. We used Osterix-null (Osx−/− mice that form vascularized marrow but lack osteolineage cells to dissect the role(s of these cellular components in HSC development. Osx−/− fetal bone marrow cells formed multilineage colonies in vitro but were hyperproliferative and failed to home to and/or engraft transplant recipients. Thus, in developing bone marrow, the vasculature can sustain multilineage progenitors, but interactions with osteolineage cells are needed to regulate long-term HSC proliferation and potential.

  18. Development of the fetal bone marrow niche and regulation of HSC quiescence and homing ability by emerging osteolineage cells.

    Science.gov (United States)

    Coşkun, Süleyman; Chao, Hsu; Vasavada, Hema; Heydari, Kartoosh; Gonzales, Naomi; Zhou, Xin; de Crombrugghe, Benoit; Hirschi, Karen K

    2014-10-23

    Hematopoietic stem cells (HSCs) reside within a specialized niche where interactions with vasculature, osteoblasts, and stromal components regulate their self-renewal and differentiation. Little is known about bone marrow niche formation or the role of its cellular components in HSC development; therefore, we established the timing of murine fetal long bone vascularization and ossification relative to the onset of HSC activity. Adult-repopulating HSCs emerged at embryonic day 16.5 (E16.5), coincident with marrow vascularization, and were contained within the c-Kit(+)Sca-1(+)Lin(-) (KSL) population. We used Osterix-null (Osx(-/-)) mice that form vascularized marrow but lack osteolineage cells to dissect the role(s) of these cellular components in HSC development. Osx(-/-) fetal bone marrow cells formed multilineage colonies in vitro but were hyperproliferative and failed to home to and/or engraft transplant recipients. Thus, in developing bone marrow, the vasculature can sustain multilineage progenitors, but interactions with osteolineage cells are needed to regulate long-term HSC proliferation and potential. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Cell-Free DNA-Based Non-invasive Prenatal Screening for Common Aneuploidies in a Canadian Province: A Cost-Effectiveness Analysis.

    Science.gov (United States)

    Nshimyumukiza, Léon; Beaumont, Jean-Alexandre; Duplantie, Julie; Langlois, Sylvie; Little, Julian; Audibert, François; McCabe, Christopher; Gekas, Jean; Giguère, Yves; Gagné, Christian; Reinharz, Daniel; Rousseau, François

    2018-01-01

    Yearly, 450 000 pregnant Canadians are eligible for voluntary prenatal screening for trisomy 21. Different screening strategies select approximately 4% of women for invasive fetal chromosome testing. Non-invasive prenatal testing (NIPT) using maternal blood cell-free DNA could reduce those invasive procedures but is expensive. This study evaluated the cost-effectiveness of NIPT strategies compared with conventional strategies. This study used a decision analytic model to estimate the cost-effectiveness of 13 prenatal screening strategies for fetal aneuploidies: six frequently used strategies, universal NIPT, and six strategies incorporating NIPT as a second-tier test. The study considered a virtual cohort of pregnant women of similar size and age as women in Quebec. Model data were obtained from published sources and government databases. The study predicted the number of chromosomal anomalies detected (trisomies 21, 13, and 18), invasive procedures and euploid fetal losses, direct costs, and incremental cost-effectiveness ratios. Of the 13 strategies compared, eight identified fewer cases at a higher cost than at least one of the remaining five strategies. Integrated serum screening with conditional NIPT had the lowest cost, and the cost per case detected was $63 139, with a 90% reduction of invasive procedures. The number of cases identified was improved with four other screening strategies, but with increasing of incremental costs per case (from $61 623 to $1 553 615). Results remained robust, except when NIPT costs and risk cut-offs varied. NIPT as a second-tier test for high-risk women is likely to be cost-effective as compared with screening algorithms not involving NIPT. Copyright © 2018 The Society of Obstetricians and Gynaecologists of Canada/La Société des obstétriciens et gynécologues du Canada. Published by Elsevier Inc. All rights reserved.

  20. Pre-Analytical Conditions in Non-Invasive Prenatal Testing of Cell-Free Fetal RHD

    DEFF Research Database (Denmark)

    Clausen, Frederik Banch; Jakobsen, Tanja Roien; Rieneck, Klaus

    2013-01-01

    D positive fetus. Prophylaxis reduces the risk of immunization that may lead to hemolytic disease of the fetus and the newborn. The reliability of predicting the fetal RhD type depends on pre-analytical factors and assay sensitivity. We evaluated the testing setup in the Capital Region of Denmark, based...

  1. Resveratrol inhibits steroidogenesis in human fetal adrenocortical cells at the end of first trimester

    DEFF Research Database (Denmark)

    Savchuk, Iuliia; Morvan, Marie-Line; Søeborg, Tue

    2017-01-01

    SCOPE: Resveratrol has a diverse array of healthful effects on metabolic parameters in different experimental paradigms but has also potential to inhibit steroidogenesis in rodent adrenals. The aim of the present study was to characterize the effects of resveratrol on human fetal adrenal steroido...

  2. Platelet-rich plasma can replace fetal bovine serum in human meniscus cell cultures

    NARCIS (Netherlands)

    Gonzales, V.K.; Mulder, E.L.W. de; Boer, T. den; Hannink, G.; Tienen, T.G. van; Heerde, W.L. van; Buma, P.

    2013-01-01

    Concerns over fetal bovine serum (FBS) limit the clinical application of cultured tissue-engineered constructs. Therefore, we investigated if platelet-rich plasma (PRP) can fully replace FBS for meniscus tissue engineering purposes. Human PRP and platelet-poor plasma (PPP) were isolated from three

  3. Earliest gestational age for fetal sexing in cell-free maternal plasma

    NARCIS (Netherlands)

    Rijnders, R. J. P.; van der Luijt, R. B.; Peters, E. D. J.; Goeree, J. K.; van der Schoot, C. E.; Ploos van Amstel, J. K.; Christiaens, G. C. M. L.

    2003-01-01

    OBJECTIVES: To evaluate at what gestational age fetal DNA can reliably be detected at the earliest in maternal plasma. METHODS: We performed consecutive blood sampling in the first trimester of pregnancy in 17 women who were pregnant after in vitro fertilization (IVF) or intrauterine insemination

  4. Grafted fetal suprachiasmatic nucleus cells survive much better in tissue pieces than in suspension

    NARCIS (Netherlands)

    Boer, G. J.; Griffioen, H. A.; Saeed, P.

    1992-01-01

    A comparison was made between the survival of fetal suprachiasmatic nucleus (SCN) grafted either in tissue pieces or as tissue suspension. Donor tissue was obtained from day 15, 16 or 17 Wistar fetuses, and stereotaxically placed in the dorsal thalamus of the brain of vasopressin(VP)-deficient

  5. Influence of basement membrane proteins and endothelial cell-derived factors on the morphology of human fetal-derived astrocytes in 2D.

    Directory of Open Access Journals (Sweden)

    Amanda F Levy

    Full Text Available Astrocytes are the most prevalent type of glial cell in the brain, participating in a variety of diverse functions from regulating cerebral blood flow to controlling synapse formation. Astrocytes and astrocyte-conditioned media are widely used in models of the blood-brain barrier (BBB, however, very little is known about astrocyte culture in 2D. To test the hypothesis that surface coating and soluble factors influence astrocyte morphology in 2D, we quantitatively analyzed the morphology of human fetal derived astrocytes on glass, matrigel, fibronectin, collagen IV, and collagen I, and after the addition soluble factors including platelet-derived growth factor (PDGF, laminin, basic fibroblast growth factor (bFGF, and leukemia inhibitory factor (LIF. Matrigel surface coatings, as well as addition of leukemia inhibitory factor (LIF to the media, were found to have the strongest effects on 2D astrocyte morphology, and may be important in improving existing BBB models. In addition, the novel set of quantitative parameters proposed in this paper provide a test for determining the influence of compounds on astrocyte morphology, both to screen for new endothelial cell-secreted factors that influence astrocytes, and to determine in a high-throughput way which factors are important for translation to more complex, 3D BBB models.

  6. Recovery of indium from LCD screens of discarded cell phones.

    Science.gov (United States)

    Silveira, A V M; Fuchs, M S; Pinheiro, D K; Tanabe, E H; Bertuol, D A

    2015-11-01

    Advances in technological development have resulted in high consumption of electrical and electronic equipment (EEE), amongst which are cell phones, which have LCD (liquid crystal display) screens as one of their main components. These multilayer screens are composed of different materials, some with high added value, as in the case of the indium present in the form of indium tin oxide (ITO, or tin-doped indium oxide). Indium is a precious metal with relatively limited natural reserves (Dodbida et al., 2012), so it can be profitable to recover it from discarded LCD screens. The objective of this study was to develop a complete process for recovering indium from LCD screens. Firstly, the screens were manually removed from cell phones. In the next step, a pretreatment was developed for removal of the polarizing film from the glass of the LCD panels, because the adherence of this film to the glass complicated the comminution process. The choice of mill was based on tests using different equipment (knife mill, hammer mill, and ball mill) to disintegrate the LCD screens, either before or after removal of the polarizing film. In the leaching process, it was possible to extract 96.4 wt.% of the indium under the following conditions: 1.0M H2SO4, 1:50 solid/liquid ratio, 90°C, 1h, and stirring at 500 rpm. The results showed that the best experimental conditions enabled extraction of 613 mg of indium/kg of LCD powder. Finally, precipitation of the indium with NH4OH was tested at different pH values, and 99.8 wt.% precipitation was achieved at pH 7.4. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Maternal undernutrition does not alter Sertoli cell numbers or the expression of key developmental markers in the mid-gestation ovine fetal testis

    Directory of Open Access Journals (Sweden)

    Andrade Luis P

    2013-01-01

    Full Text Available Abstract Background The aim of this study was to determine the effects of maternal undernutrition on ovine fetal testis morphology and expression of relevant histological indicators. Maternal undernutrition, in sheep, has been reported, previously, to alter fetal ovary development, as indicated by delayed folliculogenesis and the altered expression of ovarian apoptosis-regulating gene products, at day 110 of gestation. It is not known whether or not maternal undernutrition alters the same gene products in the day 110 fetal testis. Design and methods Mature Scottish Blackface ewes were fed either 100% (Control; C or 50% (low; L of estimated metabolisable energy requirements of a pregnant ewe, from mating to day 110 of gestation. All pregnant ewes were euthanized at day 110 and a sub-set of male fetuses was randomly selected (6 C and 9 L for histology studies designed to address the effect of nutritional state on several indices of testis development. Sertoli cell numbers were measured using a stereological method and Ki67 (cell proliferation index, Bax (pro-apoptosis, Mcl-1 (anti-apoptosis, SCF and c-kit ligand (development and apoptosis gene expression was measured in Bouins-fixed fetal testis using immunohistochemistry. Results No significant differences were observed in numbers of Sertoli cells or testicular Ki67 positive cells. The latter were localised to the testicular cords and interstitium. Bax and Mcl-1 were localised specifically to the germ cells whereas c-kit was localised to both the cords and interstitium. SCF staining was very sparse. No treatment effects were observed for any of the markers examined. Conclusions These data suggest that, unlike in the fetal ovary, maternal undernutrition for the first 110 days of gestation affects neither the morphology of the fetal testis nor the expression of gene products which regulate apoptosis. It is postulated that the effects of fetal undernutrition on testis function may be expressed

  8. Towards a new era in fetal medicine in the Nordic countries

    DEFF Research Database (Denmark)

    Sitras, Vasilis; Brodszki, Jana; Carlsson, Ylva

    2016-01-01

    provide a description of some organizational and educational aspects of fetal medicine in the Nordic countries, using examples of the management of specific conditions such as aneuploidy screening, red cell allo-immunization and fetal interventions. Clearly, there are several cultural, legal......, organizational and practical differences between the Nordic countries; these are not necessarily negative, given the high standards of care in all Nordic countries. The scope of the newly founded Nordic Network of Fetal Medicine is to enhance cooperation in clinical practice, education and research between...

  9. In Vitro Large Scale Production of Human Mature Red Blood Cells from Hematopoietic Stem Cells by Coculturing with Human Fetal Liver Stromal Cells

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    2013-01-01

    Full Text Available In vitro models of human erythropoiesis are useful in studying the mechanisms of erythroid differentiation in normal and pathological conditions. Here we describe an erythroid liquid culture system starting from cord blood derived hematopoietic stem cells (HSCs. HSCs were cultured for more than 50 days in erythroid differentiation conditions and resulted in a more than 109-fold expansion within 50 days under optimal conditions. Homogeneous erythroid cells were characterized by cell morphology, flow cytometry, and hematopoietic colony assays. Furthermore, terminal erythroid maturation was improved by cosculturing with human fetal liver stromal cells. Cocultured erythroid cells underwent multiple maturation events, including decrease in size, increase in glycophorin A expression, and nuclear condensation. This process resulted in extrusion of the pycnotic nuclei in up to 80% of the cells. Importantly, they possessed the capacity to express the adult definitive β-globin chain upon further maturation. We also show that the oxygen equilibrium curves of the cord blood-differentiated red blood cells (RBCs are comparable to normal RBCs. The large number and purity of erythroid cells and RBCs produced from cord blood make this method useful for fundamental research in erythroid development, and they also provide a basis for future production of available RBCs for transfusion.

  10. Confined placental origin of the circulating cell free fetal DNA revealed by a discordant non-invasive prenatal test result in a trisomy 18 pregnancy.

    Science.gov (United States)

    Mao, Jun; Wang, Ting; Wang, Ben-Jing; Liu, Ying-Hua; Li, Hong; Zhang, Jianguang; Cram, David; Chen, Ying

    2014-06-10

    Non-invasive prenatal testing (NIPT) by massively parallel sequencing is a useful clinical test for the detection of common fetal aneuploidies. While the accuracy of aneuploidy detection can approach 100%, results discordant with the fetus are occasionally reported. In this study we investigated the basis of a discordant T21 positive and T18 negative NIPT result associated with a T18 fetus confirmed by karyotyping. Massively parallel sequencing was used to detect fetal DNA in maternal circulating plasma. The parental origin and nature of the fetal and placental aneuploidies were investigated by quantitative fluorescent PCR of short tandem repeat (STR) sequences and by copy number variation (CNV) sequencing. There was no evidence of T21 maternal mosaicism, T21 microchimerism or a vanishing twin to explain the discordant NIPT result. However, examination of multiple placental biopsies showed both T21 and T18 mosaicism, including one confined region with a significantly higher proportion of T21 cells. Based on fetal DNA fractions and average mosaicism levels, the effective T21 and T18 fetal DNA fractions should have been sufficient for the detection of both trisomies. In this pregnancy, we speculate that confined placental region(s) with higher proportions of T21 cells were preferentially releasing fetal DNAs into the maternal circulation. This study highlights placental mosaicism as a significant risk factor for discordant NIPT results. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Mitochondrial DNA Hypomethylation Is a Biomarker Associated with Induced Senescence in Human Fetal Heart Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Dehai Yu

    2017-01-01

    Full Text Available Background. Fetal heart can regenerate to restore its normal anatomy and function in response to injury, but this regenerative capacity is lost within the first week of postnatal life. Although the specific molecular mechanisms remain to be defined, it is presumed that aging of cardiac stem or progenitor cells may contribute to the loss of regenerative potential. Methods. To study this aging-related dysfunction, we cultured mesenchymal stem cells (MSCs from human fetal heart tissues. Senescence was induced by exposing cells to chronic oxidative stress/low serum. Mitochondrial DNA methylation was examined during the period of senescence. Results. Senescent MSCs exhibited flattened and enlarged morphology and were positive for the senescence-associated beta-galactosidase (SA-β-Gal. By scanning the entire mitochondrial genome, we found that four CpG islands were hypomethylated in close association with senescence in MSCs. The mitochondrial COX1 gene, which encodes the main subunit of the cytochrome c oxidase complex and contains the differentially methylated CpG island 4, was upregulated in MSCs in parallel with the onset of senescence. Knockdown of DNA methyltransferases (DNMT1, DNMT3a, and DNMT3B also upregulated COX1 expression and induced cellular senescence in MSCs. Conclusions. This study demonstrates that mitochondrial CpG hypomethylation may serve as a critical biomarker associated with cellular senescence induced by chronic oxidative stress.

  12. First-trimester risk assessment based on ultrasound and cell-free DNA vs combined screening: a randomized controlled trial.

    Science.gov (United States)

    Kagan, K O; Sroka, F; Sonek, J; Abele, H; Lüthgens, K; Schmid, M; Wagner, P; Brucker, S; Wallwiener, D; Hoopmann, M

    2017-09-19

    This was a randomized controlled trial to compare risk assessment by first-trimester combined screening (FTCS) with an approach that combines a detailed ultrasound examination at 11-13 weeks' gestation and cell-free DNA (cfDNA) analysis. Pregnant women with a normal first-trimester ultrasound examination at 11-13 weeks' gestation (fetal nuchal translucency (NT) ≤ 3.5 mm and no fetal defects) were randomized into one of two groups. In the first group, risk of aneuploidy was assessed using FTCS based on the most recent UK Fetal Medicine Foundation algorithm. In the second group, risk assessment was based on ultrasound findings and cfDNA analysis. An additional tube of blood was collected for FTCS in case the cfDNA analysis was uninformative. Primary outcome was false-positive rate in screening for trisomy 21. A case was considered false positive if the karyotype was not trisomy 21 and if the risk for trisomy 21 was >1:100, irrespective of the method of risk calculation. Results were compared using 95% CIs using the Clopper-Pearson method. Between October 2015 and December 2016, 1518 women with singleton pregnancy underwent first-trimester screening. Thirty-one (2.0%) pregnancies were not eligible for randomization due to increased NT (> 3.5 mm) and/or fetal defect. After exclusion of women who declined randomization (n = 87) and cases of fetal death and loss to follow-up (n = 24), 688 pregnancies were randomized into the FTCS arm and 688 into the ultrasound + cfDNA analysis arm. There were no differences in maternal and gestational age, maternal weight and BMI, ethnicity, use of assisted reproduction and cigarette smoking between the two arms. In the ultrasound + cfDNA analysis arm, median risk for trisomy 21 was 1 in 10 000. None of the cases had a risk above 1: 100 (95% CI, 0.0-0.5%). In the FTCS arm, the median risk for trisomy 21 was 1 in 3787 and in 17 cases, the risk was higher than 1:100, which corresponds to 2.5% (95% CI, 1.5-3.9%) of

  13. Screen printing technology applied to silicon solar cell fabrication

    Science.gov (United States)

    Thornhill, J. W.; Sipperly, W. E.

    1980-01-01

    The process for producing space qualified solar cells in both the conventional and wraparound configuration using screen printing techniques was investigated. Process modifications were chosen that could be easily automated or mechanized. Work was accomplished to optimize the tradeoffs associated with gridline spacing, gridline definition and junction depth. An extensive search for possible front contact metallization was completed. The back surface field structures along with the screen printed back contacts were optimized to produce open circuit voltages of at least an average of 600 millivolts. After all intended modifications on the process sequence were accomplished, the cells were exhaustively tested. Electrical tests at AMO and 28 C were made before and after boiling water immersion, thermal shock, and storage under conditions of high temperature and high humidity.

  14. Effects of GDNF pretreatment on function and survival of transplanted fetal ventral mesencephalic cells in the 6-OHDA rat model of Parkinson's disease

    DEFF Research Database (Denmark)

    Andereggen, Lukas; Meyer, Morten; Guzman, Raphael

    2009-01-01

    Transplantation of fetal dopaminergic (DA) neurons offers an experimental therapy for Parkinson's disease (PD). The low availability and the poor survival and integration of transplanted cells in the host brain are major obstacles in this approach. Glial cell line-derived neurotrophic factor (GDN...

  15. Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences

    DEFF Research Database (Denmark)

    Dean, Afshan; van den Driesche, Sander; Wang, Yili

    2016-01-01

    and reproductive function in resulting offspring (F1) or in the F2 generation. Exposure to either analgesic reduced F1 fetal GC number in both sexes and altered the tempo of fetal GC development sex-dependently, with delayed meiotic entry in oogonia but accelerated GC differentiation in males. These effects...... persisted in adult F1 females as reduced ovarian and litter size, whereas F1 males recovered normal GC numbers and fertility by adulthood. F2 offspring deriving from an analgesic-exposed F1 parent also exhibited sex-specific changes. F2 males exhibited normal reproductive development whereas F2 females had...... smaller ovaries and reduced follicle numbers during puberty/adulthood; as similar changes were found for F2 offspring of analgesic-exposed F1 fathers or mothers, we interpret this as potentially indicating an analgesic-induced change to GC in F1. Assuming our results are translatable to humans, they raise...

  16. Fetal Abuse.

    Science.gov (United States)

    Kent, Lindsey; And Others

    1997-01-01

    Five cases of fetal abuse by mothers suffering from depression are discussed. Four of the women had unplanned pregnancies and had considered termination of the pregnancy. Other factors associated with fetal abuse include pregnancy denial, pregnancy ambivalence, previous postpartum depression, and difficulties in relationships. Vigilance for…

  17. Fetal MSCs

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Derived from extra embryonic tissues (amniotic fluid, placenta, cord blood, Wharton's Jelly) and fetal tissues (aborted fetuses). Derived from extra embryonic tissues (amniotic fluid, placenta, cord blood, Wharton's Jelly) and fetal tissues (aborted fetuses). In comparison ...

  18. Influence of the fetal bovine serum proteins on the growth of human osteoblast cells on graphene

    Czech Academy of Sciences Publication Activity Database

    Kalbáčová, M.; Brož, A.; Kalbáč, Martin

    100A, č. 11 (2012), s. 3001-3007 ISSN 1549-3296 R&D Projects: GA AV ČR IAA400400911; GA AV ČR KAN200100801; GA ČR GAP204/10/1677; GA ČR(CZ) GAP208/12/1062; GA MŠk ME09060 Institutional support: RVO:61388955 Keywords : human osteoblast * graphene * fetal bovine serum Subject RIV: CG - Electrochemistry Impact factor: 2.834, year: 2012

  19. Importância da avaliação da hemoglobina fetal na clínica da anemia falciforme The importance of the evaluation of fetal hemoglobin in the clinical assessment of sickle cell disease

    Directory of Open Access Journals (Sweden)

    Rita de Cassia Mousinho-Ribeiro

    2008-04-01

    Full Text Available A anemia falciforme está entre as doenças genéticas mais comuns e mais estudadas em todo o mundo. Ela é causada por mutação no gene β, produzindo alteração estrutural na molécula da hemoglobina. As moléculas de HbS, decorrentes da mutação, sofrem processo de polimerização fisiologicamente provocado pela baixa tensão de oxigênio, acidose e desidratação. Com isso, os eritrócitos passam a apresentar a forma de foice, causando vaso-oclusão e outras conseqüências. O objetivo desse estudo foi revisar a importância da hemoglobina fetal na clínica de pacientes portadores de anemia falciforme. O significado clínico da associação da elevação da hemoglobina fetal na anemia falciforme mostra-se favorável em termos hematológicos, pois, nessa interação, as células-F têm baixas concentrações de HbS e, com isso, inibem a polimerização da HbS e a alteração da morfologia dos eritrócitos. O tratamento com hidroxiuréia, em função do aumento na expressão da hemoglobina fetal que este fármaco proporciona, traz aos pacientes falcêmicos uma melhora significativa em sua clínica. Portanto, a hemoglobina fetal consiste no maior inibidor da polimerização da desoxi-HbS e, com isso, evita a falcização do eritrócito, a anemia hemolítica crônica, as crises dolorosas vaso-oclusivas, o infarto e a necrose em diversos órgãos, melhorando a clínica e a expectativa de vida dos pacientes.Sickle cell disease is one of the commonest and most studied genetic diseases in the world. Caused by a mutation of the β gene, it changes the molecular structure of hemoglobin. Abnormal Hb S molecules suffer polymerization physiologically provoked by a low oxygen tension, acidosis and dehydration. As a result, red blood cells take on a sickle cell form, which causes microvascular occlusion with varying consequences. The objective of this study was to review the importance of fetal hemoglobin in the clinical assessment of sickle cell

  20. Administration of Ketamine Causes Autophagy and Apoptosis in the Rat Fetal Hippocampus and in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Xinran Li

    2018-02-01

    Full Text Available Drug abuse during pregnancy is a serious problem. Like alcohol, anticonvulsants, sedatives, and anesthetics, such as ketamine, can pass through the placental barrier and affect the growing fetus. However, the mechanism by which ketamine causes damage to fetal rats is not well understood. Therefore, in this study, we anesthetized pregnant rats with ketamine and evaluated the Total Antioxidant Capacity (T-AOC, Reactive Oxygen Species (ROS, and Malondialdehyde (MDA. Moreover, we determined changes in the levels of Cleaved-Caspase-3 (C-Caspase-3, Beclin-1, B-cell lymphoma-2 (Bcl-2, Bcl-2 Associated X Protein (Bax, Autophagy-related gene 4 (Atg4, Atg5, p62 (SQSTM1, and marker of autophagy Light Chain 3 (LC3. In addition, we cultured PC12 cells in vitro to determine the relationship between ROS, autophagy, and apoptosis following ketamine treatment. The results showed that ketamine induced changes in autophagy- and apoptosis-related proteins, reduced T-AOC, and generated excessive levels of ROS and MDA. In vitro experiments showed similar results, indicating that apoptosis levels can be inhibited by 3-MA. We also found that autophagy and apoptosis can be inhibited by N-acetyl-L-cysteine (Nac. Thus, anesthesia with ketamine in pregnant rats may increase the rate of autophagy and apoptosis in the fetal hippocampus and the mechanism may be through inhibition of antioxidant activity and ROS accumulation.

  1. Fetal and neonatal nicotine exposure in Wistar rats causes progressive pancreatic mitochondrial damage and beta cell dysfunction.

    Directory of Open Access Journals (Sweden)

    Jennifer E Bruin

    Full Text Available Nicotine replacement therapy (NRT is currently recommended as a safe smoking cessation aid for pregnant women. However, fetal and neonatal nicotine exposure in rats causes mitochondrial-mediated beta cell apoptosis at weaning, and adult-onset dysglycemia, which we hypothesize is related to progressive mitochondrial dysfunction in the pancreas. Therefore in this study we examined the effect of fetal and neonatal exposure to nicotine on pancreatic mitochondrial structure and function during postnatal development. Female Wistar rats were given saline (vehicle control or nicotine bitartrate (1 mg/kg/d via subcutaneous injection for 2 weeks prior to mating until weaning. At 3-4, 15 and 26 weeks of age, oral glucose tolerance tests were performed, and pancreas tissue was collected for electron microscopy, enzyme activity assays and islet isolation. Following nicotine exposure mitochondrial structural abnormalities were observed beginning at 3 weeks and worsened with advancing age. Importantly the appearance of these structural defects in nicotine-exposed animals preceded the onset of glucose intolerance. Nicotine exposure also resulted in significantly reduced pancreatic respiratory chain enzyme activity, degranulation of beta cells, elevated islet oxidative stress and impaired glucose-stimulated insulin secretion compared to saline controls at 26 weeks of age. Taken together, these data suggest that maternal nicotine use during pregnancy results in postnatal mitochondrial dysfunction that may explain, in part, the dysglycemia observed in the offspring from this animal model. These results clearly indicate that further investigation into the safety of NRT use during pregnancy is warranted.

  2. Evaluation of the impact of density gradient centrifugation on fetal cell loss during enrichment from maternal peripheral blood.

    Science.gov (United States)

    Emad, Ahmed; Drouin, Régen

    2014-09-01

    Physical separation by density gradient centrifugation (DGC) is usually used as an initial step of multistep enrichment protocols for purification of fetal cells (FCs) from maternal blood. Many protocols were designed but no single approach was efficient enough to provide noninvasive prenatal diagnosis. Procedures and methods were difficult to compare because of the nonuniformity of protocols among different groups. Recovery of FCs is jeopardized by their loss during the process of enrichment. Any loss of FCs must be minimized because of the multiplicative effect of each step of the enrichment process. The main objective of this study was to evaluate FC loss caused by DGC. Fetal cells were quantified in peripheral blood samples obtained from both euploid and aneuploid pregnancies before and after enrichment by buoyant DGC using Histopaque 1.119 g/mL. Density gradient centrifugation results in major loss of 60% to 80% of rare FCs, which may further complicate subsequent enrichment procedures. Eliminating aggressive manipulations can significantly minimize FC loss. Data obtained raise questions about the appropriateness of the DGC step for the enrichment of rare FCs and argues for the use of the alternative nonaggressive version of the procedure presented here or prioritizing other methods of enrichments. © 2014 John Wiley & Sons, Ltd.

  3. DASAF: An R Package for Deep Sequencing-Based Detection of Fetal Autosomal Abnormalities from Maternal Cell-Free DNA.

    Science.gov (United States)

    Liu, Baohong; Tang, Xiaoyan; Qiu, Feng; Tao, Chunmei; Gao, Junhui; Ma, Mengmeng; Zhong, Tingyan; Cai, JianPing; Li, Yixue; Ding, Guohui

    2016-01-01

    Background. With the development of massively parallel sequencing (MPS), noninvasive prenatal diagnosis using maternal cell-free DNA is fast becoming the preferred method of fetal chromosomal abnormality detection, due to its inherent high accuracy and low risk. Typically, MPS data is parsed to calculate a risk score, which is used to predict whether a fetal chromosome is normal or not. Although there are several highly sensitive and specific MPS data-parsing algorithms, there are currently no tools that implement these methods. Results. We developed an R package, detection of autosomal abnormalities for fetus (DASAF), that implements the three most popular trisomy detection methods-the standard Z-score (STDZ) method, the GC correction Z-score (GCCZ) method, and the internal reference Z-score (IRZ) method-together with one subchromosome abnormality identification method (SCAZ). Conclusions. With the cost of DNA sequencing declining and with advances in personalized medicine, the demand for noninvasive prenatal testing will undoubtedly increase, which will in turn trigger an increase in the tools available for subsequent analysis. DASAF is a user-friendly tool, implemented in R, that supports identification of whole-chromosome as well as subchromosome abnormalities, based on maternal cell-free DNA sequencing data after genome mapping.

  4. Evaluation of Sample Stability and Automated DNA Extraction for Fetal Sex Determination Using Cell-Free Fetal DNA in Maternal Plasma

    Directory of Open Access Journals (Sweden)

    Elena Ordoñez

    2013-01-01

    Full Text Available Objective. The detection of paternally inherited sequences in maternal plasma, such as the SRY gene for fetal sexing or RHD for fetal blood group genotyping, is becoming part of daily routine in diagnostic laboratories. Due to the low percentage of fetal DNA, it is crucial to ensure sample stability and the efficiency of DNA extraction. We evaluated blood stability at 4°C for at least 24 hours and automated DNA extraction, for fetal sex determination in maternal plasma. Methods. A total of 158 blood samples were collected, using EDTA-K tubes, from women in their 1st trimester of pregnancy. Samples were kept at 4°C for at least 24 hours before processing. An automated DNA extraction was evaluated, and its efficiency was compared with a standard manual procedure. The SRY marker was used to quantify cfDNA by real-time PCR. Results. Although lower cfDNA amounts were obtained by automated DNA extraction (mean 107,35 GE/mL versus 259,43 GE/mL, the SRY sequence was successfully detected in all 108 samples from pregnancies with male fetuses. Conclusion. We successfully evaluated the suitability of standard blood tubes for the collection of maternal blood and assessed samples to be suitable for analysis at least 24 hours later. This would allow shipping to a central reference laboratory almost from anywhere in Europe.

  5. Evaluation of royal jelly as an alternative to fetal bovine serum in cell culture using cell proliferation assays and live cell imaging.

    Science.gov (United States)

    Musa, Marahaini; Nasir, Nurul Fatihah Mohamad; Thirumulu, Kannan Ponnuraj

    2014-01-01

    Royal jelly is a nutritious substance produced by the young nurse bees and contains significant amounts of proteins which are important for cell growth and proliferation. The aim of this study was to evaluate the effect of royal jelly as an alternative to fetal bovine serum (FBS) in cell culture using cell proliferation assays and live cell imaging. MRC-5 cells were treated with various concentrations of royal jelly extract in MTT assay. The control groups were comprised of Alpha-Minimal Essential Medium (α-MEM) alone and α-MEM with 10% FBS. Subsequently, the cell proliferation was studied for 10 days using Alamar Blue assay and live cell imaging from 48 to 72 h. The population doubling time (PDT) was determined using trypan blue assay after live cell imaging. In MTT assay, 0.156 and 0.078 mg/ml of royal jelly produced higher cell viability compared to positive control group but were not significantly different (P > 0.05). In the Alamar Blue assay, 0.156 and 0.078 mg/ml of royal jelly produced greater percentage of reduction at day 3 even though no significant difference was found (P > 0.05). Based on live cell imaging, the PDT for positive, negative, 0.156 and 0.078 mg/ml of royal jelly groups were 29.09, 62.50, 41.67 and 41.67 h respectively. No significant difference was found in the PDT between all the groups (P > 0.05). Royal jelly does not exhibit similar ability like FBS to facilitate cell growth under the present test conditions.

  6. Co-transplantation of GDNF-overexpressing neural stem cells and fetal dopaminergic neurons mitigates motor symptoms in a rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Xingli Deng

    Full Text Available Striatal transplantation of dopaminergic (DA neurons or neural stem cells (NSCs has been reported to improve the symptoms of Parkinson's disease (PD, but the low rate of cell survival, differentiation, and integration in the host brain limits the therapeutic efficacy. We investigated the therapeutic effects of intracranial co-transplantation of mesencephalic NSCs stably overexpressing human glial-derived neurotrophic factor (GDNF-mNSCs together with fetal DA neurons in the 6-OHDA rat model of PD. Striatal injection of mNSCs labeled by the contrast enhancer superparamagnetic iron oxide (SPIO resulted in a hypointense signal in the striatum on T2-weighted magnetic resonance images that lasted for at least 8 weeks post-injection, confirming the long-term survival of injected stem cells in vivo. Co-transplantation of GDNF-mNSCs with fetal DA neurons significantly reduced apomorphine-induced rotation, a behavioral endophenotype of PD, compared to sham-treated controls, rats injected with mNSCs expressing empty vector (control mNSCs plus fetal DA neurons, or rats injected separately with either control mNSCs, GDNF-mNSCs, or fetal DA neurons. In addition, survival and differentiation of mNSCs into DA neurons was significantly greater following co-transplantation of GDNF-mNSCs plus fetal DA neurons compared to the other treatment groups as indicated by the greater number of cell expressing both the mNSCs lineage tracer enhanced green fluorescent protein (eGFP and the DA neuron marker tyrosine hydroxylase. The success of cell-based therapies for PD may be greatly improved by co-transplantation of fetal DA neurons with mNSCs genetically modified to overexpress trophic factors such as GDNF that support differentiation into DA cells and their survival in vivo.

  7. Sickle cell trait screening in athletes: pediatricians' attitudes and concerns.

    Science.gov (United States)

    Koopmans, Joy; Cox, Lucy A; Benjamin, Holly; Clayton, Ellen Wright; Ross, Lainie Friedman

    2011-09-01

    As part of a legal settlement in 2010, the National Collegiate Athletic Association (NCAA) adopted a recommendation that all Division I athletes be screened for sickle cell trait (SCT) or sign an exemption waiver. Pediatricians' attitudes about this policy are unknown. We queried 3 specialty sections of the American Academy of Pediatrics (AAP)--the Section on Adolescent Health, the Council on Sports Medicine and Fitness (COSMF), and the Section on Bioethics-to determine attitudes about and knowledge of SCT testing of athletes. Three e-mail surveys were sent to 600 members of the AAP chosen equally from the Section on Bioethics, the Section on Adolescent Health, and the COSMF. The survey queried respondents about their awareness of the NCAA policy and whether they supported universal or targeted screening based on gender, race/ethnicity, level of play, and type of sport. Usable responses from 254 of 574 eligible respondents (44%) were received. Respondents were 54% male and 84% white. Almost half were aware of the NCAA policy, with highest awareness in members of COSMF (P discrimination in sports participation and/or insurance. Members of COSMF were least concerned about discrimination. The NCAA policy to universally screen Division I athletes is not uniformly supported by pediatricians, who prefer targeted screening based on race/ethnicity and sport in all NCAA divisions. We found little difference in policy considerations between members of the different AAP sections/council except that members of the COSMF were least concerned about discrimination.

  8. Possible promotion of neuronal differentiation in fetal rat brain neural progenitor cells after sustained exposure to static magnetism.

    Science.gov (United States)

    Nakamichi, Noritaka; Ishioka, Yukichi; Hirai, Takao; Ozawa, Shusuke; Tachibana, Masaki; Nakamura, Nobuhiro; Takarada, Takeshi; Yoneda, Yukio

    2009-08-15

    We have previously shown significant potentiation of Ca(2+) influx mediated by N-methyl-D-aspartate receptors, along with decreased microtubules-associated protein-2 (MAP2) expression, in hippocampal neurons cultured under static magnetism without cell death. In this study, we investigated the effects of static magnetism on the functionality of neural progenitor cells endowed to proliferate for self-replication and differentiate into neuronal, astroglial, and oligodendroglial lineages. Neural progenitor cells were isolated from embryonic rat neocortex and hippocampus, followed by culture under static magnetism at 100 mT and subsequent determination of the number of cells immunoreactive for a marker protein of particular progeny lineages. Static magnetism not only significantly decreased proliferation of neural progenitor cells without affecting cell viability, but also promoted differentiation into cells immunoreactive for MAP2 with a concomitant decrease in that for an astroglial marker, irrespective of the presence of differentiation inducers. In neural progenitors cultured under static magnetism, a significant increase was seen in mRNA expression of several activator-type proneural genes, such as Mash1, Math1, and Math3, together with decreased mRNA expression of the repressor type Hes5. These results suggest that sustained static magnetism could suppress proliferation for self-renewal and facilitate differentiation into neurons through promoted expression of activator-type proneural genes by progenitor cells in fetal rat brain.

  9. Positive view and increased likely uptake of follow-up testing with analysis of cell-free fetal DNA as alternative to invasive testing among Danish pregnant women.

    Science.gov (United States)

    Miltoft, Caroline B; Rode, Line; Tabor, Ann

    2018-01-19

    To investigate the attitude (view, likely uptake and preferred strategy) towards cell-free fetal DNA (cfDNA) testing among pregnant women before a first-trimester risk assessment for trisomy 21 (unselected women) and after obtaining a high risk. Unselected and high-risk women attending first-trimester screening (Rigshospitalet, Copenhagen University Hospital) were invited to fill out the questionnaire Antenatal testing for Down syndrome as an online survey. The survey included 203 unselected and 50 high-risk women (response rates of 74.8% and 84.7%, respectively). Nearly all considered cfDNA testing a positive development in antenatal care, and 97.2% would like it to be offered. Offering cfDNA testing as an alternative to invasive testing would increase the uptake of follow-up testing compared with invasive testing alone (98.8% vs. 90.7%, p testing were more likely to continue an affected pregnancy (30.0% vs. 3.6%, p testing would likely increase the uptake of follow-up testing without a corresponding rise in the termination rate of affected fetuses as some women test for information only. However, both unselected and high-risk women had overwhelmingly positive views underlining attention to avoid routinization. © 2018 Nordic Federation of Societies of Obstetrics and Gynecology.

  10. Detection of fetal cell-free DNA in maternal plasma for Down syndrome, Edward syndrome and Patau syndrome of high risk fetus.

    Science.gov (United States)

    Ke, Wei-Lin; Zhao, Wei-Hua; Wang, Xin-Yu

    2015-01-01

    The study aimed to validate the efficacy of detection of fetal cell-free DNA in maternal plasma of trisomy 21, 18 and 13 in a clinical setting. A total of 2340 women at high risk for Down syndrome based on maternal age, prenatal history or a positive sesum or sonographic screening test were offered prenatal noninvasive aneuploidy test. According to the prenatal noninvasive aneuploidy test, the pregnant women at high risk were offered amniocentesis karyotype analysis and the pregnant at low risk were followed up to make sure the newborn outcome. The prenatal noninvasive aneuploidy test was positive for trisomy 21 in 17 cases, for trisomy 18 in 6 cases and for trisomy 13 in 1 case, which of all were confirmed by karyotype analysis. Newborns of low risk gestational woman detected by prenatal noninvasive aneuploidy for trisomy 21, 18, 13 were followed up and no one was found with trisomy. The prenatal noninvasive aneuploidy test is highly accurate for detection of trisomy 21, 18 and 13, which can be considered as a practical alternative for traditional invasive diagnostic procedures.

  11. Chemical Screening Using Cell-FreeXenopusEgg Extract.

    Science.gov (United States)

    Broadus, Matthew R; Lee, Ethan

    2018-02-23

    Most drug screening methods use purified proteins, cultured cells, and/or small model organisms such as Xenopus , zebrafish, flies, or nematodes. These systems have proven successes in drug discovery, but they also have weaknesses. Although purified cellular components allow for identification of compounds with activity against specific targets, such systems lack the complex biological interactions present in cellular and organismal screens. In vivo systems overcome these weaknesses, but the lack of cellular permeability, efflux by cellular pumps, and/or toxicity can be major limitations. Xenopus laevis egg extract, a concentrated and biologically active cytosol, can potentially overcome these weaknesses. Drug interactions occur in a near-physiological milieu, thereby functioning in a "truer" endogenous manner than purified components. Also, Xenopus egg extract is a cell-free system that lacks intact plasma membranes that could restrict drug access to potential targets. Finally, Xenopus egg extract is readily manipulated at the protein level: Proteins are easily depleted or added to the system, an important feature for analyzing drug effects in disease states. Thus, Xenopus egg extract offers an attractive media for screening drugs that merges strengths of both in vitro and in vivo systems. © 2018 Cold Spring Harbor Laboratory Press.

  12. Neural stem cells: are they the hope of a better life for patients with fetal-onset hydrocephalus?

    Science.gov (United States)

    Guerra, Montserrat

    2014-01-01

    I was honored to be awarded the Casey Holter Essay Prize in 2013 by the Society for Research into Hydrocephalus and Spina Bifida. The purpose of the prize is to encourage original thinking in a way to improve the care of individuals with spina bifida and hydrocephalus. Having kept this purpose in mind, I have chosen the title: Neural stem cells, are they the hope of a better life for patients with fetal-onset hydrocephalus? The aim is to review and discuss some of the most recent and relevant findings regarding mechanisms leading to both hydrocephalus and abnormal neuro/gliogenesis. By looking at these outcome studies, it is hoped that we will recognize the potential use of neural stem cells in the treatment of hydrocephalus, and so prevent the disease or diminish/repair the associated brain damage.

  13. A cGMP-applicable expansion method for aggregates of human neural stem and progenitor cells derived from pluripotent stem cells or fetal brain tissue.

    Science.gov (United States)

    Shelley, Brandon C; Gowing, Geneviève; Svendsen, Clive N

    2014-06-15

    A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as "chopping" that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.

  14. Proliferating cell nuclear antigen (PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries.

    Directory of Open Access Journals (Sweden)

    Bo Xu

    Full Text Available Primordial follicles, providing all the oocytes available to a female throughout her reproductive life, assemble in perinatal ovaries with individual oocytes surrounded by granulosa cells. In mammals including the mouse, most oocytes die by apoptosis during primordial follicle assembly, but factors that regulate oocyte death remain largely unknown. Proliferating cell nuclear antigen (PCNA, a key regulator in many essential cellular processes, was shown to be differentially expressed during these processes in mouse ovaries using 2D-PAGE and MALDI-TOF/TOF methodology. A V-shaped expression pattern of PCNA in both oocytes and somatic cells was observed during the development of fetal and neonatal mouse ovaries, decreasing from 13.5 to 18.5 dpc and increasing from 18.5 dpc to 5 dpp. This was closely correlated with the meiotic prophase I progression from pre-leptotene to pachytene and from pachytene to diplotene when primordial follicles started to assemble. Inhibition of the increase of PCNA expression by RNA interference in cultured 18.5 dpc mouse ovaries strikingly reduced the apoptosis of oocytes, accompanied by down-regulation of known pro-apoptotic genes, e.g. Bax, caspase-3, and TNFα and TNFR2, and up-regulation of Bcl-2, a known anti-apoptotic gene. Moreover, reduced expression of PCNA was observed to significantly increase primordial follicle assembly, but these primordial follicles contained fewer granulosa cells. Similar results were obtained after down-regulation by RNA interference of Ing1b, a PCNA-binding protein in the UV-induced apoptosis regulation. Thus, our results demonstrate that PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries.

  15. Phenotypic and functional analysis of T-cell precursors in the human fetal liver and thymus: CD7 expression in the early stages of T- and myeloid-cell development

    NARCIS (Netherlands)

    Bárcena, A.; Muench, M. O.; Galy, A. H.; Cupp, J.; Roncarolo, M. G.; Phillips, J. H.; Spits, H.

    1993-01-01

    It has been proposed that the CD7 molecule is the first antigen expressed on the membrane of cells committed to the T-cell lineage during human fetal T-cell ontogeny. To further identify the pre-T cell subpopulation that migrates to the thymus early in ontogeny, we analyzed the phenotypic and

  16. Microfluidic single-cell technology in immunology and antibody screening.

    Science.gov (United States)

    Seah, Yu Fen Samantha; Hu, Hongxing; Merten, Christoph A

    2018-02-01

    Single-cell technology has a major impact on the field of immunology. It enables the kinetics and logic of immune signaling and immune cell migration to be elucidated, facilitates antibody screening and allows massively parallelized analysis of B- and T-cell repertoires. Impressive progress has been made over the last decade, strongly boosted by microfluidic approaches. In this review, we summarize the most powerful microfluidic systems based on continuous flow, nanowells, valves and droplets and we analyze their benefits for phenotypic characterization, drug discovery and next generation sequencing experiments. We describe current limitations and provide an outlook on important future applications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. RNAi screen reveals host cell kinases specifically involved in Listeria monocytogenes spread from cell to cell.

    Directory of Open Access Journals (Sweden)

    Ryan Chong

    Full Text Available Intracellular bacterial pathogens, such as Listeria monocytogenes and Rickettsia conorii display actin-based motility in the cytosol of infected cells and spread from cell to cell through the formation of membrane protrusions at the cell cortex. Whereas the mechanisms supporting cytosolic actin-based motility are fairly well understood, it is unclear whether specific host factors may be required for supporting the formation and resolution of membrane protrusions. To address this gap in knowledge, we have developed high-throughput fluorescence microscopy and computer-assisted image analysis procedures to quantify pathogen spread in human epithelial cells. We used the approach to screen a siRNA library covering the human kinome and identified 7 candidate kinases whose depletion led to severe spreading defects in cells infected with L. monocytogenes. We conducted systematic validation procedures with redundant silencing reagents and confirmed the involvement of the serine/threonine kinases, CSNK1A1 and CSNK2B. We conducted secondary assays showing that, in contrast with the situation observed in CSNK2B-depleted cells, L. monocytogenes formed wild-type cytosolic tails and displayed wild-type actin-based motility in the cytosol of CSNK1A1-depleted cells. Furthermore, we developed a protrusion formation assay and showed that the spreading defect observed in CSNK1A1-depleted cells correlated with the formation of protrusion that did not resolve into double-membrane vacuoles. Moreover, we developed sending and receiving cell-specific RNAi procedures and showed that CSNK1A was required in the sending cells, but was dispensable in the receiving cells, for protrusion resolution. Finally, we showed that the observed defects were specific to Listeria monocytogenes, as Rickettsia conorii displayed wild-type cell-to-cell spread in CSNK1A1- and CSNK2B-depleted cells. We conclude that, in addition to the specific host factors supporting cytosolic actin

  18. Fetal Macrosomia

    Science.gov (United States)

    ... lifestyle counts Fetal macrosomia Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  19. Fetal Macrosomia

    Science.gov (United States)

    ... identification of fetal macrosomia useful? European Journal of Obstetrics & Gynecology and Reproductive Biology. 2012;161:170. Negrato CA, et al. Adverse pregnancy outcomes in women with diabetes. 2012;4:41. Frequently ...

  20. [Tat-based cell-cell fusion method for screening HIV-1 fusion inhibitors].

    Science.gov (United States)

    Wang, Xiaoli; Yang, Yishu; Shen, Sisi; Wang, Xianliang; Feng, Tian; Hu, Qin; Zeng, Yi

    2018-03-25

    An HIV-1 cell-cell fusion system was developed to screen HIV-1 entry inhibitors that block cell-cell fusion. In this system, the pEGFP-Tat plasmid was constructed and cotransfected into effector cells (HEK-293T) with HIV-1 envelope plasmid. TZM-bl cell, a genetically engineered cell line that expresses CD4, CXCR4, CCR5 as well as Tat-inducible β-galactosidase and luciferase reporter gene, was used as target cell. Thus, the co-culture of target cells and effector cells allows the cell fusion via Env and the activity of the fusion inhibitor can be quantified by measuring the reporter protein expression. The experimental parameters were optimized and 11 anti-HIV-1 agents including CCR5 antagonist maraviroc, reverse transcription inhibitor zidovudine (AZT) and integrase inhibitor raltegravir were tested. The result showed that the system exhibited high specificity and sensitivity. Two of eight tested anti-HIV-1 agents were found to block the cell-cell fusion. The system is suitable for efficient screening of HIV-1 cell-cell fusion inhibitors.

  1. Production of a cloned calf from a fetal fibroblast cell line

    Directory of Open Access Journals (Sweden)

    Mello M.R.B.

    2003-01-01

    Full Text Available The present study examined the in vitro and in vivo development of bovine nuclear-transferred embryos. A bovine fetal fibroblast culture was established and used as nucleus donor. Slaughterhouse oocytes were matured in vitro for 18 h before enucleation. Enucleated oocytes were fused with fetal fibroblasts with an electric stimulus and treated with cytochalasin D and cycloheximide for 1 h followed by cycloheximide alone for 4 h. Reconstructed embryos were cultured for 7-9 days and those which developed to blastocysts were transferred to recipient cows. Of 191 enucleated oocytes, 83 (43.5% were successfully fused and 24 (28.9% developed to blastocysts. Eighteen freshly cloned blastocysts were transferred to 14 recipients, 5 (27.8% of which were pregnant on day 35 and 3 (16.7% on day 90. Of the three cows that reached the third trimester, one recipient died of hydrallantois 2 months before term, one aborted fetus was recovered at 8 months of gestation, and one delivered by cesarian section a healthy cloned calf. Today, the cloned calf is 15 months old and presents normal body development (378 kg and sexual behavior (libido and semen characteristics.

  2. Transitional change in rat fetal cell proliferation in response to ghrelin and des-acyl ghrelin during the last stage of pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki; Nakahara, Keiko [Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192 (Japan); Kangawa, Kenji [Department of Biochemistry, National Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565 (Japan); Murakami, Noboru, E-mail: a0d201u@cc.miyazaki-u.ac.jp [Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192 (Japan)

    2010-03-12

    Expression of mRNA for the ghrelin receptor, GHS-R1a, was detected in various peripheral and central tissues of fetal rats, including skin, bone, heart, liver, gut, brain and spinal cord, on embryonic day (ED)15 and ED17. However, its expression in skin, bone, heart and liver, but not in gut, brain and spinal cord, became relatively weak on ED19 and disappeared after birth (ND2). Ghrelin and des-acyl ghrelin facilitated the proliferation of cultured fetal (ED17, 19), but not neonatal (ND2), skin cells. On the other hand, with regard to cells from the spinal cord and hypothalamus, the proliferative effect of ghrelin continued after birth, whereas the effect of des-acyl ghrelin on neurogenesis in these tissues was lost at the ED19 fetal and ND2 neonatal stages. Immunohistochemistry revealed that the cells in the hypothalamus induced to proliferate by ghrelin at the ND2 stage were positive for nestin and glial fibrillary acidic protein. These results suggest that in the period immediately prior to, and after birth, rat fetal cells showing proliferation in response to ghrelin and des-acyl ghrelin are at a transitional stage characterized by alteration of the expression of GHS-R1a and an undefined des-acyl ghrelin receptor, their responsiveness varying among different tissues.

  3. Antibody repertoire development in fetal and neonatal piglets. XXII. lambda rearrangement precedes kappa rearrangement during B-cell lymphogenesis in swine

    Czech Academy of Sciences Publication Activity Database

    Sun, X.; Wertz, N.; Lager, K.; Šinkora, Marek; Štěpánová, Kateřina; Tobin, G.; Butler, J. E.

    2012-01-01

    Roč. 137, č. 2 (2012), s. 149-159 ISSN 0019-2805 R&D Projects: GA ČR GAP502/10/0038; GA MŠk ME09089 Institutional support: RVO:61388971 Keywords : B-cell lymphogenesis * fetal * RAG-1 Subject RIV: EC - Immunology Impact factor: 3.705, year: 2012

  4. Fetal cell detection in maternal blood : A study in 236 samples using erythroblast morphology, DAB and HbF staining, and FISH analysis

    NARCIS (Netherlands)

    Oosterwijk, JC; Mesker, WE; Ouwerkerk-van Velzen, MCM; Knepfle, CFHM; Wiesmeijer, KC; Beverstock, GC; van Ommen, GJB; Kanhai, HHH; Tanke, HJ

    1998-01-01

    A protocol to detect fetal nucleated red blood cells (NRBCs) was tested in 217 pregnant women and in 19 nonpregnant controls. All the pregnant women were sampled after chorionic villus sampling (CVS); 20 were also sampled pre-CVS. NRBC recognition was based upon morphology by using staining of

  5. Activating the expression of human K-rasG12D stimulates oncogenic transformation in transgenic goat fetal fibroblast cells.

    Directory of Open Access Journals (Sweden)

    Jianhua Gong

    Full Text Available Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency, hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established.

  6. Myogenic Differentiation Potential of Mesenchymal Stem Cells Derived from Fetal Bovine Bone Marrow.

    Science.gov (United States)

    Okamura, Lucas Hidenori; Cordero, Paloma; Palomino, Jaime; Parraguez, Victor Hugo; Torres, Cristian Gabriel; Peralta, Oscar Alejandro

    2018-01-02

    The myogenic potential of bovine fetal MSC (bfMSC) derived from bone marrow (BM) remains unknown; despite its potential application for the study of myogenesis and its implications for livestock production. In the present study, three protocols for in vitro myogenic differentiation of bfMSC based on the use of DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza), myoblast-secreted factor Galectin-1 (Gal-1), and myoblast culture medium SkGM-2 BulletKit were used. Plastic-adherent bfMSC were isolated from fetal BM collected from abattoir-derived fetuses. Post-thaw viability analyses detected 85.6% bfMSC negative for propidium iodine (PI). Levels of muscle regulatory factors (MRF) MYF5, MYF6, MYOD, and DES mRNA were higher (P < 0.05) in bfMSC cultured under 100 µM of 5-Aza compared to 1 and 10 µM. Treatment of bfMSC with 10 µM of 5-Aza resulted in down-regulation of MYOD mRNA (Days 7 to 21) and up-regulation of MYF6 (Day 7), MYF5, and DES mRNA (Day 21). Gal-1 and SkGM-2 BulletKit induced sequential down-regulation of early MRF (MYF5) and up-regulation of intermediate (MYOD) and late MRF (DES) mRNA. Moreover, DES and MYF5 were immunodetected in differentiated bfMSC. In conclusion, protocols evaluated in bfMSC induced progress into myogenic differentiation until certain extent evidenced by changes in MRF gene expression.

  7. RhoA–Rho kinase and Platelet Activating Factor Stimulation of Ovine Fetal Pulmonary Vascular Smooth Muscle Cell Proliferation

    Science.gov (United States)

    Renteria, Lissette S.; Austin, Monique; Lazaro, Mariecon; Andrews, Mari Ashley; Lustina, Jennessee; Raj, J. Usha; Ibe, Basil O.

    2013-01-01

    Objectives Platelet Activating Factor (PAF) is produced by pulmonary vascular smooth muscle Cells (PVSMC). We studied effect of Rho kinase on PAF stimulation of PVSMC proliferation in an attempt to understand a role for RhoA/Rho kinase on PAF-induced ovine fetal pulmonary vascular remodeling. Our hypothesis is that PAF acts through Rho kinase, as one of its downstream signaling, to induce arterial (SMC-PA) and venous (SMC-PV) growth in the hypoxic lung environment of the fetus in utero. Materials and methods Rho kinase and MAPK effects on PAF receptor (PAFR)-mediated cell growth and PAFR expression were studied by DNA synthesis, Western and immunocytochemistry. Effects of constructs T19N and G14V on PAF-induced cell proliferation was also studied. Results Hypoxia increased PVSMC proliferation and the Rho kinase inhibitors, Y-27632 and Fasudil (HA-1077) as well as MAPK inhibitors PD 98059 and SB 203580 attenuated PAF stimulation of cell proliferation. RhoA T19N and G14V stimulated cell proliferation, but co-incubation with PAF did not affect proliferative effects of the constructs. PAFR protein expression was significantly down-regulated in both cell types by both Y-27632 and HA-1077 with comparable profiles. Also cells treated with Y-27632 showed less PAF receptor fluorescence with significant disruption of the cell morphology. Conclusions Our results show that Rho kinase nonspecifically modulates PAFR-mediated responses via a translational modification of PAFR protein and suggest that, in vivo, activation of Rho kinase by PAF may be one other pathway to sustain PAFR-mediated PVSMC growth. PMID:24033386

  8. Identification of short hairpin RNA targeting foot-and-mouth disease virus with transgenic bovine fetal epithelium cells.

    Directory of Open Access Journals (Sweden)

    Hongmei Wang

    Full Text Available BACKGROUND: Although it is known that RNA interference (RNAi targeting viral genes protects experimental animals, such as mice, from the challenge of Foot-and-mouth disease virus (FMDV, it has not been previously investigated whether shRNAs targeting FMDV in transgenic dairy cattle or primary transgenic bovine epithelium cells will confer resistance against FMDV challenge. PRINCIPAL FINDING: Here we constructed three recombinant lentiviral vectors containing shRNA against VP2 (RNAi-VP2, VP3 (RNAi-VP3, or VP4 (RNAi-VP4 of FMDV, and found that all of them strongly suppressed the transient expression of a FLAG-tagged viral gene fusion protein in 293T cells. In BHK-21 cells, RNAi-VP4 was found to be more potent in inhibition of viral replication than the others with over 98% inhibition of viral replication. Therefore, recombinant lentiviral vector RNAi-VP4 was transfected into bovine fetal fibroblast cells to generate transgenic nuclear donor cells. With subsequent somatic cell cloning, we generated forty transgenic blastocysts, and then transferred them to 20 synchronized recipient cows. Three transgenic bovine fetuses were obtained after pregnant period of 4 months, and integration into chromosome in cloned fetuses was confirmed by Southern hybridization. The primary tongue epithelium cells of transgenic fetuses were isolated and inoculated with 100 TCID(50 of FMDV, and it was observed that shRNA significantly suppressed viral RNA synthesis and inhibited over 91% of viral replication after inoculation of FMDV for 48 h. CONCLUSION: RNAi-VP4 targeting viral VP4 gene appears to prevent primary epithelium cells of transgenic bovine fetus from FMDV infection, and it could be a candidate shRNA used for cultivation of transgenic cattle against FMDV.

  9. Maternal plasma fetal DNA fractions in pregnancies with low and high risks for fetal chromosomal aneuploidies.

    Directory of Open Access Journals (Sweden)

    Irena Hudecova

    Full Text Available Recently published international guidelines recommend the clinical use of noninvasive prenatal test (NIPT for aneuploidy screening only among pregnant women whose fetuses are deemed at high risk. The applicability of NIPT to aneuploidy screening among average risk pregnancies requires additional supportive evidence. A key determinant of the reliability of aneuploidy NIPT is the fetal DNA fraction in maternal plasma. In this report, we investigated if differences in fetal DNA fractions existed between different pregnancy risk groups. One hundred and ninety-five singleton pregnancies with male fetuses divided into 3 groups according to first trimester screening parameters were examined for fetal DNA percentage by counting Y chromosome DNA sequences using massively parallel sequencing. Fetal DNA fractions were compared between risk groups and assessed for correlations with first trimester screening parameters. There was no statistically significant difference in fetal DNA fractions across the high, intermediate and low risk groups. Fetal DNA fraction showed a strong negative correlation with maternal weight. Fetal DNA fraction also showed weak but significant correlations with gestational age, crown-rump length, multiple of medians of free β-subunit of human chorionic gonadotropin and pregnancy-associated plasma protein A. Similar fetal DNA fractions in maternal plasma between high, intermediate and low risk pregnant women is a precondition for uniform performance of the aneuploidy NIPTs for the general population. This study thus shows that the aneuploidy screening by NIPT is likely to offer similar analytical reliability without respect to the a priori fetal aneuploidy risk.

  10. Role of the Stem Cell Niche in Hormone-induced Tumorigenesis in Fetal Mouse Mammary Epithelium

    National Research Council Canada - National Science Library

    Chepko, Gloria; Hilakivi-Clarke, Leena

    2006-01-01

    Develop an immunohistochemical method for identifying stem cells and stem cell niches, and to use this to determine if in utero estrogenic overstimulation causes changes in the number of stem cells or their niches...

  11. Influence of oxygen tension on dopaminergic differentiation of human fetal stem cells of midbrain and forebrain origin.

    Directory of Open Access Journals (Sweden)

    Christina Krabbe

    Full Text Available Neural stem cells (NSCs constitute a promising source of cells for transplantation in Parkinson's disease (PD, but protocols for controlled dopaminergic differentiation are not yet available. Here we investigated the influence of oxygen on dopaminergic differentiation of human fetal NSCs derived from the midbrain and forebrain. Cells were differentiated for 10 days in vitro at low, physiological (3% versus high, atmospheric (20% oxygen tension. Low oxygen resulted in upregulation of vascular endothelial growth factor and increased the proportion of tyrosine hydroxylase-immunoreactive (TH-ir cells in both types of cultures (midbrain: 9.1 ± 0.5 and 17.1 ± 0.4 (P<0.001; forebrain: 1.9 ± 0.4 and 3.9 ± 0.6 (P<0.01 percent of total cells. Regardless of oxygen levels, the content of TH-ir cells with mature neuronal morphologies was higher for midbrain as compared to forebrain cultures. Proliferative Ki67-ir cells were found in both types of cultures, but the relative proportion of these cells was significantly higher for forebrain NSCs cultured at low, as compared to high, oxygen tension. No such difference was detected for midbrain-derived cells. Western blot analysis revealed that low oxygen enhanced β-tubulin III and GFAP expression in both cultures. Up-regulation of β-tubulin III was most pronounced for midbrain cells, whereas GFAP expression was higher in forebrain as compared to midbrain cells. NSCs from both brain regions displayed less cell death when cultured at low oxygen tension. Following mictrotransplantation into mouse striatal slice cultures predifferentiated midbrain NSCs were found to proliferate and differentiate into substantial numbers of TH-ir neurons with mature neuronal morphologies, particularly at low oxygen. In contrast, predifferentiated forebrain NSCs microtransplanted using identical conditions displayed little proliferation and contained few TH-ir cells, all of which had an immature appearance. Our data may reflect

  12. Early detection of fetal structural abnormalities

    NARCIS (Netherlands)

    Weisz, Boaz; Pajkrt, Eva; Jauniaux, Eric

    2005-01-01

    Most published data on the detection of fetal anomalies at 11-14 weeks are from specialized centres with considerable experience in fetal anomaly scanning. However, there is still limited information on the feasibility and limitations of the screening of these anomalies compared with the now

  13. Natural-killer cell ligands at the maternal-fetal interface: UL-16 binding proteins, MHC class-I chain related molecules, HLA-F and CD48.

    Science.gov (United States)

    Apps, Richard; Gardner, Lucy; Traherne, James; Male, Victoria; Moffett, Ashley

    2008-11-01

    In the early stages of human placentation, the decidua is invaded by fetal extravillous trophoblast (EVT) cells. Interactions between EVT cells and local decidual leukocytes are likely to contribute to immunological accommodation of the semi-allogeneic fetus. Natural-killer group 2 member D (NKG2D) and 2B4 (CD244) are receptors ubiquitously expressed by the distinctive population of CD56 bright, uterine natural-killer cells, which dominate the decidua at the time of implantation. Here, we investigate the UL-16 binding protein (ULBP) and MHC class-I chain related molecule (MIC) ligands of NKG2D, the CD48 ligand of 2B4 and the non-classical HLA class-I molecule, HLA-F, at the maternal-fetal interface of normal pregnancies. For many of these molecules, significant mRNA expression was detected by RT-PCR in decidual and placental tissue throughout gestation. Flow cytometry of isolated cells or immunohistological staining of implantation site sections was then performed. No protein expression of NKG2D ligands or HLA-F could be detected in decidual leukocytes or fetal trophoblast cells from the first trimester. An NKG2D-Fc fusion protein identified no novel ligands for this promiscuous receptor at the maternal-fetal interface. Strong surface protein expression of CD48 by decidual leukocytes but not by trophoblast cells was detected by flow cytometry. Histological staining showed a clear aggregation of CD48(+) cells around transformed spiral arteries of the implantation site. We conclude that the role of NKG2D and 2B4 is not focussed on trophoblast recognition in normal pregnancy, but is more likely involved in cross-talk among maternal cells of the placental bed.

  14. Viabilidade de células do sistema nervoso central fetal no tratamento da lesão medular em ratos Viability of fetal central nervous system cells in the treatment of spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Alexandre Fogaça Cristante

    2010-01-01

    Full Text Available OBJETIVOS: Propor um modelo experimental de transplante de células do sistema nervoso fetal de ratos Wistar para o sítio de lesão medular de ratos adultos que permitisse sua sobrevivência e integração para possibilitar protocolos de pesquisa que identificarão outros fatores de regeneração e recuperação funcional pós trauma raquimedular. MÉTODOS: Vinte ratos adultos foram submetidos a laminectomia, e lesão de 5mm de hemimedula realizada com auxílio de microscópio óptico. Quinze deste ratos tiveram seu sítio de lesão medular transplantado com células do sistema nervoso central de fetos de rato; os ratos foram monitorados por 2 dias e tiveram sua coluna vertebral extraída para análise histológica. RESULTADOS: Evidenciou-se que em 60% dos casos as células transplantadas permaneciam viáveis no sítio da lesão e que a reação inflamatória no grupo transplantado era sempre maior que no grupo controle. CONCLUSÃO: O presente trabalho demonstrou a possibilidade de contar com o modelo de pesquisa para transplante de células fetais que permanecem viáveis 2 dias após seu implante.OBJECTIVE: To propose an experimental model for transplantation of fetal cells from the nervous system of Wistar rats to the site of spinal cord injury in adult rats, to enable their survival and integration for research protocols that identify other factors of regeneration and functional recovery following spinal cord trauma. METHODS: Twenty adult rats were submitted to laminectomy and a 5mm incision was made, using an optical microscope, In fifteen of these rats, the site of the spinal cord lesion was transplanted with cells from the fetal rat central nervous system; the rats were monitored for two days, then the spinal cord was removed for histological analysis. RESULTS: In 60% of cases, the transplanted cells remained viable in the site of the lesion; the inflammatory response in the transplanted group was always greater than in the control group

  15. Hypermethylated ERG as a cell-free fetal DNA biomarker for non-invasive prenatal testing of Down syndrome.

    Science.gov (United States)

    Chen, Xi; Xiong, Likuan; Zeng, Ting; Xiao, Kelin; Huang, Yanping; Guo, Hui; Ren, Jinghui

    2015-04-15

    Previous reports have shown that the ERG gene is hypermethylated in the placenta and hypomethylated in maternal blood cells. In this study, we explore the feasibility of hypermethylated ERG as a cell-free fetal (cff) DNA biomarker for non-invasive prenatal testing (NIPT) of Down syndrome. We randomly selected 90 healthy pregnant women, including 30 cases at each trimester of pregnancy. In addition, 15 pregnant women were recruited as the case group whose fetuses had been confirmed to have trisomy 21 by amniotic fluid analysis at 18th to 26th week gestation. Using HpaII, MspІ to digest cell-free maternal plasma DNA, we performed SYBR Green PCR to detect methylated sites of ERG sequences, and analyzed the concentrations of cff DNA in maternal plasma in different gestational trimesters and the case group. The ERG median concentrations of the maternal plasma after Hpa II digestion (LG copies/ml) in first, second and third-trimesters were 5.38, 6.10, and 7.04, respectively (Kruskal-Wallis, Psyndrome. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Direct Interaction between Ras Homolog Enriched in Brain and FK506 Binding Protein 38 in Cashmere Goat Fetal Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Xiaojing Wang

    2014-12-01

    Full Text Available Ras homolog enriched in brain (Rheb and FK506 binding protein 38 (FKBP38 are two important regulatory proteins in the mammalian target of rapamycin (mTOR pathway. There are contradictory data on the interaction between Rheb and FKBP38 in human cells, but this association has not been examined in cashmere goat cells. To investigate the interaction between Rheb and FKBP38, we overexpressed goat Rheb and FKBP38 in goat fetal fibroblasts, extracted whole proteins, and performed coimmunoprecipitation to detect them by western blot. We found Rheb binds directly to FKBP38. Then, we constructed bait vectors (pGBKT7-Rheb/FKBP38 and prey vectors (pGADT7-Rheb/FKBP38, and examined their interaction by yeast two-hybrid assay. Their direct interaction was observed, regardless of which plasmid served as the prey or bait vector. These results indicate that the 2 proteins interact directly in vivo. Novel evidence is presented on the mTOR signal pathway in Cashmere goat cells.

  17. Direct Interaction between Ras Homolog Enriched in Brain and FK506 Binding Protein 38 in Cashmere Goat Fetal Fibroblast Cells.

    Science.gov (United States)

    Wang, Xiaojing; Wang, Yanfeng; Zheng, Xu; Hao, Xiyan; Liang, Yan; Wu, Manlin; Wang, Xiao; Wang, Zhigang

    2014-12-01

    Ras homolog enriched in brain (Rheb) and FK506 binding protein 38 (FKBP38) are two important regulatory proteins in the mammalian target of rapamycin (mTOR) pathway. There are contradictory data on the interaction between Rheb and FKBP38 in human cells, but this association has not been examined in cashmere goat cells. To investigate the interaction between Rheb and FKBP38, we overexpressed goat Rheb and FKBP38 in goat fetal fibroblasts, extracted whole proteins, and performed coimmunoprecipitation to detect them by western blot. We found Rheb binds directly to FKBP38. Then, we constructed bait vectors (pGBKT7-Rheb/FKBP38) and prey vectors (pGADT7-Rheb/FKBP38), and examined their interaction by yeast two-hybrid assay. Their direct interaction was observed, regardless of which plasmid served as the prey or bait vector. These results indicate that the 2 proteins interact directly in vivo. Novel evidence is presented on the mTOR signal pathway in Cashmere goat cells.

  18. Fetal bovine serum-free cryopreservation methods for clinical banking of human adipose-derived stem cells.

    Science.gov (United States)

    Park, Seah; Lee, Dong Ryul; Nam, Ji Sun; Ahn, Chul Woo; Kim, Haekwon

    2018-02-13

    The use of fetal bovine serum (FBS) as a cryopreservation supplement is not suitable for the banking of mesenchymal stem cells (MSCs) due to the risk of transmission of disease as well as xenogeneic immune reactions in the transplanted host. Here, we investigated if human serum albumin (HSA), human serum (HS), or knockout serum replacement (KSR) can replace FBS for the cryopreservation of MSCs. In addition, we examined the characteristics of MSCs after multiple rounds of cryopreservation. Human adipose-derived stem cells (ASCs) cryopreserved with three FBS replacements, 9% HSA, 90% HS, or 90% KSR, in combination with 10% dimethyl sulfoxide (Me 2 SO) maintained stem cell properties including growth, immunophenotypes, gene expression patterns, and the potential to differentiate into adipogenic, osteogenic, and chondrogenic lineages, similar to ASCs frozen with FBS. Moreover, the immunophenotype, gene expression, and differentiation capabilities of ASCs were not altered by up to four freeze-thaw cycles. However, the performance of three or four freeze-thaw cycles significantly reduced the proliferation ability of ASCs, as indicated by the longer population doubling time and reduced colony-forming unit-fibroblast frequency. Together, our results suggest that HSA, HS, or KSR can replace FBS for the cryopreservation of ASCs, without altering their stemness, and should be processed with no more than two freeze-thaw cycles for clinical approaches. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Effect of TCDD on the fate of epithelial cells isolated from human fetal palatal shelves (hFPECs)

    International Nuclear Information System (INIS)

    Gao, Zhan; Bu, Yongjun; Zhang, Guofu; Liu, Xiaozhuan; Wang, Xugang; Ding, Shibin; Wang, Erhui; Shi, Ruling; Li, Qiaoyun; Fu, Jianhong; Yu, Zengli

    2016-01-01

    Cleft palate is caused by the failure of palatal midline epithelial cells to disintegrate, which is necessary for palatal mesenchymal confluence. Although 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exposure is linked to cleft palate at a high rate, the mechanism remains to be elucidated. The present study was designed to determine the effects of TCDD on the fate of epithelial cell isolated from human fetal palatal shelves (hFPECs). We demonstrate that TCDD increased cell proliferation and promoted the progression of cells from G1 to S phase as well as increased the number of cells entering the G2/M phase. We found that TCDD has no measurable effect on apoptosis of hFPECs. The protein level assays revealed that TCDD increased cyclin-dependent kinases 4 (cdk4), cyclin D1, cyclin E and p21 (Waf1/Cip1) but not cdk2, bcl-2, cyclin B1 and cyclin A. Furthermore, TCDD activated PI3K/AKT signaling, and the PI3K inhibitor, LY294002, partially abrogated TCDD-induced cell proliferation and gene modulations. TCDD treatment increased CYP1A1 mRNA and protein levels, which indicated the activation of AhR signaling. Knockdown of the AhR with siRNA suppressed TCDD-induced cell proliferation and PI3K/AKT signaling activation. Taken together, these data demonstrated that TCDD is able to promote growth of hFPECs through AhR-dependent activation of the PI3K/AKT pathway, which may account for the underlying mechanism by which TCDD causes a failure of palatal fusion. - Highlights: • TCDD promoted the cell growth with a character of significant accumulation of cells in G2/M. • TCDD treatment induced a various profile of cell cycle regulatory proteins. • PI3K/AKT pathway was involved in TCDD-induced cell proliferation and gene modifications. • AhR knockdown blocked TCDD-induced cell proliferation and PI3K/Akt signaling activation.

  20. Fluorine NMR-based screening on cell membrane extracts.

    Science.gov (United States)

    Veronesi, Marina; Romeo, Elisa; Lambruschini, Chiara; Piomelli, Daniele; Bandiera, Tiziano; Scarpelli, Rita; Garau, Gianpiero; Dalvit, Claudio

    2014-02-01

    The possibility of measuring the action of inhibitors of specific enzymatic reactions in intact cells, cell lysates or membrane preparations represents a major advance in the lead discovery process. Despite the relevance of assaying in physiological conditions, only a small number of biophysical techniques, often requiring complex set-up, are applicable to these sample types. Here, we demonstrate the first application of n-fluorine atoms for biochemical screening (n-FABS), a homogeneous and versatile assay based on (19) F NMR spectroscopy, to the detection of high- and low-affinity inhibitors of a membrane enzyme in cell extracts and determination of their IC50 values. Our approach can allow the discovery of novel binding fragments against targets known to be difficult to purify or where membrane-association is required for activity. These results pave the way for future applications of the methodology to these relevant and complex biological systems. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Absolute Reticulocyte Count Acts as a Surrogate for Fetal Hemoglobin in Infants and Children with Sickle Cell Anemia.

    Directory of Open Access Journals (Sweden)

    Emily Riehm Meier

    Full Text Available Hemoglobin switching is largely complete in humans by six months of age. Among infants with sickle cell anemia (HbSS, SCA, reticulocytosis begins early in life as fetal hemoglobin (HbF is replaced by sickle hemoglobin (HbS. The objective of this study was to determine if absolute reticulocyte count (ARC is related to HbF levels in a cohort of pediatric SCA patients. A convenience sample of 106 children with SCA between the ages of 1 month and 20 years who were not receiving hydroxyurea or monthly blood transfusions were enrolled in this observational study. Hematologic data, including ARC and HbF levels, were measured at steady state. F-cells were enumerated by flow cytometry. Initial studies compared infants with ARC greater than or equal to 200 K/μL (ARC ≥ 200 based upon the previously reported utility of this threshold as a predictive marker for SCA severity. Mean HbF and F-cell levels were significantly lower in the ARC ≥ 200 group when compared to the ARC < 200 group. Both HbF and F-cell percentages were negatively correlated to ARC in infants and in children between the ages of 1 and 9 years. However, the inverse relationship was lost after the age of 10 years. Overall, decreased expression and distribution of HbF during childhood SCA is well-correlated with increased reticulocyte production and release into the peripheral blood. As such, these data further support the clinical use of reticulocyte enumeration as a disease severity biomarker for childhood sickle cell anemia.

  2. Fetal pain

    NARCIS (Netherlands)

    Adama van Scheltema, Phebe

    2011-01-01

    Recent studies have suggested that the fetus is capable of exhibiting a stress response to intrauterine needling, resulting in alterations in fetal stress hormone levels. Intrauterine transfusions are performed by inserting a needle either in the umbilical cord root at the placental surface (PCI),

  3. Do fatty acids affect fetal programming?

    Science.gov (United States)

    Kabaran, Seray; Besler, H Tanju

    2015-08-13

    In this study discussed the primary and regulatory roles of fatty acids, and investigated the affects of fatty acids on metabolic programming. Review of the literature was carried out on three electronic databases to assess the roles of fatty acids in metabolic programming. All abstracts and full-text articles were examined, and the most relevant articles were selected for screening and inclusion in this review. The mother's nutritional environment during fetal period has important effects on long term health. Fatty acids play a primary role in growth and development. Alterations in fatty acid intake in the fetal period may increase the risk of obesity and metabolic disorders in later life. Maternal fatty acid intakes during pregnancy and lactation are passed to the fetus and the newborn via the placenta and breast milk, respectively. Imbalances in fatty acid intake during the fetal period change the fatty acid composition of membrane phospholipids, which can cause structural and functional problems in cells. Additionally, the metabolic and neuroendocrine environments of the fetus and the newborn play key roles in the regulation of energy balance. Imbalances in fatty acid intake during pregnancy and lactation may result in permanent changes in appetite control, neuroendocrine function and energy metabolism in the fetus, leading to metabolic programming. Further studies are needed to determine the role of fatty acid intake in metabolic programming.

  4. DC-SIGN expression in Hofbauer cells may play an important role in immune tolerance in fetal chorionic villi during the development of preeclampsia.

    Science.gov (United States)

    Yang, Seung Woo; Cho, Eun Hee; Choi, So Young; Lee, Yun Kyung; Park, Jae Hyun; Kim, Min Kyung; Park, Jin Yeon; Choi, Hyeong Jwa; Lee, Jeong Ik; Ko, Hyun Myung; Park, Seung Hwa; Hwang, Han Sung; Kang, Young Sun

    2017-11-01

    Immune tolerance at feto-maternal interfaces is a complex phenomenon. Although maternal decidual macrophages are well-known immune cells, little is known about fetal-derived macrophages (Hofbauer cells) within chorionic villi. Preeclampsia (PE) is a major cause of maternal mortality in the field of obstetrics, and the innate immunological role of maternal decidual macrophages is well known. In this study, we assessed the differential phenotypes and marker expression in fetal macrophages, known as dendritic cell-specific ICAM-grabbing non-integrin (DC-SIGN)-positive Hofbauer cells. We compared Hofbauer cell properties between normal and PE placenta chorionic villi and performed sequential staining of DC-SIGN, CD14, and CD68 to evaluate the existence of Hofbauer cells. Furthermore, to evaluate the immunological function of these cells, we stained the cells for CD163, a marker of immunoregulatory type 2 (M2) macrophages. Additionally, we examined the expression of the immunosuppressive cytokine interleukin (IL)-10, which is known to be produced by M2 macrophages. DC-SIGN+/CD14+, DC-SIGN+/CD68+, and CD163+/DC-SIGN+ cells were quantified based on photomicrographs. The results showed that CD14, CD163, DC-SIGN, and IL-10 levels were significantly downregulated in PE compared with normal. Additionally, CD163+/DC-SIGN+ Hofbauer cells were significantly less frequent in PE than in normal. DC-SIGN Hofbauer cells produced IL-10 at lower levels in the PE than in the normal. Thus, we speculate that fetal-derived Hofbauer cells may play an important role in normal pregnancy with immunosuppressive effects based on their M2 macrophage characteristics to maintain immune tolerance during pregnancy. Additionally, in PE, these functions were defective, supporting the roles of these macrophages in PE development. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Non-invasive Prenatal Diagnosis of Chromosomal Aneuploidies and Microdeletion Syndrome Using Fetal Nucleated Red Blood Cells Isolated by Nanostructure Microchips.

    Science.gov (United States)

    Feng, Chun; He, Zhaobo; Cai, Bo; Peng, Jianhong; Song, Jieping; Yu, Xuechen; Sun, Yue; Yuan, Jing; Zhao, Xingzhong; Zhang, Yuanzhen

    2018-01-01

    Detection of detached fetal nucleated red blood cells (fNRBCs) in the maternal peripheral blood may serve as a prospective testing method competing with the cell-free DNA, in non-invasive prenatal testing (NIPT). Methods: Herein, we introduce a facile and effective lab-on-a-chip method of fNRBCs detection using a capture-releasing material that is composed of biotin-doped polypyrrole nanoparticles. To enhance local topographic interactions between the nano-components and fNRBC, a specific antibody, CD147, coated on the nanostructured substrate led to the isolation of fNRBCs from maternal peripheral blood. Subsequently, an electrical system was employed to release the captured cells using 0.8 V for 15 s. The diagnostic application of fNRBCs for fetal chromosomal disorders (Trisomy 13/21/18/X syndrome, microdeletion syndrome) was demonstrated. Results: Cells captured by nanostructured microchips were identified as fNRBCs. Twelve cases of chromosomal aneuploidies and one case of 18q21 microdeletion syndrome were diagnosed using the fNRBCs released from the microchips. Conclusion: Our method offers effective and accurate analysis of fNRBCs for comprehensive NIPT to monitor fetal cell development.

  6. Whole exome sequencing identifies novel genes for fetal hemoglobin response to hydroxyurea in children with sickle cell anemia.

    Directory of Open Access Journals (Sweden)

    Vivien A Sheehan

    Full Text Available Hydroxyurea has proven efficacy in children and adults with sickle cell anemia (SCA, but with considerable inter-individual variability in the amount of fetal hemoglobin (HbF produced. Sibling and twin studies indicate that some of that drug response variation is heritable. To test the hypothesis that genetic modifiers influence pharmacological induction of HbF, we investigated phenotype-genotype associations using whole exome sequencing of children with SCA treated prospectively with hydroxyurea to maximum tolerated dose (MTD. We analyzed 171 unrelated patients enrolled in two prospective clinical trials, all treated with dose escalation to MTD. We examined two MTD drug response phenotypes: HbF (final %HbF minus baseline %HbF, and final %HbF. Analyzing individual genetic variants, we identified multiple low frequency and common variants associated with HbF induction by hydroxyurea. A validation cohort of 130 pediatric sickle cell patients treated to MTD with hydroxyurea was genotyped for 13 non-synonymous variants with the strongest association with HbF response to hydroxyurea in the discovery cohort. A coding variant in Spalt-like transcription factor, or SALL2, was associated with higher final HbF in this second independent replication sample and SALL2 represents an outstanding novel candidate gene for further investigation. These findings may help focus future functional studies and provide new insights into the pharmacological HbF upregulation by hydroxyurea in patients with SCA.

  7. Whole exome sequencing identifies novel genes for fetal hemoglobin response to hydroxyurea in children with sickle cell anemia.

    Science.gov (United States)

    Sheehan, Vivien A; Crosby, Jacy R; Sabo, Aniko; Mortier, Nicole A; Howard, Thad A; Muzny, Donna M; Dugan-Perez, Shannon; Aygun, Banu; Nottage, Kerri A; Boerwinkle, Eric; Gibbs, Richard A; Ware, Russell E; Flanagan, Jonathan M

    2014-01-01

    Hydroxyurea has proven efficacy in children and adults with sickle cell anemia (SCA), but with considerable inter-individual variability in the amount of fetal hemoglobin (HbF) produced. Sibling and twin studies indicate that some of that drug response variation is heritable. To test the hypothesis that genetic modifiers influence pharmacological induction of HbF, we investigated phenotype-genotype associations using whole exome sequencing of children with SCA treated prospectively with hydroxyurea to maximum tolerated dose (MTD). We analyzed 171 unrelated patients enrolled in two prospective clinical trials, all treated with dose escalation to MTD. We examined two MTD drug response phenotypes: HbF (final %HbF minus baseline %HbF), and final %HbF. Analyzing individual genetic variants, we identified multiple low frequency and common variants associated with HbF induction by hydroxyurea. A validation cohort of 130 pediatric sickle cell patients treated to MTD with hydroxyurea was genotyped for 13 non-synonymous variants with the strongest association with HbF response to hydroxyurea in the discovery cohort. A coding variant in Spalt-like transcription factor, or SALL2, was associated with higher final HbF in this second independent replication sample and SALL2 represents an outstanding novel candidate gene for further investigation. These findings may help focus future functional studies and provide new insights into the pharmacological HbF upregulation by hydroxyurea in patients with SCA.

  8. Evaluation of two real-time multiplex PCR screening assays detecting fetal RHD in plasma from RhD negative women to ascertain the requirement for antenatal RhD prophylaxis

    DEFF Research Database (Denmark)

    Clausen, Frederik Banch; Krog, Grethe Risum; Rieneck, Klaus

    2011-01-01

    OBJECTIVE: To evaluate two different multiplex real-time PCR assays detecting fetal RHD for screening of RhD negative women in relation to antenatal RhD prophylaxis. METHODS: We designed a duplex assay for the detection of RHD exon 7 and 10 and a triplex assay for the detection of RHD exon 7, 10...... and 5. We used the same fluorescent dye for the exon 7 and 10 probes to increase sensitivity; exon 5 was VIC labeled. We evaluated possible inhibition of DNA amplification with dilution experiments. We then tested the two multiplex assays with DNA extracted from 97 plasma samples from 38 RhD negative...... assay (exon 7/10), accuracy was 94.2%. Detection of exon 5 was less reliable. CONCLUSION: The duplex assay using exon 7/10 was the most reliable for prenatal prediction of fetal RhD type as a candidate assay for screening of RhD negative women in relation to antenatal RhD prophylaxis. The triplex assay...

  9. Towards a new era in fetal medicine in the Nordic countries.

    Science.gov (United States)

    Sitras, Vasilis

    2016-08-01

    Fetal medicine is a subspecialty of obstetrics investigating the development, growth and disease of the human fetus. The advances in fetal imaging (ultrasonography, MRI) and molecular diagnostic techniques, together with the possibility of intervention in utero, make fetal medicine an important, rapidly developing field within women's healthcare. Therefore, a variety of specialists, such as neonatologists, pediatric cardiologists, medical geneticists, radiologists and pediatric surgeons, are necessary to adjunct in the diagnosis and treatment of the fetus as a patient. In this commentary, we provide a description of some organizational and educational aspects of fetal medicine in the Nordic countries, using examples of the management of specific conditions such as aneuploidy screening, red cell allo-immunization and fetal interventions. Clearly, there are several cultural, legal, organizational and practical differences between the Nordic countries; these are not necessarily negative, given the high standards of care in all Nordic countries. The scope of the newly founded Nordic Network of Fetal Medicine is to enhance cooperation in clinical practice, education and research between the participant countries. Hopefully, this initiative will find the necessary political and economic support from the national authorities and bring a new era in the field of fetal medicine in the Nordic region. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.

  10. Dynamic distribution of NuMA and microtubules in human fetal fibroblasts, developing oocytes and somatic cell nuclear transferred embryos.

    Science.gov (United States)

    Xu, Xiaoming; Duan, Xin; Lu, Changfu; Lin, Ge; Lu, Guangxiu

    2011-05-01

    The nuclear mitotic apparatus (NuMA) plays a central role in the assembly and maintenance of spindle poles. Somatic cell nuclear transfer (SCNT) studies on non-human primates have shown that meiotic spindle removal during enucleation causes depletion of NuMA and the minus-end-directed motor protein (HSET) from the ooplasm, and this in turn leads to failure of embryo development. To determine whether NuMA from somatic cells could compensate for NuMA loss during enucleation, the distribution of NuMA and microtubule organization were investigated in human fibroblasts, developing oocytes and SCNT embryos. Human fetal fibroblasts, oocytes at various maturation stages and human embryos reconstructed by different SCNT methods were analyzed for NuMA and α-tubulin using immunofluorescent confocal microscopy. NuMA was detected in interphase nuclei of fibroblasts and oocytes. During mitosis and meiosis, NuMA relocated to the domain surrounding the two spindle poles. During the enucleation process, NuMA was removed along with the meiotic spindle. At 2 h after injection into a donor cell, transitory bipolar spindles were organized and NuMA was detected in the reformed poles. NuMA could be detected spreading uniformly across the nucleoplasm of one pseudo-pronucleus in SCNT embryos but was excluded from the nucleolus. Regardless of the method used for SCNT (enucleation-injection or injection-pronuclei enucleation), NuMA aggregated and relocated to the reformed spindle poles at metaphase of the first mitotic event. At interphase, NuMA relocated throughout the nucleus in developmentally arrested SCNT embryos. Our results show that donor cell nuclei contain NuMA, which might contribute to the maintenance of spindle morphology in SCNT embryos. Normal spindle and NuMA expression were found in human SCNT embryos at different developmental stages.

  11. Pattern of hemolysis parameters and association with fetal hemoglobin in sickle cell anemia patients in steady state

    Directory of Open Access Journals (Sweden)

    Juliane Almeida Moreira

    2015-06-01

    Full Text Available Objective: This study aimed to evaluate the influence of fetal hemoglobin (Hb F on hemolysis biomarkers in sickle cell anemia patients. Methods: Fifty adult sickle cell anemia patients were included in the study. All patients were taking hydroxyurea for at least six months and were followed at the outpatient clinic of a hospital in Fortaleza, Ceará, Brazil. The control group consisted of 20 hemoglobin AA individuals. The reticulocyte count was performed by an automated methodology, lactate dehydrogenase and uric acid were measured by spectrophotometry and arginase I by enzyme-linked immunosorbent assay (ELISA. The presence of Hb S was detected by high-performance liquid chromatography. The level of significance was set for a p-value <0.05. Results: A significant increase was observed in the reticulocyte count and lactate dehydrogenase, uric acid and arginase I levels in sickle cell anemia patients compared to the control group (p-value <0.05. Patients having Hb F levels greater than 10% showed a significant decrease in the reticulocyte count, arginase I and lactate dehydrogenase. A significant decrease was observed in arginase I levels in patients taking hydroxyurea at a dose greater than 20 mg/kg/day. Conclusion: The results of this study show that sickle cell anemia patients have increases in the hemolysis biomarkers, lactate dehydrogenase, reticulocyte count, arginase I, uric acid and increases in Hb F can reduce the reticulocyte count and arginase I and lactate dehydrogenase levels.

  12. Chronic fetal hypoglycemia inhibits the later steps of stimulus-secretion coupling in pancreatic beta-cells.

    Science.gov (United States)

    Rozance, Paul J; Limesand, Sean W; Zerbe, Gary O; Hay, William W

    2007-05-01

    We measured the impact of chronic late gestation hypoglycemia on pancreatic islet structure and function to determine the cause of decreased insulin secretion in this sheep model of fetal nutrient deprivation. Late gestation hypoglycemia did not decrease pancreas weight, insulin content, beta-cell area, beta-cell mass, or islet size. The pancreatic islet isolation procedure selected a group of islets that were larger and had an increased proportion of beta-cells compared with islets measured in pancreatic sections, but there were no morphologic differences between islets isolated from control and hypoglycemic fetuses. The rates of glucose-stimulated pancreatic islet glucose utilization (126.2 +/- 25.3 pmol glucose.islet(-1).h(-1), hypoglycemic, vs. 93.5 +/- 5.5 pmol glucose.islet(-1).h(-1), control, P = 0.47) and oxidation (10.5 +/- 1.7 pmol glucose.islet(-1).h(-1), hypoglycemic, vs. 10.6 +/- 1.6 pmol glucose.islet(-1).h(-1), control) were not different in hypoglycemic fetuses compared with control fetuses. Chronic late gestation hypoglycemia decreased insulin secretion in isolated pancreatic islets by almost 70% in response to direct nonnutrient membrane depolarization and in response to increased extracellular calcium entry. beta-Cell ultrastructure was abnormal with markedly distended rough endoplasmic reticulum in three of the seven hypoglycemic fetuses studied, but in vitro analysis of hypoglycemic control islets showed no evidence that these changes represented endoplasmic reticulum stress, as measured by transcription of glucose regulatory protein-78 and processing of X-box binding protein-1. In conclusion, these studies show that chronic hypoglycemia in late gestation decreases insulin secretion by inhibiting the later steps of stimulus-secretion coupling after glucose metabolism, membrane depolarization, and calcium entry.

  13. Arrayed mutant haploid embryonic stem cell libraries facilitate phenotype-driven genetic screens.

    Science.gov (United States)

    Liu, Guang; Wang, Xue; Liu, Yufang; Zhang, Meili; Cai, Tao; Shen, Zhirong; Jia, Yuyan; Huang, Yue

    2017-12-15

    Forward genetic screens using mammalian embryonic stem (ES) cells have identified genes required for numerous cellular processes. However, loss-of-function screens are more difficult to conduct in diploid cells because, in most cases, both alleles of a gene must be mutated to exhibit a phenotype. Recently, mammalian haploid ES cell lines were successfully established and applied to several recessive genetic screens. However, all these screens were performed in mixed pools of mutant cells and were mainly based on positive selection. In general, negative screening is not easy to apply to these mixed pools, although quantitative deep sequencing of mutagen insertions can help to identify some 'missing' mutants. Moreover, the interplay between different mutant cells in the mixed pools would interfere with the readout of the screens. Here, we developed a method for rapidly generating arrayed haploid mutant libraries in which the proportion of homozygous mutant clones can reach 85%. After screening thousands of individual mutant clones, we identified a number of novel factors required for the onset of differentiation in ES cells. A negative screen was also conducted to discover mutations conferring cells with increased sensitivity to DNA double-strand breaks induced by the drug doxorubicin. Both of these screens illustrate the value of this system. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Overexpression of microRNA-375 impedes platelet-derived growth factor-induced proliferation and migration of human fetal airway smooth muscle cells by targeting Janus kinase 2.

    Science.gov (United States)

    Ji, Yamei; Yang, Xin; Su, Huixia

    2018-02-01

    The abnormal proliferation and migration of airway smooth muscle (ASM) cells play a critical role in airway remodeling during the development of asthma. MicroRNAs (miRNAs) have emerged as critical regulators of ASM cell proliferation and migration in airway remodeling. In this study, we aimed to investigate the potential role of miR-375 in the regulation of platelet-derived growth factor (PDGF)-induced fetal ASM cell proliferation and migration. Our results showed that miR-375 expression was significantly decreased in fetal ASM cells that were treated with PDGF. Functional data showed that overexpression of miR-375 inhibited the proliferation and migration of fetal ASM cells, whereas inhibition of miR-375 enhanced the proliferation and migration of fetal ASM cells. The results of bioinformatics analysis and a dual-luciferase reporter assay showed that miR-375 binds directly to the 3'-untranslated region of Janus kinase 2 (JAK2). Further data confirmed that miR-375 negatively regulates the expression of JAK2 in fetal ASM cells. Moreover, miR-375 also impeded the PDGF-induced activation of signal transducer and activator of transcription 3 (STAT3) in fetal ASM cells. However, restoration of JAK2 expression partially reversed the inhibitory effect of miR-375 on fetal ASM cell proliferation and migration. Overall, our results demonstrate that miR-375 inhibits fetal ASM cell proliferation and migration by targeting JAK2/STAT3 signaling. Our study provides a potential therapeutic target for the development of novel treatment strategies for pediatric asthma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Irradiated fetal thymus transplantation in a patient with combined immunodeficiency with predominant T cell defect

    International Nuclear Information System (INIS)

    Higuchi, Shigenori; Yanabe, Yasuhide; Tsuchiya, Hiroyuki; Akahoshi, Izumi; Migita, Masahiro; Matsuda, Ichiro; Udaka, Keiji.

    1993-01-01

    A 6 month old boy was diagnosed as a case of combined immunodeficiency (with predominant T cell defect by previous classification). His T cell count was decreased, his B cell count in peripheral blood was increased, his serum IgG level was decreased, his serum IgM level was normal and the thymus was not evident on CT scans and magnetic resonance imaging. Administration of the thymus hormone, thymosin, led to a partial recovery of T cell function without normalization of the T cell count. At age 26 months the patient received an irradiated thymus transplantation from a 16 week old female fetus. After the transplantation, the T cell count (mainly CD4 + cells) increased by 50-70%. A mild graft-versus-host reaction (GVHR) occurred and several immunosuppressants were prescribed. Chromosome analysis showed that the T cells have both 46 XY and 46 XX karyotypes while the B cells have the 46 XY karyotype alone. His cellular immunity (skin tests, DNA synthesis, mixed lymphocyte reaction, cytotoxic activity and natural killer cell function) and his serum IgG level remained low. However, being on regular γ-globulin therapy and oral anti-fungal drugs, he is now living normally with almost no trouble at age 6 years and 3 months. This case showed that irradiated thymus transplantation might be a useful method when an adequate donor for bone marrow transplantation is not available. The unexpected observation that the increased T cells were mainly CD4 may be related to the mild GVHR and the clinical improvement. (author)

  16. The Anti-Inflammatory Effects of Lipoxygenase and Cyclo-Oxygenase Inhibitors in Inflammation-Induced Human Fetal Glia Cells and the Aβ Degradation Capacity of Human Fetal Astrocytes in an Ex vivo Assay

    Directory of Open Access Journals (Sweden)

    Rea Pihlaja

    2017-05-01

    Full Text Available Chronic inflammation is a common phenomenon present in the background of multiple neurodegenerative diseases, including Alzheimer's disease (AD. The arachidonic acid pathway overproduces proinflammatory eicosanoids during these states and glial cells in the brain gradually lose their vital functions of protecting and supporting neurons. In this study, the role of different key enzymes of the eicosanoid pathway mediating inflammatory responses was examined in vitro and ex vivo using human fetal glial cells. Astrocytes and microglia were exposed to proinflammatory agents i.e., cytokines interleukin 1-β (IL-1β and tumor necrosis factor (TNF-α. ELISA assays were used to examine the effects of inhibitors of key enzymes in the eicosanoid pathway. Inhibitors for 5-lipoxygenase (5-LOX and cyclo-oxygenase 2 (COX-2 in both cell types and 5-, 12-, and 15-LOX-inhibitor in astrocytes reduced significantly IL-6 secretion, compared to exposed glial cells without inhibitors. The cytokine antibody array showed that especially treatments with 5, -12, and -15 LOX inhibitor in astrocytes, 5-LOX inhibitor in microglia and COX-2 inhibitor in both glial cell types significantly reduced the expression of multiple proinflammatory cytokines. Furthermore, human fetal astrocytes and microglia were cultured on top of AD-affected and control human brain sections for 30 h. According to the immunochemical evaluation of the level of total Aβ, astrocytes were very efficient at degrading Aβ from AD-affected brain sections ex vivo; simultaneously added enzyme inhibitors did not increase their Aβ degradation capabilities. Microglia were not able to reduce the level of total Aβ during the 30 h incubation time.

  17. Evaluation of sericin as a fetal bovine serum-replacing cryoprotectant during freezing of human mesenchymal stromal cells and human osteoblast-like cells.

    Science.gov (United States)

    Verdanova, Martina; Pytlik, Robert; Kalbacova, Marie Hubalek

    2014-04-01

    A reliable, cryoprotective, xeno-free medium suitable for different cell types is highly desirable in regenerative medicine. There is danger of infection or allergic reaction with the use of fetal bovine serum (FBS), making it problematic for medical applications. The aim of the present study was to develop an FBS-free cryoprotective medium for human mesenchymal stromal cells (hMSCs; primary cells) and immortalized human osteoblasts (SAOS-2 cell line). Furthermore, we endeavored to eliminate or reduce the presence of dimethyl sulfoxide (DMSO) in the medium. Sericin, a sticky protein derived from the silkworm cocoon, was investigated as a substitute for FBS and DMSO in the freezing medium. Cell viability (24 hours after thawing, both hMSC and SAOS-2) and colony-forming ability (2 weeks after thawing, only for hMSCs) were both determined. The FBS-free medium with 1% sericin in 10% DMSO was found to be a suitable freezing medium for primary hMSCs, in contrast to immortalized human osteoblasts. Surprisingly, the storage of hMSCs in a cultivation medium with only 10% DMSO also provided satisfactory results. Any drop in DMSO concentration led to significantly worse survival of cells, with little improvement in hMSC survival in the presence of sericin. Thus, sericin may substitute for FBS in the freezing medium for primary hMSCs, but cannot substitute for DMSO.

  18. Model-Based Analysis of Costs and Outcomes of Non-Invasive Prenatal Testing for Down’s Syndrome Using Cell Free Fetal DNA in the UK National Health Service

    Science.gov (United States)

    Morris, Stephen; Karlsen, Saffron; Chung, Nancy; Hill, Melissa; Chitty, Lyn S.

    2014-01-01

    Background Non-invasive prenatal testing (NIPT) for Down’s syndrome (DS) using cell free fetal DNA in maternal blood has the potential to dramatically alter the way prenatal screening and diagnosis is delivered. Before NIPT can be implemented into routine practice, information is required on its costs and benefits. We investigated the costs and outcomes of NIPT for DS as contingent testing and as first-line testing compared with the current DS screening programme in the UK National Health Service. Methods We used a pre-existing model to evaluate the costs and outcomes associated with NIPT compared with the current DS screening programme. The analysis was based on a hypothetical screening population of 10,000 pregnant women. Model inputs were taken from published sources. The main outcome measures were number of DS cases detected, number of procedure-related miscarriages and total cost. Results At a screening risk cut-off of 1∶150 NIPT as contingent testing detects slightly fewer DS cases, has fewer procedure-related miscarriages, and costs the same as current DS screening (around UK£280,000) at a cost of £500 per NIPT. As first-line testing NIPT detects more DS cases, has fewer procedure-related miscarriages, and is more expensive than current screening at a cost of £50 per NIPT. When NIPT uptake increases, NIPT detects more DS cases with a small increase in procedure-related miscarriages and costs. Conclusions NIPT is currently available in the private sector in the UK at a price of £400-£900. If the NHS cost was at the lower end of this range then at a screening risk cut-off of 1∶150 NIPT as contingent testing would be cost neutral or cost saving compared with current DS screening. As first-line testing NIPT is likely to produce more favourable outcomes but at greater cost. Further research is needed to evaluate NIPT under real world conditions. PMID:24714162

  19. ROLE OF STEM CELL FACTOR IN THE REACTIVATION OF HUMAN FETAL HEMOGLOBIN

    Directory of Open Access Journals (Sweden)

    Marco Gabbianelli

    2009-11-01

    In vitro and in vivo models have led to the identification of several chemical compounds able to reactivate HbF synthesis in adult erythroid cells. Although the impact of these HbF inducers, including hypomethylating agents, histone deacetylase inhibitors and hydroxyurea, was clear on the natural history of sickle cell anemia, the benefit on the clinical course of -thalassemia was only limited: particularly, the toxicity and the modest increase in γ-globin reactivation indicated the need for improved agents able to induce higher levels of HbF. In the present review we describe the biologic properties of Stem Cell Factor (SCF, a cytokine sustaining the survival and proliferation of erythroid cells, that at pharmacological doses acts as a potent stimulator of HbF synthesis in adult erythroid cells.

  20. Evaluation of a second trimester triple marker screening test for fetal status using alpha-fetoprotein (aFP), human chorionic gonadotropin (hCG) and unconjugated estriol (uE3)

    International Nuclear Information System (INIS)

    Mi, Seong Young; Kim, Jong Ho; Choi, Seung Hun

    1997-01-01

    Our purpose was to assess the utility of maternal serum triple-marker screening test using alpha-fetoprotein (aFP), human Chorionic Gonadotropin (hCG) and unconjugated Estriol (uE 3 ) for fetal chromosomal abnormalities. 1,767 venous blood samples (4ml) between 15 and 20 week's gestation for maternal serum screening from January to October 1996, were tested with Kodak Amerix-M triple marker radioimmunoassay kits. Risk analysis was achieved with interpretive software such as Alpha (LMS, Kodak Clinical Diagnostics). Marker levels are transformed into multiples of median (MOM), which represent an interpretation of (weight regressed) patient marker levels relative to regressed median levels for stated gestation. By multivariate anaysis, the three MOM values are combined to generate a liklihood ratio. Calculation of a patient, risk is the product of liklihood ratio and age-related risk. Risk assessment is weight for maternal age. The median values of aFP, hCG and uE 3 were well correlated with gestational age, respectively (r=0.94, p=0.003; r=-0.97, p=0.029; r=0.99, p 3 weren't (r=-0.17, p=0.22; r=0.36, p=0.09, respectively). The values of aFP, CG and uE 3 between pregnancy younger than 35 years-old (n=87) and older than that (n=1640) were 51.67±27.44, vs 54.65±126.36, 46.45±30.08 vs 51.33±38.50 and 8.01±11.01 vs 6.68±7.23, respectively but all of them failed to show significant differences. A second-trimester risk for trisomy 21 > or = 1:270 was considered screen positive. Patients were screen positive for trisomy 21 if aFP or 2.1 MOM and E 3 2.5 MOM. The initial screen-positive rate for both Down' syndrome and neural tube defect were 1.46% (26/1767); 0.73% (13/1767) with each other. Among screen positive 26 patients, three and nine were normal karyotype and normal phenotype, respectively and five patients had still births. Reamining 9 patients underwent terminations. In conclusion, compared with the other group's data even in Koreans (Whang et al, and Song et al

  1. Primary care fetal assessment - low-cost fetal arousal testing

    African Journals Online (AJOL)

    tic cells iver utopsy l ever, . 1990; fr J mphasis ry. 1971;. lQ Dis oducmg. IVe phoma: 1993; rd·. 3rd ed. ant of ,ts. 10: ,th. 83: 51: SAMJ. SHORT. REPORT. Primary care fetal ... Education of mothers about the importance of fetal movements is used to ... thumb and middle finger supporting the rim of the top of the can. The index ...

  2. A fetal whole ovarian culture model for the evaluation of CrVI-induced developmental toxicity during germ cell nest breakdown

    International Nuclear Information System (INIS)

    Stanley, Jone A.; Arosh, Joe A.; Burghardt, Robert C.; Banu, Sakhila K.

    2015-01-01

    Prenatal exposure to endocrine disrupting chemicals (EDCs), including bisphenol A, dioxin, pesticides, and cigarette smoke, has been linked to several ovarian diseases such as premature ovarian failure (POF) and early menopause in women. Hexavalent chromium (CrVI), one of the more toxic heavy metals, is widely used in more than 50 industries. As one of the world's leading producers of Cr compounds, the U.S. is facing growing challenges in protecting human health against adverse effects of CrVI. Our recent findings demonstrated that in vivo CrVI exposure during gestational period caused POF in F1 offspring. Our current research focus is three-fold: (i) to identify the effect of CrVI on critical windows of great vulnerability of fetal ovarian development; (ii) to understand the molecular mechanism of CrVI-induced POF; (iii) to identify potential intervention strategies to mitigate or inhibit CrVI effects. In order to accomplish these goals we used a fetal whole ovarian culture system. Fetuses were removed from the normal pregnant rats on gestational day 13.5. Fetal ovaries were cultured in vitro for 12 days, and treated with or without 0.1 ppm potassium dichromate (CrVI) from culture day 2–8, which recapitulated embryonic day 14.5–20.5, in vivo. Results showed that CrVI increased germ cell/oocyte apoptosis by increasing caspase 3, BAX, p53 and PUMA; decreasing BCL2, BMP15, GDF9 and cKIT; and altering cell cycle regulatory genes and proteins. This model system may serve as a potential tool for high throughput testing of various drugs and/or EDCs in particular to assess developmental toxicity of the ovary. - Highlights: • CrVI (0.1 ppm, a regulatory dose) increased germ cell apoptosis of fetal ovaries. • CrVI (0.1 ppm) increased pro-apoptotic proteins. • CrVI (0.1 ppm) decreased cyclins and CDK1 and cell survival proteins. • CrVI (0.1 ppm) increased oxidative stress during fetal ovarian development. • We propose fetal ovarian culture model for high

  3. Erythropoietin Protects Against Lipopolysaccharide-Induced Microgliosis and Abnormal Granule Cell Development in the Ovine Fetal Cerebellum

    Directory of Open Access Journals (Sweden)

    Annie R. A. McDougall

    2017-07-01

    Full Text Available Erythropoietin (EPO ameliorates inflammation-induced injury in cerebral white matter (WM. However, effects of inflammation on the cerebellum and neuroprotective effects of EPO are unknown. Our aims were to determine: (i whether lipopolysaccharide (LPS-induced intrauterine inflammation causes injury to, and/or impairs development of the cerebellum; and (ii whether recombinant human EPO (rhEPO mitigates these changes. At 107 ± 1 days gestational age (DGA; ~0.7 of term, fetal sheep received LPS (~0.9 μg/kg; i.v. or an equivalent volume of saline, followed 1 h later with 5000 IU/kg rhEPO (i.v. or an equivalent volume of saline (i.v.. This generated the following experimental groups: control (saline + saline; n = 6, LPS (LPS + saline, n = 8 and LPS + rhEPO (n = 8. At necropsy (116 ± 1 DGA; ~0.8 of term the brain was perfusion-fixed and stained histologically (H&E and immunostained to identify granule cells (Neuronal Nuclei, NeuN, granule cell proliferation (Ki67, Bergmann glia (glial fibrillary acidic protein, GFAP, astrogliosis (GFAP and microgliosis (Iba-1. In comparison to controls, LPS fetuses had an increased density of Iba-1-positive microglia (p < 0.005 in the lobular WM; rhEPO prevented this increase (p < 0.05. The thickness of both the proliferative (Ki67-positive and post-mitotic zones (Ki67-negative of the EGL were increased in LPS-exposed fetuses compared to controls (p < 0.05, but were not different between controls and LPS + rhEPO fetuses. LPS also increased (p < 0.001 the density of granule cells (NeuN-positive in the internal granule layer (IGL; rhEPO prevented the increase (p < 0.01. There was no difference between groups in the areas of the vermis (total cross-section, molecular layer (ML, IGL or WM, the density of NeuN-positive granule cells in the ML, the linear density of Bergmann glial fibers, the areal density or somal area of the Purkinje cells, the areal coverage of GFAP-positive astrocytes in the lobular and deep WM, the

  4. Comparative epigenetic influence of autologous versus fetal bovine serum on mesenchymal stem cells through in vitro osteogenic and adipogenic differentiation

    International Nuclear Information System (INIS)

    Fani, Nesa; Ziadlou, Reihane; Shahhoseini, Maryam; Baghaban Eslaminejad, Mohamadreza

    2016-01-01

    Mesenchymal stem cells (MSCs) derived from bone marrow (BM) represents a useful source of adult stem cells for cell therapy and tissue engineering. MSCs are present at a low frequency in the BM; therefore expansion is necessary before performing clinical studies. Fetal bovine serum (FBS) as a nutritional supplement for in vitro culture of MSCs is a suitable additive for human cell culture, but not regarding subsequent use of these cells for clinical treatment of human patients due to the risk of viral and prion transmission as well as xenogeneic immune responses after transplantation. Recently, autologous serum (AS) has been as a supplement to replace FBS in culture medium. We compared the effect of FBS versus AS on the histone modification pattern of MSCs through in vitro osteogenesis and adipogenesis. Differentiation of stem cells under various serum conditions to a committed state involves global changes in epigenetic patterns that are critically determined by chromatin modifications. Chromatin immunoprecipitation (ChIP) coupled with real-time PCR showed significant changes in the acetylation and methylation patterns in lysine 9 (Lys9) of histone H3 on the regulatory regions of stemness (Nanog, Sox2, Rex1), osteogenic (Runx2, Oc, Sp7) and adipogenic (Ppar-γ, Lpl, adiponectin) marker genes in undifferentiated MSCs, FBS and AS. All epigenetic changes occurred in a serum dependent manner which resulted in higher expression level of stemness genes in undifferentiated MSCs compared to differentiated MSCs and increased expression levels of osteogenic genes in AS compared to FBS. Adipogenic genes showed greater expression in FBS compared to AS. These findings have demonstrated the epigenetic influence of serum culture conditions on differentiation potential of MSCs, which suggest that AS is possibly more efficient serum for osteogenic differentiation of MSCs in cell therapy purposes. - Highlights: • Bone marrow derived MSC could proliferate in AS as well as in FBS

  5. Comparative epigenetic influence of autologous versus fetal bovine serum on mesenchymal stem cells through in vitro osteogenic and adipogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Nesa [Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran (Iran, Islamic Republic of); Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ziadlou, Reihane [Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran (Iran, Islamic Republic of); Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Shahhoseini, Maryam, E-mail: m.shahhoseini@royaninstitute.org [Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran (Iran, Islamic Republic of); Baghaban Eslaminejad, Mohamadreza, E-mail: eslami@royaninstitute.org [Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of)

    2016-06-10

    Mesenchymal stem cells (MSCs) derived from bone marrow (BM) represents a useful source of adult stem cells for cell therapy and tissue engineering. MSCs are present at a low frequency in the BM; therefore expansion is necessary before performing clinical studies. Fetal bovine serum (FBS) as a nutritional supplement for in vitro culture of MSCs is a suitable additive for human cell culture, but not regarding subsequent use of these cells for clinical treatment of human patients due to the risk of viral and prion transmission as well as xenogeneic immune responses after transplantation. Recently, autologous serum (AS) has been as a supplement to replace FBS in culture medium. We compared the effect of FBS versus AS on the histone modification pattern of MSCs through in vitro osteogenesis and adipogenesis. Differentiation of stem cells under various serum conditions to a committed state involves global changes in epigenetic patterns that are critically determined by chromatin modifications. Chromatin immunoprecipitation (ChIP) coupled with real-time PCR showed significant changes in the acetylation and methylation patterns in lysine 9 (Lys9) of histone H3 on the regulatory regions of stemness (Nanog, Sox2, Rex1), osteogenic (Runx2, Oc, Sp7) and adipogenic (Ppar-γ, Lpl, adiponectin) marker genes in undifferentiated MSCs, FBS and AS. All epigenetic changes occurred in a serum dependent manner which resulted in higher expression level of stemness genes in undifferentiated MSCs compared to differentiated MSCs and increased expression levels of osteogenic genes in AS compared to FBS. Adipogenic genes showed greater expression in FBS compared to AS. These findings have demonstrated the epigenetic influence of serum culture conditions on differentiation potential of MSCs, which suggest that AS is possibly more efficient serum for osteogenic differentiation of MSCs in cell therapy purposes. - Highlights: • Bone marrow derived MSC could proliferate in AS as well as in FBS

  6. Two cases of fetal goiter

    Directory of Open Access Journals (Sweden)

    Ashish Saini

    2012-01-01

    Full Text Available Introduction: Anterior fetal neck masses are rarely encountered. Careful routine ultrasound screening can reveal intrauterine fetal goiters (FGs. The incidence of goitrous hypothyroidism is 1 in 30,000-50,000 live births. The consequences of both FG and impaired thyroid function are serious. Aims and Objectives: To emphasize role of ultrasound in both invasive and non-invasive management of FG. Materials and Methods: Two pregnant patients, during second trimester, underwent routine antenatal ultrasound revealing FG, were investigated and managed. Results: Case 1: Revealed FG with fetal hypothyroidism. Intra-amniotic injection l-thyroxine given. Follow-up ultrasound confirmed the reduction of the goiter size. At birth, thyroid dyshormogenesis was suspected and neonate discharged on 50 mcg levothyroxine/day with normal growth and development so far. Case 2: Hypothyroid mother with twin pregnancy revealed FG, in twin 1, confirmed on magnetic resonance imaging (1.5 × 1.63 cm. The other twin had no thyroid swelling. Cordocentesis confirmed hypothyroidism in twin 1. Maternal thyroxine dose increased as per biochemical parameters leading to reduction in FG size. Mother delivered preterm and none of the twins had thyroid swelling. Fetal euthyroidism was confirmed on biochemical screening. Conclusion: FG during pregnancy should be thoroughly evaluated, diagnosed and immediately treated; although in utero options for fetal hypothyroidism management are available, emphasis should be laid on non-invasive procedures. Newer and better resolution techniques in ultrasonography are more specific and at the same time are less harmful.

  7. Identification and cloning of a prethymic precursor T lymphocyte from a population of common acute lymphoblastic leukemia antigen (CALLA)-positive fetal bone marrow cells

    DEFF Research Database (Denmark)

    Hokland, P; Hokland, M; Daley, J

    1987-01-01

    We have cloned common acute lymphoblastic leukemia (CALLA)-positive cells from human fetal bone marrow containing less than 1 in 10,000 E-RFC in round-bottomed microtiter wells (one cell per well) using the autocloning unit of an EPICS-V cell sorter. Expansion of such cells (with IL-2 and heavily...... irradiated autologous thymocytes as feeder cells) resulted in growth in 6-14% of the wells (mean, 11%) with cells with mature T lymphocyte phenotype. Two-color fluorescence analysis of outgrowing cultures furthermore ascertained that these cells had differentiated through a phase of simultaneous expression...... of T4 and T8 antigens and at the same time expression of the thymocyte-associated T6 antigens. Thus, given the fact that 10-20% of T cell acute lymphoblastic leukemia (T-ALLs) are CALLA+, we have been able to identify a human prethymic T lymphocyte population that might be the normal counterpart...

  8. Morphological abnormalities, impaired fetal development and decrease in myostatin expression following somatic cell nuclear transfer in dogs.

    Science.gov (United States)

    Hong, Il-Hwa; Jeong, Yeon-Woo; Shin, Taeyoung; Hyun, Sang-Hwan; Park, Jin-Kyu; Ki, Mi-Ran; Han, Seon-Young; Park, Se-Il; Lee, Ji-Hyun; Lee, Eun-Mi; Kim, Ah-Young; You, Sang-Young; Hwang, Woo-Suk; Jeong, Kyu-Shik

    2011-05-01

    Several mammals, including dogs, have been successfully cloned using somatic cell nuclear transfer (SCNT), but the efficiency of generating normal, live offspring is relatively low. Although the high failure rate has been attributed to incomplete reprogramming of the somatic nuclei during the cloning process, the exact cause is not fully known. To elucidate the cause of death in cloned offspring, 12 deceased offspring cloned by SCNT were necropsied. The clones were either stillborn just prior to delivery or died with dyspnea shortly after birth. On gross examination, defects in the anterior abdominal wall and increased heart and liver sizes were found. Notably, a significant increase in muscle mass and macroglossia lesions were observed in deceased SCNT-cloned dogs. Interestingly, the expression of myostatin, a negative regulator of muscle growth during embryogenesis, was down-regulated at the mRNA level in tongues and skeletal muscles of SCNT-cloned dogs compared with a normal dog. Results of the present study suggest that decreased expression of myostatin in SCNT-cloned dogs may be involved in morphological abnormalities such as increased muscle mass and macroglossia, which may contribute to impaired fetal development and poor survival rates. Copyright © 2011 Wiley-Liss, Inc.

  9. Towards a non-invasive method for early detection of testicular neoplasia in semen samples by identification of fetal germ cell-specific markers

    DEFF Research Database (Denmark)

    Hoei-Hansen, C E; Carlsen, E; Jorgensen, N

    2007-01-01

    /gonocyte markers is presented. METHODS: Immunocytological staining for AP-2gamma [and in some cases, OCT-3/4, NANOG or placental alkaline phosphatase (PLAP)] was performed in semen samples from 294 infertile patients and 209 patients with TGCTs or other diseases. RESULTS: Presence of AP-2gamma-stained cells...... but reduced in participants with overt TGCTs, perhaps because of obstruction. Assay specificity was 93.6%, positive predictive value (PPV) 83.3% and negative predictive value (NPV) 60.3%. CONCLUSIONS: Immunocytological semen analysis based on expression of fetal germ cell markers in exfoliated cells has...

  10. Development of a preparation and staining method for fetal erythroblasts in maternal blood : Simultaneous immunocytochemical staining and FISH analysis

    NARCIS (Netherlands)

    Oosterwijk, JC; Mesker, WE; Ouwerkerk-van Velzen, MCM; Knepfle, CFHM; Wiesmeijer, KC; van den Burg, MJM; Beverstock, GC; Bernini, LF; van Ommen, Gert-Jan B; Kanhai, HHH; Tanke, HJ

    1998-01-01

    In order to detect fetal nucleated red blood cells (NRBCs) in maternal blood, a protocol was developed which aimed at producing a reliable staining method for combined immunocytochemical and FISH analysis. The technique had to be suitable for eventual automated screening of slides. Chorionic villi

  11. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    International Nuclear Information System (INIS)

    Kaklamani, Georgia; Bowen, James; Mehrban, Nazia; Dong, Hanshan; Grover, Liam M.; Stamboulis, Artemis

    2013-01-01

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N 2 /H 2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of C-N, C=N, and C≡N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  12. Upregulating CXCR4 in human fetal mesenchymal stem cells enhances engraftment and bone mechanics in a mouse model of osteogenesis imperfecta.

    Science.gov (United States)

    Jones, Gemma N; Moschidou, Dafni; Lay, Kenneth; Abdulrazzak, Hassan; Vanleene, Maximilien; Shefelbine, Sandra J; Polak, Julia; de Coppi, Paolo; Fisk, Nicholas M; Guillot, Pascale V

    2012-01-01

    Stem cells have considerable potential to repair damaged organs and tissues. We previously showed that prenatal transplantation of human first trimester fetal blood mesenchymal stem cells (hfMSCs) in a mouse model of osteogenesis imperfecta (oim mice) led to a phenotypic improvement, with a marked decrease in fracture rate. Donor cells differentiated into mature osteoblasts, producing bone proteins and minerals, including collagen type Iα2, which is absent in nontransplanted mice. This led to modifications of the bone matrix and subsequent decrease of bone brittleness, indicating that grafted cells directly contribute to improvement of bone mechanical properties. Nevertheless, the therapeutic effect was incomplete, attributing to the limited level of engraftment in bone. In this study, we show that although migration of hfMSCs to bone and bone marrow is CXCR4-SDF1 (SDF1 is stromal-derived factor) dependent, only a small number of cells present CXCR4 on the cell surface despite high levels of internal CXCR4. Priming with SDF1, however, upregulates CXCR4 to increase the CXCR4(+) cell fraction, improving chemotaxis in vitro and enhancing engraftment in vivo at least threefold in both oim and wild-type bone and bone marrow. Higher engraftment in oim bones was associated with decreased bone brittleness. This strategy represents a step to improve the therapeutic benefits of fetal cell therapy toward being curative.

  13. Long-Term Engraftment and Fetal Globin Induction uponBCL11AGene Editing in Bone-Marrow-Derived CD34+Hematopoietic Stem and Progenitor Cells.

    Science.gov (United States)

    Chang, Kai-Hsin; Smith, Sarah E; Sullivan, Timothy; Chen, Kai; Zhou, Qianhe; West, Jason A; Liu, Mei; Liu, Yingchun; Vieira, Benjamin F; Sun, Chao; Hong, Vu P; Zhang, Mingxuan; Yang, Xiao; Reik, Andreas; Urnov, Fyodor D; Rebar, Edward J; Holmes, Michael C; Danos, Olivier; Jiang, Haiyan; Tan, Siyuan

    2017-03-17

    To develop an effective and sustainable cell therapy for sickle cell disease (SCD), we investigated the feasibility of targeted disruption of the BCL11A gene, either within exon 2 or at the GATAA motif in the intronic erythroid-specific enhancer, using zinc finger nucleases in human bone marrow (BM) CD34 + hematopoietic stem and progenitor cells (HSPCs). Both targeting strategies upregulated fetal globin expression in erythroid cells to levels predicted to inhibit hemoglobin S polymerization. However, complete inactivation of BCL11A resulting from bi-allelic frameshift mutations in BCL11A exon 2 adversely affected erythroid enucleation. In contrast, bi-allelic disruption of the GATAA motif in the erythroid enhancer of BCL11A did not negatively impact enucleation. Furthermore, BCL11A exon 2-edited BM-CD34 + cells demonstrated a significantly reduced engraftment potential in immunodeficient mice. Such an adverse effect on HSPC function was not observed upon BCL11A erythroid-enhancer GATAA motif editing, because enhancer-edited CD34 + cells achieved robust long-term engraftment and gave rise to erythroid cells with elevated levels of fetal globin expression when chimeric BM was cultured ex vivo. Altogether, our results support further clinical development of the BCL11A erythroid-specific enhancer editing in BM-CD34 + HSPCs as an autologous stem cell therapy in SCD patients.

  14. Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34+ Hematopoietic Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Kai-Hsin Chang

    2017-03-01

    Full Text Available To develop an effective and sustainable cell therapy for sickle cell disease (SCD, we investigated the feasibility of targeted disruption of the BCL11A gene, either within exon 2 or at the GATAA motif in the intronic erythroid-specific enhancer, using zinc finger nucleases in human bone marrow (BM CD34+ hematopoietic stem and progenitor cells (HSPCs. Both targeting strategies upregulated fetal globin expression in erythroid cells to levels predicted to inhibit hemoglobin S polymerization. However, complete inactivation of BCL11A resulting from bi-allelic frameshift mutations in BCL11A exon 2 adversely affected erythroid enucleation. In contrast, bi-allelic disruption of the GATAA motif in the erythroid enhancer of BCL11A did not negatively impact enucleation. Furthermore, BCL11A exon 2-edited BM-CD34+ cells demonstrated a significantly reduced engraftment potential in immunodeficient mice. Such an adverse effect on HSPC function was not observed upon BCL11A erythroid-enhancer GATAA motif editing, because enhancer-edited CD34+ cells achieved robust long-term engraftment and gave rise to erythroid cells with elevated levels of fetal globin expression when chimeric BM was cultured ex vivo. Altogether, our results support further clinical development of the BCL11A erythroid-specific enhancer editing in BM-CD34+ HSPCs as an autologous stem cell therapy in SCD patients.

  15. Maternal Intuition of Fetal Gender

    Directory of Open Access Journals (Sweden)

    Michael McFadzen

    2017-08-01

    Full Text Available Purpose: Fetal gender speculation is a preoccupation of many expecting parents, and pregnant women commonly profess to intuitively know the gender of their unborn babies. This study objectively compared pregnant mothers’ perceptions of fetal gender to sonographically proven gender determinations. Also, success rates from previously published studies, noninvasive prenatal testing and a myriad of gender determination methods were observed and reported for context. Methods: All pregnant women presenting for second-trimester screening ultrasound (at 17–23 weeks gestation in the obstetrics department of a single health center were asked to participate. A medical sonographer described the ultrasound examination, obtained appropriate consent and medical history. Each mother was asked if she had any perception as to the fetal gender and her answer documented. Mothers who had foreknowledge of fetal gender were excluded. Frequencies of actual gender were compared with observed frequencies of the maternal prediction using chi-squared test. Results: Approximately 40% (n = 411 of our study population (N = 1,026 indicated having an intuition or perception of fetal gender. These women correctly predicted the gender of their babies 51% of the time (P = 0.6571. Women who expressed a “strong” degree of intuition (n = 53 fared better, accurately predicting fetal gender at a rate of 62%, though the difference in this smaller subcohort also failed to demonstrate statistical significance (P = 0.0741. Conclusions: Intuition of fetal gender is professed by almost half of mothers though, when present, is no better at accurately predicting fetal gender than flipping a coin.

  16. Optimization of chemically defined cell culture media - Replacing fetal bovine serum in mammalian in vitro methods

    DEFF Research Database (Denmark)

    van der Valk, J; Brunner, D; De Smet, K

    2010-01-01

    Quality assurance is becoming increasingly important. Good laboratory practice (GLP) and good manufacturing practice (GMP) are now established standards. The biomedical field aims at an increasing reliance on the use of in vitro methods. Cell and tissue culture methods are generally fast, cheap, ...

  17. Evaluation of royal jelly as an alternative to fetal bovine serum in cell ...

    African Journals Online (AJOL)

    Background: Royal jelly is a nutritious substance produced by the young nurse bees and contains significant amounts of proteins which are important for cell growth ... In the Alamar Blue assay, 0.156 and 0.078 mg/ml of royal jelly produced greater percentage of reduction at day 3 even though no significant difference was ...

  18. Does Fetal antigen 1 (FA1) identify cells with regenerative, endocrine and neuroendocrine potentials?

    DEFF Research Database (Denmark)

    Floridon, C.; Jensen, C.H.; Thorsen, P.

    2000-01-01

    -embryonic tissues from normal and pathological pregnancies revealed FA1 in stromal cells surrounding the blood islands of the yolk sac as well as in placental fibroblasts where the expression was most pronounced in diploid, androgenic complete hydatidiform moles. However, as measured by ELISA, the circulating...

  19. Impact of fetal and neonatal environment on beta cell function and development of diabetes

    DEFF Research Database (Denmark)

    Nielsen, Jens H; Haase, Tobias N; Jaksch, Caroline

    2014-01-01

    nutrients and gut microbiota on appetite regulation, mitochondrial activity and the immune system that may affect beta cell growth and function directly and indirectly is discussed. The possible role of epigenetic changes in the transgenerational transmission of the adverse programming may be the most...

  20. Pre- and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: a two-center experience.

    Science.gov (United States)

    Götherström, Cecilia; Westgren, Magnus; Shaw, S W Steven; Aström, Eva; Biswas, Arijit; Byers, Peter H; Mattar, Citra N Z; Graham, Gail E; Taslimi, Jahan; Ewald, Uwe; Fisk, Nicholas M; Yeoh, Allen E J; Lin, Ju-Li; Cheng, Po-Jen; Choolani, Mahesh; Le Blanc, Katarina; Chan, Jerry K Y

    2014-02-01

    Osteogenesis imperfecta (OI) can be recognized prenatally with ultrasound. Transplantation of mesenchymal stem cells (MSCs) has the potential to ameliorate skeletal damage. We report the clinical course of two patients with OI who received prenatal human fetal MSC (hfMSC) transplantation and postnatal boosting with same-donor MSCs. We have previously reported on prenatal transplantation for OI type III. This patient was retransplanted with 2.8 × 10(6) same-donor MSCs per kilogram at 8 years of age, resulting in low-level engraftment in bone and improved linear growth, mobility, and fracture incidence. An infant with an identical mutation who did not receive MSC therapy succumbed at 5 months despite postnatal bisphosphonate therapy. A second fetus with OI type IV was also transplanted with 30 × 10(6) hfMSCs per kilogram at 31 weeks of gestation and did not suffer any new fractures for the remainder of the pregnancy or during infancy. The patient followed her normal growth velocity until 13 months of age, at which time longitudinal length plateaued. A postnatal infusion of 10 × 10(6) MSCs per kilogram from the same donor was performed at 19 months of age, resulting in resumption of her growth trajectory. Neither patient demonstrated alloreactivity toward the donor hfMSCs or manifested any evidence of toxicities after transplantation. Our findings suggest that prenatal transplantation of allogeneic hfMSCs in OI appears safe and is of likely clinical benefit and that retransplantation with same-donor cells is feasible. However, the limited experience to date means that it is not possible to be conclusive and that further studies are required.

  1. Nanomechanical clues from morphologically normal cervical squamous cells could improve cervical cancer screening

    Science.gov (United States)

    Geng, Li; Feng, Jiantao; Sun, Quanmei; Liu, Jing; Hua, Wenda; Li, Jing; Ao, Zhuo; You, Ke; Guo, Yanli; Liao, Fulong; Zhang, Youyi; Guo, Hongyan; Han, Jinsong; Xiong, Guangwu; Zhang, Lufang; Han, Dong

    2015-09-01

    Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis.Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03662c

  2. Premarital screening for sickle cell haemoglobin: awareness and ...

    African Journals Online (AJOL)

    Urinary tract infection (UTI), a significant but preventable cause of morbidity in children, is an important risk factor for development of renal insufficiency. Having simple and reliable means of screening children facilitate its prompt treatment.To evaluate the use of dipstick test for leukocyte esterase (LE) and nitrite as screening ...

  3. Neuroendocrine cells during human prostate development: does neuroendocrine cell density remain constant during fetal as well as postnatal life?

    NARCIS (Netherlands)

    Xue, Y.; van der Laak, J.; Smedts, F.; Schoots, C.; Verhofstad, A.; de la Rosette, J.; Schalken, J.

    2000-01-01

    Knowledge concerning differentiation of neuroendocrine (NE) cells during development of the human prostate is rather fragmentary. Using immunohistochemistry combined with a morphometric method, we investigated the distribution and density of NE cells in the developing human prostate, with special

  4. Notch pathway regulates female germ cell meiosis progression and early oogenesis events in fetal mouse.

    Science.gov (United States)

    Feng, Yan-Min; Liang, Gui-Jin; Pan, Bo; Qin, Xun-Si; Zhang, Xi-Feng; Chen, Chun-Lei; Li, Lan; Cheng, Shun-Feng; De Felici, Massimo; Shen, Wei

    2014-01-01

    A critical process of early oogenesis is the entry of mitotic oogonia into meiosis, a cell cycle switch regulated by a complex gene regulatory network. Although Notch pathway is involved in numerous important aspects of oogenesis in invertebrate species, whether it plays roles in early oogenesis events in mammals is unknown. Therefore, the rationale of the present study was to investigate the roles of Notch signaling in crucial processes of early oogenesis, such as meiosis entry and early oocyte growth. Notch receptors and ligands were localized in mouse embryonic female gonads and 2 Notch inhibitors, namely DAPT and L-685,458, were used to attenuate its signaling in an in vitro culture system of ovarian tissues from 12.5 days post coitum (dpc) fetus. The results demonstrated that the expression of Stra8, a master gene for germ cell meiosis, and its stimulation by retinoic acid (RA) were reduced after suppression of Notch signaling, and the other meiotic genes, Dazl, Dmc1, and Rec8, were abolished or markedly decreased. Furthermore, RNAi of Notch1 also markedly inhibited the expression of Stra8 and SCP3 in cultured female germ cells. The increased methylation status of CpG islands within the Stra8 promoter of the oocytes was observed in the presence of DAPT, indicating that Notch signaling is probably necessary for maintaining the epigenetic state of this gene in a way suitable for RA stimulation. Furthermore, in the presence of Notch inhibitors, progression of oocytes through meiosis I was markedly delayed. At later culture periods, the rate of oocyte growth was decreased, which impaired subsequent primordial follicle assembly in cultured ovarian tissues. Taken together, these results suggested new roles of the Notch signaling pathway in female germ cell meiosis progression and early oogenesis events in mammals.

  5. Cell Cycle Dependent Expression of Plk1 in Synchronized Porcine Fetal Fibroblasts

    Czech Academy of Sciences Publication Activity Database

    Anger, Martin; Kues, W. A.; Klíma, Jiří; Mielenz, M.; Kubelka, Michal; Motlík, Jan; Ešner, M.; Dvořák, P.; Carnwath, J. W.; Niemann, H.

    2003-01-01

    Roč. 65, č. 3 (2003), s. 245-253 ISSN 1040-452X R&D Projects: GA MŠk LN00A065 Grant - others:FIRCA(XX) R03-TW-05530-01 Institutional research plan: CEZ:AV0Z5045916 Keywords : Plk1 * serum deprivation * cell cycle Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.543, year: 2003

  6. Involvement of placental/umbilical cord blood acid-base status and gas values on the radiosensitivity of human fetal/neonatal hematopoietic stem/progenitor cells

    International Nuclear Information System (INIS)

    Yamaguchi, Masaru; Ebina, Satoko; Kashiwakura, Ikuo

    2013-01-01

    Arterial cord blood (CB) acid-base status and gas values, such as pH, PCO 2 , PO 2 , HCO 3 - and base excess, provide useful information on the fetal and neonatal condition. However, it remains unknown whether these values affect the radiosensitivity of fetal/neonatal hematopoiesis. The present study evaluated the relationship between arterial CB acid-base status, gas values, and the radiosensitivity of CB hematopoietic stem/progenitor cells (HSPCs). A total of 25 CB units were collected. The arterial CB acid-base status and gas values were measured within 30 min of delivery. The CD34 + HSPCs obtained from CB were exposed to 2 Gy X-irradiation, and then assayed for colony-forming unit-granulocyte-macrophage, burst-forming unit-erythroid (BFU-E), and colony-forming unit-granulocyte erythroid, macrophage and megakaryocyte cells. Acid-base status and gas values for PCO 2 and HCO 3 - showed a statistically significant negative correlation with the surviving fraction of BFU-E. In addition, a significant positive correlation was observed between gestational age and PCO 2 . Moreover, the surviving fraction of BFU-E showed a significant negative correlation with gestational age. Thus, HSPCs obtained from CB with high PCO 2 /HCO 3 - levels were sensitive to X-irradiation, which suggests that the status of arterial PCO 2 /HCO 3 - influences the radiosensitivity of fetal/neonatal hematopoiesis, especially erythropoiesis. (author)

  7. CA-125 of fetal origin can act as a ligand for dendritic cell-specific ICAM-3-grabbing non-integrin.

    Science.gov (United States)

    Mitić, Ninoslav; Milutinović, Bojana; Janković, Miroslava

    2014-06-01

    CA-125 (coelomic epithelium-related antigen) forms the extracellular portion of transmembrane mucin 16 (MUC16). It is shed after proteolytic degradation. Due to structural heterogeneity, CA-125 ligand capacity and biological roles are not yet understood. In this study, we assessed CA-125 as a ligand for dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN), which is a C-type lectin showing specificity for mannosylated and fucosylated structures. It plays a role as a pattern recognition molecule for viral and bacterial glycans or as an adhesion receptor. We probed a human DC-SIGN-Fc chimera with CA-125 of fetal or cancer origin using solid- or fluid-phase binding and inhibition assays. The results showed that DC-SIGN binds to CA-125 of fetal origin and that this interaction is carbohydrate-dependent. By contrast, cancer-derived CA-125 displayed negligible binding. Inhibition assays indicated differences in the potency of CA-125 to interfere with DC-SIGN binding to pathogen-related glycoconjugates, such as mannan and Helicobacter pylori antigens. The differences in ligand properties between CA-125 of fetal and cancer origin may be due to specificities of glycosylation. This might influence various functions of dendritic cells based on their subset diversity and maturation-related functional capacity.

  8. Impact of fetal echocardiography

    International Nuclear Information System (INIS)

    Simpson, John M

    2009-01-01

    Prenatal diagnosis of congenital heart disease is now well established for a wide range of cardiac anomalies. Diagnosis of congenital heart disease during fetal life not only identifies the cardiac lesion but may also lead to detection of associated abnormalities. This information allows a detailed discussion of the prognosis with parents. For continuing pregnancies, appropriate preparation can be made to optimize the postnatal outcome. Reduced morbidity and mortality, following antenatal diagnosis, has been reported for coarctation of the aorta, hypoplastic left heart syndrome, and transposition of the great arteries. With regard to screening policy, most affected fetuses are in the “low risk” population, emphasizing the importance of appropriate training for those who undertake such obstetric anomaly scans. As a minimum, the four chamber view of the fetal heart should be incorporated into midtrimester anomaly scans, and where feasible, views of the outflow tracts should also be included, to increase the diagnostic yield. Newer screening techniques, such as measurement of nuchal translucency, may contribute to identification of fetuses at high risk for congenital heart disease and prompt referral for detailed cardiac assessment

  9. Impact of fetal echocardiography

    Directory of Open Access Journals (Sweden)

    Simpson John

    2009-01-01

    Full Text Available Prenatal diagnosis of congenital heart disease is now well established for a wide range of cardiac anomalies. Diagnosis of congenital heart disease during fetal life not only identifies the cardiac lesion but may also lead to detection of associated abnormalities. This information allows a detailed discussion of the prognosis with parents. For continuing pregnancies, appropriate preparation can be made to optimize the postnatal outcome. Reduced morbidity and mortality, following antenatal diagnosis, has been reported for coarctation of the aorta, hypoplastic left heart syndrome, and transposition of the great arteries. With regard to screening policy, most affected fetuses are in the "low risk" population, emphasizing the importance of appropriate training for those who undertake such obstetric anomaly scans. As a minimum, the four chamber view of the fetal heart should be incorporated into midtrimester anomaly scans, and where feasible, views of the outflow tracts should also be included, to increase the diagnostic yield. Newer screening techniques, such as measurement of nuchal translucency, may contribute to identification of fetuses at high risk for congenital heart disease and prompt referral for detailed cardiac assessment.

  10. Human fetal spinal stem cells improve locomotor function after spinal cord injury in the rat

    Czech Academy of Sciences Publication Activity Database

    Amemori, Takashi; Romanyuk, Nataliya; Jendelová, Pavla; Herynek, V.; Turnovcová, Karolína; Mareková, Dana; Kapcalová, Miroslava; Price, J.; Syková, Eva

    2011-01-01

    Roč. 59, S1 (2011), S84-S85 ISSN 0894-1491. [European meeting on Glial Cells in Health and Disease /10./. 13.09.2011-17.09.2011, Prague] R&D Projects: GA MŠk(CZ) LC554; GA AV ČR IAA500390902; GA ČR GA203/09/1242 Grant - others:GA ČR(CZ) GD309/08/H079 Institutional research plan: CEZ:AV0Z50390703 Keywords : spinal cord injury Subject RIV: FH - Neurology

  11. Fetal colon cell line FHC exhibits tumorigenic phenotype, complex karyotype, and TP53 gene mutation

    Czech Academy of Sciences Publication Activity Database

    Souček, Karel; Jirsová, Pavla; Brázdová, Marie; Hýžďalová, Martina; Kočí, Lenka; Vydra, D.; Trojanec, R.; Pernicová, Zuzana; Lentvorská, L.; Hajdúch, M.; Hofmanová, Jiřina; Kozubík, Alois

    2010-01-01

    Roč. 197, č. 2 (2010), s. 107-116 ISSN 0165-4608 R&D Projects: GA MŠk ME 919; GA ČR(CZ) GA204/07/0834; GA ČR(CZ) GA204/08/1560; GA AV ČR(CZ) 1QS500040507; GA MZd NS9600 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : colon epithelial cells * TP53 * MYC Subject RIV: BO - Biophysics Impact factor: 1.551, year: 2010

  12. Expression of StAR and Key Genes Regulating Cortisol Biosynthesis in Near Term Ovine Fetal Adrenocortical Cells: Effects of Long-Term Hypoxia.

    Science.gov (United States)

    Vargas, Vladimir E; Myers, Dean A; Kaushal, Kanchan M; Ducsay, Charles A

    2018-02-01

    We previously demonstrated decreased expression of key genes regulating cortisol biosynthesis in long-term hypoxic (LTH) sheep fetal adrenals compared to controls. We also showed that inhibition of the extracellular signal-regulated kinases (ERKs) with the mitogen-activated protein kinase (MEK)/ERK inhibitor UO126 limited adrenocorticotropic (ACTH)-induced cortisol production in ovine fetal adrenocortical cells (FACs), suggesting a role for ERKs in cortisol synthesis. This study was designed to determine whether the previously observed decrease in LTH cytochrome P45011A1/cytochrome P450c17 (CYP11A1/CYP17) in adrenal glands was maintained in vitro, and whether ACTH alone with or without UO126 treatment had altered the expression of CYP11A1, CYP17, and steroidogenic acute regulatory protein (StAR) in control versus LTH FACs. Ewes were maintained at high altitude (3820 m) from ∼40 days of gestation (dG). At 138 to 141 dG, fetal adrenal glands were collected from LTH (n = 5) and age-matched normoxic controls (n = 6). Fetal adrenocortical cells were challenged with ACTH (10 -8 M) with or without UO126 (10 µM) for 18 hours. Media samples were collected for cortisol analysis and messenger RNA (mRNA) for CYP11A1, CYP17, and StAR was quantified by quantitative real-time polymerase chain reaction. Cortisol was higher in the LTH versus control ( P StAR mRNA was decreased in LTH versus control ( P StAR expression.

  13. Bim expression in endothelial cells and pericytes is essential for regression of the fetal ocular vasculature.

    Science.gov (United States)

    Wang, Shoujian; Zaitoun, Ismail S; Johnson, Ryan P; Jamali, Nasim; Gurel, Zafer; Wintheiser, Catherine M; Strasser, Andreas; Lindner, Volkhard; Sheibani, Nader; Sorenson, Christine M

    2017-01-01

    Apoptosis plays a central role in developmental and pathological angiogenesis and vessel regression. Bim is a pro-apoptotic Bcl-2 family member that plays a prominent role in both developmental and pathological ocular vessel regression, and neovascularization. Endothelial cells (EC) and pericytes (PC) each play unique roles during vascular development, maintenance and regression. We recently showed that germline deletion of Bim results in persistent hyaloid vasculature, increased retinal vascular density and prevents retinal vessel regression in response to hyperoxia. To determine whether retinal vascular regression is attributable to Bim expression in EC or PC we generated mice carrying a conditional Bim allele (BimFlox/Flox) and VE-cadherin-cre (BimEC mice) or Pdgfrb-cre (BimPC mice). BimEC and BimPC mice demonstrated attenuated hyaloid vessel regression and postnatal retinal vascular remodeling. We also observed decreased retinal vascular apoptosis and proliferation. Unlike global Bim -/- mice, mice conditionally lacking Bim in EC or PC underwent hyperoxia-mediated vessel obliteration and subsequent retinal neovascularization during oxygen-induced ischemic retinopathy similar to control littermates. Thus, understanding the cell autonomous role Bim plays in the retinal vascular homeostasis will give us new insight into how to modulate pathological retinal neovascularization and vessel regression to preserve vision.

  14. A CRISPR screen identifies a pathway required for paraquat-induced cell death.

    Science.gov (United States)

    Reczek, Colleen R; Birsoy, Kıvanç; Kong, Hyewon; Martínez-Reyes, Inmaculada; Wang, Tim; Gao, Peng; Sabatini, David M; Chandel, Navdeep S

    2017-12-01

    Paraquat, a herbicide linked to Parkinson's disease, generates reactive oxygen species (ROS), which causes cell death. Because the source of paraquat-induced ROS production remains unknown, we conducted a CRISPR-based positive-selection screen to identify metabolic genes essential for paraquat-induced cell death. Our screen uncovered three genes, POR (cytochrome P450 oxidoreductase), ATP7A (copper transporter), and SLC45A4 (sucrose transporter), required for paraquat-induced cell death. Furthermore, our results revealed POR as the source of paraquat-induced ROS production. Thus, our study highlights the use of functional genomic screens for uncovering redox biology.

  15. Critical parameters in the MCF-7 cell proliferation bioassay (E-Screen)

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Høj; Nielsen, Jesper Bo

    2002-01-01

    of hormone-free controls. In the highly responsive MCF-7 BUS cell line, we evaluated critical assay parameters for test performance, including growth conditions, initial seeding densities and differences in growth stimulation in medium containing human serum or fetal calf serum as well as appropriate...... solvents for oestrogen-mimicking compounds. Modifications significantly reduced the labour-intensive steps and overall assay costs without affecting the sensitivity of the assay. Using this optimized test regimen, the responsiveness of treated MCF-7 BUS cells was consistently increased up to 11-fold over...

  16. Fetal syringomyelia.

    Science.gov (United States)

    Guo, Anne; Chitayat, David; Blaser, Susan; Keating, Sarah; Shannon, Patrick

    2014-08-06

    We explored the prevalence of syringomyelia in a series of 113 cases of fetal dysraphism and hindbrain crowding, of gestational age ranging from 17.5 to 34 weeks with the vast majority less than 26 weeks gestational age. We found syringomyelia in 13 cases of Chiari II malformations, 5 cases of Omphalocele/Exostrophy/Imperforate anus/Spinal abnormality (OEIS), 2 cases of Meckel Gruber syndrome and in a single pair of pyopagus conjoined twins. Secondary injury was not uncommon, with vernicomyelia in Chiari malformations, infarct like histology, or old hemorrhage in 8 cases of syringomyelia. Vernicomyelia did not occur in the absence of syrinx formation. The syringes extended from the sites of dysraphism, in ascending or descending patterns. The syringes were usually in a major proportion anatomically distinct from a dilated or denuded central canal and tended to be dorsal and paramedian or median. We suggest that fetal syringomyelia in Chiari II malformation and other dysraphic states is often established prior to midgestation, has contributions from the primary malformation as well as from secondary in utero injury and is anatomically and pathophysiologically distinct from post natal syringomyelia secondary to hindbrain crowding.

  17. Sonographic measurement of the fetal thymus: Relationship with maternal obesity.

    Science.gov (United States)

    Yildirim, Melahat; Ipek, Ali; Dauletkazin, Gulcan; Cendek, Busra Demir; Gezegen, Saniye; Desdicioglu, Raziye; Yavuz, Ayse Filiz Avsar

    2017-06-01

    The purpose of this study was to evaluate the influence of maternal obesity on the size of the fetal thymus. The study population consisted of 138 pregnant women who were divided into two groups based on their body mass index (BMI): Normal-weight group (n = 97; BMI: 18-25 kg/m 2 ) and obese group (n = 41; BMI: ≥ 30 kg/m 2 ). All participants underwent routine second-trimester prenatal ultrasound (US) screening at 20-25 weeks of gestation. Differences in US measurement of fetal thymus, fetal anthropometric measurements, subcutaneous adipose tissue thickness, fetal weight, gestational age, white blood cell count, and C-reactive protein (CRP) values between groups were compared. The mean thymus size was 18.7 ± 2.9 mm for normal-weight group, and 21.6 ± 3.7 mm for the obese group (p thymus size was increased in obese women, and this increase may indicate immunologic abnormalities in fetuses. However, future large-scale studies are necessary to support this association. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 45:277-281, 2017. © 2017 Wiley Periodicals, Inc.

  18. A common signaling pathway is activated in erythroid cells expressing high levels of fetal hemoglobin: a potential role for cAMP-elevating agents in β-globin disorders

    Directory of Open Access Journals (Sweden)

    Ikuta T

    2013-12-01

    Full Text Available Tohru Ikuta,1 Yuichi Kuroyanagi,1 Nadine Odo,1 Siyang Liu21Department of Anesthesiology and Perioperative Medicine, 2Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USABackground: Although erythroid cells prepared from fetal liver, cord blood, or blood from β-thalassemia patients are known to express fetal hemoglobin at high levels, the underlying mechanisms remain elusive. We previously showed that cyclic nucleotides such as cAMP and cGMP induce fetal hemoglobin expression in primary erythroid cells. Here we report that cAMP signaling contributes to high-level fetal hemoglobin expression in erythroid cells prepared from cord blood and β-thalassemia.Methods: The status of the cAMP signaling pathway was investigated using primary erythroid cells prepared from cord blood and the mononuclear cells of patients with β-thalassemia; erythroid cells from adult bone marrow mononuclear cells served as the control.Results: We found that intracellular cAMP levels were higher in erythroid cells from cord blood and β-thalassemia than from adult bone marrow. Protein kinase A activity levels and cAMP-response element binding protein phosphorylation were higher in erythroid cells from cord blood or β-thalassemia than in adult bone marrow progenitors. Mitogen-activated protein kinase pathways, which play a role in fetal hemoglobin expression, were not consistently activated in cord blood or β-thalassemia erythroid cells. When cAMP signaling was activated in adult erythroid cells, fetal hemoglobin was induced at high levels and associated with reduced expression of BCL11A, a silencer of the β-globin gene.Conclusion: These results suggest that activated cAMP signaling may be a common mechanism among erythroid cells with high fetal hemoglobin levels, in part because of downregulation of BCL11A. Activation of the cAMP signaling pathway with cAMP-elevating agents may prove to be an important signaling mechanism to

  19. Fully synthetic phage-like system for screening mixtures of small molecules in live cells.

    Science.gov (United States)

    Byk, Gerardo; Partouche, Shirly; Weiss, Aryeh; Margel, Shlomo; Khandadash, Raz

    2010-05-10

    A synthetic "phage-like" system was designed for screening mixtures of small molecules in live cells. The core of the system consists of 2 mum diameter cross-linked monodispersed microspheres bearing a panel of fluorescent tags and peptides or small molecules either directly synthesized or covalently conjugated to the microspheres. The microsphere mixtures were screened for affinity to cell line PC-3 (prostate cancer model) by incubation with live cells, and as was with phage-display peptide methods, unbound microspheres were removed by repeated washings followed by total lysis of cells and analysis of the bound microspheres by flow-cytometry. Similar to phage-display peptide screening, this method can be applied even in the absence of prior information about the cellular targets of the candidate ligands, which makes the system especially interesting for selection of molecules with high affinity for desired cells, tissues, or tumors. The advantage of the proposed system is the possibility of screening synthetic non-natural peptides or small molecules that cannot be expressed and screened using phage display libraries. A library composed of small molecules synthesized by the Ugi reaction was screened, and a small molecule, Rak-2, which strongly binds to PC-3 cells was found. Rak-2 was then individually synthesized and validated in a complementary whole cell-based binding assay, as well as by live cell microscopy. This new system demonstrates that a mixture of molecules bound to subcellular sized microspheres can be screened on plated cells. Together with other methods using subcellular sized particles for cellular multiplexing, this method represents an important milestone toward high throughput screening of mixtures of small molecules in live cells and in vivo with potential applications in the fields of drug delivery and diagnostic imaging.

  20. Maternal and fetal outcomes among women with depression.

    Science.gov (United States)

    Bansil, Pooja; Kuklina, Elena V; Meikle, Susan F; Posner, Samuel F; Kourtis, Athena P; Ellington, Sascha R; Jamieson, Denise J

    2010-02-01

    To compare maternal and fetal outcomes among women with and without diagnosed depression at the time of delivery. Hospital discharge data from the 1998-2005 Nationwide Inpatient Sample (NIS) were used to examine delivery-related hospitalizations for select maternal and fetal outcomes by depression diagnosis. The rate of depression per 1000 deliveries increased significantly from 2.73 in 1998 to 14.1 in 2005 (p depression were significantly more likely to have cesarean delivery, preterm labor, anemia, diabetes, and preeclampsia or hypertension compared with women without depression. Fetal outcomes significantly associated with maternal depression were fetal growth restriction, fetal abnormalities, fetal distress, and fetal death. These findings suggest that depression is associated with adverse maternal and fetal outcomes. Our results provide additional impetus to screen for depression among women of reproductive age, especially those who plan to become pregnant.

  1. Prenatal testing for hemolytic disease of the newborn and fetal neonatal alloimmune thrombocytopenia - current status.

    Science.gov (United States)

    Avent, Neil D

    2014-12-01

    Incompatibility of red cell and platelet antigens can lead to maternal alloimmunization causing hemolytic disease of the fetus & newborn and fetal neonatal alloimmune thrombocytopenia respectively. As the molecular background of these polymorphisms emerged, prenatal testing using initially fetal DNA obtained from invasively obtained amniotic fluid or chorionic villus was implemented. This evolved into testing using maternal plasma as source of fetal DNA, and this is in routine use as a safe non-invasive diagnostic that has no risk to the fetus of alloimmunization or spontaneous miscarriage. These tests were initially applied to high risk pregnancies, but has been applied on a mass scale, to screen fetuses in D-negative pregnant populations as national screening programs. Fetal neonatal alloimmune thrombocytopenia management has had comparatively small take up in non-invasive testing for causative fetal platelet alleles (e.g., HPA-1A), but mass scale genotyping of mothers to identify at risk HPA-1b1b pregnancies and their treatment with prophylactic anti-HPA-1A is being considered in at least one country (Norway).

  2. Fetally derived CCL3 is not essential for the migration of maternal cells across the blood-placental barrier in the mouse.

    Science.gov (United States)

    Unno, Akihiro; Suzuki, Kazuhiko; Kitoh, Katsuya; Takashima, Yasuhiro

    2010-11-01

    In mammals with a hemochorial placenta (e.g., primates and rodents), the maternal and fetal bloodstreams are separated by the blood-placenta barrier. However, a few maternal cells in the general circulation pass through the barrier during normal pregnancy. So far, the transfer mechanism has not been investigated. In this study, we established a chemokine (C-C motif) ligand 3 (CCL3)-deficient mouse model to examine the effect of fetus-derived chemokine(s) on the migration of maternal cells through the blood-placenta barrier. Using this model, we obtained CCL3-positive and -negative littermates from a mother expressing both CCL3 and green fluorescent protein (GFP). The numbers of GFP positive maternal cells in the lung, liver, spleen and heart of CCL3-positive and -negative fetuses were compared. A few GFP-positive cells were detected in the lung and liver of both types of fetus. These results indicate that maternal cells can migrate through the blood-placenta barrier even in the absence of fetal CCL3.

  3. RNAi screening for characterisation of ER-associated degradation pathways in mammalian cells

    DEFF Research Database (Denmark)

    Månsson, Mats David Joakim

    fluorescence-based RNAi screens in mammalian cells on TCR-α-GFP and HANSκLC, for identification of ERAD pathways. By validating the obtained screening hits we concluded that UBE2J2 is involved in TCR-α-GFP degradation, possibly by ubiquitination of C-terminal serine residues in TCR-α-GFP. Additionally, we also...

  4. Cell-free fetal DNA in maternal plasma and noninvasive prenatal diagnosis DNA fetal libre en el plasma materno y diagnóstico prenatal no invasivo DNA livre fetal em plasma materno e diagnóstico pré-natal não invasivo

    Directory of Open Access Journals (Sweden)

    Ester Silveira Ramos

    2006-12-01

    Full Text Available The noninvasive nature of the detection of fetal DNA in the maternal circulation represents the greatest advantage over the conventional methods of prenatal diagnosis. The applications of this methodology involve the detection of the fetal sex, and diagnosis, intra-uterine treatment, and evaluation of the prognosis of many diseases. Fetal cells detected in the maternal circulation have also been shown to be implicated in autoimmune diseases and to represent a potential source of stem cells. On the other hand, with the introduction of a technology that detects the fetal sex as early as at 6-8 weeks of gestation, there is the possibility of early abortion based on sex selection for social purposes. This implies an ethical discussion about the question. The introduction of new noninvasive techniques of prenatal diagnosis and the knowledge of the Nursing Team regarding new methodologies can be of great benefit to the mother and her children, and can help the Genetic Counseling of the families.La naturaleza no invasiva de la investigación del DNA fetal en la circulación materna representa una ventaja importante con relación a los métodos convencionales de diagnóstico prenatal. El uso de esta metodología implica la determinación del sexo fetal y el diagnóstico, el tratamiento intra-útero y la evaluación del pronóstico en muchas enfermedades. Las células fetales detectadas en la circulación maternal también pueden ser implicadas en enfermedades autoinmunes y representar una fuente potencial de células madre. Por otra parte, con la introducción de una tecnología que detecte el sexo fetal entre 6-8 semanas de gestación, existe la posibilidad de aborto precoz basada en la selección del sexo para los propósitos sociales. Esto implica una discusión ética previa sobre este problema. La introducción de nuevas técnicas no invasivas de diagnóstico prenatal y el conocimiento del Equipo de Enfermería con respecto a las nuevas metodolog

  5. The SDF-1α/CXCR4 Axis is Required for Proliferation and Maturation of Human Fetal Pancreatic Endocrine Progenitor Cells

    Science.gov (United States)

    Kayali, Ayse G.; Lopez, Ana D.; Hao, Ergeng; Hinton, Andrew; Hayek, Alberto; King, Charles C.

    2012-01-01

    The chemokine receptor CXCR4 and ligand SDF-1α are expressed in fetal and adult mouse islets. Neutralization of CXCR4 has previously been shown to diminish ductal cell proliferation and increase apoptosis in the IFNγ transgenic mouse model in which the adult mouse pancreas displays islet regeneration. Here, we demonstrate that CXCR4 and SDF-1α are expressed in the human fetal pancreas and that during early gestation, CXCR4 colocalizes with neurogenin 3 (ngn3), a key transcription factor for endocrine specification in the pancreas. Treatment of islet like clusters (ICCs) derived from human fetal pancreas with SDF-1α resulted in increased proliferation of epithelial cells in ICCs without a concomitant increase in total insulin expression. Exposure of ICCs in vitro to AMD3100, a pharmacological inhibitor of CXCR4, did not alter expression of endocrine hormones insulin and glucagon, or the pancreatic endocrine transcription factors PDX1, Nkx6.1, Ngn3 and PAX4. However, a strong inhibition of β cell genesis was observed when in vitro AMD3100 treatment of ICCs was followed by two weeks of in vivo treatment with AMD3100 after ICC transplantation into mice. Analysis of the grafts for human C-peptide found that inhibition of CXCR4 activity profoundly inhibits islet development. Subsequently, a model pancreatic epithelial cell system (CFPAC-1) was employed to study the signals that regulate proliferation and apoptosis by the SDF-1α/CXCR4 axis. From a selected panel of inhibitors tested, both the PI 3-kinase and MAPK pathways were identified as critical regulators of CFPAC-1 proliferation. SDF-1α stimulated Akt phosphorylation, but failed to increase phosphorylation of Erk above the high basal levels observed. Taken together, these results indicate that SDF-1α/CXCR4 axis plays a critical regulatory role in the genesis of human islets. PMID:22761699

  6. Drug and bioactive molecule screening based on a bioelectrical impedance cell culture platform.

    Science.gov (United States)

    Ramasamy, Sakthivel; Bennet, Devasier; Kim, Sanghyo

    2014-01-01

    This review will present a brief discussion on the recent advancements of bioelectrical impedance cell-based biosensors, especially the electric cell-substrate impedance sensing (ECIS) system for screening of various bioactive molecules. The different technical integrations of various chip types, working principles, measurement systems, and applications for drug targeting of molecules in cells are highlighted in this paper. Screening of bioactive molecules based on electric cell-substrate impedance sensing is a trial-and-error process toward the development of therapeutically active agents for drug discovery and therapeutics. In general, bioactive molecule screening can be used to identify active molecular targets for various diseases and toxicity at the cellular level with nanoscale resolution. In the innovation and screening of new drugs or bioactive molecules, the activeness, the efficacy of the compound, and safety in biological systems are the main concerns on which determination of drug candidates is based. Further, drug discovery and screening of compounds are often performed in cell-based test systems in order to reduce costs and save time. Moreover, this system can provide more relevant results in in vivo studies, as well as high-throughput drug screening for various diseases during the early stages of drug discovery. Recently, MEMS technologies and integration with image detection techniques have been employed successfully. These new technologies and their possible ongoing transformations are addressed. Select reports are outlined, and not all the work that has been performed in the field of drug screening and development is covered.

  7. DEVELOPMENT OF AN ENVIRONMENTAL ESTROGEN SCREEN USING TRANSIENTLY TRANSFECTED RAINBOW TROUT CELL LINES

    Science.gov (United States)

    Rainbow troutp hepatoma (RTH-149) and gonad cells (RTG-2) were used to develop a screening protocol for estrogen disrupting chemicals. Transfection of an estrogen-responsive luciferase reporter plasmid into...

  8. Screening for hemosiderosis in patients receiving multiple red blood cell transfusions

    NARCIS (Netherlands)

    de Jongh, Adriaan D; van Beers, E J|info:eu-repo/dai/nl/314670793; de Vooght, K M K|info:eu-repo/dai/nl/304817961; Schutgens, R E G|info:eu-repo/dai/nl/258752084

    2017-01-01

    Background: The dramatic impact of hemosiderosis on survival in chronically transfused patients with hereditary anemia is well known. We evaluated whether patients receiving multiple red blood cell (RBC) transfusions are adequately screened for hemosiderosis. Methods: We retrospectively assessed

  9. Medio ambiente fetal Fetal environment

    Directory of Open Access Journals (Sweden)

    César Bernardo Ospina Arcila

    1996-04-01

    Full Text Available Con base en el artículo clásico "Monte Everest in utero" se hace un análisis de la situación que afronta el feto con respecto a la disponibilidad de oxígeno; para una mejor comprensión del sufrimiento fetal se revisan los siguientes conceptos: presión barométrica, presión parcial del oxígeno atmosférico, presión parcial del oxígeno inspirado, presión barométrica intranasal, ecuación del gas alveolar y difusión de gases a través de la membrana alvéolo capilar. Based on the classical paper by Eastman "Mount Everest in utero" an analysis is made of the situation faced by the fetus with respect to the availability of oxygen; for a better under. standing of fetal distress the following concepts are reviewed: barometric pressure, partial pressure of atmosferic oxygen, partial pressure of inspired oxygen, barometric intranasal pressure, alveolar gas equation and gas diffusion through alveolo-capilar membrane.

  10. Screening ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) Assay

    Science.gov (United States)

    An Adherent Cell Differentiation and Cytotoxicity (ACDC) in vitro assay with mouse embryonic stem cells was used to screen the ToxCast Phase I chemical library for effects on cellular differentiation and cell number. The U.S. Environmental Protection Agency (EPA) established the ...

  11. Theory of direct sunlight transmission through orthogonal screen cells

    International Nuclear Information System (INIS)

    Aljofi, E.K.

    2006-01-01

    The Purpose of this paper is to investigate the feasibility of using the Rawshan screens to control high light intensity and to avoid excessive solar radiation penetrating inside the building interior. The exploration of the environmental characteristics of this device indicates an ideal solution to utilize available daylight in the arid atmosphere, reduces energy consumption due to the us of artificial light and ensures the continuity of the traditional architecture and the country heritage. A systematic analysis of direct sunlight transmission has been explored using a mathematical approach. The study intends to construct a predictive tool for the architects through which different specifications of the Rawshan screens were identified as far as direct beam of light concerned. The predictive tool was set-up to investigate various parameters of the screen such as the screen configurations, the aperture configurations, the change in orientation and the effect of the sky condition. The analysis of light transmission through the screen were set-up for orthogonal shapes

  12. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy, E-mail: shivanna@bcm.edu

    2015-07-15

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  13. Monomethylfumarate induces γ-globin expression and