WorldWideScience

Sample records for fescue decomposition rates

  1. Alkaloids May Not be Responsible for Endophyte Associated Reductions in Tall Fescue Decomposition Rates

    Science.gov (United States)

    1. Fungal endophyte - grass symbioses can have dramatic ecological effects, altering individual plant physiology, plant and animal community structure and function, and ecosystem processes such as litter decomposition and nutrient cycling. 2. Within the tall fescue (Schedonorus arundinaceus) - funga...

  2. Genotype x environmental interaction for mature size and rate of maturing for Angus, Brahman, and reciprocal-cross cows grazing bermudagrass or endophyte infected fescue.

    Science.gov (United States)

    Sandelin, B A; Brown, A H; Brown, M A; Johnson, Z B; Kellogg, D W; Stelzleni, A M

    2002-12-01

    Mature weight and rate of maturing were estimated in 177 Angus, Brahman, and reciprocal-cross cows grazing bermudagrass or endophyte-infected tall fescue over a 4-yr period to evaluate genotype x environment interactions. Data were collected every 28 d until cows were approximately 18 mo of age and then at prebreeding, postcalving, and weaning of calf. All cows with weight data to at least 42 mo of age were included in the analysis. Mature weight and rate of maturing were estimated using the three-parameter growth curve model described by Brody (1945). Data were pooled over year and analyzed by the general linear model procedure of SAS. Included in the models for mature weight and rate of maturing were the independent variables of genotype, environment, and genotype x environment interaction. There was a genotype x environment interaction (P < 0.01) for mature body weight (BW) but not for rate of maturing. Angus cows grazing fescue pastures had greater (P < 0.01) mean mature BW than Angus x Brahman cows grazing bermudagrass (611 +/- 17 vs 546 +/- 16 kg). Angus x Brahman cows grazing bermudagrass had lower (P < 0.05) mean mature BW than Brahman x Angus cows grazing bermudagrass or endophyte-infected fescue and Brahman cows grazing bermudagrass (546 +/- 16 vs 624 +/- 19, 614 +/- 22 and 598 +/- 20 kg, respectively). Brahman cows grazing endophyte-infected fescue had smaller (P < 0.05) mean mature BW than all genotype x forage combinations except for Angus x Brahman cows grazing bermudagrass. Angus cows had a smaller (P < 0.05) mean rate of maturing than Angus x Brahman and Brahman x Angus cows (0.039 +/- 0.002 vs 0.054 +/- 0.002 and 0.049 +/- 0.002%/mo, respectively), respectively, and Angus x Brahman cows had a larger (P < 0.05) mean rate of maturing than Brahman x Angus and Brahman cows (0.054 +/- 0.002 vs 0.049 +/- 0.002 and 0.041 +/- 0.002 %/mo, respectively). There was a direct breed x forage interaction (P < 0.05) for mature BW. These data suggest that the

  3. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    the thermal decomposition behaviour of the aforementioned powder at high heating rates was taken into considera- ... does not change the process of releasing hydrogen from titanium hydride ... from titanium hydride in a sequence of steps.

  4. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    Effect of high heating rate on thermal decomposition behaviour of titanium hydride ... hydride powder, while switching it from internal diffusion to chemical reaction. ... TiH phase and oxides form on the powder surface, controlling the process.

  5. The influence of preburial insect access on the decomposition rate.

    Science.gov (United States)

    Bachmann, Jutta; Simmons, Tal

    2010-07-01

    This study compared total body score (TBS) in buried remains (35 cm depth) with and without insect access prior to burial. Sixty rabbit carcasses were exhumed at 50 accumulated degree day (ADD) intervals. Weight loss, TBS, intra-abdominal decomposition, carcass/soil interface temperature, and below-carcass soil pH were recorded and analyzed. Results showed significant differences (p decomposition rates between carcasses with and without insect access prior to burial. An approximately 30% enhanced decomposition rate with insects was observed. TBS was the most valid tool in postmortem interval (PMI) estimation. All other variables showed only weak relationships to decomposition stages, adding little value to PMI estimation. Although progress in estimating the PMI for surface remains has been made, no previous studies have accomplished this for buried remains. This study builds a framework to which further comparable studies can contribute, to produce predictive models for PMI estimation in buried human remains.

  6. Functional leaf attributes predict litter decomposition rate in herbaceous plants

    NARCIS (Netherlands)

    Cornelissen, J. H C; Thompson, K.

    1997-01-01

    We tested the hypothesis that functional attributes of living leaves provide a basis for predicting the decomposition rate of leaf litter. The data were obtained from standardized screening tests on 38 British herbaceous species. Graminoid monocots had physically tougher leaves with higher silicon

  7. Decomposition of sugar cane crop residues under different nitrogen rates

    Directory of Open Access Journals (Sweden)

    Douglas Costa Potrich

    2014-09-01

    Full Text Available The deposition of organic residues through mechanical harvesting of cane sugar is a growing practice in sugarcane production system. The maintenance of these residues on the soil surface depends mainly on environmental conditions. Nitrogen fertilization on dry residues tend to retard decomposition of these, providing benefits such as increased SOM. Thus, the object of this research was to evaluate the effect of different doses of nitrogen on sugar cane crop residues, as its decomposition and contribution to carbon sequestration in soil. The experiment was conducted in Dourados-MS and consisted of a randomized complete block design. Dried residues were placed in litter bags and the treatments were arranged in a split plot, being the four nitrogen rates (0, 50, 100 and 150 kg ha-1 N the plots, and the seven sampling times (0, 30, 60, 90, 120, 150 and 180 the spit plots. Decomposition rates of residues, total organic carbon and labile carbon on soil were analysed. The application of increasing N doses resulted in an increase in their decomposition rates. Despite this, note also the mineral N application as a strategy to get higher levels of labile carbon in soil.

  8. What drives credit rating changes? : a return decomposition approach

    OpenAIRE

    Cho, Hyungjin; Choi, Sun Hwa

    2015-01-01

    This paper examines the relative importance of a shock to expected cash flows (i.e., cash-flow news) and a shock to expected discount rates (i.e., discount-rate news) in credit rating changes. Specifically, we use a Vector Autoregressive model to implement the return decomposition of Campbell and Shiller (Review of Financial Studies, 1, 1988, 195) and Vuolteenaho (Journal of Finance, 57, 2002, 233) to extract cash-flow news and discount-rate news from stock returns at the firm-level. We find ...

  9. Decomposition rates of radiopharmaceutical indium chelates in serum

    International Nuclear Information System (INIS)

    Yeh, S.M.; Meares, C.F.; Goodwin, D.A.

    1979-01-01

    The rates at which six small aminopolycarboxylate chelates of trivalent 111 In and three protein-bound chelates of 111 In deliver indium to the serum protein transferrin have been studied in sterile human serum at pH 7.3, 37 deg C. Sterically hindered chelates containing a substituent on an ethylene carbon of EDTA decompose with rates in the range 0.03 to 0.11% per day - one to two orders of magnitude slower than other chelates. Only small differences are observed between rates of decomposition for low-molecular-weight chelates and for protein-bound chelates having analogous structures. (author)

  10. Influence of harvest managements on biomass nutrient concentrations and removal rates of festulolium and tall fescue from a poorly drained nutrient-rich fen peatland

    DEFF Research Database (Denmark)

    Kandel, Tanka; Elsgaard, Lars; Lærke, Poul Erik

    2017-01-01

    This study was designed to show the effects of harvest time and frequency on biomass nutrient concentrations (total ash, N, P, K, Ca, Mg, Fe, Mn, Cu and Zn) as well as total nutrient removal potential by festulolium and tall fescue cultivated on a nutrient-rich fen peatland. The harvest managemen...

  11. Hybrid empirical mode decomposition- ARIMA for forecasting exchange rates

    Science.gov (United States)

    Abadan, Siti Sarah; Shabri, Ani; Ismail, Shuhaida

    2015-02-01

    This paper studied the forecasting of monthly Malaysian Ringgit (MYR)/ United State Dollar (USD) exchange rates using the hybrid of two methods which are the empirical model decomposition (EMD) and the autoregressive integrated moving average (ARIMA). MYR is pegged to USD during the Asian financial crisis causing the exchange rates are fixed to 3.800 from 2nd of September 1998 until 21st of July 2005. Thus, the chosen data in this paper is the post-July 2005 data, starting from August 2005 to July 2010. The comparative study using root mean square error (RMSE) and mean absolute error (MAE) showed that the EMD-ARIMA outperformed the single-ARIMA and the random walk benchmark model.

  12. The trait contribution to wood decomposition rates of 15 Neotropical tree species.

    Science.gov (United States)

    van Geffen, Koert G; Poorter, Lourens; Sass-Klaassen, Ute; van Logtestijn, Richard S P; Cornelissen, Johannes H C

    2010-12-01

    The decomposition of dead wood is a critical uncertainty in models of the global carbon cycle. Despite this, relatively few studies have focused on dead wood decomposition, with a strong bias to higher latitudes. Especially the effect of interspecific variation in species traits on differences in wood decomposition rates remains unknown. In order to fill these gaps, we applied a novel method to study long-term wood decomposition of 15 tree species in a Bolivian semi-evergreen tropical moist forest. We hypothesized that interspecific differences in species traits are important drivers of variation in wood decomposition rates. Wood decomposition rates (fractional mass loss) varied between 0.01 and 0.31 yr(-1). We measured 10 different chemical, anatomical, and morphological traits for all species. The species' average traits were useful predictors of wood decomposition rates, particularly the average diameter (dbh) of the tree species (R2 = 0.41). Lignin concentration further increased the proportion of explained inter-specific variation in wood decomposition (both negative relations, cumulative R2 = 0.55), although it did not significantly explain variation in wood decomposition rates if considered alone. When dbh values of the actual dead trees sampled for decomposition rate determination were used as a predictor variable, the final model (including dead tree dbh and lignin concentration) explained even more variation in wood decomposition rates (R2 = 0.71), underlining the importance of dbh in wood decomposition. Other traits, including wood density, wood anatomical traits, macronutrient concentrations, and the amount of phenolic extractives could not significantly explain the variation in wood decomposition rates. The surprising results of this multi-species study, in which for the first time a large set of traits is explicitly linked to wood decomposition rates, merits further testing in other forest ecosystems.

  13. Litter Decomposition Rate of Avicennia marina and Rhizophora apiculata in Pulau Dua Nature Reserve, Banten

    Directory of Open Access Journals (Sweden)

    Febriana Siska

    2016-05-01

    Full Text Available Litter decomposition rate is useful method to determine forest fertility level. The aims of this study were to measure decomposition rate, and analyze the nutrient content released organic carbon, nitrogen, and phosphor from Avicennia marina and Rhizophora apiculata litters during the decomposition process. The research was conducted in the Pulau Dua Nature Reserve, Serang-Banten on A. marina and R. apiculata forest communities. Litter decomposition rate measurements performed in the field. Litter that has been obtained with the trap system is inserted into litter bag and than tied to the roots or trees to avoid drifting sea water. Litter decomposition rate was measured every 15 days and is accompanied by analysis of the content of organic C , total N and P. Our research results showed decomposition rate of A. marina (k= 0.83 was higher than that of R. apiculata (k= 0.41. Differences of  leaf anatomical structure and sea water salinity  influenced to the rate of litter decomposition. Organic C released was declined with longer of litter decomposition, on the contrary of releasing N and P nutrients.

  14. Effects of oxygen and catalyst on tetraphenylborate decomposition rate

    International Nuclear Information System (INIS)

    Walker, D.D.

    1999-01-01

    Previous studies indicate that palladium catalyzes rapid decomposition of alkaline tetraphenylborate slurries. Oxygen inhibits the reaction at low temperature (25 C), presumably by preventing activation of the catalyst. The present study investigated oxygen's inhibiting effectiveness at higher temperature (45 C) and catalyst concentrations

  15. Decomposition rate of Rhizopora stylosa litter in Tanjung Rejo Village, Deli Serdang Regency, North Sumatera Province

    Science.gov (United States)

    Rambey, R.; Delvian; Sianturi, S. D.

    2018-02-01

    Research on the decomposition rate of Rhizopora stylosa litter in Tanjung Rejo village, Deli Serdang Regency, North Sumatera Province was conducted from September 2016 to May 2017. The objectives of this research were (1) to measure the decomposition rate of Rhizophora stylosa litter and (2) to determine the type of functional fungi in decomposition of litter. R. stylosa litter decomposition is characterized by a reduction in litter weight per observation period. Decomposition rate tended to increase every week, which was from 0.238 in the seventh day and reached 0.302 on the fiftysixthth day. The decomposition rate of R. stylosa litter of leaf was high with the value of k per day > 0,01 caused by macrobentos and fungi, and also the decomposition of R. stylosa litter conducted in the pond area which is classified far from the coast. Therefore, to enable the high population of fungi which affect the decomposition rate of the litter. The types of fungi decomposers were: Aspergillus sp.-1, Aspergillus sp.-2, Aspergillus sp.-3, Rhizophus sp.-1., Rhizophus sp.-2, Penicillium sp., Syncephalastrum sp. and Fusarium sp.

  16. Tropical herbivorous phasmids, but not litter snails, alter decomposition rates by modifying litter bacteria

    Science.gov (United States)

    Chelse M. Prather; Gary E. Belovsky; Sharon A. Cantrell; Grizelle González

    2018-01-01

    Consumers can alter decomposition rates through both feces and selective feeding in many ecosystems, but these combined effects have seldom been examined in tropical ecosystems. Members of the detrital food web (litter-feeders or microbivores) should presumably have greater effects on decomposition than herbivores, members of the green food web. Using litterbag...

  17. Comparison of decomposition rates between autopsied and non-autopsied human remains.

    Science.gov (United States)

    Bates, Lennon N; Wescott, Daniel J

    2016-04-01

    Penetrating trauma has been cited as a significant factor in the rate of decomposition. Therefore, penetrating trauma may have an effect on estimations of time-since-death in medicolegal investigations and on research examining decomposition rates and processes when autopsied human bodies are used. The goal of this study was to determine if there are differences in the rate of decomposition between autopsied and non-autopsied human remains in the same environment. The purpose is to shed light on how large incisions, such as those from a thorocoabdominal autopsy, effect time-since-death estimations and research on the rate of decomposition that use both autopsied and non-autopsied human remains. In this study, 59 non-autopsied and 24 autopsied bodies were studied. The number of accumulated degree days required to reach each decomposition stage was then compared between autopsied and non-autopsied remains. Additionally, both types of bodies were examined for seasonal differences in decomposition rates. As temperature affects the rate of decomposition, this study also compared the internal body temperatures of autopsied and non-autopsied remains to see if differences between the two may be leading to differential decomposition. For this portion of this study, eight non-autopsied and five autopsied bodies were investigated. Internal temperature was collected once a day for two weeks. The results showed that differences in the decomposition rate between autopsied and non-autopsied remains was not statistically significant, though the average ADD needed to reach each stage of decomposition was slightly lower for autopsied bodies than non-autopsied bodies. There was also no significant difference between autopsied and non-autopsied bodies in the rate of decomposition by season or in internal temperature. Therefore, this study suggests that it is unnecessary to separate autopsied and non-autopsied remains when studying gross stages of human decomposition in Central Texas

  18. Application of biotechnology in genetics and breeding of tall fescue

    International Nuclear Information System (INIS)

    Huang Xin; Ye Hongxia; Shu Xiaoli; Wu Dianxing

    2008-01-01

    Tall fescue (Festuca arundinacea Schred.) is an important lawn and pasture grass in agriculture, animal husbandy and lawn industry. The historical and present situations of tall fescue breeding were briefly introduced, and advances in the researches of molecular biology and germplasm enhancement by biotechnology in tall fescue were reviewed in the paper, which would provide the references for tall fescue breeding by biotechnology. (authors)

  19. Genotypic evaluation of tall fescue dihaploids by capillary electrophoresis

    Science.gov (United States)

    Recent innovations in tall fescue breeding and selection allow for the generation of dihaploid tall fescue lines. During the dihaploid generation process, two possible products can be generated. These being tall fescue hybrids generated from outcrossing and homozygous dihaploid tall fescue lines. As...

  20. Solvation effect on decomposition rate of 10-methyl-10-phenylphenoxarsonium iodide in some alcohols and ketones

    International Nuclear Information System (INIS)

    Gavrilov, V.I.; Gumerov, N.S.; Rakhmatullin, R.R.

    1989-01-01

    By the method of conductometry decomposition kinetics of 10-methyl-10phenylphenoxarsonium iodide in methanol, ethanol, 2-propanol, 1-butanol, 1-pentanol and methyl ethyl ketone at initial concentration of the salt 0.00024-0.003 mol/l, is studied. It is shown that at the temperatures up to 80-95 deg C practically no decomposition of arsonium salt in methanol and ethanol is observed. With an increase in the length of alcohol alkyl radical the decomposition rate increases. The values of activation enrgy both for alcohols and ketone are approximately the same. At the same time, decomposition rate in alcohol proved much slower than in ketone, which is related to iodide-ion solvation in protic solvents

  1. Solvation effect on decomposition rate of 10-methyl-10-phenylphenoxarsonium iodide in some alcohols and ketones

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, V I; Gumerov, N S; Rakhmatullin, R R [Kazanskij Khimiko-Tekhnologicheskij Inst., Kazan (USSR)

    1989-03-01

    By the method of conductometry decomposition kinetics of 10-methyl-10phenylphenoxarsonium iodide in methanol, ethanol, 2-propanol, 1-butanol, 1-pentanol and methyl ethyl ketone at initial concentration of the salt 0.00024-0.003 mol/l, is studied. It is shown that at the temperatures up to 80-95 deg C practically no decomposition of arsonium salt in methanol and ethanol is observed. With an increase in the length of alcohol alkyl radical the decomposition rate increases. The values of activation enrgy both for alcohols and ketone are approximately the same. At the same time, decomposition rate in alcohol proved much slower than in ketone, which is related to iodide-ion solvation in protic solvents.

  2. Litter Decomposition Rate of Karst Ecosystem at Gunung Cibodas, Ciampea Bogor Indonesia

    Directory of Open Access Journals (Sweden)

    Sethyo Vieni Sari

    2016-05-01

    Full Text Available The study aims to know the productivity of litter and litter decomposition rate in karst ecosystem. This study was conducted on three altitude of 200 meter above sea level (masl, 250 masl and 300 masl in karst ecosystem at Gunung Cibodas, Ciampea, Bogor. Litter productivity measurement performed using litter-trap method and litter-bag method was used to know the rate of decomposition. Litter productivity measurement results showed that the highest total of litter productivity measurement results was on altitude of 200 masl (90.452 tons/ha/year and the lowest was on altitude of 300 masl (25.440 tons/ha/year. The litter productivity of leaves (81.425 ton/ha/year showed the highest result than twigs (16.839 ton/ha/year, as well as flowers and fruits (27.839 ton/ha/year. The rate of decomposition was influenced by rainfall. The decomposition rate and the decrease of litter dry weight on altitude of 250 masl was faster than on the altitude of 200 masl and 300 masl. The dry weight was positively correlated to the rate of decomposition. The lower of dry weight would affect the rate of decomposition become slower. The average of litter C/N ratio were ranged from 28.024%--28.716% and categorized as moderate (>25. The finding indicate that the rate of decomposition in karst ecosystem at Gunung Cibodas was slow and based on C/N ratio of litter showed the mineralization process was also slow.

  3. Let's Break it Down: A Study of Organic Decomposition Rates in Clay Soil

    Science.gov (United States)

    Weiss, E.

    2016-12-01

    In this experiment I will be testing if temperature affects the organic decomposition rates in clay soil. I will need to be able to clean and weigh each filter paper without disrupting my data damaging or brushing off additional paper material. From there I need to be able to analyze and interpret my data to factor anything else that may affect the decomposition rates in the soil. Soil decomposers include bacteria and fungi. They obtain energy from plant and animal detritus through aerobic decomposition, which is similar to how humans break down sugar. The formula is: C6H12O6 + O2 → CO2 + H2O + energy. Besides oxygen and sugar the organisms need nutrients such as water and sustainable temperatures. Decomposition is important to us because it helps regulate soil structure, moisture, temperature, and provides nutrients to soil organisms. This matters on a global scale since decomposers release a large amount of carbon when breaking down matter, which contributes to greenhouse gasses such as carbon dioxide and methane. These greenhouse gasses affect the earth's climate. People who care about decomposition are farmers and those in agriculture, as well as environmental scientists. Even national parks might care because decomposition may affect park safety, how the park looks, and the amount of plants and wildlife. Things that can affect decomposition are the decomposers in the soil, temperature, and water or moisture. My secondary research also showed that PH and chemical composition of the soil affect the rate of decomposition.Cold or freezing temperatures can help preserve organic material in soil because it freezes the soil and moisture, making it too dense for the organic decomposers to break down the organic matter. Soil also can be preserved by drying out and being stored at 4º Celsius (or 39º Fahrenheit) for 28 days. However, soil can degrade slowly in these conditions because it is not frozen and can be oxidized.

  4. Rate of litter decomposition and microbial activity in an area of Caatinga

    Directory of Open Access Journals (Sweden)

    Patrícia Carneiro Souto

    2013-12-01

    Full Text Available In order to evaluate the decomposition of litter and microbial activity in an area of preserved Caatinga, an experiment was conducted in the Natural Heritage Private Reserve Tamanduá Farm in Santa Terezinha county, State of Paraiba. The decomposition rate was determined by using litter bags containing 30 g of litter, which were arranged on the soil surface in September 2003 and 20 bags were taken each month until September 2005. The collected material was oven dried and weighed to assess weight loss compared to initial weight. Microbial activity was estimated monthly by the quantification of carbon dioxide (CO2 released into the edaphic breathing process from the soil surface, and captured by KOH solution. Weight loss of litter after one year was 41.19% and, after two years, was 48.37%, indicating a faster decomposition in the first year. Data analysis showed the influence of season on litter decomposition and temperature on microbial activity.

  5. Relative effectiveness of sewage sludge as a nitrogen fertilizer for tall fescue

    Energy Technology Data Exchange (ETDEWEB)

    Kiemnec, G.L.; Jackson, T.L.; Hemphill, D.D. Jr.; Volk, V.V.

    Sewage sludge application rates on grasses are mainly determined by N availability and concentration of toxic metals in sludge. The exact availability of N in sludge is difficult to predict. A 3-yr study was conducted to determine which sludge rates would give yields of tall fescue (Festuca arundinacea Shreb. Alta) comparable to yields obtained from inorganic N application. Sludge and NH/sub 4/NO/sub 3/ were surface applied at annual rates of 0, 110, 220, 440, and 880 (sludge only) kg N/ha. Dry matter yield of tall fescue from sludge-treated soils was 36, 56, and 50% of that on NH/sub 4/NO/sub 3/-treated soils for 1976, 1977, and 1978, respectively. Sludge was 27, 41, and 44% as effective as NH/sub 4/NO/sub 3/ as a source of available N in 1976, 1977, and 1978, respectively. Ammonium-N in the sewage sludge apparently provided most of the available N for fescue growth. Concentrations of Zn, Cd, and Cu were higher and Mn lower in tall fescue grown on sludge-treated soil with NH/sub 4/NO/sub 3/ and usually increased toward the end of the growing season. However, plant concentrations of these heavy metals never reached toxic levels at any time. Sewage sludge was an effective and safe nutrient source for tall fescue.

  6. Plastic waste sacks alter the rate of decomposition of dismembered bodies within.

    Science.gov (United States)

    Scholl, Kassra; Moffatt, Colin

    2017-07-01

    As a result of criminal activity, human bodies are sometimes dismembered and concealed within sealed, plastic waste sacks. Consequently, due to the inhibited ingress of insects and dismemberment, the rate of decomposition of the body parts within may be different to that of whole, exposed bodies. Correspondingly, once found, an estimation of the postmortem interval may be affected and lead to erroneous inferences. This study set out to determine whether insects were excluded and how rate of decomposition was affected inside such plastic sacks. The limbs, torsos and heads of 24 dismembered pigs were sealed using nylon cable ties within plastic garbage sacks, half of which were of a type claimed to repel insects. Using a body scoring scale to quantify decomposition, the body parts in the sacks were compared to those of ten exposed, whole pig carcasses. Insects were found to have entered both types of plastic sack. There was no difference in rate of decomposition in the two types of sack (F 1,65  = 1.78, p = 0.19), but this was considerably slower than those of whole carcasses (F 1,408  = 1453, p < 0.001), with heads showing the largest differences. As well as a slower decomposition, sacks resulted in formation of some adipocere tissue as a result of high humidity within. Based upon existing methods, postmortem intervals for body parts within sealed sacks would be significantly underestimated.

  7. Tall fescue ergot alkaloids are vasoactive in equine vasculature

    Science.gov (United States)

    Mares grazing endophyte-infected (Epichloë coenophiala) tall fescue (Lolium arundinaceum) typically exhibit reproductive dysfunction rather than problems associated with peripheral vasoconstriction as a primary sign of the fescue toxicosis syndrome. Research using Doppler ultrasonography demonstrate...

  8. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Directory of Open Access Journals (Sweden)

    Lori D. Bothwell

    2014-12-01

    Full Text Available Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5 across a broad range of ecosystems. The percentage of leaf litter nitrogen (N remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming.

  9. Effects of Problem Decomposition (Partitioning) on the Rate of Convergence of Parallel Numerical Algorithms

    Czech Academy of Sciences Publication Activity Database

    Cullum, J. K.; Johnson, K.; Tůma, Miroslav

    2003-01-01

    Roč. 10, - (2003), s. 445-465 ISSN 1070-5325 R&D Projects: GA ČR GA201/02/0595; GA AV ČR IAA1030103 Institutional research plan: CEZ:AV0Z1030915 Keywords : parallel algorithms * graph partitioning * problem decomposition * rate of convergence Subject RIV: BA - General Mathematics Impact factor: 1.042, year: 2003

  10. Relationship of host recurrence in fungi to rates of tropical leaf decomposition

    Science.gov (United States)

    Mirna E. Santanaa; JeanD. Lodgeb; Patricia Lebowc

    2004-01-01

    Here we explore the significance of fungal diversity on ecosystem processes by testing whether microfungal ‘preferences’ for (i.e., host recurrence) different tropical leaf species increases the rate of decomposition. We used pairwise combinations of girradiated litter of five tree species with cultures of two dominant microfungi derived from each plant in a microcosm...

  11. Maximum production rate optimization for sulphuric acid decomposition process in tubular plug-flow reactor

    International Nuclear Information System (INIS)

    Wang, Chao; Chen, Lingen; Xia, Shaojun; Sun, Fengrui

    2016-01-01

    A sulphuric acid decomposition process in a tubular plug-flow reactor with fixed inlet flow rate and completely controllable exterior wall temperature profile and reactants pressure profile is studied in this paper by using finite-time thermodynamics. The maximum production rate of the aimed product SO 2 and the optimal exterior wall temperature profile and reactants pressure profile are obtained by using nonlinear programming method. Then the optimal reactor with the maximum production rate is compared with the reference reactor with linear exterior wall temperature profile and the optimal reactor with minimum entropy generation rate. The result shows that the production rate of SO 2 of optimal reactor with the maximum production rate has an increase of more than 7%. The optimization of temperature profile has little influence on the production rate while the optimization of reactants pressure profile can significantly increase the production rate. The results obtained may provide some guidelines for the design of real tubular reactors. - Highlights: • Sulphuric acid decomposition process in tubular plug-flow reactor is studied. • Fixed inlet flow rate and controllable temperature and pressure profiles are set. • Maximum production rate of aimed product SO 2 is obtained. • Corresponding optimal temperature and pressure profiles are derived. • Production rate of SO 2 of optimal reactor increases by 7%.

  12. Single interval longwave radiation scheme based on the net exchanged rate decomposition with bracketing

    Czech Academy of Sciences Publication Activity Database

    Geleyn, J.- F.; Mašek, Jan; Brožková, Radmila; Kuma, P.; Degrauwe, D.; Hello, G.; Pristov, N.

    2017-01-01

    Roč. 143, č. 704 (2017), s. 1313-1335 ISSN 0035-9009 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : numerical weather prediction * climate models * clouds * parameterization * atmospheres * formulation * absorption * scattering * accurate * database * longwave radiative transfer * broadband approach * idealized optical paths * net exchanged rate decomposition * bracketing * selective intermittency Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.444, year: 2016

  13. Effect of management factors on tiller dynamics in tall fescue: tiller ...

    African Journals Online (AJOL)

    The effect of plant density (row spacing/seeding rate), nitrogen (N) fertilization, cultivar choice and close-down date on tiller initiation in tall fescue (Festuca arundinacea Schreb.), managed for seed production, was examined over two years. In the first season, tiller studies were conducted on eight individual plants in each ...

  14. [Relationships between decomposition rate of leaf litter and initial quality across the alpine timberline ecotone in Western Sichuan, China].

    Science.gov (United States)

    Yang, Lin; Deng, Chang-chun; Chen Ya-mei; He, Run-lian; Zhang, Jian; Liu, Yang

    2015-12-01

    The relationships between litter decomposition rate and their initial quality of 14 representative plants in the alpine forest ecotone of western Sichuan were investigated in this paper. The decomposition rate k of the litter ranged from 0.16 to 1.70. Woody leaf litter and moss litter decomposed much slower, and shrubby litter decomposed a little faster. Then, herbaceous litters decomposed fastest among all plant forms. There were significant linear regression relationships between the litter decomposition rate and the N content, lignin content, phenolics content, C/N, C/P and lignin/N. Lignin/N and hemicellulose content could explain 78.4% variation of the litter decomposition rate (k) by path analysis. The lignin/N could explain 69.5% variation of k alone, and the direct path coefficient of lignin/N on k was -0.913. Principal component analysis (PCA) showed that the contribution rate of the first sort axis to k and the decomposition time (t) reached 99.2%. Significant positive correlations existed between lignin/N, lignin content, C/N, C/P and the first sort axis, and the closest relationship existed between lignin/N and the first sort axis (r = 0.923). Lignin/N was the key quality factor affecting plant litter decomposition rate across the alpine timberline ecotone, with the higher the initial lignin/N, the lower the decomposition rate of leaf litter.

  15. Primal Decomposition-Based Method for Weighted Sum-Rate Maximization in Downlink OFDMA Systems

    Directory of Open Access Journals (Sweden)

    Weeraddana Chathuranga

    2010-01-01

    Full Text Available We consider the weighted sum-rate maximization problem in downlink Orthogonal Frequency Division Multiple Access (OFDMA systems. Motivated by the increasing popularity of OFDMA in future wireless technologies, a low complexity suboptimal resource allocation algorithm is obtained for joint optimization of multiuser subcarrier assignment and power allocation. The algorithm is based on an approximated primal decomposition-based method, which is inspired from exact primal decomposition techniques. The original nonconvex optimization problem is divided into two subproblems which can be solved independently. Numerical results are provided to compare the performance of the proposed algorithm to Lagrange relaxation based suboptimal methods as well as to optimal exhaustive search-based method. Despite its reduced computational complexity, the proposed algorithm provides close-to-optimal performance.

  16. Nitrogen Deposition Reduces Decomposition Rates Through Shifts in Microbial Community Composition and Function

    Science.gov (United States)

    Waldrop, M.; Zak, D.; Sinsabaugh, R.

    2002-12-01

    Atmospheric nitrogen (N) deposition may alter soil biological activity in northern hardwood forests by repressing phenol oxidase enzyme activity and altering microbial community composition, thereby slowing decomposition and increasing the export of phenolic compounds. We tested this hypothesis by adding 13C-labelled cellobiose, vanillin, and catechol to control and N fertilized soils (30 and 80 kg ha-1) collected from three forests; two dominated by Acer Saccharum and one dominated by Quercus Alba and Quercus Velutina. While N deposition increased total microbial respiration, it decreased soil oxidative enzyme activities, resulting in slower degradation rates of all compounds, and larger DOC pools. This effect was larger in the oak forest, where fungi dominate C-cycling processes. DNA and 13C-phospolipid analyses showed that N addition altered the fungal community and reduced the activity of fungal and bacterial populations in soil, potentially explaining reduced soil enzyme activities and incomplete decomposition.

  17. A comparison between decomposition rates of buried and surface remains in a temperate region of South Africa.

    Science.gov (United States)

    Marais-Werner, Anátulie; Myburgh, J; Becker, P J; Steyn, M

    2018-01-01

    Several studies have been conducted on decomposition patterns and rates of surface remains; however, much less are known about this process for buried remains. Understanding the process of decomposition in buried remains is extremely important and aids in criminal investigations, especially when attempting to estimate the post mortem interval (PMI). The aim of this study was to compare the rates of decomposition between buried and surface remains. For this purpose, 25 pigs (Sus scrofa; 45-80 kg) were buried and excavated at different post mortem intervals (7, 14, 33, 92, and 183 days). The observed total body scores were then compared to those of surface remains decomposing at the same location. Stages of decomposition were scored according to separate categories for different anatomical regions based on standardised methods. Variation in the degree of decomposition was considerable especially with the buried 7-day interval pigs that displayed different degrees of discolouration in the lower abdomen and trunk. At 14 and 33 days, buried pigs displayed features commonly associated with the early stages of decomposition, but with less variation. A state of advanced decomposition was reached where little change was observed in the next ±90-183 days after interment. Although the patterns of decomposition for buried and surface remains were very similar, the rates differed considerably. Based on the observations made in this study, guidelines for the estimation of PMI are proposed. This pertains to buried remains found at a depth of approximately 0.75 m in the Central Highveld of South Africa.

  18. Hydrothermal decomposition of industrial jarosite in alkaline media: The rate determining step of the process kinetics

    Directory of Open Access Journals (Sweden)

    González-Ibarra A.A.

    2016-01-01

    Full Text Available This work examines the role of NaOH and Ca(OH2 on the hydrothermal decomposition of industrial jarosite deposited by a Mexican company in a tailings dam. The industrial jarosite is mainly composed by natrojarosite and contains 150 g Ag/t, showing a narrow particle size distribution, as revealed by XRD, fire assay, SEM-EDS and laser-diffraction analysis. The effect of the pH, when using NaOH or Ca(OH2 as alkalinizing agent was studied by carrying out decomposition experiments at different pH values and 60°C in a homogeneous size particle system (pH = 8, 9, 10 and 11 and in a heterogeneous size particle system (pH = 11. Also, the kinetic study of the process and the controlling step of the decomposition reaction when NaOH and Ca(OH2 are used was determined by fitting the data obtained to the shrinking core model for spherical particles of constant size. These results, supported by chemical (EDS, morphological (SEM and mapping of elements (EDS analysis of a partially reacted jarosite particle allowed to conclude that when NaOH is used, the process kinetics is controlled by the chemical reaction and when Ca(OH2 is used, the rate determining step is changed to a diffusion control through a layer of solid products.

  19. Photosynthate partitioning in basal zones of tall fescue leaf blades

    International Nuclear Information System (INIS)

    Allard, G.; Nelson, C.J.

    1991-01-01

    Elongating grass leaves have successive zones of cell division, cell elongation, and cell maturation in the basal portion of the blade and are a strong sink for photosynthate. Our objective was to determine dry matter (DM) deposition and partitioning in basal zones of elongating tall fescue (Festuca arundinacea Schreb.) leaf blades. Vegetative tall fescue plants were grown in continuous light (350 micromoles per square meter per second photosynthetic photon flux density) to obtain a constant spatial distribution of elongation growth with time. Content and net deposition rates of water-soluble carbohydrates (WSC) and DM along elongating leaf blades were determined. These data were compared with accumulation of 14 C in the basal zones following leaf-labeling with 14 CO 2 . Net deposition of DM was highest in the active cell elongation zone, due mainly to deposition of WSC. The maturation zone, just distal to the elongation zone, accounted for 22% of total net deposition of DM in elongating leaves. However, the spatial profile of 14 C accumulation suggested that the elongation zone and the maturation zone were sinks of equal strength. WSC-free DM accounted for 55% of the total net DM deposition in elongating leaf blades, but only 10% of incoming 14 C-photosynthate accumulated in the water-insoluble fraction (WIF ∼ WSC-free DM) after 2 hours. In the maturation zone, more WSC was used for synthesis of WSC-free DM than was imported as recent photosynthate

  20. Endothermic decompositions of inorganic monocrystalline thin plates. II. Displacement rate modulation of the reaction front

    Science.gov (United States)

    Bertrand, G.; Comperat, M.; Lallemant, M.

    1980-09-01

    Copper sulfate pentahydrate dehydration into trihydrate was investigated using monocrystalline platelets with (110) crystallographic orientation. Temperature and pressure conditions were selected so as to obtain elliptical trihydrate domains. The study deals with the evolution, vs time, of elliptical domain dimensions and the evolution, vs water vapor pressure, of the {D}/{d} ratio of ellipse axes and on the other hand of the interface displacement rate along a given direction. The phenomena observed are not basically different from those yielded by the overall kinetic study of the solid sample. Their magnitude, however, is modulated depending on displacement direction. The results are analyzed within the scope of our study of endothermic decomposition of solids.

  1. Progressivity of personal income tax in Croatia: decomposition of tax base and rate effects

    Directory of Open Access Journals (Sweden)

    Ivica Urban

    2006-09-01

    Full Text Available This paper presents progressivity breakdowns for Croatian personal income tax (henceforth PIT in 1997 and 2004. The decompositions reveal how the elements of the system – tax schedule, allowances, deductions and credits – contribute to the achievement of progressivity, over the quantiles of pre-tax income distribution. Through the use of ‘single parameter’ Gini indices, the social decision maker’s (henceforth SDM relatively more or less favorable inclination toward taxpayers in the lower tails of pre-tax income distribution is accounted for. Simulations are undertaken to show how the introduction of a flat-rate system would affect progressivity.

  2. Seedling Performance Associated with Live or Herbicide Treated Tall Fescue

    Directory of Open Access Journals (Sweden)

    Jonathan J. Halvorson

    2015-01-01

    Full Text Available Tall fescue is an important forage grass which can host systemic fungal endophytes. The association of host grass and endophyte is known to influence herbivore behavior and host plant competition for resources. Establishing legumes into existing tall fescue sods is a desirable means to acquire nitrogen and enhance the nutritive value of forage for livestock production. Competition from existing tall fescue typically must be controlled to ensure interseeding success. We used a soil-on-agar method to determine if soil from intact, living (L, or an herbicide killed (K tall fescue sward influenced germination and seedling growth of three cultivars of tall fescue (E+, MaxQ, and E− or legumes (alfalfa, red clover, and white clover. After 30 days, seedlings were larger and present in greater numbers when grown in L soil rather than K soil. Root growth of legumes (especially white clover and tall fescue (especially MaxQ were not as vigorous in K soil as L soil. While shoot biomass was similar for all cultivars of tall fescue in L soil, MaxQ produced less herbage when grown in K soil. Our data suggest establishing legumes or fescue cultivars may not be improved by first killing the existing fescue sod and seedling performance can exhibit significant interseasonal variation, related only to soil conditions.

  3. Litter decomposition rate and soil organic matter quality in a patchwork heathland of Southern Norway

    Science.gov (United States)

    Certini, G.; Vestgarden, L. S.; Forte, C.; Tau Strand, L.

    2014-07-01

    Norwegian heathland soils, although scant and shallow, are major reservoirs of carbon (C). We aimed at assessing whether vegetation cover and, indirectly, its driving factor soil drainage are good proxies for soil organic matter (SOM) composition and dynamics in a typical heathland area of Southern Norway consisting in a patchwork of three different types of vegetation, dominated by Calluna, Molinia, or Sphagnum. Such vegetation covers were clearly associated to microtopographic differences, which in turn dictated differences in soil moisture regime, Calluna growing in the driest sites, Sphagnum in the wettest, and Molinia in sites with intermediate moisture. Litter decomposition was followed over a period of 1 year, by placing litterbags filled with biomass from each dominant species under each type of vegetation cover. The composition of the living biomass, the bulk SOM and some extractable fractions of SOM were investigated by chemical methods and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Litter decomposition was faster for Molinia and Calluna, irrespective of the vegetation cover of the site where they were placed. Sphagnum litter decomposed very slowly, especially under Calluna, where the soil environment is by far more oxidising than under itself. In terms of SOM quality, Calluna covered areas showed the greatest differences from the others, in particular a much higher contribution from lipids and aliphatic biopolymers, apparently related to biomass composition. Our findings showed that in the studied environment litter decomposition rate and SOM composition are actually dependent on vegetation cover and/or soil drainage. On this basis, monitoring changes in the patchwork of vegetation types in boreal heathlands could be a reliable cost-effective way to account for modifications in the SOM potential to last induced by climate change.

  4. Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland

    International Nuclear Information System (INIS)

    Belyea, L.R.

    1996-01-01

    Decomposition rates, measured as proportion of original ash-free dry mass lost from liter bas, were studied on four microhabitats of an ombrogenous peatland in southwestern Scotland: a Racomitrium lanuginosum hummock (HR), a Sphagnum capilifolium hummock (HS), a Sphagnum papillosum lawn (L), and a Sphagnum cuspidatum hollow (H). Reciprocal transplant experiments, in which litter bags were swapped among depths both within and among microhabitat types, separated the effects of litter quality (litter type and degree of humification of the peat) and microenvironment (water table position and microhabitat type). All were important determinants of mass loss. Decomposability of the litter from different microhabitats increased in the order HR < HS < L < H. Chemical 'ageing' of the peat reduced rates of decay in highly humified peat, although a history of decay was associated with maximum decomposability of peat from HR hummocks. The suitability of hollows for decay was significantly less than for HR and HS hummocks and lawns. Peat lost mass most slowly when placed below the lowest water table, but the highest mass losses were for peat placed in, or slightly above, the zone of water table fluctuation. Mass loss decreased with depth for peat decaying in its natural position in hollows and lawns and the oxic layer of HS hummocks. A peak in mass loss occurred within the zone of water table fluctuation in HS hummocks, and just above the highest water table in HR hummocks. The results support earlier suggestions that differences due to chemical ageing of peat contribute to differences in decomposition rates between hummocks and hollows, and that hummock species are intrinsically more resistant to decay than hollow species. The pattern was complicated further, however, by the effects of water table position and microhabitat type. (Abstract Truncated)

  5. Tall Fescue Alkaloids Bind Serotonin Receptors in Cattle

    Science.gov (United States)

    The serotonin (5HT) receptor 5HT2A is involved in the tall fescue alkaloid-induced vascular contraction in the bovine periphery. This was determined by evaluating the contractile responses of lateral saphenous veins biopsied from cattle grazing different tall fescue/endophyte combinations. The contr...

  6. Genotype x environment interactions in Angus, Brahman, and reciprocal cross cows and their calves grazing common bermudagrass and endophyte-infected tall fescue pastures.

    Science.gov (United States)

    Brown, M A; Brown, A H; Jackson, W G; Miesner, J R

    1997-04-01

    Reproductive and preweaning data on 233 Angus (A), Brahman (B), and reciprocal-cross cows (AB, BA) and 455 two- and three-breed cross calves managed on common bermudagrass or endophyte-infected tall fescue were used to evaluate the interaction of forage type with individual and maternal heterosis and maternal and grandmaternal breed effects. Cows were born from 1988 to 1991 and calves from 15 Polled Hereford sires were born from 1991 to 1994. Heterosis for calving rate was similar and important on both forages (P < .01), but maternal effects were small on each forage. Maternal heterosis for birth weight differed between common bermudagrass and tall fescue (P < .10) and grandmaternal effects were evident on bermudagrass (P < .05) but not tall fescue. Forage effects were generally substantial for 205-d weight, weaning hip height, and weaning weight:height ratio (P < .01), and maternal heterosis for these traits was larger on tall fescue than on common bermudagrass (P < .01). Grandmaternal effects were in favor of Angus for 205-d weight, hip height, and weight:height ratio on common bermudagrass (P < .05) but not on tall fescue. Heterosis for 205-d weight per cow exposed was substantial on both forages (P < .01) and was numerically larger on tall fescue than on bermudagrass, but maternal effects were not significant. These results suggest more advantage for Brahman-cross cows over purebreds on endophyte-infected tall fescue than a similar comparison on common bermudagrass. They also suggest an advantage for Angus in grandmaternal effects on bermudagrass but not tall fescue.

  7. Macrophyte decomposition in a surface-flow ammonia-dominated constructed wetland: Rates associated with environmental and biotic variables

    Science.gov (United States)

    Thullen, J.S.; Nelson, S.M.; Cade, B.S.; Sartoris, J.J.

    2008-01-01

    Decomposition of senesced culm material of two bulrush species was studied in a surface-flow ammonia-dominated treatment wetland in southern California. Decomposition of the submerged culm material during summer months was relatively rapid (k = 0.037 day-1), but slowed under extended submergence (up to 245 days) and during fall and spring sampling periods (k = 0.009-0.014 day-1). Stepwise regression of seasonal data indicated that final water temperature and abundance of the culm-mining midge, Glyptotendipes, were significantly associated with culm decomposition. Glyptotendipes abundance, in turn, was correlated with water quality parameters such as conductivity and dissolved oxygen and ammonia concentrations. No differences were detected in decomposition rates between the bulrush species, Schoenoplectus californicus and Schoenoplectus acutus.

  8. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture

    Science.gov (United States)

    Sierra, Carlos A.; Trumbore, Susan E.; Davidson, Eric A.; Vicca, Sara; Janssens, I.

    2015-03-01

    The sensitivity of soil organic matter decomposition to global environmental change is a topic of prominent relevance for the global carbon cycle. Decomposition depends on multiple factors that are being altered simultaneously as a result of global environmental change; therefore, it is important to study the sensitivity of the rates of soil organic matter decomposition with respect to multiple and interacting drivers. In this manuscript, we present an analysis of the potential response of decomposition rates to simultaneous changes in temperature and moisture. To address this problem, we first present a theoretical framework to study the sensitivity of soil organic matter decomposition when multiple driving factors change simultaneously. We then apply this framework to models and data at different levels of abstraction: (1) to a mechanistic model that addresses the limitation of enzyme activity by simultaneous effects of temperature and soil water content, the latter controlling substrate supply and oxygen concentration for microbial activity; (2) to different mathematical functions used to represent temperature and moisture effects on decomposition in biogeochemical models. To contrast model predictions at these two levels of organization, we compiled different data sets of observed responses in field and laboratory studies. Then we applied our conceptual framework to: (3) observations of heterotrophic respiration at the ecosystem level; (4) laboratory experiments looking at the response of heterotrophic respiration to independent changes in moisture and temperature; and (5) ecosystem-level experiments manipulating soil temperature and water content simultaneously.

  9. Edge effects on moisture reduce wood decomposition rate in a temperate forest.

    Science.gov (United States)

    Crockatt, Martha E; Bebber, Daniel P

    2015-02-01

    Forests around the world are increasingly fragmented, and edge effects on forest microclimates have the potential to affect ecosystem functions such as carbon and nutrient cycling. Edges tend to be drier and warmer due to the effects of insolation, wind, and evapotranspiration and these gradients can penetrate hundreds of metres into the forest. Litter decomposition is a key component of the carbon cycle, which is largely controlled by saprotrophic fungi that respond to variation in temperature and moisture. However, the impact of forest fragmentation on litter decay is poorly understood. Here, we investigate edge effects on the decay of wood in a temperate forest using an experimental approach, whereby mass loss in wood blocks placed along 100 m transects from the forest edge to core was monitored over 2 years. Decomposition rate increased with distance from the edge, and was correlated with increasing humidity and moisture content of the decaying wood, such that the decay constant at 100 m was nearly twice that at the edge. Mean air temperature decreased slightly with distance from the edge. The variation in decay constant due to edge effects was larger than that expected from any reasonable estimates of climatic variation, based on a published regional model. We modelled the influence of edge effects on the decay constant at the landscape scale using functions for forest area within different distances from edge across the UK. We found that taking edge effects into account would decrease the decay rate by nearly one quarter, compared with estimates that assumed no edge effect. © 2014 John Wiley & Sons Ltd.

  10. Mathematical model applied to decomposition rate of RIA radiotracers: 125I-insulin used as sample model

    International Nuclear Information System (INIS)

    Mesquita, C.H. de; Hamada, M.M.

    1987-09-01

    A mathematical model is described to fit the decomposition rate of labelled RIA compounds. The model was formulated using four parameters: one parameter correlated with the radioactive decay constant; the chemical decomposition rate 'K * ' of the radiolabelled molecules; the natural chemical decomposition rate 'K' and; the fraction 'f * ' of the labelled molecules in the substrate. According to the particular values that these parameters can assume, ten cases were discussed. To determine one of these cases which fit the experimental data, three types of samples were need: radioactive; simulated radiotracer ('false radiolabelled') and; on labelled common substrate. The radioinsulin 125 I was used as an example to illustrate the model application. The experimental data substantiate that the insulin labelled according to the substorchiometric procedures and kept at freezer temperature were degraded with K=0.45% per day. (Author) [pt

  11. Tracing nitrogen accumulation in decaying wood and examining its impact on wood decomposition rate

    Science.gov (United States)

    Rinne, Katja T.; Rajala, Tiina; Peltoniemi, Krista; Chen, Janet; Smolander, Aino; Mäkipää, Raisa

    2016-04-01

    Decomposition of dead wood, which is controlled primarily by fungi is important for ecosystem carbon cycle and has potentially a significant role in nitrogen fixation via diazotrophs. Nitrogen content has been found to increase with advancing wood decay in several studies; however, the importance of this increase to decay rate and the sources of external nitrogen remain unclear. Improved knowledge of the temporal dynamics of wood decomposition rate and nitrogen accumulation in wood as well as the drivers of the two processes would be important for carbon and nitrogen models dealing with ecosystem responses to climate change. To tackle these questions we applied several analytical methods on Norway spruce logs from Lapinjärvi, Finland. We incubated wood samples (density classes from I to V, n=49) in different temperatures (from 8.5oC to 41oC, n=7). After a common seven day pre-incubation period at 14.5oC, the bottles were incubated six days in their designated temperature prior to CO2 flux measurements with GC to determine the decomposition rate. N2 fixation was measured with acetylene reduction assay after further 48 hour incubation. In addition, fungal DNA, (MiSeq Illumina) δ15N and N% composition of wood for samples incubated at 14.5oC were determined. Radiocarbon method was applied to obtain age distribution for the density classes. The asymbiotic N2 fixation rate was clearly dependent on the stage of wood decay and increased from stage I to stage IV but was substantially reduced in stage V. CO2 production was highest in the intermediate decay stage (classes II-IV). Both N2 fixation and CO2 production were highly temperature sensitive having optima in temperature 25oC and 31oC, respectively. We calculated the variation of annual levels of respiration and N2 fixation per hectare for the study site, and used the latter data together with the 14C results to determine the amount of N2 accumulated in wood in time. The proportion of total nitrogen in wood

  12. The trait contribution to wood decomposition rates of 15 neotropical tree species

    NARCIS (Netherlands)

    Geffen, van K.G.; Poorter, L.; Sass-Klaassen, U.; Logtestijn, R.S.P.; Cornelissen, J.H.C.

    2010-01-01

    The decomposition of dead wood is a critical uncertainty in models of the global carbon cycle. Despite this, relatively few studies have focused on dead wood decomposition, with a strong bias to higher latitudes. Especially the effect of inter-specific variation in species traits on differences wood

  13. The freezer defrosting: global warming and litter decomposition rates in cold biomes. Essay review.

    NARCIS (Netherlands)

    Aerts, R.

    2006-01-01

    1 Decomposition of plant litter, a key component of the global carbon budget, is hierarchically controlled by the triad: climate > litter quality > soil organisms. Given the sensitivity of decomposition to temperature, especially in cold biomes, it has been hypothesized that global warming will lead

  14. The trait contribution to wood decomposition rates of 15 Neotropical tree species.

    NARCIS (Netherlands)

    van Geffen, K.G.; Poorter, L.; Sass-Klaassen, U.; van Logtestijn, R.S.P; Cornelissen, J.H.C.

    2010-01-01

    The decomposition of dead wood is a critical uncertainty in models of the global carbon cycle. Despite this, relatively few studies have focused on dead wood decomposition, with a strong bias to higher latitudes. Especially the effect of interspecific variation in species traits on differences in

  15. Termites amplify effects of wood traits on decomposition rates among multiple bamboo and dicot woody species

    NARCIS (Netherlands)

    Liu, Guofang; Cornwell, W.K.; Cao, Kunfang; Hu, Yukun; van Logtestijn, R.S.P; Yang, Shijian; Xie, Xiufang; Zhang, Yalin; Ye, Duo; Pan, Xu; Ye, Xuehua; Huang, Zhenying; Dong, Ming; Cornelissen, J.H.C.

    2015-01-01

    Wood decomposition is a key process in the terrestrial carbon cycle, controlling carbon storage with feedback to climate. In (sub) tropical forest, termites are major players in wood decomposition, but their role relative to that of microbial decomposers and wood traits of different tree species is

  16. Variation in decomposition rates in the fynbos biome, South Africa: the role of plant species and plant stoichiometry.

    Science.gov (United States)

    Bengtsson, Jan; Janion, Charlene; Chown, Steven L; Leinaas, Hans Petter

    2011-01-01

    Previous studies in the fynbos biome of the Western Cape, South Africa, have suggested that biological decomposition rates in the fynbos vegetation type, on poor soils, may be so low that fire is the main factor contributing to litter breakdown and nutrient release. However, the fynbos biome also comprises vegetation types on more fertile soils, such as the renosterveld. The latter is defined by the shrub Elytropappus rhinocerotis, while the shrub Galenia africana may become dominant in overgrazed areas. We examined decomposition of litter of these two species and the geophyte Watsonia borbonica in patches of renosterveld in an agricultural landscape. In particular, we sought to understand how plant species identity affects litter decomposition rates, especially through variation in litter stoichiometry. Decomposition (organic matter mass loss) varied greatly among the species, and was related to litter N and P content. G. africana, with highest nutrient content, lost 65% of its original mass after 180 days, while E. rhinocerotis had lost ca. 30%, and the very nutrient poor W. borbonica biome. Thus, biological decomposition has likely been underestimated and, along with small-scale variation in ecosystem processes, would repay further study.

  17. Metal decomposition rates or 111In-DPTA and EDTA conjugates of monoclonal antibodies in vivo

    International Nuclear Information System (INIS)

    Goodwin, D.A.; McTigue, M.; Chaovapong, W.; Meares, C.F.; McCall, M.J.

    1986-01-01

    We have studied the metal chelate decomposition rates in vivo in both 111 In-labelled benzyl EDTA and DTPA (bicyclic anhydride) conjugates of monoclonal anti-IAsup(k) IgG2a with identical Kα = 1 x 10 11 M -1 in both Ag + ve and Ag -ve mice. Twenty μCi was given i.v. and whole body counting done immediately and daily for 10 days. Half the mice in each group received i.p. injections of 5.0 mg CaNa 2 EDTA chase (Versenate) to facilitate urinary excretion of free 111 In. 50% of control 111 In-citrate remained at nine days but only 8% with chase. No significant loss of 111 In with chase occurred with C 1 substituted EDTA conjugates. A 19% increase in excretion was demonstrated with the chase in mice give DTPA conjugates (1.9% per day). While this will not interfere with radioimmunoimaging up to 24 h after injection, waiting periods of a week or longer will produce significant background of free 111 In in the reticuloendothelial system, RES. 111 In-EDTA stability was important in accurate metabolic rate measurements of anti-IAsup(k); T1/2 = 7.0 days in Ag-ve mice, T1/2 = 9.3 days in Ag-ve mice. (author)

  18. Rates of Decomposition of N-Chloramine Disinfectant Compounds in Aqueous Solutions

    International Nuclear Information System (INIS)

    EI-Bellihi, E.E.

    2009-01-01

    The effect of temperature, ph, and salt effects on the decomposition kinetics of hydrolysis of N-chloramine disinfectant compounds [chloramine-B, chloramine-T, N-chlorosuccinimide (NCS), and 1,3-dichloro-5,5-dimethyl hydantoin (DCDMH or Halane)] in aqueous solutions was studied. The results should that the hydrolytic stability of CB and CT is greater than that of NCS and halane. Using CT, which is practical in use for its long contact times, reduced its initial concentration in aqueous solution from 100 ppm to about 20 ppm after a period of 6 months. The study also showed that the rate of hydrolysis of NCS is almost independent on the H + ions concentration. On the other hand, the rates of hydrolysis of CB and CT depend strongly on the hydrogen ion (H + ) concentration where the kinetic of the reaction changes from zero-order to a first order. The thermodynamic parameters of activation were calculated and showed that the entropies of activation have large negative values due to the increase in electrostriction and in a loss of freedom of the solvent water molecules associated with the separation of ions in the transition state. A linear compensation between ΔH and ΔS suggests that in the pure aqueous solutions, the reaction mechanism is almost the same for all the chloramine compounds under investigation

  19. Effects of different land use on soil chemical properties, decomposition rate and earthworm communities in tropical Mexico

    NARCIS (Netherlands)

    Geissen, V.; Peña-Peña, K.; Huerta, E.

    2009-01-01

    The effects of land use on soil chemical properties were evaluated, and earthworm communities and the decomposition rate of three typical land use systems in tropical Mexico, namely banana plantations (B), agroforestry systems (AF) and a successional forest (S) were compared. The study was carried

  20. Interaction of initial litter quality and thinning intensity on litter decomposition rate, nitrogen accumulation and release in a pine plantation

    Science.gov (United States)

    Xiao Chen; Deborah Page-Dumroese; Ruiheng Lv; Weiwei Wang; Guolei Li; Yong. Liu

    2014-01-01

    Thinning alters litter quality and microclimate under forests. Both of these two changes after thinning induce alterations of litter decomposition rates and nutrient cycling. However, a possible interaction between these two changes remains unclear. We placed two types of litter (LN, low N concentration litter; HN, high N concentration litter) in a Chinese pine (Pinus...

  1. The rate of synthesis and decomposition of tissue proteins in hypokinesia and increased muscular activity

    Science.gov (United States)

    Fedorov, I. V.; Chernyy, A. V.; Fedorov, A. I.

    1978-01-01

    During hypokinesia and physical loading (swimming) of rats, the radioactivity of skeletal muscle, liver, kidney, heart, and blood proteins was determined after administration of radioactive amino acids. Tissue protein synthesis decreased during hypokinesia, and decomposition increased. Both synthesis and decomposition increased during physical loading, but anabolic processes predominated in the total tissue balance. The weights of the animals decreased in hypokinesia and increased during increased muscle activity.

  2. Chemical composition and nutritive value of irrigated tall fescue ...

    African Journals Online (AJOL)

    in ruminant feeds may be in the form of simple organic compounds or inorganic compounds .... Other researchers (Blaser et al., 1969) have found that cows grazing tall fescue without ... Official methods of analysis (13th edn.). Association of.

  3. Consumption of Endophyte Infected Fescue During Gestation in Beef Cows

    OpenAIRE

    Oliver, Katherine Rene

    2016-01-01

    Tall fescue is a widely grown, cool season grass prevalent in the eastern United States that is known for its resistance to abiotic and biotic stresses. A main reason for tall fescue's resistance to these stresses is attributed to the presence of a fungal endophyte. Unfortunately, this endophyte also adversely affects cattle production. Cows consuming the ergot alkaloids produced by these endophytes can exhibit decreased feed intake, growth performance, organ vasoconstriction, and increased...

  4. Elevated tropospheric CO2 and O3 may not alter initial wood decomposition rate or wood-decaying fungal community composition of Northern hardwoods

    Science.gov (United States)

    Emmanuel Ebanyenle; Andrew J. Burton; Andrew J. Storer; Dana L. Richter; Jessie A. Glaeser

    2016-01-01

    We examined the effects of elevated CO2 and/or O3 on the wood-decaying basidiomycete fungal community and wood decomposition rates at the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) project. Mass loss rates were determined after one year of log decomposition on the soil...

  5. Managing the tall fescue-fungal endophyte symbiosis for optimum forage-animal production

    Science.gov (United States)

    Alkaloids produced by the fungal endophyte (Neotyphodium coenophialum) that infects tall fescue [Lolium arundinaceum (Schreb.) Darbysh.] are a paradox to cattle production. While certain alkaloids impart tall fescue with tolerances to environmental stresses, such as moisture, heat, and herbivory, e...

  6. Genome-wide SNP identification in multiple morphotypes of allohexaploid tall fescue (Festuca arundinacea Schreb

    Directory of Open Access Journals (Sweden)

    Hand Melanie L

    2012-06-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs provide essential tools for the advancement of research in plant genomics, and the development of SNP resources for many species has been accelerated by the capabilities of second-generation sequencing technologies. The current study aimed to develop and use a novel bioinformatic pipeline to generate a comprehensive collection of SNP markers within the agriculturally important pasture grass tall fescue; an outbreeding allopolyploid species displaying three distinct morphotypes: Continental, Mediterranean and rhizomatous. Results A bioinformatic pipeline was developed that successfully identified SNPs within genotypes from distinct tall fescue morphotypes, following the sequencing of 414 polymerase chain reaction (PCR – generated amplicons using 454 GS FLX technology. Equivalent amplicon sets were derived from representative genotypes of each morphotype, including six Continental, five Mediterranean and one rhizomatous. A total of 8,584 and 2,292 SNPs were identified with high confidence within the Continental and Mediterranean morphotypes respectively. The success of the bioinformatic approach was demonstrated through validation (at a rate of 70% of a subset of 141 SNPs using both SNaPshot™ and GoldenGate™ assay chemistries. Furthermore, the quantitative genotyping capability of the GoldenGate™ assay revealed that approximately 30% of the putative SNPs were accessible to co-dominant scoring, despite the hexaploid genome structure. The sub-genome-specific origin of each SNP validated from Continental tall fescue was predicted using a phylogenetic approach based on comparison with orthologous sequences from predicted progenitor species. Conclusions Using the appropriate bioinformatic approach, amplicon resequencing based on 454 GS FLX technology is an effective method for the identification of polymorphic SNPs within the genomes of Continental and Mediterranean tall fescue. The

  7. Variation in Plant Litter Decomposition Rates across Extreme Dry Environments in Qatar

    NARCIS (Netherlands)

    Alsafran, Mohammed; Sarneel, J.M.; Alatalo, Juha

    2017-01-01

    Decomposition of plant litter is a key process for transfer of carbon and nutrients in ecosystems. Carbon contained in decaying biomass is released to the atmosphere as respired CO2, a greenhouse gas that contributes to global warming. To our knowledge, there have been no studies on litter

  8. Fungal communities influence decomposition rates of plant litter from two dominant tree species

    NARCIS (Netherlands)

    Asplund, Johan; Kauserud, Håvard; Bokhorst, Stef; Lie, Marit H.; Ohlson, Mikael; Nybakken, Line

    The home-field advantage hypothesis (HFA) predicts that plant litter decomposes faster than expected underneath the plant from which it originates. We tested this hypothesis in a decomposition experiment where litters were incubated reciprocally in neighbouring European beech and Norway spruce

  9. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes.

    NARCIS (Netherlands)

    Cornelissen, J.H.C.; van Bodegom, P.M.; Aerts, R.; Gallaghan, T.V.; van Logtestijn, R.S.P; Alatalo, J.; Chapin, F.S. III; Gerdol, R.; Gudmundsson, J.; Gwynn-Jones, D.; Hartley, A.E.; Hik, D.S.; Hofgaard, A.; Jonsdottir, I.S.; Karlsson, S.; Klein, J.A.; Laundre, J.; Magnusson, B.; Michelsel, A.; Molau, U.; Onipchenko, V.G.; Quested, H.M.; Sandvik, S.M.; Schmidt, I.K.; Shaver, G.R.; Solhleim, B.; Soudzilovskaia, N.A.; Stenstrom, A.; Tolvanen, A.; Totland, O.; Wada, N.; Welker, J.M.; Zhao, X.; Team, M.O.L.

    2007-01-01

    Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition.

  10. Drivers of CO2 Emission Rates from Dead Wood Logs of 13 Tree Species in the Initial Decomposition Phase

    Directory of Open Access Journals (Sweden)

    Tiemo Kahl

    2015-07-01

    Full Text Available Large dead wood is an important structural component of forest ecosystems and a main component of forest carbon cycles. CO2 emissions from dead wood can be used as a proxy for actual decomposition rates. The main drivers of CO2 emission rates for dead wood of temperate European tree species are largely unknown. We applied a novel, closed chamber measurement technique to 360 dead wood logs of 13 important tree species in three regions in Germany. We found that tree species identity was with 71% independent contribution to the model (R2 = 0.62 the most important driver of volume-based CO2 emission rates, with angiosperms having on average higher rates than conifers. Wood temperature and fungal species richness had a positive effect on CO2 emission rates, whereas wood density had a negative effect. This is the first time that positive fungal species richness—wood decomposition relationship in temperate forests was shown. Certain fungal species were associated with high or low CO2 emission rates. In addition, as indicated by separate models for each tree species, forest management intensity, study region, and the water content as well as C and N concentration of dead wood influenced CO2 emission rates.

  11. Ecosystem function in oil sands wetlands : rates of detrital decomposition, moss growth, and microbial respiration in oilsands wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Wytrykush, C. [Windsor Univ., ON (Canada); Hornung, J. [Petro-Canada, Calgary, AB (Canada)

    2007-07-01

    A study was conducted in which leaf litter breakdown and biomass accrual in 31 reference and oilsands affected (OSPM) wetlands in Northeastern Alberta was examined. The purpose was to determine how the decomposition of dead plant matter controls the primary productivity in wetlands. The data collected from this study will provide information about carbon flow and dynamics in oilsands affected wetlands. The study involved the investigation of wetlands that contrasted in water origin (OSPM vs. reference), sediment origin (OSPM vs. natural), sediment organic content and age. Mesh bags containing 5 g of dried Typha (cattail) or 20 g of damp moss were placed into 31 wetlands in order to monitor the rate at which biomass was lost to decomposition, as measured by changes in dry mass. After 1 year, moss growth was found to be greatest in younger wetlands with natural sediments. Cattail decomposition was found to be slower in wetlands containing OSPM water than that in reference wetlands. Preliminary analysis of respiration rates of biota associated with decomposing cattail indicate that the amount of oxygen consumed is not affected by wetland water source, sediment source, level of initial sediment organic content, or age.

  12. Theoretical study of the pressure dependent rate constants of the thermal decomposition of β-propiolactone

    Directory of Open Access Journals (Sweden)

    Abolfazl Shiroudi

    2015-09-01

    Full Text Available A theoretical study of the thermal decomposition of β-propiolactone is carried out using ab initio molecular orbital (MO methods at the MP2/6-311+G∗∗ level and Rice–Ramsperger–Kassel–Marcus (RRKM theory. The reported experimental results showed that decomposition of β-propiolactone occurred by three competing homogeneous and first order reactions. For the three reactions, the calculation was also performed at the MP2/6-311+G∗∗ level of theory, as well as by single-point calculations at the B3LYP/6-311+G∗∗//MP2/6-311+G∗∗, and MP4/6-311+G∗∗//MP2/6-311+G∗∗ levels of theory. The fall-off pressures for the decomposition in these reactions are found to be 2.415, 9.423 × 10−2 and 3.676 × 10−3 mmHg, respectively.

  13. Introducing a decomposition rate modifier in the Rothamsted Carbon Model to predict soil organic carbon stocks in saline soils.

    Science.gov (United States)

    Setia, Raj; Smith, Pete; Marschner, Petra; Baldock, Jeff; Chittleborough, David; Smith, Jo

    2011-08-01

    Soil organic carbon (SOC) models such as the Rothamsted Carbon Model (RothC) have been used to estimate SOC dynamics in soils over different time scales but, until recently, their ability to accurately predict SOC stocks/carbon dioxide (CO(2)) emissions from salt-affected soils has not been assessed. Given the large extent of salt-affected soils (19% of the 20.8 billion ha of arable land on Earth), this may lead to miss-estimation of CO(2) release. Using soils from two salt-affected regions (one in Punjab, India and one in South Australia), an incubation study was carried out measuring CO(2) release over 120 days. The soils varied both in salinity (measured as electrical conductivity (EC) and calculated as osmotic potential using EC and water content) and sodicity (measured as sodium adsorption ratio, SAR). For soils from both regions, the osmotic potential had a significant positive relationship with CO(2)-C release, but no significant relationship was found between SAR and CO(2)-C release. The monthly cumulative CO(2)-C was simulated using RothC. RothC was modified to take into account reductions in plant inputs due to salinity. A subset of non-salt-affected soils was used to derive an equation for a "lab-effect" modifier to account for changes in decomposition under lab conditions and this modifier was significantly related with pH. Using a subset of salt-affected soils, a decomposition rate modifier (as a function of osmotic potential) was developed to match measured and modelled CO(2)-C release after correcting for the lab effect. Using this decomposition rate modifier, we found an agreement (R(2) = 0.92) between modelled and independently measured data for a set of soils from the incubation experiment. RothC, modified by including reduced plant inputs due to salinity and the salinity decomposition rate modifier, was used to predict SOC stocks of soils in a field in South Australia. The predictions clearly showed that SOC stocks are reduced in saline soils

  14. Decomposition rate of peat-forming plants in the oligotrophic peatland at the first stages of destruction

    Science.gov (United States)

    Nikonova, L. G.; Golovatskaya, E. A.; Terechshenko, N. N.

    2018-03-01

    The research presents quantitative estimates of the decomposition rate of plant residues at the initial stages of the decay of two plant species (Eriophorum vaginatum and Sphagnum fuscum) in a peat deposit of the oligotrophic bog in the southern taiga subzone of Western Siberia. We also studied a change in the content of total carbon and nitrogen in plant residues and the activity of microflora in the initial stages of decomposition. At the initial stage of the transformation process of peat-forming plants the losses of mass of Sph. fuscum is 2.5 times lower then E. vaginatum. The most active mass losses, as well as a decrease in the total carbon content, is observed after four months of the experiment. The most active carbon removal is characteristic for E. vaginatum. During the decomposition of plant residues, the nitrogen content decreases, and the most intense nitrogen losses were characteristic for Sph. fuscum. The microorganisms assimilating organic and mineral nitrogen are more active in August, the oligotrophic and cellulolytic microorganisms – in July.

  15. Does tree species richness attenuate the effect of experimental irrigation and drought on decomposition rate in young plantation forests?

    Science.gov (United States)

    Masudur Rahman, Md; Verheyen, Kris; Castagneyrol, Bastien; Jactel, Hervé; Carnol, Monique

    2017-04-01

    Expected changes in precipitation in Europe due to climate change are likely to affect soil organic matter (OM) transformation. In forests, increasing tree species diversity might modulate the effect of changed precipitation. We evaluated the effect of tree species richness on the decomposition and stabilization rate in combination with reduced precipitation (FORBIO, Belgium) and irrigation treatment (ORPHEE, southern France) in young (6-8 yr.) experimental plantations. The species richness were one to four in FORBIO and one to five in ORPHEE. Twenty four rainout shelters of 3 m × 3 m were built around oak and beech trees in FORBIO plantation to impose a reduced precipitation treatment, whereas four of the eight blocks (175 m×100 m) in ORPHEE plantation was subjected to irrigation treatment. These treatments resulted in about 4% less soil moisture in FORBIO and about 7% higher soil moisture in ORPHEE compared to control. Commercially available green and rooibos tea bags were buried in the soil at 5-7 cm depth to measure two decomposition indices, known as 'tea bag index' (TBI). These TBI are (i) decomposition rate (k) and (ii) stabilization rate (S). The results showed no species richness effect on TBI indices in both reduced precipitation and irrigation treatment. In FORBIO, reduced precipitation resulted in decreased k and increased S compared to control around the beech trees only. In ORPHEE, both k and S were higher in the irrigation treatment compared to control. Overall, TBI indices were higher in FORBIO than ORPHEE and this might be explained by the sandy soils and poor nutrient content at the ORPHEE site. These results suggest that OM decomposition rate may be slower in drier condition and OM stabilization rate may be slower or faster in drier condition, depending on the site quality. The absence of tree species effects on OM transformation indicates that tree species richness would not be able to modulate the effects of changed precipitation patterns in

  16. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from central European forests.

    Science.gov (United States)

    Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (Pforest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, Pforest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.

  17. Effect of the use of molasses and efficient microorganisms, over the rate of decomposition of the sugar cane leaf (Saccharum officinarum

    Directory of Open Access Journals (Sweden)

    Óscar Eduardo Sanclemente Reyes

    2011-10-01

    Full Text Available The rate of decomposition of sugar cane leaves mixed with an organic fertilizer compost type was evaluated, using a finite accelerator (molasses and an infinity accelerator (effective microorganisms. The trial was conducted in the greenhouse facilities of the National University of Colombia in Palmira. The results showed that molasses is a decomposition accelerator of the wastes of sugar cane leaf, since it shows a marked influence on the initial decomposition rate of the waste, but once the carbohydrates that constitute it are consumed, the rate of decomposition decreases significantly. Then the potential is evident on the waste of sugar cane leaf elements for the maintenance and/or biophysical capital improvement in the productive system of the sugar cane, as the result of their high photosynthetic efficiency.

  18. Preliminary studies on allelopatic effect of some woody plants on seed germination of rye-grass and tall fescue.

    Science.gov (United States)

    Arouiee, H; Nazdar, T; Mousavi, A

    2010-11-01

    In order to investigation of allelopathic effects of some ornamental trees on seed germination of rye-grass (Lolium prenne) and tall fescue (Festuca arundinaceae), this experiment was conducted in a randomized complete block design with 3 replicates at the laboratory of Horticultural Sciences Department of Ferdowsi University of Mashhad, during 2008. In this research, we studied the effect of aqueous and hydro-alcoholic extracts of Afghanistan pine (Pinus eldarica), arizona cypress (Cupressus arizonica), black locust (Robinia psedue acacia) and box elder (Acer negundo) leaves that prepared in 1:5 ratio on seed germination percent and rate for two grasses. The results showed that all extracts decreased statistically seed germination in compared to control treatment. The highest germination percentage and germination rate of tested grass detected in control treatment. Hydro-alcoholic extracts of all woody plants (15, 30%) were completely inhibited seed germination of rye-grass and tall fescue. Also aqueous extract of arizona cypress was completely inhibited seed germination of tall fescue and had more inhibitory activity than other aqueous extracts on rye-grass. Between aqueous extracts, the highest and lowest seed germination of rye-grass was found in Afghanistan pine and arizona cypress, respectively.

  19. What fescue toxicosis is really doing inside your animals

    Science.gov (United States)

    Plantings of tall fescue were numerous in Kentucky during the 1940s and 1950s after the cultivar, ‘Kentucky 31’, was released. Its hardiness and adaptability resulted in the grass spreading over much of the middle and upper southeastern USA. Cases of severe lameness and sloughing of hoofs, tails, a...

  20. Chemical composition and nutritive value of irrigated tall fescue ...

    African Journals Online (AJOL)

    Chemical composition and nutritive value of irrigated tall fescue pasture for dairy cows. TJ Dugmore, KP Walsh, Sally J. Morning, CI MacDonald. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO ...

  1. Notice of release of Syn1 Tall Fescue

    Science.gov (United States)

    The Agricultural Research Service, U.S. Department of Agriculture announces the release of Syn1 tall fescue [Festuca arundinacea (syn., Lolium arundinaceum Darbyshire; Schedonorus phoenix (Scop.) Holub)] (PI xxxx, PI xxxx) germplasm developed by Dr. Bryan K. Kindiger at the USDA-ARS Grazinglands Res...

  2. Okun's Law, Creation of Money and the Decomposition of the Rate of Unemployment

    OpenAIRE

    Mussard, Stéphane; Philippe, Bernard

    2006-01-01

    In this paper, we show that the rate of unemployment in period t depends on GDP and inflation rate in period t-1. We then show that GDP is related to money creation, and subsequently that the rate of unemployment is a decreasing function of this creation.

  3. Rate of hexabromocyclododecane decomposition and production of brominated polycyclic aromatic hydrocarbons during combustion in a pilot-scale incinerator.

    Science.gov (United States)

    Miyake, Yuichi; Tokumura, Masahiro; Wang, Qi; Amagai, Takashi; Horii, Yuichi

    2017-11-01

    Here, we examined the incineration of extruded polystyrene containing hexabromocyclododecane (HBCD) in a pilot-scale incinerator under various combustion temperatures (800-950°C) and flue gas residence times (2-8sec). Rates of HBCD decomposition ranged from 99.996% (800°C, 2sec) to 99.9999% (950°C, 8sec); the decomposition of HBCD, except during the initial stage of combustion (flue gas residence timepolycyclic aromatic hydrocarbons (BrPAHs) were detected as unintentional by-products. Of the 11 BrPAHs detected, 2-bromoanthracene and 1-bromopyrene were detected at the highest concentrations. The mutagenic and carcinogenic BrPAHs 1,5-dibromoanthracene and 1-bromopyrene were most frequently detected in the flue gases analyzed. The total concentration of BrPAHs exponentially increased (range, 87.8-2,040,000ng/m 3 ) with increasing flue gas residence time. Results from a qualitative analysis using gas chromatography/high-resolution mass spectrometry suggest that bromofluorene and bromopyrene (or fluoranthene) congeners were also produced during the combustion. Copyright © 2017. Published by Elsevier B.V.

  4. Molecular characterisation and interpretation of genetic diversity within globally distributed germplasm collections of tall fescue (Festuca arundinacea Schreb.) and meadow fescue (F. pratensis Huds.).

    Science.gov (United States)

    Hand, Melanie L; Cogan, Noel O I; Forster, John W

    2012-04-01

    Allohexaploid tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum [Schreb.] Darbysh.) is an agriculturally important grass cultivated for pasture and turf world-wide. Genetic improvement of tall fescue could benefit from the use of non-domesticated germplasm to diversify breeding populations through the incorporation of novel and superior allele content. However, such potential germplasm must first be characterised, as three major morphotypes (Continental, Mediterranean and rhizomatous) with varying degrees of hybrid interfertility are commonly described within this species. As hexaploid tall fescue is also a member of a polyploid species complex that contains tetraploid, octoploid and decaploid taxa, it is also possible that germplasm collections may have inadvertently sampled some of these sub-species. In this study, 1,040 accessions from the publicly available United States Department of Agriculture tall fescue and meadow fescue germplasm collections were investigated. Sequence of the chloroplast genome-located matK gene and the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) permitted attribution of accessions to the three previously known morphotypes and also revealed the presence of tall fescue sub-species of varying ploidy levels, as well as other closely related species. The majority of accessions were, however, identified as Continental hexaploid tall fescue. Analysis using 34 simple sequence repeat markers was able to further investigate the level of genetic diversity within each hexaploid tall fescue morphotype group. At least two genetically distinct sub-groups of Continental hexaploid tall fescue were identified which are probably associated with palaeogeographic range expansion of this morphotype. This work has comprehensively characterised a large and complex germplasm collection and has identified genetically diverse accessions which may potentially contribute valuable alleles at agronomic loci for tall fescue cultivar

  5. Differences in nulliparous caesarean section rates across models of care: a decomposition analysis.

    LENUS (Irish Health Repository)

    Brick, Aoife

    2016-01-01

    To evaluate the extent of the difference in elective (ELCS) and emergency (EMCS) caesarean section (CS) rates between nulliparous women in public maternity hospitals in Ireland by model of care, and to quantify the contribution of maternal, clinical, and hospital characteristics in explaining the difference in the rates.

  6. Photosynthesis and Rubisco kinetics in spring wheat and meadow fescue under conditions of simulated climate change with elevated CO2 and increased temperatures

    Directory of Open Access Journals (Sweden)

    K. HAKALA

    2008-12-01

    Full Text Available Spring wheat (Triticum aestivum L.cv.Polkkaand meadow fescue (Festuca pratensis Hudson cv. Kalevicwere grown in ambient and elevated (700 µl l -1 carbon dioxide concentration both at present ambient temperatures and at temperatures 3°C higher than at present simulating a future climate.The CO2 concentrations were elevated in large (3 m in diameteropen top chambers and the temperatures in a greenhouse built over the experimental field.The photosynthetic rate of both wheat and meadow fescue was 31 –37%higher in elevated carbon dioxide (eCO2 than in ambient CO 2 (aCO2 throughout the growing season.The enhancement in wheat photosynthesis in eCO2 declined 10 –13 days before yellow ripeness,at which point the rate of photosynthesis in both CO 2 treatments declined.The stomatal conductance of wheat and meadow fescue was 23–36% lower in eCO2 than in aCO2 .The amount and activity of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco in wheat were lower under conditions of eCO2 ,except at elevated temperatures in 1993 when there was a clear yield increase.There was no clear change in the amount and activity of Rubisco in meadow fescue under eCO2 at either elevated or ambient temperature.This suggests that adaptation to elevated CO2 at biochemical level occurs only when there is insufficient sink for photosynthetic products.While the sink size of wheat can be increased only by introducing new,more productive genotypes,the sink size of meadow fescue can be regulated by fitting the cutting schedule to growth.;

  7. Enstrophy-based proper orthogonal decomposition of flow past rotating cylinder at super-critical rotating rate

    Science.gov (United States)

    Sengupta, Tapan K.; Gullapalli, Atchyut

    2016-11-01

    Spinning cylinder rotating about its axis experiences a transverse force/lift, an account of this basic aerodynamic phenomenon is known as the Robins-Magnus effect in text books. Prandtl studied this flow by an inviscid irrotational model and postulated an upper limit of the lift experienced by the cylinder for a critical rotation rate. This non-dimensional rate is the ratio of oncoming free stream speed and the surface speed due to rotation. Prandtl predicted a maximum lift coefficient as CLmax = 4π for the critical rotation rate of two. In recent times, evidences show the violation of this upper limit, as in the experiments of Tokumaru and Dimotakis ["The lift of a cylinder executing rotary motions in a uniform flow," J. Fluid Mech. 255, 1-10 (1993)] and in the computed solution in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)]. In the latter reference, this was explained as the temporal instability affecting the flow at higher Reynolds number and rotation rates (>2). Here, we analyze the flow past a rotating cylinder at a super-critical rotation rate (=2.5) by the enstrophy-based proper orthogonal decomposition (POD) of direct simulation results. POD identifies the most energetic modes and helps flow field reconstruction by reduced number of modes. One of the motivations for the present study is to explain the shedding of puffs of vortices at low Reynolds number (Re = 60), for the high rotation rate, due to an instability originating in the vicinity of the cylinder, using the computed Navier-Stokes equation (NSE) from t = 0 to t = 300 following an impulsive start. This instability is also explained through the disturbance mechanical energy equation, which has been established earlier in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)].

  8. Decomposition into Tradables and Nontradables and the Purchasing Power Parity (PPP Hypothesis of the Real Won-dollar Exchange Rate

    Directory of Open Access Journals (Sweden)

    Deockhyun Ryu

    2011-09-01

    Full Text Available The purpose of this paper is to test the purchasing power parity (PPP hypothesis using the won-dollar real exchange rate and analyze the effect of the decomposition into tradables and non-tradables on the change of the won-dollar real exchange rate. This paper decomposes the CPI-based real exchange rate into two parts according to Engel (1999; one is the relative price of traded goods between the countries, the other is a component that is a weighted difference of the relative price of nontraded-to traded-goods prices in each country. We construct this by comparing the component subsection weights in CPI. The empirical analysis of this paper consists of two parts as follows. First, we conducted a traditional time series analyses of the real exchange rate, tradable and non-tradable parts respectively, thereby testing the PPP hypothesis and other important hypotheses. Secondly, this paper conducted a Mean Squared Error (MSE analysis to evaluate the relative contribution of tradable and non-tradable parts to the change of real exchange rate. From the time series analysis, it is not guaranteed that the PPP hyThe purpose of this paper is to test the purchasing power parity (PPP hypothesis using the won-dollar real exchange rate and analyze the effect of the decomposition into tradables and non-tradables on the change of the won-dollar real exchange rate. This paper decomposes the CPI-based real exchange rate into two parts according to Engel (1999; one is the relative price of traded goods between the countries, the other is a component that is a weighted difference of the relative price of nontraded-to traded-goods prices in each country. We construct this by comparing the component subsection weights in CPI. The empirical analysis of this paper consists of two parts as follows. First, we conducted a traditional time series analyses of the real exchange rate, tradable and non-tradable parts respectively, thereby testing the PPP hypothesis and other

  9. Rate of Decomposition of Organic Matter in Soil as Influenced by Repeated Air Drying-Rewetting and Repeated Additions of Organic Material

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1974-01-01

    Repeated air drying and rewetting of three soils followed by incubation at 20°C resulted in an increase in the rate of decomposition of a fraction of 14C labeled organic matter in the soils. The labeled organic matter originated from labeled glucose, cellulose and straw, respectively, metabolized...... of the treatment was least in the soil which had been incubated with the labeled material for the longest time. Additions of unlabeled, decomposable organic material also increased the rate of decomposition of the labeled organic matter. The evolution of labeled CO2 during the 1st month of incubation after...... addition was in some cases 4–10 times larger than the evolution from the controls. During the continued incubation the evolution decreased almost to the level of the controls, indicating that the effect was related to the increased biological activity in the soils during decomposition of the added material...

  10. Temporal dynamics of abiotic and biotic factors on leaf litter of three plant species in relation to decomposition rate along a subalpine elevation gradient.

    Directory of Open Access Journals (Sweden)

    Jianxiao Zhu

    Full Text Available Relationships between abiotic (soil temperature and number of freeze-thaw cycles or biotic factors (chemical elements, microbial biomass, extracellular enzymes, and decomposer communities in litter and litter decomposition rates were investigated over two years in subalpine forests close to the Qinghai-Tibet Plateau in China. Litterbags with senescent birch, fir, and spruce leaves were placed on the forest floor at 2,704 m, 3,023 m, 3,298 m, and 3,582 m elevation. Results showed that the decomposition rate positively correlated with soil mean temperature during the plant growing season, and with the number of soil freeze-thaw cycles during the winter. Concentrations of soluble nitrogen (N, phosphorus (P and potassium (K had positive effects but C:N and lignin:N ratios had negative effects on the decomposition rate (k, especially during the winter. Meanwhile, microbial biomass carbon (MBC, N (MBN, and P (MBP were positively correlated with k values during the first growing season. These biotic factors accounted for 60.0% and 56.4% of the variation in decomposition rate during the winter and the growing season in the first year, respectively. Specifically, litter chemistry (C, N, P, K, lignin, C:N and lignin:N ratio independently explained 29.6% and 13.3%, and the microbe-related factors (MBC, MBN, MBP, bacterial and fungal biomass, sucrase and ACP activity explained 22.9% and 34.9% during the first winter and the first growing season, respectively. We conclude that frequent freeze-thaw cycles and litter chemical properties determine the winter decomposition while microbe-related factors play more important roles in determining decomposition in the subsequent growing season.

  11. Optimum distribution between autumn-applied and spring-applied nitrogen in seed production of tall fescue (Festuca arundinacea Schreb.)

    DEFF Research Database (Denmark)

    Gislum, René; Deleuran, Lise Christina; Kristensen, Kristian

    2012-01-01

    The effect of different autumn and spring nitrogen (N) application rates on plant establishment, plant development, and seed yield were tested in a field experiment using tall fescue (Festuca arundinacea Schreb.). Results clearly showed that the optimum distribution of N between autumn and spring...... to achieve the highest seed yield and economical benefit was dependent on the choice of cover crops and location. The economically optimum N application rate was in the range from 44 to 73 kg ha−1 in autumn and 94 to 157 kg ha−1 in spring. The results are discussed in relation to Danish N regulations...... and plant establishment and development....

  12. Seedling Establishment of Tall Fescue Exposed to Long-Term Starvation Stress

    Czech Academy of Sciences Publication Activity Database

    Pompeiano, Antonio; Damiani, C. R.; Stefanini, S.; Vernieri, S.; Reyes, T. H.; Volterrani, M.; Guglielminetti, L.

    2016-01-01

    Roč. 11, č. 11 (2016), č. článku e0166131. E-ISSN 1932-6203 Institutional support: RVO:67179843 Keywords : seedling * Tall fescue * Tall fescue exposed * starvation Subject RIV: EH - Ecology, Behaviour Impact factor: 2.806, year: 2016

  13. Cluster fescue (Festuca paradoxa Desv.): A multipurpose native cool-season grass

    Science.gov (United States)

    Nadia E. Navarrete-Tindall; J.W. Van Sambeek; R.A. Pierce

    2005-01-01

    Native cool-season grasses (NCSG) are adapted to a wide range of habitats and environmental conditions, and cluster fescue (Festuca paradoxa Desv.) is no exception. Cluster fescue can be found in unplowed upland prairies, prairie draws, savannas, forest openings, and glades (Aiken et al. 1996). Although its range includes 23 states in the continental...

  14. Incidence of viruses in fescue (Festuca sp.) seed production fields in the Willamette Valley in 2016

    Science.gov (United States)

    Tall Fescue seed production fields of Western Oregon were sampled and tested for the presence or absence of three viruses, Barley yellow dwarf virus (BYDV) -MAV and -PAV, and Cereal yellow dwarf virus (CYDV). There was no BYDV-MAV detected in any of the Fescue seed fields. The BYDV-PAV occurred in ...

  15. Soil Organic Carbon Fractions Differ in Two Contrasting Tall Fescue Systems

    Science.gov (United States)

    The value of tall fescue (Festuca arundinacea Schreb.) for C sequestration in addition to forage production and soil conservation is of current interest. However, studies relating to the impacts of endophyte infected (E+) and endophyte free (E-) tall fescue on soil organic matter fractions are few....

  16. Why Dutch women work part-time: A Oaxaca-decomposition of differences in European female part-time work rates

    NARCIS (Netherlands)

    Deschacht, N.; Tijdens, K.

    2014-01-01

    We analyze differences in female part-time work rates across countries using European Social Survey data for 2012 to study composition and selectivity effects by means of Oaxaca-decompositions. A novel treatment of the selection term distinguishes the effect of country differences in employment

  17. Effect of variable rates of daily sampling of fly larvae on decomposition and carrion insect community assembly: implications for forensic entomology field study protocols.

    Science.gov (United States)

    Michaud, Jean-Philippe; Moreau, Gaétan

    2013-07-01

    Experimental protocols in forensic entomology successional field studies generally involve daily sampling of insects to document temporal changes in species composition on animal carcasses. One challenge with that method has been to adjust the sampling intensity to obtain the best representation of the community present without affecting the said community. To this date, little is known about how such investigator perturbations affect decomposition-related processes. Here, we investigated how different levels of daily sampling of fly eggs and fly larvae affected, over time, carcass decomposition rate and the carrion insect community. Results indicated that a daily sampling of forensic entomology successional field studies.

  18. Feeding rates of Balloniscus sellowii (Crustacea, Isopoda, Oniscidea): the effect of leaf litter decomposition and its relation to the phenolic and flavonoid content

    Science.gov (United States)

    Wood, Camila Timm; Schlindwein, Carolina Casco Duarte; Soares, Geraldo Luiz Gonçalves; Araujo, Paula Beatriz

    2012-01-01

    Abstract The goal of this study was to compare the feeding rates of Balloniscus sellowii on leaves of different decomposition stages according to their phenolic and flavonoid content. Leaves from the visually most abundant plants were offered to isopods collected from the same source site. Schinus terebinthifolius,the plant species consumed at the highest rate, was used to verify feeding rates at different decomposition stages. Green leaves were left to decompose for one, two, or three months, and then were offered to isopods. The total phenolic and flavonoid contents were determined for all decomposition stages. Consumption and egestion rates increased throughout decomposition, were highest for two-month-old leaves, and decreased again in the third month. The assimilation rate was highest for green leaves. The mode time of passage through the gut was two hours for all treatments. Ingestion of leaves occurred after two or three days for green leaves, and on the same day for one-, two- and three-month-old leaves. The speed of passage of leaves with different decomposition stages through the gut does not differ significantly when animals are fed continuously. However, it is possible that the amount retained in the gut during starvation differs depending on food quality. The digestibility value was corrected using a second food source to empty the gut of previously ingested food, so that all of the food from the experiment was egested. The digestibility value was highest for green leaves, whereas it was approximately 20% for all other stages. This was expected given that digestibility declines during decomposition as the metabolite content of the leaves decreases. The phenolic content was highest in the green leaves and lowest in three-month-old leaves. The flavonoid content was highest in green leaves and lowest after two months of decomposition. Animals ingested more phenolics when consumption was highest. The estimated amount of ingested flavonoids followed the

  19. Decomposition reaction rate of BCl3-C3H6(propene)-H2 in the gas phase.

    Science.gov (United States)

    Xiao, Jun; Su, Kehe; Liu, Yan; Ren, Hongjiang; Zeng, Qingfeng; Cheng, Laifei; Zhang, Litong

    2012-07-05

    The decomposition reaction rate in the BCl(3)-C(3)H(6)-H(2) gas phase reaction system in preparing boron carbides was investigated based on the most favorable reaction pathways proposed by Jiang et al. [Theor. Chem. Accs. 2010, 127, 519] and Yang et al. [J. Theor. Comput. Chem. 2012, 11, 53]. The rate constants of all the elementary reactions were evaluated with the variational transition state theory. The vibrational frequencies for the stationary points as well as the selected points along the minimum energy paths (MEPs) were calculated with density functional theory at the B3PW91/6-311G(d,p) level and the energies were refined with the accurate model chemistry method G3(MP2). For the elementary reaction associated with a transition state, the MEP was obtained with the intrinsic reaction coordinates, while for the elementary reaction without transition state, the relaxed potential energy surface scan was employed to obtain the MEP. The rate constants were calculated for temperatures within 200-2000 K and fitted into three-parameter Arrhenius expressions. The reaction rates were investigated by using the COMSOL software to solve numerically the coupled differential rate equations. The results show that the reactions are, consistent with the experiments, appropriate at 1100-1500 K with the reaction time of 30 s for 1100 K, 1.5 s for 1200 K, 0.12 s for 1300 K, 0.011 s for 1400 K, or 0.001 s for 1500 K, for propene being almost completely consumed. The completely dissociated species, boron carbides C(3)B, C(2)B, and CB, have very low concentrations, and C(3)B is the main product at higher temperatures, while C(2)B is the main product at lower temperatures. For the reaction time 1 s, all these concentrations approach into a nearly constant. The maximum value (in mol/m(3)) is for the highest temperature 1500 K with the orders of -13, -17, and -23 for C(3)B, C(2)B, and CB, respectively. It was also found that the logarithm of the overall reaction rate and reciprocal

  20. Effects of magnesium-based hydrogen storage materials on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant.

    Science.gov (United States)

    Liu, Leili; Li, Jie; Zhang, Lingyao; Tian, Siyu

    2018-01-15

    MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 were prepared, and their structure and hydrogen storage properties were determined through X-ray photoelectron spectroscopy and thermal analyzer. The effects of MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant were subsequently studied. Results indicated that MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 can decrease the thermal decomposition peak temperature and increase the total released heat of decomposition. These compounds can improve the effect of thermal decomposition of the propellant. The burning rates of the propellant increased using Mg-based hydrogen storage materials as promoter. The burning rates of the propellant also increased using MgH 2 instead of Al in the propellant, but its explosive heat was not enlarged. Nonetheless, the combustion heat of MgH 2 was higher than that of Al. A possible mechanism was thus proposed. Copyright © 2017. Published by Elsevier B.V.

  1. Can we infer post mortem interval on the basis of decomposition rate? A case from a Portuguese cemetery.

    Science.gov (United States)

    Ferreira, M Teresa; Cunha, Eugénia

    2013-03-10

    Post mortem interval estimation is crucial in forensic sciences for both positive identification and reconstruction of perimortem events. However, reliable dating of skeletonized remains poses a scientific challenge since human remains decomposition involves a set of complex and highly variable processes. Many of the difficulties in determining post mortem interval and/or the permanence of a body in a specific environment relates with the lack of systematic observations and research in human body decomposition modalities in different environments. In March 2006, in order to solve a problem of misidentification, a team of the South Branch of Portuguese National Institute of Legal Medicine carried out the exhumation of 25 identified individuals buried for almost five years in the same cemetery plot. Even though all individuals shared similar post mortem intervals, they presented different stages of decomposition. In order to analyze the post mortem factors associated with the different stages of decomposition displayed by the 25 exhumed individuals, the stages of decomposition were scored. Information regarding age at death and sex of the individuals were gathered and recorded as well as data in the cause of death and grave and coffin characteristics. Although the observed distinct decay stages may be explained by the burial conditions, namely by the micro taphonomic environments, individual endogenous factors also play an important role on differential decomposition as witnessed by the present case. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Measurement of the rate of hydrogen peroxide thermal decomposition in a shock tube using quantum cascade laser absorption near 7.7 μm

    KAUST Repository

    Sajid, Muhammad Bilal

    2013-10-24

    Hydrogen peroxide (H2O2) is formed during hydrocarbon combustion and controls the system reactivity under intermediate temperature conditions. Here, we measured the rate of hydrogen peroxide decomposition behind reflected shock waves using midinfrared absorption of H2O 2 near 7.7 μm. We performed the experiments in diluted H 2O2/Ar mixtures between 930 and 1235 K and at three different pressures (1, 2, and 10 atm). Under these conditions, the decay of hydrogen peroxide is sensitive only to the decomposition reaction rate, H 2O2 + M → 2OH + M (k1). The second-order rate coefficient at low pressures (1 and 2 atm) did not exhibit any pressure dependence, suggesting that the reaction was in the low-pressure limit. The rate data measured at 10 atm exhibited falloff behavior. The measured decomposition rates can be expressed in Arrhenius forms as follows: k1(1 and 2 atm)=10(16.29±0.12)× exp (-21993±301/T)(cm 3 mol -1s-1) k1(10 atm)=10(15.24±0.10)× exp (-19955±247/T)(cm 3 mol -1s-1) © 2013 Wiley Periodicals, Inc.

  3. Increased site fertility and litter decomposition rate in high-pollution sites in the San Bernardino Mountains

    Science.gov (United States)

    Mark E. Fenn

    1991-01-01

    Some possible factors causing enhanced litter decomposition in high-pollution sites in the San Bernardino Mountains of southern California were investigated. Nitrogen concentration of soil, as well as foliage and litter of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) were greater in...

  4. Can differences in soil community composition after peat meadow restoration lead to different decomposition and mineralization rates?

    NARCIS (Netherlands)

    Dijk, van J.; Didden, W.A.M.; Kuenen, F.; Bodegom, van P.M.; Verhoef, H.A.; Aerts, R.

    2009-01-01

    Reducing decomposition and mineralization of organic matter by increasing groundwater levels is a common approach to reduce plant nutrient availability in many peat meadow restoration projects. The soil community is the main driver of these processes, but how community composition is affected by

  5. Effect of an Invasive Grass on Ambient Rates of Decomposition and Microbial Community Structure: A Search for Causality

    Science.gov (United States)

    In sutu decomposition of above and below ground plant biomass of the native grass species Andropogon glmoeratus (Walt.) B.S.P and exotic Imperata cylindrica (L.) Beauv. (cogongrass) was investigated using litter bags over the course of a 12 month period. The above and below ground biomass of the inv...

  6. Shock-tube study of the decomposition of tetramethylsilane using gas chromatography and high-repetition-rate time-of-flight mass spectrometry.

    Science.gov (United States)

    Sela, P; Peukert, S; Herzler, J; Fikri, M; Schulz, C

    2018-04-25

    The decomposition of tetramethylsilane was studied in shock-tube experiments in a temperature range of 1270-1580 K and pressures ranging from 1.5 to 2.3 bar behind reflected shock waves combining gas chromatography/mass spectrometry (GC/MS) and high-repetition-rate time-of-flight mass spectrometry (HRR-TOF-MS). The main observed products were methane (CH4), ethylene (C2H4), ethane (C2H6), and acetylene (C2H2). In addition, the formation of a solid deposit was observed, which was identified to consist of silicon- and carbon-containing nanoparticles. A kinetics sub-mechanism with 13 silicon species and 20 silicon-containing reactions was developed. It was combined with the USC_MechII mechanism for hydrocarbons, which was able to simulate the experimental observations. The main decomposition channel of TMS is the Si-C bond scission forming methyl (CH3) and trimethylsilyl radicals (Si(CH3)3). The rate constant for TMS decomposition is represented by the Arrhenius expression ktotal[TMS → products] = 5.9 × 1012 exp(-267 kJ mol-1/RT) s-1.

  7. Bulls grazing Kentucky 31 tall fescue exhibit impaired growth, semen quality, and decreased semen freezing potential

    Science.gov (United States)

    Serum prolactin (PRL) and testosterone concentrations, body weight, body composition, semen quality, and semen freezing potential for bulls grazing the toxic tall fescue (Lolium arundinaceum [Schreb.] Darbysh. ¼ Schedonorous arundinaceum [Schreb.] Dumort.) cultivar Kentucky 31 (E+) compared with a n...

  8. Nutrition and In Vitro Digestibility of Tall Fescue for White-Tailed Deer, May Through November

    Science.gov (United States)

    G.E. Probasco; A.J. Bjugstad

    1978-01-01

    Describes a study of the nutritive quality and digestibility of ferilized and unfertilized tall fescue in spring, summer, and fall. The grass may be most valuable as food in early spring and late fall, and on unfertilized sites.

  9. A Simple Tall Fescue Seed Extraction and Partial Purification of Ergovaline

    Science.gov (United States)

    There are several substances present in the tall fescue/endophyte association (Lolium arundinaceum /Neotyphodium coenophialum) that have biological activity. These include the pyrrolizidine and ergot alkaloids plus peramine. Of these compounds only the ergot alkaloids have significant mammalian to...

  10. Rates of Litter Decomposition and Soil Respiration in Relation to Soil Temperature and Water in Different-Aged Pinus massoniana Forests in the Three Gorges Reservoir Area, China

    Science.gov (United States)

    Zeng, Lixiong; Huang, Zhilin; Lei, Jingpin; Zhou, Benzhi; Li, Maihe

    2014-01-01

    To better understand the soil carbon dynamics and cycling in terrestrial ecosystems in response to environmental changes, we studied soil respiration, litter decomposition, and their relations to soil temperature and soil water content for 18-months (Aug. 2010–Jan. 2012) in three different-aged Pinus massoniana forests in the Three Gorges Reservoir Area, China. Across the experimental period, the mean total soil respiration and litter respiration were 1.94 and 0.81, 2.00 and 0.60, 2.19 and 0.71 µmol CO2 m−2 s−1, and the litter dry mass remaining was 57.6%, 56.2% and 61.3% in the 20-, 30-, and 46-year-old forests, respectively. We found that the temporal variations of soil respiration and litter decomposition rates can be well explained by soil temperature at 5 cm depth. Both the total soil respiration and litter respiration were significantly positively correlated with the litter decomposition rates. The mean contribution of the litter respiration to the total soil respiration was 31.0%–45.9% for the three different-aged forests. The present study found that the total soil respiration was not significantly affected by forest age when P. masonniana stands exceed a certain age (e.g. >20 years old), but it increased significantly with increased soil temperature. Hence, forest management strategies need to protect the understory vegetation to limit soil warming, in order to reduce the CO2 emission under the currently rapid global warming. The contribution of litter decomposition to the total soil respiration varies across spatial and temporal scales. This indicates the need for separate consideration of soil and litter respiration when assessing the climate impacts on forest carbon cycling. PMID:25004164

  11. Biomass,litterfall and decomposition rates for the fringed Rhizophora mangle forest lining the Bon Accord Lagoon,Tobago

    Directory of Open Access Journals (Sweden)

    Rahanna A Juman

    2005-05-01

    Full Text Available The mangrove forest that fringes the Bon Accord Lagoon measures 0.8 km² and is dominated by red mangrove (Rhizophora mangle .This forest forms the landward boundary of the Buccoo Reef Marine Park in Southwest Tobago,and is part of a mangrove-seagrass-coral reef continuum.Biomass and productivity,as indicated by litterfall rates,were measured in seven 0.01 ha monospecific plots from February 1998 to February 1999,and decomposition rates were determined. Red mangrove above-ground biomass ranged between 2.0 and 25.9 kg (dry wt.m-2 .Mean biomass was 14.1 ±8.1 kg (dry wt.m-2 yielding a standing crop of 11 318 ±6 488 t. Litterfall rate varied spatially and seasonally.It peaked from May to August (4.2-4.3 g dry wt.m-2 d-1 and was lowest from October to December (2.3-2.8 g dry wt.m-2 d-1 .Mean annual litterfall rate was 3.4 ±0.9 g dry wt.m-2 d-1 .Leaf degradation rates ranged from 0.3%loss d-1 in the upper intertidal zone to 1%loss d-1 at a lower intertidal site flooded by sewage effluent.Mean degradation rate was 0.4 ±1%loss d-1 .The swamp produces 2.8 t dry wt.of litterfall and 12 kg dry wt.of decomposed leaf material daily.Biomass and litterfall rates in Bon Accord Lagoon were compared to five similar sites that also participate in the Caribbean Coastal Marine Productivity Programme (CARICOMP.The Bon Accord Lagoon mangrove swamp is a highly productive fringed-forest that contributes to the overall productivity of the mangrove-seagrass-reef complex.El manglar que bordea la laguna de Bon Accord mide 0.8 km² y predomina el mangle rojo (Rhizophora mangle .Este manglar es el límite terrestre del Parque Nacional Buccoo Reef en el suroeste de Tobago,y es parte de un continuo de mangles-pastos-arrecifes.En este trabajo se midió la biomasa y productividad,mediante la caída de hojas,y las tasas de descomposición en siete parcelas monoespecíficas de 0.01 ha,de febrero 1998 a febrero 1999.La biomasa sobre el suelo del mangle rojo se registró entre 2

  12. Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species.

    Science.gov (United States)

    Aerts, R; Callaghan, T V; Dorrepaal, E; van Logtestijn, R S P; Cornelissen, J H C

    2012-11-01

    Litter decomposition and nutrient mineralization in high-latitude peatlands are constrained by low temperatures. So far, little is known about the effects of seasonal components of climate change (higher spring and summer temperatures, more snow which leads to higher winter soil temperatures) on these processes. In a 4-year field experiment, we manipulated these seasonal components in a sub-arctic bog and studied the effects on the decomposition and N and P dynamics of leaf litter of Calamagrostis lapponica, Betula nana, and Rubus chamaemorus, incubated both in a common ambient environment and in the treatment plots. Mass loss in the controls increased in the order Calamagrostis Litter chemistry showed within each incubation environment only a few and species-specific responses. Compared to the interspecific differences, they resulted in only moderate climate treatment effects on mass loss and these differed among seasons and species. Neither N nor P mineralization in the litter were affected by the incubation environment. Remarkably, for all species, no net N mineralization had occurred in any of the treatments during 4 years. Species differed in P-release patterns, and summer warming strongly stimulated P release for all species. Thus, moderate changes in summer temperatures and/or winter snow addition have limited effects on litter decomposition rates and N dynamics, but summer warming does stimulate litter P release. As a result, N-limitation of plant growth in this sub-arctic bog may be sustained or even further promoted.

  13. Litter Production and Decomposition Rate in the Reclaimed Mined Land under Albizia and Sesbania Stands and Their Effects on some Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    Hery Suhartoyo

    2011-01-01

    Full Text Available Vegetation establishment is considered as a critical step of mined land rehabilitation. The growing plants do not only prevent soil erosion, but also play important roles in soil ecosystem development. Their litterfall is the main process of transferring organic matter and nutrients from aboveground tree biomass to soil. Thus, its quantification would aid in understanding biomass and nutrient dynamics of the ecosystem. This study was aimed to investigate the litter production and its decomposition rate in a reclaimed mined land using albizia and sesbania, and their effects on some soil properties. The litter under each stand was biweekly collected for four months. At the same time litter samples were decomposed in mesh nylon bags in soils and the remaining litters were biweekly measured. Soil samples were taken from 0-15 cm depths from each stand for analyses of soil organic C, total N, and cation exchange capacity (CEC. The results demonstrated that total litter production under albizia (10.58 t ha-1 yr-1 was almost twice as much as that under sesbania stands (5.43 t ha-1 yr-1. Albizia litter was dominated by leaf litter (49.26% and least as understory vegetation (23.31%, whereas sesbania litter was more evenly distributed among litter types. Decomposition rates of all litters were fastest in the initial stage and then gradually decreased. Sesbania leaf litters decomposed fastest, while albizia twigs slowest. Differences in the litter production and decomposition rates of the two species had not sufficiently caused significant effects on organic-C, total N, and CEC of the soils after one year of revegetation.

  14. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  15. Carbon dynamics in peatlands under changing hydrology. Effects of water level drawdown on litter quality, microbial enzyme activities and litter decomposition rates

    Energy Technology Data Exchange (ETDEWEB)

    Strakova, P.

    2010-07-01

    Pristine peatlands are carbon (C) accumulating wetland ecosystems sustained by a high water level (WL) and consequent anoxia that slows down decomposition. Persistent WL drawdown as a response to climate and/or land-use change directly affects decomposition: increased oxygenation stimulates decomposition of the 'old C' (peat) sequestered under prior anoxic conditions. Responses of the 'new C' (plant litter) in terms of quality, production and decomposability, and the consequences for the whole C cycle of peatlands are not fully understood. WL drawdown induces changes in plant community resulting in shift in dominance from Sphagnum and graminoids to shrubs and trees. There is increasing evidence that the indirect effects of WL drawdown via the changes in plant communities will have more impact on the ecosystem C cycling than any direct effects. The aim of this study is to disentangle the direct and indirect effects of WL drawdown on the 'new C' by measuring the relative importance of (1) environmental parameters (WL depth, temperature, soil chemistry) and (2) plant community composition on litter production, microbial activity, litter decomposition rates and, consequently, on the C accumulation. This information is crucial for modelling C cycle under changing climate and/or land-use. The effects of WL drawdown were tested in a large-scale experiment with manipulated WL at two time scales and three nutrient regimes. Furthermore, the effect of climate on litter decomposability was tested along a north-south gradient. Additionally, a novel method for estimating litter chemical quality and decomposability was explored by combining Near infrared spectroscopy with multivariate modelling. WL drawdown had direct effects on litter quality, microbial community composition and activity and litter decomposition rates. However, the direct effects of WL drawdown were overruled by the indirect effects via changes in litter type composition and

  16. Alterations in serotonin receptor-induced contractility of bovine lateral saphenous vein in cattle grazing endophyte-infected tall fescue

    Science.gov (United States)

    As part of a large 2-year study documenting the physiologic impact of grazing endophyte-infected tall fescue on growing cattle, 2 experiments were conducted to characterize and evaluate the effects of grazing 2 levels of toxic endophyte-infected tall fescue pastures on vascular contractility and ser...

  17. Decomposition techniques

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  18. Effects of selected combinations of tall fescue alkaloids on the vasoconstrictive capacity of fescue-naive bovine lateral saphenous veins.

    Science.gov (United States)

    Klotz, J L; Kirch, B H; Aiken, G E; Bush, L P; Strickland, J R

    2008-04-01

    Vasoconstriction is a response associated with consumption of toxic endophyte-infected tall fescue. It is not known if endophyte-produced alkaloids act alone or collectively in mediating the response. Therefore, the objective of this study was to examine the vasoconstrictive potentials of selected ergot alkaloids, individually or in paired combinations, using bovine lateral saphenous veins biopsied from fescue-naïve cattle. Segments (2 to 3 cm) of vein were surgically biopsied from healthy crossbred yearling heifers (n = 22; 330 +/- 8 kg of BW). Veins were trimmed of excess fat and connective tissue, sliced into 2- to 3-mm sections, and suspended in a myograph chamber containing 5 mL of oxygenated Krebs-Henseleit buffer (95% O(2)/5% CO(2); pH = 7.4; 37 degrees C). Increasing doses of ergovaline, lysergic acid, and N-acetylloline individually or in combination were evaluated. Contractile data were normalized as a percentage of the contractile response induced by a reference dose of norepinephrine (1 x 10(- 4) M). Increasing concentrations of lysergic acid did not result in an appreciable contractile response until the addition of 1 x 10(- 4) M lysergic acid. In contrast, the vascular response to increasing concentrations of ergovaline was apparent at 1 x 10(- 8) M and increased to a maximum of 104.2 +/- 6.0% with the addition of 1 x 10(- 4) M ergovaline. The presence of N-acetylloline did not alter the onset or magnitude of vascular response to either lysergic acid or ergovaline. The presence of 1 x 10(- 5) M lysergic acid with increasing concentrations of N-acetylloline and ergovaline generated an increased contractile response during the initial additions compared with the responses of N-acetylloline and ergovaline alone. In the presence of 1 x 10(- 7) M ergovaline, the contractile response increased with increasing concentrations of N-acetylloline and lysergic acid. Neither N-acetylloline nor lysergic acid elicited an intense contractile response individually

  19. Danburite decomposition by sulfuric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Mamatov, E.D.; Ashurov, N.A.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by sulfuric acid. The process of decomposition of danburite concentrate by sulfuric acid was studied. The chemical nature of decomposition process of boron containing ore was determined. The influence of temperature on the rate of extraction of boron and iron oxides was defined. The dependence of decomposition of boron and iron oxides on process duration, dosage of H 2 SO 4 , acid concentration and size of danburite particles was determined. The kinetics of danburite decomposition by sulfuric acid was studied as well. The apparent activation energy of the process of danburite decomposition by sulfuric acid was calculated. The flowsheet of danburite processing by sulfuric acid was elaborated.

  20. Acute exposure to ergot alkaloids from endophyte-infected tall fescue does not alter absorptive or barrier function of the isolated bovine ruminal epithelium.

    Science.gov (United States)

    Foote, A P; Penner, G B; Walpole, M E; Klotz, J L; Brown, K R; Bush, L P; Harmon, D L

    2014-07-01

    Ergot alkaloids in endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have been shown to cause a reduction in blood flow to the rumen epithelium as well as a decrease in volatile fatty acids (VFA) absorption from the washed rumen of steers. Previous data also indicates that incubating an extract of endophyte-infected tall fescue seed causes an increase in the amount of VFA absorbed per unit of blood flow, which could result from an alteration in the absorptive or barrier function of the rumen epithelium. An experiment was conducted to determine the acute effects of an endophyte-infected tall fescue seed extract (EXT) on total, passive or facilitated acetate and butyrate flux across the isolated bovine rumen as well as the barrier function measured by inulin flux and tissue conductance (G t ). Flux of ergovaline across the rumen epithelium was also evaluated. Rumen tissue from the caudal dorsal sac of Holstein steers (n=6), fed a common diet, was collected and isolated shortly after slaughter and mounted between two halves of Ussing chambers. In vitro treatments included vehicle control (80% methanol, 0.5% of total volume), Low EXT (50 ng ergovaline/ml) and High EXT (250 ng ergovaline/ml). Results indicate that there is no effect of acute exposure to ergot alkaloids on total, passive or facilitated flux of acetate or butyrate across the isolate bovine rumen epithelium (P>0.51). Inulin flux (P=0.16) and G t (P>0.17) were not affected by EXT treatment, indicating no alteration in barrier function due to acute ergot alkaloid exposure. Ergovaline was detected in the serosal buffer of the High EXT treatment indicating that the flux rate is ~0.25 to 0.44 ng/cm2 per hour. Data indicate that specific pathways for VFA absorption and barrier function of the rumen epithelium are not affected by acute exposure to ergot alkaloids from tall fescue at the concentrations tested. Ergovaline has the potential to be absorbed from the rumen of cattle that

  1. Growth and metabolism of growing beef calves fed tall fescue haylage supplemented with protein and(or) energy.

    Science.gov (United States)

    Smith, W L; Gay, N; Boling, J A; Muntifering, R B

    1987-10-01

    Endophyte (Acremonium coenophialum)-infected Kentucky 31 tall fescue was fertilized in mid-August, stockpiled, harvested November 4 to 6 and stored in a concrete stave silo. Ninety-six growing calves (189 kg) were assigned to the following treatments (24 calves/treatment): 1) corn silage (CS) plus .4 kg/d of soybean meal (SBM; 2) fescue haylage plus .4 kg/d of SBM; 3) fescue haylage plus 1.6 kg/d of corn and 4) fescue haylage plus 1.6 kg/d of corn and .4 kg/d of SBM. Daily gains and dry matter (DM) intakes during the 91-d trial were .52, 4.58; .51, 5.22; .59, 6.06; and .63, 6.18 kg for treatments 1 through 4, respectively. Daily gains of calves fed corn silage plus SBM and fescue haylage plus SBM were not different (P greater than .05). However, a difference (P less than .05) existed between treatments 1 and 2 vs 3 and 4. Feed conversion was improved (P less than .05) in calves fed corn silage. Calves in a metabolism trial were fed either 1) 6.2 kg November-ensiled fescue haylage or 2) 6.2 kg November-ensiled fescue haylage plus 1.6 kg/d of corn. Digestibility of DM, N-free extract (NFE) and TDN did not differ (P greater than .05) between treatments. Ether extract digestibility was greater (P less than .05) for the added corn diet, while that of CP was greater (P less than .05) for the fescue haylage diet. Nitrogen retained was higher (P less than .05) for calves fed added corn. A follow-up trial with 96 growing calves (190 kg) compared September- and November-harvested fescue haylages supplemented with either 1.3 or 2.6 kg corn/d.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Effect of thermal effluents from the Savannah River Plant on leaf decomposition rates in onsite creeks and the Savannah River

    International Nuclear Information System (INIS)

    Sadowski, P.W.; Matthews, R.A.

    1986-06-01

    Sweet gum and sycamore leaf packs were packs were placed in a thermally stressed, a post-thermal, and an ambient stream located on the Savannah River Plant, South Carolina, and in the Savannah River below the mouth of each stream. Processing rates for the leaf packs were determined over a 77-day period from December 1982 to March 1983. Due to inundation of the sampling sites by river flooding, temperatures in the stream receiving thermal effluent were reduced after day 24. Sweet gum leaves decomposed considerably faster than did sycamore leaves, particularly in the thermal creek. An exponential decay model was used to demonstrate significant differences in loss of ash-free dry weight from leaf packs in thermally stressed and nonthermal creeks. Differences in leaf processing rates between creek sites were greatest during periods of therma stress. Within each leaf species, leaf processing rates were not significantly different between nonthermal sites, nor between sites in the Savannah River

  3. Analysis of acoustic cardiac signals for heart rate variability and murmur detection using nonnegative matrix factorization-based hierarchical decomposition

    DEFF Research Database (Denmark)

    Shah, Ghafoor; Koch, Peter; Papadias, Constantinos B.

    2014-01-01

    The detection of heart rate variability (HRV) via cardiac auscultation examination can be a useful and inexpensive tool which, however, is challenging in the presence of pathological signals and murmurs. The aim of this research is to analyze acoustic cardiac signals for HRV and murmur detection...

  4. Modeling the shear rate and pressure drop in a hydrodynamic cavitation reactor with experimental validation based on KI decomposition studies.

    Science.gov (United States)

    Badve, Mandar P; Alpar, Tibor; Pandit, Aniruddha B; Gogate, Parag R; Csoka, Levente

    2015-01-01

    A mathematical model describing the shear rate and pressure variation in a complex flow field created in a hydrodynamic cavitation reactor (stator and rotor assembly) has been depicted in the present study. The design of the reactor is such that the rotor is provided with surface indentations and cavitational events are expected to occur on the surface of the rotor as well as within the indentations. The flow characteristics of the fluid have been investigated on the basis of high accuracy compact difference schemes and Navier-Stokes method. The evolution of streamlining structures during rotation, pressure field and shear rate of a Newtonian fluid flow have been numerically established. The simulation results suggest that the characteristics of shear rate and pressure area are quite different based on the magnitude of the rotation velocity of the rotor. It was observed that area of the high shear zone at the indentation leading edge shrinks with an increase in the rotational speed of the rotor, although the magnitude of the shear rate increases linearly. It is therefore concluded that higher rotational speeds of the rotor, tends to stabilize the flow, which in turn results into less cavitational activity compared to that observed around 2200-2500RPM. Experiments were carried out with initial concentration of KI as 2000ppm. Maximum of 50ppm of iodine liberation was observed at 2200RPM. Experimental as well as simulation results indicate that the maximum cavitational activity can be seen when rotation speed is around 2200-2500RPM. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Direct measurements of rate coefficients for thermal decomposition of CF3I using shock—tube ARAS technique

    Science.gov (United States)

    Bystrov, N. S.; Emelianov, A. V.; Eremin, A. V.; Yatsenko, P. I.

    2018-05-01

    The kinetics of the dissociation of CF3I behind shock waves was experimentally investigated. The reaction CF3I  +  Ar  →  CF3  +  I  +  Ar was studied at temperatures between 900 and 1250 K and pressures of 2–3 bar. For this purpose, the time profiles of the concentration of atomic iodine were measured using a highly sensitive atomic resonance absorption spectroscopy method at a wavelength of 183.04 nm. From these data, the experimental value of the dissociation rate constant of CF3I was obtained: . We found that the investigated range of pressures and temperatures for the CF3I dissociation lies in the pressure transition region. Based on the Rice-Ramsperger–Kassel–Marcus theory, the threshold high and low-pressure rate constants ( and k 0) and falloff curves are calculated for the temperatures of 950–1200 K. As a result of this calculation, the threshold rate constants could be evaluated in the forms: and , and the center broadening factor, which takes into account the contribution of strong and weak collisions in the transition region, is .

  6. Differential effects of citric acid on cadmium uptake and accumulation between tall fescue and Kentucky bluegrass.

    Science.gov (United States)

    Wang, ShuTing; Dong, Qin; Wang, ZhaoLong

    2017-11-01

    Organic acids play an important role in cadmium availability, uptake, translocation, and detoxification. A sand culture experiment was designed to investigate the effects of citric acid on Cd uptake, translocation, and accumulation in tall fescue and Kentucky bluegrass. The results showed that two grass species presented different Cd chemical forms, organic acid components and amount in roots. The dormant Cd accumulated in roots of tall fescue was the pectate- and protein- integrated form, which contributed by 84.85%. However, in Kentucky bluegrass, the pectate- and protein- integrated Cd was only contributed by 35.78%, and the higher proportion of Cd form was the water soluble Cd-organic acid complexes. In tall fescue, citric acid dramatically enhanced 2.8 fold of Cd uptake, 3 fold of root Cd accumulation, and 2.3 fold of shoot Cd accumulation. In Kentucky bluegrass, citric acid promoted Cd accumulation in roots, but significantly decreased Cd accumulation in shoots. These results suggested that the enhancements of citric acid on Cd uptake, translocation, and accumulation in tall fescue was associated with its promotion of organic acids and the water soluble Cd-organic acid complexes in roots. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Alteration of fasting heat production during fescue toxicosis in Holstein steers

    Science.gov (United States)

    This study was designed to examine alteration of fasting heat production (FHP) during fescue toxicosis. Six ruminally cannulated Holstein steers (BW=348 ±13 kg) were weight-matched into pairs and utilized in a two period crossover design experiment. Each period consisted of two temperature segments,...

  8. Vasoconstriction in horses caused by endophyte-infected tall fescue seed is detected with Doppler ultrasonography

    Science.gov (United States)

    The hypotheses that endophyte (Neotyphodium coenophialum)-infected tall fescue (TF) seed causes vasoconstriction in horses in vivo and that ground seed would cause more pronounced vasoconstriction than whole seed were tested. Ten horses each received 1 of 3 treatments: endophyte-free ground (E–G; n ...

  9. Modelling of seed yield and its components in tall fescue (Festuca ...

    African Journals Online (AJOL)

    AJL

    2011-10-03

    Oct 3, 2011 ... number spikelet -1 (Y4), seed weight (Y5), and the seed yield (Z) of tall fescue were determined in field experiments from 2003 to .... the time of fertilisation (X1), the quantity of irrigation (X2), the amount of N applied (X3), the ...... certain agronomical traits in soybean [Glycine max (L.) Merr.]. Afr. J. Biotechnol.

  10. Uptake of 137Cs from coniferous forest soil by sheep's fescue in pot experiment

    International Nuclear Information System (INIS)

    Fawaris, B. H.; Johanson, K. J.

    1994-01-01

    The uptake of Chernobyl fallout radiocaesium ( 137 Cs) from forest soils with low nutrients, high organic matter content, and acidic pH were examined in pot experiments. Results of sheep's fescue (Festuca ovina) two harvests after growing period of 13 weeks each, showed a slight variation in the 137 Cs uptake. Transfer factor (TF) for 137 Cs based upon soil-to-plant relationships calculated, (Bqkg -1 plant DW/Bqkg -1 soil DW). The ranges were from 0.03 to 3.43 with a mean of 0.34 ± 0.31 for first cut and from 0.03 to 2.28 with a mean of 0.36 ± 0.33 for second cut. Variation in the uptake of 137 Cs by sheep's fescue grass might be due to the influence of soil pH and OM % in conjunction with soil moisture. The effect of potassium (K + ), stable caesium (Cs + ), and ammonium (NH 4 + ) that were added as chlorides on 137 Cs uptake by sheep's fescue were also tested in pot experiment under the same conditions of previous set-up. Results from three harvests after growing period of 13 weeks each, demonstrated that K + reduced the uptake of 137 Cs. In contrast the addition of both stable Cs + and NH 4 + found to enhance 137 Cs uptake by sheep's fescue. (author)

  11. Effect of grazing seedhead-suppressed tall fescue pasture on the vasoactivity of serotonin receptors

    Science.gov (United States)

    Previous research has demonstrated that exposure to ergot alkaloids reduces vasoactivity of serotonin (5HT) receptors. Chemical suppression of tall fescue seedhead production is a tool to reduce the level of exposure to ergot alkaloids by a grazing animal. Therefore, the objective was to evaluate co...

  12. Climate change and Epichloë coenophiala association modify belowground fungal symbioses of tall fescue host

    Science.gov (United States)

    Human alteration of symbiont genetics among aboveground endophytic Epichloë coenophiala strains within tall fescue (Schedonorus arundinaceus) has led to widespread deployment of novel grass-endophyte combinations, yet little is known about their ecological consequences. In this study, clone pairs (e...

  13. Effects of Tall Fescue Forage Mass on Steer Ingestive Behavior and Performance

    Science.gov (United States)

    Tall fescue [Lolium arundinaceum (Schreb.) Darbysh] is a well adapted perennial pasture species utilized across the north-south transition zone of the United States and in similar environments worldwide. This 3-yr trial evaluated the influence of three forage masses (FM) on steer and pasture respons...

  14. Benefits to decomposition rates when using digestate as compost co-feedstock: Part I - Focus on physicochemical parameters.

    Science.gov (United States)

    Arab, Golnaz; McCartney, Daryl

    2017-10-01

    Anaerobic digestion (AD) has gained a significant role in municipal solid waste management, but managing a high volume of digestate is one of the challenges with AD technology. One option is to mix digestate with fresh and/or stabilized organic waste and then feed to the composting process. In this study, the effect of co-composting anaerobic digestate (in different quantities) on a composting process was investigated. The digestate was prepared in a pilot-scale 500L high solids dry anaerobic digester and composting was completed in eight 25L reactors with different ratios of digestate to fresh feedstock from the organic fraction of municipal solid waste (OFMSW). The digestate constituted 0, 10, 20, 30, 40, 50, 75, or 100% (wet mass) of the feedstock. The co-composting experiment was conducted in two phases: active aeration and curing. Monitored parameters included: process temperature, aeration rate, oxygen concentration of the outlet gas, mass changes, total solids, organic matter, pH, and electrical conductivity. In addition, respirometry, C:N ratio, ammonium to nitrate ratio, and Solvita® tests were used to quantify stability and maturity end points. The results showed that the addition of digestate to the OFMSW increased composting reaction rates in all cases, with peak performance occurring within the ratio of 20-40% of digestate addition on a wet weight basis. Reactor performance may have been influenced by the high total ammonia nitrogen (TAN) levels in the digestate. Composting rates increased as TAN levels increased up to 5000 TAN mgkg -1 DM; however, TAN may have become inhibitory at higher levels. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. The Influence of Clay on the Rate of Decay of Amino Acid Metabolites Synthesized in Soils during Decomposition of Cellulose

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1975-01-01

    caused by the treatments in the different soils was, however, not related to the amount of silt + clay, and a high content of this material did not protect organic material against the effect of the treatments. is concluded that the silt + clay fraction ensures stabilization of amino acid metabolites...... produced during the period of intense biological activity that follows the addition of decomposable, energy rich material to the soil. The amount of amino acid metabolites stabilized increased with increasing concentration of silt + clay, but the rate of decay of the amino acid material during later stages......14C-labelled cellulose was added to seven different soils containing silt + clay (particles

  16. Respiration rates in subsurface waters of the northern Indian Ocean: Evidence for low decomposition rates of organic matter within the water column in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Shailaja, M.S.; DileepKumar, M.; Sengupta, R.

    measured in the Arabian Sea. Lower respiratin rates in the Bay of Bengal are corroborated by the much weaker north-south gradients in oxygen and total carbon dioxide. These are, however, in conflict with the higher sinking fluxes of organic carbon measured...

  17. Characterization of Epichloë coenophiala within the U.S.: are all tall fescue endophytes created equal?

    Science.gov (United States)

    Young, Carolyn; Charlton, Nikki; Takach, Johanna; Swoboda, Ginger; Trammell, Michael; Huhman, David; Hopkins, Andrew

    2014-11-01

    Tall fescue (Lolium arundinaceum) is a valuable and broadly adapted forage grass that occupies approximately 14 million hectares across the United States. A native to Europe, tall fescue was likely introduced into the U.S. around the late 1800’s. Much of the success of tall fescue can be attributed to Epichloë coenophiala (formerly Neotyphodium coenophialum) a seed borne symbiont that aids in host persistence. Epichloë species are capable of producing a range of alkaloids (ergot alkaloids, indole-diterpenes, lolines and peramine) that provide protection to the plant host from herbivory. Unfortunately, most tall fescue within the U.S., commonly referred to as KY31, harbors the endophyte E. coenophiala that causes toxicity to grazing livestock due to the production of ergot alkaloids. Molecular analyses of tall fescue endophytes have identified four independent associations, representing tall fescue with E. coenophiala, Epichloë sp. FaTG-2, Epichloë sp. FaTG-3 or Epichloë sp. FaTG-4. Each of these Epichloë species can be further distinguished based on genetic variation that equates to differences in the alkaloid gene loci. Tall fescue samples were evaluated using markers to SSR and alkaloid biosynthesis genes to determine endophyte strain variation present within continental U.S. Samples represented seed and tillers from the Suiter farm (Menifee County, KY), which is considered the originating site of KY31, as well as plant samples collected from 14 states, breeder’s seed and plant introduction lines (National Plant Germplasm System, NPGS). This study revealed two prominent E. coenophiala genotypes based on presence of alkaloid biosynthesis genes and SSR markers and provides insight into endophyte variation within continental U.S. across historical and current tall fescue samples.

  18. Decomposition of diesel oil by various microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Suess, A; Netzsch-Lehner, A

    1969-01-01

    Previous experiments demonstrated the decomposition of diesel oil in different soils. In this experiment the decomposition of /sup 14/C-n-Hexadecane labelled diesel oil by special microorganisms was studied. The results were as follows: (1) In the experimental soils the microorganisms Mycoccus ruber, Mycobacterium luteum and Trichoderma hamatum are responsible for the diesel oil decomposition. (2) By adding microorganisms to the soil an increase of the decomposition rate was found only in the beginning of the experiments. (3) Maximum decomposition of diesel oil was reached 2-3 weeks after incubation.

  19. Performance, forage utilization, and ergovaline consumption by beef cows grazing endophyte fungus-infected tall fescue, endophyte fungus-free tall fescue, or orchardgrass pastures.

    Science.gov (United States)

    Peters, C W; Grigsby, K N; Aldrich, C G; Paterson, J A; Lipsey, R J; Kerley, M S; Garner, G B

    1992-05-01

    Two 120-d trials (May to September, 1988 and 1989) determined the effects of grazing tall fescue (two varieties) or orchardgrass on forage intake and performance by beef cows. Each summer, 48 cow-calf pairs grazed endophyte-infected Kentucky-31 tall fescue (KY-31), endophyte-free Mozark tall fescue (MOZARK), or Hallmark orchardgrass (OG) pastures (16 pairs/treatment). Forage OM intakes and digestibilities were determined during June and August each year. Cow and calf BW and milk production were determined every 28 d. During June of both years, OM intakes did not differ (P greater than .10) among treatments. During August of 1988, intakes were 18% lower (P less than .05) by KY-31 cows (1.6% of BW) than by MOZARK or OG cows (average 1.95% of BW); however, no differences (P greater than .10) were measured in August of 1989. Estimates of ergovaline consumption during June from KY-31 were between 4.2 (1988) and 6.0 mg/d (1989), whereas August estimates were between 1.1 (1988) and 2.8 mg/d (1989). Ergovaline in MOZARK estrusa was below detection limits, except in August of 1989. Cows that grazed KY-31 lost three times (P less than .01) more BW than cows that grazed MOZARK or OG (42 vs 9 and 13 kg, respectively). Milk production by KY-31 cows was 25% lower (P less than .01) than that by cows that grazed MOZARK or OG (6.0 vs average of 8.0 kg/d). Similarly, slower (P less than .01) calf gains were noted for KY-31 than for MOZARK or OG (.72 vs .89 and .88 kg/d, respectively). Cows grazing KY-31 experienced accelerated BW loss and reduced milk production and weaned lighter calves than did cows grazing MOZARK or OG. Decreased performance was not explained by consistently reduced forage intakes; hence, altered nutrient utilization was suspected.

  20. Agronomic Evaluation and Genetic Variation of Tunisian Tall Fescue (Festuca arundinacea Schreb.

    Directory of Open Access Journals (Sweden)

    N. Chtourou-Ghorbel

    2011-01-01

    Full Text Available Nine important agronomic traits were used to assess the genetic diversity of Tunisian tall fescue and to investigate the extent of genotype X environment (GE interaction and its implications for breeding programs. These traits were studied for three consecutive years in thirty-five spontaneous populations and three cultivars. Panicle size contributed to seeds production, while the plant height at harvest and dry matter yield were selected for forage performance. Analysis of variance demonstrated that population attitude depended on the year and environmental conditions. Principal component analysis revealed significant similarities among some spontaneous populations and cultivars. The relationship between environmental conditions and agronomic traits revealed the influence of altitude, soil texture and minimum temperature on forage production, seed yield, and the architecture of plants, respectively. In addition, the local adapted ecotypes originating from Bizerte, Sidi Nsir, and Rass Rajel attained greater agronomic potentialities than control cultivars and were of considerable economic interest for the improvement of Tunisian tall fescue.

  1. Pentobarbital Sleep Time in Mouse Lines Selected for Resistance and Susceptibility to Fescue Toxicosis

    OpenAIRE

    Arthur, Kimberly Ann

    2002-01-01

    In previous work with mouse lines selected for resistance (R) and susceptibility (S) to fescue toxicosis, R mice had higher activities of Phase II liver enzymes glutathione S-transferase and uridine diphosphate glucuronosyl-transferase than S mice. Objectives of this study were: 1. to determine whether selection for toxicosis response had also caused divergence between lines in hepatic Phase I enzyme activity (as assessed by sleep time following sodium pentobarbital anesthesia), 2. to determi...

  2. Nutrient Dynamics and Litter Decomposition in Leucaena ...

    African Journals Online (AJOL)

    Nutrient contents and rate of litter decomposition were investigated in Leucaena leucocephala plantation in the University of Agriculture, Abeokuta, Ogun State, Nigeria. Litter bag technique was used to study the pattern and rate of litter decomposition and nutrient release of Leucaena leucocephala. Fifty grams of oven-dried ...

  3. Evaluating blood perfusion of the corpus luteum in beef cows during fescue toxicosis.

    Science.gov (United States)

    Cline, G F; Muth-Spurlock, A M; Voelz, B E; Lemley, C O; Larson, J E

    2016-01-01

    The aim of this study was to determine if fescue toxicosis altered blood perfusion in the corpus luteum (CL) and peripheral concentrations of progesterone in cattle. The estrous cycles of 36 nonpregnant Angus or Charolais cows were synchronized in 2 replicates using the CO-Synch+CIDR protocol. Seven days after initiation of the protocol, cows were assigned (d 0) to 1 of 2 dietary treatments: 2.5 kg of 1) Kentucky-31 endophyte-infected (KY31; = 14) or 2) MaxQ novel endophyte (MaxQ; = 12) tall fescue seed. On d 7, ovaries were examined using ultrasonography, and only cows that had 1 CL present remained on the study ( = 26). Images of blood perfusion of CL, blood samples, rectal temperatures, and blood pressure of tails were collected on d 10, 13, 15, and 18. Images of CL blood perfusion were analyzed using ImageJ software for pixel density, and scored visually (0 to 9 with 0 = no perfusion, 9 = complete perfusion) by 2 independent technicians. The MIXED procedure of SAS was used with day as a repeated measure. Least squares means and SEM are reported. Cows receiving KY31 had greater rectal temperatures ( 0.003; 38.76 ± 0.08°C) than those receiving MaxQ (38.44 ± 0.08°C), providing evidence that the cows treated with KY31 were influenced by fescue toxicosis. Pulse pressure and mean arterial pressure were decreased ( cows receiving KY31 (55.26 ± 2.81 and 80.06 ± 2.72 mmHg, respectively) than MaxQ (66.58 ± 3.03 and 91.38 ± 2.93 mmHg, respectively). Concentrations of progesterone were similar ( = 0.54) between cows receiving KY31 (6.04 ± 0.53 ng/mL) or MaxQ (6.36 ± 0.63 ng/mL). Pixel densities ( = 0.14) and visual perfusion scores were similar ( = 0.11) between cows receiving KY31 (1477.20 ± 655.62 pixels and 2.23 ± 0.34, respectively) or MaxQ (2934.70 ± 718.20 pixels and 3.00 ± 0.36, respectively). Mean CL volume was similar ( 0.95) between treatments. In conclusion, blood perfusion of CL or peripheral concentrations of progesterone were not altered at the

  4. Cellular composition and expression of potential stem cell markers in mammary tissue of cows consuming endophyte-infected fescue seed during the dry period and early lactation

    Science.gov (United States)

    We evaluated the impact of consuming endophyte-infected fescue during late pregnancy on parameters of mammary development in Holstein cows. Cows (N = 16) were fed 10% of their ration as tall fescue seed that was free from (CON) or infected with endophyte (INF) from 90d before expected calving until ...

  5. Effects of source and level of dietary energy supplementation on in vitro digestibility and methane production from tall fescue-based diets

    Science.gov (United States)

    There is a lack of information about the effect of different sources, levels, and the mixtures of energy supplements commonly fed to cattle grazing tall fescue. Therefore, the objective of this study was to evaluate different common energy sources for beef cattle grazing tall fescue using an in vitr...

  6. The effect of Bt-corn on soil invertebrates, soil microbial community and decomposition rates of corn post-harvest residues under field and laboratory conditions

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Elhottová, Dana; Helingerová, M.; Kocourek, F.

    2008-01-01

    Roč. 32, č. 4 (2008), s. 645-655 ISSN 1044-0046 Institutional research plan: CEZ:AV0Z60660521 Keywords : Bt corn * soil biology * decomposition Subject RIV: EH - Ecology, Behaviour Impact factor: 0.274, year: 2008

  7. Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species.

    NARCIS (Netherlands)

    Aerts, R.; Callaghan, T.V.; Dorrepaal, E.; van Logtestijn, R.S.P; Cornelissen, J.H.C.

    2012-01-01

    Litter decomposition and nutrient mineralization in high-latitude peatlands are constrained by low temperatures. So far, little is known about the effects of seasonal components of climate change (higher spring and summer temperatures, more snow which leads to higher winter soil temperatures) on

  8. Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, time-domain, and nonlinear dynamics features of heart rate variability signals.

    Science.gov (United States)

    Ebrahimi, Farideh; Setarehdan, Seyed-Kamaledin; Ayala-Moyeda, Jose; Nazeran, Homer

    2013-10-01

    The conventional method for sleep staging is to analyze polysomnograms (PSGs) recorded in a sleep lab. The electroencephalogram (EEG) is one of the most important signals in PSGs but recording and analysis of this signal presents a number of technical challenges, especially at home. Instead, electrocardiograms (ECGs) are much easier to record and may offer an attractive alternative for home sleep monitoring. The heart rate variability (HRV) signal proves suitable for automatic sleep staging. Thirty PSGs from the Sleep Heart Health Study (SHHS) database were used. Three feature sets were extracted from 5- and 0.5-min HRV segments: time-domain features, nonlinear-dynamics features and time-frequency features. The latter was achieved by using empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods. Normalized energies in important frequency bands of HRV signals were computed using time-frequency methods. ANOVA and t-test were used for statistical evaluations. Automatic sleep staging was based on HRV signal features. The ANOVA followed by a post hoc Bonferroni was used for individual feature assessment. Most features were beneficial for sleep staging. A t-test was used to compare the means of extracted features in 5- and 0.5-min HRV segments. The results showed that the extracted features means were statistically similar for a small number of features. A separability measure showed that time-frequency features, especially EMD features, had larger separation than others. There was not a sizable difference in separability of linear features between 5- and 0.5-min HRV segments but separability of nonlinear features, especially EMD features, decreased in 0.5-min HRV segments. HRV signal features were classified by linear discriminant (LD) and quadratic discriminant (QD) methods. Classification results based on features from 5-min segments surpassed those obtained from 0.5-min segments. The best result was obtained from features using 5-min HRV

  9. Effects of acidic precipitation on leaf decomposition rates, microbial biomass, and leaf pack macroinvertebrates in six streams on the Allegheny plateau of West Virginia

    Science.gov (United States)

    Erik S. Engstrom; Sean K. Meegan; Sue A. Perry; William B. Perry

    1996-01-01

    We studied the effects of acidification on leaf litter decomposition in six headwater streams in the Monongahela National Forest. These streams differed in underlying geology and mean baseflow pH (3.99, 4.24, 6.13, 6.47, 6.59, and 7.52). We placed 10-gram leaf packs of white oak, red maple, and yellow poplar in each stream, and retrieved them after two days, two weeks...

  10. Climate history shapes contemporary leaf litter decomposition

    Science.gov (United States)

    Michael S. Strickland; Ashley D. Keiser; Mark A. Bradford

    2015-01-01

    Litter decomposition is mediated by multiple variables, of which climate is expected to be a dominant factor at global scales. However, like other organisms, traits of decomposers and their communities are shaped not just by the contemporary climate but also their climate history. Whether or not this affects decomposition rates is underexplored. Here we source...

  11. The decomposition of estuarine macrophytes under different ...

    African Journals Online (AJOL)

    The aim of this study was to determine the decomposition characteristics of the most dominant submerged macrophyte and macroalgal species in the Great Brak Estuary. Laboratory experiments were conducted to determine the effect of different temperature regimes on the rate of decomposition of 3 macrophyte species ...

  12. An investigation on thermal decomposition of DNTF-CMDB propellants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wei; Wang, Jiangning; Ren, Xiaoning; Zhang, Laying; Zhou, Yanshui [Xi' an Modern Chemistry Research Institute, Xi' an 710065 (China)

    2007-12-15

    The thermal decomposition of DNTF-CMDB propellants was investigated by pressure differential scanning calorimetry (PDSC) and thermogravimetry (TG). The results show that there is only one decomposition peak on DSC curves, because the decomposition peak of DNTF cannot be separated from that of the NC/NG binder. The decomposition of DNTF can be obviously accelerated by the decomposition products of the NC/NG binder. The kinetic parameters of thermal decompositions for four DNTF-CMDB propellants at 6 MPa were obtained by the Kissinger method. It is found that the reaction rate decreases with increasing content of DNTF. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  13. Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms.

    Science.gov (United States)

    Lu, Yan-Fei; Lu, Mang

    2015-03-21

    A 120-day experiment was performed to investigate the effect of a multi-component bioremediation system consisting of tall fescue (Festuca arundinacea), arbuscular mycorrhizal fungus (AMF) (Glomus caledoniun L.), and epigeic earthworms (Eisenia foetida) for cleaning up polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Inoculation with AMF and/or earthworms increased plant yield and PAH accumulation in plants. However, PAH uptake by tall fescue accounted for a negligible portion of soil PAH removal. Mycorrhizal tall fescue significantly enhanced PAH dissipation, PAH degrader density and polyphenol oxidase activity in soil. The highest PAH dissipation (93.4%) was observed in the combination treatment: i.e., AMF+earthworms+tall fescue, in which the soil PAH concentration decreased from an initial value of 620 to 41 mg kg(-1) in 120 days. This concentration is below the threshold level required for Chinese soil PAH quality (45 mg kg(-1) dry weight) for residential use. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Survey of ABC transporter and metallothionein genes expressions in tall fescue inoculated with Funneliformis intraradices under Nickel toxicity

    Directory of Open Access Journals (Sweden)

    Massomeh Rafiei-Demneh

    2016-09-01

    Full Text Available In plants, there are complex network of transport, chelation, and sequestration processes that functions in maintaining concentrations of essential metal ions in different cellular compartments, thus minimizing the damage caused by entry of non-essential metal ions into the cytosol. In the presence of toxic ones, arbuscular mycorrhizal (AM fungi are able to alleviate metal toxicity in the plant. In this study the effect of an arbuscular mycorrhizal fungi Funneliformis intraradices on growth, Nickel tolerance, and ABC transporter and metallothionein expression in leaves and roots of tall fescue (Festuca arundinacea plants cultivated in Ni polluted soil were evaluated. The fungi infected (M+ and uninfected (M- fescue plants were cultivated in soil under different Ni concentrations (0, 30, 90 and 180 ppm for 3 months. Results demonstrated the positive effect of fungi colonization on the increase in growth and reduction in Ni uptake (90 and 180 ppm and Ni translocation from roots to shoot of tall fescue under Ni stress. The results also demonstrated that the level of ABC transporterand metallothionein transcripts accumulation in roots was considerably higher for both M- and M+ plants compared to the control. Also, M+ plants showed less ABC and MET expression compared to the M- plants. These results demonstrated the importance of mycorrhizal colonization of F. intraradices in reduction of Ni transport from root to shoot of tall fescue which alleviates Ni-induced stress.

  15. Evaluation of Turf-type Interspecific Hybrids of Meadow Fescue with Perennial Ryegrass for Improved Stress Tolerance

    Czech Academy of Sciences Publication Activity Database

    Barnes, B.D.; Kopecký, David; Lukaszewski, A.J.; Baird, J. H.

    2014-01-01

    Roč. 54, č. 1 (2014), s. 355-365 ISSN 0011-183X R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : LOLIUM-FESTUCA COMPLEX * TALL FESCUE * INTERGENERIC HYBRIDS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.575, year: 2014

  16. Management intensity alters decomposition via biological pathways

    Science.gov (United States)

    Wickings, Kyle; Grandy, A. Stuart; Reed, Sasha; Cleveland, Cory

    2011-01-01

    Current conceptual models predict that changes in plant litter chemistry during decomposition are primarily regulated by both initial litter chemistry and the stage-or extent-of mass loss. Far less is known about how variations in decomposer community structure (e.g., resulting from different ecosystem management types) could influence litter chemistry during decomposition. Given the recent agricultural intensification occurring globally and the importance of litter chemistry in regulating soil organic matter storage, our objectives were to determine the potential effects of agricultural management on plant litter chemistry and decomposition rates, and to investigate possible links between ecosystem management, litter chemistry and decomposition, and decomposer community composition and activity. We measured decomposition rates, changes in litter chemistry, extracellular enzyme activity, microarthropod communities, and bacterial versus fungal relative abundance in replicated conventional-till, no-till, and old field agricultural sites for both corn and grass litter. After one growing season, litter decomposition under conventional-till was 20% greater than in old field communities. However, decomposition rates in no-till were not significantly different from those in old field or conventional-till sites. After decomposition, grass residue in both conventional- and no-till systems was enriched in total polysaccharides relative to initial litter, while grass litter decomposed in old fields was enriched in nitrogen-bearing compounds and lipids. These differences corresponded with differences in decomposer communities, which also exhibited strong responses to both litter and management type. Overall, our results indicate that agricultural intensification can increase litter decomposition rates, alter decomposer communities, and influence litter chemistry in ways that could have important and long-term effects on soil organic matter dynamics. We suggest that future

  17. Insight into the genetic variability analysis and cultivar identification of tall fescue by using SSR markers.

    Science.gov (United States)

    Fu, Kaixin; Guo, Zhihui; Zhang, Xinquan; Fan, Yan; Wu, Wendan; Li, Daxu; Peng, Yan; Huang, Linkai; Sun, Ming; Bai, Shiqie; Ma, Xiao

    2016-01-01

    Genetic diversity of 19 forage-type and 2 turf-type cultivars of tall fescue ( Festuca arundinacea Schreb.) was revealed using SSR markers in an attempt to explore the genetic relationships among them, and examine potential use of SSR markers to identify cultivars by bulked samples. A total of 227 clear band was scored with 14 SSR primers and out of which 201 (88.6 %) were found polymorphic. The percentage of polymorphic bands (PPB) per primer pair varied from 62.5 to 100 % with an average of 86.9 %. The polymorphism information content (PIC) value ranged from 0.116 to 0.347 with an average of 0.257 and the highest PIC value (0.347) was noticed for primer NFA040 followed by NFA113 (0.346) whereas the highest discriminating power (D) of 1 was shown in NFA037 and LMgSSR02-01C. A Neighbor-joining dendrogram and the principal component analysis identified six major clusters and grouped the cultivars in agreement with their breeding histories. STRUCTURE analysis divided these cultivars into 3 sub-clades which correspond to distance based groupings. These findings indicates that SSR markers by bulking strategy are a useful tool to measure genetic diversity among tall fescue cultivars and could be used to supplement morphological data for plant variety protection.

  18. Climate fails to predict wood decomposition at regional scales

    Science.gov (United States)

    Mark A. Bradford; Robert J. Warren; Petr Baldrian; Thomas W. Crowther; Daniel S. Maynard; Emily E. Oldfield; William R. Wieder; Stephen A. Wood; Joshua R. King

    2014-01-01

    Decomposition of organic matter strongly influences ecosystem carbon storage1. In Earth-system models, climate is a predominant control on the decomposition rates of organic matter2, 3, 4, 5. This assumption is based on the mean response of decomposition to climate, yet there is a growing appreciation in other areas of global change science that projections based on...

  19. The Alleviation of Heat Damage to Photosystem II and Enzymatic Antioxidants by Exogenous Spermidine in Tall Fescue

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    2017-10-01

    Full Text Available Tall fescue (Festuca arundinacea Schreb is a typical cool-season grass that is widely used in turf and pasture. However, high temperature as an abiotic stress seriously affects its utilization. The objective of this study was to explore the effect of spermidine (Spd on heat stress response of tall fescue. The samples were exposed to 22°C (normal condition or 44°C (heat stress for 4 h. The results showed that exogenous Spd partially improved the quality of tall fescue leaves under normal temperature conditions. Nevertheless, after heat stress treatment, exogenous Spd significantly decreased the electrolyte leakage of tall fescue leaves. Spd also profoundly reduced the H2O2 and O2⋅- content and increased antioxidant enzymes activities. In addition, PAs can also regulate antioxidant enzymes activities including SOD, POD, and APX which could help to scavenge ROS. Moreover, application of Spd could also remarkably increase the chlorophyll content and had a positive effect on the chlorophyll α fluorescence transients under high temperature. The Spd reagent enhanced the performance of photosystem II (PSII as observed by the JIP-test. Under heat stress, the Spd profoundly improved the partial potentials at the steps of energy bifurcations (PIABS and PItotal and the quantum yields and efficiencies (φP0, δR0, φR0, and γRC. Exogenous Spd could also reduce the specific energy fluxes per QA- reducing PSII reaction center (RC (TP0/RC and ET0/RC. Additionally, exogenous Spd improved the expression level of psbA and psbB, which encoded the proteins of PSII core reaction center complex. We infer that PAs can stabilize the structure of nucleic acids and protect RNA from the degradation of ribonuclease. In brief, our study indicates that exogenous Spd enhances the heat tolerance of tall fescue by maintaining cell membrane stability, increasing antioxidant enzymes activities, improving PSII, and relevant gene expression.

  20. The Alleviation of Heat Damage to Photosystem II and Enzymatic Antioxidants by Exogenous Spermidine in Tall Fescue.

    Science.gov (United States)

    Zhang, Liang; Hu, Tao; Amombo, Erick; Wang, Guangyang; Xie, Yan; Fu, Jinmin

    2017-01-01

    Tall fescue ( Festuca arundinacea Schreb) is a typical cool-season grass that is widely used in turf and pasture. However, high temperature as an abiotic stress seriously affects its utilization. The objective of this study was to explore the effect of spermidine (Spd) on heat stress response of tall fescue. The samples were exposed to 22°C (normal condition) or 44°C (heat stress) for 4 h. The results showed that exogenous Spd partially improved the quality of tall fescue leaves under normal temperature conditions. Nevertheless, after heat stress treatment, exogenous Spd significantly decreased the electrolyte leakage of tall fescue leaves. Spd also profoundly reduced the H 2 O 2 and O 2 ⋅- content and increased antioxidant enzymes activities. In addition, PAs can also regulate antioxidant enzymes activities including SOD, POD, and APX which could help to scavenge ROS. Moreover, application of Spd could also remarkably increase the chlorophyll content and had a positive effect on the chlorophyll α fluorescence transients under high temperature. The Spd reagent enhanced the performance of photosystem II (PSII) as observed by the JIP-test. Under heat stress, the Spd profoundly improved the partial potentials at the steps of energy bifurcations (PI ABS and PI total ) and the quantum yields and efficiencies (φP 0 , δR 0 , φR 0 , and γRC). Exogenous Spd could also reduce the specific energy fluxes per Q A - reducing PSII reaction center (RC) (TP 0 /RC and ET 0 /RC). Additionally, exogenous Spd improved the expression level of psbA and psbB , which encoded the proteins of PSII core reaction center complex. We infer that PAs can stabilize the structure of nucleic acids and protect RNA from the degradation of ribonuclease. In brief, our study indicates that exogenous Spd enhances the heat tolerance of tall fescue by maintaining cell membrane stability, increasing antioxidant enzymes activities, improving PSII, and relevant gene expression.

  1. Linkage Maps of a Mediterranean × Continental Tall Fescue Population and their Comparative Analysis with Other Poaceae Species

    Directory of Open Access Journals (Sweden)

    Ryan Dierking

    2015-03-01

    Full Text Available Temperate grasses belonging to the complex are important throughout the world in pasture and grassland agriculture. Tall fescue ( Schreb. is the predominant species in the United States, covering approximately 15 million ha. Tall fescue has distinctive morphotypes, two of which are Continental (summer active and Mediterranean (summer semidormant. This is the first report of a linkage map created for Mediterranean tall fescue, while updating the Continental map with additional simple sequence repeat and sequence-tagged site markers. Additionally, this is the first time that diversity arrays technology (DArT markers were used in the construction of a tall fescue map. The male parent (Continental, R43-64, map consisted of 594 markers arranged in 22 linkage groups (LGs and covered a total of 1577 cM. The female parent (Mediterranean, 103-2, map was shorter (1258 cM and consisted of only 208 markers arranged in 29 LGs. Marker densities for R43-64 and 103-2 were 2.65 and 6.08 cM per marker, respectively. When compared with the other Poaceae species, meadow fescue ( Huds., annual ryegrass ( Lam., perennial ryegrass ( L., (L. Beauv., and barley ( L., a total of 171 and 98 orthologous or homologous sequences, identified by DArT analysis, were identified in R43-64 and 103-2, respectively. By using genomic in situ hybridization, we aimed to identify potential progenitors of both morphotypes. However, no clear conclusion on genomic constitution was reached. These maps will aid in the search for quantitative trait loci of various traits as well as help define and distinguish genetic differences between the two morphotypes.

  2. Resource Limitations Influence Growth and Vigor of Idaho Fescue, a Common Understory Species in Pacific Northwest Ponderosa Pine Forests

    Directory of Open Access Journals (Sweden)

    Craig A. Carr

    2016-12-01

    Full Text Available Alterations in under-canopy resource availability associated with elevated ponderosa pine (Pinus ponderosa Dougl. abundance can negatively influence understory vegetation. Experimental evidence linking under-canopy resource availability and understory vegetation is scarce. Yet this information would be beneficial in developing management strategies to recover desired understory species. We tested the effects of varying nitrogen (N and light availability on Idaho fescue (Festuca idahoensis Elmer, the dominant understory species in ponderosa pine/Idaho fescue plant associations in eastern Oregon. In a greenhouse experiment, two levels of N (50 kg∙N∙ha−1 and 0 kg∙N∙ha−1 and shade (80% shade and 0% shade were applied in a split-plot design to individual potted plants grown in soil collected from high abundance pine stands. Plants grown in unshaded conditions produced greater root (p = 0.0027 and shoot (p = 0.0017 biomass and higher cover values (p = 0.0378 compared to those in the shaded treatments. The addition of N had little effect on plant growth (p = 0.1602, 0.5129, and 0.0853 for shoot biomass, root biomass, and cover, respectively, suggesting that soils in high-density ponderosa pine stands that lack understory vegetation were not N deficient and Idaho fescue plants grown in these soils were not N limited. Management activities that increase under-canopy light availability will promote the conditions necessary for Idaho fescue recovery. However, successful restoration may be constrained by a lack of residual fescue or the invasion of more competitive understory vegetation.

  3. In situ study of glasses decomposition layer

    International Nuclear Information System (INIS)

    Zarembowitch-Deruelle, O.

    1997-01-01

    The aim of this work is to understand the involved mechanisms during the decomposition of glasses by water and the consequences on the morphology of the decomposition layer, in particular in the case of a nuclear glass: the R 7 T 7 . The chemical composition of this glass being very complicated, it is difficult to know the influence of the different elements on the decomposition kinetics and on the resulting morphology because several atoms have a same behaviour. Glasses with simplified composition (only 5 elements) have then been synthesized. The morphological and structural characteristics of these glasses have been given. They have then been decomposed by water. The leaching curves do not reflect the decomposition kinetics but the solubility of the different elements at every moment. The three steps of the leaching are: 1) de-alkalinization 2) lattice rearrangement 3) heavy elements solubilization. Two decomposition layer types have also been revealed according to the glass heavy elements rate. (O.M.)

  4. Chemical composition and decomposition rate of plants used as green manure Composição química e velocidade de decomposição de plantas visando a adubação verde

    Directory of Open Access Journals (Sweden)

    Gabriela Tavares Arantes Silva

    2008-01-01

    Full Text Available Productive systems in which green manure is the source of nutrients must develop more efficient ways to improve soil nutrient dynamics. A well-synchronized balance must be established between specific crop demands and supply of nutrients from decomposition. However, scientific data and information to help improve green manure management in Brazil is still insufficient. For that reason, a number of arboreal species was first chemically characterized and then subjected to decomposition analysis in order to establish a correlation between some parameters. Species were grouped together based on the similarity of chemical composition and decomposition rate. The lignin:N and (lignin+polyphenol:N ratios were found to have the greatest correlation coefficient with the dry matter decomposition rate and nitrogen release.Sistemas produtivos que utilizam a adubação verde prezam por uma dinâmica mais eficiente de nutrientes no solo. Nesse sentido, é importante buscar a sincronia entre a demanda nutricional da cultura e a disponibilidade de nutrientes provenientes da decomposição. Esse estudo objetivou estabelecer uma correlação entre a composição química e a velocidade de decomposição de espécies em um sistema agroflorestal. Para tanto, realizou-se a caracterização química de espécies arbóreas, seguida de estudos de decomposição e busca de correlação entre os parâmetros analisados. De posse dos resultados, foi possível agrupar espécies com composição química e taxas de decomposição semelhantes. As relações lignina:N e (lignina+polifenol:N apresentaram os maiores coeficientes de correlação com a velocidade de decomposição de massa seca e liberação de nitrogênio.

  5. Thermal decomposition of biphenyl (1963); Decomposition thermique du biphenyle (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Clerc, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-06-15

    The rates of formation of the decomposition products of biphenyl; hydrogen, methane, ethane, ethylene, as well as triphenyl have been measured in the vapour and liquid phases at 460 deg. C. The study of the decomposition products of biphenyl at different temperatures between 400 and 460 deg. C has provided values of the activation energies of the reactions yielding the main products of pyrolysis in the vapour phase. Product and Activation energy: Hydrogen 73 {+-} 2 kCal/Mole; Benzene 76 {+-} 2 kCal/Mole; Meta-triphenyl 53 {+-} 2 kCal/Mole; Biphenyl decomposition 64 {+-} 2 kCal/Mole; The rate of disappearance of biphenyl is only very approximately first order. These results show the major role played at the start of the decomposition by organic impurities which are not detectable by conventional physico-chemical analysis methods and the presence of which accelerates noticeably the decomposition rate. It was possible to eliminate these impurities by zone-melting carried out until the initial gradient of the formation curves for the products became constant. The composition of the high-molecular weight products (over 250) was deduced from the mean molecular weight and the dosage of the aromatic C - H bonds by infrared spectrophotometry. As a result the existence in tars of hydrogenated tetra, penta and hexaphenyl has been demonstrated. (author) [French] Les vitesses de formation des produits de decomposition du biphenyle: hydrogene, methane, ethane, ethylene, ainsi que des triphenyles, ont ete mesurees en phase vapeur et en phase liquide a 460 deg. C. L'etude des produits de decomposition du biphenyle a differentes temperatures comprises entre 400 et 460 deg. C, a fourni les valeurs des energies d'activation des reactions conduisant aux principaux produits de la pyrolyse en phase vapeur. Produit et Energie d'activation: Hydrogene 73 {+-} 2 kcal/Mole; Benzene 76 {+-} 2 kcal/Mole; Metatriphenyle, 53 {+-} 2 kcal/Mole; Decomposition du biphenyle 64 {+-} 2 kcal/Mole; La

  6. An ab initio/Rice-Ramsperger-Kassel-Marcus prediction of rate constant and product branching ratios for unimolecular decomposition of propen-2-ol and related H+CH2COHCH2 reaction

    Science.gov (United States)

    Zhou, Chong-Wen; Li, Ze-Rong; Liu, Cun-Xi; Li, Xiang-Yuan

    2008-12-01

    Enols have been found to be important intermediates in the combustion flames of hydrocarbon [C. A. Taatjes et al., Science 308, 1887 (2005)]. The removal mechanism of enols in combustion flame has not been established yet. In this work, the potential energy surface for the unimolecular decomposition of syn-propen-2-ol and H+CH2COHCH2 recombination reactions have been first investigated by CCSD(T) method. The barrier heights, reaction energies, and geometrical parameters of the reactants, products, intermediates, and transition states have been investigated theoretically. The results show that the formation of CH3CO+CH3 via the CH3COCH3 intermediate is dominant for the unimolecular decomposition of syn-propen-2-ol and its branching ratio is over 99% in the whole temperature range from 700 to 3000 K, and its rate constant can be expressed as an analytical form in the range of T =700-3000 K at atmospheric pressure. This can be attributed to the lower energy barrier of this channel compared to the other channels. The association reaction of H with CH2COHCH2 is shown to be a little more complicated than the unimolecular decomposition of syn-propen-2-ol. The channel leading to CH3CO+CH3 takes a key role in the whole temperature range at atmospheric pressure. However at the higher pressure of 100 atm, the recombination by direct formation of syn-propen-2-ol through H addition is important at T 1400 K, the recombination channel leading to CH3CO+CH3 turns out to be significant.

  7. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  8. Thermal decomposition of pyrite

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Popovic, S.

    1992-01-01

    Thermal decomposition of natural pyrite (cubic, FeS 2 ) has been investigated using X-ray diffraction and 57 Fe Moessbauer spectroscopy. X-ray diffraction analysis of pyrite ore from different sources showed the presence of associated minerals, such as quartz, szomolnokite, stilbite or stellerite, micas and hematite. Hematite, maghemite and pyrrhotite were detected as thermal decomposition products of natural pyrite. The phase composition of the thermal decomposition products depends on the terature, time of heating and starting size of pyrite chrystals. Hematite is the end product of the thermal decomposition of natural pyrite. (author) 24 refs.; 6 figs.; 2 tabs

  9. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue.

    Science.gov (United States)

    Wang, Guangyang; Bi, Aoyue; Amombo, Erick; Li, Huiying; Zhang, Liang; Cheng, Cheng; Hu, Tao; Fu, Jinmin

    2017-01-01

    Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue ( Festuca arundinacea Schreber) treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype "TF133" were subjected to the control (CK), salinity (S), salinity + calcium nitrate (SC), and salinity + ethylene glycol tetraacetic acid (SE). Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size), N (number of [Formula: see text] redox turnovers until F m is reached), ψE 0 , or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from Q A to Q B or PSI acceptors), ABS/RC (Absorbed photon flux per RC). All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond [Formula: see text]) and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca 2+ , and K + in the SC regime than S regime. Interrelated analysis indicated that ψE 0 , δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca 2+ and K + content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role

  10. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue

    Directory of Open Access Journals (Sweden)

    Guangyang Wang

    2017-11-01

    Full Text Available Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue (Festuca arundinacea Schreber treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype “TF133” were subjected to the control (CK, salinity (S, salinity + calcium nitrate (SC, and salinity + ethylene glycol tetraacetic acid (SE. Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size, N (number of QA- redox turnovers until Fm is reached, ψE0, or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from QA to QB or PSI acceptors, ABS/RC (Absorbed photon flux per RC. All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond QA- and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca2+, and K+ in the SC regime than S regime. Interrelated analysis indicated that ψE0, δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca2+ and K+ content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role of exogenous calcium in tall

  11. Lead Accumulation by Tall Fescue (Festuca arundinacea Schreb. Grown on a Lead-Contaminated Soil

    Directory of Open Access Journals (Sweden)

    D. Gilliard

    2005-08-01

    Full Text Available Phytoextraction is gaining acceptance as a cost-effective and environmentally friendly phytoremediation strategy for reducing toxic metal levels from contaminated soils. Cognizant of the potential of this phytoremediation technique as an alternative to expensive engineering-based remediation technologies, experiments were conducted to evaluate the suitability of some plants as phytoextraction species. From one of our preliminary studies, we found that tall fescue (Festuca arundinacea Schreb. cv. Spirit can tolerate and accumulate significant amounts of lead (Pb in its shoots when grown in Pb-amended sand. To further evaluate the suitability of tall fescue as one of the potential crop rotation species for phytoextraction, a study was conducted to determine whether the addition of ethylenediaminetetraacetic acid (EDTA alone or in combination with acetic acid can further enhance the shoot uptake of Pb. Seeds were planted in 3.8 L plastic pots containing top soil, peat, and sand (4:2:1, v:v:v spiked with various levels (0,1000, 2000 mg Pb/kg dry soil of lead. At six weeks after planting, aqueous solutions (0, 5 mmol/kg dry soil of EDTA and acetic acid (5 mmol/kg dry soil were applied to the root zone, and all plants were harvested a week later. Results revealed that tall fescue was relatively tolerant to moderate levels of Pb as shown by non-significant differences in root and shoot biomass among treatments. An exception to this trend however, was the slight reduction in root and shoot biomass of plants exposed to the highest Pb level in combination with the two chelates. Root Pb concentration increased with increasing level of soil-applied Pb. Further increases in root Pb concentrations were attributed to chelate amendments. Translocation index, which is a measure of the partitioning of the metal to the shoots, was significantly enhanced with chelate addition especially when both EDTA and acetic acid were used. Chelate-induced increases in

  12. Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth.

    Science.gov (United States)

    Simon, László

    2005-12-01

    Stabilization of metals with amendments and red fescue (Festuca rubra, cv. Keszthelyi 2) growth was studied on an acidic and phytotoxic mine spoil (pH(KCl) 3.20-3.26; Cd 7.1 mg kg(-1), Cu 120 mg kg(-1), Pb 2154 mg kg(-1) and Zn 605 mg kg(-1)) from Gyöngyösoroszi, Hungary in a pot experiment. Raising the pH above 5.0 by lime (CaCO(3)), and supplementing with 40 mg kg(-1)nitrogen (NH(4)NO(3)) made this material suitable for plant growth. All cultures were limed with 0.5% (m/m) CaCO(3) (treatment 1), which was combined with 5% (m/m) municipal sewage sludge compost (treatment 2), 5% (m/m) peat (treatment 3), 7.5% (m/m) natural zeolite (clinoptilolite) (treatment 4), and 0.5 (m/m) KH(2)PO(4) (treatment 5). Treatments 1-5 were combined with each other (treatment 6). After 60 days of red fescue growth, pH of the limed mine spoil decreased in all cultures units. Application of peat caused the highest pH decrease (1.15), while decrease of pH was less than 0.23 in treatments 2, 5 or 6. Application of lime significantly reduced concentrations of metals in the 'plant available' fraction of mine spoil compared to non-limed mine spoil. Amendments added to limed mine spoil changed variously the ratio of Cd, Cu, Pb and Zn in exchangeable or 'plant available' fractions, differently influencing the phytoavailability of these metals. Most of the metals were captured in the roots of test plants. Treatment 2 caused the appearance of less Cd in shoots (spoil, however the application of 0.5 phosphate was less favourable. Liming, application of amendments and growth of red fescue can stabilize metals in acidic and phytotoxic mine spoil, and by phytostabilization they can reduce the risk of metal contamination of the food chain.

  13. Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex

    Directory of Open Access Journals (Sweden)

    Stewart Alan V

    2010-10-01

    Full Text Available Abstract Background The agriculturally important pasture grass tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum (Schreb. Darbysh. is an outbreeding allohexaploid, that may be more accurately described as a species complex consisting of three major (Continental, Mediterranean and rhizomatous morphotypes. Observation of hybrid infertility in some crossing combinations between morphotypes suggests the possibility of independent origins from different diploid progenitors. This study aims to clarify the evolutionary relationships between each tall fescue morphotype through phylogenetic analysis using two low-copy nuclear genes (encoding plastid acetyl-CoA carboxylase [Acc1] and centroradialis [CEN], the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS and the chloroplast DNA (cpDNA genome-located matK gene. Other taxa within the closely related Lolium-Festuca species complex were also included in the study, to increase understanding of evolutionary processes in a taxonomic group characterised by multiple inter-specific hybridisation events. Results Putative homoeologous sequences from both nuclear genes were obtained from each polyploid species and compared to counterparts from 15 diploid taxa. Phylogenetic reconstruction confirmed F. pratensis and F. arundinacea var. glaucescens as probable progenitors to Continental tall fescue, and these species are also likely to be ancestral to the rhizomatous morphotype. However, these two morphotypes are sufficiently distinct to be located in separate clades based on the ITS-derived data set. All four of the generated data sets suggest independent evolution of the Mediterranean and Continental morphotypes, with minimal affinity between cognate sequence haplotypes. No obvious candidate progenitor species for Mediterranean tall fescues were identified, and only two putative sub-genome-specific haplotypes were identified for this morphotype. Conclusions This study describes the first

  14. Multiresolution signal decomposition schemes

    NARCIS (Netherlands)

    J. Goutsias (John); H.J.A.M. Heijmans (Henk)

    1998-01-01

    textabstract[PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis

  15. Decomposition of Sodium Tetraphenylborate

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1998-01-01

    The chemical decomposition of aqueous alkaline solutions of sodium tetraphenylborate (NaTPB) has been investigated. The focus of the investigation is on the determination of additives and/or variables which influence NaTBP decomposition. This document describes work aimed at providing better understanding into the relationship of copper (II), solution temperature, and solution pH to NaTPB stability

  16. Ruminal tryptophan-utilizing bacteria degrade ergovaline from tall fescue seed extract.

    Science.gov (United States)

    Harlow, B E; Goodman, J P; Lynn, B C; Flythe, M D; Ji, H; Aiken, G E

    2017-02-01

    The objectives of this study were to evaluate degradation of ergovaline in a tall fescue [ (Schreb.) Darbysh.] seed extract by rumen microbiota ex vivo and to identify specific bacteria capable of ergovaline degradation in vitro. Rumen cell suspensions were prepared by harvesting rumen fluid from fistulated wether goats ( = 3), straining, and differential centrifugation. Suspensions were dispensed into anaerobic tubes with added Trypticase with or without extract (∼10 μg kg ergovaline). Suspensions were incubated for 48 h at 39°C. Samples were collected at 0, 24, and 48 h for ergovaline analysis and enumeration of hyper-ammonia producing (HAB) and tryptophan-utilizing bacteria. Ergovaline values were analyzed by repeated measures using the mixed procedure of SAS. Enumeration data were log transformed for statistical analysis. When suspensions were incubated with extract, 11 to 15% of ergovaline disappearance was observed over 48 h ( = 0.02). After 24 h, suspensions with added extract had 10-fold less HAB than controls ( = 0.04), but treatments were similar by 48 h ( = 1.00). However, after 24 h and 48 h, suspensions with extract had 10-fold more tryptophan-utilizing bacteria ( rumen pure cultures ( JB1, B159, HD4, B, F, MD1, SR) were evaluated for the ability to degrade ergovaline in vitro. Pure culture cell suspensions were incubated as described above and samples were taken at 0 and 48 h for ergovaline analysis. Data were analyzed using the ANOVA procedure of SAS. All HAB, including the isolates, tested degraded ergovaline (54 to 75%; bacteria tested did not degrade ergovaline. The results of this study indicate which rumen bacteria may play an important role in ergovaline degradation and that microbiological strategies for controlling their activity could have ramifications for fescue toxicosis and other forms of ergotism in ruminants.

  17. Differential Decomposition Among Pig, Rabbit, and Human Remains.

    Science.gov (United States)

    Dautartas, Angela; Kenyhercz, Michael W; Vidoli, Giovanna M; Meadows Jantz, Lee; Mundorff, Amy; Steadman, Dawnie Wolfe

    2018-03-30

    While nonhuman animal remains are often utilized in forensic research to develop methods to estimate the postmortem interval, systematic studies that directly validate animals as proxies for human decomposition are lacking. The current project compared decomposition rates among pigs, rabbits, and humans at the University of Tennessee's Anthropology Research Facility across three seasonal trials that spanned nearly 2 years. The Total Body Score (TBS) method was applied to quantify decomposition changes and calculate the postmortem interval (PMI) in accumulated degree days (ADD). Decomposition trajectories were analyzed by comparing the estimated and actual ADD for each seasonal trial and by fuzzy cluster analysis. The cluster analysis demonstrated that the rabbits formed one group while pigs and humans, although more similar to each other than either to rabbits, still showed important differences in decomposition patterns. The decomposition trends show that neither nonhuman model captured the pattern, rate, and variability of human decomposition. © 2018 American Academy of Forensic Sciences.

  18. Pitfalls in VAR based return decompositions: A clarification

    DEFF Research Database (Denmark)

    Engsted, Tom; Pedersen, Thomas Quistgaard; Tanggaard, Carsten

    in their analysis is not "cashflow news" but "inter- est rate news" which should not be zero. Consequently, in contrast to what Chen and Zhao claim, their decomposition does not serve as a valid caution against VAR based decompositions. Second, we point out that in order for VAR based decompositions to be valid......Based on Chen and Zhao's (2009) criticism of VAR based return de- compositions, we explain in detail the various limitations and pitfalls involved in such decompositions. First, we show that Chen and Zhao's interpretation of their excess bond return decomposition is wrong: the residual component...

  19. Azimuthal decomposition of optical modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-07-01

    Full Text Available This presentation analyses the azimuthal decomposition of optical modes. Decomposition of azimuthal modes need two steps, namely generation and decomposition. An azimuthally-varying phase (bounded by a ring-slit) placed in the spatial frequency...

  20. Association Analysis of Simple Sequence Repeat (SSR Markers with Agronomic Traits in Tall Fescue (Festuca arundinacea Schreb..

    Directory of Open Access Journals (Sweden)

    Yanhong Lou

    Full Text Available Tall fescue is widely used in temperate regions throughout the world as a dominant forage grass as well as a turfgrass, in pastoral and turf industry. However, the utilization of tall fescue was limited because of its leaf roughness, poor regeneration ability and poor stress resistance. New cultivars were desirable in modern pastoral industries exceed the potential of existing cultivars. Therefore, well understanding the agronomic traits and describing germplasms would help to overcome these constraints, and morphological evaluation of tall fescue germplasm is the key component in selecting rational parents for hybridization breeding. However, describing the morphological traits of tall fescue germplasm is costly and time-consuming. Fortunately, biotechnology approaches can supplement conventional breeding efforts for tall fescue improvement. Association mapping, as a powerful approach to identify association between agronomic traits and molecular markers has been widely used for enhancing the utilization, conservation and management of the tall fescue germplasms. Therefore, in the present research, 115 tall fescue accessions from different origins (25 accessions are cultivars; 31 accessions from America; 32 accessions from European; 7 accessions from Africa; 20 accessions from Asia, were evaluated for agronomic traits and genetic diversity with 90 simple sequence repeat (SSR markers. The panel displayed significant variation in spike count per plant (SCP and spike weight (SW. However, BCS performed the lowest CV among all the observed agronomic traits. Three subpopulations were identified within the collections but no obvious relative kinship (K was found. The GLM model was used to describe the association between SSR and agronomic traits. Fifty-one SSR markers associated with agronomic traits were observed. Twelve single-associated markers were associated with PH; six single-associated markers were associated with BCS; eight single

  1. Laser-induced breakdown spectroscopy used to detect endophyte-mediated accumulation of metals by tall fescue

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z.; Stewart, Arthur J.; Gwinn, Kimberley D.; Waller, John C.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to determine the impact of endophyte (Neotyphodium sp.) infection on elemental composition of tall fescue (Festuca arundinacea). Leaf material from endophyte-infected (E+) and endophyte-free (E-) tall fescue populations in established plots was examined. Leaf-tissue digestates were also tested for metals, by inductively coupled plasma (ICP) mass spectrometry (MS). Seven of eleven metals (Ca, Mg, Fe, Mn, Cu, Ni, and Zn) were measured by both techniques at concentrations great enough for a reliable comparison. Mg, Zn, and Cd, a toxic metal that can be present in forage, were readily detected by LIBS, even though Cd concentrations in the plants were below levels typically achieved using ICP MS detection. Implications of these results for research on forage analysis and phytoremediation are discussed.

  2. Thermal decomposition of beryllium perchlorate tetrahydrate

    International Nuclear Information System (INIS)

    Berezkina, L.G.; Borisova, S.I.; Tamm, N.S.; Novoselova, A.V.

    1975-01-01

    Thermal decomposition of Be(ClO 4 ) 2 x4H 2 O was studied by the differential flow technique in the helium stream. The kinetics was followed by an exchange reaction of the perchloric acid appearing by the decomposition with potassium carbonate. The rate of CO 2 liberation in this process was recorded by a heat conductivity detector. The exchange reaction yielding CO 2 is quantitative, it is not the limiting one and it does not distort the kinetics of the process of perchlorate decomposition. The solid products of decomposition were studied by infrared and NMR spectroscopy, roentgenography, thermography and chemical analysis. A mechanism suggested for the decomposition involves intermediate formation of hydroxyperchlorate: Be(ClO 4 ) 2 x4H 2 O → Be(OH)ClO 4 +HClO 4 +3H 2 O; Be(OH)ClO 4 → BeO+HClO 4 . Decomposition is accompained by melting of the sample. The mechanism of decomposition is hydrolytic. At room temperature the hydroxyperchlorate is a thick syrup-like compound crystallizing after long storing

  3. Alterations in serotonin receptor-induced contractility of bovine lateral saphenous vein in cattle grazing endophyte-infected tall fescue.

    Science.gov (United States)

    Klotz, J L; Brown, K R; Xue, Y; Matthews, J C; Boling, J A; Burris, W R; Bush, L P; Strickland, J R

    2012-02-01

    As part of a 2-yr study documenting the physiologic impact of grazing endophyte-infected tall fescue on growing cattle, 2 experiments were conducted to characterize and evaluate effects of grazing 2 levels of toxic endophyte-infected tall fescue pastures on vascular contractility and serotonin receptors. Experiment 1 examined vasoconstrictive activities of 5-hydroxytryptamine (5HT), α-methylserotonin (ME5HT; a 5HT(2) receptor agonist), d-lysergic acid (LSA), and ergovaline (ERV) on lateral saphenous veins collected from steers immediately removed from a high-endophyte-infected tall fescue pasture (HE) or a low-endophyte-infected mixed-grass (LE) pasture. Using the same pastures, Exp. 2 evaluated effects of grazing 2 levels of toxic endophyte-infected tall fescue on vasoconstrictive activities of (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), BW 723C86 (BW7), CGS-12066A (CGS), and 5-carboxamidotryptamine hemiethanolate maleate (5CT), agonists for 5HT(2A),( 2B), 5HT(1B), and 5HT(7) receptors, respectively. One-half of the steers in Exp. 2 were slaughtered immediately after removal from pasture, and the other one-half were fed finishing diets for >91 d before slaughter. For Exp. 1, maximal contractile intensities were greater (P 91 d. Experiment 1 demonstrated that grazing of HE pastures for 89 to 105 d induces functional alterations in blood vessels, as evidenced by reduced contractile capacity and altered serotonergic receptor activity. Experiment 2 demonstrated that grazing HE pastures alters vascular responses, which may be mediated through altered serotonin receptor activities, and these alterations may be ameliorated by the removal of ergot alkaloid exposure as demonstrated by the absence of differences in finished steers.

  4. The effect of increased temperature and nitrogen deposition on decomposition in bogs

    NARCIS (Netherlands)

    Breeuwer, A.J.G.; Heijmans, M.M.P.D.; Robroek, B.J.M.; Limpens, J.; Berendse, F.

    2008-01-01

    Despite their low primary production, ombrotrophic peatlands have a considerable potential to store atmospheric carbon as a result of their extremely low litter decomposition rates. Projected changes in temperature and nitrogen (N) deposition may increase decomposition rates by their positive

  5. Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase.

    Science.gov (United States)

    Chen, Lei; Auh, Chung-Kyoon; Dowling, Paul; Bell, Jeremey; Chen, Fang; Hopkins, Andrew; Dixon, Richard A; Wang, Zeng-Yu

    2003-11-01

    Lignification of cell walls during plant development has been identified as the major factor limiting forage digestibility and concomitantly animal productivity. cDNA sequences encoding a key lignin biosynthetic enzyme, cinnamyl alcohol dehydrogenase (CAD), were cloned from the widely grown monocotyledonous forage species tall fescue (Festuca arundinacea Schreb.). Recombinant tall fescue CAD expressed in E. coli exhibited the highest V(max)/K(m) values when coniferaldehyde and sinapaldehyde were used as substrates. Transgenic tall fescue plants carrying either sense or antisense CAD gene constructs were obtained by microprojectile bombardment of single genotype-derived embryogenic suspension cells. Severely reduced levels of mRNA transcripts and significantly reduced CAD enzymatic activities were found in two transgenic plants carrying sense and antisense CAD transgenes, respectively. These CAD down-regulated transgenic lines had significantly decreased lignin content and altered ratios of syringyl (S) to guaiacyl (G), G to p-hydroxyphenyl (H) and S to H units. No significant changes in cellulose, hemicellulose, neutral sugar composition, p-coumaric acid and ferulic acid levels were observed in the transgenic plants. Increases of in vitro dry matter digestibility of 7.2-9.5% were achieved in the CAD down-regulated lines, thus providing a novel germplasm to be used for the development of grass cultivars with improved forage quality.

  6. Cellular decomposition in vikalloys

    International Nuclear Information System (INIS)

    Belyatskaya, I.S.; Vintajkin, E.Z.; Georgieva, I.Ya.; Golikov, V.A.; Udovenko, V.A.

    1981-01-01

    Austenite decomposition in Fe-Co-V and Fe-Co-V-Ni alloys at 475-600 deg C is investigated. The cellular decomposition in ternary alloys results in the formation of bcc (ordered) and fcc structures, and in quaternary alloys - bcc (ordered) and 12R structures. The cellular 12R structure results from the emergence of stacking faults in the fcc lattice with irregular spacing in four layers. The cellular decomposition results in a high-dispersion structure and magnetic properties approaching the level of well-known vikalloys [ru

  7. Decompositions of manifolds

    CERN Document Server

    Daverman, Robert J

    2007-01-01

    Decomposition theory studies decompositions, or partitions, of manifolds into simple pieces, usually cell-like sets. Since its inception in 1929, the subject has become an important tool in geometric topology. The main goal of the book is to help students interested in geometric topology to bridge the gap between entry-level graduate courses and research at the frontier as well as to demonstrate interrelations of decomposition theory with other parts of geometric topology. With numerous exercises and problems, many of them quite challenging, the book continues to be strongly recommended to eve

  8. Spatial domain decomposition for neutron transport problems

    International Nuclear Information System (INIS)

    Yavuz, M.; Larsen, E.W.

    1989-01-01

    A spatial Domain Decomposition method is proposed for modifying the Source Iteration (SI) and Diffusion Synthetic Acceleration (DSA) algorithms for solving discrete ordinates problems. The method, which consists of subdividing the spatial domain of the problem and performing the transport sweeps independently on each subdomain, has the advantage of being parallelizable because the calculations in each subdomain can be performed on separate processors. In this paper we describe the details of this spatial decomposition and study, by numerical experimentation, the effect of this decomposition on the SI and DSA algorithms. Our results show that the spatial decomposition has little effect on the convergence rates until the subdomains become optically thin (less than about a mean free path in thickness)

  9. Photochemical decomposition of catecholamines

    International Nuclear Information System (INIS)

    Mol, N.J. de; Henegouwen, G.M.J.B. van; Gerritsma, K.W.

    1979-01-01

    During photochemical decomposition (lambda=254 nm) adrenaline, isoprenaline and noradrenaline in aqueous solution were converted to the corresponding aminochrome for 65, 56 and 35% respectively. In determining this conversion, photochemical instability of the aminochromes was taken into account. Irradiations were performed in such dilute solutions that the neglect of the inner filter effect is permissible. Furthermore, quantum yields for the decomposition of the aminochromes in aqueous solution are given. (Author)

  10. Excimer laser decomposition of silicone

    International Nuclear Information System (INIS)

    Laude, L.D.; Cochrane, C.; Dicara, Cl.; Dupas-Bruzek, C.; Kolev, K.

    2003-01-01

    Excimer laser irradiation of silicone foils is shown in this work to induce decomposition, ablation and activation of such materials. Thin (100 μm) laminated silicone foils are irradiated at 248 nm as a function of impacting laser fluence and number of pulsed irradiations at 1 s intervals. Above a threshold fluence of 0.7 J/cm 2 , material starts decomposing. At higher fluences, this decomposition develops and gives rise to (i) swelling of the irradiated surface and then (ii) emission of matter (ablation) at a rate that is not proportioned to the number of pulses. Taking into consideration the polymer structure and the foil lamination process, these results help defining the phenomenology of silicone ablation. The polymer decomposition results in two parts: one which is organic and volatile, and another part which is inorganic and remains, forming an ever thickening screen to light penetration as the number of light pulses increases. A mathematical model is developed that accounts successfully for this physical screening effect

  11. Aridity and decomposition processes in complex landscapes

    Science.gov (United States)

    Ossola, Alessandro; Nyman, Petter

    2015-04-01

    Decomposition of organic matter is a key biogeochemical process contributing to nutrient cycles, carbon fluxes and soil development. The activity of decomposers depends on microclimate, with temperature and rainfall being major drivers. In complex terrain the fine-scale variation in microclimate (and hence water availability) as a result of slope orientation is caused by differences in incoming radiation and surface temperature. Aridity, measured as the long-term balance between net radiation and rainfall, is a metric that can be used to represent variations in water availability within the landscape. Since aridity metrics can be obtained at fine spatial scales, they could theoretically be used to investigate how decomposition processes vary across complex landscapes. In this study, four research sites were selected in tall open sclerophyll forest along a aridity gradient (Budyko dryness index ranging from 1.56 -2.22) where microclimate, litter moisture and soil moisture were monitored continuously for one year. Litter bags were packed to estimate decomposition rates (k) using leaves of a tree species not present in the study area (Eucalyptus globulus) in order to avoid home-field advantage effects. Litter mass loss was measured to assess the activity of macro-decomposers (6mm litter bag mesh size), meso-decomposers (1 mm mesh), microbes above-ground (0.2 mm mesh) and microbes below-ground (2 cm depth, 0.2 mm mesh). Four replicates for each set of bags were installed at each site and bags were collected at 1, 2, 4, 7 and 12 months since installation. We first tested whether differences in microclimate due to slope orientation have significant effects on decomposition processes. Then the dryness index was related to decomposition rates to evaluate if small-scale variation in decomposition can be predicted using readily available information on rainfall and radiation. Decomposition rates (k), calculated fitting single pool negative exponential models, generally

  12. Real interest parity decomposition

    Directory of Open Access Journals (Sweden)

    Alex Luiz Ferreira

    2009-09-01

    Full Text Available The aim of this paper is to investigate the general causes of real interest rate differentials (rids for a sample of emerging markets for the period of January 1996 to August 2007. To this end, two methods are applied. The first consists of breaking the variance of rids down into relative purchasing power pariety and uncovered interest rate parity and shows that inflation differentials are the main source of rids variation; while the second method breaks down the rids and nominal interest rate differentials (nids into nominal and real shocks. Bivariate autoregressive models are estimated under particular identification conditions, having been adequately treated for the identified structural breaks. Impulse response functions and error variance decomposition result in real shocks as being the likely cause of rids.O objetivo deste artigo é investigar as causas gerais dos diferenciais da taxa de juros real (rids para um conjunto de países emergentes, para o período de janeiro de 1996 a agosto de 2007. Para tanto, duas metodologias são aplicadas. A primeira consiste em decompor a variância dos rids entre a paridade do poder de compra relativa e a paridade de juros a descoberto e mostra que os diferenciais de inflação são a fonte predominante da variabilidade dos rids; a segunda decompõe os rids e os diferenciais de juros nominais (nids em choques nominais e reais. Sob certas condições de identificação, modelos autorregressivos bivariados são estimados com tratamento adequado para as quebras estruturais identificadas e as funções de resposta ao impulso e a decomposição da variância dos erros de previsão são obtidas, resultando em evidências favoráveis a que os choques reais são a causa mais provável dos rids.

  13. Decomposing Nekrasov decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, A. [ITEP,25 Bolshaya Cheremushkinskaya, Moscow, 117218 (Russian Federation); Institute for Information Transmission Problems,19-1 Bolshoy Karetniy, Moscow, 127051 (Russian Federation); National Research Nuclear University MEPhI,31 Kashirskoe highway, Moscow, 115409 (Russian Federation); Zenkevich, Y. [ITEP,25 Bolshaya Cheremushkinskaya, Moscow, 117218 (Russian Federation); National Research Nuclear University MEPhI,31 Kashirskoe highway, Moscow, 115409 (Russian Federation); Institute for Nuclear Research of Russian Academy of Sciences,6a Prospekt 60-letiya Oktyabrya, Moscow, 117312 (Russian Federation)

    2016-02-16

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair “interaction” is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  14. Decomposing Nekrasov decomposition

    International Nuclear Information System (INIS)

    Morozov, A.; Zenkevich, Y.

    2016-01-01

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair “interaction” is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  15. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard

    2010-01-01

    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....

  16. FDG decomposition products

    International Nuclear Information System (INIS)

    Macasek, F.; Buriova, E.

    2004-01-01

    In this presentation authors present the results of analysis of decomposition products of [ 18 ]fluorodexyglucose. It is concluded that the coupling of liquid chromatography - mass spectrometry with electrospray ionisation is a suitable tool for quantitative analysis of FDG radiopharmaceutical, i.e. assay of basic components (FDG, glucose), impurities (Kryptofix) and decomposition products (gluconic and glucuronic acids etc.); 2-[ 18 F]fluoro-deoxyglucose (FDG) is sufficiently stable and resistant towards autoradiolysis; the content of radiochemical impurities (2-[ 18 F]fluoro-gluconic and 2-[ 18 F]fluoro-glucuronic acids in expired FDG did not exceed 1%

  17. Radiolytic decomposition of 4-bromodiphenyl ether

    International Nuclear Information System (INIS)

    Tang Liang; Xu Gang; Wu Wenjing; Shi Wenyan; Liu Ning; Bai Yulei; Wu Minghong

    2010-01-01

    Polybrominated diphenyl ethers (PBDEs) spread widely in the environment are mainly removed by photochemical and anaerobic microbial degradation. In this paper, the decomposition of 4-bromodiphenyl ether (BDE -3), the PBDEs homologues, is investigated by electron beam irradiation of its ethanol/water solution (reduction system) and acetonitrile/water solution (oxidation system). The radiolytic products were determined by GC coupled with electron capture detector, and the reaction rate constant of e sol - in the reduction system was measured at 2.7 x 10 10 L · mol -1 · s -1 by pulsed radiolysis. The results show that the BDE-3 concentration affects strongly the decomposition ratio in the alkali solution, and the reduction system has a higher BDE-3 decomposition rate than the oxidation system. This indicates that the BDE-3 was reduced by effectively capturing e sol - in radiolytic process. (authors)

  18. Effect of Fe{sub 2}O{sub 3} in Fe{sub 2}O{sub 3}/AP composite particles on thermal decomposition of AP and on burning rate of the composite propellant

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhenye [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094 (China); Nanjing University of Technology, Nanjing (China); Li, Fengsheng; Bai, Huaping [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2006-12-15

    A technique of composite processing of Fe{sub 2}O{sub 3} and ammonium perchlorate (AP) was employed in making the propellant. The effects of composite processing of Fe{sub 2}O{sub 3} on catalytic activity, on the thermal decomposition of AP, and on the burning rate of the composite propellant were investigated in this paper. Fe{sub 2}O{sub 3}/AP composite particles were prepared by a novel solvent-nonsolvent method. The results show that AP is successfully coated on the surface of Fe{sub 2}O{sub 3}. Composite processing of Fe{sub 2}O{sub 3} and AP can improve the catalytic activity of Fe{sub 2}O{sub 3}. Fe{sub 2}O{sub 3} exhibits better catalytic effect with increasing Fe{sub 2}O{sub 3} content. The larger interface between Fe{sub 2}O{sub 3} and AP and lower density of composite propellant (with the added Fe{sub 2}O{sub 3}/AP composite particles) are responsible for the enhancement of the catalytic activity of Fe{sub 2}O{sub 3}. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  19. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum)

    Science.gov (United States)

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  20. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum).

    Science.gov (United States)

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress.

  1. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Festuca arundinacea

    Directory of Open Access Journals (Sweden)

    Longxing eHu

    2016-02-01

    Full Text Available Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool‐season turfgrass species, tall fescue (Lolium arundinaceum, and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2 and 20 mM and two temperature levels (25/20 and 35/30 ± 0.5 ̊C, day/night treatments in growth chambers. Heat stress increased an electrolyte leakage (EL and malonaldehyde (MDA content, while reduced plant growth, chlorophyll (Chl content, photochemical efficiency (Fv/Fm, root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD. External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress.

  2. Decomposition of Diethylstilboestrol in Soil

    DEFF Research Database (Denmark)

    Gregers-Hansen, Birte

    1964-01-01

    The rate of decomposition of DES-monoethyl-1-C14 in soil was followed by measurement of C14O2 released. From 1.6 to 16% of the added C14 was recovered as C14O2 during 3 months. After six months as much as 12 to 28 per cent was released as C14O2.Determination of C14 in the soil samples after the e...... not inhibit the CO2 production from the soil.Experiments with γ-sterilized soil indicated that enzymes present in the soil are able to attack DES.......The rate of decomposition of DES-monoethyl-1-C14 in soil was followed by measurement of C14O2 released. From 1.6 to 16% of the added C14 was recovered as C14O2 during 3 months. After six months as much as 12 to 28 per cent was released as C14O2.Determination of C14 in the soil samples after...

  3. Interacting effects of insects and flooding on wood decomposition.

    Science.gov (United States)

    Michael Ulyshen

    2014-01-01

    Saproxylic arthropods are thought to play an important role in wood decomposition but very few efforts have been made to quantify their contributions to the process and the factors controlling their activities are not well understood. In the current study, mesh exclusion bags were used to quantify how arthropods affect loblolly pine (Pinus taeda L.) decomposition rates...

  4. Thermic decomposition of biphenyl; Decomposition thermique du biphenyle

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-03-01

    Liquid and vapour phase pyrolysis of very pure biphenyl obtained by methods described in the text was carried out at 400 C in sealed ampoules, the fraction transformed being always less than 0.1 per cent. The main products were hydrogen, benzene, terphenyls, and a deposit of polyphenyls strongly adhering to the walls. Small quantities of the lower aliphatic hydrocarbons were also found. The variation of the yields of these products with a) the pyrolysis time, b) the state (gas or liquid) of the biphenyl, and c) the pressure of the vapour was measured. Varying the area and nature of the walls showed that in the absence of a liquid phase, the pyrolytic decomposition takes place in the adsorbed layer, and that metallic walls promote the reaction more actively than do those of glass (pyrex or silica). A mechanism is proposed to explain the results pertaining to this decomposition in the adsorbed phase. The adsorption seems to obey a Langmuir isotherm, and the chemical act which determines the overall rate of decomposition is unimolecular. (author) [French] Du biphenyle tres pur, dont la purification est decrite, est pyrolyse a 400 C en phase vapeur et en phase liquide dans des ampoules scellees sous vide, a des taux de decomposition n'ayant jamais depasse 0,1 pour cent. Les produits provenant de la pyrolyse sont essentiellement: l' hydrogene, le benzene, les therphenyles, et un depot de polyphenyles adherant fortement aux parois. En plus il se forme de faibles quantites d'hydrocarbures aliphatiques gazeux. On indique la variation des rendements des differents produits avec la duree de pyrolyse, l'etat gazeux ou liquide du biphenyle, et la pression de la vapeur. Variant la superficie et la nature des parois, on montre qu'en absence de liquide la pyrolyse se fait en phase adsorbee. La pyrolyse est plus active au contact de parois metalliques que de celles de verres (pyrex ou silice). A partir des resultats experimentaux un mecanisme de degradation du biphenyle en phase

  5. Decomposition kinetics of plutonium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, J.M.; Stakebake, J.L.

    1979-01-01

    Kinetic data for decomposition of PuH/sub 1/ /sub 95/ provides insight into a possible mechanism for the hydriding and dehydriding reactions of plutonium. The fact that the rate of the hydriding reaction, K/sub H/, is proportional to P/sup 1/2/ and the rate of the dehydriding process, K/sub D/, is inversely proportional to P/sup 1/2/ suggests that the forward and reverse reactions proceed by opposite paths of the same mechanism. The P/sup 1/2/ dependence of hydrogen solubility in metals is characteristic of the dissociative absorption of hydrogen; i.e., the reactive species is atomic hydrogen. It is reasonable to assume that the rates of the forward and reverse reactions are controlled by the surface concentration of atomic hydrogen, (H/sub s/), that K/sub H/ = c'(H/sub s/), and that K/sub D/ = c/(H/sub s/), where c' and c are proportionality constants. For this surface model, the pressure dependence of K/sub D/ is related to (H/sub s/) by the reaction (H/sub s/) reversible 1/2H/sub 2/(g) and by its equilibrium constant K/sub e/ = (H/sub 2/)/sup 1/2//(H/sub s/). In the pressure range of ideal gas behavior, (H/sub s/) = K/sub e//sup -1/(RT)/sup -1/2/ and the decomposition rate is given by K/sub D/ = cK/sub e/(RT)/sup -1/2/P/sup 1/2/. For an analogous treatment of the hydriding process with this model, it can be readily shown that K/sub H/ = c'K/sub e//sup -1/(RT)/sup -1/2/P/sup 1/2/. The inverse pressure dependence and direct temperature dependence of the decomposition rate are correctly predicted by this mechanism which is most consistent with the observed behavior of the Pu--H system.

  6. Preparation, Structure Characterization and Thermal Decomposition ...

    African Journals Online (AJOL)

    NJD

    Decomposition Process of the Dysprosium(III) m-Methylbenzoate 1 ... A dinuclear complex [Dy(m-MBA)3phen]2·H2O was prepared by the reaction of DyCl3·6H2O, m-methylbenzoic acid and .... ing rate of 10 °C min–1 are illustrated in Fig. 4.

  7. Excess Sodium Tetraphenylborate and Intermediates Decomposition Studies

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, M.J.

    1998-12-07

    The stability of excess amounts of sodium tetraphenylborate (NaTPB) in the In-Tank Precipitation (ITP) facility depends on a number of variables. Concentration of palladium, initial benzene, and sodium ion as well as temperature provide the best opportunities for controlling the decomposition rate. This study examined the influence of these four variable on the reactivity of palladium-catalyzed sodium tetraphenylborate decomposition. Also, single effects tests investigated the reactivity of simulants with continuous stirring and nitrogen ventilation, with very high benzene concentrations, under washed sodium concentrations, with very high palladium concentrations, and with minimal quantities of excess NaTPB.

  8. Eigenvalue Decomposition-Based Modified Newton Algorithm

    Directory of Open Access Journals (Sweden)

    Wen-jun Wang

    2013-01-01

    Full Text Available When the Hessian matrix is not positive, the Newton direction may not be the descending direction. A new method named eigenvalue decomposition-based modified Newton algorithm is presented, which first takes the eigenvalue decomposition of the Hessian matrix, then replaces the negative eigenvalues with their absolute values, and finally reconstructs the Hessian matrix and modifies the searching direction. The new searching direction is always the descending direction. The convergence of the algorithm is proven and the conclusion on convergence rate is presented qualitatively. Finally, a numerical experiment is given for comparing the convergence domains of the modified algorithm and the classical algorithm.

  9. Supplemental protein and energy for beef cows consuming endophyte-infected tall fescue.

    Science.gov (United States)

    Forcherio, J C; Catlett, G E; Paterson, J A; Kerley, M S; Ellersieck, M R

    1995-11-01

    Effects of energy and protein supplementation of endophyte (Acremonium coenophialum)-infected (E+) and noninfected (E-) tall fescue (Festuca arundinacea Schreb.) on forage intake, digestibility, N flow to the small intestine, and cow-calf productivity was evaluated in two experiments. In Exp. 1, 10 ruminally and duodenally cannulated steers were fed either E- or E+ hay with four supplements or E- or E+ hay unsupplemented. Four supplements formulated with either cracked corn or soybean hulls with 100 or 200 g/d of ruminally undegraded intake protein (UIP) were compared. Levels of UIP were varied by adding soybean meal or blood meal. Hay OM intake was not affected (P > .20) by source of energy of level of UIP; however, intake of E- was greater (P .20) microbial efficiencies. In Exp. 2, 30 cows (average initial BW 459 +/- 26 kg) and their calves (average initial BW 74 +/- 5 kg and 74 +/- 5 d of age) grazed an 8.1-ha E+ pasture from late May to late July. Cows were individually fed supplements used in Exp. 1 each day. Cows that received cracked corn lost .10 kg/d when fed 100 g/d of UIP but gained .33 kg/d when fed 200 g/d. Cows fed soybean hulls and 100 g/d of UIP gained .07 kg/d, whereas cows provided 200 g/d lost .10 kg/d. Calves nursing cows supplemented with 100 g/d of UIP gained more (P milk consumption and slightly greater (P forage intake than calves nursing cows supplemented with 200 g/d of UIP.

  10. The Physiological, Morphological and Bio-Chemical Comparison of the Current Grass Shiraz City’s Green Space withTall Fescue (Festuca arundinacea Schreb

    Directory of Open Access Journals (Sweden)

    M. Zadehbagheri

    2016-02-01

    Full Text Available One of the main problems of Shiraz city’s green space is the change of color and visual quality of turf during cold months. Therefore, we aimed to evaluate tall fescue in order to find if it is suitable for replacement. This experiment was in the form of complete random blocks and it was done during two consecutive years. Each treatment had 4 repetitions. Data were analyzed using SPSS software, version 16.0, and the means were compared using t or LSD tests at a significance level of 5%. The results showed that tall fescue was superior to normal sport grass in cold months with respect to its chlorophyll, catalase, protein, prolin, and soluble sugar content, as well as its visual quality and root depth. Prolin fluctuations in tall fescue were very high which showed that these types of grass can increase the plant’s prolin content under stress. Therefore, there is a fivefold increase in the prolin content of the grass in cold months (cold tension compared to the beginning of spring (best condition for growth. However, this change does not exist in sport grass. Based on the obtained results we can conclude that tall fescue can resist environmental tension, especially coldness, using different mechanisms, and is a good substitute for normal sport grass.

  11. Acute exposure to ergot alkaloids from endophyte-infected tall fescue does not alter absorptive or barrier function of the isolated ruminal epithelium

    Science.gov (United States)

    Ergot alkaloids in endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have been shown to cause a reduction in blood flow to the rumen epithelium as well as a decrease in VFA absorption from the washed rumen of steers. Previous data also indicates that incubating an extr...

  12. Isolation of Burkholderia cepacia JB12 from lead- and cadmium-contaminated soil and its potential in promoting phytoremediation with tall fescue and red clover.

    Science.gov (United States)

    Jin, Zhong Min; Sha, Wei; Zhang, Yan Fu; Zhao, Jing; Ji, Hongyang

    2013-07-01

    Phytoremediation combined with suitable microorganisms and biodegradable chelating agents can be a means of reclaiming lands contaminated by toxic heavy metals. We investigated the ability of a lead- and cadmium-resistant bacterial strain (JB12) and the biodegradable chelator ethylenediamine-N,N'-disuccinic acid (EDDS) to improve absorption of these metals from soil by tall fescue and red clover. Strain JB12 was isolated from contaminated soil samples, analysed for lead and cadmium resistance, and identified as Burkholderia cepacia. Tall fescue and red clover were grown in pots to which we added JB12, (S,S)-EDDS, combined JB12 and EDDS, or water only. Compared with untreated plants, the biomass of plants treated with JB12 was significantly increased. Concentrations of lead and cadmium in JB12-treated plants increased significantly, with few exceptions. Plants treated with EDDS responded variably, but in those treated with combined EDDS and JB12, heavy metal concentrations increased significantly in tall fescue and in the aboveground parts of red clover. We conclude that JB12 is resistant to lead and cadmium. Its application to the soil improved the net uptake of these heavy metals by experimental plants. The potential for viable phytoremediation of lead- and cadmium-polluted soils with tall fescue and red clover combined with JB12 was further enhanced by the addition of EDDS.

  13. How planting configuration influences plant secondary metabolites and total N in tall fescue (Festuca arundinacea Schreb.), alfalfa (Medicago sativa L.) and birdsfoot trefoil (Lotus corniculatus L.)

    Science.gov (United States)

    Theories suggest that incorporating alfalfa (Medicago sativa L.; Alf) or birdsfoot trefoil (Lotus corniculatus L.; BFT) into endophyte-infected tall fescue (Festuca arundinaceas Schreb.; E+TF) pasturelands may improve livestock production. We investigated how planting configuration might influence p...

  14. Antagonism of lateral saphenous vein serotonin receptors from steers grazing endophyte-free, wild-type, or novel endophyte-infected tall fescue

    Science.gov (United States)

    Pharmacologic profiling of 5-hydroxytryptamine (5HT) receptors of bovine lateral saphenous vein has shown that cattle grazing endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have altered responses to ergovaline (ERV), 5HT, 5HT2A and 5HT7 agonists. To determine if 5HT...

  15. Inverse scale space decomposition

    DEFF Research Database (Denmark)

    Schmidt, Marie Foged; Benning, Martin; Schönlieb, Carola-Bibiane

    2018-01-01

    We investigate the inverse scale space flow as a decomposition method for decomposing data into generalised singular vectors. We show that the inverse scale space flow, based on convex and even and positively one-homogeneous regularisation functionals, can decompose data represented...... by the application of a forward operator to a linear combination of generalised singular vectors into its individual singular vectors. We verify that for this decomposition to hold true, two additional conditions on the singular vectors are sufficient: orthogonality in the data space and inclusion of partial sums...... of the subgradients of the singular vectors in the subdifferential of the regularisation functional at zero. We also address the converse question of when the inverse scale space flow returns a generalised singular vector given that the initial data is arbitrary (and therefore not necessarily in the range...

  16. Magic Coset Decompositions

    CERN Document Server

    Cacciatori, Sergio L; Marrani, Alessio

    2013-01-01

    By exploiting a "mixed" non-symmetric Freudenthal-Rozenfeld-Tits magic square, two types of coset decompositions are analyzed for the non-compact special K\\"ahler symmetric rank-3 coset E7(-25)/[(E6(-78) x U(1))/Z_3], occurring in supergravity as the vector multiplets' scalar manifold in N=2, D=4 exceptional Maxwell-Einstein theory. The first decomposition exhibits maximal manifest covariance, whereas the second (triality-symmetric) one is of Iwasawa type, with maximal SO(8) covariance. Generalizations to conformal non-compact, real forms of non-degenerate, simple groups "of type E7" are presented for both classes of coset parametrizations, and relations to rank-3 simple Euclidean Jordan algebras and normed trialities over division algebras are also discussed.

  17. Infestation of tall fescue (Festuca arundinacea Schreb. with Neotyphodium coenophialum and its influence on growth of chosen microorganisms in vitro

    Directory of Open Access Journals (Sweden)

    Dariusz Pańka

    2012-12-01

    Full Text Available Occurrence of Neotyphodium coenophialum in tall fescue cultivars cultivated in Poland and determination an endophyte inhibition effect on mycelium growth of chosen microorganisms in vitro were investigated. Seventeen seed lots of 11 cultivars of tall fescue were examined. The endophyte mycelium was dyed with bengal rose and microscopically examined to detect N. coenophialum. Occurrence of endophyte was checked with PCR method. Influence of endophyte on growth of 15 microorganisms was established in the laboratory conditions on Petri dishes with PDA medium at 10, 20 and 30°C. Neotyphodium coenophialum occurred only in two seed lots, 'Barrocco' - 42% and Terros - 2%. Living mycelium of endophyte was isolated only from 'Barrocco'. The highest mycelium growth inhibition of Bipolaris sorokiniana, Fusarium avenaceum, F. equiseti, Microdochium nivale and Gaeumannomyces graminis by endophyte at 30°C was recorded. The highest width of growth inhibition zone (4mm was detected for the last pathogen. Mycelium growth of B. sorokiniana and M. nivale was not inhibited at 10°C, and for F. avenaceum at 10 and 20°C.

  18. Genomic and metabolic characterisation of alkaloid biosynthesis by asexual Epichloë fungal endophytes of tall fescue pasture grasses.

    Science.gov (United States)

    Ekanayake, Piyumi N; Kaur, Jatinder; Tian, Pei; Rochfort, Simone J; Guthridge, Kathryn M; Sawbridge, Timothy I; Spangenberg, German C; Forster, John W

    2017-06-01

    Symbiotic associations between tall fescue grasses and asexual Epichloë fungal endophytes exhibit biosynthesis of alkaloid compounds causing both beneficial and detrimental effects. Candidate novel endophytes with favourable chemotypic profiles have been identified in germplasm collections by screening for genetic diversity, followed by metabolite profile analysis in endogenous genetic backgrounds. A subset of candidates was subjected to genome survey sequencing to detect the presence or absence and structural status of known genes for biosynthesis of the major alkaloid classes. The capacity to produce specific metabolites was directly predictable from metabolic data. In addition, study of duplicated gene structure in heteroploid genomic constitutions provided further evidence for the origin of such endophytes. Selected strains were inoculated into meristem-derived callus cultures from specific tall fescue genotypes to perform isogenic comparisons of alkaloid profile in different host backgrounds, revealing evidence for host-specific quantitative control of metabolite production, consistent with previous studies. Certain strains were capable of both inoculation and formation of longer-term associations with a nonhost species, perennial ryegrass (Lolium perenne L.). Discovery and primary characterisation of novel endophytes by DNA analysis, followed by confirmatory metabolic studies, offers improvements of speed and efficiency and hence accelerated deployment in pasture grass improvement programs.

  19. Taxas de decomposição e de liberação de macronutrientes da palhada de aveia preta em plantio direto Decomposition rate and nutrient release of oat straw used as mulching in no-till system

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Costa Crusciol

    2008-01-01

    Full Text Available A palhada das plantas de cobertura mantida sobre o solo em plantio direto é uma reserva importante de nutrientes a ser liberada para as culturas subseqüentes, principalmente em regiões de clima tropical, devido às altas taxas de decomposição dos resíduos. O trabalho foi desenvolvido em condições de campo, durante 1998, no Município de Marechal Cândido Rondon, na Região Oeste do Estado do Paraná. O objetivo deste trabalho foi avaliar a taxa de decomposição e a velocidade de liberação de macronutrientes da palhada de aveia preta, na Região Oeste do Estado do Paraná. O delineamento experimental foi em blocos casualizados, com quatro repetições. As plantas foram manejadas aos trinta dias após a emergência. A persistência de palhada e a liberação de nutrientes do resíduo de aveia preta foram avaliadas 0, 13, 35 e 53 dias após a rolagem e dessecação. A taxa de decomposição da aveia foi constante (restando 34% do teor inicial e inversamente proporcional à relação C/N com valor inicial de 34 e final de 50. A maior parte do K é liberada logo após o manejo da aveia preta, restando na última coleta apenas 2% do teor inicial. N, P, Ca e S são liberados de forma gradual, restando na última avaliação, respectivamente, 55%, 42%, 48% e 47% da quantidade acumulada. O K seguido do N são os nutrientes disponibilizados em maior quantidade no solo, atingindo máxima velocidade de liberação entre 10 e 20 dias após o manejo da fitomassa de aveia preta.Plant residues left on soil surface in no-tillage systems are an important source of nutrients for the following crops, particularly under tropical climate, in which high residue decomposition rates shorten their persistence. The objective of this research work was to evaluate black oat decomposition and release of nutrients. The experiment was carried out during the 1998 cropping season in an experimental area located in Marechal Cândido Rondon, Paraná State, Brazil. A

  20. Decomposição de folhada de quatro espécies florestais no Norte de Portugal: Taxa de decomposição e evolução da composição estrutural e do teor em nutrientes Decomposition of litterfall from four forest species in Northern Portugal: Decomposition rate, and structural components and nutrient dynamics

    Directory of Open Access Journals (Sweden)

    A. Martins

    2009-01-01

    acentuadamente durante a decomposição, sobretudo nas agulhas de PP e PN, com valores finais de 53,2 47,1.Decomposition of senescent leaves of Castanea sativa (CS, and needles of Pinus pinaster (PP, Pinus nigra (PN and Pseudotsuga menziesii (PM was studied during 3.1 to 3.5 years through weight loss and nutrient concentration evolution, using the litter bag technique, whereas the variation of chemical structural compounds was followed during 391 to 518 days. The highest contents of N were measured in PM and CS (respectively 14.5 and 12.1 g kg-1, which showed lower C/N ratio (39.0, 46.8 than PN and PP (122.2 and 147.7, respectively. Highest contents of Ca (9.1 g kg-1 and of alcohol and water soluble compounds (384 against 95 to 160 g kg-1 to other species were measured in PM needles, which also showed the lowest contents of holocelulose (253 g kg-1 against about 500 g kg-1 in the other species. The lignin Klason/N ratio decreased according to PP>PN>PM>CS, (71.2, 58.3, 20.5 and 20.3 respectively, and the holocelulose/lignin ratio ranged from 0.9 (PM to 1.9-2.1 in the other species. Annual decay rates, according to the negative exponential model, were ordered according to CS>PN>PM>PP (respectively -0.35, -0.27, -0.19 and -0.16, but with higher values during the first year for CS (-0.60 and PM (0.31. Soluble compounds and hemicelulose strongly decreased during the decomposition period, while lignin and cellulose amounts showed a low variability, mainly in PP and PM needles. Nutrient amounts decreased during the decomposition process, but remaining quantities for N (41 to 121 % and P (33 to 104 % were higher than those estimated for K, Ca and Mg (respectively 17 to 65%, 30 to 60 % and 18 to 59%. A strong decreasing of C/N ratio was observed especially for PP and PN, where reached 53.2 and 47.1.

  1. Multi hollow needle to plate plasmachemical reactor for pollutant decomposition

    International Nuclear Information System (INIS)

    Pekarek, S.; Kriha, V.; Viden, I.; Pospisil, M.

    2001-01-01

    Modification of the classical multipin to plate plasmachemical reactor for pollutant decomposition is proposed in this paper. In this modified reactor a mixture of air and pollutant flows through the needles, contrary to the classical reactor where a mixture of air and pollutant flows around the pins or through the channel plus through the hollow needles. We give the results of comparison of toluene decomposition efficiency for (a) a reactor with the main stream of a mixture through the channel around the needles and a small flow rate through the needles and (b) a modified reactor. It was found that for similar flow rates and similar energy deposition, the decomposition efficiency of toluene was increased more than six times in the modified reactor. This new modified reactor was also experimentally tested for the decomposition of volatile hydrocarbons from gasoline distillation range. An average efficiency of VOC decomposition of about 25% was reached. However, significant differences in the decomposition of various hydrocarbon types were observed. The best results were obtained for the decomposition of olefins (reaching 90%) and methyl-tert-butyl ether (about 50%). Moreover, the number of carbon atoms in the molecule affects the quality of VOC decomposition. (author)

  2. The decomposition of methyltrichlorosilane: Studies in a high-temperature flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, M.D.; Osterheld, T.H.; Melius, C.F.

    1994-01-01

    Experimental measurements of the decomposition of methyltrichlorosilane (MTS), a common silicon carbide precursor, in a high-temperature flow reactor are presented. The results indicate that methane and hydrogen chloride are major products of the decomposition. No chlorinated silane products were observed. Hydrogen carrier gas was found to increase the rate of MTS decomposition. The observations suggest a radical-chain mechanism for the decomposition. The implications for silicon carbide chemical vapor deposition are discussed.

  3. Genotype x environment interactions in Angus, Brahman, and reciprocal-cross cows and their calves grazing common bermudagrass, endophyte-infected tall fescue pastures, or both forages.

    Science.gov (United States)

    Brown, M A; Brown, A H; Jackson, W G; Miesner, J R

    2000-03-01

    Reproductive and preweaning data on 190 Angus (A x A), Brahman (B x B), and reciprocal-cross cows (A x B and B x A) and 434 two- and three-breed-cross calves managed on common bermudagrass (BG), endophyte-infected tall fescue (E+), or a combination of both forages (ROT) were used to evaluate the interaction of forage type with individual and maternal heterosis and maternal and grandmaternal breed effects. Cows were born from 1988 to 1991, and calves sired by 13 Polled Hereford bulls were born from 1995 to 1997. Heterosis for calving rate was larger on E+ than on BG or ROT (P < .05), whereas maternal effects were larger on BG than on ROT (P < .10). Maternal heterosis for birth weight was negative on BG (P < .11) but positive on E+ and ROT (P < .10). Grandmaternal effects were evident on BG (P < .10) and E+ (P < .01) but not on ROT. Forage effects were generally substantial for 205-d weight, calf weaning hip height, and calf weaning weight:height ratio; BG was highest, ROT was intermediate, and E+ was lowest. Maternal heterosis for these traits was generally greater on E+ than on BG (P < .10). Grandmaternal effects for 205-d weight, hip height, and weight:height ratio were not important on any forage. Heterosis for weaning weight per cow exposed was substantial on all forages (P < .01) and was significantly greater on E+ (P < .01) than on BG or ROT, but maternal effects were not significant. Thus, we observed more advantage to Brahman-cross cows over purebreds on E+ than on BG. We also observed that moving cows and calves from E+ to BG in the summer will alleviate some, but not all, of the deleterious effects of E+ on calf growth, although it may be more beneficial for reproductive traits in purebred cows.

  4. Foreign exchange predictability and the carry trade: a decomposition approach

    Czech Academy of Sciences Publication Activity Database

    Anatolyev, Stanislav; Gospodinov, N.; Jamali, I.; Liu, X.

    2017-01-01

    Roč. 42, June (2017), s. 199-211 ISSN 0927-5398 Institutional support: RVO:67985998 Keywords : exchange rate forecasting * carry trade * return decomposition Subject RIV: AH - Economics OBOR OECD: Finance Impact factor: 0.979, year: 2016

  5. The Decomposition of Surrogate Fuel Molecules During Combustion

    National Research Council Canada - National Science Library

    Tsang, Wing; Manion, Jeffrey A

    2006-01-01

    This project is aimed at developing a chemical kinetic database consisting of the rate constants of fundamental single step reactions that describe the pyrolytic decomposition of surrogate fuels molecules...

  6. A Model for Thermal Decomposition of Hydrogen Peroxide

    National Research Council Canada - National Science Library

    Heister, S

    2004-01-01

    ..., gas-phase decomposition kinetics, droplet dynamics, and control volume conservation laws. The code is adjustable for HP percent concentration for both main and secondary flows, massflow rates for both flows, and initial temperature of each...

  7. A test of the hierarchical model of litter decomposition

    DEFF Research Database (Denmark)

    Bradford, Mark A.; Veen, G. F.; Bonis, Anne

    2017-01-01

    Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls...... regulating the rate at which plant biomass is decomposed into products such as CO2. Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature...

  8. Decomposition of aboveground biomass of a herbaceous wetland stand

    OpenAIRE

    KLIMOVIČOVÁ, Lucie

    2010-01-01

    The master?s thesis is part of the project GA ČR č. P504/11/1151- Role of plants in the greenhouse gas budget of a sedge fen. This thesis deals with the decomposition of aboveground vegetation in a herbaceous wetland. The decomposition rate was established on the flooded part of the Wet Meadows near Třeboň. The rate of the decomposition processes was evaluated using the litter-bag method. Mesh bags filled with dry plant matter were located in the vicinity of the automatic meteorological stati...

  9. Kinetic study of lithium-cadmium ternary amalgam decomposition

    International Nuclear Information System (INIS)

    Cordova, M.H.; Andrade, C.E.

    1992-01-01

    The effect of metals, which form stable lithium phase in binary alloys, on the formation of intermetallic species in ternary amalgams and their effect on thermal decomposition in contact with water is analyzed. Cd is selected as ternary metal, based on general experimental selection criteria. Cd (Hg) binary amalgams are prepared by direct contact Cd-Hg, whereas Li is formed by electrolysis of Li OH aq using a liquid Cd (Hg) cathodic well. The decomposition kinetic of Li C(Hg) in contact with 0.6 M Li OH is studied in function of ageing and temperature, and these results are compared with the binary amalgam Li (Hg) decomposition. The decomposition rate is constant during one hour for binary and ternary systems. Ageing does not affect the binary systems but increases the decomposition activation energy of ternary systems. A reaction mechanism that considers an intermetallic specie participating in the activated complex is proposed and a kinetic law is suggested. (author)

  10. Clustering via Kernel Decomposition

    DEFF Research Database (Denmark)

    Have, Anna Szynkowiak; Girolami, Mark A.; Larsen, Jan

    2006-01-01

    Methods for spectral clustering have been proposed recently which rely on the eigenvalue decomposition of an affinity matrix. In this work it is proposed that the affinity matrix is created based on the elements of a non-parametric density estimator. This matrix is then decomposed to obtain...... posterior probabilities of class membership using an appropriate form of nonnegative matrix factorization. The troublesome selection of hyperparameters such as kernel width and number of clusters can be obtained using standard cross-validation methods as is demonstrated on a number of diverse data sets....

  11. Thermal decomposition of lutetium propionate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2010-01-01

    The thermal decomposition of lutetium(III) propionate monohydrate (Lu(C2H5CO2)3·H2O) in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy and X-ray diffraction. Dehydration takes place around 90 °C. It is followed by the decomposition of the anhydrous...... °C. Full conversion to Lu2O3 is achieved at about 1000 °C. Whereas the temperatures and solid reaction products of the first two decomposition steps are similar to those previously reported for the thermal decomposition of lanthanum(III) propionate monohydrate, the final decomposition...... of the oxycarbonate to the rare-earth oxide proceeds in a different way, which is here reminiscent of the thermal decomposition path of Lu(C3H5O2)·2CO(NH2)2·2H2O...

  12. Formation of volatile decomposition products by self-radiolysis of tritiated thymidine

    International Nuclear Information System (INIS)

    Shiba, Kazuhiro; Mori, Hirofumi

    1997-01-01

    In order to estimate the internal exposure dose in an experiment using tritiated thymidine, the rate of volatile 3 H-decomposition of several tritiated thymidine samples was measured. The decomposition rate of (methyl- 3 H)thymidine in water was over 80% in less than one year after initial analysis. (methyl- 3 H)thymidine was decomposed into volatile and non-volatile 3 H-decomposition products. The ratio of volatile 3 H-decomposition products increased with increasing the rate of the decomposition of (methyl- 3 H) thymidine. The volatile 3 H-decomposition products consisted of two components, of which the main component was tritiated water. Internal exposure dose caused by the inhalation of such volatile 3 H-decomposition products of (methyl- 3 H) thymidine was assumed to be several μSv. (author)

  13. Decomposition of oxalate precipitates by photochemical reaction

    International Nuclear Information System (INIS)

    Jae-Hyung Yoo; Eung-Ho Kim

    1999-01-01

    A photo-radiation method was applied to decompose oxalate precipitates so that it can be dissolved into dilute nitric acid. This work has been studied as a part of partitioning of minor actinides. Minor actinides can be recovered from high-level wastes as oxalate precipitates, but they tend to be coprecipitated together with lanthanide oxalates. This requires another partitioning step for mutual separation of actinide and lanthanide groups. In this study, therefore, some experimental work of photochemical decomposition of oxalate was carried out to prove its feasibility as a step of partitioning process. The decomposition of oxalic acid in the presence of nitric acid was performed in advance in order to understand the mechanistic behaviour of oxalate destruction, and then the decomposition of neodymium oxalate, which was chosen as a stand-in compound representing minor actinide and lanthanide oxalates, was examined. The decomposition rate of neodymium oxalate was found as 0.003 mole/hr at the conditions of 0.5 M HNO 3 and room temperature when a mercury lamp was used as a light source. (author)

  14. Detailed Chemical Kinetic Modeling of Hydrazine Decomposition

    Science.gov (United States)

    Meagher, Nancy E.; Bates, Kami R.

    2000-01-01

    The purpose of this research project is to develop and validate a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. Hydrazine is used extensively in aerospace propulsion, and although liquid hydrazine is not considered detonable, many fuel handling systems create multiphase mixtures of fuels and fuel vapors during their operation. Therefore, a thorough knowledge of the decomposition chemistry of hydrazine under a variety of conditions can be of value in assessing potential operational hazards in hydrazine fuel systems. To gain such knowledge, a reasonable starting point is the development and validation of a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. A reasonably complete mechanism was published in 1996, however, many of the elementary steps included had outdated rate expressions and a thorough investigation of the behavior of the mechanism under a variety of conditions was not presented. The current work has included substantial revision of the previously published mechanism, along with a more extensive examination of the decomposition behavior of hydrazine. An attempt to validate the mechanism against the limited experimental data available has been made and was moderately successful. Further computational and experimental research into the chemistry of this fuel needs to be completed.

  15. Optimization and kinetics decomposition of monazite using NaOH

    International Nuclear Information System (INIS)

    MV Purwani; Suyanti; Deddy Husnurrofiq

    2015-01-01

    Decomposition of monazite with NaOH has been done. Decomposition performed at high temperature on furnace. The parameters studied were the comparison NaOH / monazite, temperature and time decomposition. From the research decomposition for 100 grams of monazite with NaOH, it can be concluded that the greater the ratio of NaOH / monazite, the greater the conversion. In the temperature influences decomposition 400 - 700°C, the greater the reaction rate constant with increasing temperature greater decomposition. Comparison NaOH / monazite optimum was 1.5 and the optimum time of 3 hours. Relations ratio NaOH / monazite with conversion (x) following the polynomial equation y = 0.1579x 2 – 0.2855x + 0.8301 (y = conversion and x = ratio of NaOH/monazite). Decomposition reaction of monazite with NaOH was second orde reaction, the relationship between temperature (T) with a reaction rate constant (k), k = 6.106.e - 1006.8 /T or ln k = - 1006.8/T + 6.106, frequency factor A = 448.541, activation energy E = 8.371 kJ/mol. (author)

  16. Advanced Oxidation: Oxalate Decomposition Testing With Ozone

    International Nuclear Information System (INIS)

    Ketusky, E.; Subramanian, K.

    2012-01-01

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  17. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration

  18. Thermal decomposition kinetics of ammonium uranyl carbonate

    International Nuclear Information System (INIS)

    Kim, E.H.; Park, J.J.; Park, J.H.; Chang, I.S.; Choi, C.S.; Kim, S.D.

    1994-01-01

    The thermal decomposition kinetics of AUC [ammonium uranyl carbonate; (NH 4 ) 4 UO 2 (CO 3 ) 3 [ in an isothermal thermogravimetric (TG) reactor under N 2 atmosphere has been determined. The kinetic data can be represented by the two-dimensional nucleation and growth model. The reaction rate increases and activation energy decreases with increasing particle size and precipitation time which appears in the particle size larger than 30 μm in the mechano-chemical phenomena. (orig.)

  19. Proton mass decomposition

    Science.gov (United States)

    Yang, Yi-Bo; Chen, Ying; Draper, Terrence; Liang, Jian; Liu, Keh-Fei

    2018-03-01

    We report the results on the proton mass decomposition and also on the related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of Nf = 2 + 1 DWF configurations with three lattice spacings and volumes, and several pion masses including the physical pion mass. With 1-loop pertur-bative calculation and proper normalization of the glue operator, we find that the u, d, and s quark masses contribute 9(2)% to the proton mass. The quark energy and glue field energy contribute 31(5)% and 37(5)% respectively in the MS scheme at µ = 2 GeV. The trace anomaly gives the remaining 23(1)% contribution. The u, d, s and glue momentum fractions in the MS scheme are consistent with the global analysis at µ = 2 GeV.

  20. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  1. Art of spin decomposition

    International Nuclear Information System (INIS)

    Chen Xiangsong; Sun Weimin; Wang Fan; Goldman, T.

    2011-01-01

    We analyze the problem of spin decomposition for an interacting system from a natural perspective of constructing angular-momentum eigenstates. We split, from the total angular-momentum operator, a proper part which can be separately conserved for a stationary state. This part commutes with the total Hamiltonian and thus specifies the quantum angular momentum. We first show how this can be done in a gauge-dependent way, by seeking a specific gauge in which part of the total angular-momentum operator vanishes identically. We then construct a gauge-invariant operator with the desired property. Our analysis clarifies what is the most pertinent choice among the various proposals for decomposing the nucleon spin. A similar analysis is performed for extracting a proper part from the total Hamiltonian to construct energy eigenstates.

  2. Long-term litter decomposition controlled by manganese redox cycling.

    Science.gov (United States)

    Keiluweit, Marco; Nico, Peter; Harmon, Mark E; Mao, Jingdong; Pett-Ridge, Jennifer; Kleber, Markus

    2015-09-22

    Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn(2+) provided by fresh plant litter to produce oxidative Mn(3+) species at sites of active decay, with Mn eventually accumulating as insoluble Mn(3+/4+) oxides. Formation of reactive Mn(3+) species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn(3+)-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn(3+) species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant-soil system may have a profound impact on litter decomposition rates.

  3. Decomposition methods for unsupervised learning

    DEFF Research Database (Denmark)

    Mørup, Morten

    2008-01-01

    This thesis presents the application and development of decomposition methods for Unsupervised Learning. It covers topics from classical factor analysis based decomposition and its variants such as Independent Component Analysis, Non-negative Matrix Factorization and Sparse Coding...... methods and clustering problems is derived both in terms of classical point clustering but also in terms of community detection in complex networks. A guiding principle throughout this thesis is the principle of parsimony. Hence, the goal of Unsupervised Learning is here posed as striving for simplicity...... in the decompositions. Thus, it is demonstrated how a wide range of decomposition methods explicitly or implicitly strive to attain this goal. Applications of the derived decompositions are given ranging from multi-media analysis of image and sound data, analysis of biomedical data such as electroencephalography...

  4. Ozone Decomposition on the Surface of Metal Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Batakliev Todor Todorov

    2014-12-01

    Full Text Available The catalytic decomposition of ozone to molecular oxygen over catalytic mixture containing manganese, copper and nickel oxides was investigated in the present work. The catalytic activity was evaluated on the basis of the decomposition coefficient which is proportional to ozone decomposition rate, and it has been already used in other studies for catalytic activity estimation. The reaction was studied in the presence of thermally modified catalytic samples operating at different temperatures and ozone flow rates. The catalyst changes were followed by kinetic methods, surface measurements, temperature programmed reduction and IR-spectroscopy. The phase composition of the metal oxide catalyst was determined by X-ray diffraction. The catalyst mixture has shown high activity in ozone decomposition at wet and dry O3/O2 gas mixtures. The mechanism of catalytic ozone degradation was suggested.

  5. Decomposition of lake phytoplankton. 1

    International Nuclear Information System (INIS)

    Hansen, L.; Krog, G.F.; Soendergaard, M.

    1986-01-01

    Short-time (24 h) and long-time (4-6 d) decomposition of phytoplankton cells were investigasted under in situ conditions in four Danish lakes. Carbon-14-labelled, dead algae were exposed to sterile or natural lake water and the dynamics of cell lysis and bacterial utilization of the leached products were followed. The lysis process was dominated by an initial fast water extraction. Within 2 to 4 h from 4 to 34% of the labelled carbon leached from the algal cells. After 24 h from 11 to 43% of the initial particulate carbon was found as dissolved carbon in the experiments with sterile lake water; after 4 to 6 d the leaching was from 67 to 78% of the initial 14 C. The leached compounds were utilized by bacteria. A comparison of the incubations using sterile and natural water showed that a mean of 71% of the lysis products was metabolized by microorganisms within 24 h. In two experiments the uptake rate equalled the leaching rate. (author)

  6. Amplitude Modulated Sinusoidal Signal Decomposition for Audio Coding

    DEFF Research Database (Denmark)

    Christensen, M. G.; Jacobson, A.; Andersen, S. V.

    2006-01-01

    In this paper, we present a decomposition for sinusoidal coding of audio, based on an amplitude modulation of sinusoids via a linear combination of arbitrary basis vectors. The proposed method, which incorporates a perceptual distortion measure, is based on a relaxation of a nonlinear least......-squares minimization. Rate-distortion curves and listening tests show that, compared to a constant-amplitude sinusoidal coder, the proposed decomposition offers perceptually significant improvements in critical transient signals....

  7. Multidimensional Decomposition of the Sen Index: Some Further Thoughts

    OpenAIRE

    Stéphane Mussard; Kuan Xu

    2006-01-01

    Given the multiplicative decomposition of the Sen index into three commonly used poverty statistics – the poverty rate (poverty incidence), poverty gap ratio (poverty depth) and 1 plus the Gini index of poverty gap ratios of the poor (inequality of poverty) – the index becomes much easier to use and to interpret for economists, policy analysts and decision makers. Based on the recent findings on simultaneous subgroup and source decomposition of the Gini index, we examine possible further deco...

  8. In situ phytoremediation of PAH-contaminated soil by intercropping alfalfa (Medicago sativa L.) with tall fescue (Festuca arundinacea Schreb.) and associated soil microbial activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingming; Fu, Dengqiang; Teng, Ying; Shen, Yuanyuan; Luo, Yongming; Li, Zhengao [Chinese Academy of Sciences, Nanjing (China). Key Laboratory of Soil Environment and Pollution Remediation; Christie, Peter [Agri-Food and Biosciences Institute, Belfast (United Kingdom). Agri-Environment Branch

    2011-09-15

    Purpose: A 7-month field experiment was conducted to investigate the polycyclic aromatic hydrocarbon (PAH) remediation potential of two plant species and changes in counts of soil PAH-degrading bacteria and microbial activity. Materials and methods: Alfalfa and tall fescue were grown in monoculture and intercropped for 7 months in contaminated field soil. Soil and plant samples were analyzed for PAHs. Plant biomass, densities of PAH-degradation soil bacteria, soil microbial biomass C and N, enzyme activities, and the physiological profile of the soil microbial community were determined. Results and discussion: Average removal percentage of total PAHs in intercropping (30.5%) was significantly higher than in monoculture (19.9%) or unplanted soil (-0.6%). About 7.5% of 3-ring, 12.3% of 4-ring, and 17.2% of 5(+6)-ring PAHs were removed from the soil by alfalfa, with corresponding values of 25.1%, 10.4%, and 30.1% for tall fescue. Intercropping significantly enhanced the remediation efficiency. About 18.9% of 3-ring, 30.9% of 4-ring, and 33.4% of 5(+6)-ring PAHs were removed by the intercropping system. Higher counts of soil culturable PAH-degrading bacteria and elevated microbial biomass and enzyme activities were found after intercropping. Soil from intercropping showed significantly higher (p < 0.05) average well-color development obtained by the BIOLOG Ecoplate assay and Shannon-Weaver index compared with monoculture. Conclusions: Cropping promoted the dissipation of soil PAHs. Tall fescue gave greater removal of soil PAHs than alfalfa, and intercropping was more effective than monoculture. Intercropping of alfalfa and tall fescue may be a promising in situ bioremediation strategy for PAH-contaminated soils. (orig.)

  9. TRUST MODEL FOR SOCIAL NETWORK USING SINGULAR VALUE DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    Davis Bundi Ntwiga

    2016-06-01

    Full Text Available For effective interactions to take place in a social network, trust is important. We model trust of agents using the peer to peer reputation ratings in the network that forms a real valued matrix. Singular value decomposition discounts the reputation ratings to estimate the trust levels as trust is the subjective probability of future expectations based on current reputation ratings. Reputation and trust are closely related and singular value decomposition can estimate trust using the real valued matrix of the reputation ratings of the agents in the network. Singular value decomposition is an ideal technique in error elimination when estimating trust from reputation ratings. Reputation estimation of trust is optimal at the discounting of 20 %.

  10. Ascorbic Acid Alleviates Damage from Heat Stress in the Photosystem II of Tall Fescue in Both the Photochemical and Thermal Phases

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2017-08-01

    Full Text Available L-Ascorbate (Asc plays important roles in plant development, hormone signaling, the cell cycle and cellular redox system, etc. The higher content of Asc in plant chloroplasts indicates its important role in the photosystem. The objective of this study was to study the roles of Asc in tall fescue leaves against heat stress. After a heat stress treatment, we observed a lower value of the maximum quantum yield for primary photochemistry (φPo, which reflects the inhibited activity of the photochemical phase of photosystem II (PSII. Moreover, we observed a higher value of efficiency of electron transfer from QB to photosystem I acceptors (δR0, which reflects elevated activity of the thermal phase of the photosystem of the tall fescue. The addition of Asc facilitate the behavior of the photochemical phase of the PSII by lowering the ROS content as well as that of the alternative electron donor to provide electron to the tyrosine residue of the D1 protein. Additionally, exogenous Asc reduces the activity of the thermal phase of the photosystem, which could contribute to the limitation of energy input into the photosystem in tall fescue against heat stress. Synthesis of the Asc increased under heat stress treatment. However, under heat stress this regulation does not occur at the transcription level and requires further study.

  11. Effect of seed rate and row spacing in seed production of Festulolium

    DEFF Research Database (Denmark)

    Deleuran, L C; Gislum, R; Boelt, B

    2010-01-01

    -type festulolium, Paulita, and in a fescue-type festulolium, Hykor. The objectives were to examine the influence of row spacing (12, 24, and 36 cm) and seed rate (8, 12, or 16 kg ha-1) on plant establishment, development, and seed yield. Observations of autumn and spring in-row plant densities indicated......Festulolium ( Festulolium) is a cross between the two species fescue (Festuca L.) and ryegrass (Lolium L.) and is a promising forage and seed crop. To stimulate the production of Danish organic festulolium seeds a three-year field experiment was performed from 1999 to 2002 in a ryegrass...... satisfactory plant establishment in all combinations of seed rate and row spacing. The number of reproductive tillers was in the range from 800 to 2200 m-2 in Paulita and from 500 to 1300 m-2 in Hykor. Row spacing had an effect on the number of reproductive tillers and in both cultivars the highest number...

  12. Reactivity continuum modeling of leaf, root, and wood decomposition across biomes

    Science.gov (United States)

    Koehler, Birgit; Tranvik, Lars J.

    2015-07-01

    Large carbon dioxide amounts are released to the atmosphere during organic matter decomposition. Yet the large-scale and long-term regulation of this critical process in global carbon cycling by litter chemistry and climate remains poorly understood. We used reactivity continuum (RC) modeling to analyze the decadal data set of the "Long-term Intersite Decomposition Experiment," in which fine litter and wood decomposition was studied in eight biome types (224 time series). In 32 and 46% of all sites the litter content of the acid-unhydrolyzable residue (AUR, formerly referred to as lignin) and the AUR/nitrogen ratio, respectively, retarded initial decomposition rates. This initial rate-retarding effect generally disappeared within the first year of decomposition, and rate-stimulating effects of nutrients and a rate-retarding effect of the carbon/nitrogen ratio became more prevalent. For needles and leaves/grasses, the influence of climate on decomposition decreased over time. For fine roots, the climatic influence was initially smaller but increased toward later-stage decomposition. The climate decomposition index was the strongest climatic predictor of decomposition. The similar variability in initial decomposition rates across litter categories as across biome types suggested that future changes in decomposition may be dominated by warming-induced changes in plant community composition. In general, the RC model parameters successfully predicted independent decomposition data for the different litter-biome combinations (196 time series). We argue that parameterization of large-scale decomposition models with RC model parameters, as opposed to the currently common discrete multiexponential models, could significantly improve their mechanistic foundation and predictive accuracy across climate zones and litter categories.

  13. Danburite decomposition by hydrochloric acid

    International Nuclear Information System (INIS)

    Mamatov, E.D.; Ashurov, N.A.; Mirsaidov, U.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by hydrochloric acid. The interaction of boron containing ores of Ak-Arkhar Deposit of Tajikistan with mineral acids, including hydrochloric acid was studied. The optimal conditions of extraction of valuable components from danburite composition were determined. The chemical composition of danburite of Ak-Arkhar Deposit was determined as well. The kinetics of decomposition of calcined danburite by hydrochloric acid was studied. The apparent activation energy of the process of danburite decomposition by hydrochloric acid was calculated.

  14. AUTONOMOUS GAUSSIAN DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Heiles, Carl [Radio Astronomy Lab, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Hennebelle, Patrick [Laboratoire AIM, Paris-Saclay, CEA/IRFU/SAp-CNRS-Université Paris Diderot, F-91191 Gif-sur Yvette Cedex (France); Goss, W. M. [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville, Socorro, NM 87801 (United States); Dickey, John, E-mail: rlindner@astro.wisc.edu [University of Tasmania, School of Maths and Physics, Private Bag 37, Hobart, TAS 7001 (Australia)

    2015-04-15

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  15. AUTONOMOUS GAUSSIAN DECOMPOSITION

    International Nuclear Information System (INIS)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Goss, W. M.; Dickey, John

    2015-01-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes

  16. Study on closed pressure vessel test. Effect of heat rate, sample weight and vessel size on pressure rise due to thermal decomposition; Mippeigata atsuryoku yoki shiken ni kansuru kenkyu. Atsuryoku hassei kyodo ni oyobosu kanetsusokudo, shiryoryo oyobi youki saizu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Kenji.; Akutsu, Yoshiaki.; Arai, Mitsuru.; Tamura, Masamitsu. [The University of Tokyo, Tokyo (Japan). School of Engineering

    1999-02-28

    We have attempted to devise a new closed pressure vessel test apparatus in order to evaluate the violence of thermal decomposition of self-reactive materials and have examined some influencing factors, such as heat rate, sample weight, filling factor (sample weight/vessel size) and vessel size on Pmax (maximum pressure rise) and dP/dt (rate of pressure rise) due to their thermal decomposition. As a result, the following decreasing orders of Pmax and dP/dt were shown. Pmax: ADCA>BPZ>AIBN>TCP dP/dt: AIBN>BPZ>ADCA>TCP Moreover, Pmax was not almost influenced by heat rate, while dP/dt increased with an increase in heat rate in the case of BPZ. Pmax and dP/dt increased with an increase in sample weight and the degree of increase depended on the kinds of materials. In addition, it was shown that Pmax and dP/dt increased with an increase in vessel size at a constant filling factor. (author)

  17. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes.

    Science.gov (United States)

    García-Palacios, Pablo; Maestre, Fernando T; Kattge, Jens; Wall, Diana H

    2013-08-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesised litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~ 37%). [corrected]. However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. © 2013 John Wiley & Sons Ltd/CNRS.

  18. Pressure Dependent Decomposition Kinetics of the Energetic Material HMX up to 3.6 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, E A; Zaug, J M; Burnham, A K

    2009-05-29

    The effect of pressure on the thermal decomposition rate of the energetic material HMX was studied. HMX was precompressed in a diamond anvil cell (DAC) and heated at various rates. The parent species population was monitored as a function of time and temperature using Fourier transform infrared (FTIR) spectroscopy. Decomposition rates were determined by fitting the fraction reacted to the extended-Prout-Tompkins nucleation-growth model and the Friedman isoconversional method. The results of these experiments and analysis indicate that pressure accelerates the decomposition at low to moderate pressures (i.e. between ambient pressure and 1 GPa) and decelerates the decomposition at higher pressures. The decomposition acceleration is attributed to pressure enhanced autocatalysis whereas the deceleration at high pressures is attributed pressure inhibiting bond homolysis step(s), which would result in an increase in volume. These results indicate that both {beta} and {delta} phase HMX are sensitive to pressure in the thermally induced decomposition kinetics.

  19. Effects of supplementing endophyte-infected tall fescue with sainfoin and polyethylene glycol on the physiology and ingestive behavior of sheep.

    Science.gov (United States)

    Catanese, F; Distel, R A; Villalba, J J

    2014-02-01

    Tannins in sainfoin (Onobrychis viciifolia) may bind to alkaloids in endophyte-infected tall fescue [E+; Lolium arundinaceum (Schreb.) Darbysh.] and attenuate toxicosis. If so, supplementing E+ with sainfoin will increase use of E+ by sheep, and polyethylene glycol (PEG)-a polymer that selectively binds to tannins-will reduce such response. To test these predictions, thirty-six 2-mo-old lambs were randomly assigned to 3 treatments (12 lambs/treatment). During exposure, all lambs were individually penned and fed E+ supplemented with beet pulp (CTRL), fresh-cut sainfoin and beet pulp (SAIN), or fresh-cut sainfoin plus PEG mixed in beet pulp (SAIN+PEG). Feed intake was measured daily. Rectal temperatures and jugular blood samples were taken at the beginning and end of exposure. After exposure, all lambs were offered choices between endophyte-free tall fescue (E-) and orchardgrass, and preference for E- was assessed. Then, all lambs were allowed to graze a choice of E+ and sainfoin or a monoculture of E+. The foraging behavior of lambs was recorded. When sainfoin was in mid-vegetative stage, lambs in SAIN ingested more E+ than lambs in CTRL (P = 0.05), but no differences were detected between lambs in SAIN+PEG and CTRL (P = 0.12). Sainfoin supplementation improved some physiological parameters indicative of fescue toxicosis. Lambs in SAIN had lower rectal temperatures (P = 0.02), greater numbers of leukocytes (P 0.05). On the other hand, when they grazed on a monoculture of E+, lambs in SAIN+PEG showed greater acceptance of E+ than lambs in SAIN or in CTRL (P < 0.05). In summary, sainfoin supplementation alleviated several of the classic signs of fescue toxicosis and increased intake of endophyte-infected tall fescue. Tannins in sainfoin partially accounted for this benefit since feeding a polymer that selectively binds to tannins (PEG) attenuated some these responses. However, sainfoin supplementation during initial exposure to E+ did not lead to an increased

  20. DECOMPOSITION OF TARS IN MICROWAVE PLASMA – PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    Mateusz Wnukowski

    2014-07-01

    Full Text Available The paper refers to the main problem connected with biomass gasification - a presence of tar in a product gas. This paper presents preliminary results of tar decomposition in a microwave plasma reactor. It gives a basic insight into the construction and work of the plasma reactor. During the experiment, researches were carried out on toluene as a tar surrogate. As a carrier gas for toluene and as a plasma agent, nitrogen was used. Flow rates of the gases and the microwave generator’s power were constant during the whole experiment. Results of the experiment showed that the decomposition process of toluene was effective because the decomposition efficiency attained above 95%. The main products of tar decomposition were light hydrocarbons and soot. The article also gives plans for further research in a matter of tar removal from the product gas.

  1. NRSA enzyme decomposition model data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme activities measured at more than 2000 US streams and rivers. These enzyme data were then used to predict organic matter decomposition and microbial...

  2. Some nonlinear space decomposition algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Xue-Cheng; Espedal, M. [Univ. of Bergen (Norway)

    1996-12-31

    Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.

  3. The Effect of Body Mass on Outdoor Adult Human Decomposition.

    Science.gov (United States)

    Roberts, Lindsey G; Spencer, Jessica R; Dabbs, Gretchen R

    2017-09-01

    Forensic taphonomy explores factors impacting human decomposition. This study investigated the effect of body mass on the rate and pattern of adult human decomposition. Nine males and three females aged 49-95 years ranging in mass from 73 to 159 kg who were donated to the Complex for Forensic Anthropology Research between December 2012 and September 2015 were included in this study. Kelvin accumulated degree days (KADD) were used to assess the thermal energy required for subjects to reach several total body score (TBS) thresholds: early decomposition (TBS ≥6.0), TBS ≥12.5, advanced decomposition (TBS ≥19.0), TBS ≥23.0, and skeletonization (TBS ≥27.0). Results indicate no significant correlation between body mass and KADD at any TBS threshold. Body mass accounted for up to 24.0% of variation in decomposition rate depending on stage, and minor differences in decomposition pattern were observed. Body mass likely has a minimal impact on postmortem interval estimation. © 2017 American Academy of Forensic Sciences.

  4. Decomposition of oxalate precipitates by photochemical reaction

    International Nuclear Information System (INIS)

    Yoo, J.H.; Kim, E.H.

    1998-01-01

    A photo-radiation method was applied to decompose oxalate precipitates so that it can be dissolved into dilute nitric acid. This work has been studied as a part of partitioning of minor actinides. Minor actinides can be recovered from high-level wastes as oxalate precipitates, but they tend to be coprecipitated together with lanthanide oxalates. This requires another partitioning step for mutual separation of actinide and lanthanide groups. In this study, therefore, the photochemical decomposition mechanism of oxalates in the presence of nitric acid was elucidated by experimental work. The decomposition of oxalates was proved to be dominated by the reaction with hydroxyl radical generated from the nitric acid, rather than with nitrite ion also formed from nitrate ion. The decomposition rate of neodymium oxalate, which was chosen as a stand-in compound representing minor actinide and lanthanide oxalates, was found to be 0.003 M/hr at the conditions of 0.5 M HNO 3 and room temperature when a mercury lamp was used as a light source. (author)

  5. Thermal decomposition and reaction of confined explosives

    International Nuclear Information System (INIS)

    Catalano, E.; McGuire, R.; Lee, E.; Wrenn, E.; Ornellas, D.; Walton, J.

    1976-01-01

    Some new experiments designed to accurately determine the time interval required to produce a reactive event in confined explosives subjected to temperatures which will cause decomposition are described. Geometry and boundary conditions were both well defined so that these experiments on the rapid thermal decomposition of HE are amenable to predictive modelling. Experiments have been carried out on TNT, TATB and on two plastic-bonded HMX-based high explosives, LX-04 and LX-10. When the results of these experiments are plotted as the logarithm of the time to explosion versus 1/T K (Arrhenius plot), the curves produced are remarkably linear. This is in contradiction to the results obtained by an iterative solution of the Laplace equation for a system with a first order rate heat source. Such calculations produce plots which display considerable curvature. The experiments have also shown that the time to explosion is strongly influenced by the void volume in the containment vessel. Results of the experiments with calculations based on the heat flow equations coupled with first-order models of chemical decomposition are compared. The comparisons demonstrate the need for a more realistic reaction model

  6. A High Temperature Kinetic Study for the Thermal Unimolecular Decomposition of Diethyl Carbonate

    KAUST Repository

    Alabbad, Mohammed

    2017-07-08

    Thermal unimolecular decomposition of diethyl carbonate (DEC) was investigated in a shock tube by measuring ethylene concentration with a CO2 gas laser over 900 - 1200 K and 1.2 – 2.8 bar. Rate coefficients were extracted using a simple kinetic scheme comprising of thermal decomposition of DEC as initial step followed by rapid thermal decomposition of the intermediate ethyl-hydrogen-carbonate. Our results were further analysed using ab initio and master equation calculations to obtain pressure- and temperature- dependence of rate coefficients. Similar to alkyl esters, unimolecular decomposition of DEC is found to undergo six-center retro-ene elimination of ethylene in a concerted manner.

  7. A High Temperature Kinetic Study for the Thermal Unimolecular Decomposition of Diethyl Carbonate

    KAUST Repository

    Alabbad, Mohammed; Giri, Binod; Szőri, Milan; Viskolcz, Bé la; Farooq, Aamir

    2017-01-01

    Thermal unimolecular decomposition of diethyl carbonate (DEC) was investigated in a shock tube by measuring ethylene concentration with a CO2 gas laser over 900 - 1200 K and 1.2 – 2.8 bar. Rate coefficients were extracted using a simple kinetic scheme comprising of thermal decomposition of DEC as initial step followed by rapid thermal decomposition of the intermediate ethyl-hydrogen-carbonate. Our results were further analysed using ab initio and master equation calculations to obtain pressure- and temperature- dependence of rate coefficients. Similar to alkyl esters, unimolecular decomposition of DEC is found to undergo six-center retro-ene elimination of ethylene in a concerted manner.

  8. Extractable trace elements and sodium in Illinois coal-cleaning wastes: correlation with concentrations in tall fescue

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.G.

    1983-07-01

    Trace element concentrations in shoots of tall fescue (Festuca arundinacea Schreb.) were correlated with extractable element concentrations in five southern Illinois coal-cleaning wastes limed to pH 6.5, in a greenhouse study to determine applicability of soil tests to coal-waste evaluation. There was little or no correlation between shoot concentrations of Fe, and Fe extracted from the wastes by dilute acid (r equals 0.60), DTPA at pH 6.4 (r equals 0.47) or DTPA at pH 8.4 (r equals -0.17). The corresponding r values for Mn were 0.94, 0.97, and 0.96; for Zn, 0.96, 0.96, and 0.88; and for Cu, 0.67, 0.90, and 0.88, respectively. Shoot B correlated well with hot water-soluble B(r equals 0.96) and acid-soluble B(r equals 0.91). Correlations for shoot Na were also good with water-soluble Na and acid-soluble Na (r equals 0.96 in both cases). Concentrations of Al, As, Cd, Ni, Pb, and Se in the shoots were well below reported upper critical levels, and similar to concentrations in the grass grown on a silt loam under the same greenhouse conditions. 21 references.

  9. Pollutant content in marine debris and characterization by thermal decomposition

    International Nuclear Information System (INIS)

    Iñiguez, M.E.; Conesa, J.A.; Fullana, A.

    2017-01-01

    Marine debris (MDs) produces a wide variety of negative environmental, economic, safety, health and cultural impacts. Most marine litter has a very low decomposition rate (plastics), leading to a gradual accumulation in the coastal and marine environment. Characterization of the MDs has been done in terms of their pollutant content: PAHs, ClBzs, ClPhs, BrPhs, PCDD/Fs and PCBs. The results show that MDs is not a very contaminated waste. Also, thermal decomposition of MDs materials has been studied in a thermobalance at different atmospheres and heating rates. Below 400–500 K, the atmosphere does not affect the thermal degradation of the mentioned waste. However, at temperatures between 500 and 800 K the presence of oxygen accelerates the decomposition. Also, a kinetic model is proposed for the combustion of the MDs, and the decomposition is compared with that of their main constituents, i.e., polyethylene (PE), polystyrene (PS), polypropylene (PP), nylon and polyethylene-terephthalate (PET). - Highlights: • The analysis and characterization of waste from marine environment were performed. • Its pollutant content has been determined, considering PAHs, PCDD/Fs and dl-PCBs. • Thermal decomposition of MDs was studied at different atmospheres and heating rates. • Kinetic models for the combustion of the five main plastics of MDs were proposed. • Composition of the waste is calculated using thermal behavior of different plastics.

  10. Decomposition kinetics of aminoborane in aqueous solutions

    International Nuclear Information System (INIS)

    Shvets, I.B.; Erusalimchik, I.G.

    1984-01-01

    Kinetics of aminoborane hydrolysis has been studied using the method of polarization galvanostatical curves on a platinum electrode in buffer solutions at pH 3; 5; 7. The supposition that the reaction of aminoborane hydrolysis is the reaction of the first order by aminoborane is proved. The rate constant of aminoborane decomposition in the solution with pH 5 is equal to: K=2.5x10 -5 s -1 and with pH 3 it equals K=1.12x10 -4 s -1

  11. MADCam: The multispectral active decomposition camera

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen; Stegmann, Mikkel Bille

    2001-01-01

    A real-time spectral decomposition of streaming three-band image data is obtained by applying linear transformations. The Principal Components (PC), the Maximum Autocorrelation Factors (MAF), and the Maximum Noise Fraction (MNF) transforms are applied. In the presented case study the PC transform...... that utilised information drawn from the temporal dimension instead of the traditional spatial approach. Using the CIF format (352x288) frame rates up to 30 Hz are obtained and in VGA mode (640x480) up to 15 Hz....

  12. On the hadron mass decomposition

    Science.gov (United States)

    Lorcé, Cédric

    2018-02-01

    We argue that the standard decompositions of the hadron mass overlook pressure effects, and hence should be interpreted with great care. Based on the semiclassical picture, we propose a new decomposition that properly accounts for these pressure effects. Because of Lorentz covariance, we stress that the hadron mass decomposition automatically comes along with a stability constraint, which we discuss for the first time. We show also that if a hadron is seen as made of quarks and gluons, one cannot decompose its mass into more than two contributions without running into trouble with the consistency of the physical interpretation. In particular, the so-called quark mass and trace anomaly contributions appear to be purely conventional. Based on the current phenomenological values, we find that in average quarks exert a repulsive force inside nucleons, balanced exactly by the gluon attractive force.

  13. On the hadron mass decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Lorce, Cedric [Universite Paris-Saclay, Centre de Physique Theorique, Ecole Polytechnique, CNRS, Palaiseau (France)

    2018-02-15

    We argue that the standard decompositions of the hadron mass overlook pressure effects, and hence should be interpreted with great care. Based on the semiclassical picture, we propose a new decomposition that properly accounts for these pressure effects. Because of Lorentz covariance, we stress that the hadron mass decomposition automatically comes along with a stability constraint, which we discuss for the first time. We show also that if a hadron is seen as made of quarks and gluons, one cannot decompose its mass into more than two contributions without running into trouble with the consistency of the physical interpretation. In particular, the so-called quark mass and trace anomaly contributions appear to be purely conventional. Based on the current phenomenological values, we find that in average quarks exert a repulsive force inside nucleons, balanced exactly by the gluon attractive force. (orig.)

  14. Thermal decomposition of hydroxylamine: Isoperibolic calorimetric measurements at different conditions

    International Nuclear Information System (INIS)

    Adamopoulou, Theodora; Papadaki, Maria I.; Kounalakis, Manolis; Vazquez-Carreto, Victor; Pineda-Solano, Alba; Wang, Qingsheng; Mannan, M.Sam

    2013-01-01

    Highlights: • Hydroxylamine thermal decomposition enthalpy was measured using larger quantities. • The rate at which heat is evolved depends on hydroxylamine concentration. • Decomposition heat is strongly affected by the conditions and the selected baseline. • The need for enthalpy measurements using a larger reactant mass is pinpointed. • Hydroxylamine decomposition in the presence of argon is much faster than in air. -- Abstract: Thermal decomposition of hydroxylamine, NH 2 OH, was responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting its decomposition are not being understood. In this work, the global enthalpy of hydroxylamine decomposition has been measured in the temperature range of 130–150 °C employing isoperibolic calorimetry. Measurements were performed in a metal reactor, employing 30–80 ml solutions containing 1.4–20 g of pure hydroxylamine (2.8–40 g of the supplied reagent). The measurements showed that increased concentration or temperature, results in higher global enthalpies of reaction per unit mass of reactant. At 150 °C, specific enthalpies as high as 8 kJ per gram of hydroxylamine were measured, although in general they were in the range of 3−5 kJ g −1 . The accurate measurement of the generated heat was proven to be a cumbersome task as (a) it is difficult to identify the end of decomposition, which after a fast initial stage, proceeds very slowly, especially at lower temperatures and (b) the environment of gases affects the reaction rate

  15. Thermal decomposition of hydroxylamine: Isoperibolic calorimetric measurements at different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Adamopoulou, Theodora [Department of Environmental and Natural Resources Management, University of Western Greece (formerly of University of Ioannina), Seferi 2, Agrinio GR30100 (Greece); Papadaki, Maria I., E-mail: mpapadak@cc.uoi.gr [Department of Environmental and Natural Resources Management, University of Western Greece (formerly of University of Ioannina), Seferi 2, Agrinio GR30100 (Greece); Kounalakis, Manolis [Department of Environmental and Natural Resources Management, University of Western Greece (formerly of University of Ioannina), Seferi 2, Agrinio GR30100 (Greece); Vazquez-Carreto, Victor; Pineda-Solano, Alba [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States); Wang, Qingsheng [Department of Fire Protection and Safety and Department of Chemical Engineering, Oklahoma State University, 494 Cordell South, Stillwater, OK 74078 (United States); Mannan, M.Sam [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States)

    2013-06-15

    Highlights: • Hydroxylamine thermal decomposition enthalpy was measured using larger quantities. • The rate at which heat is evolved depends on hydroxylamine concentration. • Decomposition heat is strongly affected by the conditions and the selected baseline. • The need for enthalpy measurements using a larger reactant mass is pinpointed. • Hydroxylamine decomposition in the presence of argon is much faster than in air. -- Abstract: Thermal decomposition of hydroxylamine, NH{sub 2}OH, was responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting its decomposition are not being understood. In this work, the global enthalpy of hydroxylamine decomposition has been measured in the temperature range of 130–150 °C employing isoperibolic calorimetry. Measurements were performed in a metal reactor, employing 30–80 ml solutions containing 1.4–20 g of pure hydroxylamine (2.8–40 g of the supplied reagent). The measurements showed that increased concentration or temperature, results in higher global enthalpies of reaction per unit mass of reactant. At 150 °C, specific enthalpies as high as 8 kJ per gram of hydroxylamine were measured, although in general they were in the range of 3−5 kJ g{sup −1}. The accurate measurement of the generated heat was proven to be a cumbersome task as (a) it is difficult to identify the end of decomposition, which after a fast initial stage, proceeds very slowly, especially at lower temperatures and (b) the environment of gases affects the reaction rate.

  16. Abstract decomposition theorem and applications

    CERN Document Server

    Grossberg, R; Grossberg, Rami; Lessmann, Olivier

    2005-01-01

    Let K be an Abstract Elementary Class. Under the asusmptions that K has a nicely behaved forking-like notion, regular types and existence of some prime models we establish a decomposition theorem for such classes. The decomposition implies a main gap result for the class K. The setting is general enough to cover \\aleph_0-stable first-order theories (proved by Shelah in 1982), Excellent Classes of atomic models of a first order tehory (proved Grossberg and Hart 1987) and the class of submodels of a large sequentially homogenuus \\aleph_0-stable model (which is new).

  17. Stress memory induced rearrangements of HSP transcription, photosystem II photochemistry and metabolism of tall fescue (Festuca arundinacea Schreb. in response to high-temperature stress

    Directory of Open Access Journals (Sweden)

    Tao eHu

    2015-06-01

    Full Text Available When plants are pre-exposed to stress, they can produce some stable signals and physiological reactions that may be carried forward as ‘stress memory’. However, there is insufficient information about is known about plants’ stress memory responses mechanisms. Here, two tall fescue genotypes, heat-tolerant PI 574522 and heat-sensitive PI 512315, were subjected to recurring high-temperature pre-acclimation treatment. Two heat shock protein (HSP genes, LMW-HSP and HMW-HSP, exhibited transcriptional memory for their higher transcript abundance during one or more subsequent stresses (S2, S3, S4 relative to the first stress (S1, and basal transcript levels during the recovery states (R1, R2 and R3. Activated transcriptional memory from two trainable genes could persist up to 4 days, and induce higher thermotolerance in tall fescue. This was confirmed by greater turf quality and lower electrolyte leakage. Pre-acclimation treatment inhibited the decline at steps of O-J-I-P and energy transport fluxes in active Photosystem II reaction center (PSII RC for both tall fescue genotypes. The heat stress memory was associated with major shifts in leaf metabolite profiles. Furthermore, there was an exclusive increase in leaf organic acids (citric acid, malic acid, tris phosphoric acid, threonic acid, sugars (sucrose, glucose, idose, allose, talose, glucoheptose, tagatose, psicose, amino acids (serine, proline, pyroglutamic acid, glycine, alanine and one fatty acid (butanoic acid in pre-acclimated plants. These discoveries involved in transcriptional memory, PSII RC energy transport and metabolite profiles could provide new insights into the plant high–temperature response process.

  18. Genotype x environment interactions in preweaning traits of purebred and reciprocal cross Angus and Brahman calves on common bermudagrass and endophyte-infected tall fescue pastures.

    Science.gov (United States)

    Brown, M A; Tharel, L M; Brown, A H; Jackson, W G; Miesner, J R

    1993-02-01

    Preweaning data on 486 Angus, Brahman, and reciprocal cross calves (AB, BA) managed on common bermudagrass or endophyte-infected tall fescue were used to evaluate the interactions of forage type and sex of calf with direct effects, individual heterosis, and maternal effects. Calves were spring-born in 1988, 1989, 1990, and 1991 to five sires of each breed. Male calves were castrated at birth, and calves were not creep-fed. Average values of heterosis for birth weight, 205-d weight, weaning hip height, and weaning weight:height ratio (WT/HT) were important (P < .01) and consistent across forage environment. Heterosis for birth weight was larger in bull calves than in heifer calves (P < .05), whereas heterosis for other preweaning traits were consistent across sex of calf. Average maternal effects for WT/HT (P < .10) were important and consistent across forage environment. Maternal effects for birth weight were larger with bull calves than with heifer calves (P < .01). Maternal effects for weaning hip height favored the Angus dam managed on bermudagrass (P < .05) but not managed on fescue. A similar but nonsignificant trend occurred in maternal effects for 205-d weight. Direct effects for birth weight were larger in bull calves than in heifer calves (P < .01). Direct effects for weaning height were larger in calves managed on bermudagrass than in calves managed on tall fescue (P < .07). A similar but nonsignificant trend was evident in direct effects for 205-d weight. Direct effects for WT/HT were relatively small and unimportant.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Thermal decomposition of potassium metaperiodate doped with trivalent ions

    Energy Technology Data Exchange (ETDEWEB)

    Muraleedharan, K., E-mail: kmuralika@gmail.com [Department of Chemistry, University of Calicut, Calicut, Kerala 673 635 (India); Kannan, M.P.; Gangadevi, T. [Department of Chemistry, University of Calicut, Calicut, Kerala 673 635 (India)

    2010-04-20

    The kinetics of isothermal decomposition of potassium metaperiodate (KIO{sub 4}), doped with phosphate and aluminium has been studied by thermogravimetry (TG). We introduced a custom-made thermobalance that is able to record weight decrease with time under pure isothermal conditions. The decomposition proceeds mainly through two stages: an acceleratory stages up to {alpha} = 0.50 and the decay stage beyond. The decomposition data for aluminium and phosphate doped KIO{sub 4} were found to be best described by the Prout-Tompkins equation. Separate kinetic analyses of the {alpha}-t data corresponding to the acceleratory region and decay region showed that the acceleratory stage gave the best fit with Prout-Tompkins equation itself whereas the decay stage fitted better to the contracting area equation. The rate of decomposition of phosphate doped KIO{sub 4} increases approximately linearly with an increase in the dopant concentration. In the case of aluminium doped KIO{sub 4}, the rate passes through a maximum with increase in the dopant concentration. The {alpha}-t data of pure and doped KIO{sub 4} were also subjected to isoconversional studies for the determination of activation energy values. Doping did not change the activation energy of the reaction. The results favour an electron-transfer mechanism for the isothermal decomposition of KIO{sub 4}, agreeing well with our earlier observations.

  20. Excess Sodium Tetraphenylborate and Intermediates Decomposition Studies

    International Nuclear Information System (INIS)

    Barnes, M.J.; Peterson, R.A.

    1998-04-01

    The stability of excess amounts of sodium tetraphenylborate (NaTPB) in the In-Tank Precipitation (ITP) facility depends on a number of variables. Concentration of palladium, initial benzene, and sodium ion as well as temperature provide the best opportunities for controlling the decomposition rate. This study examined the influence of these four variables on the reactivity of palladium-catalyzed sodium tetraphenylborate decomposition. Also, single effects tests investigated the reactivity of simulants with continuous stirring and nitrogen ventilation, with very high benzene concentrations, under washed sodium concentrations, with very high palladium concentrations, and with minimal quantities of excess NaTPB. These tests showed the following.The testing demonstrates that current facility configuration does not provide assured safety of operations relative to the hazards of benzene (in particular to maintain the tank headspace below 60 percent of the lower flammability limit (lfl) for benzene generation rates of greater than 7 mg/(L.h)) from possible accelerated reaction of excess NaTPB. Current maximal operating temperatures of 40 degrees C and the lack of protection against palladium entering Tank 48H provide insufficient protection against the onset of the reaction. Similarly, control of the amount of excess NaTPB, purification of the organic, or limiting the benzene content of the slurry (via stirring) and ionic strength of the waste mixture prove inadequate to assure safe operation

  1. Excess Sodium Tetraphenylborate and Intermediates Decomposition Studies

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, M.J. [Westinghouse Savannah River Company, AIKEN, SC (United States); Peterson , R.A.

    1998-04-01

    The stability of excess amounts of sodium tetraphenylborate (NaTPB) in the In-Tank Precipitation (ITP) facility depends on a number of variables. Concentration of palladium, initial benzene, and sodium ion as well as temperature provide the best opportunities for controlling the decomposition rate. This study examined the influence of these four variables on the reactivity of palladium-catalyzed sodium tetraphenylborate decomposition. Also, single effects tests investigated the reactivity of simulants with continuous stirring and nitrogen ventilation, with very high benzene concentrations, under washed sodium concentrations, with very high palladium concentrations, and with minimal quantities of excess NaTPB. These tests showed the following.The testing demonstrates that current facility configuration does not provide assured safety of operations relative to the hazards of benzene (in particular to maintain the tank headspace below 60 percent of the lower flammability limit (lfl) for benzene generation rates of greater than 7 mg/(L.h)) from possible accelerated reaction of excess NaTPB. Current maximal operating temperatures of 40 degrees C and the lack of protection against palladium entering Tank 48H provide insufficient protection against the onset of the reaction. Similarly, control of the amount of excess NaTPB, purification of the organic, or limiting the benzene content of the slurry (via stirring) and ionic strength of the waste mixture prove inadequate to assure safe operation.

  2. The influence of temperature on the decomposition kinetics of peracetic acid in solutions

    Directory of Open Access Journals (Sweden)

    Kunigk L.

    2001-01-01

    Full Text Available Peracetic acid is a powerful sanitizer that has only recently been introduced in the Brazilian food industry. The main disadvantage of this sanitizer is its decomposition rate. The main purpose of this paper is to present results obtained in experiments carried out to study the decomposition kinetics of peracetic acid in aqueous solutions at 25, 35, 40 and 45 °C. The decompositon of peracetic acid is a first-order reaction. The decomposition rate constants are between 1.71x10-3 h -1 for 25 °C and 9.64x10-3 h-1 for 45 °C. The decomposition rate constant is affected by temperature according to the Arrhenius equation, and the activation energy for the decomposition of peracetic acid in aqueous solutions prepared from the commercial formulation used in this work is 66.20 kJ/mol.

  3. Lie bialgebras with triangular decomposition

    International Nuclear Information System (INIS)

    Andruskiewitsch, N.; Levstein, F.

    1992-06-01

    Lie bialgebras originated in a triangular decomposition of the underlying Lie algebra are discussed. The explicit formulas for the quantization of the Heisenberg Lie algebra and some motion Lie algebras are given, as well as the algebra of rational functions on the quantum Heisenberg group and the formula for the universal R-matrix. (author). 17 refs

  4. Decomposition of metal nitrate solutions

    International Nuclear Information System (INIS)

    Haas, P.A.; Stines, W.B.

    1982-01-01

    Oxides in powder form are obtained from aqueous solutions of one or more heavy metal nitrates (e.g. U, Pu, Th, Ce) by thermal decomposition at 300 to 800 deg C in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal. (author)

  5. Probability inequalities for decomposition integrals

    Czech Academy of Sciences Publication Activity Database

    Agahi, H.; Mesiar, Radko

    2017-01-01

    Roč. 315, č. 1 (2017), s. 240-248 ISSN 0377-0427 Institutional support: RVO:67985556 Keywords : Decomposition integral * Superdecomposition integral * Probability inequalities Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 1.357, year: 2016 http://library.utia.cas.cz/separaty/2017/E/mesiar-0470959.pdf

  6. Thermal decomposition of ammonium hexachloroosmate

    DEFF Research Database (Denmark)

    Asanova, T I; Kantor, Innokenty; Asanov, I. P.

    2016-01-01

    Structural changes of (NH4)2[OsCl6] occurring during thermal decomposition in a reduction atmosphere have been studied in situ using combined energy-dispersive X-ray absorption spectroscopy (ED-XAFS) and powder X-ray diffraction (PXRD). According to PXRD, (NH4)2[OsCl6] transforms directly to meta...

  7. Kinetics of Roasting Decomposition of the Rare Earth Elements by CaO and Coal

    Directory of Open Access Journals (Sweden)

    Shuai Yuan

    2017-06-01

    Full Text Available The roasting method of magnetic tailing mixed with CaO and coal was used to recycle the rare earth elements (REE in magnetic tailing. The phase transformation and decomposition process were researched during the roasting processes. The results showed that the decomposition processes of REE in magnetic tailing were divided into two steps. The first step from 380 to 431 °C mainly entailed the decomposition of bastnaesite (REFCO3. The second step from 605 to 716 °C mainly included the decomposition of monazite (REPO4. The decomposition products were primarily RE2O3, Ce0.75Nd0.25O1.875, CeO2, Ca5F(PO43, and CaF2. Adding CaO could reduce the decomposition temperature of REFCO3 and REPO4. Meanwhile, the decomposition effect of CaO on bastnaesite and monazite was significant. Besides, the effects of the roasting time, roasting temperature, and CaO addition level on the decomposition rate were studied. The optimum technological conditions were a roasting time of 60 min; roasting temperature of 750 °C; and CaO addition level of 20% (w/w. The maximum decomposition rate of REFCO3 and REPO4 was 99.87%. The roasting time and temperature were the major factors influencing the decomposition rate. The kinetics process of the decomposition of REFCO3 and REPO4 accorded with the interfacial reaction kinetics model. The reaction rate controlling steps were divided into two steps. The first step (at low temperature was controlled by a chemical reaction with an activation energy of 52.67 kJ/mol. The second step (at high temperature was controlled by diffusion with an activation energy of 8.5 kJ/mol.

  8. Decomposition and nutrient release from fresh and dried pine roots under two fertilizer regimes

    Science.gov (United States)

    Kim H. Ludovici; Lance W. Kress

    2006-01-01

    Root decomposition and nutrient release are typically estimated from dried root tissues; however, it is unlikely that roots dehydrate prior to decomposing. Soil fertility and root diameter may also affect the rate of decomposition. This study monitored mass loss and nutrient concentrations of dried and fresh roots of two size classes (

  9. Biophysical controls on surface fuel litterfall and decomposition in the northern Rocky Mountains, USA

    Science.gov (United States)

    Robert E. Keane

    2008-01-01

    Litterfall and decomposition rates of the organic matter that comprise forest fuels are important to fire management, because they define fuel treatment longevity and provide parameters to design, test, and validate ecosystem models. This study explores the environmental factors that control litterfall and decomposition in the context of fuel management for several...

  10. Effect of neutron irradiation on the cellular stage of Ni-Be alloy decomposition

    International Nuclear Information System (INIS)

    Larikov, L.N.; Borimskaya, S.T.

    1981-01-01

    Effects of neutron irradiation on the cellular stage of decomposition are investigated in deformed supersaturated solid solution Ni-1.92%Be by the X-ray structural and metallographic analyses. Radiation-initiated stimulation of the recovery properties in the deformed alloy and a lower rate of the cellular decomposition in irradiated samples are discovered [ru

  11. Thermal decomposition characteristics of microwave liquefied rape straw residues using thermogravimetric analysis

    Science.gov (United States)

    Xingyan Huang; Cornelis F. De Hoop; Jiulong Xie; Chung-Yun Hse; Jinqiu Qi; Yuzhu Chen; Feng Li

    2017-01-01

    The thermal decomposition characteristics of microwave liquefied rape straw residues with respect to liquefaction condition and pyrolysis conversion were investigated using a thermogravimetric (TG) analyzer at the heating rates of 5, 20, 50 °C min-1. The hemicellulose decomposition peak was absent at the derivative thermogravimetric analysis (DTG...

  12. Reduced substrate supply limits the temperature response of soil organic carbon decomposition

    Science.gov (United States)

    Cinzia Fissore; Christian P. Giardina; Randall K. Kolka

    2013-01-01

    Controls on the decomposition rate of soil organic carbon (SOC), especially the more stable fraction of SOC, remain poorly understood, with implications for confidence in efforts to model terrestrial C balance under future climate. We investigated the role of substrate supply in the temperature sensitivity of SOC decomposition in laboratory incubations of coarse-...

  13. Decomposition of Metrosideros polymorpha leaf litter along elevational gradients in Hawaii

    Science.gov (United States)

    Paul G. Scowcroft; Douglas R. Turner; Peter M. Vitousek

    2000-01-01

    We examined interactions between temperature, soil development, and decomposition on three elevational gradients, the upper and lower ends of each being situated on a common lava flow or ash deposit. We used the reciprocal transplant technique to estimate decomposition rates of Metrosideros polymorpha leaf litter during a three-year period at warm...

  14. DECOMPOSITION STUDY OF CALCIUM CARBONATE IN COCKLE SHELL

    Directory of Open Access Journals (Sweden)

    MUSTAKIMAH MOHAMED

    2012-02-01

    Full Text Available Calcium oxide (CaO is recognized as an efficient carbon dioxide (CO2 adsorbent and separation of CO2 from gas stream using CaO based adsorbent is widely applied in gas purification process especially at high temperature reaction. CaO is normally been produced via thermal decomposition of calcium carbonate (CaCO3 sources such as limestone which is obtained through mining and quarrying limestone hill. Yet, this study able to exploit the vast availability of waste resources in Malaysia which is cockle shell, as the potential biomass resources for CaCO3 and CaO. In addition, effect of particle size towards decomposition process is put under study using four particle sizes which are 0.125-0.25 mm, 0.25-0.5 mm, 1-2 mm, and 2-4 mm. Decomposition reactivity is conducted using Thermal Gravimetric Analyzer (TGA at heating rate of 20°C/minutes in inert (Nitrogen atmosphere. Chemical property analysis using x-ray fluorescence (XRF, shows cockle shell is made up of 97% Calcium (Ca element and CaO is produced after decomposition is conducted, as been analyzed by x-ray diffusivity (XRD analyzer. Besides, smallest particle size exhibits the highest decomposition rate and the process was observed to follow first order kinetics. Activation energy, E, of the process was found to vary from 179.38 to 232.67 kJ/mol. From Arrhenius plot, E increased when the particle size is larger. To conclude, cockle shell is a promising source for CaO and based on four different particles sizes used, sample at 0.125-0.25 mm offers the highest decomposition rate.

  15. Foreign exchange predictability and the carry trade: a decomposition approach

    Czech Academy of Sciences Publication Activity Database

    Anatolyev, Stanislav; Gospodinov, N.; Jamali, I.; Liu, X.

    2017-01-01

    Roč. 42, June (2017), s. 199-211 ISSN 0927-5398 Institutional support: Progres-Q24 Keywords : exchange rate forecasting * carry trade * return decomposition Subject RIV: AH - Economics OBOR OECD: Finance Impact factor: 0.979, year: 2016

  16. Photocatalytic decomposition of cortisone acetate in aqueous solution

    NARCIS (Netherlands)

    Sobral Romao, J.I.; Saad, M.H.; Mul, Guido; Baltrusaitis, Jonas

    2015-01-01

    The photocatalytic decomposition of cortisone 21-acetate (CA), a model compound for the commonly used steroid, cortisone, was studied. CA was photocatalytically decomposed in a slurry reactor with the initial rates between 0.11 and 0.46 mg L−1 min−1 at 10 mg L−1 concentration, using the following

  17. Thermal decomposition of potassium bis-oxalatodiaqua- indate(III ...

    Indian Academy of Sciences (India)

    Unknown

    32), temperature programmable thermal balance, with platinum crucible as container, is used for taking thermograms in air. The rate of heating is fixed at ... Thermal decomposition of pot. bis-oxalatodiaquaindate (III).H2O. 277. 3. Results and ...

  18. Kinetics of the thermal decomposition of nickel iodide

    International Nuclear Information System (INIS)

    Nakajima, Hayato; Shimizu, Saburo; Onuki, Kaoru; Ikezoe, Yasumasa; Sato, Shoichi

    1984-01-01

    Thermal decomposition kinetics of NiI 2 under constant I 2 partial pressure was studied by thermogravimetry. The reaction is considered as a reaction step of the thermochemical hydrogen production process in the Ni-I-S system. At temperatures from 775K to 869K and under I 2 pressures from 0 to 960Pa, the decomposition started at the NiI 2 pellet surface and the reactant-product interface moved interior at a constant rate until the decomposed fraction, α, reached 0.6. The overall reaction rate at a constant temperature can be expressed as the difference of the constant decomposition (forward) rate, which is proportional to the equilibrium dissociation pressure of NiI 2 , and the iodide formation (backward) rate, which is proportional to the I 2 pressure. The apparent activation energy of the decomposition was 147 kJ.mol -1 , which is very close to the heat of reaction, 152 kJ.mol -1 calculated from the equilibrium dissociation pressure. The electron microscopic observations, revealed that the reaction product obtained by decomposing NiI 2 under pure He atomosphere was composed of relatively well grown cubic Ni crystals. Whereas, the decomposed product obtained under I 2 -He mixture was composed of larger but disordered crystals. (author)

  19. High-temperature unimolecular decomposition of ethyl propionate

    KAUST Repository

    Giri, Binod; Alabbad, Mohammed; Farooq, Aamir

    2016-01-01

    This work reports rate coefficients of the thermal unimolecular decomposition reaction of ethyl propionate (EP) behind reflected shock waves over the temperature range of 976–1300 K and pressures of 825–1875 Torr. The reaction progress was monitored

  20. Quantitative and qualitative measures of decomposition: is there a link?

    Science.gov (United States)

    Robert J. Eaton; Felipe G. Sanchez

    2009-01-01

    Decomposition rates of loblolly pine coarse woody debris (CWD) were determined by mass loss and wood density changes for trees that differed in source of mortality (natural, girdle-poison, and felling). Specifically, three treatments were examined: (1) control (CON): natural mortality; (2) CD: 5-fold increase in CWD compared with the CON; and (3) CS: 12-fold increase...

  1. Investigating hydrogel dosimeter decomposition by chemical methods

    International Nuclear Information System (INIS)

    Jordan, Kevin

    2015-01-01

    The chemical oxidative decomposition of leucocrystal violet micelle hydrogel dosimeters was investigated using the reaction of ferrous ions with hydrogen peroxide or sodium bicarbonate with hydrogen peroxide. The second reaction is more effective at dye decomposition in gelatin hydrogels. Additional chemical analysis is required to determine the decomposition products

  2. Decomposition of childhood malnutrition in Cambodia.

    Science.gov (United States)

    Sunil, Thankam S; Sagna, Marguerite

    2015-10-01

    Childhood malnutrition is a major problem in developing countries, and in Cambodia, it is estimated that approximately 42% of the children are stunted, which is considered to be very high. In the present study, we examined the effects of proximate and socio-economic determinants on childhood malnutrition in Cambodia. In addition, we examined the effects of the changes in these proximate determinants on childhood malnutrition between 2000 and 2005. Our analytical approach included descriptive, logistic regression and decomposition analyses. Separate analyses are estimated for 2000 and 2005 survey. The primary component of the difference in stunting is attributable to the rates component, indicating that the decrease of stunting is due mainly to the decrease in stunting rates between 2000 and 2005. While majority of the differences in childhood malnutrition between 2000 and 2005 can be attributed to differences in the distribution of malnutrition determinants between 2000 and 2005, differences in their effects also showed some significance. © 2013 John Wiley & Sons Ltd.

  3. Kinetics of thermal decomposition of aluminium hydride: I-non-isothermal decomposition under vacuum and in inert atmosphere (argon)

    International Nuclear Information System (INIS)

    Ismail, I.M.K.; Hawkins, T.

    2005-01-01

    Recently, interest in aluminium hydride (alane) as a rocket propulsion ingredient has been renewed due to improvements in its manufacturing process and an increase in thermal stability. When alane is added to solid propellant formulations, rocket performance is enhanced and the specific impulse increases. Preliminary work was performed at AFRL on the characterization and evaluation of two alane samples. Decomposition kinetics were determined from gravimetric TGA data and volumetric vacuum thermal stability (VTS) results. Chemical analysis showed the samples had 88.30% (by weight) aluminium and 9.96% hydrogen. The average density, as measured by helium pycnometery, was 1.486 g/cc. Scanning electron microscopy showed that the particles were mostly composed of sharp edged crystallographic polyhedral such as simple cubes, cubic octahedrons and hexagonal prisms. Thermogravimetric analysis was utilized to investigate the decomposition kinetics of alane in argon atmosphere and to shed light on the mechanism of alane decomposition. Two kinetic models were successfully developed and used to propose a mechanism for the complete decomposition of alane and to predict its shelf-life during storage. Alane decomposes in two steps. The slowest (rate-determining) step is solely controlled by solid state nucleation of aluminium crystals; the fastest step is due to growth of the crystals. Thus, during decomposition, hydrogen gas is liberated and the initial polyhedral AlH 3 crystals yield a final mix of amorphous aluminium and aluminium crystals. After establishing the kinetic model, prediction calculations indicated that alane can be stored in inert atmosphere at temperatures below 10 deg. C for long periods of time (e.g., 15 years) without significant decomposition. After 15 years of storage, the kinetic model predicts ∼0.1% decomposition, but storage at higher temperatures (e.g. 30 deg. C) is not recommended

  4. LEAF RESIDUE DECOMPOSITION OF SELECTED ATLANTIC FOREST TREE SPECIES

    Directory of Open Access Journals (Sweden)

    Helga Dias Arato

    2018-02-01

    Full Text Available ABSTRACT Biogeochemical cycling is essential to establish and maintain plant and animal communities. Litter is one of main compartments of this cycle, and the kinetics of leaf decomposition in forest litter depend on the chemical composition and environmental conditions. This study evaluated the effect of leaf composition and environmental conditions on leaf decomposition of native Atlantic Forest trees. The following species were analyzed: Mabea fistulifera Mart., Bauhinia forficata Link., Aegiphila sellowiana Cham., Zeyheria tuberculosa (Vell, Luehea grandiflora Mart. et. Zucc., Croton floribundus Spreng., Trema micrantha (L Blume, Cassia ferruginea (Schrad Schrad ex DC, Senna macranthera (DC ex Collad. H. S. Irwin and Barney and Schinus terebinthifolius Raddi (Anacardiaceae. For each species, litter bags were distributed on and fixed to the soil surface of soil-filled pots (in a greenhouse, or directly to the surface of the same soil type in a natural forest (field. Every 30 days, the dry weight and soil basal respiration in both environments were determined. The cumulative decomposition of leaves varied according to the species, leaf nutrient content and environment. In general, the decomposition rate was lowest for Aegiphila sellowiana and fastest for Bauhinia forficate and Schinus terebinthifolius. This trend was similar under the controlled conditions of a greenhouse and in the field. The selection of species with a differentiated decomposition pattern, suited for different stages of the recovery process, can help improve soil restoration.

  5. Kinetics of the decomposition reaction of phosphorite concentrate

    Directory of Open Access Journals (Sweden)

    Huang Run

    2014-01-01

    Full Text Available Apatite is the raw material, which is mainly used in phosphate fertilizer, and part are used in yellow phosphorus, red phosphorus, and phosphoric acid in the industry. With the decrease of the high grade phosphorite lump, the agglomeration process is necessary for the phosphorite concentrate after beneficiation process. The decomposition behavior and the phase transformation are of vital importance for the agglomeration process of phosphorite. In this study, the thermal kinetic analysis method was used to study the kinetics of the decomposition of phosphorite concentrate. The phosphorite concentrate was heated under various heating rate, and the phases in the sample heated were examined by the X-ray diffraction method. It was found that the main phases in the phosphorite are fluorapatiteCa5(PO43F, quartz SiO2,and dolomite CaMg(CO32.The endothermic DSC peak corresponding to the mass loss caused by the decomposition of dolomite covers from 600°C to 850°C. The activation energy of the decomposition of dolomite, which increases with the increase in the extent of conversion, is about 71.6~123.6kJ/mol. The mechanism equation for the decomposition of dolomite agrees with the Valensi equation and G-B equation.

  6. Crop residue decomposition in Minnesota biochar-amended plots

    Science.gov (United States)

    Weyers, S. L.; Spokas, K. A.

    2014-06-01

    Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different plant-based feedstocks and pyrolysis platforms in the fall of 2008. Litterbags containing wheat straw material were buried in July of 2011 below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a uncharred wood-pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Overall, these findings indicate that no significant alteration in the microbial dynamics of the soil decomposer communities occurred as a consequence of the application of plant-based biochars evaluated here.

  7. Crop residue decomposition in Minnesota biochar amended plots

    Science.gov (United States)

    Weyers, S. L.; Spokas, K. A.

    2014-02-01

    Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different feedstocks and pyrolysis platforms prior to the start of this study. Litterbags containing wheat straw material were buried below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a non-charred wood pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Though no significant impacts were observed with field-weathered biochars, effective soil management may yet have to account for repeat applications of biochar.

  8. Forest products decomposition in municipal solid waste landfills

    International Nuclear Information System (INIS)

    Barlaz, Morton A.

    2006-01-01

    Cellulose and hemicellulose are present in paper and wood products and are the dominant biodegradable polymers in municipal waste. While their conversion to methane in landfills is well documented, there is little information on the rate and extent of decomposition of individual waste components, particularly under field conditions. Such information is important for the landfill carbon balance as methane is a greenhouse gas that may be recovered and converted to a CO 2 -neutral source of energy, while non-degraded cellulose and hemicellulose are sequestered. This paper presents a critical review of research on the decomposition of cellulosic wastes in landfills and identifies additional work that is needed to quantify the ultimate extent of decomposition of individual waste components. Cellulose to lignin ratios as low as 0.01-0.02 have been measured for well decomposed refuse, with corresponding lignin concentrations of over 80% due to the depletion of cellulose and resulting enrichment of lignin. Only a few studies have even tried to address the decomposition of specific waste components at field-scale. Long-term controlled field experiments with supporting laboratory work will be required to measure the ultimate extent of decomposition of individual waste components

  9. Optimization and Assessment of Wavelet Packet Decompositions with Evolutionary Computation

    Directory of Open Access Journals (Sweden)

    Schell Thomas

    2003-01-01

    Full Text Available In image compression, the wavelet transformation is a state-of-the-art component. Recently, wavelet packet decomposition has received quite an interest. A popular approach for wavelet packet decomposition is the near-best-basis algorithm using nonadditive cost functions. In contrast to additive cost functions, the wavelet packet decomposition of the near-best-basis algorithm is only suboptimal. We apply methods from the field of evolutionary computation (EC to test the quality of the near-best-basis results. We observe a phenomenon: the results of the near-best-basis algorithm are inferior in terms of cost-function optimization but are superior in terms of rate/distortion performance compared to EC methods.

  10. Global sensitivity analysis by polynomial dimensional decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Sharif, E-mail: rahman@engineering.uiowa.ed [College of Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2011-07-15

    This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol's method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.

  11. Formation and decomposition of ammoniated ammonium ions

    International Nuclear Information System (INIS)

    Ikezoe, Yasumasa; Suzuki, Kazuya; Nakashima, Mikio; Yokoyama, Atsushi; Shiraishi, Hirotsugu; Ohno, Shin-ichi

    1998-09-01

    Structures, frequencies, and chemical reactions of ammoniated ammonium ions (NH 4 + .nNH 3 ) were investigated theoretically by ab initio molecular orbital calculations and experimentally by observing their formation and decomposition in a corona discharge-jet expansion process. The ab initio calculations were carried out using a Gaussian 94 program, which gave optimized structures, binding energies and harmonic vibrational frequencies of NH 4 + .nNH 3 . Effects of discharge current, the reactant gas and the diameter of the gas expanding pinhole were examined on the size n distribution of NH 4 + .nNH 3 . The results indicated that the cluster ion, in the jet expansion process, grew in size mostly equal to or less than one unit under experimental conditions employed. Effects of discharge current, pinhole diameter, flight time in vacuum and cluster size were examined on the decomposition rate of cluster ions formed. In our experimental conditions, the internal energies of cluster ions were mainly determined through exo- and/or endo-thermic reactions involved in the cluster formation process. (author)

  12. Dictionary-Based Tensor Canonical Polyadic Decomposition

    Science.gov (United States)

    Cohen, Jeremy Emile; Gillis, Nicolas

    2018-04-01

    To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.

  13. Variance decomposition in stochastic simulators.

    Science.gov (United States)

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  14. Variance decomposition in stochastic simulators

    Science.gov (United States)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  15. Variance decomposition in stochastic simulators

    Energy Technology Data Exchange (ETDEWEB)

    Le Maître, O. P., E-mail: olm@limsi.fr [LIMSI-CNRS, UPR 3251, Orsay (France); Knio, O. M., E-mail: knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708 (United States); Moraes, A., E-mail: alvaro.moraesgutierrez@kaust.edu.sa [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  16. Variance decomposition in stochastic simulators

    KAUST Repository

    Le Maî tre, O. P.; Knio, O. M.; Moraes, Alvaro

    2015-01-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  17. Quantitative and qualitative measures of decomposition: Is there a link?

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, Robert, J.; Sanchez, Felipe, G.

    2009-03-01

    Decomposition rates of loblolly pine coarse woody debris (CWD) were determined by mass loss and wood density changes for trees that differed in source of mortality (natural, girdle-poison, and felling). Specifically, three treatments were examined: (1) control (CON): natural mortality; (2) CD: 5-fold increase in CWD compared with the CON; and (3) CS: 12-fold increase in snags compared with the CON. The additional CWD in the CD treatment plots and the additional snags in the CS plots were achieved by felling (for the CD plots) or girdling followed by herbicide injection (for the CS plots) select trees in these plots. Consequently,mortality on the CD plots is due to natural causes and felling. Likewise, mortality on the CS plots is due to natural causes and girdle-poison. In each treatment plot, mortality due to natural causes was inventoried since 1997, whereas mortality due to girdle-poison and felling were inventoried since 2001. No significant difference was detected between the rates of decomposition for the CWD on these treatment plots, indicating that source of the tree mortality did not influence rates of decomposition once the tree fell. These experimental measures of decomposition were compared with two decay classification systems (three- and five-unit classifications) to determine linkages. Changes in wood density did not correlate to any decay classification, whereas mass loss had a weak correlation with decay class. However, the large degree of variation limits the utility of decay classification systems in estimating mass loss.

  18. Vegetation exerts a greater control on litter decomposition than climate warming in peatlands.

    Science.gov (United States)

    Ward, Susan E; Orwin, Kate H; Ostle, Nicholas J; Briones, J I; Thomson, Bruce C; Griffiths, Robert I; Oakley, Simon; Quirk, Helen; Bardget, Richard D

    2015-01-01

    Historically, slow decomposition rates have resulted in the accumulation of large amounts of carbon in northern peatlands. Both climate warming and vegetation change can alter rates of decomposition, and hence affect rates of atmospheric CO2 exchange, with consequences for climate change feedbacks. Although warming and vegetation change are happening concurrently, little is known about their relative and interactive effects on decomposition processes. To test the effects of warming and vegetation change on decomposition rates, we placed litter of three dominant species (Calluna vulgaris, Eriophorum vaginatum, Hypnum jutlandicum) into a peatland field experiment that combined warming.with plant functional group removals, and measured mass loss over two years. To identify potential mechanisms behind effects, we also measured nutrient cycling and soil biota. We found that plant functional group removals exerted a stronger control over short-term litter decomposition than did approximately 1 degrees C warming, and that the plant removal effect depended on litter species identity. Specifically, rates of litter decomposition were faster when shrubs were removed from the plant community, and these effects were strongest for graminoid and bryophyte litter. Plant functional group removals also had strong effects on soil biota and nutrient cycling associated with decomposition, whereby shrub removal had cascading effects on soil fungal community composition, increased enchytraeid abundance, and increased rates of N mineralization. Our findings demonstrate that, in addition to litter quality, changes in vegetation composition play a significant role in regulating short-term litter decomposition and belowground communities in peatland, and that these impacts can be greater than moderate warming effects. Our findings, albeit from a relatively short-term study, highlight the need to consider both vegetation change and its impacts below ground alongside climatic effects when

  19. Short-term standard litter decomposition across three different ecosystems in middle taiga zone of West Siberia

    Science.gov (United States)

    Filippova, Nina V.; Glagolev, Mikhail V.

    2018-03-01

    The method of standard litter (tea) decomposition was implemented to compare decomposition rate constants (k) between different peatland ecosystems and coniferous forests in the middle taiga zone of West Siberia (near Khanty-Mansiysk). The standard protocol of TeaComposition initiative was used to make the data usable for comparisons among different sites and zonobiomes worldwide. This article sums up the results of short-term decomposition (3 months) on the local scale. The values of decomposition rate constants differed significantly between three ecosystem types: it was higher in forest compared to bogs, and treed bogs had lower decomposition constant compared to Sphagnum lawns. In general, the decomposition rate constants were close to ones reported earlier for similar climatic conditions and habitats.

  20. Scoring of Decomposition: A Proposed Amendment to the Method When Using a Pig Model for Human Studies.

    Science.gov (United States)

    Keough, Natalie; Myburgh, Jolandie; Steyn, Maryna

    2017-07-01

    Decomposition studies often use pigs as proxies for human cadavers. However, differences in decomposition sequences/rates relative to humans have not been scientifically examined. Descriptions of five main decomposition stages (humans) were developed and refined by Galloway and later by Megyesi. However, whether these changes/processes are alike in pigs is unclear. Any differences can have significant effects when pig models are used for human PMI estimation. This study compared human decomposition models to the changes observed in pigs. Twenty pigs (50-90 kg) were decomposed over five months and decompositional features recorded. Total body scores (TBS) were calculated. Significant differences were observed during early decomposition between pigs and humans. An amended scoring system to be used in future studies was developed. Standards for PMI estimation derived from porcine models may not directly apply to humans and may need adjustment. Porcine models, however, remain valuable to study variables influencing decomposition. © 2016 American Academy of Forensic Sciences.

  1. Basic dye decomposition kinetics in a photocatalytic slurry reactor

    International Nuclear Information System (INIS)

    Wu, C.-H.; Chang, H.-W.; Chern, J.-M.

    2006-01-01

    Wastewater effluent from textile plants using various dyes is one of the major water pollutants to the environment. Traditional chemical, physical and biological processes for treating textile dye wastewaters have disadvantages such as high cost, energy waste and generating secondary pollution during the treatment process. The photocatalytic process using TiO 2 semiconductor particles under UV light illumination has been shown to be potentially advantageous and applicable in the treatment of wastewater pollutants. In this study, the dye decomposition kinetics by nano-size TiO 2 suspension at natural solution pH was experimentally studied by varying the agitation speed (50-200 rpm), TiO 2 suspension concentration (0.25-1.71 g/L), initial dye concentration (10-50 ppm), temperature (10-50 deg. C), and UV power intensity (0-96 W). The experimental results show the agitation speed, varying from 50 to 200 rpm, has a slight influence on the dye decomposition rate and the pH history; the dye decomposition rate increases with the TiO 2 suspension concentration up to 0.98 g/L, then decrease with increasing TiO 2 suspension concentration; the initial dye decomposition rate increases with the initial dye concentration up to a certain value depending upon the temperature, then decreases with increasing initial dye concentration; the dye decomposition rate increases with the UV power intensity up to 64 W to reach a plateau. Kinetic models have been developed to fit the experimental kinetic data well

  2. Productivity and its Decomposition in the Japanese Broadcasting Market

    OpenAIRE

    Asai, Sumiko

    2005-01-01

    The purpose of this paper is to calculate the total factor productivity (TFP) as well as scale economies of Japanese terrestrial broadcasters and examine the industry’s characteristics through the decomposition of TFP growth. In order to calculate TFP growth rate, a variable cost function is estimated using data on twenty-five broadcasters for the period 1997–2002, and the TFP growth rate is decomposed into three sources: output effect, capital adjustment and technical change. Calculation rev...

  3. Evaluating litter decomposition and soil organic matter dynamics in earth system models: contrasting analysis of long-term litter decomposition and steady-state soil carbon

    Science.gov (United States)

    Bonan, G. B.; Wieder, W. R.

    2012-12-01

    Decomposition is a large term in the global carbon budget, but models of the earth system that simulate carbon cycle-climate feedbacks are largely untested with respect to litter decomposition. Here, we demonstrate a protocol to document model performance with respect to both long-term (10 year) litter decomposition and steady-state soil carbon stocks. First, we test the soil organic matter parameterization of the Community Land Model version 4 (CLM4), the terrestrial component of the Community Earth System Model, with data from the Long-term Intersite Decomposition Experiment Team (LIDET). The LIDET dataset is a 10-year study of litter decomposition at multiple sites across North America and Central America. We show results for 10-year litter decomposition simulations compared with LIDET for 9 litter types and 20 sites in tundra, grassland, and boreal, conifer, deciduous, and tropical forest biomes. We show additional simulations with DAYCENT, a version of the CENTURY model, to ask how well an established ecosystem model matches the observations. The results reveal large discrepancy between the laboratory microcosm studies used to parameterize the CLM4 litter decomposition and the LIDET field study. Simulated carbon loss is more rapid than the observations across all sites, despite using the LIDET-provided climatic decomposition index to constrain temperature and moisture effects on decomposition. Nitrogen immobilization is similarly biased high. Closer agreement with the observations requires much lower decomposition rates, obtained with the assumption that nitrogen severely limits decomposition. DAYCENT better replicates the observations, for both carbon mass remaining and nitrogen, without requirement for nitrogen limitation of decomposition. Second, we compare global observationally-based datasets of soil carbon with simulated steady-state soil carbon stocks for both models. The models simulations were forced with observationally-based estimates of annual

  4. Nutrient-enhanced decomposition of plant biomass in a freshwater wetland

    Science.gov (United States)

    Bodker, James E.; Turner, Robert Eugene; Tweel, Andrew; Schulz, Christopher; Swarzenski, Christopher M.

    2015-01-01

    We studied soil decomposition in a Panicum hemitomon (Schultes)-dominated freshwater marsh located in southeastern Louisiana that was unambiguously changed by secondarily-treated municipal wastewater effluent. We used four approaches to evaluate how belowground biomass decomposition rates vary under different nutrient regimes in this marsh. The results of laboratory experiments demonstrated how nutrient enrichment enhanced the loss of soil or plant organic matter by 50%, and increased gas production. An experiment demonstrated that nitrogen, not phosphorus, limited decomposition. Cellulose decomposition at the field site was higher in the flowfield of the introduced secondarily treated sewage water, and the quality of the substrate (% N or % P) was directly related to the decomposition rates. We therefore rejected the null hypothesis that nutrient enrichment had no effect on the decomposition rates of these organic soils. In response to nutrient enrichment, plants respond through biomechanical or structural adaptations that alter the labile characteristics of plant tissue. These adaptations eventually change litter type and quality (where the marsh survives) as the % N content of plant tissue rises and is followed by even higher decomposition rates of the litter produced, creating a positive feedback loop. Marsh fragmentation will increase as a result. The assumptions and conditions underlying the use of unconstrained wastewater flow within natural wetlands, rather than controlled treatment within the confines of constructed wetlands, are revealed in the loss of previously sequestered carbon, habitat, public use, and other societal benefits.

  5. LBA-ECO TG-07 Litter Decomposition, Tapajos National Forest, Para, Brazil: 2000-2001

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this study was to determine the effects of soil phosphorus (P) status on litter decomposition rates using two factors: soil texture (with associated...

  6. Decomposition of argentiferous plumbojarosite in Ca O media

    International Nuclear Information System (INIS)

    Patino, F.; Arenas, A.; Rivera, I.; Cordoba, D.A.; Hernandez, L.; Salinas, E.

    1998-01-01

    The decomposition of argentiferous plumbojarosite in CaO media is studied to determine the rates dependences with respect to concentration, energetic request and particle size. The alkaline decomposition process of jarosite phase can be represented by: Pb .05 Fe 3 (SO 4 ) 2 (OH) 6 (s) + 4 (OH) - (aq) → 0.5 Pb (OH) 2 (s) + 3 Fe (OH) 3 (s) + 2 SO 4 2- (aq). The resultant solids of the decomposition formed by a gel of iron and lead hydroxides, are amorphous and do not evolve to crystalline phases of lead ferrite type in the studied conditions. The alkaline decomposition process in CaO media is of zero order with respect to the OH - concentration for [OH - ] > 10 -3 M, presenting an order of ≅ 0.5 at lower concentrations. The temperature effect indicates an activation energy of 45 KJ/mol, while the observed rates in different sizes of aggregate, as well as the whole-one are practically identical. These dependences are indicative of chemical control of the reaction because they are incompatible with a control by diffusion in ashes cape. (Author)

  7. Hydrothermal decomposition of liquid crystal in subcritical water

    International Nuclear Information System (INIS)

    Zhuang, Xuning; He, Wenzhi; Li, Guangming; Huang, Juwen; Lu, Shangming; Hou, Lianjiao

    2014-01-01

    Highlights: • Hydrothermal technology can effectively decompose the liquid crystal of 4-octoxy-4'-cyanobiphenyl. • The decomposition rate reached 97.6% under the optimized condition. • Octoxy-4'-cyanobiphenyl was mainly decomposed into simple and innocuous products. • The mechanism analysis reveals the decomposition reaction process. - Abstract: Treatment of liquid crystal has important significance for the environment protection and human health. This study proposed a hydrothermal process to decompose the liquid crystal of 4-octoxy-4′-cyanobiphenyl. Experiments were conducted with a 5.7 mL stainless tube reactor and heated by a salt-bath. Factors affecting the decomposition rate of 4-octoxy-4′-cyanobiphenyl were evaluated with HPLC. The decomposed liquid products were characterized by GC-MS. Under optimized conditions i.e., 0.2 mL H 2 O 2 supply, pH value 6, temperature 275 °C and reaction time 5 min, 97.6% of 4-octoxy-4′-cyanobiphenyl was decomposed into simple and environment-friendly products. Based on the mechanism analysis and products characterization, a possible hydrothermal decomposition pathway was proposed. The results indicate that hydrothermal technology is a promising choice for liquid crystal treatment

  8. Pollutant content in marine debris and characterization by thermal decomposition.

    Science.gov (United States)

    Iñiguez, M E; Conesa, J A; Fullana, A

    2017-04-15

    Marine debris (MDs) produces a wide variety of negative environmental, economic, safety, health and cultural impacts. Most marine litter has a very low decomposition rate (plastics), leading to a gradual accumulation in the coastal and marine environment. Characterization of the MDs has been done in terms of their pollutant content: PAHs, ClBzs, ClPhs, BrPhs, PCDD/Fs and PCBs. The results show that MDs is not a very contaminated waste. Also, thermal decomposition of MDs materials has been studied in a thermobalance at different atmospheres and heating rates. Below 400-500K, the atmosphere does not affect the thermal degradation of the mentioned waste. However, at temperatures between 500 and 800K the presence of oxygen accelerates the decomposition. Also, a kinetic model is proposed for the combustion of the MDs, and the decomposition is compared with that of their main constituents, i.e., polyethylene (PE), polystyrene (PS), polypropylene (PP), nylon and polyethylene-terephthalate (PET). Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Energetic contaminants inhibit plant litter decomposition in soil.

    Science.gov (United States)

    Kuperman, Roman G; Checkai, Ronald T; Simini, Michael; Sunahara, Geoffrey I; Hawari, Jalal

    2018-05-30

    Individual effects of nitrogen-based energetic materials (EMs) 2,4-dinitrotoluene (2,4-DNT), 2-amino-4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), nitroglycerin (NG), and 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) on litter decomposition, an essential biologically-mediated soil process, were assessed using Orchard grass (Dactylis glomerata) straw in Sassafras sandy loam (SSL) soil, which has physicochemical characteristics that support "very high" qualitative relative bioavailability for organic chemicals. Batches of SSL soil were separately amended with individual EMs or acetone carrier control. To quantify the decomposition rates, one straw cluster was harvested from a set of randomly selected replicate containers from within each treatment, after 1, 2, 3, 4, 6, and 8 months of exposure. Results showed that soil amended with 2,4-DNT or NG inhibited litter decomposition rates based on the median effective concentration (EC50) values of 1122 mg/kg and 860 mg/kg, respectively. Exposure to 2-ADNT, 4-ADNT or CL-20 amended soil did not significantly affect litter decomposition in SSL soil at ≥ 10,000 mg/kg. These ecotoxicological data will be helpful in identifying concentrations of EMs in soil that present an acceptable ecological risk for biologically-mediated soil processes. Published by Elsevier Inc.

  10. Domain decomposition methods and parallel computing

    International Nuclear Information System (INIS)

    Meurant, G.

    1991-01-01

    In this paper, we show how to efficiently solve large linear systems on parallel computers. These linear systems arise from discretization of scientific computing problems described by systems of partial differential equations. We show how to get a discrete finite dimensional system from the continuous problem and the chosen conjugate gradient iterative algorithm is briefly described. Then, the different kinds of parallel architectures are reviewed and their advantages and deficiencies are emphasized. We sketch the problems found in programming the conjugate gradient method on parallel computers. For this algorithm to be efficient on parallel machines, domain decomposition techniques are introduced. We give results of numerical experiments showing that these techniques allow a good rate of convergence for the conjugate gradient algorithm as well as computational speeds in excess of a billion of floating point operations per second. (author). 5 refs., 11 figs., 2 tabs., 1 inset

  11. The influence of temperature on the decomposition kinetics of peracetic acid in solutions

    OpenAIRE

    Kunigk, L.; Gomes, D.R.; Forte, F.; Vidal, K.P.; Gomes, L.F.; Sousa, P.F.

    2001-01-01

    Peracetic acid is a powerful sanitizer that has only recently been introduced in the Brazilian food industry. The main disadvantage of this sanitizer is its decomposition rate. The main purpose of this paper is to present results obtained in experiments carried out to study the decomposition kinetics of peracetic acid in aqueous solutions at 25, 35, 40 and 45 °C. The decompositon of peracetic acid is a first-order reaction. The decomposition rate constants are between 1.71x10-3 h -1 for 25 °C...

  12. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions.

    Directory of Open Access Journals (Sweden)

    Cari D Ficken

    Full Text Available Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression. Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system.

  13. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions.

    Science.gov (United States)

    Ficken, Cari D; Wright, Justin P

    2017-01-01

    Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression). Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system.

  14. Influence of heat transfer on walls due to aerosol decomposition rate in the containment building of nuclear power plants during heavy incidents; Einfluss des Waermeuebergangs an Waenden auf die Aerosolabbaurate im Sicherheitsbehaelter von Kernkraftwerken bei schweren Stoerfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Braun, T.

    2004-07-01

    Today, German nuclear power plants are leading in safety standards worldwide. Increasing potentials arise continuously along with improvements in technology. One of these potentials is the best-estimate simulation of fission product transport in case of a severe accident. A main part of the fission products is allocated on aerosols. Therefore, the aerosol behavior before containment leakage is important for the radioactive source term to the environment. Having a good knowledge about the main aerosol phenomena, it is possible to simulate them numerically. This enables to develop and test safety measures to limit damages before accidents occur. Within this study, the main aerosol phenomena have been ascertained and accordingly classified into formation, transport and reduction. On this basis, simulations of one- and multi-component aerosol experiments of the KAEVER series have been performed with the COCOSYS code. Due to an overprediction of the computed volume condensation rate, the results showed an overestimation of the reduction rate of insoluble aerosols. The reason was found to be the underestimation of the wall condensation rate. Based on an additional plain thermal hydraulic multi compartment experiment, these uncertainties in the wall heat transfer correlations were investigated in detail. The results show a strong dependency between the wall condensation rate and the convective heat transfer, resp. the characteristic length. In case of mainly forced convection, correct values for the characteristic length led to an underestimation of the calculated heat transfer coefficients. The analysis of the heat transfer models show an inconsistency in the coupling of free and forced convection. Therefore, an improved and consistent convection model has been developed and implemented. Both models have been tested on different experiments. Although the new model shows only minor improvements, it could be proven that the influence for forced convection is significant

  15. 1.6. The kinetics of hydrochloric acid decomposition of argillite of Chashma-Sang Deposit

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Mirzoev, D.Kh.; Boboev, Kh.E.

    2016-01-01

    Present article of book is devoted to kinetics of hydrochloric acid decomposition of argillite of Chashma-Sang Deposit. It was defined that with temperature increasing the extraction rate of Al_2O_3 and Fe_2O_3 increases. The dependence of extraction rate of Al_2O_3 and Fe_2O_3 on process duration at hydrochloric acid decomposition of argillite was studied. The activation energy of the process was defined.

  16. Effects of hydrogen and propylene presence on decomposition of hydrogen peroxide over palladium catalysts

    NARCIS (Netherlands)

    Chen, T.; Kertalli, E.; Nijhuis, T.A.; Podkolzin, S.

    2016-01-01

    Reaction rates for H2O2 decomposition in a methanol solution were measured over Pd/SiO2 catalysts in the presence of gas-phase N2, H2 and propylene. The H2O2 decomposition rates were higher in the presence of H2 and lower in the presence of propylene compared to those under N2, which acted as an

  17. Dolomite decomposition under CO2

    International Nuclear Information System (INIS)

    Guerfa, F.; Bensouici, F.; Barama, S.E.; Harabi, A.; Achour, S.

    2004-01-01

    Full text.Dolomite (MgCa (CO 3 ) 2 is one of the most abundant mineral species on the surface of the planet, it occurs in sedimentary rocks. MgO, CaO and Doloma (Phase mixture of MgO and CaO, obtained from the mineral dolomite) based materials are attractive steel-making refractories because of their potential cost effectiveness and world wide abundance more recently, MgO is also used as protective layers in plasma screen manufacture ceel. The crystal structure of dolomite was determined as rhombohedral carbonates, they are layers of Mg +2 and layers of Ca +2 ions. It dissociates depending on the temperature variations according to the following reactions: MgCa (CO 3 ) 2 → MgO + CaO + 2CO 2 .....MgCa (CO 3 ) 2 → MgO + Ca + CaCO 3 + CO 2 .....This latter reaction may be considered as a first step for MgO production. Differential thermal analysis (DTA) are used to control dolomite decomposition and the X-Ray Diffraction (XRD) was used to elucidate thermal decomposition of dolomite according to the reaction. That required samples were heated to specific temperature and holding times. The average particle size of used dolomite powders is 0.3 mm, as where, the heating temperature was 700 degree celsius, using various holding times (90 and 120 minutes). Under CO 2 dolomite decomposed directly to CaCO 3 accompanied by the formation of MgO, no evidence was offered for the MgO formation of either CaO or MgCO 3 , under air, simultaneous formation of CaCO 3 , CaO and accompanied dolomite decomposition

  18. Spectral Tensor-Train Decomposition

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.

    2016-01-01

    The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT...... adaptive Smolyak approach. The method is also used to approximate the solution of an elliptic PDE with random input data. The open source software and examples presented in this work are available online (http://pypi.python.org/pypi/TensorToolbox/)....

  19. Thermal decomposition of titanium deuteride thin films

    International Nuclear Information System (INIS)

    Malinowski, M.E.

    1983-01-01

    The thermal desorption spectra of deuterium from essentially clean titanium deuteride thin films were measured by ramp heating the films in vacuum; the film thicknesses ranged from 20 to 220 nm and the ramp rates varied from 0.5 to about 3 0 C s - 1 . Each desorption spectrum consisted of a low nearly constant rate at low temperatures followed by a highly peaked rate at higher temperatures. The cleanliness and thinness of the films permitted a description of desorption rates in terms of a simple phenomenological model based on detailed balancing in which the low temperature pressure-composition characteristics of the two-phase (α-(α+#betta#)-#betta#) region of the Ti-D system were used as input data. At temperatures below 340 0 C the model predictions were in excellent agreement with the experimentally measured desorption spectra. Interpretations of the spectra in terms of 'decomposition trajectories'' are possible using this model, and this approach is also used to explain deviations of the spectra from the model at temperatures of 340 0 C and above. (Auth.)

  20. Measurement of the energy dependence of X-ray-induced decomposition of potassium chlorate.

    Science.gov (United States)

    Pravica, Michael; Bai, Ligang; Sneed, Daniel; Park, Changyong

    2013-03-21

    We report the first measurements of the X-ray induced decomposition of KClO3 as a function of energy in two experiments. KClO3 was pressurized to 3.5 GPa and irradiated with monochromatic synchrotron X-rays ranging in energy from 15 to 35 keV in 5 keV increments. A systematic increase in the decomposition rate as the energy was decreased was observed, which agrees with the 1/E(3) trend for the photoelectric process, except at the lowest energy studied. A second experiment was performed to access lower energies (10 and 12 keV) using a beryllium gasket; suggesting an apparent resonance near 15 keV or 0.83 Ǻ maximizing the chemical decomposition rate. A third experiment was performed using KIO3 to ascertain the anionic dependence of the decomposition rate, which was observed to be far slower than in KClO3, suggesting that the O-O distance is the critical factor in chemical reactions. These results will be important for more efficiently initiating chemical decomposition in materials using selected X-ray wavelengths that maximize decomposition to aid useful hard X-ray-induced chemistry and contribute understanding of the mechanism of X-ray-induced decomposition of the chlorates.

  1. Decomposition of Multi-player Games

    Science.gov (United States)

    Zhao, Dengji; Schiffel, Stephan; Thielscher, Michael

    Research in General Game Playing aims at building systems that learn to play unknown games without human intervention. We contribute to this endeavour by generalising the established technique of decomposition from AI Planning to multi-player games. To this end, we present a method for the automatic decomposition of previously unknown games into independent subgames, and we show how a general game player can exploit a successful decomposition for game tree search.

  2. Constructive quantum Shannon decomposition from Cartan involutions

    International Nuclear Information System (INIS)

    Drury, Byron; Love, Peter

    2008-01-01

    The work presented here extends upon the best known universal quantum circuit, the quantum Shannon decomposition proposed by Shende et al (2006 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25 1000). We obtain the basis of the circuit's design in a pair of Cartan decompositions. This insight gives a simple constructive factoring algorithm in terms of the Cartan involutions corresponding to these decompositions

  3. Constructive quantum Shannon decomposition from Cartan involutions

    Energy Technology Data Exchange (ETDEWEB)

    Drury, Byron; Love, Peter [Department of Physics, 370 Lancaster Ave., Haverford College, Haverford, PA 19041 (United States)], E-mail: plove@haverford.edu

    2008-10-03

    The work presented here extends upon the best known universal quantum circuit, the quantum Shannon decomposition proposed by Shende et al (2006 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25 1000). We obtain the basis of the circuit's design in a pair of Cartan decompositions. This insight gives a simple constructive factoring algorithm in terms of the Cartan involutions corresponding to these decompositions.

  4. Mathematical modelling of the decomposition of explosives

    International Nuclear Information System (INIS)

    Smirnov, Lev P

    2010-01-01

    Studies on mathematical modelling of the molecular and supramolecular structures of explosives and the elementary steps and overall processes of their decomposition are analyzed. Investigations on the modelling of combustion and detonation taking into account the decomposition of explosives are also considered. It is shown that solution of problems related to the decomposition kinetics of explosives requires the use of a complex strategy based on the methods and concepts of chemical physics, solid state physics and theoretical chemistry instead of empirical approach.

  5. Control of climate and litter quality on leaf litter decomposition in different climatic zones.

    Science.gov (United States)

    Zhang, Xinyue; Wang, Wei

    2015-09-01

    Climate and initial litter quality are the major factors influencing decomposition rates on large scales. We established a comprehensive database of terrestrial leaf litter decomposition, including 785 datasets, to examine the relationship between climate and litter quality and evaluate the factors controlling decomposition on a global scale, the arid and semi-arid (AS) zone, the humid middle and humid low (HL) latitude zones. Initial litter nitrogen (N) and phosphorus (P) concentration only increased with mean annual temperature (MAT) in the AS zone and decreased with mean annual precipitation (MAP) in the HL zone. Compared with nutrient content, MAT imposed less effect on initial litter lignin content than MAP. MAT were the most important decomposition driving factors on a global scale as well as in different climatic zones. MAP only significantly affected decomposition constants in AS zone. Although litter quality parameters also showed significant influence on decomposition, their importance was less than the climatic factors. Besides, different litter quality parameters exerted significant influence on decomposition in different climatic zones. Our results emphasized that climate consistently exerted important effects on decomposition constants across different climatic zones.

  6. Thermal decomposition of gaseous ammonium nitrate at low pressure: kinetic modeling of product formation and heterogeneous decomposition of nitric acid.

    Science.gov (United States)

    Park, J; Lin, M C

    2009-12-03

    The thermal decomposition of ammonium nitrate, NH(4)NO(3) (AN), in the gas phase has been studied at 423-56 K by pyrolysis/mass spectrometry under low-pressure conditions using a Saalfeld reactor coated with boric acid. The sublimation of NH(4)NO(3) at 423 K was proposed to produce equal amounts of NH(3) and HNO(3), followed by the decomposition reaction of HNO(3), HNO(3) + M --> OH + NO(2) + M (where M = third-body and reactor surface). The absolute yields of N(2), N(2)O, H(2)O, and NH(3), which can be unambiguously measured and quantitatively calibrated under a constant pressure at 5-6.2 torr He are kinetically modeled using the detailed [H,N,O]-mechanism established earlier for the simulation of NH(3)-NO(2) (Park, J.; Lin, M. C. Technologies and Combustion for a Clean Environment. Proc. 4th Int. Conf. 1997, 34-1, 1-5) and ADN decomposition reactions (Park, J.; Chakraborty, D.; Lin, M. C. Proc. Combust. Inst. 1998, 27, 2351-2357). Since the homogeneous decomposition reaction of HNO(3) itself was found to be too slow to account for the consumption of reactants and the formation of products, we also introduced the heterogeneous decomposition of HNO(3) in our kinetic modeling. The heterogeneous decomposition rate of HNO(3), HNO(3) + (B(2)O(3)/SiO(2)) --> OH + NO(2) + (B(2)O(3)/SiO(2)), was determined by varying its rate to match the modeled result to the measured concentrations of NH(3) and H(2)O; the rate could be represented by k(2b) = 7.91 x 10(7) exp(-12 600/T) s(-1), which appears to be consistent with those reported by Johnston and co-workers (Johnston, H. S.; Foering, L.; Tao, Y.-S.; Messerly, G. H. J. Am. Chem. Soc. 1951, 73, 2319-2321) for HNO(3) decomposition on glass reactors at higher temperatures. Notably, the concentration profiles of all species measured could be satisfactorily predicted by the existing [H,N,O]-mechanism with the heterogeneous initiation process.

  7. Thermal Decomposition of Gaseous Ammonium Nitrate at Low Pressure: Kinetic Modeling of Product Formation and Heterogeneous Decomposition of Nitric Acid

    Science.gov (United States)

    Park, J.; Lin, M. C.

    2009-10-01

    The thermal decomposition of ammonium nitrate, NH4NO3 (AN), in the gas phase has been studied at 423-56 K by pyrolysis/mass spectrometry under low-pressure conditions using a Saalfeld reactor coated with boric acid. The sublimation of NH4NO3 at 423 K was proposed to produce equal amounts of NH3 and HNO3, followed by the decomposition reaction of HNO3, HNO3 + M → OH + NO2 + M (where M = third-body and reactor surface). The absolute yields of N2, N2O, H2O, and NH3, which can be unambiguously measured and quantitatively calibrated under a constant pressure at 5-6.2 torr He are kinetically modeled using the detailed [H,N,O]-mechanism established earlier for the simulation of NH3-NO2 (Park, J.; Lin, M. C. Technologies and Combustion for a Clean Environment. Proc. 4th Int. Conf. 1997, 34-1, 1-5) and ADN decomposition reactions (Park, J.; Chakraborty, D.; Lin, M. C. Proc. Combust. Inst. 1998, 27, 2351-2357). Since the homogeneous decomposition reaction of HNO3 itself was found to be too slow to account for the consumption of reactants and the formation of products, we also introduced the heterogeneous decomposition of HNO3 in our kinetic modeling. The heterogeneous decomposition rate of HNO3, HNO3 + (B2O3/SiO2) → OH + NO2 + (B2O3/SiO2), was determined by varying its rate to match the modeled result to the measured concentrations of NH3 and H2O; the rate could be represented by k2b = 7.91 × 107 exp(-12 600/T) s-1, which appears to be consistent with those reported by Johnston and co-workers (Johnston, H. S.; Foering, L.; Tao, Y.-S.; Messerly, G. H. J. Am. Chem. Soc. 1951, 73, 2319-2321) for HNO3 decomposition on glass reactors at higher temperatures. Notably, the concentration profiles of all species measured could be satisfactorily predicted by the existing [H,N,O]-mechanism with the heterogeneous initiation process.

  8. Modeling N2O Reduction and Decomposition in a Circulating Fluidized bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars-Erik; Dam-Johansen, Kim

    1996-01-01

    The N2O concentration was measured in a circulating fluidized bed boiler of commercial size. Kinetics for N2O reduction by char and catalytic reduction and decomposition over bed material from the combustor were determined in a laboratory fixed bed reactor. The destruction rate of N2O in the comb......The N2O concentration was measured in a circulating fluidized bed boiler of commercial size. Kinetics for N2O reduction by char and catalytic reduction and decomposition over bed material from the combustor were determined in a laboratory fixed bed reactor. The destruction rate of N2O...... in the combustion chamber and the cyclone was calculated taking three mechanisms into account: Reduction by char, catalytic decomposition over bed material and thermal decomposition. The calculated destruction rate was in good agreement with the measured destruction of N2O injected at different levels in the boiler...

  9. The Effect of Water Vapor on the Thermal Decomposition of Pyrite in N2 Atmosphere

    Directory of Open Access Journals (Sweden)

    Nesrin BOYABAT

    2009-03-01

    Full Text Available In this study, the effect of water vapor on the thermal decomposition of pyrite mineral in nitrogen atmosphere has been investigated in a horizontal tube furnace. Temperature, time and water vapor concentration were used as experimental parameters. According to the data obtained at nitrogen/ water vapor environment, it was observed that the water vapor on the decomposition of pyrite increased the decomposition rate. The decomposition reaction is well represented by the "shrinking core" model and can be divided into two regions with different rate controlling step. The rate controlling steps were determined from the heat transfer through the gas film for the low conversions, while it was determined from the mass transfer through product ash layer for the high conversions. The activation energies of this gas and ash film mechanisms were found to be 77 and 81 kJ/mol-1, respectively.

  10. Decomposition in pelagic marine ecosytems

    International Nuclear Information System (INIS)

    Lucas, M.I.

    1986-01-01

    During the decomposition of plant detritus, complex microbial successions develop which are dominated in the early stages by a number of distinct bacterial morphotypes. The microheterotrophic community rapidly becomes heterogenous and may include cyanobacteria, fungi, yeasts and bactivorous protozoans. Microheterotrophs in the marine environment may have a biomass comparable to that of all other heterotrophs and their significance as a resource to higher trophic orders, and in the regeneration of nutrients, particularly nitrogen, that support 'regenerated' primary production, has aroused both attention and controversy. Numerous methods have been employed to measure heterotrophic bacterial production and activity. The most widely used involve estimates of 14 C-glucose uptake; the frequency of dividing cells; the incorporation of 3 H-thymidine and exponential population growth in predator-reduced filtrates. Recent attempts to model decomposition processes and C and N fluxes in pelagic marine ecosystems are described. This review examines the most sensitive components and predictions of the models with particular reference to estimates of bacterial production, net growth yield and predictions of N cycling determined by 15 N methodology. Directed estimates of nitrogen (and phosphorus) flux through phytoplanktonic and bacterioplanktonic communities using 15 N (and 32 P) tracer methods are likely to provide more realistic measures of nitrogen flow through planktonic communities

  11. Infrared multiphoton absorption and decomposition

    International Nuclear Information System (INIS)

    Evans, D.K.; McAlpine, R.D.

    1984-01-01

    The discovery of infrared laser induced multiphoton absorption (IRMPA) and decomposition (IRMPD) by Isenor and Richardson in 1971 generated a great deal of interest in these phenomena. This interest was increased with the discovery by Ambartzumian, Letokhov, Ryadbov and Chekalin that isotopically selective IRMPD was possible. One of the first speculations about these phenomena was that it might be possible to excite a particular mode of a molecule with the intense infrared laser beam and cause decomposition or chemical reaction by channels which do not predominate thermally, thus providing new synthetic routes for complex chemicals. The potential applications to isotope separation and novel chemistry stimulated efforts to understand the underlying physics and chemistry of these processes. At ICOMP I, in 1977 and at ICOMP II in 1980, several authors reviewed the current understandings of IRMPA and IRMPD as well as the particular aspect of isotope separation. There continues to be a great deal of effort into understanding IRMPA and IRMPD and we will briefly review some aspects of these efforts with particular emphasis on progress since ICOMP II. 31 references

  12. Interacting effects of insects and flooding on wood decomposition.

    Directory of Open Access Journals (Sweden)

    Michael D Ulyshen

    Full Text Available Saproxylic arthropods are thought to play an important role in wood decomposition but very few efforts have been made to quantify their contributions to the process and the factors controlling their activities are not well understood. In the current study, mesh exclusion bags were used to quantify how arthropods affect loblolly pine (Pinus taeda L. decomposition rates in both seasonally flooded and unflooded forests over a 31-month period in the southeastern United States. Wood specific gravity (based on initial wood volume was significantly lower in bolts placed in unflooded forests and for those unprotected from insects. Approximately 20.5% and 13.7% of specific gravity loss after 31 months was attributable to insect activity in flooded and unflooded forests, respectively. Importantly, minimal between-treatment differences in water content and the results from a novel test carried out separately suggest the mesh bags had no significant impact on wood mass loss beyond the exclusion of insects. Subterranean termites (Isoptera: Rhinotermitidae: Reticulitermes spp. were 5-6 times more active below-ground in unflooded forests compared to flooded forests based on wooden monitoring stakes. They were also slightly more active above-ground in unflooded forests but these differences were not statistically significant. Similarly, seasonal flooding had no detectable effect on above-ground beetle (Coleoptera richness or abundance. Although seasonal flooding strongly reduced Reticulitermes activity below-ground, it can be concluded from an insignificant interaction between forest type and exclusion treatment that reduced above-ground decomposition rates in seasonally flooded forests were due largely to suppressed microbial activity at those locations. The findings from this study indicate that southeastern U.S. arthropod communities accelerate above-ground wood decomposition significantly and to a similar extent in both flooded and unflooded forests

  13. Thermal decomposition of hydroxylamine: isoperibolic calorimetric measurements at different conditions.

    Science.gov (United States)

    Adamopoulou, Theodora; Papadaki, Maria I; Kounalakis, Manolis; Vazquez-Carreto, Victor; Pineda-Solano, Alba; Wang, Qingsheng; Mannan, M Sam

    2013-06-15

    Thermal decomposition of hydroxylamine, NH2OH, was responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting its decomposition are not being understood. In this work, the global enthalpy of hydroxylamine decomposition has been measured in the temperature range of 130-150 °C employing isoperibolic calorimetry. Measurements were performed in a metal reactor, employing 30-80 ml solutions containing 1.4-20 g of pure hydroxylamine (2.8-40 g of the supplied reagent). The measurements showed that increased concentration or temperature, results in higher global enthalpies of reaction per unit mass of reactant. At 150 °C, specific enthalpies as high as 8 kJ per gram of hydroxylamine were measured, although in general they were in the range of 3-5 kJ g(-1). The accurate measurement of the generated heat was proven to be a cumbersome task as (a) it is difficult to identify the end of decomposition, which after a fast initial stage, proceeds very slowly, especially at lower temperatures and (b) the environment of gases affects the reaction rate. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Nitrogen deposition does not enhance Sphagnum decomposition.

    Science.gov (United States)

    Manninen, S; Kivimäki, S; Leith, I D; Leeson, S R; Sheppard, L J

    2016-11-15

    Long-term additions of nitrogen (N) to peatlands have altered bryophyte growth, species dominance, N content in peat and peat water, and often resulted in enhanced Sphagnum decomposition rate. However, these results have mainly been derived from experiments in which N was applied as ammonium nitrate (NH4NO3), neglecting the fact that in polluted areas, wet deposition may be dominated either by NO3(-) or NH4(+). We studied effects of elevated wet deposition of NO3(-) vs. NH4(+) alone (8 or 56kgNha(-1)yr(-1) over and above the background of 8kgNha(-1)yr(-1) for 5 to 11years) or combined with phosphorus (P) and potassium (K) on Sphagnum quality for decomposers, mass loss, and associated changes in hummock pore water in an ombrotrophic bog (Whim). Adding N, especially as NH4(+), increased N concentration in Sphagnum, but did not enhance mass loss from Sphagnum. Mass loss seemed to depend mainly on moss species and climatic factors. Only high applications of N affected hummock pore water chemistry, which varied considerably over time. Overall, C and N cycling in this N treated bog appeared to be decoupled. We conclude that moss species, seasonal and annual variation in climatic factors, direct negative effects of N (NH4(+) toxicity) on Sphagnum production, and indirect effects (increase in pH and changes in plant species dominance under elevated NO3(-) alone and with PK) drive Sphagnum decomposition and hummock C and N dynamics at Whim. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Fescues of the Intravaginal group of Festuca L. section Festuca in the lowland and montane areas of the northeastern Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    Pyke, S.

    2013-12-01

    Full Text Available Fescues of the Intravaginal group of Festuca L. section Festuca in the lowland and montane areas of the northeastern Iberian Peninsula.— Morphologically similar fescues occur across the study area (Mediterranean area of the northeastern Iberian Peninsula at low and middle elevations. With the exception of the high mountain or alpine species, these populations are reviewed here, with particular attention being paid to the Festuca inops (F. gracilior group, as well as to some other species, in particular F. lemanii, which are not easily understood and can complicate identification, especially where the taxa occur sympatrically. The application of the binomen F. inops De Not. to some of the Iberian populations constituting the F. inops group is discussed. New records for F. tarraconensis, F. occitanica, F. michaelis and F. heteroidea amplify the distribution range of these little-known taxa within the Iberian Peninsula.Diferentes especies de Festuca morfológicamente afines crecen en gran parte del territorio objeto de esta reseña (tierras mediterráneas del nordeste de la Península Ibérica, a baja y mediana altitud. Excluyendo las especies de alta montaña, estas poblaciones se han estudiado aquí haciendo hincapié en Festuca grupo inops (F. gracilior, y se han tratado otras especies (F. lemanii en especial que a veces complican la identificación de los miembros de dicho grupo, sobre todo cuando solapan sus distribuciones. Se comenta la aplicación del binomen F. inops De Not. a algunas poblaciones ibéricas del grupo F. inops. Nuevas citas de F. tarraconensis, F. occitanica, F. michaelis y F. heteroidea amplían la distribución de estos taxones dentro de la Península Ibérica.

  16. Identification and validation of reference genes for quantification of target gene expression with quantitative real-time PCR for tall fescue under four abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Zhimin Yang

    Full Text Available Tall fescue (Festuca arundinacea Schreb. is widely utilized as a major forage and turfgrass species in the temperate regions of the world and is a valuable plant material for studying molecular mechanisms of grass stress tolerance due to its superior drought and heat tolerance among cool-season species. Selection of suitable reference genes for quantification of target gene expression is important for the discovery of molecular mechanisms underlying improved growth traits and stress tolerance. The stability of nine potential reference genes (ACT, TUB, EF1a, GAPDH, SAND, CACS, F-box, PEPKR1 and TIP41 was evaluated using four programs, GeNorm, NormFinder, BestKeeper, and RefFinder. The combinations of SAND and TUB or TIP41 and TUB were most stably expressed in salt-treated roots or leaves. The combinations of GAPDH with TIP41 or TUB were stable in roots and leaves under drought stress. TIP41 and PEPKR1 exhibited stable expression in cold-treated roots, and the combination of F-box, TIP41 and TUB was also stable in cold-treated leaves. CACS and TUB were the two most stable reference genes in heat-stressed roots. TIP41 combined with TUB and ACT was stably expressed in heat-stressed leaves. Finally, quantitative real-time polymerase chain reaction (qRT-PCR assays of the target gene FaWRKY1 using the identified most stable reference genes confirmed the reliability of selected reference genes. The selection of suitable reference genes in tall fescue will allow for more accurate identification of stress-tolerance genes and molecular mechanisms conferring stress tolerance in this stress-tolerant species.

  17. Differential acclimation of enzymatic antioxidant metabolism and photosystem II photochemistry in tall fescue under drought and heat and the combined stresses

    Directory of Open Access Journals (Sweden)

    Aoyue eBi

    2016-04-01

    Full Text Available Quality inferiority in cool-season turfgrass due to drought, heat and a combination of both stresses is predicted to be more prevalent in the future. Understanding the various response to heat and drought stress will assist in the selection and breeding of tolerant grass varieties. The objective of this study was to investigate the behavior of antioxidant metabolism and photosystem II (PSII photochemistry in two tall fescue genotypes (PI 234881 and PI 578718 with various thermotolerance capacities. Wide variations were found between heat-tolerant PI 578718 and heat-sensitive PI 234881 for leaf relative water content, malondialdehyde and electrolyte leakage under drought, high-temperature or a combination of both stresses. The sensitivity of PI 234881 exposed to combined stresses was associated with lower superoxide dismutase activity and higher H2O2 accumulation than that in PI 578718. Various antioxidant enzymes displayed positive correlation with chlorophyll content, but negative with membrane injury index at most of the stages in both tall fescue genotypes. The JIP-test analysis in PI 578718 indicated a significant improvement in ABS/RC, TR0/RC, RE0/RC, RE0/ABS values as compared to the control regime, which indicated that PI 578718 had a high potential to protect the PSII system under drought and high temperature stress. And the PS II photochemistry in PI 234881 was damaged significantly compared with PI578718. Moreover, quantitative RT-PCR revealed that heat and drought stresses deduced the gene expression of psbB and psbC, but induced the expression of psbA. These findings to some extent confirmed that the various adaptations of physiological traits may contribute to breeding in cold-season turfgrass in response to drought, high-temperature and a combination of both stresses.

  18. A Longitudinal Study on Human Outdoor Decomposition in Central Texas.

    Science.gov (United States)

    Suckling, Joanna K; Spradley, M Katherine; Godde, Kanya

    2016-01-01

    The development of a methodology that estimates the postmortem interval (PMI) from stages of decomposition is a goal for which forensic practitioners strive. A proposed equation (Megyesi et al. 2005) that utilizes total body score (TBS) and accumulated degree days (ADD) was tested using longitudinal data collected from human remains donated to the Forensic Anthropology Research Facility (FARF) at Texas State University-San Marcos. Exact binomial tests examined the rate of the equation to successfully predict ADD. Statistically significant differences were found between ADD estimated by the equation and the observed value for decomposition stage. Differences remained significant after carnivore scavenged donations were removed from analysis. Low success rates for the equation to predict ADD from TBS and the wide standard errors demonstrate the need to re-evaluate the use of this equation and methodology for PMI estimation in different environments; rather, multivariate methods and equations should be derived that are environmentally specific. © 2015 American Academy of Forensic Sciences.

  19. Effect of petroleum on decomposition of shrub-grass litters in soil in Northern Shaanxi of China.

    Science.gov (United States)

    Zhang, Xiaoxi; Liu, Zengwen; Yu, Qi; Luc, Nhu Trung; Bing, Yuanhao; Zhu, Bochao; Wang, Wenxuan

    2015-07-01

    The impacts of petroleum contamination on the litter decomposition of shrub-grass land would directly influence nutrient cycling, and the stability and function of ecosystem. Ten common shrub and grass species from Yujiaping oil deposits were studied. Litters from these species were placed into litterbags and buried in petroleum-contaminated soil with 3 levels of contamination (slight, moderate and serious pollution with petroleum concentrations of 15, 30 and 45 g/kg, respectively). A decomposition experiment was then conducted in the lab to investigate the impacts of petroleum contamination on litter decomposition rates. Slight pollution did not inhibit the decomposition of any litters and significantly promoted the litter decomposition of Hippophae rhamnoides, Caragana korshinskii, Amorpha fruticosa, Ziziphus jujuba var. spinosa, Periploca sepium, Medicago sativa and Bothriochloa ischaemum. Moderate pollution significantly inhibited litter decomposition of M. sativa, Coronilla varia, Artemisia vestita and Trrifolium repens and significantly promoted the litter decomposition of C. korshinskii, Z. jujuba var. spinosa and P. sepium. Serious pollution significantly inhibited the litter decomposition of H. rhamnoides, A. fruticosa, B. ischaemum and A. vestita and significantly promoted the litter decomposition of Z. jujuba var. spinosa, P. sepium and M. sativa. In addition, the impacts of petroleum contamination did not exhibit a uniform increase or decrease as petroleum concentration increased. Inhibitory effects of petroleum on litter decomposition may hinder the substance cycling and result in the degradation of plant communities in contaminated areas. Copyright © 2015. Published by Elsevier B.V.

  20. Challenges of including nitrogen effects on decomposition in earth system models

    Science.gov (United States)

    Hobbie, S. E.

    2011-12-01

    Despite the importance of litter decomposition for ecosystem fertility and carbon balance, key uncertainties remain about how this fundamental process is affected by nitrogen (N) availability. Nevertheless, resolving such uncertainties is critical for mechanistic inclusion of such processes in earth system models, towards predicting the ecosystem consequences of increased anthropogenic reactive N. Towards that end, we have conducted a series of experiments examining nitrogen effects on litter decomposition. We found that both substrate N and externally supplied N (regardless of form) accelerated the initial decomposition rate. Faster initial decomposition rates were linked to the higher activity of carbohydrate-degrading enzymes associated with externally supplied N and the greater relative abundances of Gram negative and Gram positive bacteria associated with green leaves and externally supplied organic N (assessed using phospholipid fatty acid analysis, PLFA). By contrast, later in decomposition, externally supplied N slowed decomposition, increasing the fraction of slowly decomposing litter and reducing lignin-degrading enzyme activity and relative abundances of Gram negative and Gram positive bacteria. Our results suggest that elevated atmospheric N deposition may have contrasting effects on the dynamics of different soil carbon pools, decreasing mean residence times of active fractions comprising very fresh litter, while increasing those of more slowly decomposing fractions including more processed litter. Incorporating these contrasting effects of N on decomposition processes into models is complicated by lingering uncertainties about how these effects generalize across ecosystems and substrates.

  1. Spinodal decomposition in fluid mixtures

    International Nuclear Information System (INIS)

    Kawasaki, Kyozi; Koga, Tsuyoshi

    1993-01-01

    We study the late stage dynamics of spinodal decomposition in binary fluids by the computer simulation of the time-dependent Ginzburg-Landau equation. We obtain a temporary linear growth law of the characteristic length of domains in the late stage. This growth law has been observed in many real experiments of binary fluids and indicates that the domain growth proceeds by the flow caused by the surface tension of interfaces. We also find that the dynamical scaling law is satisfied in this hydrodynamic domain growth region. By comparing the scaling functions for fluids with that for the case without hydrodynamic effects, we find that the scaling functions for the two systems are different. (author)

  2. Characteristic of root decomposition in a tropical rainforest in Sarawak, Malaysi

    Science.gov (United States)

    Ohashi, Mizue; Makita, Naoki; Katayam, Ayumi; Kume, Tomonori; Matsumoto, Kazuho; Khoon Kho, L.

    2016-04-01

    Woody roots play a significant role in forest carbon cycling, as up to 60 percent of tree photosynthetic production can be allocated to belowground. Root decay is one of the main processes of soil C dynamics and potentially relates to soil C sequestration. However, much less attention has been paid for root litter decomposition compared to the studies of leaf litter because roots are hidden from view. Previous studies have revealed that physico-chemical quality of roots, climate, and soil organisms affect root decomposition significantly. However, patterns and mechanisms of root decomposition are still poorly understood because of the high variability of root properties, field environment and potential decomposers. For example, root size would be a factor controlling decomposition rates, but general understanding of the difference between coarse and fine root decompositions is still lacking. Also, it is known that root decomposition is performed by soil animals, fungi and bacteria, but their relative importance is poorly understood. In this study, therefore, we aimed to characterize the root decomposition in a tropical rainforest in Sarawak, Malaysia, and clarify the impact of soil living organisms and root sizes on root litter decomposition. We buried soil cores with fine and coarse root litter bags in soil in Lambir Hills National Park. Three different types of soil cores that are covered by 1.5 cm plastic mesh, root-impermeable sheet (50um) and fungi-impermeable sheet (1um) were prepared. The soil cores were buried in February 2013 and collected 4 times, 134 days, 226 days, 786 days and 1151 days after the installation. We found that nearly 80 percent of the coarse root litter was decomposed after two years, whereas only 60 percent of the fine root litter was decomposed. Our results also showed significantly different ratio of decomposition between different cores, suggesting the different contribution of soil living organisms to decomposition process.

  3. Early stage litter decomposition across biomes

    Science.gov (United States)

    Ika Djukic; Sebastian Kepfer-Rojas; Inger Kappel Schmidt; Klaus Steenberg Larsen; Claus Beier; Björn Berg; Kris Verheyen; Adriano Caliman; Alain Paquette; Alba Gutiérrez-Girón; Alberto Humber; Alejandro Valdecantos; Alessandro Petraglia; Heather Alexander; Algirdas Augustaitis; Amélie Saillard; Ana Carolina Ruiz Fernández; Ana I. Sousa; Ana I. Lillebø; Anderson da Rocha Gripp; André-Jean Francez; Andrea Fischer; Andreas Bohner; Andrey Malyshev; Andrijana Andrić; Andy Smith; Angela Stanisci; Anikó Seres; Anja Schmidt; Anna Avila; Anne Probst; Annie Ouin; Anzar A. Khuroo; Arne Verstraeten; Arely N. Palabral-Aguilera; Artur Stefanski; Aurora Gaxiola; Bart Muys; Bernard Bosman; Bernd Ahrends; Bill Parker; Birgit Sattler; Bo Yang; Bohdan Juráni; Brigitta Erschbamer; Carmen Eugenia Rodriguez Ortiz; Casper T. Christiansen; E. Carol Adair; Céline Meredieu; Cendrine Mony; Charles A. Nock; Chi-Ling Chen; Chiao-Ping Wang; Christel Baum; Christian Rixen; Christine Delire; Christophe Piscart; Christopher Andrews; Corinna Rebmann; Cristina Branquinho; Dana Polyanskaya; David Fuentes Delgado; Dirk Wundram; Diyaa Radeideh; Eduardo Ordóñez-Regil; Edward Crawford; Elena Preda; Elena Tropina; Elli Groner; Eric Lucot; Erzsébet Hornung; Esperança Gacia; Esther Lévesque; Evanilde Benedito; Evgeny A. Davydov; Evy Ampoorter; Fabio Padilha Bolzan; Felipe Varela; Ferdinand Kristöfel; Fernando T. Maestre; Florence Maunoury-Danger; Florian Hofhansl; Florian Kitz; Flurin Sutter; Francisco Cuesta; Francisco de Almeida Lobo; Franco Leandro de Souza; Frank Berninger; Franz Zehetner; Georg Wohlfahrt; George Vourlitis; Geovana Carreño-Rocabado; Gina Arena; Gisele Daiane Pinha; Grizelle González; Guylaine Canut; Hanna Lee; Hans Verbeeck; Harald Auge; Harald Pauli; Hassan Bismarck Nacro; Héctor A. Bahamonde; Heike Feldhaar; Heinke Jäger; Helena C. Serrano; Hélène Verheyden; Helge Bruelheide; Henning Meesenburg; Hermann Jungkunst; Hervé Jactel; Hideaki Shibata; Hiroko Kurokawa; Hugo López Rosas; Hugo L. Rojas Villalobos; Ian Yesilonis; Inara Melece; Inge Van Halder; Inmaculada García Quirós; Isaac Makelele; Issaka Senou; István Fekete; Ivan Mihal; Ivika Ostonen; Jana Borovská; Javier Roales; Jawad Shoqeir; Jean-Christophe Lata; Jean-Paul Theurillat; Jean-Luc Probst; Jess Zimmerman; Jeyanny Vijayanathan; Jianwu Tang; Jill Thompson; Jiří Doležal; Joan-Albert Sanchez-Cabeza; Joël Merlet; Joh Henschel; Johan Neirynck; Johannes Knops; John Loehr; Jonathan von Oppen; Jónína Sigríður Þorláksdóttir; Jörg Löffler; José-Gilberto Cardoso-Mohedano; José-Luis Benito-Alonso; Jose Marcelo Torezan; Joseph C. Morina; Juan J. Jiménez; Juan Dario Quinde; Juha Alatalo; Julia Seeber; Jutta Stadler; Kaie Kriiska; Kalifa Coulibaly; Karibu Fukuzawa; Katalin Szlavecz; Katarína Gerhátová; Kate Lajtha; Kathrin Käppeler; Katie A. Jennings; Katja Tielbörger; Kazuhiko Hoshizaki; Ken Green; Lambiénou Yé; Laryssa Helena Ribeiro Pazianoto; Laura Dienstbach; Laura Williams; Laura Yahdjian; Laurel M. Brigham; Liesbeth van den Brink; Lindsey Rustad; al. et

    2018-01-01

    Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies...

  4. Decomposition and flame structure of hydrazinium nitroformate

    NARCIS (Netherlands)

    Louwers, J.; Parr, T.; Hanson-Parr, D.

    1999-01-01

    The decomposition of hydrazinium nitroformate (HNF) was studied in a hot quartz cell and by dropping small amounts of HNF on a hot plate. The species formed during the decomposition were identified by ultraviolet-visible absorption experiments. These experiments reveal that first HONO is formed. The

  5. Multilevel index decomposition analysis: Approaches and application

    International Nuclear Information System (INIS)

    Xu, X.Y.; Ang, B.W.

    2014-01-01

    With the growing interest in using the technique of index decomposition analysis (IDA) in energy and energy-related emission studies, such as to analyze the impacts of activity structure change or to track economy-wide energy efficiency trends, the conventional single-level IDA may not be able to meet certain needs in policy analysis. In this paper, some limitations of single-level IDA studies which can be addressed through applying multilevel decomposition analysis are discussed. We then introduce and compare two multilevel decomposition procedures, which are referred to as the multilevel-parallel (M-P) model and the multilevel-hierarchical (M-H) model. The former uses a similar decomposition procedure as in the single-level IDA, while the latter uses a stepwise decomposition procedure. Since the stepwise decomposition procedure is new in the IDA literature, the applicability of the popular IDA methods in the M-H model is discussed and cases where modifications are needed are explained. Numerical examples and application studies using the energy consumption data of the US and China are presented. - Highlights: • We discuss the limitations of single-level decomposition in IDA applied to energy study. • We introduce two multilevel decomposition models, study their features and discuss how they can address the limitations. • To extend from single-level to multilevel analysis, necessary modifications to some popular IDA methods are discussed. • We further discuss the practical significance of the multilevel models and present examples and cases to illustrate

  6. Can visible light impact litter decomposition under pollution of ZnO nanoparticles?

    Science.gov (United States)

    Du, Jingjing; Zhang, Yuyan; Liu, Lina; Qv, Mingxiang; Lv, Yanna; Yin, Yifei; Zhou, Yinfei; Cui, Minghui; Zhu, Yanfeng; Zhang, Hongzhong

    2017-11-01

    ZnO nanoparticles is one of the most used materials in a wide range including antibacterial coating, electronic device, and personal care products. With the development of nanotechnology, ecotoxicology of ZnO nanoparticles has been received increasing attention. To assess the phototoxicity of ZnO nanoparticles in aquatic ecosystem, microcosm experiments were conducted on Populus nigra L. leaf litter decomposition under combined effect of ZnO nanoparticles and visible light radiation. Litter decomposition rate, pH value, extracellular enzyme activity, as well as the relative contributions of fungal community to litter decomposition were studied. Results showed that long-term exposure to ZnO nanoparticles and visible light led to a significant decrease in litter decomposition rate (0.26 m -1 vs 0.45 m -1 ), and visible light would increase the inhibitory effect (0.24 m -1 ), which caused significant decrease in pH value of litter cultures, fungal sporulation rate, as well as most extracellular enzyme activities. The phototoxicity of ZnO nanoparticles also showed impacts on fungal community composition, especially on the genus of Varicosporium, whose abundance was significantly and positively related to decomposition rate. In conclusion, our study provides the evidence for negatively effects of ZnO NPs photocatalysis on ecological process of litter decomposition and highlights the contribution of visible light radiation to nanoparticles toxicity in freshwater ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Cellulose and cutisin decomposition in soil of Alopecuretum meadow

    Directory of Open Access Journals (Sweden)

    Zuzana Hrevušová

    2012-01-01

    Full Text Available Plant litter decomposition is a fundamental process to ecosystem functioning regulated by both abiotic and biotic factors. The aim of this study was to determine the decomposition of cellulose and protein (cutisin substrates on permanent Alopecuretum meadow under different methods of management. The treatments were following: 2 × cut, 2 × cut + NPK, 2 × mulch, 1 × cut, 1 × mulch (frequency of mowing per year and no-treated plots. Cutting or mulching was carried out in October, under the 2 × cut management also in May. In 2007–2009, cellulose and cutisin in mesh bags were placed in the soil and kept from April to October. Total mean ratios of decomposed cellulose and cutisin were 83 % and 40 % of primal substrate weight, respectively. The cellulose decomposition was affected by weather conditions, but not by applied management. The highest mean ratio of decomposed cellulose was found in 2009 (with increased amount of precipitation in May and July, the lowest in 2007. Coefficients of variation within a year and over the years were up to 22 % and 20 %, respectively. The cutisin decomposition was significantly affected by applied management in all three years. Higher rates of decomposition were noted in two times mowed treatments compared to one or not mowed treatments. Significant differences were found between years in 2× cut and 2 × cut + NPK treatments. Coefficients of variation within the year and over the years were both higher by cutisin than by cellulose samples (up to 50 and 42 %, respectively.

  8. A novel method for EMG decomposition based on matched filters

    Directory of Open Access Journals (Sweden)

    Ailton Luiz Dias Siqueira Júnior

    Full Text Available Introduction Decomposition of electromyography (EMG signals into the constituent motor unit action potentials (MUAPs can allow for deeper insights into the underlying processes associated with the neuromuscular system. The vast majority of the methods for EMG decomposition found in the literature depend on complex algorithms and specific instrumentation. As an attempt to contribute to solving these issues, we propose a method based on a bank of matched filters for the decomposition of EMG signals. Methods Four main units comprise our method: a bank of matched filters, a peak detector, a motor unit classifier and an overlapping resolution module. The system’s performance was evaluated with simulated and real EMG data. Classification accuracy was measured by comparing the responses of the system with known data from the simulator and with the annotations of a human expert. Results The results show that decomposition of non-overlapping MUAPs can be achieved with up to 99% accuracy for signals with up to 10 active motor units and a signal-to-noise ratio (SNR of 10 dB. For overlapping MUAPs with up to 10 motor units per signal and a SNR of 20 dB, the technique allows for correct classification of approximately 71% of the MUAPs. The method is capable of processing, decomposing and classifying a 50 ms window of data in less than 5 ms using a standard desktop computer. Conclusion This article contributes to the ongoing research on EMG decomposition by describing a novel technique capable of delivering high rates of success by means of a fast algorithm, suggesting its possible use in future real-time embedded applications, such as myoelectric prostheses control and biofeedback systems.

  9. Multilinear operators for higher-order decompositions.

    Energy Technology Data Exchange (ETDEWEB)

    Kolda, Tamara Gibson

    2006-04-01

    We propose two new multilinear operators for expressing the matrix compositions that are needed in the Tucker and PARAFAC (CANDECOMP) decompositions. The first operator, which we call the Tucker operator, is shorthand for performing an n-mode matrix multiplication for every mode of a given tensor and can be employed to concisely express the Tucker decomposition. The second operator, which we call the Kruskal operator, is shorthand for the sum of the outer-products of the columns of N matrices and allows a divorce from a matricized representation and a very concise expression of the PARAFAC decomposition. We explore the properties of the Tucker and Kruskal operators independently of the related decompositions. Additionally, we provide a review of the matrix and tensor operations that are frequently used in the context of tensor decompositions.

  10. Effect of Ultrasound on the Decomposition of Sodium Dodecylbenzene Sulfonate in Aqueous Solution

    International Nuclear Information System (INIS)

    Yim, Bong Been

    2004-01-01

    The influence of ultrasound frequency, dissolved gases, and initial concentration on the decomposition of sodium dodecylbenzene sulfonate(DBS) aqueous solution was investigated using ultrasound generator with 200 W ultrasound power. The decomposition rates at three frequencies(50, 200, and 600 kHz) examined under argon atmosphere were highest at 200 kHz. The highest observed decomposition rate at 200 kHz occurred in the presence of oxygen followed by air and argon, helium, and nitrogen. The effect of initial concentration of DBS on the ultrasonic decomposition was decreased with increasing initial concentration and would depend upon the formation of micelle in aqueous solution. It appears that the ultrasound frequency, dissolved gases, and initial concentration play an important role on the sonolysis of DBS. Sonolysis of DBS mainly take place at the interfacial region of cavitation bubbles by both OH radical attack and pyrolysis to alkyl chain, aromatic ring, and headgroup

  11. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming.

    Science.gov (United States)

    Feng, Wenting; Liang, Junyi; Hale, Lauren E; Jung, Chang Gyo; Chen, Ji; Zhou, Jizhong; Xu, Minggang; Yuan, Mengting; Wu, Liyou; Bracho, Rosvel; Pegoraro, Elaine; Schuur, Edward A G; Luo, Yiqi

    2017-11-01

    Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon-climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long-term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming. Taking advantage of a 12-year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3 years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO 2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C-degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long-term warming accelerates the

  12. Plasma-catalytic decomposition of TCE

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, A.; Morent, R.; De Geyter, N.; Leys, C. [Ghent Univ., Ghent (Belgium). Dept. of Applied Physics; Tuan, N.D.M.; Giraudon, J.M.; Lamonier, J.F. [Univ. des Sciences et Technologies de Lille, Villeneuve (France). Dept. de Catalyse et Chimie du Solide

    2010-07-01

    Volatile organic compounds (VOCs) are gaseous pollutants that pose an environmental hazard due to their high volatility and their possible toxicity. Conventional technologies to reduce the emission of VOCs have their advantages, but they become cost-inefficient when low concentrations have to be treated. In the past 2 decades, non-thermal plasma technology has received growing attention as an alternative and promising remediation method. Non-thermal plasmas are effective because they produce a series of strong oxidizers such as ozone, oxygen radicals and hydroxyl radicals that provide a reactive chemical environment in which VOCs are completely oxidized. This study investigated whether the combination of NTP and catalysis could improve the energy efficiency and the selectivity towards carbon dioxide (CO{sub 2}). Trichloroethylene (TCE) was decomposed by non-thermal plasma generated in a DC-excited atmospheric pressure glow discharge. The production of by-products was qualitatively investigated through FT-IR spectrometry. The results were compared with those from a catalytic reactor. The removal rate of TCE reached a maximum of 78 percent at the highest input energy. The by-products of TCE decomposition were CO{sub 2}, carbon monoxide (CO) hydrochloric acid (HCl) and dichloroacetylchloride. Combining the plasma system with a catalyst located in an oven downstream resulted in a maximum removal of 80 percent, at an energy density of 300 J/L, a catalyst temperature of 373 K and a total air flow rate of 2 slm. 14 refs., 6 figs.

  13. Decomposition of silica-alumina ores of Afghanistan by sulfuric acid

    International Nuclear Information System (INIS)

    Khomidi, A.K.; Mamatov, E.D.

    2016-01-01

    Present article is devoted to decomposition of silica-alumina ores of Afghanistan by sulfuric acid. Physicochemical properties of initial silica-alumina ores were studied by means of X-ray phase, differential thermal and silicate analysis. The influence of temperature, process duration and acid concentration on extraction rate of valuable components was considered. The optimal conditions of decomposition of silica-alumina ores of Afghanistan by sulfuric acid were proposed.

  14. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina?

    Science.gov (United States)

    Araujo, Patricia I; Yahdjian, Laura; Austin, Amy T

    2012-01-01

    Surface litter decomposition in arid and semiarid ecosystems is often faster than predicted by climatic parameters such as annual precipitation or evapotranspiration, or based on standard indices of litter quality such as lignin or nitrogen concentrations. Abiotic photodegradation has been demonstrated to be an important factor controlling aboveground litter decomposition in aridland ecosystems, but soil fauna, particularly macrofauna such as termites and ants, have also been identified as key players affecting litter mass loss in warm deserts. Our objective was to quantify the importance of soil organisms on surface litter decomposition in the Patagonian steppe in the absence of photodegradative effects, to establish the relative importance of soil organisms on rates of mass loss and nitrogen release. We estimated the relative contribution of soil fauna and microbes to litter decomposition of a dominant grass using litterboxes with variable mesh sizes that excluded groups of soil fauna based on size class (10, 2, and 0.01 mm), which were placed beneath shrub canopies. We also employed chemical repellents (naphthalene and fungicide). The exclusion of macro- and mesofauna had no effect on litter mass loss over 3 years (P = 0.36), as litter decomposition was similar in all soil fauna exclusions and naphthalene-treated litter. In contrast, reduction of fungal activity significantly inhibited litter decomposition (P soil fauna have been mentioned as a key control of litter decomposition in warm deserts, biogeographic legacies and temperature limitation may constrain the importance of these organisms in temperate aridlands, particularly in the southern hemisphere.

  15. Decomposition of benzidine, α-naphthylamine, and p-toluidine in soils

    International Nuclear Information System (INIS)

    Graveel, J.G.; Sommers, L.E.; Nelson, D.W.

    1986-01-01

    Decomposition of 14 C-labeled benzidine, α-naphthylamine, and p-toluidine in soil was studied in laboratory experiments by monitoring CO 2 production during a 308- to 365-d incubation period. The importance of microbial activity in decomposition of all three aromatic amines was shown by decreased 14 CO 2 evolution in 60 Co treated soils. After 365 d of incubation, 8.4 to 12% of added benzidine (54.3 μmol kg -1 ) was evolved as CO 2 while 17 to 31% of added α-naphthylamine (69.8 μmol kg -1 ) and 19 to 35% of added p-toluidine (93.3 μmol kg -1 ) were evolved as CO 2 in 308 d. Decomposition was enhanced by increasing the temperature from 12 to 30 0 C. For benzidine, both the amount and proportion decomposed increased with an increase in application rate. Decomposition of aromatic amines was not enhanced by the addition of decomposable substrates. Differences in decomposition of aromatic amines occurred among soils, but consistent relationships between decomposition of amines and soil properties were not observed. In batch equilibration studies, the Freundlich equation described aromatic amine sorption. Isotherms were nonlinear for benzidine and 1 -naphthylamine and linear for p-toluidine. Desorption of sorbed amines followed the order: benzidine < p-toluidine < α-naphthylamine and was inversely related to the extent of decomposition

  16. LMDI decomposition approach: A guide for implementation

    International Nuclear Information System (INIS)

    Ang, B.W.

    2015-01-01

    Since it was first used by researchers to analyze industrial electricity consumption in the early 1980s, index decomposition analysis (IDA) has been widely adopted in energy and emission studies. Lately its use as the analytical component of accounting frameworks for tracking economy-wide energy efficiency trends has attracted considerable attention and interest among policy makers. The last comprehensive literature review of IDA was reported in 2000 which is some years back. After giving an update and presenting the key trends in the last 15 years, this study focuses on the implementation issues of the logarithmic mean Divisia index (LMDI) decomposition methods in view of their dominance in IDA in recent years. Eight LMDI models are presented and their origin, decomposition formulae, and strengths and weaknesses are summarized. Guidelines on the choice among these models are provided to assist users in implementation. - Highlights: • Guidelines for implementing LMDI decomposition approach are provided. • Eight LMDI decomposition models are summarized and compared. • The development of the LMDI decomposition approach is presented. • The latest developments of index decomposition analysis are briefly reviewed.

  17. 1-Chloronaphthalene decomposition in air using electron beam irradiation

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Sun, Y.; Bulka, S.; Zimek, Z.

    2006-01-01

    A method for the preparation of model gas containing 1-chloronaphthalene can be referred to 1,1-DCE (dichloroethene). A pulsed electron beam (EB) accelerator ILU-6 (2.0 MeV max., 20 kW max.) was used as an irradiation source. The absorbed dose rate inside the irradiation vessel was 10.835 kGy/min. Total absorbed dose was adjusted by changing irradiation time of the Pyrex glass vessels. 1-Chloronaphthalene concentration was analyzed using gas-chromatography. It has been found, that 1-chloronaphthalene can be decomposed in air or N 2 using EB irradiation. Decomposition efficiency of 1-chloronaphthalene in air is higher than that in N 2 . Positive charge transfer reactions and OH radicals' reaction may play a main role in 1-chloronaphthalene decomposition process

  18. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    Science.gov (United States)

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression.

  19. Domain decomposition methods for solving an image problem

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, W.K.; Tong, C.S. [Hong Kong Baptist College (Hong Kong)

    1994-12-31

    The domain decomposition method is a technique to break up a problem so that ensuing sub-problems can be solved on a parallel computer. In order to improve the convergence rate of the capacitance systems, pre-conditioned conjugate gradient methods are commonly used. In the last decade, most of the efficient preconditioners are based on elliptic partial differential equations which are particularly useful for solving elliptic partial differential equations. In this paper, the authors apply the so called covering preconditioner, which is based on the information of the operator under investigation. Therefore, it is good for various kinds of applications, specifically, they shall apply the preconditioned domain decomposition method for solving an image restoration problem. The image restoration problem is to extract an original image which has been degraded by a known convolution process and additive Gaussian noise.

  20. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence.

    Science.gov (United States)

    Zhang, Weidong; Chao, Lin; Yang, Qingpeng; Wang, Qingkui; Fang, Yunting; Wang, Silong

    2016-10-01

    Nitrogen addition has been shown to affect plant litter decomposition in terrestrial ecosystems. The way that nitrogen deposition impacts the relationship between plant litter decomposition and altered soil nitrogen availability is unclear, however. This study examined 18 co-occurring litter types in a subtropical forest in China in terms of their decomposition (1 yr of exposure in the field) with nitrogen addition treatment (0, 0.4, 1.6, and 4.0 mol·N·m -2 ·yr -1 ) and soil fauna exclusion (litter bags with 0.1 and 2 cm mesh size). Results showed that the plant litter decomposition rate is significantly reduced because of nitrogen addition; the strength of the nitrogen addition effect is closely related to the nitrogen addition levels. Plant litters with diverse quality responded to nitrogen addition differently. When soil fauna was present, the nitrogen addition effect on medium-quality or high-quality plant litter decomposition rate was -26% ± 5% and -29% ± 4%, respectively; these values are significantly higher than that of low-quality plant litter decomposition. The pattern is similar when soil fauna is absent. In general, the plant litter decomposition rate is decreased by soil fauna exclusion; an average inhibition of -17% ± 1.5% was exhibited across nitrogen addition treatment and litter quality groups. However, this effect is weakly related to nitrogen addition treatment and plant litter quality. We conclude that the variations in plant litter quality, nitrogen deposition, and soil fauna are important factors of decomposition and nutrient cycling in a subtropical forest ecosystem. © 2016 by the Ecological Society of America.

  1. Thermal decomposition of lanthanide and actinide tetrafluorides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1988-01-01

    The thermal stabilities of several lanthanide/actinide tetrafluorides have been studied using mass spectrometry to monitor the gaseous decomposition products, and powder X-ray diffraction (XRD) to identify solid products. The tetrafluorides, TbF 4 , CmF 4 , and AmF 4 , have been found to thermally decompose to their respective solid trifluorides with accompanying release of fluorine, while cerium tetrafluoride has been found to be significantly more thermally stable and to congruently sublime as CeF 4 prior to appreciable decomposition. The results of these studies are discussed in relation to other relevant experimental studies and the thermodynamics of the decomposition processes. 9 refs., 3 figs

  2. Decomposition of lake phytoplankton. 2

    International Nuclear Information System (INIS)

    Hansen, L.; Krog, G.F.; Soendergaard, M.

    1986-01-01

    The lysis process of phytoplankton was followed in 24 h incubations in three Danish lakes. By means of gel-chromatography it was shown that the dissolved carbon leaching from different algal groups differed in molecular weight composition. Three distinct molecular weight classes (>10,000; 700 to 10,000 and < 700 Daltons) leached from blue-green algae in almost equal proportion. The lysis products of spring-bloom diatoms included only the two smaller size classes, and the molecules between 700 and 10,000 Daltons dominated. Measurements of cell content during decomposition of the diatoms revealed polysaccharides and low molecular weight compounds to dominate the lysis products. No proteins were leached during the first 24 h after cell death. By incubating the dead algae in natural lake water, it was possible to detect a high bacterial affinity towards molecules between 700 and 10,000 Daltons, although the other size classes were also utilized. Bacterial transformation of small molecules to larger molecules could be demonstrated. (author)

  3. Decomposition Technique for Remaining Useful Life Prediction

    Science.gov (United States)

    Saha, Bhaskar (Inventor); Goebel, Kai F. (Inventor); Saxena, Abhinav (Inventor); Celaya, Jose R. (Inventor)

    2014-01-01

    The prognostic tool disclosed here decomposes the problem of estimating the remaining useful life (RUL) of a component or sub-system into two separate regression problems: the feature-to-damage mapping and the operational conditions-to-damage-rate mapping. These maps are initially generated in off-line mode. One or more regression algorithms are used to generate each of these maps from measurements (and features derived from these), operational conditions, and ground truth information. This decomposition technique allows for the explicit quantification and management of different sources of uncertainty present in the process. Next, the maps are used in an on-line mode where run-time data (sensor measurements and operational conditions) are used in conjunction with the maps generated in off-line mode to estimate both current damage state as well as future damage accumulation. Remaining life is computed by subtracting the instance when the extrapolated damage reaches the failure threshold from the instance when the prediction is made.

  4. The correlation between elongation at break and thermal decomposition of aged EPDM cable polymer

    Science.gov (United States)

    Šarac, T.; Devaux, J.; Quiévy, N.; Gusarov, A.; Konstantinović, M. J.

    2017-03-01

    The effect of simultaneous thermal and gamma irradiation ageing on the mechanical and physicochemical properties of industrial EPDM was investigated. Accelerated ageing, covering a wide range of dose rates, doses and temperatures, was preformed in stagnant air on EPDM polymer samples extracted from the cables in use in the Belgian nuclear power plants. The mechanical properties, ultimate tensile stress and elongation at break, are found to exhibit the strong dependence on the dose, ageing temperature and dose rate. The thermal decomposition of aged polymer is observed to be the dose dependent when thermogravimetry test is performed under air atmosphere. No dose dependence is observed when thermal decomposition is performed under nitrogen atmosphere. The thermal decomposition rates are found to fully mimic the reduction of elongation at break for all dose rates and ageing temperatures. This effect is argued to be the result of thermal and radiation mediated oxidation degradation process.

  5. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming

    2013-01-01

    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe...... the process. The yields of sulfur oxides from ferric sulfate decomposition under boiler conditions are investigated experimentally, revealing a distribution of approximately 40% SO3 and 60% SO2. The ferric sulfate decomposition model is combined with a detailed kinetic model of gas‐phase KCl sulfation...... and a model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results show good agreements with experiments conducted in a biomass grate‐firing reactor. The results indicate that the SO3 released from ferric sulfate decomposition is the main contributor to KCl...

  6. FTIR study of decomposition of carbon dioxide in dc corona discharges

    International Nuclear Information System (INIS)

    Horvath, G; Skalny, J D; Mason, N J

    2008-01-01

    The decomposition rate of carbon dioxide and the generation of ozone and carbon monoxide in coaxial corona discharges fed by pure CO 2 has been investigated in a dc corona discharge operated in both positive and negative polarities using FTIR spectroscopy. The degree of CO 2 decomposition is found to be dependent on the voltage, U, with a maximum CO 2 decomposition of nearly 10% found in a negative corona discharge for U = 7.5 kV. In all cases the amount of CO 2 decomposition was lower in positive polarity discharges than in negative polarity discharges operated under same conditions. CO and ozone were found to be the main products observed in the discharges.

  7. FTIR study of decomposition of carbon dioxide in dc corona discharges

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, G; Skalny, J D [Department of Experimental Physics, Comenius University, Mlynska dolina F-2, 842 48, Bratislava (Slovakia); Mason, N J [Open University, Department of Physics and Astronomy, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2008-11-21

    The decomposition rate of carbon dioxide and the generation of ozone and carbon monoxide in coaxial corona discharges fed by pure CO{sub 2} has been investigated in a dc corona discharge operated in both positive and negative polarities using FTIR spectroscopy. The degree of CO{sub 2} decomposition is found to be dependent on the voltage, U, with a maximum CO{sub 2} decomposition of nearly 10% found in a negative corona discharge for U = 7.5 kV. In all cases the amount of CO{sub 2} decomposition was lower in positive polarity discharges than in negative polarity discharges operated under same conditions. CO and ozone were found to be the main products observed in the discharges.

  8. A Decomposition Theorem for Finite Automata.

    Science.gov (United States)

    Santa Coloma, Teresa L.; Tucci, Ralph P.

    1990-01-01

    Described is automata theory which is a branch of theoretical computer science. A decomposition theorem is presented that is easier than the Krohn-Rhodes theorem. Included are the definitions, the theorem, and a proof. (KR)

  9. Young Children's Thinking About Decomposition: Early Modeling Entrees to Complex Ideas in Science

    Science.gov (United States)

    Ero-Tolliver, Isi; Lucas, Deborah; Schauble, Leona

    2013-10-01

    This study was part of a multi-year project on the development of elementary students' modeling approaches to understanding the life sciences. Twenty-three first grade students conducted a series of coordinated observations and investigations on decomposition, a topic that is rarely addressed in the early grades. The instruction included in-class observations of different types of soil and soil profiling, visits to the school's compost bin, structured observations of decaying organic matter of various kinds, study of organisms that live in the soil, and models of environmental conditions that affect rates of decomposition. Both before and after instruction, students completed a written performance assessment that asked them to reason about the process of decomposition. Additional information was gathered through one-on-one interviews with six focus students who represented variability of performance across the class. During instruction, researchers collected video of classroom activity, student science journal entries, and charts and illustrations produced by the teacher. After instruction, the first-grade students showed a more nuanced understanding of the composition and variability of soils, the role of visible organisms in decomposition, and environmental factors that influence rates of decomposition. Through a variety of representational devices, including drawings, narrative records, and physical models, students came to regard decomposition as a process, rather than simply as an end state that does not require explanation.

  10. A comparison of carcass decomposition and associated insect succession onto burnt and unburnt pig carcasses.

    Science.gov (United States)

    McIntosh, Craig S; Dadour, Ian R; Voss, Sasha C

    2017-05-01

    The rate of decomposition and insect succession onto decomposing pig carcasses were investigated following burning of carcasses. Ten pig carcasses (40-45 kg) were exposed to insect activity during autumn (March-April) in Western Australia. Five replicates were burnt to a degree described by the Crow-Glassman Scale (CGS) level #2, while five carcasses were left unburnt as controls. Burning carcasses greatly accelerated decomposition in contrast to unburnt carcasses. Physical modifications following burning such as skin discolouration, splitting of abdominal tissue and leathery consolidation of skin eliminated evidence of bloat and altered microambient temperatures associated with carcasses throughout decomposition. Insect species identified on carcasses were consistent between treatment groups; however, a statistically significant difference in insect succession onto remains was evident between treatments (PERMANOVA F (1, 224)  = 14.23, p < 0.01) during an 8-day period that corresponds with the wet stage of decomposition. Differences were noted in the arrival time of late colonisers (Coleoptera) and the development of colonising insects between treatment groups. Differences in the duration of decomposition stages and insect assemblages indicate that burning has an effect on both rate of decomposition and insect succession. The findings presented here provide baseline data for entomological casework involving burnt remains criminal investigations.

  11. Effect of catalyst for the decomposition of VOCs in a NTP reactor

    International Nuclear Information System (INIS)

    Mohanty, Suchitra; Das, Smrutiprava; Paikaray, Rita; Sahoo, Gourishankar; Samantaray, Subrata

    2015-01-01

    Air pollution has become a major cause of human distress both directly and indirectly. VOCs are becoming the major air pollutants. So the decomposition of VOCs is present need of our society. Non-thermal plasma reactor (NTP) is proven to be effective for low concentration VOCs decomposition. For safe and effective application of DBD, optimization of treatment process requires different plasma parameter characterization. So electron temperature and electron density parameters of VOCs show the decomposition path ways. In this piece of work by taking the emission spectra and comparing the line intensity ratios, the electron temperature and density were determined. Also the decomposition rate in terms of the deposited products on the dielectric surface was studied. Decomposition rate increases in presence of catalyst as compared to the pure compound in presence of a carrier gas. Decomposition process was studied by UV-VIS, FTIR, OES Spectroscopic methods and by GCMS. Deposited products are analyzed by UV-VIS and FTIR spectroscopy. Plasma parameters like electron temperature, density are studied with OES. And gaseous products are studied by GCMS showing the peaks for the by products. (author)

  12. Testing the Use of Pigs as Human Proxies in Decomposition Studies.

    Science.gov (United States)

    Connor, Melissa; Baigent, Christiane; Hansen, Eriek S

    2017-12-28

    Pigs are a common human analogue in taphonomic study, yet data comparing the trajectory of decomposition between the two groups are lacking. This study compared decomposition rate and gross tissue change in 17 pigs and 22 human remains placed in the Forensic Investigation Research Station in western Colorado between 2012 and 2015. Accumulated degree days (ADD) were used to assess the number of thermal units required to reach a given total body score (TBS) (1) which was used as the measure of decomposition. A comparison of slopes in linear mixed effects model indicated that decomposition rates significantly differed between human donors and pig remains χ 2 (1) = 5.662, p = 0.017. Neither the pig nor the human trajectory compared well to the TBS model. Thus, (i) pigs are not an adequate proxy for human decomposition studies, and (ii) in the semiarid environment of western Colorado, there is a need to develop a regional decomposition model. © 2017 American Academy of Forensic Sciences.

  13. Joint Matrices Decompositions and Blind Source Separation

    Czech Academy of Sciences Publication Activity Database

    Chabriel, G.; Kleinsteuber, M.; Moreau, E.; Shen, H.; Tichavský, Petr; Yeredor, A.

    2014-01-01

    Roč. 31, č. 3 (2014), s. 34-43 ISSN 1053-5888 R&D Projects: GA ČR GA102/09/1278 Institutional support: RVO:67985556 Keywords : joint matrices decomposition * tensor decomposition * blind source separation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 5.852, year: 2014 http://library.utia.cas.cz/separaty/2014/SI/tichavsky-0427607.pdf

  14. Review on Thermal Decomposition of Ammonium Nitrate

    Science.gov (United States)

    Chaturvedi, Shalini; Dave, Pragnesh N.

    2013-01-01

    In this review data from the literature on thermal decomposition of ammonium nitrate (AN) and the effect of additives to their thermal decomposition are summarized. The effect of additives like oxides, cations, inorganic acids, organic compounds, phase-stablized CuO, etc., is discussed. The effect of an additive mainly occurs at the exothermic peak of pure AN in a temperature range of 200°C to 140°C.

  15. Note on Symplectic SVD-Like Decomposition

    Directory of Open Access Journals (Sweden)

    AGOUJIL Said

    2016-02-01

    Full Text Available The aim of this study was to introduce a constructive method to compute a symplectic singular value decomposition (SVD-like decomposition of a 2n-by-m rectangular real matrix A, based on symplectic refectors.This approach used a canonical Schur form of skew-symmetric matrix and it allowed us to compute eigenvalues for the structured matrices as Hamiltonian matrix JAA^T.

  16. Intake, digestion, and digestive characteristics of Neotyphodium coenophialum-infected and uninfected fescue by heifers offered hay diets supplemented with Aspergillus oryzae fermentation extract or laidlomycin propionate.

    Science.gov (United States)

    Humphry, J B; Coffey, K P; Moyert, J L; Brazle, F K; Lomas, L W

    2002-01-01

    Tarentaise heifers fitted with a rumen cannula (539 +/- 7.5 and 487 +/- 15.7 kg avg initial BW in Exp. 1 and 2, respectively) were used in two Latin square metabolism experiments having 2 x 2 factorial treatment arrangements to determine the effects of supplementation with Aspergillus oryzae fermentation extract (AO) or laidlomycin propionate (LP) on intake, digestion, and digestive characteristics of Neotyphodium coenophialum-infected (IF) or uninfected (FF) tall fescue (Festuca arundinacea) hay diets consumed ad libitum. Heifers were housed in individual stanchions in a metabolism facility with ambient temperatures controlled to range between 26.7 and 32.2 degrees C daily. Total feces and urine were collected for 5 d following a 21-d dietary adaptation period. In situ DM and NDF disappearance and ruminal fermentation characteristics were also determined. In Exp. 1, DMI was 24% greater (P or = 0.42). In Exp. 2, DMI was 18.9% greater (P < 0.01) by heifers offered FF than by those offered IF (6.6 vs 5.5 kg/d). Heifers fed LP (50 mg/d) consumed 10.6% less (P < 0.05) DM than those not fed LP (5.7 vs 6/5 kg/d). Digestibility of NDF tended to be greater (P = 0.08) and digestibility of ADF was greater (P < 0.05) from FF than from IF. Conversely, apparent N absorption (%) was greater (P < 0.05) from IF than from FF. Heifers fed LP had lower (P < 0.05) ADF digestibility than those not fed LP. In situ degradable DM and NDF fractions were greater (P < 0.01) from IF than from FF. Diets supplemented with LP had higher (P < 0.01) indigestible DM and NDF fractions than those without LP. Propionic acid and total VFA concentrations were greater (P < 0.05) from heifers offered FF than from those offered IF and from heifers fed LP than from those not fed LP. Therefore, it appears the major effect of N. coenophialum was a reduction in forage intake and total-tract fiber digestibility in certain situations. Response to the feed additives was similar whether heifers were offered IF or

  17. Microbiological decomposition of bagasse after radiation pasteurization

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Ishigaki, Isao

    1987-01-01

    Microbiological decomposition of bagasse was studied for upgrading to animal feeds after radiation pasteurization. Solid-state culture media of bagasse were prepared with addition of some amount of inorganic salts for nitrogen source, and after irradiation, fungi were infected for cultivation. In this study, many kind of cellulosic fungi such as Pleurotus ostreatus, P. flavellatus, Verticillium sp., Coprinus cinereus, Lentinus edodes, Aspergillus niger, Trichoderma koningi, T. viride were used for comparison of decomposition of crude fibers. In alkali nontreated bagasse, P. ostreatus, P. flavellatus, C. cinereus and Verticillium sp. could decompose crude fibers from 25 to 34 % after one month of cultivation, whereas other fungi such as A. niger, T. koningi, T. viride, L. edodes decomposed below 10 %. On the contrary, alkali treatment enhanced the decomposition of crude fiber by A. niger, T. koningi and T. viride to be 29 to 47 % as well as Pleurotus species or C. cinereus. Other species of mushrooms such as L. edodes had a little ability of decomposition even after alkali treatment. Radiation treatment with 10 kGy could not enhance the decomposition of bagasse compared with steam treatment, whereas higher doses of radiation treatment enhanced a little of decomposition of crude fibers by microorganisms. (author)

  18. Decomposition of tetrachloroethylene by ionizing radiation

    International Nuclear Information System (INIS)

    Hakoda, T.; Hirota, K.; Hashimoto, S.

    1998-01-01

    Decomposition of tetrachloroethylene and other chloroethenes by ionizing radiation were examined to get information on treatment of industrial off-gas. Model gases, airs containing chloroethenes, were confined in batch reactors and irradiated with electron beam and gamma ray. The G-values of decomposition were larger in the order of tetrachloro- > trichloro- > trans-dichloro- > cis-dichloro- > monochloroethylene in electron beam irradiation and tetrachloro-, trichloro-, trans-dichloro- > cis-dichloro- > monochloroethylene in gamma ray irradiation. For tetrachloro-, trichloro- and trans-dichloroethylene, G-values of decomposition in EB irradiation increased with increase of chlorine atom in a molecule, while those in gamma ray irradiation were almost kept constant. The G-value of decomposition for tetrachloroethylene in EB irradiation was the largest of those for all chloroethenes. In order to examine the effect of the initial concentration on G-value of decomposition, airs containing 300 to 1,800 ppm of tetrachloroethylene were irradiated with electron beam and gamma ray. The G-values of decomposition in both irradiation increased with the initial concentration. Those in electron beam irradiation were two times larger than those in gamma ray irradiation

  19. Microbiological decomposition of bagasse after radiation pasteurization

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi; Ishigaki, Isao

    1987-11-01

    Microbiological decomposition of bagasse was studied for upgrading to animal feeds after radiation pasteurization. Solid-state culture media of bagasse were prepared with addition of some amount of inorganic salts for nitrogen source, and after irradiation, fungi were infected for cultivation. In this study, many kind of cellulosic fungi such as Pleurotus ostreatus, P. flavellatus, Verticillium sp., Coprinus cinereus, Lentinus edodes, Aspergillus niger, Trichoderma koningi, T. viride were used for comparison of decomposition of crude fibers. In alkali nontreated bagasse, P. ostreatus, P. flavellatus, C. cinereus and Verticillium sp. could decompose crude fibers from 25 to 34 % after one month of cultivation, whereas other fungi such as A. niger, T. koningi, T. viride, L. edodes decomposed below 10 %. On the contrary, alkali treatment enhanced the decomposition of crude fiber by A. niger, T. koningi and T. viride to be 29 to 47 % as well as Pleurotus species or C. cinereus. Other species of mushrooms such as L. edodes had a little ability of decomposition even after alkali treatment. Radiation treatment with 10 kGy could not enhance the decomposition of bagasse compared with steam treatment, whereas higher doses of radiation treatment enhanced a little of decomposition of crude fibers by microorganisms.

  20. Decomposition of thermally unstable substances in film evaporators

    Energy Technology Data Exchange (ETDEWEB)

    Matz, G

    1982-10-01

    It is widely known that film evaporators are considered to permit really gentle evaporation of heat-sensitive substances. Nevertheless, decomposition of such substance still occurs to an extent depending upon the design and operation of the evaporator. In the following a distinction is made between evaporators with films not generated mechanically, namely the long tube evaporator (lTE) or climbing film evaporator, the falling film evaporator (FFE) and the multiple phase helical tube (MPT) or helical coil evaporators (TFE). Figs 1 and 2 illustrate the mode of operation. A theory of the decomposition of thermally unstable substances in these evaporators is briefly outlined and compared with measurements. Such a theory cannot be developed without any experimental checks; on the other hand, meausrements urgently need a theoretical basis if only to establish what actually has to be measured. All experiments are made with a system of readily adjustable decomposability, namely with aqueous solutions of saccharose; the thermal inversion of this compound can be controlled by addition of various amounts or concentrations of hydrochloric acid. In the absence of any catalysis by hydrochloric acid, the decomposition rates within in the temperature interval studied (60-130/sup 0/C) are so low that the experiments would take much too long and determination of the concentration differences (generally by polarimetric methods) would be very complicated. Such slight effects would also be very unfavourable for comparison with theory. (orig.)

  1. Dynamics of root and leaf decomposition in chronosequence of rubber plantation (Hevea brasilensis) in SW China

    International Nuclear Information System (INIS)

    Moazzam, N.S.; Yiping, Z.; Liqing, S.; Moazzam, N.S.

    2018-01-01

    This study highlighted the dynamics of stand parameters as well as root and leaf litter decomposition in the chronosequence (49, 32, 24 and 12 years old plantations established in the year 1965, 1982, 1990 and 2002) of the rubber plantation in Xishuangbanna SW China. Litter trappers were installed on the study site to collect the leaf litter and litter bag experiment was carried out to investigate the rate of root and leaf litter decomposition. The study revealed significant variation of stand characteristics during the decomposition process. The monthly litter fall and root biomass (all categories; kg m-3) showed positive correlation with stand characteristics and age. Remaining leaf litter mass % in the litter bags reduced with the passage of time and was significantly different in the chronosequence. The highest root decomposition rate (55%) was shown by fine roots and minimum (32%) by coarse roots during the study period. The investigations on elemental composition of the leaf and root provides basic important information for rate of nutrient cycle along with decomposition rate in rubber plantation and result are quite helpful for simulating the below ground carbon stock of rubber plantation in SW China. (author)

  2. Thermal Decomposition Behaviors and Burning Characteristics of AN/Nitramine-Based Composite Propellant

    Science.gov (United States)

    Naya, Tomoki; Kohga, Makoto

    2015-04-01

    Ammonium nitrate (AN) has attracted much attention due to its clean burning nature as an oxidizer. However, an AN-based composite propellant has the disadvantages of low burning rate and poor ignitability. In this study, we added nitramine of cyclotrimethylene trinitramine (RDX) or cyclotetramethylene tetranitramine (HMX) as a high-energy material to AN propellants to overcome these disadvantages. The thermal decomposition and burning rate characteristics of the prepared propellants were examined as the ratio of AN and nitramine was varied. In the thermal decomposition process, AN/RDX propellants showed unique mass loss peaks in the lower temperature range that were not observed for AN or RDX propellants alone. AN and RDX decomposed continuously as an almost single oxidizer in the AN/RDX propellant. In contrast, AN/HMX propellants exhibited thermal decomposition characteristics similar to those of AN and HMX, which decomposed almost separately in the thermal decomposition of the AN/HMX propellant. The ignitability was improved and the burning rate increased by the addition of nitramine for both AN/RDX and AN/HMX propellants. The increased burning rates of AN/RDX propellants were greater than those of AN/HMX. The difference in the thermal decomposition and burning characteristics was caused by the interaction between AN and RDX.

  3. Effect of lead dioxide on the radiation decomposition of hydrated lanthanum nitrate (Preprint No. RES-05)

    International Nuclear Information System (INIS)

    Patil, S.F.; Bedekar, A.G.; Chiplunkar, N.R.

    1988-02-01

    The rate of radiation induced decomposition of lanthanum nitrate is found to increase in the presence of lead dioxide as a heterophase impurity. Further, the rate also increases with increasing mole percent of the oxide. The results are explained on the basis of energy transfer processes taking place at the interface between nitrate and oxide crystals. (aut hor). 9 refs

  4. Litter decomposition across an air-pollution gradient in the San Bernardino Mountains

    Science.gov (United States)

    Mark E. Fenn; Paul H. Dunn

    1989-01-01

    Air pollution may affect forest ecosystems by altering nutrient cycling rates. The objective of this study was to compare decomposition rates of L-layer litter of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf,) collected from across an air-pollution gradient in the San Bernardino Mountains...

  5. Decomposition of forest products buried in landfills

    International Nuclear Information System (INIS)

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-01-01

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g −1 dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  6. Decomposition of forest products buried in landfills

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoming, E-mail: xwang25@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Padgett, Jennifer M. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Powell, John S. [Department of Chemical and Biomolecular Engineering, Campus Box 7905, North Carolina State University, Raleigh, NC 27695-7905 (United States); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States)

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  7. Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb climate.

    Directory of Open Access Journals (Sweden)

    Shari L Forbes

    Full Text Available The investigation of volatile organic compounds (VOCs associated with decomposition is an emerging field in forensic taphonomy due to their importance in locating human remains using biological detectors such as insects and canines. A consistent decomposition VOC profile has not yet been elucidated due to the intrinsic impact of the environment on the decomposition process in different climatic zones. The study of decomposition VOCs has typically occurred during the warmer months to enable chemical profiling of all decomposition stages. The present study investigated the decomposition VOC profile in air during both warmer and cooler months in a moist, mid-latitude (Cfb climate as decomposition occurs year-round in this environment. Pig carcasses (Sus scrofa domesticus L. were placed on a soil surface to decompose naturally and their VOC profile was monitored during the winter and summer months. Corresponding control sites were also monitored to determine the natural VOC profile of the surrounding soil and vegetation. VOC samples were collected onto sorbent tubes and analyzed using comprehensive two-dimensional gas chromatography--time-of-flight mass spectrometry (GC × GC-TOFMS. The summer months were characterized by higher temperatures and solar radiation, greater rainfall accumulation, and comparable humidity when compared to the winter months. The rate of decomposition was faster and the number and abundance of VOCs was proportionally higher in summer. However, a similar trend was observed in winter and summer demonstrating a rapid increase in VOC abundance during active decay with a second increase in abundance occurring later in the decomposition process. Sulfur-containing compounds, alcohols and ketones represented the most abundant classes of compounds in both seasons, although almost all 10 compound classes identified contributed to discriminating the stages of decomposition throughout both seasons. The advantages of GC × GC-TOFMS were

  8. Discussion on the planting patterns of alfalfa and meadow fescue in mixed culture and evaluation for their contribution from N2 fixation

    International Nuclear Information System (INIS)

    Yao Yunyin; Zhang Xizhong; Chen Ming

    1996-01-01

    Effects of planting patterns on dry weight, N yield and dinitrogen fixation in alfalfa-meadow fescue pasture are studied by using split plot design in the field for two successive years. The results show that the pattern of row seeding in mixture (RM) is superior to the pattern of broadcasting in mixture (BM) and intercropping (TC), and advantageous to develop the superiority of legume-grass mixed pasture. The annual average of dry weight for RM, BM and TC is 1535.9 g/m 2 , 1208.8 g/m 2 and 1249.3 g/m 2 respectively. The annual average of N yield of them is 50.83 g(N)/m 2 , 36.65 g(N)/m 2 and 36.86 g(N)/m 2 . The annual average Ndfa is 42.37 g(N)/m 2 , 28.21 g(N)/m 2 and 28.42 g(N)/m 2 , and %Ndfa is 83.4%, 77.0% and 77.1% for RM, BM and TC respectively. The comparison of 15 N isotope dilution method, natural 15 N abundance method and total N difference method to measure %Ndfa of herbage for all the treatments are made

  9. Influence of harvest time and frequency on light interception and biomass yield of festulolium and tall fescue cultivated on a peatland

    DEFF Research Database (Denmark)

    Kandel, Tanka; Elsgaard, Lars; Andersen, Mathias Neumann

    2016-01-01

    managements,which contributed to similar IPAR (908–919 MJ m−2), total biomass yield (16.4–18.8 Mg DM ha−1yr−1)and RUE (1.80–2.07 g MJ−1) for all managements. Whereas both crops were highly productive under both3C management and 2C management with first harvest after flowering (i.e., 2C-late), the 2C......tIn this study, we report efficiencies of light capture and biomass yield of festulolium and tall fescue cul-tivated on a riparian fen in Denmark under different harvesting managements. Green biomass targetedfor biogas production was harvested either as two cuts (2C) or three cuts (3C) in a year....... Three differenttimings of the first cut in the 2C systems were included as early (2C-early), middle (2C-mid) and late (2C-late) cuts corresponding to pre-heading, inflorescence emergence and flowering stages, respectively. Thefraction of intercepted photosynthetically active radiation (fPAR) was derived...

  10. The effects of prolonged exposure to elevated temperatures and elevated CO2 levels on the growth, yield and dry matter partitioning of field-sown meadow fescue

    Directory of Open Access Journals (Sweden)

    Kaija Hakala

    1996-05-01

    Full Text Available Field-sown meadow fescue (Festuca pratensis, cv. Kalevi stands were exposed to elevated temperatures (+3°C and elevated CO2, (700 ppm levels in two experiments conducted in 1992-1993 (experiment 1 and in 1994-1995 (experiment 2. Total aboveground yield was, on average, 38% higher at elevated than at ambient temperatures. At ambient temperatures elevated CO2 increased the number of tillers by 63% in 1992, 24% in 1993, 90% in 1994 and 14% in 1995. At elevated temperatures, the increase in tiller number in elevated CO2 was seen only in the first growing seasons after sowing. The total yield in a growing season was about 10% higher in elevated CO2 in experiment 1. In experiment 2 the yield was more than 20% higher in elevated CO2 at elevated temperatures, whereas at ambient temperatures the rise in CO2 level had no effect on the yield; the root biomass, however, increased by more than 30%. In elevated CO2 at ambient temperatures the root biomass also increased in experiment I, but at elevated temperatures there was no consistent change. The soluble carbohydrate content of above-ground biomass was 5-48% higher in elevated CO2 at most of the measuring times during the growing season, but the nitrogen content did not show a clear decrease. The reasons for the lack of a marked increase in biomass in elevated CO2 despite a 40-60% increase in photosynthesis are discussed.

  11. Local Fractional Adomian Decomposition and Function Decomposition Methods for Laplace Equation within Local Fractional Operators

    Directory of Open Access Journals (Sweden)

    Sheng-Ping Yan

    2014-01-01

    Full Text Available We perform a comparison between the local fractional Adomian decomposition and local fractional function decomposition methods applied to the Laplace equation. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.

  12. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent

    Czech Academy of Sciences Publication Activity Database

    Wall, D.H.; Bradford, M.A.; John, M.G.St.; Trofymow, J.A.; Behan-Pelletier, V.; Bignell, D.E.; Dangerfield, J.M.; Parton, W.J.; Rusek, Josef; Voigt, W.; Wolters, V.; Gardel, H.Z.; Ayuke, F. O.; Bashford, R.; Beljakova, O.I.; Bohlen, P.J.; Brauman, A.; Flemming, S.; Henschel, J.R.; Johnson, D.L.; Jones, T.H.; Kovářová, Marcela; Kranabetter, J.M.; Kutny, L.; Lin, K.-Ch.; Maryati, M.; Masse, D.; Pokarzhevskii, A.; Rahman, H.; Sabará, M.G.; Salamon, J.-A.; Swift, M.J.; Varela, A.; Vasconcelos, H.L.; White, D.; Zou, X.

    2008-01-01

    Roč. 14, č. 11 (2008), s. 2661-2677 ISSN 1354-1013 Institutional research plan: CEZ:AV0Z60660521; CEZ:AV0Z60050516 Keywords : climate decomposition index * decomposition * litter Subject RIV: EH - Ecology, Behaviour Impact factor: 5.876, year: 2008

  13. Decomposition and nutrient release of leguminous plants in coffee agroforestry systems

    Directory of Open Access Journals (Sweden)

    Eduardo da Silva Matos

    2011-02-01

    Full Text Available Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and (lignin+polyphenol/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD, the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA, there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1. Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants.

  14. Treatment of off-gas evolved from thermal decomposition of sludge waste

    International Nuclear Information System (INIS)

    Doo-Seong Hwang; Yun-Dong Choi; Gyeong-Hwan Jeong; Jei-Kwon Moon

    2013-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of a uranium conversion plant. The treatment of the sludge waste, which was generated during the operation of the plant, is one of the most important tasks in the decommissioning program of the plant. The major compounds of sludge waste are nitrate salts and uranium. The sludge waste is denitrated by thermal decomposition. The treatment of off-gas evolved from the thermal decomposition of nitrate salts in the sludge waste is investigated. The nitrate salts in the sludge were decomposed in two steps: the first decomposition is due to the ammonium nitrate, and the second is due to the sodium and calcium nitrate and calcium carbonate. The components of off-gas from the decomposition of ammonium nitrate at low temperature are NH 3 , N 2 O, NO 2 , and NO. In addition, the components from the decomposition of sodium and calcium nitrate at high temperature are NO 2 and NO. Off-gas from the thermal decomposition is treated by the catalytic oxidation of ammonia and selective catalytic reduction (SCR). Ammonia is converted into nitrogen oxides through the oxidation catalyst and all nitrogen oxides are removed by SCR treatment besides nitrous oxide, which is greenhouse gas. An additional process is needed to remove nitrous oxide, and the feeding rate of ammonia in SCR should be controlled properly for evolved nitrogen oxides. (author)

  15. IN SITU INFRARED STUDY OF CATALYTIC DECOMPOSITION OF NITRIC OXIDE (NO); FINAL

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    The growing concerns for the environment and increasingly stringent standards for NO emission have presented a major challenge to control NO emissions from electric utility plants and automobiles. Catalytic decomposition of NO is the most attractive approach for the control of NO emission for its simplicity. Successful development of an effective catalyst for NO decomposition will greatly decrease the equipment and operation cost of NO control. Due to lack of understanding of the mechanism of NO decomposition, efforts on the search of an effective catalyst have been unsuccessful. Scientific development of an effective catalyst requires fundamental understanding of the nature of active site, the rate-limiting step, and an approach to prolong the life of the catalyst. The authors have investigated the feasibility of two novel approaches for improving catalyst activity and resistance to sintering. The first approach is the use of silanation to stabilize metal crystallites and supports for Cu-ZSM-5 and promoted Pt catalysts; the second is utilization of oxygen spillover and desorption to enhance NO decomposition activity. The silanation approach failed to stabilize Cu-ZSM-5 activity under hydrothermal condition. Silanation blocked the oxygen migration and inhibited oxygen desorption. Oxygen spillover was found to be an effective approach for promoting NO decomposition activity on Pt-based catalysts. Detailed mechanistic study revealed the oxygen inhibition in NO decomposition and reduction as the most critical issue in developing an effective catalytic approach for controlling NO emission

  16. Technical Note: Linking climate change and downed woody debris decomposition across forests of the eastern United States

    Science.gov (United States)

    Russell, Matthew B.; Woodall, Christopher W.; D'Amato, Anthony W.; Fraver, Shawn; Bradford, John B.

    2014-01-01

    Forest ecosystems play a critical role in mitigating greenhouse gas emissions. Forest carbon (C) is stored through photosynthesis and released via decomposition and combustion. Relative to C fixation in biomass, much less is known about C depletion through decomposition of woody debris, particularly under a changing climate. It is assumed that the increased temperatures and longer growing seasons associated with projected climate change will increase the decomposition rates (i.e., more rapid C cycling) of downed woody debris (DWD); however, the magnitude of this increase has not been previously addressed. Using DWD measurements collected from a national forest inventory of the eastern United States, we show that the residence time of DWD may decrease (i.e., more rapid decomposition) by as much as 13% over the next 200 years, depending on various future climate change scenarios and forest types. Although existing dynamic global vegetation models account for the decomposition process, they typically do not include the effect of a changing climate on DWD decomposition rates. We expect that an increased understanding of decomposition rates, as presented in this current work, will be needed to adequately quantify the fate of woody detritus in future forests. Furthermore, we hope these results will lead to improved models that incorporate climate change scenarios for depicting future dead wood dynamics in addition to a traditional emphasis on live-tree demographics.

  17. Identification of liquid-phase decomposition species and reactions for guanidinium azotetrazolate

    International Nuclear Information System (INIS)

    Kumbhakarna, Neeraj R.; Shah, Kaushal J.; Chowdhury, Arindrajit; Thynell, Stefan T.

    2014-01-01

    Highlights: • Guanidinium azotetrazolate (GzT) is a high-nitrogen energetic material. • FTIR spectroscopy and ToFMS spectrometry were used for species identification. • Quantum mechanics was used to identify transition states and decomposition pathways. • Important reactions in the GzT liquid-phase decomposition process were identified. • Initiation of decomposition occurs via ring opening, releasing N 2 . - Abstract: The objective of this work is to analyze the decomposition of guanidinium azotetrazolate (GzT) in the liquid phase by using a combined experimental and computational approach. The experimental part involves the use of Fourier transform infrared (FTIR) spectroscopy to acquire the spectral transmittance of the evolved gas-phase species from rapid thermolysis, as well as to acquire spectral transmittance of the condensate and residue formed from the decomposition. Time-of-flight mass spectrometry (ToFMS) is also used to acquire mass spectra of the evolved gas-phase species. Sub-milligram samples of GzT were heated at rates of about 2000 K/s to a set temperature (553–573 K) where decomposition occurred under isothermal conditions. N 2 , NH 3 , HCN, guanidine and melamine were identified as products of decomposition. The computational approach is based on using quantum mechanics for confirming the identity of the species observed in experiments and for identifying elementary chemical reactions that formed these species. In these ab initio techniques, various levels of theory and basis sets were used. Based on the calculated enthalpy and free energy values of various molecular structures, important reaction pathways were identified. Initiation of decomposition of GzT occurs via ring opening to release N 2

  18. Responses of primary production, leaf litter decomposition and associated communities to stream eutrophication

    International Nuclear Information System (INIS)

    Dunck, Bárbara; Lima-Fernandes, Eva; Cássio, Fernanda; Cunha, Ana; Rodrigues, Liliana; Pascoal, Cláudia

    2015-01-01

    We assessed the eutrophication effects on leaf litter decomposition and primary production, and on periphytic algae, fungi and invertebrates. According to the subsidy-stress model, we expected that when algae and decomposers were nutrient limited, their activity and diversity would increase at moderate levels of nutrient enrichment, but decrease at high levels of nutrients, because eutrophication would lead to the presence of other stressors and overwhelm the subsidy effect. Chestnut leaves (Castanea sativa Mill) were enclosed in mesh bags and immersed in five streams of the Ave River basin (northwest Portugal) to assess leaf decomposition and colonization by invertebrates and fungi. In parallel, polyethylene slides were attached to the mesh bags to allow colonization by algae and to assess primary production. Communities of periphytic algae and decomposers discriminated the streams according to the trophic state. Primary production decomposition and biodiversity were lower in streams at both ends of the trophic gradient. - Highlights: • Algae and decomposers discriminated the streams according to the eutrophication level. • Primary production and litter decomposition are stimulated by moderate eutrophication. • Biodiversity and process rates were reduced in highly eutrophic streams. • Subsidy-stress model explained biodiversity and process rates under eutrophication. - Rates of leaf litter decomposition, primary production and richness of periphytic algae, fungi and invertebrates were lower in streams at both ends of the trophic gradient

  19. Litter production and decomposition in Eucalyptus urophylla x Eucalyptus globulus maidenii stand

    Directory of Open Access Journals (Sweden)

    Mauro Valdir Schumacher

    2013-09-01

    Full Text Available he sustainable wood production in commercial plantations requires knowledge of the nutrient cycling process, which also involves the production and decomposition of litter. This study verified the influence of climatic variables on litter production and t evaluated the rate of leaf litter decomposition in a stand of Eucalyptus urophylla x E. globulus maidenii. There were installed 4 plots of 20 m x 20 m, in each plot four litter traps to collect leaves were placed, thin branches and miscellaneous, beside this, each plot received 3 areas for coarse branches collection. The litter collected was used to calculate the deposition and the correlation between climate variables and deposition. The climatic variables used, on a monthly basis, were average temperature, average maximum temperature, average minimum temperature, rainfall, relative humidity, average wind speed, average solar radiation and average evapotranspiration, both supplied by an experimental station. For evaluation of the litter decomposition rate, four square samples of 0.25 m side in each plot were randomly collected and used for determining the decay coefficient (K, half life (t0,5 and decomposition time of 95% of litter (t0,95 . The monthly litter production was weakly correlated with climatic variables and the annual production was 7.4 Mg ha-1, with leaves as the major fraction (60%. The litter decomposition rate was considered slow.

  20. Steganography based on pixel intensity value decomposition

    Science.gov (United States)

    Abdulla, Alan Anwar; Sellahewa, Harin; Jassim, Sabah A.

    2014-05-01

    This paper focuses on steganography based on pixel intensity value decomposition. A number of existing schemes such as binary, Fibonacci, Prime, Natural, Lucas, and Catalan-Fibonacci (CF) are evaluated in terms of payload capacity and stego quality. A new technique based on a specific representation is proposed to decompose pixel intensity values into 16 (virtual) bit-planes suitable for embedding purposes. The proposed decomposition has a desirable property whereby the sum of all bit-planes does not exceed the maximum pixel intensity value, i.e. 255. Experimental results demonstrate that the proposed technique offers an effective compromise between payload capacity and stego quality of existing embedding techniques based on pixel intensity value decomposition. Its capacity is equal to that of binary and Lucas, while it offers a higher capacity than Fibonacci, Prime, Natural, and CF when the secret bits are embedded in 1st Least Significant Bit (LSB). When the secret bits are embedded in higher bit-planes, i.e., 2nd LSB to 8th Most Significant Bit (MSB), the proposed scheme has more capacity than Natural numbers based embedding. However, from the 6th bit-plane onwards, the proposed scheme offers better stego quality. In general, the proposed decomposition scheme has less effect in terms of quality on pixel value when compared to most existing pixel intensity value decomposition techniques when embedding messages in higher bit-planes.

  1. Microbial Signatures of Cadaver Gravesoil During Decomposition.

    Science.gov (United States)

    Finley, Sheree J; Pechal, Jennifer L; Benbow, M Eric; Robertson, B K; Javan, Gulnaz T

    2016-04-01

    Genomic studies have estimated there are approximately 10(3)-10(6) bacterial species per gram of soil. The microbial species found in soil associated with decomposing human remains (gravesoil) have been investigated and recognized as potential molecular determinants for estimates of time since death. The nascent era of high-throughput amplicon sequencing of the conserved 16S ribosomal RNA (rRNA) gene region of gravesoil microbes is allowing research to expand beyond more subjective empirical methods used in forensic microbiology. The goal of the present study was to evaluate microbial communities and identify taxonomic signatures associated with the gravesoil human cadavers. Using 16S rRNA gene amplicon-based sequencing, soil microbial communities were surveyed from 18 cadavers placed on the surface or buried that were allowed to decompose over a range of decomposition time periods (3-303 days). Surface soil microbial communities showed a decreasing trend in taxon richness, diversity, and evenness over decomposition, while buried cadaver-soil microbial communities demonstrated increasing taxon richness, consistent diversity, and decreasing evenness. The results show that ubiquitous Proteobacteria was confirmed as the most abundant phylum in all gravesoil samples. Surface cadaver-soil communities demonstrated a decrease in Acidobacteria and an increase in Firmicutes relative abundance over decomposition, while buried soil communities were consistent in their community composition throughout decomposition. Better understanding of microbial community structure and its shifts over time may be important for advancing general knowledge of decomposition soil ecology and its potential use during forensic investigations.

  2. Thermal decomposition process of silver behenate

    International Nuclear Information System (INIS)

    Liu Xianhao; Lu Shuxia; Zhang Jingchang; Cao Weiliang

    2006-01-01

    The thermal decomposition processes of silver behenate have been studied by infrared spectroscopy (IR), X-ray diffraction (XRD), combined thermogravimetry-differential thermal analysis-mass spectrometry (TG-DTA-MS), transmission electron microscopy (TEM) and UV-vis spectroscopy. The TG-DTA and the higher temperature IR and XRD measurements indicated that complicated structural changes took place while heating silver behenate, but there were two distinct thermal transitions. During the first transition at 138 deg. C, the alkyl chains of silver behenate were transformed from an ordered into a disordered state. During the second transition at about 231 deg. C, a structural change took place for silver behenate, which was the decomposition of silver behenate. The major products of the thermal decomposition of silver behenate were metallic silver and behenic acid. Upon heating up to 500 deg. C, the final product of the thermal decomposition was metallic silver. The combined TG-MS analysis showed that the gas products of the thermal decomposition of silver behenate were carbon dioxide, water, hydrogen, acetylene and some small molecule alkenes. TEM and UV-vis spectroscopy were used to investigate the process of the formation and growth of metallic silver nanoparticles

  3. Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part 1: decomposition of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [Central Florida Univ., Florida Solar Energy Center, Cocoa, FL (United States)

    2005-05-01

    The sulfur-iodine (S-I) thermochemical water splitting cycle is one of the most studied cycles for hydrogen (H{sub 2}) production. S-I cycle consists of four sections: (I) acid production and separation and oxygen purification, (II) sulfuric acid concentration and decomposition, (III) hydroiodic acid (HI) concentration, and (IV) HI decomposition and H{sub 2} purification. Section II of the cycle is an endothermic reaction driven by the heat input from a high temperature source. Analysis of the S-I cycle in the past thirty years have been focused mostly on the utilization of nuclear power as the high temperature heat source for the sulfuric acid decomposition step. Thermodynamic as well as kinetic considerations indicate that both the extent and rate of sulfuric acid decomposition can be improved at very high temperatures (in excess of 1000 deg C) available only from solar concentrators. The beneficial effect of high temperature solar heat for decomposition of sulfuric acid in the S-I cycle is described in this paper. We used Aspen Technologies' HYSYS chemical process simulator (CPS) to develop flowsheets for sulfuric acid (H{sub 2}SO{sub 4}) decomposition that include all mass and heat balances. Based on the HYSYS analyses, two new process flowsheets were developed. These new sulfuric acid decomposition processes are simpler and more stable than previous processes and yield higher conversion efficiencies for the sulfuric acid decomposition and sulfur dioxide and oxygen formation. (Author)

  4. Insight into litter decomposition driven by nutrient demands of symbiosis system through the hypha bridge of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Kong, Xiangshi; Jia, Yanyan; Song, Fuqiang; Tian, Kai; Lin, Hong; Bei, Zhanlin; Jia, Xiuqin; Yao, Bei; Guo, Peng; Tian, Xingjun

    2018-02-01

    Arbuscular mycorrhizal fungi (AMF) play an important role in litter decomposition. This study investigated how soil nutrient level affected the process. Results showed that AMF colonization had no significant effect on litter decomposition under normal soil nutrient conditions. However, litter decomposition was accelerated significantly under lower nutrient conditions. Soil microbial biomass in decomposition system was significantly increased. Especially, in moderate lower nutrient treatment (condition of half-normal soil nutrient), litters exhibited the highest decomposition rate, AMF hypha revealed the greatest density, and enzymes (especially nitrate reductase) showed the highest activities as well. Meanwhile, the immobilization of nitrogen (N) in the decomposing litter remarkably decreased. Our results suggested that the roles AMF played in ecosystem were largely affected by soil nutrient levels. At normal soil nutrient level, AMF exhibited limited effects in promoting decomposition. When soil nutrient level decreased, the promoting effect of AMF on litter decomposition began to appear, especially on N mobilization. However, under extremely low nutrient conditions, AMF showed less influence on decomposition and may even compete with decomposer microorganisms for nutrients.

  5. Decomposition of PCBs in oils using gamma radiolysis

    International Nuclear Information System (INIS)

    Mincher, B.J.; Arbon, R.E.; Schwendiman, G.L.

    1996-01-01

    This paper investigates the radiolysis of the polychlorinated biphenyls (PCBs) in several oil matrices. The results of mechanism and kinetic studies in isooctane are presented. The decomposition of PCBs in isooctane is shown to occur by reductive dechlorination due to electron capture and to proceed with pseudo-first-order kinetics. The rate is dependent on the initial PCB concentration. Electron capture detection gas chromatograms confirm that dechlorination also occurs with commercial Aroclor PCBs in irradiated transformer and hydraulic oils. The results of a demonstration experiment involving PCB contaminated waste hydraulic oils are presented

  6. 4.3. Decomposition of danburite concentrate of Ak-Arkar Deposit by nitric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Kurbonov, A.S.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to decomposition of danburite concentrate of Ak-Arkar Deposit by nitric acid. The influence of temperature on reaction process was studied. The dependence of extraction rate of oxides (B 2 O 3 , Al 2 O 3 , Fe 2 O 3 and Ca O) at nitric acid processing on temperature ranges from 25 to 95 deg C was defined. The dependence of extraction rate of oxides (B 2 O 3 , Al 2 O 3 , Fe 2 O 3 and Ca O) at nitric acid processing on process duration (5-60 minutes) was defined as well. The optimal conditions of decomposition of danburite concentrate by nitric acid were proposed.

  7. Isotopic Discrimination During Leaf Litter Decomposition

    Science.gov (United States)

    Ngao, J.; Rubino, M.

    2006-12-01

    Methods involving stable isotopes have been successfully applied since decades in various research fields. Tracing 13C natural abundance in ecosystem compartments greatly enhanced the understanding of the C fluxes in the plant-soil-atmosphere C exchanges when compartments present different C isotopic signatures (i.e. atmospheric CO2 vs photosynthetic leaves, C3 vs C4; etc.). However, the assumption that no isotopic discrimination occurs during respiration is commonly made in numbers of C isotope-based ecological studies. Furthermore, verifications of such assumption are sparse and not enough reliable. The aim of our study is to assess the potential isotopic discrimination that may occur during litter decomposition. Leaf litter from an Arbutus unedo (L.) stand (Tolfa, Italy) was incubated in 1L jars, under constant laboratory conditions (i.e. 25 ° C and 135% WC). During the entire incubation period, gravimetric mass loss, litter respiration rates and the isotopic composition of respired CO2 are monitored at regular intervals. Data from 7 months of incubation will be presented and discussed. After two months, the litter mass loss averaged 16% of initial dry mass. During the same time-period, the respiration rate decreased significantly by 58% of the initial respiration rate. Isotopic compositions of respired CO2 ranged between -27.95‰ and - 25.69‰. Mean values did not differ significantly among the sampling days, in spite of an apparent enrichment in 13C of respired CO2 with time. The significance of these isotopic enrichment will be determined at a longer time scale. They may reveal both/either a direct microbial discrimination during respiration processes and/or a use of different litter compounds as C source along time. Further chemical and compound-specific isotopic analysis of dry matter will be performed in order to clarify these hypotheses. This work is part of the "ALICE" project, funded by the European Union's Marie Curie Fellowship Actions that aims to

  8. Parallel processing for pitch splitting decomposition

    Science.gov (United States)

    Barnes, Levi; Li, Yong; Wadkins, David; Biederman, Steve; Miloslavsky, Alex; Cork, Chris

    2009-10-01

    Decomposition of an input pattern in preparation for a double patterning process is an inherently global problem in which the influence of a local decomposition decision can be felt across an entire pattern. In spite of this, a large portion of the work can be massively distributed. Here, we discuss the advantages of geometric distribution for polygon operations with limited range of influence. Further, we have found that even the naturally global "coloring" step can, in large part, be handled in a geometrically local manner. In some practical cases, up to 70% of the work can be distributed geometrically. We also describe the methods for partitioning the problem into local pieces and present scaling data up to 100 CPUs. These techniques reduce DPT decomposition runtime by orders of magnitude.

  9. Thermal Plasma decomposition of fluoriated greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo Seok; Watanabe, Takayuki [Tokyo Institute of Technology, Yokohama (Japan); Park, Dong Wha [Inha University, Incheon (Korea, Republic of)

    2012-02-15

    Fluorinated compounds mainly used in the semiconductor industry are potent greenhouse gases. Recently, thermal plasma gas scrubbers have been gradually replacing conventional burn-wet type gas scrubbers which are based on the combustion of fossil fuels because high conversion efficiency and control of byproduct generation are achievable in chemically reactive high temperature thermal plasma. Chemical equilibrium composition at high temperature and numerical analysis on a complex thermal flow in the thermal plasma decomposition system are used to predict the process of thermal decomposition of fluorinated gas. In order to increase economic feasibility of the thermal plasma decomposition process, increase of thermal efficiency of the plasma torch and enhancement of gas mixing between the thermal plasma jet and waste gas are discussed. In addition, noble thermal plasma systems to be applied in the thermal plasma gas treatment are introduced in the present paper.

  10. Hydrogen peroxide decomposition kinetics in aquaculture water

    DEFF Research Database (Denmark)

    Arvin, Erik; Pedersen, Lars-Flemming

    2015-01-01

    during the HP decomposition. The model assumes that the enzyme decay is controlled by an inactivation stoichiometry related to the HP decomposition. In order to make the model easily applicable, it is furthermore assumed that the COD is a proxy of the active biomass concentration of the water and thereby......Hydrogen peroxide (HP) is used in aquaculture systems where preventive or curative water treatments occasionally are required. Use of chemical agents can be challenging in recirculating aquaculture systems (RAS) due to extended water retention time and because the agents must not damage the fish...... reared or the nitrifying bacteria in the biofilters at concentrations required to eliminating pathogens. This calls for quantitative insight into the fate of the disinfectant residuals during water treatment. This paper presents a kinetic model that describes the HP decomposition in aquaculture water...

  11. Multilevel domain decomposition for electronic structure calculations

    International Nuclear Information System (INIS)

    Barrault, M.; Cances, E.; Hager, W.W.; Le Bris, C.

    2007-01-01

    We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure

  12. Fast approximate convex decomposition using relative concavity

    KAUST Repository

    Ghosh, Mukulika; Amato, Nancy M.; Lu, Yanyan; Lien, Jyh-Ming

    2013-01-01

    Approximate convex decomposition (ACD) is a technique that partitions an input object into approximately convex components. Decomposition into approximately convex pieces is both more efficient to compute than exact convex decomposition and can also generate a more manageable number of components. It can be used as a basis of divide-and-conquer algorithms for applications such as collision detection, skeleton extraction and mesh generation. In this paper, we propose a new method called Fast Approximate Convex Decomposition (FACD) that improves the quality of the decomposition and reduces the cost of computing it for both 2D and 3D models. In particular, we propose a new strategy for evaluating potential cuts that aims to reduce the relative concavity, rather than absolute concavity. As shown in our results, this leads to more natural and smaller decompositions that include components for small but important features such as toes or fingers while not decomposing larger components, such as the torso, that may have concavities due to surface texture. Second, instead of decomposing a component into two pieces at each step, as in the original ACD, we propose a new strategy that uses a dynamic programming approach to select a set of n c non-crossing (independent) cuts that can be simultaneously applied to decompose the component into n c+1 components. This reduces the depth of recursion and, together with a more efficient method for computing the concavity measure, leads to significant gains in efficiency. We provide comparative results for 2D and 3D models illustrating the improvements obtained by FACD over ACD and we compare with the segmentation methods in the Princeton Shape Benchmark by Chen et al. (2009) [31]. © 2012 Elsevier Ltd. All rights reserved.

  13. Fast approximate convex decomposition using relative concavity

    KAUST Repository

    Ghosh, Mukulika

    2013-02-01

    Approximate convex decomposition (ACD) is a technique that partitions an input object into approximately convex components. Decomposition into approximately convex pieces is both more efficient to compute than exact convex decomposition and can also generate a more manageable number of components. It can be used as a basis of divide-and-conquer algorithms for applications such as collision detection, skeleton extraction and mesh generation. In this paper, we propose a new method called Fast Approximate Convex Decomposition (FACD) that improves the quality of the decomposition and reduces the cost of computing it for both 2D and 3D models. In particular, we propose a new strategy for evaluating potential cuts that aims to reduce the relative concavity, rather than absolute concavity. As shown in our results, this leads to more natural and smaller decompositions that include components for small but important features such as toes or fingers while not decomposing larger components, such as the torso, that may have concavities due to surface texture. Second, instead of decomposing a component into two pieces at each step, as in the original ACD, we propose a new strategy that uses a dynamic programming approach to select a set of n c non-crossing (independent) cuts that can be simultaneously applied to decompose the component into n c+1 components. This reduces the depth of recursion and, together with a more efficient method for computing the concavity measure, leads to significant gains in efficiency. We provide comparative results for 2D and 3D models illustrating the improvements obtained by FACD over ACD and we compare with the segmentation methods in the Princeton Shape Benchmark by Chen et al. (2009) [31]. © 2012 Elsevier Ltd. All rights reserved.

  14. Thermal Decomposition Of Hydroxylamine Nitrate

    Science.gov (United States)

    Oxley, Jimmie C.; Brower, Kay R.

    1988-05-01

    used hydroxylamine nitrate decomposes within a few minutes in the temperature range 130-140°C. Added ammonium ion is converted to N2, while hydrazinium ion is converted to HN3. Nitrous acid is an intermediate and its formation is rate-determining. A hygride transfer process is postulated. The reaction pathways have been elucidated by use of N tracers.

  15. Decomposition dynamic of two aquatic macrophytes Trapa bispinosa Roxb. and Nelumbo nucifera detritus.

    Science.gov (United States)

    Zhou, Xiaohong; Feng, Deyou; Wen, Chunzi; Liu, Dan

    2018-03-29

    In freshwater ecosystems, aquatic macrophytes play significant roles in nutrient cycling. One problem in this process is nutrient loss in the tissues of untimely harvested plants. In this study, we used two aquatic species, Nelumbo nucifera and Trapa bispinosa Roxb., to investigate the decomposition dynamics and nutrient release from detritus. Litter bags containing 10 g of stems (plus petioles) and leaves for each species detritus were incubated in the pond from November 2016 to May 2017. Nine times litterbags were retrieved on days 6, 14, 25, 45, 65, 90, 125, 145, and 165 after the decomposition experiment for the monitoring of biomass loss and nutrient release. The results suggested that the dry masses of N. nucifera and T. bispinosa decomposed by 49.35-69.40 and 82.65-91.65%, respectively. The order of decomposition rate constants (k) is as follows: leaves of T. bispinosa (0.0122 day -1 ) > stems (plus petioles) of T. bispinosa (0.0090 day -1 ) > leaves of N. nucifera (0.0060 day -1 ) > stems (plus petioles) of N. nucifera (0.0030 day -1 ). Additionally, the orders of time for 50% dry mass decay, time for 95% dry mass decay, and turnover rate are as follows: leaves  0.05). In addition, the decomposition time had also significant effects on the detritus decomposition dynamic and nutrient release. However, the contributors of species and decomposition time on detritus decomposition were significantly different on the basis of their F values of two-way ANOVA results. This study can provide scientific bases for the aquatic plant scientific management in freshwater ecosystems of the East region of China.

  16. Separable decompositions of bipartite mixed states

    Science.gov (United States)

    Li, Jun-Li; Qiao, Cong-Feng

    2018-04-01

    We present a practical scheme for the decomposition of a bipartite mixed state into a sum of direct products of local density matrices, using the technique developed in Li and Qiao (Sci. Rep. 8:1442, 2018). In the scheme, the correlation matrix which characterizes the bipartite entanglement is first decomposed into two matrices composed of the Bloch vectors of local states. Then, we show that the symmetries of Bloch vectors are consistent with that of the correlation matrix, and the magnitudes of the local Bloch vectors are lower bounded by the correlation matrix. Concrete examples for the separable decompositions of bipartite mixed states are presented for illustration.

  17. Vector domain decomposition schemes for parabolic equations

    Science.gov (United States)

    Vabishchevich, P. N.

    2017-09-01

    A new class of domain decomposition schemes for finding approximate solutions of timedependent problems for partial differential equations is proposed and studied. A boundary value problem for a second-order parabolic equation is used as a model problem. The general approach to the construction of domain decomposition schemes is based on partition of unity. Specifically, a vector problem is set up for solving problems in individual subdomains. Stability conditions for vector regionally additive schemes of first- and second-order accuracy are obtained.

  18. Two Notes on Discrimination and Decomposition

    DEFF Research Database (Denmark)

    Nielsen, Helena Skyt

    1998-01-01

    1. It turns out that the Oaxaca-Blinder wage decomposition is inadequate when it comes to calculation of separate contributions for indicator variables. The contributions are not robust against a change of reference group. I extend the Oaxaca-Blinder decomposition to handle this problem. 2. The p....... The paper suggests how to use the logit model to decompose the gender difference in the probability of an occurrence. The technique is illustrated by an analysis of discrimination in child labor in rural Zambia....

  19. Gamma ray induced decomposition of lanthanide nitrates

    International Nuclear Information System (INIS)

    Joshi, N.G.; Garg, A.N.

    1992-01-01

    Gamma ray induced decomposition of the lanthanide nitrates, Ln(NO 3 ) 3 .xH 2 O where Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm and Yb has been studied at different absorbed doses up to 600 kGy. G(NO 2 - ) values depend on the absorbed dose and the nature of the outer cation. It has been observed that those lanthanides which exhibit variable valency (Ce and Eu) show lower G-values. An attempt has been made to correlate thermal and radiolytic decomposition processes. (author). 20 refs., 3 figs., 1 tab

  20. Multiresolution signal decomposition transforms, subbands, and wavelets

    CERN Document Server

    Akansu, Ali N; Haddad, Paul R

    2001-01-01

    The uniqueness of this book is that it covers such important aspects of modern signal processing as block transforms from subband filter banks and wavelet transforms from a common unifying standpoint, thus demonstrating the commonality among these decomposition techniques. In addition, it covers such ""hot"" areas as signal compression and coding, including particular decomposition techniques and tables listing coefficients of subband and wavelet filters and other important properties.The field of this book (Electrical Engineering/Computer Science) is currently booming, which is, of course

  1. Basis of the biological decomposition of xenobiotica

    International Nuclear Information System (INIS)

    Mueller, R. von

    1993-01-01

    The ability of micro-organisms to decompose different molecules and to use them as a source of carbon, nitrogen, sulphur or energy is the basis for all biological processes for cleaning up contaminated soil. Therefore, the knowledge of these decomposition processes is an important precondition for judging which contamination can be treated biologically at all and which materials can be decomposed biologically. The decomposition schemes of the most important harmful material classes (aliphatic, aromatic and chlorinated hydrocarbons) are introduced and the consequences which arise for the practical application in biological cleaning up of contaminated soils are discussed. (orig.) [de

  2. Gas emission from anaerobic decomposition of plant resources

    Directory of Open Access Journals (Sweden)

    Marcela Bianchessi da Cunha-Santino

    Full Text Available Abstract: Aim The aim of this study was to quantify the emission rates of gases resulting from the anaerobic decomposition of different plant resources under conditions usually found in sediments of tropical aquatic systems and drained organic soils. Methods Incubations were prepared with green leaves, bark, twigs, plant litter, sugarcane stalks and leaves, soybean leaves, grasses, forest leaves and an aquatic macrophyte (Typha domingensis. Over 10 months, the daily volume of gas evolved from decay was measured and a kinetic model was used to describe the anaerobic mineralization. Results Using the mathematical model, it can be observed that the composition of the plant resources is heterogeneous. The temporal variation of the gas rates indicated that the mineralization of the labile fractions of detritus varied, on a carbon basis, from 16.2 (bark to 100% (samples composed of leaves, grasses and sugar cane stalks. High gas emissions were observed during the mineralization of grasses, sugar cane stalks, leaves and plant litter, while low volumes of gases were measured during the mineralization of bark, twigs, forest leaves and T. domingensis, which are the most fibrous and recalcitrant resources (carbon content: 83.8, 78.2, 64.8 and 53.4%, respectively. The mineralization of labile carbon presented half-life values, which varied from 41 (twigs to 295 days (grasses. Conclusions Considering the high amount of remaining recalcitrant fraction, the anaerobic decomposition of these plant resources showed a strong trend towards accumulating organic matter in flooded soils. Despite the higher temperatures found in the tropical environment, these environments represent a sink of particulate detritus due to its slow decomposition.

  3. [Effects of elevated O3 on leaf litter decomposition and nutrient release of Quercus mongolica in city].

    Science.gov (United States)

    Su, Li-li; Xu, Sheng; Fu, Wei; He, Xing-yuan; Chen, Wei; Zhao, Yi; Ping, Qin

    2016-02-01

    The leaf litters of 10-year-old Quercus mongolica were put in nylon bags and exposed to elevated 03 level (120 nmol . mol-1) with the control of 40 nmol . mol-1 in open top chambers (OTCs) for 150 days to test the effect of high O3 on the litter decomposition. The results showed that no significant difference was observed in residual mass between elevated O3 treatment and the control. Elevated 03 inhibited the release of C and K during the decomposition, the residual rate of K under elevated O3 treatment (23.9%) was significantly higher than that of the control (17.1%) after 150-day decomposition. Compared with the control, N mineralization and lignin degradation in elevated O3 treatment were inhibited during early period of decomposition (0-60 d), but were promoted in later period (90-150 d). The changes of lignin/N showed no significant difference between elevated O3 treatment and the control during the decomposition. Elevated O3 generally promoted the release of P in leaf litter of Q. mongolica during the decomposition. C/P ratio was higher under elevated 03 than that under control. Significant positive correlation was shown between residual dry mass of leaf litters and the residual rate of C, N, K, C/N ratio during decomposition. Elevated 03 might play an important role in the nutrient cycle of forest ecosystem in high-O3 pollution area.

  4. Leaf Litter Decomposition and Nutrient Dynamics Associated with Common Horticultural Cropland Agroforest Tree Species of Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Hasanuzzaman

    2014-01-01

    Full Text Available Mangifera indica, Zizyphus jujuba, Litchi chinensis, and Artocarpus heterophyllus are the most common cropland agroforest horticultural tree species of Bangladesh. This study focused on leaf litter decomposition and nutrient (N, P, and K dynamics during the decomposition process. This experiment was conducted for 180 days by using litter bag technique during dry and wet seasons. Mass loss was the highest (49% and 57% for A. heterophyllus and the lowest (25% was found for L. chinensis. The highest initial rates (0.75% and 2.35%/day of decomposition were observed for Z. jujuba and the lowest (0.50% and 0.79%/day for L. chinensis. The highest decay constant was observed for A. heterophyllus (2.14 and 2.34 and the lowest (0.88 and 0.94 for L. chinensis. Leaf litter of all the studied species showed a similar pattern (K > N > P of nutrient release during the decomposition process. Zizyphus jujuba showed comparatively higher return of N, P, and K than others. However, a significant (P<0.05 higher amount of mass loss, rate of decomposition, decay constant, and amount of nutrient return from leaf litter were observed during the wet season.

  5. Does oxygen exposure time control the extent of organic matter decomposition in peatlands?

    Science.gov (United States)

    Philben, Michael; Kaiser, Karl; Benner, Ronald

    2014-05-01

    The extent of peat decomposition was investigated in four cores collected along a latitudinal gradient from 56°N to 66°N in the West Siberian Lowland. The acid:aldehyde ratios of lignin phenols were significantly higher in the two northern cores compared with the two southern cores, indicating peats at the northern sites were more highly decomposed. Yields of hydroxyproline, an amino acid found in plant structural glycoproteins, were also significantly higher in northern cores compared with southern cores. Hydroxyproline-rich glycoproteins are not synthesized by microbes and are generally less reactive than bulk plant carbon, so elevated yields indicated that northern cores were more extensively decomposed than the southern cores. The southern cores experienced warmer temperatures, but were less decomposed, indicating that temperature was not the primary control of peat decomposition. The plant community oscillated between Sphagnum and vascular plant dominance in the southern cores, but vegetation type did not appear to affect the extent of decomposition. Oxygen exposure time appeared to be the strongest control of the extent of peat decomposition. The northern cores had lower accumulation rates and drier conditions, so these peats were exposed to oxic conditions for a longer time before burial in the catotelm, where anoxic conditions prevail and rates of decomposition are generally lower by an order of magnitude.

  6. Effects of litter manipulation on litter decomposition in a successional gradients of tropical forests in southern China

    DEFF Research Database (Denmark)

    Chen, Hao; Gurmesa, Geshere A.; Liu, Lei

    2014-01-01

    Global changes such as increasing CO2, rising temperature, and land-use change are likely to drive shifts in litter inputs to forest floors, but the effects of such changes on litter decomposition remain largely unknown. We initiated a litter manipulation experiment to test the response of litter...... decomposition to litter removal/addition in three successional forests in southern China, namely masson pine forest (MPF), mixed coniferous and broadleaved forest (MF) and monsoon evergreen broadleaved forest (MEBF). Results showed that litter removal decreased litter decomposition rates by 27%, 10% and 8...

  7. Influence of Cu(NO32 initiation additive in two-stage mode conditions of coal pyrolytic decomposition

    Directory of Open Access Journals (Sweden)

    Larionov Kirill

    2017-01-01

    Full Text Available Two-stage process (pyrolysis and oxidation of brown coal sample with Cu(NO32 additive pyrolytic decomposition was studied. Additive was introduced by using capillary wetness impregnation method with 5% mass concentration. Sample reactivity was studied by thermogravimetric analysis with staged gaseous medium supply (argon and air at heating rate 10 °C/min and intermediate isothermal soaking. The initiative additive introduction was found to significantly reduce volatile release temperature and accelerate thermal decomposition of sample. Mass-spectral analysis results reveal that significant difference in process characteristics is connected to volatile matter release stage which is initiated by nitrous oxide produced during copper nitrate decomposition.

  8. Calibration of the century, apsim and ndicea models of decomposition and n mineralization of plant residues in the humid tropics

    Directory of Open Access Journals (Sweden)

    Alexandre Ferreira do Nascimento

    2011-06-01

    Full Text Available The aim of this study was to calibrate the CENTURY, APSIM and NDICEA simulation models for estimating decomposition and N mineralization rates of plant organic materials (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum, Stylosanthes guyanensis for 360 days in the Atlantic rainforest bioma of Brazil. The models´ default settings overestimated the decomposition and N-mineralization of plant residues, underlining the fact that the models must be calibrated for use under tropical conditions. For example, the APSIM model simulated the decomposition of the Stizolobium aterrimum and Calopogonium mucunoides residues with an error rate of 37.62 and 48.23 %, respectively, by comparison with the observed data, and was the least accurate model in the absence of calibration. At the default settings, the NDICEA model produced an error rate of 10.46 and 14.46 % and the CENTURY model, 21.42 and 31.84 %, respectively, for Stizolobium aterrimum and Calopogonium mucunoides residue decomposition. After calibration, the models showed a high level of accuracy in estimating decomposition and N- mineralization, with an error rate of less than 20 %. The calibrated NDICEA model showed the highest level of accuracy, followed by the APSIM and CENTURY. All models performed poorly in the first few months of decomposition and N-mineralization, indicating the need of an additional parameter for initial microorganism growth on the residues that would take the effect of leaching due to rainfall into account.

  9. Characterization of a capillary plasma reactor for carbon dioxide decomposition

    International Nuclear Information System (INIS)

    Mori, Shinsuke; Yamamoto, Aguru; Suzuki, Masaaki

    2006-01-01

    The decomposition of carbon dioxide in a plasma reactor was investigated experimentally, using capillary discharge tubes with a diameter of 0.5 or 3.0 mm and a length of 25, 50, 75, 100 or 150 mm. The chemical composition of the reaction products and the current-voltage characteristics were measured over a pressure range of 3.33-120 Torr, and the CO 2 conversion rates and reduced electric fields were calculated. The results show that the influence of downscaling on the reduced electric fields can be well evaluated by adjusting both the current density, i, and the products of the pressure and the tube diameter, pd. However, the characteristics of CO 2 decomposition cannot be determined based on i and pd; they are better characterized by i and p. It can be deduced from our experimental results that the CO 2 conversion rate is predominated by the electron impact CO 2 dissociation and gas phase reverse reactions even in a capillary plasma reactor

  10. Kinetic study and thermal decomposition behavior of viscoelastic memory foam

    International Nuclear Information System (INIS)

    Garrido, María A.; Font, Rafael; Conesa, Juan A.

    2016-01-01

    Highlights: • The thermal degradation has been studied under three different atmospheres. • Pyrolysis and combustion kinetic models have been proposed. • Evolved products under different atmospheres have been analyzed by TG-FTIR and TG-MS. - Abstract: A systematic investigation of the thermal decomposition of viscoelastic memory foam (VMF) was performed using thermogravimetric analysis (TGA) to obtain the kinetic parameters, and thermogravimetric analysis coupled to Fourier Transformed Infrared Spectrometry (TGA-FTIR) and thermogravimetric analysis coupled to Mass Spectrometry (TGA-MS) to obtain detailed information of evolved products on pyrolysis and oxidative degradations. Two consecutive nth-order reactions were employed to correlate the experimental data from dynamic and isothermal runs performed at three different heating rates (5, 10 and 20 K/min) under an inert atmosphere. On the other hand, for the kinetic study of the oxidative decomposition, the data from combustion (synthetic air) and poor oxygen combustion (N_2:O_2 = 9:1) runs, at three heating rates and under dynamic and isothermal conditions, were correlated simultaneously. A kinetic model consisting of three consecutive reactions presented a really good correlation in all runs. TGA-FTIR analysis showed that the main gases released during the pyrolysis of VMF were determined as ether and aliphatic hydrocarbons, whereas in combustion apart from the previous gases, aldehydes, amines and CO_2 have also been detected as the main gases. These results were confirmed by the TGA-MS.

  11. Decomposition of jellyfish carrion in situ

    DEFF Research Database (Denmark)

    Chelsky, Ariella; Pitt, Kylie A.; Ferguson, Angus J.P.

    2016-01-01

    Jellyfish often form blooms that persist for weeks to months before they collapse en masse, resulting in the sudden release of large amounts of organic matter to the environment. This study investigated the biogeochemical and ecological effects of the decomposition of jellyfish in a shallow coast...

  12. Compactly supported frames for decomposition spaces

    DEFF Research Database (Denmark)

    Nielsen, Morten; Rasmussen, Kenneth Niemann

    2012-01-01

    In this article we study a construction of compactly supported frame expansions for decomposition spaces of Triebel-Lizorkin type and for the associated modulation spaces. This is done by showing that finite linear combinations of shifts and dilates of a single function with sufficient decay in b...

  13. Thermal Decomposition of Aluminium Chloride Hexahydrate

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Trnka, Otakar; Šolcová, Olga

    2005-01-01

    Roč. 44, č. 17 (2005), s. 6591-6598 ISSN 0888-5885 R&D Projects: GA ČR(CZ) GA203/02/0002 Institutional research plan: CEZ:AV0Z40720504 Keywords : aluminum chloride hexahydrate * thermal decomposition * reaction kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.504, year: 2005

  14. A decomposition of pairwise continuity via ideals

    Directory of Open Access Journals (Sweden)

    Mahes Wari

    2016-02-01

    Full Text Available In this paper, we introduce and study the notions of (i, j - regular - ℐ -closed sets, (i, j - Aℐ -sets, (i, j - ℐ -locally closed sets, p- Aℐ -continuous functions and p- ℐ -LC-continuous functions in ideal bitopological spaces and investigate some of their properties. Also, a new decomposition of pairwise continuity is obtained using these sets.

  15. Nested grids ILU-decomposition (NGILU)

    NARCIS (Netherlands)

    Ploeg, A. van der; Botta, E.F.F.; Wubs, F.W.

    1996-01-01

    A preconditioning technique is described which shows, in many cases, grid-independent convergence. This technique only requires an ordering of the unknowns based on the different levels of multigrid, and an incomplete LU-decomposition based on a drop tolerance. The method is demonstrated on a

  16. A Martingale Decomposition of Discrete Markov Chains

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard

    We consider a multivariate time series whose increments are given from a homogeneous Markov chain. We show that the martingale component of this process can be extracted by a filtering method and establish the corresponding martingale decomposition in closed-form. This representation is useful fo...

  17. Triboluminescence and associated decomposition of solid methanol

    International Nuclear Information System (INIS)

    Trout, G.J.; Moore, D.E.; Hawke, J.G.

    1975-01-01

    The decomposition is initiated by the cooling of solid methanol through the β → α transiRon at 157.8K, producing the gases hydrogen, carbon monoxide, and methane. The passage through this lambda transition causes the breakup of large crystals of β-methanol into crystallites of α-methanol and is accompanied by light emission as well as decomposition. This triboluminescence is accompanied by, and apparently produced by, electrical discharges through methanol vapor in the vicinity of the solid. The potential differences needed to produce the electrical breakdown of the methanol vapor apparently arise from the disruption of the long hydrogen bonded chains of methanol molecules present in crystalline methanol. Charge separation following crystal deformation is a characteristic of substances which exhibit gas discharge triboluminescence; solid methanol has been found to emit such luminescence when mechanically deformed in the absence of the β → α transition The decomposition products are not produced directly by the breaking up of the solid methanol but from the vapor phase methanol by the electrical discharges. That gas phase decomposition does occur was confirmed by observing that the vapors of C 2 H 5 OH, CH 3 OD, and CD 3 OD decompose on being admitted to a vessel containing methanol undergoing the β → α phase transition. (U.S.)

  18. On Orthogonal Decomposition of a Sobolev Space

    OpenAIRE

    Lakew, Dejenie A.

    2016-01-01

    The theme of this short article is to investigate an orthogonal decomposition of a Sobolev space and look at some properties of the inner product therein and the distance defined from the inner product. We also determine the dimension of the orthogonal difference space and show the expansion of spaces as their regularity increases.

  19. TP89 - SIRZ Decomposition Spectral Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Seetho, Isacc M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Azevedo, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, Jerel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, William D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Jr., Harry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-08

    The primary objective of this test plan is to provide X-ray CT measurements of known materials for the purposes of generating and testing MicroCT and EDS spectral estimates. These estimates are to be used in subsequent Ze/RhoE decomposition analyses of acquired data.

  20. Methodologies in forensic and decomposition microbiology

    Science.gov (United States)

    Culturable microorganisms represent only 0.1-1% of the total microbial diversity of the biosphere. This has severely restricted the ability of scientists to study the microbial biodiversity associated with the decomposition of ephemeral resources in the past. Innovations in technology are bringing...

  1. Organic matter decomposition in simulated aquaculture ponds

    NARCIS (Netherlands)

    Torres Beristain, B.

    2005-01-01

    Different kinds of organic and inorganic compounds (e.g. formulated food, manures, fertilizers) are added to aquaculture ponds to increase fish production. However, a large part of these inputs are not utilized by the fish and are decomposed inside the pond. The microbiological decomposition of the

  2. Wood decomposition as influenced by invertebrates

    Science.gov (United States)

    Michael D. Ulyshen

    2014-01-01

    The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial...

  3. Decomposition of variance for spatial Cox processes

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introduce a general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models...

  4. Decomposition of variance for spatial Cox processes

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    2013-01-01

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introduce a general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models...

  5. Decomposition of variance for spatial Cox processes

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introducea general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models with additive...

  6. Linear, Constant-rounds Bit-decomposition

    DEFF Research Database (Denmark)

    Reistad, Tord; Toft, Tomas

    2010-01-01

    When performing secure multiparty computation, tasks may often be simple or difficult depending on the representation chosen. Hence, being able to switch representation efficiently may allow more efficient protocols. We present a new protocol for bit-decomposition: converting a ring element x ∈ ℤ M...

  7. Decomposition approaches to integration without a measure

    Czech Academy of Sciences Publication Activity Database

    Greco, S.; Mesiar, Radko; Rindone, F.; Sipeky, L.

    2016-01-01

    Roč. 287, č. 1 (2016), s. 37-47 ISSN 0165-0114 Institutional support: RVO:67985556 Keywords : Choquet integral * Decision making * Decomposition integral Subject RIV: BA - General Mathematics Impact factor: 2.718, year: 2016 http://library.utia.cas.cz/separaty/2016/E/mesiar-0457408.pdf

  8. Radiolytic decomposition of dioxins in liquid wastes

    International Nuclear Information System (INIS)

    Zhao Changli; Taguchi, M.; Hirota, K.; Takigami, M.; Kojima, T.

    2006-01-01

    The dioxins including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are some of the most toxic persistent organic pollutants. These chemicals have widely contaminated the air, water, and soil. They would accumulate in the living body through the food chains, leading to a serious public health hazard. In the present study, radiolytic decomposition of dioxins has been investigated in liquid wastes, including organic waste and waste-water. Dioxin-containing organic wastes are commonly generated in nonane or toluene. However, it was found that high radiation doses are required to completely decompose dioxins in the two solvents. The decomposition was more efficient in ethanol than in nonane or toluene. The addition of ethanol to toluene or nonane could achieve >90% decomposition of dioxins at the dose of 100 kGy. Thus, dioxin-containing organic wastes can be treated as regular organic wastes after addition of ethanol and subsequent γ-ray irradiation. On the other hand, radiolytic decomposition of dioxins easily occurred in pure-water than in waste-water, because the reaction species is largely scavenged by the dominant organic materials in waste-water. Dechlorination was not a major reaction pathway for the radiolysis of dioxin in water. In addition, radiolytic mechanism and dechlorinated pathways in liquid wastes were also discussed. (authors)

  9. Strongly \\'etale difference algebras and Babbitt's decomposition

    OpenAIRE

    Tomašić, Ivan; Wibmer, Michael

    2015-01-01

    We introduce a class of strongly \\'{e}tale difference algebras, whose role in the study of difference equations is analogous to the role of \\'{e}tale algebras in the study of algebraic equations. We deduce an improved version of Babbitt's decomposition theorem and we present applications to difference algebraic groups and the compatibility problem.

  10. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude

    2015-01-01

    The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...

  11. A framework for bootstrapping morphological decomposition

    CSIR Research Space (South Africa)

    Joubert, LJ

    2004-11-01

    Full Text Available The need for a bootstrapping approach to the morphological decomposition of words in agglutinative languages such as isiZulu is motivated, and the complexities of such an approach are described. The authors then introduce a generic framework which...

  12. A Systolic Architecture for Singular Value Decomposition,

    Science.gov (United States)

    1983-01-01

    Presented at the 1 st International Colloquium on Vector and Parallel Computing in Scientific Applications, Paris, March 191J Contract N00014-82-K.0703...Gene Golub. Private comunication . given inputs x and n 2 , compute 2 2 2 2 /6/ G. H. Golub and F. T. Luk : "Singular Value I + X1 Decomposition

  13. Direct observation of nanowire growth and decomposition

    DEFF Research Database (Denmark)

    Rackauskas, Simas; Shandakov, Sergey D; Jiang, Hua

    2017-01-01

    knowledge, so far this has been only postulated, but never observed at the atomic level. By means of in situ environmental transmission electron microscopy we monitored and examined the atomic layer transformation at the conditions of the crystal growth and its decomposition using CuO nanowires selected...

  14. Nash-Williams’ cycle-decomposition theorem

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2016-01-01

    We give an elementary proof of the theorem of Nash-Williams that a graph has an edge-decomposition into cycles if and only if it does not contain an odd cut. We also prove that every bridgeless graph has a collection of cycles covering each edge at least once and at most 7 times. The two results...

  15. Distributed Model Predictive Control via Dual Decomposition

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Stoustrup, Jakob; Andersen, Palle

    2014-01-01

    This chapter presents dual decomposition as a means to coordinate a number of subsystems coupled by state and input constraints. Each subsystem is equipped with a local model predictive controller while a centralized entity manages the subsystems via prices associated with the coupling constraints...

  16. The catalytic performance of Cu-containing zeolites in N2O decomposition and the influence of O2, NO and H2O on recombination of oxygen

    NARCIS (Netherlands)

    Smeets, P.J.; Sels, B.F.; Teeffelen, van R.M.; Leeman, H.; Hensen, E.J.M.; Schoonheydt, R.A.

    2008-01-01

    The catalytic decomposition of N2O was studied over Cu-containing zeolites with different Cu loadings and framework topologies (MFI, MOR, FER, BEA, and FAU). The influence of NO, O2, and H2O on the rate of N2O decomposition was investigated in detail. A kinetic model was developed based on the

  17. Correlation of foliage and litter chemistry of sugar maple, Acer saccharum, as affected by elevated CO2 and varying N availability, and effects on decomposition

    Science.gov (United States)

    J. S. King; K. S. Pregitzer; D. R. Zak; M. E. Kubiske; W. E. Holmes

    2001-01-01

    Rising atmospheric carbon dioxide has the potential to alter leaf litter chemistry, potentially affecting decomposition and rates of carbon and nitrogen cycling in forest ecosystems. This study was conducted to determine whether growth under elevated atmospheric CO2 altered the quality and microbial decomposition of leaf litter of a widely...

  18. FURFURAL YIELD AND DECOMPOSITION IN SODIUM 2,4DIMETHYLBENZENESULFONATE--SULFURIC ACID--WATER SOLUTIONS.

    Science.gov (United States)

    Batch-type microreactors (about 1/40 milliliter of reactants) were used to measure furfural yields from acidified xylose solutions containing sodium...It was found that presence of the salt did not affect the quantity of furfural produced, but greatly increased the rate of formation. The regular...increase in rate of furfural formation was directly related to the increase in the rate xylose decomposition, and furfural yields for all salt and acid

  19. Wood decomposition as influenced by invertebrates.

    Science.gov (United States)

    Ulyshen, Michael D

    2016-02-01

    The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial ecosystems. Three broad conclusions can be reached from the available literature. First, wood decomposition is largely driven by microbial activity but invertebrates also play a significant role in both temperate and tropical environments. Primary mechanisms include enzymatic digestion (involving both endogenous enzymes and those produced by endo- and ectosymbionts), substrate alteration (tunnelling and fragmentation), biotic interactions and nitrogen fertilization (i.e. promoting nitrogen fixation by endosymbiotic and free-living bacteria). Second, the effects of individual invertebrate taxa or functional groups can be accelerative or inhibitory but the cumulative effect of the entire community is generally to accelerate wood decomposition, at least during the early stages of the process (most studies are limited to the first 2-3 years). Although methodological differences and design limitations preclude meta-analysis, studies aimed at quantifying the contributions of invertebrates to wood decomposition commonly attribute 10-20% of wood loss to these organisms. Finally, some taxa appear to be particularly influential with respect to promoting wood decomposition. These include large wood-boring beetles (Coleoptera) and termites (Termitoidae), especially fungus-farming macrotermitines. The presence or absence of these species may be more consequential than species richness and the influence of invertebrates is likely to vary biogeographically. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  20. The Slice Algorithm For Irreducible Decomposition of Monomial Ideals

    DEFF Research Database (Denmark)

    Roune, Bjarke Hammersholt

    2009-01-01

    Irreducible decomposition of monomial ideals has an increasing number of applications from biology to pure math. This paper presents the Slice Algorithm for computing irreducible decompositions, Alexander duals and socles of monomial ideals. The paper includes experiments showing good performance...

  1. High Performance Polar Decomposition on Distributed Memory Systems

    KAUST Repository

    Sukkari, Dalal E.; Ltaief, Hatem; Keyes, David E.

    2016-01-01

    The polar decomposition of a dense matrix is an important operation in linear algebra. It can be directly calculated through the singular value decomposition (SVD) or iteratively using the QR dynamically-weighted Halley algorithm (QDWH). The former

  2. Sensitivity analysis of six soil organic matter models applied to the decomposition of animal manures and crop residues

    Directory of Open Access Journals (Sweden)

    Daniele Cavalli

    2016-09-01

    Full Text Available Two features distinguishing soil organic matter simulation models are the type of kinetics used to calculate pool decomposition rates, and the algorithm used to handle the effects of nitrogen (N shortage on carbon (C decomposition. Compared to widely used first-order kinetics, Monod kinetics more realistically represent organic matter decomposition, because they relate decomposition to both substrate and decomposer size. Most models impose a fixed C to N ratio for microbial biomass. When N required by microbial biomass to decompose a given amount of substrate-C is larger than soil available N, carbon decomposition rates are limited proportionally to N deficit (N inhibition hypothesis. Alternatively, C-overflow was proposed as a way of getting rid of excess C, by allocating it to a storage pool of polysaccharides. We built six models to compare the combinations of three decomposition kinetics (first-order, Monod, and reverse Monod, and two ways to simulate the effect of N shortage on C decomposition (N inhibition and C-overflow. We conducted sensitivity analysis to identify model parameters that mostly affected CO2 emissions and soil mineral N during a simulated 189-day laboratory incubation assuming constant water content and temperature. We evaluated model outputs sensitivity at different stages of organic matter decomposition in a soil amended with three inputs of increasing C to N ratio: liquid manure, solid manure, and low-N crop residue. Only few model parameters and their interactions were responsible for consistent variations of CO2 and soil mineral N. These parameters were mostly related to microbial biomass and to the partitioning of applied C among input pools, as well as their decomposition constants. In addition, in models with Monod kinetics, CO2 was also sensitive to a variation of the half-saturation constants. C-overflow enhanced pool decomposition compared to N inhibition hypothesis when N shortage occurred. Accumulated C in the

  3. 4.2. The kinetics of nitric acid decomposition of calcined borosilicate raw material of Ak-Arkhar Deposit

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Kurbonov, A.S.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to kinetics of nitric acid decomposition of calcined borosilicate raw material of Ak-Arkhar Deposit. The dependence of nitric acid decomposition of calcined boric raw material for extraction of boron oxide on temperature (20-100 deg C) and process duration (15-60 minutes) was defined. It was defined that at temperature increasing the extraction rate of boron oxide increases from 20.8 to 78.6%.

  4. Changes in eucalypt litter quality during the first three months of field decomposition in a Congolese plantation

    OpenAIRE

    Ngao, Jérôme; Bernhard Reversat, France; Loumeto, J. J.

    2009-01-01

    In fast-growing tree plantations, decomposition of leaf litter is considered as a key process of soil fertility. A three-month field experiment, spanning both rainy and dry seasons, was conducted to determine how changes in litter decomposition affect the main parameters of litter quality-namely, the concentrations of phenolic and non-phenolic carbon (C) compounds, nitrogen (N), and fibres, and the litter C mineralization rate. This Study was conducted to test (1) if these changes vary accord...

  5. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories

    Science.gov (United States)

    Chen, Ruirui; Senbayram, Mehmet; Blagodatsky, Sergey; Dittert, Klaus; Lin, Xiangui; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural 13C labelling adding C4-sucrose or C4-maize straw to C3-soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in 'microbial N mining' theory can be ascribed to K-strategists. In contrast, 'stoichiometric decomposition' theory, that is, accelerated OM

  6. Thermal decomposition of γ-irradiated lead nitrate

    International Nuclear Information System (INIS)

    Nair, S.M.K.; Kumar, T.S.S.

    1990-01-01

    The thermal decomposition of unirradiated and γ-irradiated lead nitrate was studied by the gas evolution method. The decomposition proceeds through initial gas evolution, a short induction period, an acceleratory stage and a decay stage. The acceleratory and decay stages follow the Avrami-Erofeev equation. Irradiation enhances the decomposition but does not affect the shape of the decomposition curve. (author) 10 refs.; 7 figs.; 2 tabs

  7. Dinner in the dark: Illuminating drivers of soil organic matter decomposition

    NARCIS (Netherlands)

    van der Wal, Annemieke; De Boer, Wietse

    Abstract Soil organic matter (SOM) dynamics plays a crucial role in soil ecosystem functioning and global warming. SOM is normally degraded slowly, but its decomposition rate can change substantially after addition of easily decomposable C sources. This process, known as “the priming effect”, has

  8. Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams

    Science.gov (United States)

    Vladislav Gulis; Amy D. Rosemond; Keller Suberkropp; Holly S. Weyers; Jonathan P. Benstead

    2004-01-01

    We determined the effects of nutrient enrichment on wood decomposition rates and microbial activity during a 3-year study in two headwater streams at Coweeta Hydrologic Laboratory, NC, U.S.A. After a 1-year pretreatment period, one of the streams was continuously enriched with inorganic nutrients (nitrogen and phosphorus) for 2 years while the other stream served as a...

  9. Catalytic properties of extraframework iron-containing species in ZSM-5 for N2O decomposition

    NARCIS (Netherlands)

    Li, G.; Pidko, E.A.; Filot, I.A.W.; Santen, van R.A.; Li, Can; Hensen, E.J.M.

    2013-01-01

    The reactivity of mononuclear and binuclear iron-containing complexes in ZSM-5 zeolite for catalytic N2O decomposition has been investigated by periodic DFT calculations and microkinetic modeling. On mononuclear sites, the activation of a first N2O molecule is favorable. The rate of catalytic N2O

  10. Role of soil texture, clay mineralogy, location, and temperature in coarse wood decomposition - a mesocosm experiment

    Science.gov (United States)

    Cinzia Fissore; Martin F. Jurgensen; James Pickens; Chris Miller; Deborah Page-Dumroese; Christian P. Giardina

    2016-01-01

    Of all the major pools of terrestrial carbon (C), the dynamics of coarse woody debris (CWD) are the least understood. In contrast to soils and living vegetation, the study of CWD has rarely relied on ex situ methods for elaborating controls on decomposition rates. In this study, we report on a mesocosm incubation experiment examining how clay amount (8%, 16%,...

  11. Source, habitat and nutrient enrichment effects on decomposition of detritus in Lower Mississippi River Basin bayous

    Science.gov (United States)

    Potential differences in storage and processing of detritus in agricultural landscapes may alter freshwater ecosystem function. We compared decomposition rates of maize (Zea mays) and willow oak (Quercus phellos) from three bayous located within the Lower Mississippi River Basin of NW Mississippi, ...

  12. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.

    Science.gov (United States)

    Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S

    2016-09-01

    We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.

  13. Immobilization and mineralization of N and P by heterotrophic microbes during leaf decomposition

    Science.gov (United States)

    Beth Cheever; Erika Kratzer; Jackson Webster

    2012-01-01

    According to theory, the rate and stoichiometry of microbial mineralization depend, in part, on nutrient availability. For microbes associated with leaves in streams, nutrients are available from both the water column and the leaf. Therefore, microbial nutrient cycling may change with nutrient availability and during leaf decomposition. We explored spatial and temporal...

  14. Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality

    Science.gov (United States)

    Felipe G. Sanchez

    2001-01-01

    This study examined the effects of initial litter quality and irrigation and fertilization treatments on litter decomposition rates and nutrient dynamics (N, Ca, K, Mg, and P) of loblolly (Pinus taeda L.) pine needles in the North Carolina Sand Hills over 3 years. Litter quality was based on the initial C/N ratios, with the high-quality litter having...

  15. Implementation of domain decomposition and data decomposition algorithms in RMC code

    International Nuclear Information System (INIS)

    Liang, J.G.; Cai, Y.; Wang, K.; She, D.

    2013-01-01

    The applications of Monte Carlo method in reactor physics analysis is somewhat restricted due to the excessive memory demand in solving large-scale problems. Memory demand in MC simulation is analyzed firstly, it concerns geometry data, data of nuclear cross-sections, data of particles, and data of tallies. It appears that tally data is dominant in memory cost and should be focused on in solving the memory problem. Domain decomposition and tally data decomposition algorithms are separately designed and implemented in the reactor Monte Carlo code RMC. Basically, the domain decomposition algorithm is a strategy of 'divide and rule', which means problems are divided into different sub-domains to be dealt with separately and some rules are established to make sure the whole results are correct. Tally data decomposition consists in 2 parts: data partition and data communication. Two algorithms with differential communication synchronization mechanisms are proposed. Numerical tests have been executed to evaluate performance of the new algorithms. Domain decomposition algorithm shows potentials to speed up MC simulation as a space parallel method. As for tally data decomposition algorithms, memory size is greatly reduced

  16. Decompositional equivalence: A fundamental symmetry underlying quantum theory

    OpenAIRE

    Fields, Chris

    2014-01-01

    Decompositional equivalence is the principle that there is no preferred decomposition of the universe into subsystems. It is shown here, by using simple thought experiments, that quantum theory follows from decompositional equivalence together with Landauer's principle. This demonstration raises within physics a question previously left to psychology: how do human - or any - observers agree about what constitutes a "system of interest"?

  17. In situ XAS of the solvothermal decomposition of dithiocarbamate complexes

    NARCIS (Netherlands)

    Islam, H.-U.; Roffey, A.; Hollingsworth, N.; Catlow, R.; Wolthers, M.; de Leeuw, N.H.; Bras, W.; Sankar, G.; Hogarth, G.

    2012-01-01

    An in situ XAS study of the solvothermal decomposition of iron and nickel dithiocarbamate complexes was performed in order to gain understanding of the decomposition mechanisms. This work has given insight into the steps involved in the decomposition, showing variation in reaction pathways between

  18. Thermal decomposition of ammonium uranate; X-ray study

    International Nuclear Information System (INIS)

    El-Fekey, S.A.; Rofail, N.H.; Khilla, M.A.

    1984-01-01

    Ammonium uranate was precipitated from a nuclear-pure uranyl nitrate solution using gaseous ammonia. Thermal decomposition of the obtained uranate, at different calcining temperatures, resulted in the formation of amorphous (A-)UO 3 , β-UO 3 , UOsub(2.9), U 3 O 8 (H) and U 3 O 8 (O). The influence of ammonia content, occluded nitrate ions and rate of heating, on the formation of these phases, was studied using X-ray powder diffraction analysis. The results indicated that ammonium uranate UO 2 (OH)sub(2-x)(ONH 4 )x . YH 2 O is a continuous non-stoichiometric system is a continuous non-stoichiometric system with no intermediate stoichiometric compounds and its composition varies according to mode of preparation. The results indicated also that the rate of heating and formation of hydrates are important factors for both UOsub(2.9) and U 3 O 8 (O) formation. (orig.)

  19. Decomposition of persistent pharmaceuticals in wastewater by ionizing radiation

    Science.gov (United States)

    Kimura, Atsushi; Osawa, Misako; Taguchi, Mitsumasa

    2012-09-01

    Pharmaceuticals in wastewater were treated by the combined method of activated sludge and ionizing radiation in laboratory scale. Oseltamivir, aspirin, and ibuprofen at 5 μmol dm-3 in wastewater were decomposed by the activated sludge at reaction time for 4 h. Carbamazepine, ketoprofen, mefenamic acid, clofibric acid, and diclofenac were not biodegraded completely, but were eliminated by γ-ray irradiation at 2 kGy. The rate constants of the reactions of these pharmaceuticals with hydroxyl radicals were estimated by the competition reaction method to be 4.0-10×109 mol-1 dm3 s-1. Decompositions of the pharmaceuticals in wastewater by ionizing radiation were simulated by use of the rate constants and the amount of total organic carbon as parameters. Simulation curves of concentrations of these pharmaceuticals as a function of dose described the experimental data, and the required dose for the elimination of them in wastewater by ionizing radiation can be estimated by this simulation.

  20. High-temperature unimolecular decomposition of ethyl propionate

    KAUST Repository

    Giri, Binod

    2016-10-09

    This work reports rate coefficients of the thermal unimolecular decomposition reaction of ethyl propionate (EP) behind reflected shock waves over the temperature range of 976–1300 K and pressures of 825–1875 Torr. The reaction progress was monitored by detecting CH near 10.532 μm using CO gas laser absorption. In addition, G3//MP2/aug-cc-pVDZ and master equation calculations were performed to assess the pressure- and temperature-dependence of the reaction. Our calculations revealed that CH elimination occurs via a six-centered retro-ene transition state. Our measured rate data are close to the high-pressure limit and showed no discernable temperature fall off.