WorldWideScience

Sample records for ferumoxide-labeled human neural

  1. Labeling Efficacy of Superparamagnetic Iron Oxide Nanoparticles to Human Neural Stem Cells: Comparison of Ferumoxides, Monocrystalline Iron Oxide, Cross-linked Iron Oxide (CLIO)-NH2 and tat-CLIO

    International Nuclear Information System (INIS)

    Song, Mi Yeoun; Moon, Woo Kyung; Kim, Yun Hee; Song, In Chan; Yoon, Byung Woo; Lim, Dong Yeol

    2007-01-01

    We wanted to compare the human neural stem cell (hNSC) labeling efficacy of different superparamagnetic iron oxide nanoparticles (SPIONs), namely, ferumoxides, monocrystalline iron oxide (MION), cross-linked iron oxide (CLIO)-NH 2 and tat-CLIO. The hNSCs (5x10 5 HB1F3 cells/ml) were incubated for 24 hr in cell culture media that contained 25 μg/ml of ferumoxides, MION or CLIO-NH 2 , and with or without poly-L-lysine (PLL) and tat-CLIO. The cellular iron uptake was analyzed qualitatively with using a light microscope and this was quantified via atomic absorption spectrophotometry. The visibility of the labeled cells was assessed with MR imaging. The incorporation of SPIONs into the hNSCs did not affect the cellular proliferations and viabilities. The hNSCs labeled with tat-CLIO showed the longest retention, up to 72 hr, and they contained 2.15± 0.3 pg iron/cell, which are 59 fold, 430 fold and six fold more incorporated iron than that of the hNSCs labeled with ferumoxides, MION or CLIO-NH 2 , respectively. However, when PLL was added, the incorporation of ferumoxides, MION or CLIO-NH 2 into the hNSCs was comparable to that of tat-CLIO. For MR imaging, hNSCs can be efficiently labeled with tat-CLIO alone or with a combination of ferumoxides, MION, CLIO-NH 2 and the transfection agent PLL

  2. Labeling Efficacy of Superparamagnetic Iron Oxide Nanoparticles to Human Neural Stem Cells: Comparison of Ferumoxides, Monocrystalline Iron Oxide, Cross-linked Iron Oxide (CLIO)-NH2 and tat-CLIO

    Science.gov (United States)

    Song, Miyeoun; Kim, Yunhee; Lim, Dongyeol; Song, In-Chan; Yoon, Byung-Woo

    2007-01-01

    Objective We wanted to compare the human neural stem cell (hNSC) labeling efficacy of different superparamagnetic iron oxide nanoparticles (SPIONs), namely, ferumoxides, monocrystalline iron oxide (MION), cross-linked iron oxide (CLIO)-NH2 and tat-CLIO. Materials and Methods The hNSCs (5 × 105 HB1F3 cells/ml) were incubated for 24 hr in cell culture media that contained 25 µg/ml of ferumoxides, MION or CLIO-NH2, and with or without poly-L-lysine (PLL) and tat-CLIO. The cellular iron uptake was analyzed qualitatively with using a light microscope and this was quantified via atomic absorption spectrophotometry. The visibility of the labeled cells was assessed with MR imaging. Results The incorporation of SPIONs into the hNSCs did not affect the cellular proliferations and viabilities. The hNSCs labeled with tat-CLIO showed the longest retention, up to 72 hr, and they contained 2.15 ± 0.3 pg iron/cell, which are 59 fold, 430 fold and six fold more incorporated iron than that of the hNSCs labeled with ferumoxides, MION or CLIO-NH2, respectively. However, when PLL was added, the incorporation of ferumoxides, MION or CLIO-NH2 into the hNSCs was comparable to that of tat-CLIO. Conclusion For MR imaging, hNSCs can be efficiently labeled with tat-CLIO alone or with a combination of ferumoxides, MION, CLIO-NH2 and the transfection agent PLL. PMID:17923778

  3. [Ferumoxide labeled Flk1+ CD31- CD34- human bone marrow mesenchymal stem cells and its in vivo tracing in the brains of Macaca Fascicularis].

    Science.gov (United States)

    Feng, Ming; Wang, Ren-Zhi; Zhu, Hua; Zhang, Nan; Wang, Chang-Jun; Wei, Jun-Ji; Lu, Shan; Li, Qin; Yin, Xiao-Ming; Han, Qin; Ma, Wen-Bin; Qin, Chuang; Zhao, Chun-Hua; An, Yi-Hua; Kong, Yan-Guo

    2008-10-01

    To explore the method for labeling Flk1+ CD31- CD34- human bone marrow mesenchymal stem cells (hBMSCs) with ferumoxide-PLL and evaluate the feasibility of its tracing after transplantation into the brains of Macaca Fascicularis. The hBMSCs were incubated with ferumoxide-PLL. Trypan blue staining, Prussian blue staining, and transmission electron microscope were performed to show intracellular iron, marking efficiency, and the vigor of the labeled cells. After the hBMSCs were transplanted into the brains of cynomolgus monkeys by stereotaxis, magnetic resonance imaging (MRI) was performed to trace the cells in vivo. Cell survival and differentiation were studied with immunohistochemistry, Prussian blue staining, and HE staining. The marking efficiency of the ferumoxide-PLL was 96%. Iron particles were found intracytoplasmic of the hBMSCs by Prussian blue staining and transmission electron microscopy. The relaxation rates of labeled cells in MRI were 4.4 and 4.2 times higher than those of the unlabeled cells. Hypointensity area was found by MRI three weeks after transplantation. Many hBMSCs and new vessels were found in the transplantation zone by pathological and immunofluorescence methods. Ferumoxide-PLL can effectively label hBMSCs and thus increase its contrast in MRI results. The cells can survive in the brains of cynomolgus monkeys. The labeled hBMSCs can be traced in vivo by MRI.

  4. Dynamic MRI of ferumoxide-labeled bone mesenchmal stem cells after transplantation in infarcted myocardium

    International Nuclear Information System (INIS)

    Liu Qiong; Zhao Shihua; Lu Minjie; Jiang Shiliang; Yan Chaowu; Zhang Yan; Meng Liang; Tang Yue; Meng Xianmin; Wei Yingjie; Wang Qingzhi

    2009-01-01

    Objective: To investigate the ability of magnetic resonance imaging (MRI) in tracking magnetically labeled mesenchymal stem cells (MR-MSCs) in a swine myocardial infarction (MI) model. Methods: Adult Chinese mini-pigs (n=6) were subjected to open-chest experimental MI operation. Their autogeneic bone marrow-derived mesenchymal stem cells (MSCs) was cultured and doubly labeled with ferumoxides and DAPI. On the 14 th day after MSCs transplantation, the size and location of the myocardial infarction were assessed by using delayed-enhancement MRI (DE-MRI). Then the labeled MSCs were injected intramyocardially into peri-infarct zone and normal myocardium. At 24 hrs and 3 weeks after injection, the contrast and the volume of the MR-MSCs hypointense lesion from the MR images were acquired, and the contrast was determined using the difference in signal intensity between the hypointense and normal myocardium divided by signal intensity of the normal region. After humane euthanasia, the heart was excised and histology corresponding to MRI slices that demonstrated MR-MSCs lesions was performed. Repeated-measures ANOVA and a paired t test were used for comparison of the contrast and the volume of the MR-MSCs hypointense lesion at different time points. Comparisons between independent groups were performed with the standard Student t test. Results: The labeling efficiency of ferumoxides and DAPI was 100%. On the 14 th day after the MI operation, the average percentage of infracted myocardial area was (33.6±8.9)%. Twenty- four hours after MSCs transplantation, MSCs injection sites appeared as ovoid hypointensive lesions with sharp border on T 2 * images. At 24 h after injection, the signal contrast [(67.00±5.48)% vs (61.92±7.76)%,t=1.65, P=0.1158] and the size [(0.56±0.24) cm 2 vs (0.52±0.25) cm 2 , t=0.39, P=0.7044] of the lesions showed no statistical difference between the peri-infarct zone and the normal myocardium. At 3 weeks after injection, the signal contrast

  5. Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging

    Science.gov (United States)

    2011-01-01

    Background Stem cell therapy has emerged as a promising addition to traditional treatments for a number of diseases. However, harnessing the therapeutic potential of stem cells requires an understanding of their fate in vivo. Non-invasive cell tracking can provide knowledge about mechanisms responsible for functional improvement of host tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used to label and visualize various cell types with magnetic resonance imaging (MRI). In this study we performed experiments designed to investigate the biological properties, including proliferation, viability and differentiation capacity of mesenchymal cells (MSCs) labeled with clinically approved SPIONs. Results Rat and mouse MSCs were isolated, cultured, and incubated with dextran-covered SPIONs (ferumoxide) alone or with poly-L-lysine (PLL) or protamine chlorhydrate for 4 or 24 hrs. Labeling efficiency was evaluated by dextran immunocytochemistry and MRI. Cell proliferation and viability were evaluated in vitro with Ki67 immunocytochemistry and live/dead assays. Ferumoxide-labeled MSCs could be induced to differentiate to adipocytes, osteocytes and chondrocytes. We analyzed ferumoxide retention in MSCs with or without mitomycin C pretreatment. Approximately 95% MSCs were labeled when incubated with ferumoxide for 4 or 24 hrs in the presence of PLL or protamine, whereas labeling of MSCs incubated with ferumoxide alone was poor. Proliferative capacity was maintained in MSCs incubated with ferumoxide and PLL for 4 hrs, however, after 24 hrs it was reduced. MSCs incubated with ferumoxide and protamine were efficiently visualized by MRI; they maintained proliferation and viability for up to 7 days and remained competent to differentiate. After 21 days MSCs pretreated with mitomycin C still showed a large number of ferumoxide-labeled cells. Conclusions The efficient and long lasting uptake and retention of SPIONs by MSCs using a protocol employing ferumoxide and

  6. Detection of hepatocellular carcinoma: comparison of Gd-DTPA- and ferumoxides-enhanced MR imaging

    International Nuclear Information System (INIS)

    Simon, G.; Link, T.M.; Daldrup-Link, H.; Settles, M.; Woertler, K.; Doebereiner, F.; Schulte-Frohlinde, E.; Rummeny, E.J.

    2005-01-01

    The aim was to compare the diagnostic performance of dynamic Gd-DTPA- and ferumoxides-enhanced MRI for hepatocellular carcinoma (HCC). Twenty-five patients with chronic hepatitis or liver cirrhosis underwent both dynamic gadopentetate- and ferumoxides-enhanced MRI studies of the liver for HCC detection on the same day. MR data of both studies were retrospectively and independently analyzed. Two observers determined in consensus the grade of diffuse fibrotic liver changes (mild, moderate or severe) and the number of focal lesions. HCCs were confirmed by histology (n=22) and/or follow-up studies for at least six months (n=64). Differences in results obtained from both MR data sets were tested for significance with the McNemar's test (p 0.05) and Gd-DTPA-enhanced scans (94.2%). Gd-DTPA- and ferumoxides-enhanced MRI perform equally well for HCC detection. The majority of small hypervascular hepatic lesions, detected on dynamic Gd-DTPA-enhanced MRI but not on ferumoxides-enhanced MRI, represent no HCCs. (orig.)

  7. Labeling human embryonic stem-cell-derived cardiomyocytes for tracking with MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, Rosalinda T.; Daldrup-Link, Heike [Lucile Packard Children' s Hospital, Stanford School of Medicine, Pediatric Radiology, Stanford, CA (United States); Boddington, Sophie; Wendland, Mike; Mandrussow, Lydia [University of California, Department of Radiology and Biomedical Imaging, UCSF Medical Center, San Francisco, CA (United States); Henning, Tobias D. [University Hospital of Cologne, Department of Radiology and Neuroradiology, Cologne (Germany); Liu, Siyuan [National Institutes of Health, Language Section, Voice, Speech and Language Branch, National Institute on Deafness and Other Communication Disorders, Bethesda, MD (United States)

    2011-11-15

    Human embryonic stem cells (hESC) can generate cardiomyocytes (CM), which offer promising treatments for cardiomyopathies in children. However, challenges for clinical translation result from loss of transplanted cell from target sites and high cell death. An imaging technique that noninvasively and repetitively monitors transplanted hESC-CM could guide improvements in transplantation techniques and advance therapies. To develop a clinically applicable labeling technique for hESC-CM with FDA-approved superparamagnetic iron oxide nanoparticles (SPIO) by examining labeling before and after CM differentiation. Triplicates of hESC were labeled by simple incubation with 50 {mu}g/ml of ferumoxides before or after differentiation into CM, then imaged on a 7T MR scanner using a T2-weighted multi-echo spin-echo sequence. Viability, iron uptake and T2-relaxation times were compared between groups using t-tests. hESC-CM labeled before differentiation demonstrated significant MR effects, iron uptake and preserved function. hESC-CM labeled after differentiation showed no significant iron uptake or change in MR signal (P < 0.05). Morphology, differentiation and viability were consistent between experimental groups. hESC-CM should be labeled prior to CM differentiation to achieve a significant MR signal. This technique permits monitoring delivery and engraftment of hESC-CM for potential advancements of stem cell-based therapies in the reconstitution of damaged myocardium. (orig.)

  8. Labeling human embryonic stem-cell-derived cardiomyocytes for tracking with MR imaging

    International Nuclear Information System (INIS)

    Castaneda, Rosalinda T.; Daldrup-Link, Heike; Boddington, Sophie; Wendland, Mike; Mandrussow, Lydia; Henning, Tobias D.; Liu, Siyuan

    2011-01-01

    Human embryonic stem cells (hESC) can generate cardiomyocytes (CM), which offer promising treatments for cardiomyopathies in children. However, challenges for clinical translation result from loss of transplanted cell from target sites and high cell death. An imaging technique that noninvasively and repetitively monitors transplanted hESC-CM could guide improvements in transplantation techniques and advance therapies. To develop a clinically applicable labeling technique for hESC-CM with FDA-approved superparamagnetic iron oxide nanoparticles (SPIO) by examining labeling before and after CM differentiation. Triplicates of hESC were labeled by simple incubation with 50 μg/ml of ferumoxides before or after differentiation into CM, then imaged on a 7T MR scanner using a T2-weighted multi-echo spin-echo sequence. Viability, iron uptake and T2-relaxation times were compared between groups using t-tests. hESC-CM labeled before differentiation demonstrated significant MR effects, iron uptake and preserved function. hESC-CM labeled after differentiation showed no significant iron uptake or change in MR signal (P < 0.05). Morphology, differentiation and viability were consistent between experimental groups. hESC-CM should be labeled prior to CM differentiation to achieve a significant MR signal. This technique permits monitoring delivery and engraftment of hESC-CM for potential advancements of stem cell-based therapies in the reconstitution of damaged myocardium. (orig.)

  9. Inflammatory pseudotumor of the liver: ferumoxide-enhanced MR imaging as a tiebreaker.

    Science.gov (United States)

    Kato, Hiroki; Kanematsu, Masayuki; Kondo, Hiroshi; Osada, Shinji; Goshima, Satoshi; Yamada, Tetsuya; Yamada, Yasuhiro; Yokoyama, Ryujiro; Hoshi, Hiroaki; Moriyama, Noriyuki

    2004-09-01

    We examined a 70-year-old male patient with an inflammatory pseudotumor of the liver mimicking a peripheral-type cholangiocellular carcinoma. Ferumoxide-enhanced magnetic resonance (MR) imaging revealed residual Kupffer cell function in liver parenchyma in and surrounding the inflammatory pseudotumor involvement, which suggested the diagnosis of inflammatory pseudotumor of the liver. We correlate the MR imaging and pathologic findings in this report. Copyright 2004 Wiley-Liss, Inc.

  10. Detecting danger labels with RAM-based neural networks

    DEFF Research Database (Denmark)

    Jørgensen, T.M.; Christensen, S.S.; Andersen, A.W.

    1996-01-01

    An image processing system for the automatic location of danger labels on the back of containers is presented. The system uses RAM-based neural networks to locate and classify labels after a pre-processing step involving specially designed non-linear edge filters and RGB-to-HSV conversion. Result...

  11. Optimal pulse sequence for ferumoxides-enhanced MR imaging used in the detection of hepatocellular carcinoma: a comparative study using seven pulse sequences

    International Nuclear Information System (INIS)

    Kim, Seung Hoon; Choi, Dongil; Lim, Jae Hoon; Lee, Won Jae; Jang, Hyun Jung; Lim, Kyo Keun; Lee, Soon Jin; Cho, Jae Min; Kim, Seung Kwon; Kim, Gab Chul

    2002-01-01

    To identify the optimal pulse sequence for ferumoxides-enhanced magnetic resonance (MR) imaging in the detection of hepatocelluar carcinomas (HCCs). Sixteen patients with 25 HCCs underwent MR imaging following intravenous infusion of ferumoxides. All MR studies were performed on a 1.5-T MR system, using a phased-array coil. Ferumoxides (Feridex IV) at a dose of 15 μmol/Kg was slowly infused intravenously, and axial images of seven sequences were obtained 30 minutes after the end of infusion. The MR protocol included fast spin-echo (FSE) with two echo times (TR3333-8571/TE18 and 90-117), singleshot FSE (SSFSE) with two echo times (TR∞/TE39 and 98), T2-weighted gradient-recalled acquisition in the steady state (GRASS) (TR216/TE20), T2-weighted fast multiplanar GRASS (FMPGR) (TR130/TE8.4-9.5), and T2-weighted fast multiplanar spoiled GRASS (FMPSPGR) (TR130/TE8.4-9.5). Contrast-to-noise ratios (CNRs) of HCCs determined during the imaging sequences formed the basis of quantitative analysis, and images were qualitatively assessed in terms of lesion conspicuity and image artifacts. The diagnostic accuracy of all sequences was assessed using receiver operating characteristic (ROC) analysis. Quantitative analysis revealed that the CNRs of T2-weighted FMPGR and T2-weighted FMPSPGR were significantly higher than those of the other sequences, while qualitative analysis showed that image artifacts were prominent at T2-weighted GRASS imaging. Lesion conspicuity was statistically significantly less clear at SSFSE imaging. In term of lesion detection, T-weighted FMPGR, T2- weighted FMPSPGR, and proton density FSE imaging were statistically superior to the others. T2-weighted FMPGR, T2- weighted FMPSPGR, and proton density FSE appear to be the optimal pulse sequences for ferumoxidesenhanced MR imaging in the detection of HCCs

  12. A Comparison of Exogenous Labels for the Histological Identification of Transplanted Neural Stem Cells

    Science.gov (United States)

    Nicholls, Francesca J.; Liu, Jessie R.; Modo, Michel

    2017-01-01

    The interpretation of cell transplantation experiments is often dependent on the presence of an exogenous label for the identification of implanted cells. The exogenous labels Hoechst 33342, 5-bromo-2′-deoxyuridine (BrdU), PKH26, and Qtracker were compared for their labeling efficiency, cellular effects, and reliability to identify a human neural stem cell (hNSC) line implanted intracerebrally into the rat brain. Hoechst 33342 (2 mg/ml) exhibited a delayed cytotoxicity that killed all cells within 7 days. This label was hence not progressed to in vivo studies. PKH26 (5 μM), Qtracker (15 nM), and BrdU (0.2 μM) labeled 100% of the cell population at day 1, although BrdU labeling declined by day 7. BrdU and Qtracker exerted effects on proliferation and differentiation. PKH26 reduced viability and proliferation at day 1, but this normalized by day 7. In an in vitro coculture assay, all labels transferred to unlabeled cells. After transplantation, the reliability of exogenous labels was assessed against the gold standard of a human-specific nuclear antigen (HNA) antibody. BrdU, PKH26, and Qtracker resulted in a very small proportion (Exogenous labels can therefore be reliable to identify transplanted cells without exerting major cellular effects, but validation is required. The interpretation of cell transplantation experiments should be presented in the context of the label's limitations. PMID:27938486

  13. Supervised Sequence Labelling with Recurrent Neural Networks

    CERN Document Server

    Graves, Alex

    2012-01-01

    Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary.    The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional...

  14. Magneto-optical labeling of fetal neural stem cells for in vivo MRI tracking.

    Science.gov (United States)

    Flexman, J A; Minoshima, S; Kim, Y; Cross, D J

    2006-01-01

    Neural stem cell therapy for neurological pathologies, such as Alzheimer's and Parkinson's disease, may delay the onset of symptoms, replace damaged neurons and/or support the survival of endogenous cells. Magnetic resonance imaging (MRI) can be used to track magnetically labeled cells in vivo to observe migration. Prior to transplantation, labeled cells must be characterized to show that they retain their intrinsic properties, such as cell proliferation into neurospheres in a supplemented environment. In vivo images must also be correlated to sensitive, histological markers. In this study, we show that fetus-derived neural stem cells can be co-labeled with superparamagnetic iron oxide and PKH26, a fluorescent dye. Labeled cells retain the ability to proliferate into neurospheres in culture, but labeling prevents neurospheres from merging in a non-adherent culture environment. After labeled NSCs were transplantation into the rat brain, their location and subsequent migration along the corpus callosum was detected using MRI. This study demonstrates an imaging paradigm with which to develop an in vivo assay for quantitatively evaluating fetal neural stem cell migration.

  15. The common and distinct neural bases of affect labeling and reappraisal in healthy adults

    Directory of Open Access Journals (Sweden)

    Lisa Jane Burklund

    2014-03-01

    Full Text Available Emotion regulation is commonly characterized as involving conscious and intentional attempts to change felt emotions, such as, for example, through reappraisal whereby one intentionally decreases the intensity of one’s emotional response to a particular stimulus or situation by reinterpreting it in a less threatening way. However, there is growing evidence and appreciation that some types of emotion regulation are unintentional or incidental, meaning that affective modulation is a consequence but not an explicit goal. For example, affect labeling involves simply verbally labeling the emotional content of an external stimulus or one’s own affective responses without an intentional goal of altering emotional responses, yet has been associated with reduced affective responses at the neural and experiential levels. Although both intentional and incidental emotional regulation strategies have been associated with diminished limbic responses and self-reported distress, little previous research has directly compared their underlying neural mechanisms. In this study, we examined the extent to which incidental and intentional emotion regulation, namely, affect labeling and reappraisal, produced common and divergent neural and self-report responses to aversive images relative to an observe-only control condition in a sample of healthy older adults (N=39. Affect labeling and reappraisal produced common activations in several prefrontal regulatory regions, with affect labeling producing stronger responses in direct comparisons. Affect labeling and reappraisal were also associated with similar decreases in amygdala activity. Finally, affect labeling and reappraisal were associated with correlated reductions in self-reported distress. Together these results point to common neurocognitive mechanisms involved in affect labeling and reappraisal, supporting the idea that intentional and incidental emotion regulation may utilize overlapping neural processes.

  16. Deep Neural Network-Based Chinese Semantic Role Labeling

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xiaoqing; CHEN Jun; SHANG Guoqiang

    2017-01-01

    A recent trend in machine learning is to use deep architec-tures to discover multiple levels of features from data, which has achieved impressive results on various natural language processing (NLP) tasks. We propose a deep neural network-based solution to Chinese semantic role labeling (SRL) with its application on message analysis. The solution adopts a six-step strategy: text normalization, named entity recognition (NER), Chinese word segmentation and part-of-speech (POS) tagging, theme classification, SRL, and slot filling. For each step, a novel deep neural network - based model is designed and optimized, particularly for smart phone applications. Ex-periment results on all the NLP sub - tasks of the solution show that the proposed neural networks achieve state-of-the-art performance with the minimal computational cost. The speed advantage of deep neural networks makes them more competitive for large-scale applications or applications requir-ing real-time response, highlighting the potential of the pro-posed solution for practical NLP systems.

  17. Quantification of Superparamagnetic Iron Oxide (SPIO)-labeled Cells Using MRI

    Science.gov (United States)

    Rad, Ali M; Arbab, Ali S; Iskander, ASM; Jiang, Quan; Soltanian-Zadeh, Hamid

    2015-01-01

    Purpose To show the feasibility of using magnetic resonance imaging (MRI) to quantify superparamagnetic iron oxide (SPIO)-labeled cells. Materials and Methods Lymphocytes and 9L rat gliosarcoma cells were labeled with Ferumoxides-Protamine Sulfate complex (FE-PRO). Cells were labeled efficiently (more than 95%) and iron concentration inside each cell was measured by spectrophotometry (4.77-30.21 picograms). Phantom tubes containing different number of labeled or unlabeled cells as well as different concentrations of FE-PRO were made. In addition, labeled and unlabeled cells were injected into fresh and fixed rat brains. Results Cellular viability and proliferation of labeled and unlabeled cells were shown to be similar. T2-weighted images were acquired using 7 T and 3 T MRI systems and R2 maps of the tubes containing cells, free FE-PRO, and brains were made. There was a strong linear correlation between R2 values and labeled cell numbers but the regression lines were different for the lymphocytes and gliosarcoma cells. Similarly, there was strong correlation between R2 values and free iron. However, free iron had higher R2 values than the labeled cells for the same concentration of iron. Conclusion Our data indicated that in vivo quantification of labeled cells can be done by careful consideration of different factors and specific control groups. PMID:17623892

  18. Different Neural Correlates of Emotion-Label Words and Emotion-Laden Words: An ERP Study

    OpenAIRE

    Zhang, Juan; Wu, Chenggang; Meng, Yaxuan; Yuan, Zhen

    2017-01-01

    It is well-documented that both emotion-label words (e.g., sadness, happiness) and emotion-laden words (e.g., death, wedding) can induce emotion activation. However, the neural correlates of emotion-label words and emotion-laden words recognition have not been examined. The present study aimed to compare the underlying neural responses when processing the two kinds of words by employing event-related potential (ERP) measurements. Fifteen Chinese native speakers were asked to perform a lexical...

  19. AUC-Maximized Deep Convolutional Neural Fields for Protein Sequence Labeling.

    Science.gov (United States)

    Wang, Sheng; Sun, Siqi; Xu, Jinbo

    2016-09-01

    Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of machine learning tasks. This paper presents Deep Convolutional Neural Fields (DeepCNF), an integration of DCNN with Conditional Random Field (CRF), for sequence labeling with an imbalanced label distribution. The widely-used training methods, such as maximum-likelihood and maximum labelwise accuracy, do not work well on imbalanced data. To handle this, we present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking framework, approximate it by a polynomial function and then apply a gradient-based procedure to optimize it. Our experimental results confirm that maximum-AUC greatly outperforms the other two training methods on 8-state secondary structure prediction and disorder prediction since their label distributions are highly imbalanced and also has similar performance as the other two training methods on solvent accessibility prediction, which has three equally-distributed labels. Furthermore, our experimental results show that our AUC-trained DeepCNF models greatly outperform existing popular predictors of these three tasks. The data and software related to this paper are available at https://github.com/realbigws/DeepCNF_AUC.

  20. Efficient organ localization using multi-label convolutional neural networks in thorax-abdomen CT scans

    Science.gov (United States)

    Efrain Humpire-Mamani, Gabriel; Arindra Adiyoso Setio, Arnaud; van Ginneken, Bram; Jacobs, Colin

    2018-04-01

    Automatic localization of organs and other structures in medical images is an important preprocessing step that can improve and speed up other algorithms such as organ segmentation, lesion detection, and registration. This work presents an efficient method for simultaneous localization of multiple structures in 3D thorax-abdomen CT scans. Our approach predicts the location of multiple structures using a single multi-label convolutional neural network for each orthogonal view. Each network takes extra slices around the current slice as input to provide extra context. A sigmoid layer is used to perform multi-label classification. The output of the three networks is subsequently combined to compute a 3D bounding box for each structure. We used our approach to locate 11 structures of interest. The neural network was trained and evaluated on a large set of 1884 thorax-abdomen CT scans from patients undergoing oncological workup. Reference bounding boxes were annotated by human observers. The performance of our method was evaluated by computing the wall distance to the reference bounding boxes. The bounding boxes annotated by the first human observer were used as the reference standard for the test set. Using the best configuration, we obtained an average wall distance of 3.20~+/-~7.33 mm in the test set. The second human observer achieved 1.23~+/-~3.39 mm. For all structures, the results were better than those reported in previously published studies. In conclusion, we proposed an efficient method for the accurate localization of multiple organs. Our method uses multiple slices as input to provide more context around the slice under analysis, and we have shown that this improves performance. This method can easily be adapted to handle more organs.

  1. In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Daldrup-Link, Heike E.; Meier, Reinhardt; Metz, Stephan; Settles, Marcus; Rummeny, Ernst J.; Rudelius, Martina; Piontek, Guido; Schlegel, Juergen; Piert, Morand; Uherek, Christoph; Wels, Winfried

    2005-01-01

    The purpose of this study is to optimize labeling of the human natural killer (NK) cell line NK-92 with iron-oxide-based contrast agents and to monitor the in vivo distribution of genetically engineered NK-92 cells, which are directed against HER2/neu receptors, to HER2/neu positive mammary tumors with magnetic resonance (MR) imaging. Parental NK-92 cells and genetically modified HER2/neu specific NK-92-scFv(FRP5)-zeta cells, expressing a chimeric antigen receptor specific to the tumor-associated ErbB2 (HER2/neu) antigen, were labeled with ferumoxides and ferucarbotran using simple incubation, lipofection and electroporation techniques. Labeling efficiency was evaluated by MR imaging, Prussian blue stains and spectrometry. Subsequently, ferucarbotran-labeled NK-92-scFv(FRP5)-zeta (n=3) or parental NK-92 cells were intravenously injected into the tail vein of six mice with HER2/neu-positive NIH 3T3 mammary tumors, implanted in the mammary fat pad. The accumulation of the cells in the tumors was monitored by MR imaging before and 12 and 24 h after cell injection (p.i.). MR data were correlated with histopathology. Both the parental NK-92 and the genetically modified NK-92-scFv(FRP5)-zeta cells could be labeled with ferucarbotran and ferumoxides by lipofection and electroporation, but not by simple incubation. The intracellular cytoplasmatic iron-oxide uptake was significantly higher after labeling with ferucarbotran than ferumoxides (P 6 NK-92-scFv(FRP5)-zeta cells into tumor-bearing mice, MR showed a progressive signal decline in HER2/neu-positive mammary tumors at 12 and 24 h (p.i.). Conversely, injection of 5 x 10 6 parental NK-92 control cells, not directed against HER2/neu receptors, did not cause significant signal intensity changes of the tumors. Histopathology confirmed an accumulation of the former, but not the latter cells in tumor tissue. The human natural killer cell line NK-92 can be efficiently labeled with clinically applicable iron-oxide contrast

  2. In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Daldrup-Link, Heike E. [UCSF Medical Center, Department of Radiology, San Francisco, CA (United States); Meier, Reinhardt; Metz, Stephan; Settles, Marcus; Rummeny, Ernst J. [Technical University Munich, Department of Radiology, Munich (Germany); Rudelius, Martina; Piontek, Guido; Schlegel, Juergen [Technical University Munich, Institute of Pathology, Division of Neuropathology, Munich (Germany); Piert, Morand [Technical University Munich, Department of Nuclear Medicine, Munich (Germany); Uherek, Christoph; Wels, Winfried [University of Frankfurt, Georg Speyer House, Frankfurt (Germany)

    2005-01-01

    The purpose of this study is to optimize labeling of the human natural killer (NK) cell line NK-92 with iron-oxide-based contrast agents and to monitor the in vivo distribution of genetically engineered NK-92 cells, which are directed against HER2/neu receptors, to HER2/neu positive mammary tumors with magnetic resonance (MR) imaging. Parental NK-92 cells and genetically modified HER2/neu specific NK-92-scFv(FRP5)-zeta cells, expressing a chimeric antigen receptor specific to the tumor-associated ErbB2 (HER2/neu) antigen, were labeled with ferumoxides and ferucarbotran using simple incubation, lipofection and electroporation techniques. Labeling efficiency was evaluated by MR imaging, Prussian blue stains and spectrometry. Subsequently, ferucarbotran-labeled NK-92-scFv(FRP5)-zeta (n=3) or parental NK-92 cells were intravenously injected into the tail vein of six mice with HER2/neu-positive NIH 3T3 mammary tumors, implanted in the mammary fat pad. The accumulation of the cells in the tumors was monitored by MR imaging before and 12 and 24 h after cell injection (p.i.). MR data were correlated with histopathology. Both the parental NK-92 and the genetically modified NK-92-scFv(FRP5)-zeta cells could be labeled with ferucarbotran and ferumoxides by lipofection and electroporation, but not by simple incubation. The intracellular cytoplasmatic iron-oxide uptake was significantly higher after labeling with ferucarbotran than ferumoxides (P<0.05). After intravenous injection of 5 x 10{sup 6} NK-92-scFv(FRP5)-zeta cells into tumor-bearing mice, MR showed a progressive signal decline in HER2/neu-positive mammary tumors at 12 and 24 h (p.i.). Conversely, injection of 5 x 10{sup 6} parental NK-92 control cells, not directed against HER2/neu receptors, did not cause significant signal intensity changes of the tumors. Histopathology confirmed an accumulation of the former, but not the latter cells in tumor tissue. The human natural killer cell line NK-92 can be efficiently

  3. Supervised neural network modeling: an empirical investigation into learning from imbalanced data with labeling errors.

    Science.gov (United States)

    Khoshgoftaar, Taghi M; Van Hulse, Jason; Napolitano, Amri

    2010-05-01

    Neural network algorithms such as multilayer perceptrons (MLPs) and radial basis function networks (RBFNets) have been used to construct learners which exhibit strong predictive performance. Two data related issues that can have a detrimental impact on supervised learning initiatives are class imbalance and labeling errors (or class noise). Imbalanced data can make it more difficult for the neural network learning algorithms to distinguish between examples of the various classes, and class noise can lead to the formulation of incorrect hypotheses. Both class imbalance and labeling errors are pervasive problems encountered in a wide variety of application domains. Many studies have been performed to investigate these problems in isolation, but few have focused on their combined effects. This study presents a comprehensive empirical investigation using neural network algorithms to learn from imbalanced data with labeling errors. In particular, the first component of our study investigates the impact of class noise and class imbalance on two common neural network learning algorithms, while the second component considers the ability of data sampling (which is commonly used to address the issue of class imbalance) to improve their performances. Our results, for which over two million models were trained and evaluated, show that conclusions drawn using the more commonly studied C4.5 classifier may not apply when using neural networks.

  4. Young Adult Smokers' Neural Response to Graphic Cigarette Warning Labels.

    Science.gov (United States)

    Green, Adam E; Mays, Darren; Falk, Emily B; Vallone, Donna; Gallagher, Natalie; Richardson, Amanda; Tercyak, Kenneth P; Abrams, David B; Niaura, Raymond S

    2016-06-01

    The study examined young adult smokers' neural response to graphic warning labels (GWLs) on cigarette packs using functional magnetic resonance imaging (fMRI). Nineteen young adult smokers ( M age 22.9, 52.6% male, 68.4% non-white, M 4.3 cigarettes/day) completed pre-scan, self-report measures of demographics, cigarette smoking behavior, and nicotine dependence, and an fMRI scanning session. During the scanning session participants viewed cigarette pack images (total 64 stimuli, viewed 4 seconds each) that varied based on the warning label (graphic or visually occluded control) and pack branding (branded or plain packaging) in an event-related experimental design. Participants reported motivation to quit (MTQ) in response to each image using a push-button control. Whole-brain blood oxygenation level-dependent (BOLD) functional images were acquired during the task. GWLs produced significantly greater self-reported MTQ than control warnings ( p branded versus plain cigarette packages. In this sample of young adult smokers, GWLs promoted neural activation in brain regions involved in cognitive and affective decision-making and memory formation and the effects of GWLs did not differ on branded or plain cigarette packaging. These findings complement other recent neuroimaging GWL studies conducted with older adult smokers and with adolescents by demonstrating similar patterns of neural activation in response to GWLs among young adult smokers.

  5. Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations.

    Science.gov (United States)

    Adams, Christopher F; Rai, Ahmad; Sneddon, Gregor; Yiu, Humphrey H P; Polyak, Boris; Chari, Divya M

    2015-01-01

    Safe and efficient delivery of therapeutic cells to sites of injury/disease in the central nervous system is a key goal for the translation of clinical cell transplantation therapies. Recently, 'magnetic cell localization strategies' have emerged as a promising and safe approach for targeted delivery of magnetic particle (MP) labeled stem cells to pathology sites. For neuroregenerative applications, this approach is limited by the lack of available neurocompatible MPs, and low cell labeling achieved in neural stem/precursor populations. We demonstrate that high magnetite content, self-sedimenting polymeric MPs [unfunctionalized poly(lactic acid) coated, without a transfecting component] achieve efficient labeling (≥90%) of primary neural stem cells (NSCs)-a 'hard-to-label' transplant population of major clinical relevance. Our protocols showed high safety with respect to key stem cell regenerative parameters. Critically, labeled cells were effectively localized in an in vitro flow system by magnetic force highlighting the translational potential of the methods used. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Different Neural Correlates of Emotion-Label Words and Emotion-Laden Words: An ERP Study

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    2017-09-01

    Full Text Available It is well-documented that both emotion-label words (e.g., sadness, happiness and emotion-laden words (e.g., death, wedding can induce emotion activation. However, the neural correlates of emotion-label words and emotion-laden words recognition have not been examined. The present study aimed to compare the underlying neural responses when processing the two kinds of words by employing event-related potential (ERP measurements. Fifteen Chinese native speakers were asked to perform a lexical decision task in which they should judge whether a two-character compound stimulus was a real word or not. Results showed that (1 emotion-label words and emotion-laden words elicited similar P100 at the posteriors sites, (2 larger N170 was found for emotion-label words than for emotion-laden words at the occipital sites on the right hemisphere, and (3 negative emotion-label words elicited larger Late Positivity Complex (LPC on the right hemisphere than on the left hemisphere while such effect was not found for emotion-laden words and positive emotion-label words. The results indicate that emotion-label words and emotion-laden words elicit different cortical responses at both early (N170 and late (LPC stages. In addition, right hemisphere advantage for emotion-label words over emotion-laden words can be observed in certain time windows (i.e., N170 and LPC while fails to be detected in some other time window (i.e., P100. The implications of the current findings for future emotion research were discussed.

  7. Different Neural Correlates of Emotion-Label Words and Emotion-Laden Words: An ERP Study.

    Science.gov (United States)

    Zhang, Juan; Wu, Chenggang; Meng, Yaxuan; Yuan, Zhen

    2017-01-01

    It is well-documented that both emotion-label words (e.g., sadness, happiness) and emotion-laden words (e.g., death, wedding) can induce emotion activation. However, the neural correlates of emotion-label words and emotion-laden words recognition have not been examined. The present study aimed to compare the underlying neural responses when processing the two kinds of words by employing event-related potential (ERP) measurements. Fifteen Chinese native speakers were asked to perform a lexical decision task in which they should judge whether a two-character compound stimulus was a real word or not. Results showed that (1) emotion-label words and emotion-laden words elicited similar P100 at the posteriors sites, (2) larger N170 was found for emotion-label words than for emotion-laden words at the occipital sites on the right hemisphere, and (3) negative emotion-label words elicited larger Late Positivity Complex (LPC) on the right hemisphere than on the left hemisphere while such effect was not found for emotion-laden words and positive emotion-label words. The results indicate that emotion-label words and emotion-laden words elicit different cortical responses at both early (N170) and late (LPC) stages. In addition, right hemisphere advantage for emotion-label words over emotion-laden words can be observed in certain time windows (i.e., N170 and LPC) while fails to be detected in some other time window (i.e., P100). The implications of the current findings for future emotion research were discussed.

  8. Glycoconjugates reveal diversity of human neural stem cells (hNSCs) derived from human induced pluripotent stem cells (hiPSCs).

    Science.gov (United States)

    Kandasamy, Majury; Roll, Lars; Langenstroth, Daniel; Brüstle, Oliver; Faissner, Andreas

    2017-06-01

    Neural stem cells (NSCs) have the ability to self-renew and to differentiate into various cell types of the central nervous system. This potential can be recapitulated by human induced pluripotent stem cells (hiPSCs) in vitro. The differentiation capacity of hiPSCs is characterized by several stages with distinct morphologies and the expression of various marker molecules. We used the monoclonal antibodies (mAbs) 487 LeX , 5750 LeX and 473HD to analyze the expression pattern of particular carbohydrate motifs as potential markers at six differentiation stages of hiPSCs. Mouse ESCs were used as a comparison. At the pluripotent stage, 487 LeX -, 5750 LeX - and 473HD-related glycans were differently expressed. Later, cells of the three germ layers in embryoid bodies (hEBs) and, even after neuralization of hEBs, subpopulations of cells were labeled with these surface antibodies. At the human rosette-stage of NSCs (hR-NSC), LeX- and 473HD-related epitopes showed antibody-specific expression patterns. We also found evidence that these surface antibodies could be used to distinguish the hR-NSCs from the hSR-NSCs stages. Characterization of hNSCs FGF-2/EGF derived from hSR-NSCs revealed that both LeX antibodies and the 473HD antibody labeled subpopulations of hNSCs FGF-2/EGF . Finally, we identified potential LeX carrier molecules that were spatiotemporally regulated in early and late stages of differentiation. Our study provides new insights into the regulation of glycoconjugates during early human stem cell development. The mAbs 487 LeX , 5750 LeX and 473HD are promising tools for identifying distinct stages during neural differentiation.

  9. 101 labeled brain images and a consistent human cortical labeling protocol

    Directory of Open Access Journals (Sweden)

    Arno eKlein

    2012-12-01

    Full Text Available We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The Desikan-Killiany-Tourville (DKT protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://www.mindboggle.info/data/ website.

  10. 101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol

    Science.gov (United States)

    Klein, Arno; Tourville, Jason

    2012-01-01

    We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The “Desikan–Killiany–Tourville” (DKT) protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://mindboggle.info/data website. PMID:23227001

  11. Multispectral embedding-based deep neural network for three-dimensional human pose recovery

    Science.gov (United States)

    Yu, Jialin; Sun, Jifeng

    2018-01-01

    Monocular image-based three-dimensional (3-D) human pose recovery aims to retrieve 3-D poses using the corresponding two-dimensional image features. Therefore, the pose recovery performance highly depends on the image representations. We propose a multispectral embedding-based deep neural network (MSEDNN) to automatically obtain the most discriminative features from multiple deep convolutional neural networks and then embed their penultimate fully connected layers into a low-dimensional manifold. This compact manifold can explore not only the optimum output from multiple deep networks but also the complementary properties of them. Furthermore, the distribution of each hierarchy discriminative manifold is sufficiently smooth so that the training process of our MSEDNN can be effectively implemented only using few labeled data. Our proposed network contains a body joint detector and a human pose regressor that are jointly trained. Extensive experiments conducted on four databases show that our proposed MSEDNN can achieve the best recovery performance compared with the state-of-the-art methods.

  12. Stimulation of neural differentiation in human bone marrow mesenchymal stem cells by extremely low-frequency electromagnetic fields incorporated with MNPs.

    Science.gov (United States)

    Choi, Yun-Kyong; Lee, Dong Heon; Seo, Young-Kwon; Jung, Hyun; Park, Jung-Keug; Cho, Hyunjin

    2014-10-01

    Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) have been investigated as a new cell-therapeutic solution due to their capacity that could differentiate into neural-like cells. Extremely low-frequency electromagnetic fields (ELF-EMFs) therapy has emerged as a novel technique, using mechanical stimulus to differentiate hBM-MSCs and significantly enhance neuronal differentiation to affect cellular and molecular reactions. Magnetic iron oxide (Fe3O4) nanoparticles (MNPs) have recently achieved widespread use for biomedical applications and polyethylene glycol (PEG)-labeled nanoparticles are used to increase their circulation time, aqueous solubility, biocompatibility, and nonspecific cellular uptake as well as to decrease immunogenicity. Many studies have used MNP-labeled cells for differentiation, but there have been no reports of MNP-labeled neural differentiation combined with EMFs. In this study, synthesized PEG-phospholipid encapsulated magnetite (Fe3O4) nanoparticles are used on hBM-MSCs to improve their intracellular uptake. The PEGylated nanoparticles were exposed to the cells under 50 Hz of EMFs to improve neural differentiation. First, we measured cell viability and intracellular iron content in hBM-MSCs after treatment with MNPs. Analysis was conducted by RT-PCR, and immunohistological analysis using neural cell type-specific genes and antibodies after exposure to 50 Hz electromagnetic fields. These results suggest that electromagnetic fields enhance neural differentiation in hBM-MSCs incorporated with MNPs and would be an effective method for differentiating neural cells.

  13. Development of surrogate models using artificial neural network for building shell energy labelling

    NARCIS (Netherlands)

    Melo, A.P.; Costola, D.; Lamberts, R.; Hensen, J.L.M.

    2014-01-01

    Surrogate models are an important part of building energy labelling programs, but these models still present low accuracy, particularly in cooling-dominated climates. The objective of this study was to evaluate the feasibility of using an artificial neural network (ANN) to improve the accuracy of

  14. Nanodiamonds with silicon vacancy defects for nontoxic photostable fluorescent labeling of neural precursor cells.

    Science.gov (United States)

    Merson, Tobias D; Castelletto, Stefania; Aharonovich, Igor; Turbic, Alisa; Kilpatrick, Trevor J; Turnley, Ann M

    2013-10-15

    Nanodiamonds (NDs) containing silicon vacancy (SiV) defects were evaluated as a potential biomarker for the labeling and fluorescent imaging of neural precursor cells (NPCs). SiV-containing NDs were synthesized using chemical vapor deposition and silicon ion implantation. Spectrally, SiV-containing NDs exhibited extremely stable fluorescence and narrow bandwidth emission with an excellent signal to noise ratio exceeding that of NDs containing nitrogen-vacancy centers. NPCs labeled with NDs exhibited normal cell viability and proliferative properties consistent with biocompatibility. We conclude that SiV-containing NDs are a promising biomedical research tool for cellular labeling and optical imaging in stem cell research.

  15. Spin labelling of human erythrocytes with nitroxide radicals

    International Nuclear Information System (INIS)

    Chagalj, C.; DePaoli, T.C.P.; Hager, A.A.; Palaoro, L.A.; Rubin de Celis, E.; Farach, H.A.; Poole, C.P. jr

    1984-01-01

    Human erythrocytes were labelled with nitroxide, the spin label SYNVAR 101, under various experimantal conditions. A study was made of the influence of antireductants on the labelling efficiency and the kinetics of the radical decay during the labelling process

  16. CD133 (Prominin negative human neural stem cells are clonogenic and tripotent.

    Directory of Open Access Journals (Sweden)

    Yirui Sun

    Full Text Available CD133 (Prominin is widely used as a marker for the identification and isolation of neural precursor cells from normal brain or tumor tissue. However, the assumption that CD133 is expressed constitutively in neural precursor cells has not been examined.In this study, we demonstrate that CD133 and a second marker CD15 are expressed heterogeneously in uniformly undifferentiated human neural stem (NS cell cultures. After fractionation by flow cytometry, clonogenic tripotent cells are found in populations negative or positive for either marker. We further show that CD133 is down-regulated at the mRNA level in cells lacking CD133 immunoreactivity. Cell cycle profiling reveals that CD133 negative cells largely reside in G1/G0, while CD133 positive cells are predominantly in S, G2, or M phase. A similar pattern is apparent in mouse NS cell lines. Compared to mouse NS cells, however, human NS cell cultures harbour an increased proportion of CD133 negative cells and display a longer doubling time. This may in part reflect a sub-population of slow- or non-cycling cells amongst human NS cells because we find that around 5% of cells do not take up BrdU over a 14-day labelling period. Non-proliferating NS cells remain undifferentiated and at least some of them are capable of re-entry into the cell cycle and subsequent continuous expansion.The finding that a significant fraction of clonogenic neural stem cells lack the established markers CD133 and CD15, and that some of these cells may be dormant or slow-cycling, has implications for approaches to identify and isolate neural stem cells and brain cancer stem cells. Our data also suggest the possibility that CD133 may be specifically down-regulated during G0/G1, and this should be considered when this marker is used to identify and isolate other tissue and cancer stem cells.

  17. Associating a product with a luxury brand label modulates neural reward processing and favors choices in materialistic individuals.

    Science.gov (United States)

    Audrin, Catherine; Ceravolo, Leonardo; Chanal, Julien; Brosch, Tobias; Sander, David

    2017-11-23

    The present study investigated the extent to which luxury vs. non-luxury brand labels (i.e., extrinsic cues) randomly assigned to items and preferences for these items impact choice, and how this impact may be moderated by materialistic tendencies (i.e., individual characteristics). The main objective was to investigate the neural correlates of abovementioned effects using functional magnetic resonance imaging. Behavioural results showed that the more materialistic people are, the more they choose and like items labelled with luxury brands. Neuroimaging results revealed the implication of a neural network including the dorsolateral and ventromedial prefrontal cortex and the orbitofrontal cortex that was modulated by the brand label and also by the participants' preference. Most importantly, items with randomly assigned luxurious brand labels were preferentially chosen by participants and triggered enhanced signal in the caudate nucleus. This effect increased linearly with materialistic tendencies. Our results highlight the impact of brand-item association, although random in our study, and materialism on preference, relying on subparts of the brain valuation system for the integration of extrinsic cues, preferences and individual characteristics.

  18. Differential neural network configuration during human path integration

    Science.gov (United States)

    Arnold, Aiden E. G. F; Burles, Ford; Bray, Signe; Levy, Richard M.; Iaria, Giuseppe

    2014-01-01

    Path integration is a fundamental skill for navigation in both humans and animals. Despite recent advances in unraveling the neural basis of path integration in animal models, relatively little is known about how path integration operates at a neural level in humans. Previous attempts to characterize the neural mechanisms used by humans to visually path integrate have suggested a central role of the hippocampus in allowing accurate performance, broadly resembling results from animal data. However, in recent years both the central role of the hippocampus and the perspective that animals and humans share similar neural mechanisms for path integration has come into question. The present study uses a data driven analysis to investigate the neural systems engaged during visual path integration in humans, allowing for an unbiased estimate of neural activity across the entire brain. Our results suggest that humans employ common task control, attention and spatial working memory systems across a frontoparietal network during path integration. However, individuals differed in how these systems are configured into functional networks. High performing individuals were found to more broadly express spatial working memory systems in prefrontal cortex, while low performing individuals engaged an allocentric memory system based primarily in the medial occipito-temporal region. These findings suggest that visual path integration in humans over short distances can operate through a spatial working memory system engaging primarily the prefrontal cortex and that the differential configuration of memory systems recruited by task control networks may help explain individual biases in spatial learning strategies. PMID:24808849

  19. Neural networks for perception human and machine perception

    CERN Document Server

    Wechsler, Harry

    1991-01-01

    Neural Networks for Perception, Volume 1: Human and Machine Perception focuses on models for understanding human perception in terms of distributed computation and examples of PDP models for machine perception. This book addresses both theoretical and practical issues related to the feasibility of both explaining human perception and implementing machine perception in terms of neural network models. The book is organized into two parts. The first part focuses on human perception. Topics on network model ofobject recognition in human vision, the self-organization of functional architecture in t

  20. Comparison of detection pattern of HCC by ferumoxide-enhanced MRI and intratumoral blood flow pattern

    International Nuclear Information System (INIS)

    Itou, Naoki; Kotake, Fumio; Saitou, Kazuhiro; Abe, Kimihiko

    2000-01-01

    We compared the detection rate and pattern of ferumoxide-enhanced magnetic resonance imaging (Fe-MRI) with the intratumoral blood flow pattern determined by CT angiography (CTA) and CT portography (CTAP) in 124 nodes (34 cases) diagnosed as hepatocellular carcinoma (HCC) or borderline HCC, based on the clinical course. Sequences to obtain a T1-weighted images (T1W), proton density-weighted images (PDW), T2-weighted images (T2W), T2*-weighted images (T2*W) were used in Fe-MRI. In nodes shown to be hypervascular on CTA, the detection rate by Fe-MRI was 69.7%. In nodes shown to be avascular by CTAP, the detection rate by Fe-MRI was 67.3%. These rates were higher than with other flow patterns. In nodes showing high signal intensity (HSI) on any sequences, arterial blood flow was increased and portal blood flow decreased in comparison with nodes without high signal intensity. All nodes showing HSI, both on Fe-MRI T2W and T2*W, were hypervascular on CTA, and portal blood flow was absent on CTAP. Nodes showing HSI on both T2*W and T2W were considered to have greater arterial blood flow and decreased portal blood flow compared with nodes appearing as HSI on T2*W, but only as iso- or low signal intensity on T2W (Mann-Whitney U-test; p<0.05). (author)

  1. Neural activity during affect labeling predicts expressive writing effects on well-being: GLM and SVM approaches.

    Science.gov (United States)

    Memarian, Negar; Torre, Jared B; Haltom, Kate E; Stanton, Annette L; Lieberman, Matthew D

    2017-09-01

    Affect labeling (putting feelings into words) is a form of incidental emotion regulation that could underpin some benefits of expressive writing (i.e. writing about negative experiences). Here, we show that neural responses during affect labeling predicted changes in psychological and physical well-being outcome measures 3 months later. Furthermore, neural activity of specific frontal regions and amygdala predicted those outcomes as a function of expressive writing. Using supervised learning (support vector machines regression), improvements in four measures of psychological and physical health (physical symptoms, depression, anxiety and life satisfaction) after an expressive writing intervention were predicted with an average of 0.85% prediction error [root mean square error (RMSE) %]. The predictions were significantly more accurate with machine learning than with the conventional generalized linear model method (average RMSE: 1.3%). Consistent with affect labeling research, right ventrolateral prefrontal cortex (RVLPFC) and amygdalae were top predictors of improvement in the four outcomes. Moreover, RVLPFC and left amygdala predicted benefits due to expressive writing in satisfaction with life and depression outcome measures, respectively. This study demonstrates the substantial merit of supervised machine learning for real-world outcome prediction in social and affective neuroscience. © The Author (2017). Published by Oxford University Press.

  2. Single-site neural tube closure in human embryos revisited.

    Science.gov (United States)

    de Bakker, Bernadette S; Driessen, Stan; Boukens, Bastiaan J D; van den Hoff, Maurice J B; Oostra, Roelof-Jan

    2017-10-01

    Since the multi-site closure theory was first proposed in 1991 as explanation for the preferential localizations of neural tube defects, the closure of the neural tube has been debated. Although the multi-site closure theory is much cited in clinical literature, single-site closure is most apparent in literature concerning embryology. Inspired by Victor Hamburgers (1900-2001) statement that "our real teacher has been and still is the embryo, who is, incidentally, the only teacher who is always right", we decided to critically review both theories of neural tube closure. To verify the theories of closure, we studied serial histological sections of 10 mouse embryos between 8.5 and 9.5 days of gestation and 18 human embryos of the Carnegie collection between Carnegie stage 9 (19-21 days) and 13 (28-32 days). Neural tube closure was histologically defined by the neuroepithelial remodeling of the two adjoining neural fold tips in the midline. We did not observe multiple fusion sites in neither mouse nor human embryos. A meta-analysis of case reports on neural tube defects showed that defects can occur at any level of the neural axis. Our data indicate that the human neural tube fuses at a single site and, therefore, we propose to reinstate the single-site closure theory for neural tube closure. We showed that neural tube defects are not restricted to a specific location, thereby refuting the reasoning underlying the multi-site closure theory. Clin. Anat. 30:988-999, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Engineering Human Neural Tissue by 3D Bioprinting.

    Science.gov (United States)

    Gu, Qi; Tomaskovic-Crook, Eva; Wallace, Gordon G; Crook, Jeremy M

    2018-01-01

    Bioprinting provides an opportunity to produce three-dimensional (3D) tissues for biomedical research and translational drug discovery, toxicology, and tissue replacement. Here we describe a method for fabricating human neural tissue by 3D printing human neural stem cells with a bioink, and subsequent gelation of the bioink for cell encapsulation, support, and differentiation to functional neurons and supporting neuroglia. The bioink uniquely comprises the polysaccharides alginate, water-soluble carboxymethyl-chitosan, and agarose. Importantly, the method could be adapted to fabricate neural and nonneural tissues from other cell types, with the potential to be applied for both research and clinical product development.

  4. Transcriptional profiling of adult neural stem-like cells from the human brain.

    Directory of Open Access Journals (Sweden)

    Cecilie Jonsgar Sandberg

    Full Text Available There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60. Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate. We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6, foetal human neural stem cells (n = 1 and human brain tissues (n = 12. The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular

  5. Function of FEZF1 during early neural differentiation of human embryonic stem cells.

    Science.gov (United States)

    Liu, Xin; Su, Pei; Lu, Lisha; Feng, Zicen; Wang, Hongtao; Zhou, Jiaxi

    2018-01-01

    The understanding of the mechanism underlying human neural development has been hampered due to lack of a cellular system and complicated ethical issues. Human embryonic stem cells (hESCs) provide an invaluable model for dissecting human development because of unlimited self-renewal and the capacity to differentiate into nearly all cell types in the human body. In this study, using a chemical defined neural induction protocol and molecular profiling, we identified Fez family zinc finger 1 (FEZF1) as a potential regulator of early human neural development. FEZF1 is rapidly up-regulated during neural differentiation in hESCs and expressed before PAX6, a well-established marker of early human neural induction. We generated FEZF1-knockout H1 hESC lines using CRISPR-CAS9 technology and found that depletion of FEZF1 abrogates neural differentiation of hESCs. Moreover, loss of FEZF1 impairs the pluripotency exit of hESCs during neural specification, which partially explains the neural induction defect caused by FEZF1 deletion. However, enforced expression of FEZF1 itself fails to drive neural differentiation in hESCs, suggesting that FEZF1 is necessary but not sufficient for neural differentiation from hESCs. Taken together, our findings identify one of the earliest regulators expressed upon neural induction and provide insight into early neural development in human.

  6. Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue

    Directory of Open Access Journals (Sweden)

    Saurabh Singh

    2005-01-01

    Full Text Available During the early stages of embryogenesis, pluripotent neural crest cells (NCC are known to migrate from the neural folds to populate multiple target sites in the embryo where they differentiate into various derivatives, including cartilage, bone, connective tissue, melanocytes, glia, and neurons of the peripheral nervous system. The ability to obtain pure NCC populations is essential to enable molecular analyses of neural crest induction, migration, and/or differentiation. Crossing Wnt1-Cre and Z/EG transgenic mouse lines resulted in offspring in which the Wnt1-Cre transgene activated permanent EGFP expression only in NCC. The present report demonstrates a flow cytometric method to sort and isolate populations of EGFP-labeled NCC. The identity of the sorted neural crest cells was confirmed by assaying expression of known marker genes by TaqMan Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR. The molecular strategy described in this report provides a means to extract intact RNA from a pure population of NCC thus enabling analysis of gene expression in a defined population of embryonic precursor cells critical to development.

  7. Comprehensive quantitative comparison of the membrane proteome, phosphoproteome, and sialiome of human embryonic and neural stem cells

    DEFF Research Database (Denmark)

    Melo-Braga, Marcella Nunes; Schulz, Melanie; Liu, Qiuyue

    2014-01-01

    Human embryonic stem cells (hESCs) can differentiate into neural stem cells (NSCs), which can further be differentiated into neurons and glia cells. Therefore, these cells have huge potential as source for treatment of neurological diseases. Membrane-associated proteins are very important......ESCs and NSCs as well as to investigate potential new markers for these two cell stages, we performed large-scale quantitative membrane-proteomic of hESCs and NSCs. This approach employed membrane purification followed by peptide dimethyl labeling and peptide enrichment to study the membrane subproteome as well...... in which 78% of phosphopeptides were identified with ≥99% confidence in site assignment and 1810 unique formerly sialylated N-linked glycopeptides. Several proteins were identified as significantly regulated in hESCs and NSC, including proteins involved in the early embryonic and neural development...

  8. Neural Signatures of Trust During Human-Automation Interactions

    Science.gov (United States)

    2016-04-01

    also automated devices such as a Global Positioning System. For instance, to provide advanced safety measures, the Transportation Safety...AFRL-AFOSR-VA-TR-2016-0160 Neural Signatures of Trust during Human- Automation Interactions Frank Krueger GEORGE MASON UNIVERSITY Final Report 04/01...SUBTITLE Neural Signatures of Trust during Human- Automation Interactions 5a. CONTRACT NUMBER FA9550-13-1-0017 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  9. Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process.

    Science.gov (United States)

    Hamamé, Carlos M; Cosmelli, Diego; Henriquez, Rodrigo; Aboitiz, Francisco

    2011-04-26

    Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed. We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30-60 Hz) and alpha (8-14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing. We conclude that there are reorganizations in several neural processes that contribute differently to perceptual learning in a visual search task. We propose an integrative model of neural activity reorganization, whereby perceptual learning takes place as a two-stage phenomenon including perceptual, attentional and contextual processes.

  10. Lifelong learning of human actions with deep neural network self-organization.

    Science.gov (United States)

    Parisi, German I; Tani, Jun; Weber, Cornelius; Wermter, Stefan

    2017-12-01

    Lifelong learning is fundamental in autonomous robotics for the acquisition and fine-tuning of knowledge through experience. However, conventional deep neural models for action recognition from videos do not account for lifelong learning but rather learn a batch of training data with a predefined number of action classes and samples. Thus, there is the need to develop learning systems with the ability to incrementally process available perceptual cues and to adapt their responses over time. We propose a self-organizing neural architecture for incrementally learning to classify human actions from video sequences. The architecture comprises growing self-organizing networks equipped with recurrent neurons for processing time-varying patterns. We use a set of hierarchically arranged recurrent networks for the unsupervised learning of action representations with increasingly large spatiotemporal receptive fields. Lifelong learning is achieved in terms of prediction-driven neural dynamics in which the growth and the adaptation of the recurrent networks are driven by their capability to reconstruct temporally ordered input sequences. Experimental results on a classification task using two action benchmark datasets show that our model is competitive with state-of-the-art methods for batch learning also when a significant number of sample labels are missing or corrupted during training sessions. Additional experiments show the ability of our model to adapt to non-stationary input avoiding catastrophic interference. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  12. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Directory of Open Access Journals (Sweden)

    Hayato Fukusumi

    2016-01-01

    Full Text Available Human neural progenitor cells (hNPCs have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi. Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  13. Static human face recognition using artificial neural networks

    International Nuclear Information System (INIS)

    Qamar, R.; Shah, S.H.; Javed-ur-Rehman

    2003-01-01

    This paper presents a novel method of human face recognition using digital computers. A digital PC camera is used to take the BMP images of the human faces. An artificial neural network using Back Propagation Algorithm is developed as a recognition engine. The BMP images of the faces serve as the input patterns for this engine. A software 'Face Recognition' has been developed to recognize the human faces for which it is trained. Once the neural network is trained for patterns of the faces, the software is able to detect and recognize them with success rate of about 97%. (author)

  14. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells

    Science.gov (United States)

    Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-05-01

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43- symmetric stretch vibrations at 959 cm-1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue-implant-interfaces or disease diagnosis.

  15. Neural response to pictorial health warning labels can predict smoking behavioral change.

    Science.gov (United States)

    Riddle, Philip J; Newman-Norlund, Roger D; Baer, Jessica; Thrasher, James F

    2016-11-01

    In order to improve our understanding of how pictorial health warning labels (HWLs) influence smoking behavior, we examined whether brain activity helps to explain smoking behavior above and beyond self-reported effectiveness of HWLs. We measured the neural response in the ventromedial prefrontal cortex (vmPFC) and the amygdala while adult smokers viewed HWLs. Two weeks later, participants' self-reported smoking behavior and biomarkers of smoking behavior were reassessed. We compared multiple models predicting change in self-reported smoking behavior (cigarettes per day [CPD]) and change in a biomarkers of smoke exposure (expired carbon monoxide [CO]). Brain activity in the vmPFC and amygdala not only predicted changes in CO, but also accounted for outcome variance above and beyond self-report data. Neural data were most useful in predicting behavioral change as quantified by the objective biomarker (CO). This pattern of activity was significantly modulated by individuals' intention to quit. The finding that both cognitive (vmPFC) and affective (amygdala) brain areas contributed to these models supports the idea that smokers respond to HWLs in a cognitive-affective manner. Based on our findings, researchers may wish to consider using neural data from both cognitive and affective networks when attempting to predict behavioral change in certain populations (e.g. cigarette smokers). © The Author (2016). Published by Oxford University Press.

  16. Isolation and characterization of neural stem cells from human fetal striatum

    International Nuclear Information System (INIS)

    Li Xiaoxia; Xu Jinchong; Bai Yun; Wang Xuan; Dai Xin; Liu Yinan; Zhang Jun; Zou Junhua; Shen Li; Li Lingsong

    2005-01-01

    This paper described that neural stem cells (hsNSCs) were isolated and expanded rapidly from human fetal striatum in adherent culture. The population was serum- and growth factor-dependent and expressed neural stem cell markers. They were capable of multi-differentiation into neurons, astrocytes, and oligodendrocytes. When plated in the dopaminergic neuron inducing medium, human striatum neural stem cells could differentiate into tyrosine hydroxylase positive neurons. hsNSCs were morphologically homogeneous and possessed high proliferation ability. The population doubled every 44.28 h and until now it has divided for more than 82 generations in vitro. Normal human diploid karyotype was unchanged throughout the in vitro culture period. Together, this study has exploited a method for continuous and rapid expansion of human neural stem cells as pure population, which maintained the capacity to generate almost fifty percent neurons. The availability of such cells may hold great interest for basic and applied neuroscience

  17. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts.

    Science.gov (United States)

    Cocos, Anne; Fiks, Alexander G; Masino, Aaron J

    2017-07-01

    Social media is an important pharmacovigilance data source for adverse drug reaction (ADR) identification. Human review of social media data is infeasible due to data quantity, thus natural language processing techniques are necessary. Social media includes informal vocabulary and irregular grammar, which challenge natural language processing methods. Our objective is to develop a scalable, deep-learning approach that exceeds state-of-the-art ADR detection performance in social media. We developed a recurrent neural network (RNN) model that labels words in an input sequence with ADR membership tags. The only input features are word-embedding vectors, which can be formed through task-independent pretraining or during ADR detection training. Our best-performing RNN model used pretrained word embeddings created from a large, non-domain-specific Twitter dataset. It achieved an approximate match F-measure of 0.755 for ADR identification on the dataset, compared to 0.631 for a baseline lexicon system and 0.65 for the state-of-the-art conditional random field model. Feature analysis indicated that semantic information in pretrained word embeddings boosted sensitivity and, combined with contextual awareness captured in the RNN, precision. Our model required no task-specific feature engineering, suggesting generalizability to additional sequence-labeling tasks. Learning curve analysis showed that our model reached optimal performance with fewer training examples than the other models. ADR detection performance in social media is significantly improved by using a contextually aware model and word embeddings formed from large, unlabeled datasets. The approach reduces manual data-labeling requirements and is scalable to large social media datasets. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Functional alterations of human platelets following indium-111 labelling using different incubation media and labelling agents

    International Nuclear Information System (INIS)

    Isaka, Yoshinari; Imaizumi, Masatoshi; Kimura, Kazufumi; Matsumoto, Masayasu; Kamada, Takenobu

    1991-01-01

    Human platelets were labelled in the absence of presence of plasma using 111 In-labelled oxine sulphate, tropolone or 2-mercaptopyridine-N-oxide (MPO). Under in vitro and in vivo conditions, platelet functions were evaluated by measuring their aggregability, survival, recovery and early distribution. High labelling efficiency was achieved in saline labelling, whereas with plasma labelling, it was necessary to concentrate the platelet-rich plasma to 4.8x10 6 platelets/μl. The aggregation of platelets labelled in plasma or saline was compared with that of controls; platelets labelled in saline showed lower aggregability in 2 μM ADP but not in 5 μM ADP nor with collagen. No significant differences in platelet survival and recovery were noted between platelets labelled in plasma and those labelled in saline. Our results indicate that partial loss of ADP aggregability in vitro does not influence the in vivo viability of platelets labelled in saline. Scintigraphic studies showed that platelets labelled in a saline medium were temporarily sequestrated in the liver but not in the spleen or heart. Thus, platelet labelling in saline does not affect platelet function adversely, but platelets labelled in plasma are more desirable for assessing the early distribution of platelets in the reticuloendothelial system. (orig.)

  19. Culture-sensitive neural substrates of human cognition: a transcultural neuroimaging approach.

    Science.gov (United States)

    Han, Shihui; Northoff, Georg

    2008-08-01

    Our brains and minds are shaped by our experiences, which mainly occur in the context of the culture in which we develop and live. Although psychologists have provided abundant evidence for diversity of human cognition and behaviour across cultures, the question of whether the neural correlates of human cognition are also culture-dependent is often not considered by neuroscientists. However, recent transcultural neuroimaging studies have demonstrated that one's cultural background can influence the neural activity that underlies both high- and low-level cognitive functions. The findings provide a novel approach by which to distinguish culture-sensitive from culture-invariant neural mechanisms of human cognition.

  20. Non-Viral Generation of Neural Precursor-like Cells from Adult Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Maucksch C

    2012-01-01

    Full Text Available Recent studies have reported direct reprogramming of human fibroblasts to mature neurons by the introduction of defined neural genes. This technology has potential use in the areas of neurological disease modeling and drug development. However, use of induced neurons for large-scale drug screening and cell-based replacement strategies is limited due to their inability to expand once reprogrammed. We propose it would be more desirable to induce expandable neural precursor cells directly from human fibroblasts. To date several pluripotent and neural transcription factors have been shown to be capable of converting mouse fibroblasts to neural stem/precursor-like cells when delivered by viral vectors. Here we extend these findings and demonstrate that transient ectopic insertion of the transcription factors SOX2 and PAX6 to adult human fibroblasts through use of non-viral plasmid transfection or protein transduction allows the generation of induced neural precursor (iNP colonies expressing a range of neural stem and pro-neural genes. Upon differentiation, iNP cells give rise to neurons exhibiting typical neuronal morphologies and expressing multiple neuronal markers including tyrosine hydroxylase and GAD65/67. Importantly, iNP-derived neurons demonstrate electrophysiological properties of functionally mature neurons with the capacity to generate action potentials. In addition, iNP cells are capable of differentiating into glial fibrillary acidic protein (GFAP-expressing astrocytes. This study represents a novel virus-free approach for direct reprogramming of human fibroblasts to a neural precursor fate.

  1. Neural correlate of human reciprocity in social interactions.

    Science.gov (United States)

    Sakaiya, Shiro; Shiraito, Yuki; Kato, Junko; Ide, Hiroko; Okada, Kensuke; Takano, Kouji; Kansaku, Kenji

    2013-01-01

    Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human) and strategy (random, tit-for-tat) in repeated prisoner's dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate) and theory of mind (ToM) regions [i.e., ventromedial prefrontal cortex (VMPFC) and precuneus]. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (de)activation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during social interactions.

  2. Neural correlate of human reciprocity in social interactions

    Directory of Open Access Journals (Sweden)

    Shiro eSakaiya

    2013-12-01

    Full Text Available Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human and strategy (random, tit-for-tat in repeated prisoner’s dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate and theory of mind (ToM regions (i.e., ventromedial prefrontal cortex [VMPFC] and precuneus. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (deactivation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during

  3. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    OpenAIRE

    Hayato Fukusumi; Tomoko Shofuda; Yohei Bamba; Atsuyo Yamamoto; Daisuke Kanematsu; Yukako Handa; Keisuke Okita; Masaya Nakamura; Shinya Yamanaka; Hideyuki Okano; Yonehiro Kanemura

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPS...

  4. Labeling of human immune gamma globulin with sup(99m)Tc

    International Nuclear Information System (INIS)

    Wong, D.W.; Huang, J.T.

    1977-01-01

    Human immune serum gamma globulin and rabbit anti-Stap. aureus antibody have been successfully labeled with sup(99m)Tc at pH 7.4 with an average binding efficiency of 86 and 82%, respectively. The labeled proteins behave similarly to unlabeled gamma-globulin fraction in the normal human serum as demonstrated by protein electrophoresis. The biological half-time of sup(99m)Tc-gamma-globulin in dog has been determined to be 54 min for the fast component and 14.7 hr for a slower component. Immunological assays demonstrate no significant change in antibody activity after labeling process. (author)

  5. The Neural Basis of Vocal Pitch Imitation in Humans.

    Science.gov (United States)

    Belyk, Michel; Pfordresher, Peter Q; Liotti, Mario; Brown, Steven

    2016-04-01

    Vocal imitation is a phenotype that is unique to humans among all primate species, and so an understanding of its neural basis is critical in explaining the emergence of both speech and song in human evolution. Two principal neural models of vocal imitation have emerged from a consideration of nonhuman animals. One hypothesis suggests that putative mirror neurons in the inferior frontal gyrus pars opercularis of Broca's area may be important for imitation. An alternative hypothesis derived from the study of songbirds suggests that the corticostriate motor pathway performs sensorimotor processes that are specific to vocal imitation. Using fMRI with a sparse event-related sampling design, we investigated the neural basis of vocal imitation in humans by comparing imitative vocal production of pitch sequences with both nonimitative vocal production and pitch discrimination. The strongest difference between these tasks was found in the putamen bilaterally, providing a striking parallel to the role of the analogous region in songbirds. Other areas preferentially activated during imitation included the orofacial motor cortex, Rolandic operculum, and SMA, which together outline the corticostriate motor loop. No differences were seen in the inferior frontal gyrus. The corticostriate system thus appears to be the central pathway for vocal imitation in humans, as predicted from an analogy with songbirds.

  6. Structural Analysis of Three-dimensional Human Neural Tissue derived from Induced Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Terrence Brooks, Patrick; Rasmussen, Mikkel Aabech; Hyttel, Poul

    2016-01-01

    Objective: The present study aimed at establishing a method for production of a three-dimensional (3D) human neural tissue derived from induced pluripotent stem cells (iPSCs) and analyzing the outcome by a combination of tissue ultrastructure and expression of neural markers. Methods: A two......-step cell culture procedure was implemented by subjecting human iPSCs to a 3D scaffoldbased neural differentiation protocol. First, neural fate-inducing small molecules were used to create a neuroepithelial monolayer. Second, the monolayer was trypsinized into single cells and seeded into a porous...... polystyrene scaffold and further cultured to produce a 3D neural tissue. The neural tissue was characterized by a combination of immunohistochemistry and transmission electron microscopy (TEM). Results: iPSCs developed into a 3D neural tissue expressing markers for neural progenitor cells, early neural...

  7. Development of surrogate models using artificial neural network for building shell energy labelling

    International Nuclear Information System (INIS)

    Melo, A.P.; Cóstola, D.; Lamberts, R.; Hensen, J.L.M.

    2014-01-01

    Surrogate models are an important part of building energy labelling programs, but these models still present low accuracy, particularly in cooling-dominated climates. The objective of this study was to evaluate the feasibility of using an artificial neural network (ANN) to improve the accuracy of surrogate models for labelling purposes. An ANN was applied to model the building stock of a city in Brazil, based on the results of extensive simulations using the high-resolution building energy simulation program EnergyPlus. Sensitivity and uncertainty analyses were carried out to evaluate the behaviour of the ANN model, and the variations in the best and worst performance for several typologies were analysed in relation to variations in the input parameters and building characteristics. The results obtained indicate that an ANN can represent the interaction between input and output data for a vast and diverse building stock. Sensitivity analysis showed that no single input parameter can be identified as the main factor responsible for the building energy performance. The uncertainty associated with several parameters plays a major role in assessing building energy performance, together with the facade area and the shell-to-floor ratio. The results of this study may have a profound impact as ANNs could be applied in the future to define regulations in many countries, with positive effects on optimizing the energy consumption. - Highlights: • We model several typologies which have variation in input parameters. • We evaluate the accuracy of surrogate models for labelling purposes. • ANN is applied to model the building stock. • Uncertainty in building plays a major role in the building energy performance. • Results show that ANN could help to develop building energy labelling systems

  8. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall

    Science.gov (United States)

    Hampson, Robert E.; Song, Dong; Robinson, Brian S.; Fetterhoff, Dustin; Dakos, Alexander S.; Roeder, Brent M.; She, Xiwei; Wicks, Robert T.; Witcher, Mark R.; Couture, Daniel E.; Laxton, Adrian W.; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J.; Whitlow, Christopher T.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2018-06-01

    Objective. We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient’s own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. Approach. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. Significance. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.

  9. Convolutional Neural Networks for Human Activity Recognition Using Body-Worn Sensors

    Directory of Open Access Journals (Sweden)

    Fernando Moya Rueda

    2018-05-01

    Full Text Available Human activity recognition (HAR is a classification task for recognizing human movements. Methods of HAR are of great interest as they have become tools for measuring occurrences and durations of human actions, which are the basis of smart assistive technologies and manual processes analysis. Recently, deep neural networks have been deployed for HAR in the context of activities of daily living using multichannel time-series. These time-series are acquired from body-worn devices, which are composed of different types of sensors. The deep architectures process these measurements for finding basic and complex features in human corporal movements, and for classifying them into a set of human actions. As the devices are worn at different parts of the human body, we propose a novel deep neural network for HAR. This network handles sequence measurements from different body-worn devices separately. An evaluation of the architecture is performed on three datasets, the Oportunity, Pamap2, and an industrial dataset, outperforming the state-of-the-art. In addition, different network configurations will also be evaluated. We find that applying convolutions per sensor channel and per body-worn device improves the capabilities of convolutional neural network (CNNs.

  10. iTRAQ-Based and Label-Free Proteomics Approaches for Studies of Human Adenovirus Infections

    OpenAIRE

    Trinh, Hung V.; Grossmann, Jonas; Gehrig, Peter; Roschitzki, Bernd; Schlapbach, Ralph; Greber, Urs F.; Hemmi, Silvio

    2013-01-01

    Both isobaric tags for relative and absolute quantitation (iTRAQ) and label-free methods are widely used for quantitative proteomics. Here, we provide a detailed evaluation of these proteomics approaches based on large datasets from biological samples. iTRAQ-label-based and label-free quantitations were compared using protein lysate samples from noninfected human lung epithelial A549 cells and from cells infected for 24 h with human adenovirus type 3 or type 5. Either iTRAQ-label-based or lab...

  11. Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior.

    Science.gov (United States)

    Groen, Iris Ia; Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I

    2018-03-07

    Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information.

  12. In our own image? Emotional and neural processing differences when observing human-human vs human-robot interactions.

    Science.gov (United States)

    Wang, Yin; Quadflieg, Susanne

    2015-11-01

    Notwithstanding the significant role that human-robot interactions (HRI) will play in the near future, limited research has explored the neural correlates of feeling eerie in response to social robots. To address this empirical lacuna, the current investigation examined brain activity using functional magnetic resonance imaging while a group of participants (n = 26) viewed a series of human-human interactions (HHI) and HRI. Although brain sites constituting the mentalizing network were found to respond to both types of interactions, systematic neural variation across sites signaled diverging social-cognitive strategies during HHI and HRI processing. Specifically, HHI elicited increased activity in the left temporal-parietal junction indicative of situation-specific mental state attributions, whereas HRI recruited the precuneus and the ventromedial prefrontal cortex (VMPFC) suggestive of script-based social reasoning. Activity in the VMPFC also tracked feelings of eeriness towards HRI in a parametric manner, revealing a potential neural correlate for a phenomenon known as the uncanny valley. By demonstrating how understanding social interactions depends on the kind of agents involved, this study highlights pivotal sub-routes of impression formation and identifies prominent challenges in the use of humanoid robots. © The Author (2015). Published by Oxford University Press.

  13. Associating a product with a luxury brand label modulates neural reward processing and favors choices in materialistic individuals

    OpenAIRE

    Audrin, Catherine; Ceravolo, Leonardo; Chanal, Julien; Brosch, Tobias; Sander, David

    2017-01-01

    The present study investigated the extent to which luxury vs. non-luxury brand labels (i.e., extrinsic cues) randomly assigned to items and preferences for these items impact choice, and how this impact may be moderated by materialistic tendencies (i.e., individual characteristics). The main objective was to investigate the neural correlates of abovementioned effects using functional magnetic resonance imaging. Behavioural results showed that the more materialistic people are, the more they c...

  14. Differentiation of insulin-producing cells from human neural progenitor cells.

    Directory of Open Access Journals (Sweden)

    Yuichi Hori

    2005-04-01

    Full Text Available BACKGROUND: Success in islet-transplantation-based therapies for type 1 diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Islets and neurons share features, including common developmental programs, and in some species brain neurons are the principal source of systemic insulin. METHODS AND FINDINGS: Here we show that brain-derived human neural progenitor cells, exposed to a series of signals that regulate in vivo pancreatic islet development, form clusters of glucose-responsive insulin-producing cells (IPCs. During in vitro differentiation of neural progenitor cells with this novel method, genes encoding essential known in vivo regulators of pancreatic islet development were expressed. Following transplantation into immunocompromised mice, IPCs released insulin C-peptide upon glucose challenge, remained differentiated, and did not form detectable tumors. CONCLUSION: Production of IPCs solely through extracellular factor modulation in the absence of genetic manipulations may promote strategies to derive transplantable islet-replacement tissues from human neural progenitor cells and other types of multipotent human stem cells.

  15. Artificial neural network detects human uncertainty

    Science.gov (United States)

    Hramov, Alexander E.; Frolov, Nikita S.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Koronovskii, Alexey A.; Garcia-Prieto, Juan; Antón-Toro, Luis Fernando; Maestú, Fernando; Pisarchik, Alexander N.

    2018-03-01

    Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used in social science, robotics, and neurophysiology for solving tasks of classification, forecasting, pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core for brain-machine systems. However, despite significant achievements of artificial intelligence in recognition and classification of well-reproducible patterns of neural activity, the use of ANNs for recognition and classification of patterns in neural networks still requires additional attention, especially in ambiguous situations. According to this, in this research, we demonstrate the efficiency of application of the ANN for classification of human MEG trials corresponding to the perception of bistable visual stimuli with different degrees of ambiguity. We show that along with classification of brain states associated with multistable image interpretations, in the case of significant ambiguity, the ANN can detect an uncertain state when the observer doubts about the image interpretation. With the obtained results, we describe the possible application of ANNs for detection of bistable brain activity associated with difficulties in the decision-making process.

  16. Neural Activity Patterns in the Human Brain Reflect Tactile Stickiness Perception

    Science.gov (United States)

    Kim, Junsuk; Yeon, Jiwon; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    Our previous human fMRI study found brain activations correlated with tactile stickiness perception using the uni-variate general linear model (GLM) (Yeon et al., 2017). Here, we conducted an in-depth investigation on neural correlates of sticky sensations by employing a multivoxel pattern analysis (MVPA) on the same dataset. In particular, we statistically compared multi-variate neural activities in response to the three groups of sticky stimuli: A supra-threshold group including a set of sticky stimuli that evoked vivid sticky perception; an infra-threshold group including another set of sticky stimuli that barely evoked sticky perception; and a sham group including acrylic stimuli with no physically sticky property. Searchlight MVPAs were performed to search for local activity patterns carrying neural information of stickiness perception. Similar to the uni-variate GLM results, significant multi-variate neural activity patterns were identified in postcentral gyrus, subcortical (basal ganglia and thalamus), and insula areas (insula and adjacent areas). Moreover, MVPAs revealed that activity patterns in posterior parietal cortex discriminated the perceptual intensities of stickiness, which was not present in the uni-variate analysis. Next, we applied a principal component analysis (PCA) to the voxel response patterns within identified clusters so as to find low-dimensional neural representations of stickiness intensities. Follow-up clustering analyses clearly showed separate neural grouping configurations between the Supra- and Infra-threshold groups. Interestingly, this neural categorization was in line with the perceptual grouping pattern obtained from the psychophysical data. Our findings thus suggest that different stickiness intensities would elicit distinct neural activity patterns in the human brain and may provide a neural basis for the perception and categorization of tactile stickiness. PMID:28936171

  17. Neuronal regeneration in injured rat spinal cord after human dental pulp derived neural crest stem cell transplantation.

    Science.gov (United States)

    Kabatas, S; Demir, C S; Civelek, E; Yilmaz, I; Kircelli, A; Yilmaz, C; Akyuva, Y; Karaoz, E

    2018-01-01

    This study aimed to analyze the effect of human Dental Pulp-Neural Crest Stem Cells (hDP-NCSCs) delivery on lesion site after spinal cord injury (SCI), and to observe the functional recovery after transplantation. Neural Crest Stem Cells (NCSCs) were isolated from human Dental Pulp (hDP). The experimental rat population was divided into four groups (n = 6/24). Their behavioral motility was scored regularly. After 4-weeks, rats were sacrificed, and their spinal cords were examined for Green Fluorescent Protein (GFP) labeled hDP-NCSCs by immunofluorescence (IF) staining. In early post-injury (p.i) period, the ultrastructure of spinal cord tissue was preserved in Group 4. The majority of cells forming the ependymal region around the central canal were found to be hDP-NCSCs. While the grey-and-white-matter around the ependymal region was composed of e.g. GFP cells, with astrocytic-like appearance. The scores showed significant motor recovery in hind limb functions in Group 4. However, no obvious change was observed in other groups. Cells e.g., mesenchymal (Vimentin+) which express GFP+ cells in the gray-and-white-matter around the ependymal region could indicate the potential to self-renewal and plasticity. Thus, transplantation of hDP-NCSCs might be an effective strategy to improve functional recovery following spinal cord trauma (Fig. 10, Ref. 32).

  18. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  19. Preparation of a viable population of indium-111-labelled human blood platelets

    International Nuclear Information System (INIS)

    Heyns, A.; Badenhorst, P.N.; Pieters, H.; Loetter, M.G.; Minnaar, P.C.; Duyvene de Wit, L.J.; Reenen, O.R. van; Retief, F.P.; University of the Orange Free State, Bloemfontein; University of the Orange Free State, Bloemfontein; University of the Orange Free State, Bloemfontein

    1980-01-01

    Factors influencing labelling of human platelets with 111 Indium-8-hydroxyquinoline ([ 111 In]-oxine) in a physiological saline medium were investigated. The efficiency of labelling is influenced by time of incubation, concentration of oxine, and pH of the incubating medium. It was found that a viable platelet population could be labelled under the following conditions: (1) centrifugation of platelet rich plasma in polystyrene conical tubes at 800 g for 15 min; (2) resuspension of the platelet pellet in saline, pH 5.5; (3) incubating for 30 min at 22 0 C with [ 111 In]-oxine at a concentration of 6.25 mg oxine/litre platelet suspension; (4) washing once with platelet poor autologous plasma (PPP); and (5) finally suspending the platelets in PPP. The labelled platelets aggregated normally with collagen and ADP. Electron microscopy, done immediately after labelling, showed internal organelle reorganization characteristic of activated platelets. These ultrastructural features were reversible on incubationin PPP at 37 0 C for 30 min. The 111 In is not released from aggregated platelets and the label does not elute from incubated platelets for at least five hr. We conclude that human platelets thus labelled are suitable for in vivo kinetic studies. (orig.) [de

  20. Human platelet vasopressin receptor identification by direct ultraviolet photoaffinity labeling

    International Nuclear Information System (INIS)

    Thibonnier, M.

    1987-01-01

    Tritiated vasopressin ([ 3 H]AVP) was directly crosslinked to its human platelet receptor by using an ultraviolet irradiation procedure. After preincubation with [ 3 H]AVP, the hydrodynamic parameters of the hormone-receptor complexes solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate were derived from Sephacryl S-300 superfine gel filtration and from sucrose density gradient ultracentrifugation experiments. The following values were obtained: Stoke's radius = 5.48 +/- 0.1 nm, apparent sedimentation coefficient = 5.55 +/- 0.1 S, and calculated molecular weight = 132,000. On sodium dodecyl sulfate-8% polyacrylamide slab gel electrophoresis under reducing conditions, [ 3 H]AVP preferentially and specifically labeled a 125,000-dalton protein. The labeling of this protein was suppressed by addition of excess cold vasopressin, whereas angiotensin II did not inhibit incorporation of tritiated vasopressin in this protein. These results suggest that direct UV-photoaffinity labelling with [ 3 H]AVP is a suitable tool for the purification of the human platelet vasopressin receptor

  1. Distribution of nitrogen-13 from labeled nitrate (13NO3-) in humans and rats

    International Nuclear Information System (INIS)

    Witter, J.P.; Gatley, S.J.; Balish, E.

    1979-01-01

    The body distribution of gavaged or intravenously administered nitrate labeled with nitrogen-13 was studied in humans and rats with the following results: (1) the labeled compound is not quickly absorbed from the stomach; (2) the concentration of the label increases inside the lower intestinal tract (cecum and large intestine) when ingested or intravenously injected; and (3) humans and rats have the capacity to store a portion of the label in their bodies. These observations indicate that depletion of body stores, the passage of nitrate down the gut, or the secretion of nitrate into the intestinal lumen may be a better explanation of the urinary, ileal, and fecal concentrations of nitrate and nitrate recently measured in humans than a bacterial nitrification reaction in the intestines, as suggested by Tannenbaum, et al

  2. Galactose oxidase labeling of membrane proteins from human brain white matter

    International Nuclear Information System (INIS)

    Hukkanen, V.; Frey, H.; Salmi, A.

    1981-01-01

    Membrane proteins of human autopsy brain white matter were subjected to a galactose oxidase/NaB 3 H 4 labeling procedure and the membranes labeled by this method or by [ 3 H]acetic anhydride techniques were studied by lectin affinity chromatography using Lens culinaris phytohemagglutinin (lentil lectin) attached to Sepharose 4B beads. (Auth.)

  3. Labeling with indium-111 has detrimental effects on human lymphocytes: concise communication

    NARCIS (Netherlands)

    ten Berge, R. J.; Natarajan, A. T.; Hardeman, M. R.; van Royen, E. A.; Schellekens, P. T.

    1983-01-01

    When lymphocytes from human peripheral blood were labeled with In-111 oxinate, several of their properties appeared to be affected. The spontaneous release of the radionuclide was found to be relatively high. Labeled lymphocytes showed a decreased proliferative capacity, dependent on the dose of the

  4. (99m) Tc-labelled human serum albumin cannot replace (125) I-labelled human serum albumin to determine plasma volume in patients with liver disease

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Lütken; Henriksen, Jens H; Bendtsen, Flemming

    2013-01-01

    Summary Background and aims Determination of plasma volume (PV) is important in several clinical situations. Thus, patients with liver disease often have augmented PV as part of their sodium–water retention. This study was undertaken to compare PV determination by two indicators: technetium......-labelled human serum albumin (99mTc-HSA) and iodine-labelled human serum albumin (125I-HSA), as the former may have advantages at repeated measurements and the latter is the classical gold standard. Study population and methods In 88 patients, (64 with liver disease, mainly cirrhosis, and 24 patients without...... In all patients, a close correlation was present between PV determined by the two indicators (r = 0·89, Pdetermined with 99mTc-HSA exceeded PV determined with 125I-HSA by 367 ml (5·2 ml kg...

  5. Human Embryonic Stem Cells: A Model for the Study of Neural Development and Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Piya Prajumwongs

    2016-01-01

    Full Text Available Although the mechanism of neurogenesis has been well documented in other organisms, there might be fundamental differences between human and those species referring to species-specific context. Based on principles learned from other systems, it is found that the signaling pathways required for neural induction and specification of human embryonic stem cells (hESCs recapitulated those in the early embryo development in vivo at certain degree. This underscores the usefulness of hESCs in understanding early human neural development and reinforces the need to integrate the principles of developmental biology and hESC biology for an efficient neural differentiation.

  6. Analysis of Neural Stem Cells from Human Cortical Brain Structures In Vitro.

    Science.gov (United States)

    Aleksandrova, M A; Poltavtseva, R A; Marei, M V; Sukhikh, G T

    2016-05-01

    Comparative immunohistochemical analysis of the neocortex from human fetuses showed that neural stem and progenitor cells are present in the brain throughout the gestation period, at least from week 8 through 26. At the same time, neural stem cells from the first and second trimester fetuses differed by the distribution, morphology, growth, and quantity. Immunocytochemical analysis of neural stem cells derived from fetuses at different gestation terms and cultured under different conditions showed their differentiation capacity. Detailed analysis of neural stem cell populations derived from fetuses on gestation weeks 8-9, 18-20, and 26 expressing Lex/SSEA1 was performed.

  7. On the nature and evolution of the neural bases of human language

    Science.gov (United States)

    Lieberman, Philip

    2002-01-01

    The traditional theory equating the brain bases of language with Broca's and Wernicke's neocortical areas is wrong. Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, and comprehending the meaning of sentences. When we hear or read a word, neural structures involved in the perception or real-world associations of the word are activated as well as posterior cortical regions adjacent to Wernicke's area. Many areas of the neocortex and subcortical structures support the cortical-striatal-cortical circuits that confer complex syntactic ability, speech production, and a large vocabulary. However, many of these structures also form part of the neural circuits regulating other aspects of behavior. For example, the basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human linguistic ability and abstract reasoning. The cerebellum, traditionally associated with motor control, is active in motor learning. The basal ganglia are also key elements in reward-based learning. Data from studies of Broca's aphasia, Parkinson's disease, hypoxia, focal brain damage, and a genetically transmitted brain anomaly (the putative "language gene," family KE), and from comparative studies of the brains and behavior of other species, demonstrate that the basal ganglia sequence the discrete elements that constitute a complete motor act, syntactic process, or thought process. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. As Dobzansky put it, "Nothing in biology makes sense except in the light of evolution" (cited in Mayr, 1982). That applies with as much force to the human brain and the neural bases of language as it does to the human foot or jaw. The converse follows: the mark of evolution on

  8. Neural Correlates of the Cortisol Awakening Response in Humans.

    Science.gov (United States)

    Boehringer, Andreas; Tost, Heike; Haddad, Leila; Lederbogen, Florian; Wüst, Stefan; Schwarz, Emanuel; Meyer-Lindenberg, Andreas

    2015-08-01

    The cortisol rise after awakening (cortisol awakening response, CAR) is a core biomarker of hypothalamic-pituitary-adrenal (HPA) axis regulation related to psychosocial stress and stress-related psychiatric disorders. However, the neural regulation of the CAR has not been examined in humans. Here, we studied neural regulation related to the CAR in a sample of 25 healthy human participants using an established psychosocial stress paradigm together with multimodal functional and structural (voxel-based morphometry) magnetic resonance imaging. Across subjects, a smaller CAR was associated with reduced grey matter volume and increased stress-related brain activity in the perigenual ACC, a region which inhibits HPA axis activity during stress that is implicated in risk mechanisms and pathophysiology of stress-related mental diseases. Moreover, functional connectivity between the perigenual ACC and the hypothalamus, the primary controller of HPA axis activity, was associated with the CAR. Our findings provide support for a role of the perigenual ACC in regulating the CAR in humans and may aid future research on the pathophysiology of stress-related illnesses, such as depression, and environmental risk for illnesses such as schizophrenia.

  9. Study on therapy of 188Re labelled stannic sulfur suspension in nude mice bearing human colon tumor

    International Nuclear Information System (INIS)

    Li Huiyuan; Wu Yuanfang; Dong Mo

    2003-01-01

    The effect of therapy, tissue distribution and stability are studied in nude mice bearing human colon tumor after injections of 188 Re labelled stannic sulfur suspension. The tissues are observed with electric microscope. The results show that 188 Re labelled stannic sulfur suspension is stabilized in the tumor and its inhibitive effects on human colon tumor cells are obvious. 188 Re labelled stannic sulfur suspension is a potential radiopharmaceuticals for therapy of human tumor

  10. Labelling of human serum albumin with iodine-131 for diagnosis in nuclear medicine

    International Nuclear Information System (INIS)

    Silva Valente Goncalves, R. da.

    1979-01-01

    Labelling of 131 I-human serum albumin with I-131 from a solution of 131 I-sodium iodide using chloramine T as an oxidant agent is studied. Parameters which can influence on the labelling yield like mass of human serum albumin, and chloramine T, pH of the reaction, reaction time and activity of 131 I are also studied. The purification of the labeled product by means of IRA-410 Amberlite ion-exchange resin in chloride form and the sterilization of the 131 I-human serum albumin by its passage through a 0,22μ millipore filter are carried out. The radiochemistry control of the final product by paper chromatography and the microbiological control by cultivation of microorganisms in fluid medium: nutrient broth, sodium thioglycollate broth and Sabouraud, are performed. The stability of the radiopharmaceutical until ten days after its preparation is analysed by means of radiochemical control. (Author) [pt

  11. The uptake of tritium-labelled carnitine by monolayer cultures of human fetal muscle and its potential as a label in cytotoxicity studies

    International Nuclear Information System (INIS)

    Cambridge, G.; Stern, C.M.M.

    1981-01-01

    As a novel approach to the investigation of immune responses directed against muscle antigens in inflammatory muscle disease, the use of tritium-labelled carnitine as a selective marker for myotubes in monolayer cultures was investigated. Tritium-labelled carnitine was incubated either with monolayer cultures of human fetal muscle or with syngeneic monolayer cultures of human fetal fibroblasts. The rate of uptake and loss of tritium-labelled carnitine by muscle cultures was compared with that shown by fibroblast cultures; values for the ratio Ksub(m)/Vsub(max) were 3.1 for muscle cultures and 0.46 for fibroblast cultures. Freeze-dried radioautographs of muscle monolayers, previously incubated with tritium-labelled carnitine confirmed the specific intra-tubular localization of the label. Fetal muscle monolayers, previously incubated with tritium-labelled carnitine, were used as targets in long-term cytotoxicity experiments into lymphocyte-mediated myotoxicity. Peripheral blood lymphocytes from patients with inflammatory muscle disease were shown to be myotoxic, but lymphocytes from normal individuals or those with non-inflammatory muscle disease were not. Carnitine-based measures of myotoxicity closely followed the clinical activity of the disease in one patient and the test shows considerable potential as a means of assessing myotube killing by lymphocytes on a per-cell basis. (author)

  12. Labelling of human resting lymphocytes by continuous infusion of (/sup 3/H)thymidine. 1. Characterization of cytoplasmic label

    Energy Technology Data Exchange (ETDEWEB)

    Schick, P; Trepel, F; Maisel, K H; Past, W; Reisert, I; Begemann, H; Pilgrim, C [Ulm Univ. (Germany, F.R.)

    1978-01-01

    After continuous /sup 3/H-TdR infusion in vivo or incubation with /sup 3/H-TdR in vitro human blood lymphocytes were examined by light-microscopic and electron-microscopic autoradiography. Using relatively long autoradiographic exposure times (50-300 days) not only nuclear but also cytoplasmic labelling was visualized, the cytoplasmic label being present in up to 96% of the cells. The cytoplasmic label was predominantly associated with the mitochondria and was removed from the cells nearly completely by treatment with DNase but not with RNase or cold perchloric acid. It is concluded that this cytoplasmic label mainly represents /sup 3/H-TdR incorporated into mitochondrial DNA which is continuously renewed in an average turnover time of 14 days or less. This value is compatible with a turnover time of 11 days for mitochondrial DNA in mammalian cells reported in the literature.

  13. Characterization of human neural differentiation from pluripotent stem cells using proteomics/PTMomics

    DEFF Research Database (Denmark)

    Braga, Marcella Nunes de Melo; Meyer, Morten; Zeng, Xianmin

    2015-01-01

    Stem cells are unspecialized cells capable of self-renewal and to differentiate into the large variety of cells in the body. The possibility to differentiate these cells into neural precursors and neural cells in vitro provides the opportunity to study neural development, nerve cell biology, neur...... differentiation from pluripotent stem cells. Moreover, some of the challenges in stem cell biology, differentiation, and proteomics/PTMomics that are not exclusive to neural development will be discussed.......Stem cells are unspecialized cells capable of self-renewal and to differentiate into the large variety of cells in the body. The possibility to differentiate these cells into neural precursors and neural cells in vitro provides the opportunity to study neural development, nerve cell biology...... the understanding of molecular processes in cells. Substantial advances in PTM enrichment methods and mass spectrometry has allowed the characterization of a subset of PTMs in large-scale studies. This review focuses on the current state-of-the-art of proteomic, as well as PTMomic studies related to human neural...

  14. Neural networks of human nature and nurture

    Directory of Open Access Journals (Sweden)

    Daniel S. Levine

    2009-11-01

    Full Text Available Neural network methods have facilitated the unification of several unfortunate splits in psychology, including nature versus nurture. We review the contributions of this methodology and then discuss tentative network theories of caring behavior, of uncaring behavior, and of how the frontal lobes are involved in the choices between them. The implications of our theory are optimistic about the prospects of society to encourage the human potential for caring.

  15. Heparan Sulfate Proteoglycans as Drivers of Neural Progenitors Derived From Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Okolicsanyi, Rachel K; Oikari, Lotta E; Yu, Chieh; Griffiths, Lyn R; Haupt, Larisa M

    2018-01-01

    Background: Due to their relative ease of isolation and their high ex vivo and in vitro expansive potential, human mesenchymal stem cells (hMSCs) are an attractive candidate for therapeutic applications in the treatment of brain injury and neurological diseases. Heparan sulfate proteoglycans (HSPGs) are a family of ubiquitous proteins involved in a number of vital cellular processes including proliferation and stem cell lineage differentiation. Methods: Following the determination that hMSCs maintain neural potential throughout extended in vitro expansion, we examined the role of HSPGs in mediating the neural potential of hMSCs. hMSCs cultured in basal conditions (undifferentiated monolayer cultures) were found to co-express neural markers and HSPGs throughout expansion with modulation of the in vitro niche through the addition of exogenous HS influencing cellular HSPG and neural marker expression. Results: Conversion of hMSCs into hMSC Induced Neurospheres (hMSC IN) identified distinctly localized HSPG staining within the spheres along with altered gene expression of HSPG core protein and biosynthetic enzymes when compared to undifferentiated hMSCs. Conclusion: Comparison of markers of pluripotency, neural self-renewal and neural lineage specification between hMSC IN, hMSC and human neural stem cell (hNSC H9) cultures suggest that in vitro generated hMSC IN may represent an intermediary neurogenic cell type, similar to a common neural progenitor cell. In addition, this data demonstrates HSPGs and their biosynthesis machinery, are associated with hMSC IN formation. The identification of specific HSPGs driving hMSC lineage-specification will likely provide new markers to allow better use of hMSCs in therapeutic applications and improve our understanding of human neurogenesis.

  16. Technetium-99m labeling of antibodies to cardiac myosin Fab and to human fibrinogen

    International Nuclear Information System (INIS)

    Khaw, B.A.; Strauss, H.W.; Carvalho, A.; Locke, E.; Gold, H.K.; Haber, E.

    1982-01-01

    A method of labeling biologically active labile macromolecules, such as human fibrinogen (HF) and anticardiac-myosin Fab (AM-Fab), with Tc-99m at neutral pH was developed. This method uses dithionite reduction of pertechnetate and subsequent labeling to test the method with acid-labile macromolecules. Complexes of diethylene triamine pentaacetic acid with macromolecules such as human fibrinogen (D-HF) and anticardiac-myosin Fab (D-AM-Fab) were labeled and utilized in in vitro and in vivo studies. In biodistribution studies, the Tc-99m D-HF had a two-component blood clearance (half-times 1 hr and 15 hr) and was 80-88% coagulable. The Tc-99m AM-Fab retained its immunoreactivity as tested by affinity chromatography; also during in vivo localization in experimental myocardial infarction. This labeling technique provides an easy and efficient approach to the Tc-99m labeling of other biologically active and acid-labile macromolecules

  17. Noncoding RNA in the Transcriptional Landscape of Human Neural Progenitor Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Patrick eHecht

    2015-10-01

    Full Text Available Increasing evidence suggests that noncoding RNAs play key roles in cellular processes, particularly in the brain. The present study used RNA sequencing to identify the transcriptional landscape of two human neural progenitor cell lines, SK-N-SH and ReNcell CX, as they differentiate into human cortical projection neurons. Protein coding genes were found to account for 54.8% and 57.0% of expressed genes, respectively, and alignment of RNA sequencing reads revealed that only 25.5-28.1% mapped to exonic regions of the genome. Differential expression analysis in the two cell lines identified altered gene expression in both protein coding and noncoding RNAs as they undergo neural differentiation with 222 differentially expressed genes observed in SK-N-SH cells and 19 differentially expressed genes in ReNcell CX. Interestingly, genes showing differential expression in SK-N-SH cells are enriched in genes implicated in autism spectrum disorder, but not in gene sets related to cancer or Alzheimer’s disease. Weighted gene co-expression network analysis (WGCNA was used to detect modules of co-expressed protein coding and noncoding RNAs in SK-N-SH cells and found four modules to be associated with neural differentiation. These modules contain varying levels of noncoding RNAs ranging from 10.7% to 49.7% with gene ontology suggesting roles in numerous cellular processes important for differentiation. These results indicate that noncoding RNAs are highly expressed in human neural progenitor cells and likely hold key regulatory roles in gene networks underlying neural differentiation and neurodevelopmental disorders.

  18. Detection of human spermatozoal peptides after conjugation to 125I-labelled human serum albumin

    International Nuclear Information System (INIS)

    Metler, L.; Skrabei, H.; Czuppon, A.B.

    1981-01-01

    Human spermatozoal peptides, liberated during autolysis of the cells, were fractionated by gel-filtration chromatography and thin-layer chromatography. After conjugation to 125 I-labelled human serum albumin, all fractions were assayed with rabbit antihuman spermatozoa antiserum. In earlier publications, human sperm-immobilizing and sperm-agglutinating sera were used for the detection of solubilized spermatozoal antigen. The low sensitivity of these tests necessitated a more sensitive test. The purpose of this work is to describe a solid-phase radioimmunoassay for the detection of antigenic peptides

  19. The use of artificial neural network to evaluate the effects of human ...

    African Journals Online (AJOL)

    The use of artificial neural network to evaluate the effects of human and physiographic factors on forest stock volume. ... stock volume and human factors in certain topography conditions and provides useful information for the acceptable amount of standing inventory using the present human population in future experiment.

  20. Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization.

    Science.gov (United States)

    Zhao, Yu; Ge, Fangfei; Liu, Tianming

    2018-07-01

    fMRI data decomposition techniques have advanced significantly from shallow models such as Independent Component Analysis (ICA) and Sparse Coding and Dictionary Learning (SCDL) to deep learning models such Deep Belief Networks (DBN) and Convolutional Autoencoder (DCAE). However, interpretations of those decomposed networks are still open questions due to the lack of functional brain atlases, no correspondence across decomposed or reconstructed networks across different subjects, and significant individual variabilities. Recent studies showed that deep learning, especially deep convolutional neural networks (CNN), has extraordinary ability of accommodating spatial object patterns, e.g., our recent works using 3D CNN for fMRI-derived network classifications achieved high accuracy with a remarkable tolerance for mistakenly labelled training brain networks. However, the training data preparation is one of the biggest obstacles in these supervised deep learning models for functional brain network map recognitions, since manual labelling requires tedious and time-consuming labours which will sometimes even introduce label mistakes. Especially for mapping functional networks in large scale datasets such as hundreds of thousands of brain networks used in this paper, the manual labelling method will become almost infeasible. In response, in this work, we tackled both the network recognition and training data labelling tasks by proposing a new iteratively optimized deep learning CNN (IO-CNN) framework with an automatic weak label initialization, which enables the functional brain networks recognition task to a fully automatic large-scale classification procedure. Our extensive experiments based on ABIDE-II 1099 brains' fMRI data showed the great promise of our IO-CNN framework. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Human absorbed dose calculations for 123I labeled phenyl pentadecanoic acid

    International Nuclear Information System (INIS)

    Kulkarni, P.V.; Clark, G.; Corbett, J.R.; Willerson, J.T.; Parkey, R.W.

    1986-01-01

    I-123 labeled fatty acids have been proposed for studying myocardial metabolism by scintigraphic methods. With the availability of clean I-123 and the advent of single photon emission tomography, I-123 labeled fatty acids would be well suited to study regional myocardial viability or metabolism in humans. The authors have studied I-125 and I-123 labeled iodophenyl pentadecanoic acid (IPPA) in rats and dogs. Clinical studies are in progress with I-123 (IPPA). They have studied the pharmacokinetics of this tracer in male Sprague-Dawley rats at 0.25, 0.5, 1, 3, 6, and 24 hours postinjection. The cumulated doses, due to both pure I-123 and a version contaminated with 1.4% I-125, in various organs and the total body in humans are estimated. The average dose to organs for humans injected with I-123 IPPA with pure I-123 and contaminated I-123 respectively, are (rads to organ per mCi injected): heart wall (0.0507, 0.0514), liver (0.0792, 0.0875), kidneys (0.0479, 0.0561), thyroid (0.0517, 0.0638), ovaries (0.0427, 0.0561), testes (0.0307, 0.0309), total body (0.0386, 0.0392). 12 references, 9 figures, 5 tables

  2. Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments.

    Science.gov (United States)

    Baldominos, Alejandro; Saez, Yago; Isasi, Pedro

    2018-04-23

    Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures.

  3. Generation and properties of a new human ventral mesencephalic neural stem cell line

    DEFF Research Database (Denmark)

    Villa, Ana; Liste, Isabel; Courtois, Elise T

    2009-01-01

    . Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization. The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal......Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro...... derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing....

  4. A Chronically Implantable Bidirectional Neural Interface for Non-human Primates

    Directory of Open Access Journals (Sweden)

    Misako Komatsu

    2017-09-01

    Full Text Available Optogenetics has potential applications in the study of epilepsy and neuroprostheses, and for studies on neural circuit dynamics. However, to achieve translation to clinical usage, optogenetic interfaces that are capable of chronic stimulation and monitoring with minimal brain trauma are required. We aimed to develop a chronically implantable device for photostimulation of the brain of non-human primates. We used a micro-light-emitting diode (LED array with a flexible polyimide film. The array was combined with a whole-cortex electrocorticographic (ECoG electrode array for simultaneous photostimulation and recording. Channelrhodopsin-2 (ChR2 was virally transduced into the cerebral cortex of common marmosets, and then the device was epidurally implanted into their brains. We recorded the neural activity during photostimulation of the awake monkeys for 4 months. The neural responses gradually increased after the virus injection for ~8 weeks and remained constant for another 8 weeks. The micro-LED and ECoG arrays allowed semi-invasive simultaneous stimulation and recording during long-term implantation in the brains of non-human primates. The development of this device represents substantial progress in the field of optogenetic applications.

  5. 21 CFR 101.79 - Health claims: Folate and neural tube defects.

    Science.gov (United States)

    2010-04-01

    ... pregnancy had a reduced risk of having a child with a neural tube defect. (Products containing this level of... neural tube defect, those with insulin-dependent diabetes mellitus, and women with seizure disorders who... mcg) when labeled for use by adults and children 4 or more years of age, or 800 mcg when labeled for...

  6. ChemNet: A Transferable and Generalizable Deep Neural Network for Small-Molecule Property Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Garrett B.; Siegel, Charles M.; Vishnu, Abhinav; Hodas, Nathan O.

    2017-12-08

    With access to large datasets, deep neural networks through representation learning have been able to identify patterns from raw data, achieving human-level accuracy in image and speech recognition tasks. However, in chemistry, availability of large standardized and labelled datasets is scarce, and with a multitude of chemical properties of interest, chemical data is inherently small and fragmented. In this work, we explore transfer learning techniques in conjunction with the existing Chemception CNN model, to create a transferable and generalizable deep neural network for small-molecule property prediction. Our latest model, ChemNet learns in a semi-supervised manner from inexpensive labels computed from the ChEMBL database. When fine-tuned to the Tox21, HIV and FreeSolv dataset, which are 3 separate chemical tasks that ChemNet was not originally trained on, we demonstrate that ChemNet exceeds the performance of existing Chemception models, contemporary MLP models that trains on molecular fingerprints, and it matches the performance of the ConvGraph algorithm, the current state-of-the-art. Furthermore, as ChemNet has been pre-trained on a large diverse chemical database, it can be used as a universal “plug-and-play” deep neural network, which accelerates the deployment of deep neural networks for the prediction of novel small-molecule chemical properties.

  7. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks

    Science.gov (United States)

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude

    2017-01-01

    Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100 ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250 ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. PMID:27039703

  8. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    Science.gov (United States)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  9. In vitro characterization of a human neural progenitor cell coexpressing SSEA4 and CD133

    DEFF Research Database (Denmark)

    Barraud, Perrine; Stott, Simon; Møllgård, Kjeld

    2007-01-01

    The stage-specific embryonic antigen 4 (SSEA4) is commonly used as a cell surface marker to identify the pluripotent human embryonic stem (ES) cells. Immunohistochemistry on human embryonic central nervous system revealed that SSEA4 is detectable in the early neuroepithelium, and its expression....... Therefore, we propose that SSEA4 associated with CD133 can be used for both the positive selection and the enrichment of neural stem/progenitor cells from human embryonic forebrain....... decreases as development proceeds. Flow cytometry analysis of forebrain-derived cells demonstrated that the SSEA4-expressing cells are enriched in the neural stem/progenitor cell fraction (CD133(+)), but are rarely codetected with the neural stem cell (NSC) marker CD15. Using a sphere-forming assay, we...

  10. A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition

    Directory of Open Access Journals (Sweden)

    Daniela Sánchez

    2017-01-01

    Full Text Available A grey wolf optimizer for modular neural network (MNN with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition.

  11. Generation of Oligodendrogenic Spinal Neural Progenitor Cells From Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Khazaei, Mohamad; Ahuja, Christopher S; Fehlings, Michael G

    2017-08-14

    This unit describes protocols for the efficient generation of oligodendrogenic neural progenitor cells (o-NPCs) from human induced pluripotent stem cells (hiPSCs). Specifically, detailed methods are provided for the maintenance and differentiation of hiPSCs, human induced pluripotent stem cell-derived neural progenitor cells (hiPS-NPCs), and human induced pluripotent stem cell-oligodendrogenic neural progenitor cells (hiPSC-o-NPCs) with the final products being suitable for in vitro experimentation or in vivo transplantation. Throughout, cell exposure to growth factors and patterning morphogens has been optimized for both concentration and timing, based on the literature and empirical experience, resulting in a robust and highly efficient protocol. Using this derivation procedure, it is possible to obtain millions of oligodendrogenic-NPCs within 40 days of initial cell plating which is substantially shorter than other protocols for similar cell types. This protocol has also been optimized to use translationally relevant human iPSCs as the parent cell line. The resultant cells have been extensively characterized both in vitro and in vivo and express key markers of an oligodendrogenic lineage. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  12. Direct Neural Conversion from Human Fibroblasts Using Self-Regulating and Nonintegrating Viral Vectors

    Directory of Open Access Journals (Sweden)

    Shong Lau

    2014-12-01

    Full Text Available Summary: Recent findings show that human fibroblasts can be directly programmed into functional neurons without passing via a proliferative stem cell intermediate. These findings open up the possibility of generating subtype-specific neurons of human origin for therapeutic use from fetal cell, from patients themselves, or from matched donors. In this study, we present an improved system for direct neural conversion of human fibroblasts. The neural reprogramming genes are regulated by the neuron-specific microRNA, miR-124, such that each cell turns off expression of the reprogramming genes once the cell has reached a stable neuronal fate. The regulated system can be combined with integrase-deficient vectors, providing a nonintegrative and self-regulated conversion system that rids problems associated with the integration of viral transgenes into the host genome. These modifications make the system suitable for clinical use and therefore represent a major step forward in the development of induced neurons for cell therapy. : Lau et al. now use miRNA targeting to build a self-regulating neural conversion system. Combined with nonintegrating vectors, this system can efficiently drive conversion of human fibroblasts into functional induced neurons (iNs suitable for clinical applications.

  13. A Hierarchical Representation for Human Activity Recognition with Noisy Labels

    NARCIS (Netherlands)

    Hu, N.; Englebienne, G.; Lou, Z.; Kröse, B.

    2015-01-01

    Human activity recognition is an essential task for robots to effectively and efficiently interact with the end users. Many machine learning approaches for activity recognition systems have been proposed recently. Most of these methods are built upon a strong assumption that the labels in the

  14. /sup 99m/Tc labeling of antibodies to cardiac myosin Fab and to human fibrinogen

    International Nuclear Information System (INIS)

    Khaw, B.A.; Strauss, H.W.; Carvalho, A.; Locke, E.; Gold, H.K.; Haber, E.

    1982-01-01

    We have developed a method of labeling biologically active labile macromolecules, such as human fibrinogen (HF) and anticardiac-myosin Fab (AM-Fab), with /sup 99m/Tc at neutral pH. This method uses dithionite reduction of pertechnetate and subsequent labeling, to test the method with acid-labile macromolecules. Complexes of diethylene triamine pentaacetic acid with macromolecules such as human fibrinogen (D-HF) and anticardiac-myosin Fab (D-AM-Fab) were labeled and utilized in in vitro and in vivo studies. In biodistribution studies, the /sup 99m/Tc D-HF had a two-component blood clearance (half-times 1 hr and 15 hr) and was 80--88% coagulable. The /sup 99m/Tc AM-Fab retained its immunoreactivity as tested by affinity chromatography; also during in vivo localization in experimental myocardial infarction. This labeling technique provides an easy and efficient approach to the /sup 99m/Tc labeling of other biologically active and acid-labile macromolecules

  15. Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Chandrasekaran, Abinaya; Avci, Hasan; Ochalek, Anna

    2017-01-01

    Neural progenitor cells (NPCs) from human induced pluripotent stem cells (hiPSCs) are frequently induced using 3D culture methodologies however, it is unknown whether spheroid-based (3D) neural induction is actually superior to monolayer (2D) neural induction. Our aim was to compare the efficiency......), cortical layer (TBR1, CUX1) and glial markers (SOX9, GFAP, AQP4). Electron microscopy demonstrated that both methods resulted in morphologically similar neural rosettes. However, quantification of NPCs derived from 3D neural induction exhibited an increase in the number of PAX6/NESTIN double positive cells...... the electrophysiological properties between the two induction methods. In conclusion, 3D neural induction increases the yield of PAX6+/NESTIN+ cells and gives rise to neurons with longer neurites, which might be an advantage for the production of forebrain cortical neurons, highlighting the potential of 3D neural...

  16. Delineating Neural Structures of Developmental Human Brains with Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2010-01-01

    Full Text Available The human brain anatomy is characterized by dramatic structural changes during fetal development. It is extraordinarily complex and yet its origin is a simple tubular structure. Revealing detailed anatomy at different stages of brain development not only aids in understanding this highly ordered process, but also provides clues to detect abnormalities caused by genetic or environmental factors. However, anatomical studies of human brain development during the fetal period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor imaging (DTI measures water diffusion to delineate the underlying neural structures. The high contrasts derived from DTI can be used to establish the brain atlas. With DTI tractography, coherent neural structures, such as white matter tracts, can be three-dimensionally reconstructed. The primary eigenvector of the diffusion tensor can be further explored to characterize microstructures in the cerebral wall of the developmental brains. In this mini-review, the application of DTI in order to reveal the structures of developmental fetal brains has been reviewed in the above-mentioned aspects. The fetal brain DTI provides a unique insight for delineating the neural structures in both macroscopic and microscopic levels. The resultant DTI database will provide structural guidance for the developmental study of human fetal brains in basic neuroscience, and reference standards for diagnostic radiology of premature newborns.

  17. Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Bejoy, Julie; Song, Liqing; Zhou, Yi; Li, Yan

    2018-04-01

    Human induced pluripotent stem cells (hiPSCs) have special ability to self-assemble into neural spheroids or mini-brain-like structures. During the self-assembly process, Wnt signaling plays an important role in regional patterning and establishing positional identity of hiPSC-derived neural progenitors. Recently, the role of Wnt signaling in regulating Yes-associated protein (YAP) expression (nuclear or cytoplasmic), the pivotal regulator during organ growth and tissue generation, has attracted increasing interests. However, the interactions between Wnt and YAP expression for neural lineage commitment of hiPSCs remain poorly explored. The objective of this study is to investigate the effects of Wnt signaling and YAP expression on the cellular population in three-dimensional (3D) neural spheroids derived from hiPSCs. In this study, Wnt signaling was activated using CHIR99021 for 3D neural spheroids derived from human iPSK3 cells through embryoid body formation. Our results indicate that Wnt activation induces nuclear localization of YAP and upregulates the expression of HOXB4, the marker for hindbrain/spinal cord. By contrast, the cells exhibit more rostral forebrain neural identity (expression of TBR1) without Wnt activation. Cytochalasin D was then used to induce cytoplasmic YAP and the results showed the decreased HOXB4 expression. In addition, the incorporation of microparticles in the neural spheroids was investigated for the perturbation of neural patterning. This study may indicate the bidirectional interactions of Wnt signaling and YAP expression during neural tissue patterning, which have the significance in neurological disease modeling, drug screening, and neural tissue regeneration.

  18. Flow cytometry measurements of human chromosome kinetochore labeling

    International Nuclear Information System (INIS)

    Fantes, J.A.; Green, D.K.; Malloy, P.; Sumner, A.T.

    1989-01-01

    A method for the preparation and measurement of immunofluorescent human chromosome centromeres in suspension is described using CREST antibodies, which bind to the centromeric region of chromosomes. Fluorescein isothiocyanate (FITC)-conjugated antihuman antibodies provide the fluorescent label. Labeled chromosomes are examined on microscope slides and by flow cytometry. In both cases a dye which binds to DNA is added to provide identification of the chromosome groups. Sera from different CREST patients vary in their ability to bind to chromosome arms in addition to the centromeric region. Flow cytometry and microfluorimetry measurements have shown that with a given CREST serum the differences in kinetochore fluorescence between chromosomes are only minor. Flow cytometry experiments to relate the number of dicentric chromosomes, induced by in vitro radiation of peripheral blood cells to the slightly increased number of chromosomes with above-average kinetochore fluorescence did not produce decisive radiation dosimetry results

  19. Neural representations of social status hierarchy in human inferior parietal cortex.

    Science.gov (United States)

    Chiao, Joan Y; Harada, Tokiko; Oby, Emily R; Li, Zhang; Parrish, Todd; Bridge, Donna J

    2009-01-01

    Mental representations of social status hierarchy share properties with that of numbers. Previous neuroimaging studies have shown that the neural representation of numerical magnitude lies within a network of regions within inferior parietal cortex. However the neural basis of social status hierarchy remains unknown. Using fMRI, we studied subjects while they compared social status magnitude of people, objects and symbols, as well as numerical magnitude. Both social status and number comparisons recruited bilateral intraparietal sulci. We also observed a semantic distance effect whereby neural activity within bilateral intraparietal sulci increased for semantically close relative to far numerical and social status comparisons. These results demonstrate that social status and number comparisons recruit distinct and overlapping neuronal representations within human inferior parietal cortex.

  20. Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments

    Directory of Open Access Journals (Sweden)

    Alejandro Baldominos

    2018-04-01

    Full Text Available Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures.

  1. Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments

    Science.gov (United States)

    2018-01-01

    Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures. PMID:29690587

  2. Labelling of human follicle stimulant hormone with 125I, for radioimmunoassay

    International Nuclear Information System (INIS)

    Pinto, H.; Werner, R.S.; Lerario, A.C.; Toledo e Souza, I.T. de; Wajchenberg, B.L.; Pieroni, R.R.

    1976-01-01

    An efficient labeling of human Follicle Stimulant Harmone is essential to development of sensitive radioimmunoassays. Iodination by Chloramine T method frequently is subject to severe iodination damage and some preparations are unaccetable for radioimmunoassays. Modifications to the Hunter method, changing incubation time, reaction temperature and reducing Chloramine T amount used in the reaction, were performed in obtaining a more effective labeling. FSH-125 I fraction obtained from Sephadex G-75 column purification presented excellent immunoreactivity and quality control of the steps of the reaction demonstrated a high percentage (90%) of intact Follicle Stimulant Hormone [pt

  3. 75 FR 33312 - Indexing Structured Product Labeling for Human Prescription Drug and Biological Products; Request...

    Science.gov (United States)

    2010-06-11

    ...] Indexing Structured Product Labeling for Human Prescription Drug and Biological Products; Request for... Biologics Evaluation and Research (CBER) are indexing certain categories of information in product labeling for use as terms to search repositories of approved prescription medical product structured product...

  4. Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing

    Science.gov (United States)

    Krajíček, Jiří

    This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].

  5. Deep Recurrent Neural Networks for Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Abdulmajid Murad

    2017-11-01

    Full Text Available Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM and k-nearest neighbors (KNN. Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs and CNNs.

  6. Deep Recurrent Neural Networks for Human Activity Recognition.

    Science.gov (United States)

    Murad, Abdulmajid; Pyun, Jae-Young

    2017-11-06

    Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs.

  7. Validation of quantitation of regional myocardial blood flow in vivo with 11C-labeled human albumin microspheres and positron emission tomography

    International Nuclear Information System (INIS)

    Wilson, R.A.; Shea, M.J.; De Landsheere, C.M.; Turton, D.; Brady, F.; Deanfield, J.E.; Selwyn, A.P.

    1984-01-01

    Use of radiolabeled microspheres is a standard method to measure regional myocardial perfusion in animals. Human albumin microspheres have been given safely to patients, but positron-emitting 67 Ga-labeled human albumin microspheres are characterized by an unstable radiolabel. A new labeling procedure that covalently binds 11 C to human albumin microspheres via 11 CH 3 I was developed. Seven open-chest and two closed-chest dogs were studied. Reference and 11 C-labeled human albumin microspheres (2 to 25 mCi) were both injected into the left atrium. Positron tomographic images were obtained of the myocardial distribution of the 11 C-labeled microspheres. Timed arterial withdrawal was used for both reference gamma-labeled microspheres and 11 C-labeled human albumin microspheres. Regional myocardial perfusion calculated by this technique correlated well with values obtained with reference microspheres over a range of 0.2 to 3.5 ml/min/g. Thus, 11 C human albumin microspheres are stable radiochemically and can be used as a quantitative measure of regional myocardial perfusion

  8. Nonlocal atlas-guided multi-channel forest learning for human brain labeling.

    Science.gov (United States)

    Ma, Guangkai; Gao, Yaozong; Wu, Guorong; Wu, Ligang; Shen, Dinggang

    2016-02-01

    It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features can be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). In particular, the authors employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical structures). Specifically, at each of the iterations, the random forest will output tentative labeling maps of the target image, from which the authors compute spatial label context features and then use in combination with original appearance features of the target image to refine the labeling. Moreover, to accommodate the high inter-subject variations, the authors further extend their learning-based label fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final labeling result according to the consensus of results from all atlases. The authors have comprehensively evaluated their method on both public LONI_LBPA40 and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors use the dice similarity coefficient

  9. Medical image segmentation by means of constraint satisfaction neural network

    International Nuclear Information System (INIS)

    Chen, C.T.; Tsao, C.K.; Lin, W.C.

    1990-01-01

    This paper applies the concept of constraint satisfaction neural network (CSNN) to the problem of medical image segmentation. Constraint satisfaction (or constraint propagation), the procedure to achieve global consistency through local computation, is an important paradigm in artificial intelligence. CSNN can be viewed as a three-dimensional neural network, with the two-dimensional image matrix as its base, augmented by various constraint labels for each pixel. These constraint labels can be interpreted as the connections and the topology of the neural network. Through parallel and iterative processes, the CSNN will approach a solution that satisfies the given constraints thus providing segmented regions with global consistency

  10. A Chemical Probe that Labels Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Nao Hirata

    2014-03-01

    Full Text Available A small-molecule fluorescent probe specific for human pluripotent stem cells would serve as a useful tool for basic cell biology research and stem cell therapy. Screening of fluorescent chemical libraries with human induced pluripotent stem cells (iPSCs and subsequent evaluation of hit molecules identified a fluorescent compound (Kyoto probe 1 [KP-1] that selectively labels human pluripotent stem cells. Our analyses indicated that the selectivity results primarily from a distinct expression pattern of ABC transporters in human pluripotent stem cells and from the transporter selectivity of KP-1. Expression of ABCB1 (MDR1 and ABCG2 (BCRP, both of which cause the efflux of KP-1, is repressed in human pluripotent stem cells. Although KP-1, like other pluripotent markers, is not absolutely specific for pluripotent stem cells, the identified chemical probe may be used in conjunction with other reagents.

  11. Improved Extension Neural Network and Its Applications

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    2014-01-01

    Full Text Available Extension neural network (ENN is a new neural network that is a combination of extension theory and artificial neural network (ANN. The learning algorithm of ENN is based on supervised learning algorithm. One of important issues in the field of classification and recognition of ENN is how to achieve the best possible classifier with a small number of labeled training data. Training data selection is an effective approach to solve this issue. In this work, in order to improve the supervised learning performance and expand the engineering application range of ENN, we use a novel data selection method based on shadowed sets to refine the training data set of ENN. Firstly, we use clustering algorithm to label the data and induce shadowed sets. Then, in the framework of shadowed sets, the samples located around each cluster centers (core data and the borders between clusters (boundary data are selected as training data. Lastly, we use selected data to train ENN. Compared with traditional ENN, the proposed improved ENN (IENN has a better performance. Moreover, IENN is independent of the supervised learning algorithms and initial labeled data. Experimental results verify the effectiveness and applicability of our proposed work.

  12. 78 FR 12760 - Guidance for Industry on Labeling for Human Prescription Drug and Biological Products...

    Science.gov (United States)

    2013-02-25

    ...--Implementing the Physician Labeling Rule Content and Format Requirements; Availability AGENCY: Food and Drug...--Implementing the PLR Content and Format Requirements.'' This guidance is intended to assist applicants in complying with the content and format requirements of labeling for human prescription drug and biological...

  13. Mesenchymal stromal cell labeling by new uncoated superparamagnetic maghemite nanoparticles in comparison with commercial Resovist – an initial in vitro study

    Directory of Open Access Journals (Sweden)

    Skopalik J

    2014-11-01

    Full Text Available Josef Skopalik,1 Katerina Polakova,2 Marketa Havrdova,2 Ivan Justan,1 Massimiliano Magro,3 David Milde,2 Lucia Knopfova,4 Jan Smarda,4 Helena Polakova,1 Eva Gabrielova,5 Fabio Vianello,2,3 Jaroslav Michalek,1 Radek Zboril21Department of Pharmacology, Masaryk University, Brno, Czech Republic; 2Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry and Analytical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic; 3Department of Comparative Biomedicine and Food Science, University of Padua, Padova, Italy; 4Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; 5Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Palacky University, Olomouc, Czech RepublicObjective: Cell therapies have emerged as a promising approach in medicine. The basis of each therapy is the injection of 1–100×106 cells with regenerative potential into some part of the body. Mesenchymal stromal cells (MSCs are the most used cell type in the cell therapy nowadays, but no gold standard for the labeling of the MSCs for magnetic resonance imaging (MRI is available yet. This work evaluates our newly synthesized uncoated superparamagnetic maghemite nanoparticles (surface-active maghemite nanoparticles – SAMNs as an MRI contrast intracellular probe usable in a clinical 1.5 T MRI system.Methods: MSCs from rat and human donors were isolated, and then incubated at different concentrations (10–200 µg/mL of SAMN maghemite nanoparticles for 48 hours. Viability, proliferation, and nanoparticle uptake efficiency were tested (using fluorescence microscopy, xCELLigence analysis, atomic absorption spectroscopy, and advanced microscopy techniques. Migration capacity, cluster of differentiation markers, effect of nanoparticles on long-term viability, contrast properties in MRI, and cocultivation of labeled cells with myocytes were also studied.Results: SAMNs do not

  14. Hierarchical graphical-based human pose estimation via local multi-resolution convolutional neural network

    Science.gov (United States)

    Zhu, Aichun; Wang, Tian; Snoussi, Hichem

    2018-03-01

    This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN). Firstly, a Relative Mixture Deformable Model (RMDM) is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN) is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.

  15. Hierarchical graphical-based human pose estimation via local multi-resolution convolutional neural network

    Directory of Open Access Journals (Sweden)

    Aichun Zhu

    2018-03-01

    Full Text Available This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN. Firstly, a Relative Mixture Deformable Model (RMDM is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.

  16. In vitro differentiation of neural cells from human adipose tissue derived stromal cells.

    Science.gov (United States)

    Dave, Shruti D; Patel, Chetan N; Vanikar, Aruna V; Trivedi, Hargovind L

    2018-01-01

    Stem cells, including neural stem cells (NSCs), are endowed with self-renewal capability and hence hold great opportunity for the institution of replacement/protective therapy. We propose a method for in vitro generation of stromal cells from human adipose tissue and their differentiation into neural cells. Ten grams of donor adipose tissue was surgically resected from the abdominal wall of the human donor after the participants' informed consents. The resected adipose tissue was minced and incubated for 1 hour in the presence of an enzyme (collagenase-type I) at 37 0 C followed by its centrifugation. After centrifugation, the supernatant and pellets were separated and cultured in a medium for proliferation at 37 0 C with 5% CO2 for 9-10 days in separate tissue culture dishes for generation of mesenchymal stromal cells (MSC). At the end of the culture, MSC were harvested and analyzed. The harvested MSC were subjected for further culture for their differentiation into neural cells for 5-7 days using differentiation medium mainly comprising of neurobasal medium. At the end of the procedure, culture cells were isolated and studied for expression of transcriptional factor proteins: orthodenticle homolog-2 (OTX-2), beta-III-tubulin (β3-Tubulin), glial-fibrillary acid protein (GFAP) and synaptophysin-β2. In total, 50 neural cells-lines were generated. In vitro generated MSC differentiated neural cells' mean quantum was 5.4 ± 6.9 ml with the mean cell count being, 5.27 ± 2.65 × 10 3/ μl. All of them showed the presence of OTX-2, β3-Tubulin, GFAP, synaptophysin-β2. Neural cells can be differentiated in vitro from MSC safely and effectively. In vitro generated neural cells represent a potential therapy for recovery from spinal cord injuries and neurodegenerative disease.

  17. Neural Integration of Information Specifying Human Structure from Form, Motion, and Depth

    Science.gov (United States)

    Jackson, Stuart; Blake, Randolph

    2010-01-01

    Recent computational models of biological motion perception operate on ambiguous two-dimensional representations of the body (e.g., snapshots, posture templates) and contain no explicit means for disambiguating the three-dimensional orientation of a perceived human figure. Are there neural mechanisms in the visual system that represent a moving human figure’s orientation in three dimensions? To isolate and characterize the neural mechanisms mediating perception of biological motion, we used an adaptation paradigm together with bistable point-light (PL) animations whose perceived direction of heading fluctuates over time. After exposure to a PL walker with a particular stereoscopically defined heading direction, observers experienced a consistent aftereffect: a bistable PL walker, which could be perceived in the adapted orientation or reversed in depth, was perceived predominantly reversed in depth. A phase-scrambled adaptor produced no aftereffect, yet when adapting and test walkers differed in size or appeared on opposite sides of fixation aftereffects did occur. Thus, this heading direction aftereffect cannot be explained by local, disparity-specific motion adaptation, and the properties of scale and position invariance imply higher-level origins of neural adaptation. Nor is disparity essential for producing adaptation: when suspended on top of a stereoscopically defined, rotating globe, a context-disambiguated “globetrotter” was sufficient to bias the bistable walker’s direction, as were full-body adaptors. In sum, these results imply that the neural signals supporting biomotion perception integrate information on the form, motion, and three-dimensional depth orientation of the moving human figure. Models of biomotion perception should incorporate mechanisms to disambiguate depth ambiguities in two-dimensional body representations. PMID:20089892

  18. Prior Knowledge about Objects Determines Neural Color Representation in Human Visual Cortex.

    Science.gov (United States)

    Vandenbroucke, A R E; Fahrenfort, J J; Meuwese, J D I; Scholte, H S; Lamme, V A F

    2016-04-01

    To create subjective experience, our brain must translate physical stimulus input by incorporating prior knowledge and expectations. For example, we perceive color and not wavelength information, and this in part depends on our past experience with colored objects ( Hansen et al. 2006; Mitterer and de Ruiter 2008). Here, we investigated the influence of object knowledge on the neural substrates underlying subjective color vision. In a functional magnetic resonance imaging experiment, human subjects viewed a color that lay midway between red and green (ambiguous with respect to its distance from red and green) presented on either typical red (e.g., tomato), typical green (e.g., clover), or semantically meaningless (nonsense) objects. Using decoding techniques, we could predict whether subjects viewed the ambiguous color on typical red or typical green objects based on the neural response of veridical red and green. This shift of neural response for the ambiguous color did not occur for nonsense objects. The modulation of neural responses was observed in visual areas (V3, V4, VO1, lateral occipital complex) involved in color and object processing, as well as frontal areas. This demonstrates that object memory influences wavelength information relatively early in the human visual system to produce subjective color vision. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Efficient and Fast Differentiation of Human Neural Stem Cells from Human Embryonic Stem Cells for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xinxin Han

    2017-01-01

    Full Text Available Stem cell-based therapies have been used for repairing damaged brain tissue and helping functional recovery after brain injury. Aberrance neurogenesis is related with brain injury, and multipotential neural stem cells from human embryonic stem (hES cells provide a great promise for cell replacement therapies. Optimized protocols for neural differentiation are necessary to produce functional human neural stem cells (hNSCs for cell therapy. However, the qualified procedure is scarce and detailed features of hNSCs originated from hES cells are still unclear. In this study, we developed a method to obtain hNSCs from hES cells, by which we could harvest abundant hNSCs in a relatively short time. Then, we examined the expression of pluripotent and multipotent marker genes through immunostaining and confirmed differentiation potential of the differentiated hNSCs. Furthermore, we analyzed the mitotic activity of these hNSCs. In this report, we provided comprehensive features of hNSCs and delivered the knowledge about how to obtain more high-quality hNSCs from hES cells which may help to accelerate the NSC-based therapies in brain injury treatment.

  20. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R., E-mail: mundy.william@epa.gov

    2011-11-15

    There is a need for rapid, efficient and cost-effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be used as screening tools to identify potential developmental neurotoxicants. The present study compared primary rat cortical cultures and human embryonic stem cell-derived neural cultures in terms of: 1) reproducibility of high content image analysis based neurite outgrowth measurements, 2) dynamic range of neurite outgrowth measurements and 3) sensitivity to chemicals which have been shown to inhibit neurite outgrowth. There was a large increase in neurite outgrowth between 2 and 24 h in both rat and human cultures. Image analysis data collected across multiple cultures demonstrated that neurite outgrowth measurements in rat cortical cultures were more reproducible and had higher dynamic range as compared to human neural cultures. Human neural cultures were more sensitive than rat cortical cultures to chemicals previously shown to inhibit neurite outgrowth. Parallel analysis of morphological (neurite count, neurite length) and cytotoxicity (neurons per field) measurements were used to detect selective effects on neurite outgrowth. All chemicals which inhibited neurite outgrowth in rat cortical cultures did so at concentrations which did not concurrently affect the number of neurons per field, indicating selective effects on neurite outgrowth. In contrast, more than half the chemicals which inhibited neurite outgrowth in human neural cultures did so at concentrations which concurrently decreased the number of neurons per field, indicating that effects on neurite outgrowth were secondary to cytotoxicity. Overall, these data demonstrate that the culture models performed differently in terms of reproducibility, dynamic range and sensitivity to neurite outgrowth inhibitors. While human neural

  1. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    International Nuclear Information System (INIS)

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R.

    2011-01-01

    There is a need for rapid, efficient and cost-effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be used as screening tools to identify potential developmental neurotoxicants. The present study compared primary rat cortical cultures and human embryonic stem cell-derived neural cultures in terms of: 1) reproducibility of high content image analysis based neurite outgrowth measurements, 2) dynamic range of neurite outgrowth measurements and 3) sensitivity to chemicals which have been shown to inhibit neurite outgrowth. There was a large increase in neurite outgrowth between 2 and 24 h in both rat and human cultures. Image analysis data collected across multiple cultures demonstrated that neurite outgrowth measurements in rat cortical cultures were more reproducible and had higher dynamic range as compared to human neural cultures. Human neural cultures were more sensitive than rat cortical cultures to chemicals previously shown to inhibit neurite outgrowth. Parallel analysis of morphological (neurite count, neurite length) and cytotoxicity (neurons per field) measurements were used to detect selective effects on neurite outgrowth. All chemicals which inhibited neurite outgrowth in rat cortical cultures did so at concentrations which did not concurrently affect the number of neurons per field, indicating selective effects on neurite outgrowth. In contrast, more than half the chemicals which inhibited neurite outgrowth in human neural cultures did so at concentrations which concurrently decreased the number of neurons per field, indicating that effects on neurite outgrowth were secondary to cytotoxicity. Overall, these data demonstrate that the culture models performed differently in terms of reproducibility, dynamic range and sensitivity to neurite outgrowth inhibitors. While human neural

  2. [3H]cholesteryl ester labeling and transfer among human and honhuman primate plasma lipoproteins

    International Nuclear Information System (INIS)

    Thomas, M.S.; Rudel, L.L.

    1983-01-01

    Aliquots of human and nonhuman primate plasma containing 5,5'-dithiobis (2-nitrobenzoic acid) were incubated at 37 0 C in tubes previously coated with trace amounts of tritium-labeled cholesteryl oleate ([ 3 H]CO). Initially, cholesteryl esters were transferred at a rapid rate into plasma after which the rate slowed. During 24 h of incubation, an average of 55% of the [ 3 H]CO transferred from the side of the tube into African green monkey plasma, 44% into human plasma and 21% into rat plasma. Greater than 98% of the radioactive ester transferred into plasma was found to be associated with plasma lipoproteins that were then rapidly separated using vertical rotor density gradient ultracentrifugation. In very low density lipoprotein (VLDL)-poor plasma after 30 min incubations, high density lipoproteins (HDL) contained most of the [ 3 H]CO while 5- to 24-h incubations resulted in increased labeling of low density proteins (LDL). In VLDL-rich plasma, it was found that in addition to the labeling of HDL, VLDL contained about 25% of the labeled cholesteryl esters after 30-min incubations and, as above, the proportion in LDL subsequently increased. Compositional analyses showed that intermediate-sized LDL (ILDL) were accumulating cholesteryl ester mass while transfer occurred. LDL labeled using this method were injected intravenously into monkeys and their removal from plasma was found to be similar to that found for LDL labeled in vivo. It was concluded that this method of plasma lipoprotein cholesteryl ester labeling, presumably a result of cholesteryl ester transfer protein activity, was efficient, resulted in lipoproteins labeled only in the cholesteryl ester moiety, and induced minimal modification of lipoprotein particles that did not alter their biological activity

  3. Applying label-free dynamic mass redistribution assay for studying endogenous FPR1 receptor signalling in human neutrophils

    DEFF Research Database (Denmark)

    Christensen, Hanna B; Gloriam, David E; Pedersen, Daniel Sejer

    2017-01-01

    INTRODUCTION: The label-free dynamic mass redistribution-based assay (DMR) is a powerful method for studying signalling pathways of G protein-coupled receptors (GPCRs). Herein we present the label-free DMR assay as a robust readout for pharmacological characterization of formyl peptide receptors...... (FPRs) in human neutrophils. METHODS: Neutrophils were isolated from fresh human blood and their responses to FPR1 and FPR2 agonists, i.e. compound 43, fMLF and WKYMVm were measured in a label-free DMR assay using Epic Benchtop System from Corning®. Obtained DMR traces were used to calculate agonist...... potencies. RESULTS: The potencies (pEC50) of fMLF, WKYMVm and compound 43, determined on human neutrophils using the label-free DMR assay were 8.63, 7.76 and 5.92, respectively. The DMR response to fMLF, but not WKYMVm and compound 43 could be blocked by the FPR1-specific antagonist cyclosporin H...

  4. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    Science.gov (United States)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  5. Nonlocal atlas-guided multi-channel forest learning for human brain labeling

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Guangkai [Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001, China and Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Gao, Yaozong; Wu, Guorong [Department of Computer Science, Department of Radiology, and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Wu, Ligang [Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China); Shen, Dinggang, E-mail: dgshen@med.unc.edu [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul 02841 (Korea, Republic of)

    2016-02-15

    Purpose: It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features can be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). Methods: In particular, the authors employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical structures). Specifically, at each of the iterations, the random forest will output tentative labeling maps of the target image, from which the authors compute spatial label context features and then use in combination with original appearance features of the target image to refine the labeling. Moreover, to accommodate the high inter-subject variations, the authors further extend their learning-based label fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final labeling result according to the consensus of results from all atlases. Results: The authors have comprehensively evaluated their method on both public LONI-LBPA40 and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors use the

  6. Nonlocal atlas-guided multi-channel forest learning for human brain labeling

    International Nuclear Information System (INIS)

    Ma, Guangkai; Gao, Yaozong; Wu, Guorong; Wu, Ligang; Shen, Dinggang

    2016-01-01

    Purpose: It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features can be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). Methods: In particular, the authors employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical structures). Specifically, at each of the iterations, the random forest will output tentative labeling maps of the target image, from which the authors compute spatial label context features and then use in combination with original appearance features of the target image to refine the labeling. Moreover, to accommodate the high inter-subject variations, the authors further extend their learning-based label fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final labeling result according to the consensus of results from all atlases. Results: The authors have comprehensively evaluated their method on both public LONI-LBPA40 and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors use the

  7. Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs.

    Science.gov (United States)

    Ho, Lin; Hsu, Shan-Hui

    2018-04-01

    3D bioprinting is a technique which enables the direct printing of biodegradable materials with cells into 3D tissue. So far there is no cell reprogramming in situ performed with the 3D bioprinting process. Forkhead box D3 (FoxD3) is a transcription factor and neural crest marker, which was reported to reprogram human fibroblasts into neural crest stem-like cells. In this study, we synthesized a new biodegradable thermo-responsive waterborne polyurethane (PU) gel as a bioink. FoxD3 plasmids and human fibroblasts were co-extruded with the PU hydrogel through the syringe needle tip for cell reprogramming. The rheological properties of the PU hydrogel including the modulus, gelation time, and shear thinning were optimized for the transfection effect of FoxD3 in situ. The corresponding shear rate and shear stress were examined. Results showed that human fibroblasts could be reprogrammed into neural crest stem-like cells with high cell viability during the extrusion process under an average shear stress ∼190 Pa. We further translated the method to the extrusion-based 3D bioprinting, and demonstrated that human fibroblasts co-printed with FoxD3 in the thermo-responsive PU hydrogel could be reprogrammed and differentiated into a neural-tissue like construct at 14 days after induction. The neural-like tissue construct produced by 3D bioprinting from human fibroblasts may be applied to personalized drug screening or neuroregeneration. There is no study so far on cell reprogramming in situ with 3D bioprinting. In this manuscript, a new thermoresponsive polyurethane bioink was developed and employed to deliver FoxD3 plasmid into human fibroblasts by the extrusion-based bioprinting. When the polyurethane gel was extruded through the syringe tip, the shear stress generated may have caused the transient membrane permeability for transfection. The shear stress was optimized for transfection in situ by 3D bioprinting. We demonstrated that human fibroblasts could be

  8. Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina.

    Science.gov (United States)

    Mollick, Tanzina; Mohlin, Camilla; Johansson, Kjell

    2016-09-01

    Retinal neurodegenerative disorders like retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy and retinal detachment decrease retinal functionality leading to visual impairment. The pathological events are characterized by photoreceptor degeneration, synaptic disassembly, remodeling of postsynaptic neurons and activation of glial cells. Despite intense research, no effective treatment has been found for these disorders. The current study explores the potential of human neural progenitor cell (hNPC) derived factors to slow the degenerative processes in adult porcine retinal explants. Retinas were cultured for 3 days with or without hNPCs as a feeder layer and investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), immunohistochemical, western blot and quantitative real time-polymerase chain reaction (qRT-PCR) techniques. TUNEL showed that hNPCs had the capacity to limit photoreceptor cell death. Among cone photoreceptors, hNPC coculture resulted in better maintenance of cone outer segments and reduced opsin mislocalization. Additionally, maintained synaptic structural integrity and preservation of second order calbindin positive horizontal cells was also observed. However, Müller cell gliosis only seemed to be alleviated in terms of reduced Müller cell density. Our observations indicate that at 3 days of coculture, hNPC derived factors had the capacity to protect photoreceptors, maintain synaptic integrity and support horizontal cell survival. Human neural progenitor cell applied treatment modalities may be an effective strategy to help maintain retinal functionality in neurodegenerative pathologies. Whether hNPCs can independently hinder Müller cell gliosis by utilizing higher concentrations or by combination with other pharmacological agents still needs to be determined. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The role of the mesenchyme in cranial neural fold elevation

    International Nuclear Information System (INIS)

    Morris-Wiman, J.A.

    1988-01-01

    It has been previously postulated that the expansion of an hyaluronate-rich extracellular matrix in the fold mesenchyme is responsible for neural fold elevation. In this study we provide evidence that such expansions may play an important role in cranial neural fold elevation by pushing the folds towards the dorsal midline to assist in their elevation. For mesenchymal expansion to result in fold elevation, hyaluronate (HA) and mesenchymal cells must be non-randomly distributed within the mesenchyme. Patterns of mesenchymal cell distribution and cell proliferation were analyzed using the computer-assisted method of smoothed spatial averaging. The distribution of Alcian blue-stained and 3 H-glucosamine-labelled HA was also analyzed during cranial neural fold elevation using established image processing techniques. Analysis of the distribution of 3 H-thymidine-labelled mesenchymal cells indicated that differential mitotic activity was not responsible for decreased mesenchymal cell density. Likewise, analysis of distribution patterns of 3 H-glucosamine-labelled HA indicated that decreased HA concentration was not produced by regional differences in HA synthesis. These results suggest that decreases in mesenchymal cell density and HA concentration that occur during neural fold elevation are produced by mesenchymal expansion

  10. Generation of Regionally Specified Neural Progenitors and Functional Neurons from Human Embryonic Stem Cells under Defined Conditions

    Directory of Open Access Journals (Sweden)

    Agnete Kirkeby

    2012-06-01

    Full Text Available To model human neural-cell-fate specification and to provide cells for regenerative therapies, we have developed a method to generate human neural progenitors and neurons from human embryonic stem cells, which recapitulates human fetal brain development. Through the addition of a small molecule that activates canonical WNT signaling, we induced rapid and efficient dose-dependent specification of regionally defined neural progenitors ranging from telencephalic forebrain to posterior hindbrain fates. Ten days after initiation of differentiation, the progenitors could be transplanted to the adult rat striatum, where they formed neuron-rich and tumor-free grafts with maintained regional specification. Cells patterned toward a ventral midbrain (VM identity generated a high proportion of authentic dopaminergic neurons after transplantation. The dopamine neurons showed morphology, projection pattern, and protein expression identical to that of human fetal VM cells grafted in parallel. VM-patterned but not forebrain-patterned neurons released dopamine and reversed motor deficits in an animal model of Parkinson's disease.

  11. Clearance of 131I-labeled murine monoclonal antibody from patients' blood by intravenous human anti-murine immunoglobulin antibody

    International Nuclear Information System (INIS)

    Stewart, J.S.; Sivolapenko, G.B.; Hird, V.; Davies, K.A.; Walport, M.; Ritter, M.A.; Epenetos, A.A.

    1990-01-01

    Five patients treated with intraperitoneal 131I-labeled mouse monoclonal antibody for ovarian cancer also received i.v. exogenous polyclonal human anti-murine immunoglobulin antibody. The pharmacokinetics of 131I-labeled monoclonal antibody in these patients were compared with those of 28 other patients receiving i.p.-radiolabeled monoclonal antibody for the first time without exogenous human anti-murine immunoglobulin, and who had no preexisting endogenous human anti-murine immunoglobulin antibody. Patients receiving i.v. human anti-murine immunoglobulin antibody demonstrated a rapid clearance of 131I-labeled monoclonal antibody from their circulation. The (mean) maximum 131I blood content was 11.4% of the injected activity in patients receiving human anti-murine immunoglobulin antibody compared to 23.3% in patients not given human anti-murine immunoglobulin antibody. Intravenous human anti-murine immunoglobulin antibody decreased the radiation dose to bone marrow (from 131I-labeled monoclonal antibody in the vascular compartment) 4-fold. Following the injection of human anti-murine immunoglobulin antibody, 131I-monoclonal/human anti-murine immunoglobulin antibody immune complexes were rapidly transported to the liver. Antibody dehalogenation in the liver was rapid, with 87% of the injected 131I excreted in 5 days. Despite the efficient hepatic uptake of immune complexes, dehalogenation of monoclonal antibody was so rapid that the radiation dose to liver parenchyma from circulating 131I was decreased 4-fold rather than increased. All patients developed endogenous human anti-murine immunoglobulin antibody 2 to 3 weeks after treatment

  12. Human induced pluripotent stem cells labeled with fluorescent magnetic nanoparticles for targeted imaging and hyperthermia therapy for gastric cancer

    International Nuclear Information System (INIS)

    Li, Chao; Ruan, Jing; Yang, Meng; Pan, Fei; Gao, Guo; Qu, Su; Shen, You-Lan; Dang, Yong-Jun; Wang, Kan; Jin, Wei-Lin; Cui, Da-Xiang

    2015-01-01

    Human induced pluripotent stem (iPS) cells exhibit great potential for generating functional human cells for medical therapies. In this paper, we report for use of human iPS cells labeled with fluorescent magnetic nanoparticles (FMNPs) for targeted imaging and synergistic therapy of gastric cancer cells in vivo. Human iPS cells were prepared and cultured for 72 h. The culture medium was collected, and then was co-incubated with MGC803 cells. Cell viability was analyzed by the MTT method. FMNP-labeled human iPS cells were prepared and injected into gastric cancer-bearing nude mice. The mouse model was observed using a small-animal imaging system. The nude mice were irradiated under an external alternating magnetic field and evaluated using an infrared thermal mapping instrument. Tumor sizes were measured weekly. iPS cells and the collected culture medium inhibited the growth of MGC803 cells. FMNP-labeled human iPS cells targeted and imaged gastric cancer cells in vivo, as well as inhibited cancer growth in vivo through the external magnetic field. FMNP-labeled human iPS cells exhibit considerable potential in applications such as targeted dual-mode imaging and synergistic therapy for early gastric cancer

  13. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    Science.gov (United States)

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  14. Autodegradation of 125I-labeled human epidermal cell surface proteins

    International Nuclear Information System (INIS)

    Hashimoto, K.; Singer, K.H.; Lazarus, G.S.

    1982-01-01

    Triton X-100 extracts of cultured human epidermal cells exhibited proteolytic activity as measured by the hydrolysis of [ 3 H]-casein at neutral pH. The majority of endogenous proteolytic activity was inhibited by parahydroxy mercuribenzoate and by mersalyl acid, indicating the enzyme(s) was a thiol class proteinase(s). Crude Triton X-100 extracts were prepared from epidermal cells following labeling of proteins with 125 I. Autodegradation of labeled proteins at 37 degrees C was detected as early as 1 hr and reached a plateau level by 4 hr. Degradation was inhibited by thiol class proteinase inhibitors. Among the detergent-solubilized radiolabeled proteins a polypeptide chain of Mr 155,000 was particularly sensitive to degradation by endogenous thiol proteinase(s)

  15. Evaluation of in vivo stability of Ga-67 labeled human fibrinogen

    International Nuclear Information System (INIS)

    Takahashi, Keietsu; Takahashi, Jun; Okano, Sakae; Kurami, Miki; Ueda, Nobuo; Hazue, Masaaki

    1987-01-01

    Human fibrinogen (Fib) was conjugated with a large number of deferoxamine (DFO) through dialdehyde starch (DAS), and the conjugate (Fib-DAS-DFO) was labeled with Ga-67. Thus labeled fibrinogen (Ga-67-Fib-DAS-DFO) showed a high labeling efficiency (more than 90 %) and retained clottability (more than 80 %). For the evaluation of plasma radioactive species, blood samples were collected at various time periods after the i.v. administration of Ga-67-Fib-DAS-DFO into rats, and the plasma radioactivity was analyzed by high performance liquid chromatography (HPLC) and electrophoresis (EP). The radioactive HPLC elution profiles for the plasma samples were identical with that of the original Ga-67-Fib-DAS-DFO; the EP patterns for the plasma were also identical with the original one, and no radioactive species, except for Ga-67-Fib-DAS-DFO, was detected by HPLC or EP. Furthermore, the presence of transferrin in the labeling formulation did not affect the labeling yield of Ga-67-Fib-DAS-DFO indicating that the transchelation of Ga-67 from DFO on Fib to transferrin is negligible. These findings indicated that Ga-67 is tightly bound to Fib-DAS-DFO in blood, and the Ga-67-Fib-DAS-DFO can be efficiently trapped by clots as the result of its high retention of physiological activities as fibrinogen. (author)

  16. Tooth labeling in cone-beam CT using deep convolutional neural network for forensic identification

    Science.gov (United States)

    Miki, Yuma; Muramatsu, Chisako; Hayashi, Tatsuro; Zhou, Xiangrong; Hara, Takeshi; Katsumata, Akitoshi; Fujita, Hiroshi

    2017-03-01

    In large disasters, dental record plays an important role in forensic identification. However, filing dental charts for corpses is not an easy task for general dentists. Moreover, it is laborious and time-consuming work in cases of large scale disasters. We have been investigating a tooth labeling method on dental cone-beam CT images for the purpose of automatic filing of dental charts. In our method, individual tooth in CT images are detected and classified into seven tooth types using deep convolutional neural network. We employed the fully convolutional network using AlexNet architecture for detecting each tooth and applied our previous method using regular AlexNet for classifying the detected teeth into 7 tooth types. From 52 CT volumes obtained by two imaging systems, five images each were randomly selected as test data, and the remaining 42 cases were used as training data. The result showed the tooth detection accuracy of 77.4% with the average false detection of 5.8 per image. The result indicates the potential utility of the proposed method for automatic recording of dental information.

  17. Neural Correlates of Irritability in Disruptive Mood Dysregulation and Bipolar Disorders.

    Science.gov (United States)

    Wiggins, Jillian Lee; Brotman, Melissa A; Adleman, Nancy E; Kim, Pilyoung; Oakes, Allison H; Reynolds, Richard C; Chen, Gang; Pine, Daniel S; Leibenluft, Ellen

    2016-07-01

    Bipolar disorder and disruptive mood dysregulation disorder (DMDD) are clinically and pathophysiologically distinct, yet irritability can be a clinical feature of both illnesses. The authors examine whether the neural mechanisms mediating irritability differ between bipolar disorder and DMDD, using a face emotion labeling paradigm because such labeling is deficient in both patient groups. The authors hypothesized that during face emotion labeling, irritability would be associated with dysfunctional activation in the amygdala and other temporal and prefrontal regions in both disorders, but that the nature of these associations would differ between DMDD and bipolar disorder. During functional MRI acquisition, 71 youths (25 with DMDD, 24 with bipolar disorder, and 22 healthy youths) performed a labeling task with happy, fearful, and angry faces of varying emotional intensity. Participants with DMDD and bipolar disorder showed similar levels of irritability and did not differ from each other or from healthy youths in face emotion labeling accuracy. Irritability correlated with amygdala activity across all intensities for all emotions in the DMDD group; such correlation was present in the bipolar disorder group only for fearful faces. In the ventral visual stream, associations between neural activity and irritability were found more consistently in the DMDD group than in the bipolar disorder group, especially in response to ambiguous angry faces. These results suggest diagnostic specificity in the neural correlates of irritability, a symptom of both DMDD and bipolar disorder. Such evidence of distinct neural correlates suggests the need to evaluate different approaches to treating irritability in the two disorders.

  18. Experimental radioimmunotherapy of a xenografted human glioma using [sup 131]I-labeled monoclonal antibody to epidermal growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi; Nakazawa, Shozo [Nippon Medical School, Tokyo (Japan); Herlyn, D

    1993-09-01

    [sup 131]I-labeled F (ab')[sub 2] fragments of murine monoclonal antibodies (MAb) 425 specific to the epidermal growth factor receptor expressed on human gliomas were used in experimental human malignant glioma immunotherapy. Two injections of 150 [mu]Ci [sup 131]I-labeled 425 F(ab')[sub 2] achieved growth inhibition of U-87MG human malignant glioma xenografts in nude mice. This radiolabeled specific MAb F(ab')[sub 2] was significantly superior to radiolabeled fragments of an anti-hepatitis virus control MAb A5C3 in influencing tumor growth. However, similar treatment of established human malignant glioma xenografts did not inhibit progressive tumor growth significantly. No clear tumor inhibition was produced by unlabeled MAb 425F(ab')[sub 2]. These studies suggest that [sup 131]I-labeled MAbs have a significant antitumor effect where unmodified antibody is ineffective. Multiple doses of antibody may achieve an increase in labeled MAb concentration in tumors. (author).

  19. A developmental perspective on the neural bases of human empathy.

    Science.gov (United States)

    Tousignant, Béatrice; Eugène, Fanny; Jackson, Philip L

    2017-08-01

    While empathy has been widely studied in philosophical and psychological literatures, recent advances in social neuroscience have shed light on the neural correlates of this complex interpersonal phenomenon. In this review, we provide an overview of brain imaging studies that have investigated the neural substrates of human empathy. Based on existing models of the functional architecture of empathy, we review evidence of the neural underpinnings of each main component, as well as their development from infancy. Although early precursors of affective sharing and self-other distinction appear to be present from birth, recent findings also suggest that even higher-order components of empathy such as perspective-taking and emotion regulation demonstrate signs of development during infancy. This merging of developmental and social neuroscience literature thus supports the view that ontogenic development of empathy is rooted in early infancy, well before the emergence of verbal abilities. With age, the refinement of top-down mechanisms may foster more appropriate empathic responses, thus promoting greater altruistic motivation and prosocial behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Classification of Urban Aerial Data Based on Pixel Labelling with Deep Convolutional Neural Networks and Logistic Regression

    Science.gov (United States)

    Yao, W.; Poleswki, P.; Krzystek, P.

    2016-06-01

    The recent success of deep convolutional neural networks (CNN) on a large number of applications can be attributed to large amounts of available training data and increasing computing power. In this paper, a semantic pixel labelling scheme for urban areas using multi-resolution CNN and hand-crafted spatial-spectral features of airborne remotely sensed data is presented. Both CNN and hand-crafted features are applied to image/DSM patches to produce per-pixel class probabilities with a L1-norm regularized logistical regression classifier. The evidence theory infers a degree of belief for pixel labelling from different sources to smooth regions by handling the conflicts present in the both classifiers while reducing the uncertainty. The aerial data used in this study were provided by ISPRS as benchmark datasets for 2D semantic labelling tasks in urban areas, which consists of two data sources from LiDAR and color infrared camera. The test sites are parts of a city in Germany which is assumed to consist of typical object classes including impervious surfaces, trees, buildings, low vegetation, vehicles and clutter. The evaluation is based on the computation of pixel-based confusion matrices by random sampling. The performance of the strategy with respect to scene characteristics and method combination strategies is analyzed and discussed. The competitive classification accuracy could be not only explained by the nature of input data sources: e.g. the above-ground height of nDSM highlight the vertical dimension of houses, trees even cars and the nearinfrared spectrum indicates vegetation, but also attributed to decision-level fusion of CNN's texture-based approach with multichannel spatial-spectral hand-crafted features based on the evidence combination theory.

  1. Young adult smokers' neural response to graphic cigarette warning labels

    Directory of Open Access Journals (Sweden)

    Adam E. Green

    2016-06-01

    Conclusions: In this sample of young adult smokers, GWLs promoted neural activation in brain regions involved in cognitive and affective decision-making and memory formation and the effects of GWLs did not differ on branded or plain cigarette packaging. These findings complement other recent neuroimaging GWL studies conducted with older adult smokers and with adolescents by demonstrating similar patterns of neural activation in response to GWLs among young adult smokers.

  2. Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells

    Science.gov (United States)

    Chen, Song; Zhang, Wei; Wang, Ji-Ming; Duan, Hong-Tao; Kong, Jia-Hui; Wang, Yue-Xin; Dong, Meng; Bi, Xue; Song, Jian

    2016-01-01

    AIM To investigate whether umbilical cord human mesenchymal stem cell (UC-MSC) was able to differentiate into neural stem cell and neuron in vitro. METHODS The umbilical cords were obtained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee. UC-MSC were isolated by adherent culture in the medium contains 20% fetal bovine serum (FBS), then they were maintained in the medium contain 10% FBS and induced to neural cells in neural differentiation medium. We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron in vitro by using flow cytometry, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence (IF) analyzes. RESULTS A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk. Flow cytometric study revealed that these cells expressed common markers of MSCs, such as CD105 (SH2), CD73 (SH3) and CD90. After induction of differentiation of neural stem cells, the cells began to form clusters; RT-PCR and IF showed that the neuron specific enolase (NSE) and neurogenic differentiation 1-positive cells reached 87.3%±14.7% and 72.6%±11.8%, respectively. Cells showed neuronal cell differentiation after induced, including neuron-like protrusions, plump cell body, obviously and stronger refraction. RT-PCR and IF analysis showed that microtubule-associated protein 2 (MAP2) and nuclear factor-M-positive cells reached 43.1%±10.3% and 69.4%±19.5%, respectively. CONCLUSION Human umbilical cord derived MSCs can be cultured and proliferated in vitro and differentiate into neural stem cells, which may be a valuable source for cell therapy of neurodegenerative eye diseases. PMID:26949608

  3. Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells

    Directory of Open Access Journals (Sweden)

    Song Chen

    2016-01-01

    Full Text Available AIM: To investigate whether umbilical cord human mesenchymal stem cell (UC-MSC was able to differentiate into neural stem cell and neuron in vitro. METHODS: The umbilical cords were obtained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee. UC-MSC were isolated by adherent culture in the medium contains 20% fetal bovine serum (FBS, then they were maintained in the medium contain 10% FBS and induced to neural cells in neural differentiation medium. We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron in vitro by using flow cytometry, reverse transcriptase-polymerase chain reaction (RT-PCR and immunofluorescence (IF analyzes. RESULTS: A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk. Flow cytometric study revealed that these cells expressed common markers of MSCs, such as CD105 (SH2, CD73 (SH3 and CD90. After induction of differentiation of neural stem cells, the cells began to form clusters; RT-PCR and IF showed that the neuron specific enolase (NSE and neurogenic differentiation 1-positive cells reached 87.3%±14.7% and 72.6%±11.8%, respectively. Cells showed neuronal cell differentiation after induced, including neuron-like protrusions, plump cell body, obviously and stronger refraction. RT-PCR and IF analysis showed that microtubule-associated protein 2 (MAP2 and nuclear factor-M-positive cells reached 43.1%±10.3% and 69.4%±19.5%, respectively. CONCLUSION: Human umbilical cord derived MSCs can be cultured and proliferated in vitro and differentiate into neural stem cells, which may be a valuable source for cell therapy of neurodegenerative eye diseases.

  4. Neural prediction errors reveal a risk-sensitive reinforcement-learning process in the human brain.

    Science.gov (United States)

    Niv, Yael; Edlund, Jeffrey A; Dayan, Peter; O'Doherty, John P

    2012-01-11

    Humans and animals are exquisitely, though idiosyncratically, sensitive to risk or variance in the outcomes of their actions. Economic, psychological, and neural aspects of this are well studied when information about risk is provided explicitly. However, we must normally learn about outcomes from experience, through trial and error. Traditional models of such reinforcement learning focus on learning about the mean reward value of cues and ignore higher order moments such as variance. We used fMRI to test whether the neural correlates of human reinforcement learning are sensitive to experienced risk. Our analysis focused on anatomically delineated regions of a priori interest in the nucleus accumbens, where blood oxygenation level-dependent (BOLD) signals have been suggested as correlating with quantities derived from reinforcement learning. We first provide unbiased evidence that the raw BOLD signal in these regions corresponds closely to a reward prediction error. We then derive from this signal the learned values of cues that predict rewards of equal mean but different variance and show that these values are indeed modulated by experienced risk. Moreover, a close neurometric-psychometric coupling exists between the fluctuations of the experience-based evaluations of risky options that we measured neurally and the fluctuations in behavioral risk aversion. This suggests that risk sensitivity is integral to human learning, illuminating economic models of choice, neuroscientific models of affective learning, and the workings of the underlying neural mechanisms.

  5. The neural code for face orientation in the human fusiform face area.

    Science.gov (United States)

    Ramírez, Fernando M; Cichy, Radoslaw M; Allefeld, Carsten; Haynes, John-Dylan

    2014-09-03

    Humans recognize faces and objects with high speed and accuracy regardless of their orientation. Recent studies have proposed that orientation invariance in face recognition involves an intermediate representation where neural responses are similar for mirror-symmetric views. Here, we used fMRI, multivariate pattern analysis, and computational modeling to investigate the neural encoding of faces and vehicles at different rotational angles. Corroborating previous studies, we demonstrate a representation of face orientation in the fusiform face-selective area (FFA). We go beyond these studies by showing that this representation is category-selective and tolerant to retinal translation. Critically, by controlling for low-level confounds, we found the representation of orientation in FFA to be compatible with a linear angle code. Aspects of mirror-symmetric coding cannot be ruled out when FFA mean activity levels are considered as a dimension of coding. Finally, we used a parametric family of computational models, involving a biased sampling of view-tuned neuronal clusters, to compare different face angle encoding models. The best fitting model exhibited a predominance of neuronal clusters tuned to frontal views of faces. In sum, our findings suggest a category-selective and monotonic code of face orientation in the human FFA, in line with primate electrophysiology studies that observed mirror-symmetric tuning of neural responses at higher stages of the visual system, beyond the putative homolog of human FFA. Copyright © 2014 the authors 0270-6474/14/3412155-13$15.00/0.

  6. A scale out approach towards neural induction of human induced pluripotent stem cells for neurodevelopmental toxicity studies.

    Science.gov (United States)

    Miranda, Cláudia C; Fernandes, Tiago G; Pinto, Sandra N; Prieto, Manuel; Diogo, M Margarida; Cabral, Joaquim M S

    2018-05-21

    Stem cell's unique properties confer them a multitude of potential applications in the fields of cellular therapy, disease modelling and drug screening fields. In particular, the ability to differentiate neural progenitors (NP) from human induced pluripotent stem cells (hiPSCs) using chemically-defined conditions provides an opportunity to create a simple and straightforward culture platform for application in these fields. Here, we demonstrated that hiPSCs are capable of undergoing neural commitment inside microwells, forming characteristic neural structures resembling neural rosettes and further give rise to glial and neuronal cells. Furthermore, this platform can be applied towards the study of the effect of neurotoxic molecules that impair normal embryonic development. As a proof of concept, the neural teratogenic potential of the antiepileptic drug valproic acid (VPA) was analyzed. It was verified that exposure to VPA, close to typical dosage values (0.3 to 0.75 mM), led to a prevalence of NP structures over neuronal differentiation, as confirmed by analysis of the expression of neural cell adhesion molecule, as well as neural rosette number and morphology assessment. The methodology proposed herein for the generation and neural differentiation of hiPSC aggregates can potentially complement current toxicity tests such as the humanized embryonic stem cell test for the detection of teratogenic compounds that can interfere with normal embryonic development. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. ERK-dependent and -independent pathways trigger human neural progenitor cell migration

    International Nuclear Information System (INIS)

    Moors, Michaela; Cline, Jason E.; Abel, Josef; Fritsche, Ellen

    2007-01-01

    Besides differentiation and apoptosis, cell migration is a basic process in brain development in which neural cells migrate several centimeters within the developing brain before reaching their proper positions and forming the right connections. For identifying signaling events that control neural migration and are therefore potential targets of chemicals to disturb normal brain development, we developed a human neurosphere-based migration assay based on normal human neural progenitor (NHNP) cells, in which the distance is measured that cells wander over time. Applying this assay, we investigated the role of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the regulation of NHNP cell migration. Exposure to model substances like ethanol or phorbol 12-myristate 13-acetate (PMA) revealed a correlation between ERK1/2 activation and cell migration. The participation of phospho-(P-) ERK1/2 was confirmed by exposure of the cells to the MEK inhibitor PD98059, which directly prohibits ERK1/2 phosphorylation and inhibited cell migration. We identified protein kinase C (PKC) and epidermal growth factor receptor (EGFR) as upstream signaling kinases governing ERK1/2 activation, thereby controlling NHNP cell migration. Additionally, treatments with src kinase inhibitors led to a diminished cell migration without affecting ERK1/2 phosphorylation. Based on these results, we postulate that migration of NHNP cells is controlled via ERK1/2-dependent and -independent pathways

  8. Conversion of adult human peripheral blood mononuclear cells into induced neural stem cell by using episomal vectors

    Directory of Open Access Journals (Sweden)

    Xihe Tang

    2016-03-01

    Full Text Available Human neural stem cells (NSCs hold great promise for research and therapy in neural diseases. Many studies have shown direct induction of NSCs from human fibroblasts, which require an invasive skin biopsy and a prolonged period of expansion in cell culture prior to use. Peripheral blood (PB is routinely used in medical diagnoses, and represents a noninvasive and easily accessible source of cells. Here we show direct derivation of NSCs from adult human PB mononuclear cells (PB-MNCs by employing episomal vectors for transgene delivery. These induced NSCs (iNSCs can expand more than 60 passages, can exhibit NSC morphology, gene expression, differentiation potential, and self-renewing capability and can give rise to multiple functional neural subtypes and glial cells in vitro. Furthermore, the iNSCs carry a specific regional identity and have electrophysiological activity upon differentiation. Our findings provide an easily accessible approach for generating human iNSCs which will facilitate disease modeling, drug screening, and possibly regenerative medicine.

  9. Image Quality Assessment of JPEG Compressed Mars Science Laboratory Mastcam Images using Convolutional Neural Networks

    Science.gov (United States)

    Kerner, H. R.; Bell, J. F., III; Ben Amor, H.

    2017-12-01

    The Mastcam color imaging system on the Mars Science Laboratory Curiosity rover acquires images within Gale crater for a variety of geologic and atmospheric studies. Images are often JPEG compressed before being downlinked to Earth. While critical for transmitting images on a low-bandwidth connection, this compression can result in image artifacts most noticeable as anomalous brightness or color changes within or near JPEG compression block boundaries. In images with significant high-frequency detail (e.g., in regions showing fine layering or lamination in sedimentary rocks), the image might need to be re-transmitted losslessly to enable accurate scientific interpretation of the data. The process of identifying which images have been adversely affected by compression artifacts is performed manually by the Mastcam science team, costing significant expert human time. To streamline the tedious process of identifying which images might need to be re-transmitted, we present an input-efficient neural network solution for predicting the perceived quality of a compressed Mastcam image. Most neural network solutions require large amounts of hand-labeled training data for the model to learn the target mapping between input (e.g. distorted images) and output (e.g. quality assessment). We propose an automatic labeling method using joint entropy between a compressed and uncompressed image to avoid the need for domain experts to label thousands of training examples by hand. We use automatically labeled data to train a convolutional neural network to estimate the probability that a Mastcam user would find the quality of a given compressed image acceptable for science analysis. We tested our model on a variety of Mastcam images and found that the proposed method correlates well with image quality perception by science team members. When assisted by our proposed method, we estimate that a Mastcam investigator could reduce the time spent reviewing images by a minimum of 70%.

  10. 21 CFR 349.80 - Professional labeling.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Professional labeling. 349.80 Section 349.80 Food... HUMAN USE OPHTHALMIC DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Labeling § 349.80 Professional labeling. The labeling of any OTC ophthalmic demulcent drug product provided to health professionals (but...

  11. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    Directory of Open Access Journals (Sweden)

    Shengxiu Li

    Full Text Available TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  12. Label Review Training: Module 1: Label Basics, Page 7

    Science.gov (United States)

    Page 7, Label Training, Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human he

  13. Effect of some radiosensitising drugs on human erythrocyte membrane - - spin label study

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, K P [Bhabha Atomic Research Centre, Bombay (India). Biology and Agriculture Div.

    1982-02-01

    Electron spin resonance and spin label techniques have been employed to study the effects of local anaesthetic drugs, procaine and tetracaine, on human erythrocyte membrane. Both the drugs altered the protein and lipid arrangements in the membrane and these changes were reversible. Procaine had greater effect on the labels attached to proteins while tetracaine fluidized interior of lipid bilayer to a greater extent. The differential effects of these drugs on the protein and lipid labels have been interpreted in terms of their relative penetrability in the membrane. Present results have explained that radiation induced enhanced killing of cells in the presence of these drugs might be due to the alterations in membrane, particularly proteins both structural and enzymatic. In addition, these results indicate a possible relationship between drug-induced structural changes in membrane and their anaesthetic potency.

  14. Developmental differences in the neural mechanisms of facial emotion labeling

    Science.gov (United States)

    Adleman, Nancy E.; Kim, Pilyoung; Oakes, Allison H.; Hsu, Derek; Reynolds, Richard C.; Chen, Gang; Pine, Daniel S.; Brotman, Melissa A.; Leibenluft, Ellen

    2016-01-01

    Adolescence is a time of increased risk for the onset of psychological disorders associated with deficits in face emotion labeling. We used functional magnetic resonance imaging (fMRI) to examine age-related differences in brain activation while adolescents and adults labeled the emotion on fearful, happy and angry faces of varying intensities [0% (i.e. neutral), 50%, 75%, 100%]. Adolescents and adults did not differ on accuracy to label emotions. In the superior temporal sulcus, ventrolateral prefrontal cortex and middle temporal gyrus, adults show an inverted-U-shaped response to increasing intensities of fearful faces and a U-shaped response to increasing intensities of happy faces, whereas adolescents show the opposite patterns. In addition, adults, but not adolescents, show greater inferior occipital gyrus activation to negative (angry, fearful) vs positive (happy) emotions. In sum, when subjects classify subtly varying facial emotions, developmental differences manifest in several ‘ventral stream’ brain regions. Charting the typical developmental course of the brain mechanisms of socioemotional processes, such as facial emotion labeling, is an important focus for developmental psychopathology research. PMID:26245836

  15. 21 CFR 332.31 - Professional labeling.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Professional labeling. 332.31 Section 332.31 Food... HUMAN USE ANTIFLATULENT PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Labeling § 332.31 Professional labeling. (a) The labeling of the product provided to health professionals (but not to the general public) may...

  16. 21 CFR 336.80 - Professional labeling.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Professional labeling. 336.80 Section 336.80 Food... HUMAN USE ANTIEMETIC DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Labeling § 336.80 Professional labeling. The labeling provided to health professionals (but not to the general public) may contain the...

  17. Immortalization of human neural stem cells with the c-myc mutant T58A.

    Directory of Open Access Journals (Sweden)

    Lidia De Filippis

    Full Text Available Human neural stem cells (hNSC represent an essential source of renewable brain cells for both experimental studies and cell replacement therapies. Their relatively slow rate of proliferation and physiological senescence in culture make their use cumbersome under some experimental and pre-clinical settings. The immortalization of hNSC with the v-myc gene (v-IhNSC has been shown to generate stem cells endowed with enhanced proliferative capacity, which greatly facilitates the study of hNSCs, both in vitro and in vivo. Despite the excellent safety properties displayed by v-IhNSCs--which do not transform in vitro and are not tumorigenic in vivo--the v-myc gene contains several mutations and recombination elements, whose role(s and effects remains to be elucidated, yielding unresolved safety concerns. To address this issue, we used a c-myc T58A retroviral vector to establish an immortal cell line (T-IhNSC from the same hNSCs used to generate the original v-IhNSCs and compared their characteristics with the latter, with hNSC and with hNSC immortalized using c-myc wt (c-IhNSC. T-IhNSCs displayed an enhanced self-renewal ability, with their proliferative capacity and clonogenic potential being remarkably comparable to those of v-IhNSC and higher than wild type hNSCs and c-IhNSCs. Upon growth factors removal, T-IhNSC promptly gave rise to well-differentiated neurons, astrocytes and most importantly, to a heretofore undocumented high percentage of human oligodendrocytes (up to 23%. Persistent growth-factor dependence, steady functional properties, lack of ability to generate colonies in soft-agar colony-forming assay and to establish tumors upon orthotopic transplantation, point to the fact that immortalization by c-myc T58A does not bring about tumorigenicity in hNSCs. Hence, this work describes a novel and continuous cell line of immortalized human multipotent neural stem cells, in which the immortalizing agent is represented by a single gene which, in

  18. Rhesus monkey neural stem cell transplantation promotes neural regeneration in rats with hippocampal lesions

    Directory of Open Access Journals (Sweden)

    Li-juan Ye

    2016-01-01

    Full Text Available Rhesus monkey neural stem cells are capable of differentiating into neurons and glial cells. Therefore, neural stem cell transplantation can be used to promote functional recovery of the nervous system. Rhesus monkey neural stem cells (1 × 105 cells/μL were injected into bilateral hippocampi of rats with hippocampal lesions. Confocal laser scanning microscopy demonstrated that green fluorescent protein-labeled transplanted cells survived and grew well. Transplanted cells were detected at the lesion site, but also in the nerve fiber-rich region of the cerebral cortex and corpus callosum. Some transplanted cells differentiated into neurons and glial cells clustering along the ventricular wall, and integrated into the recipient brain. Behavioral tests revealed that spatial learning and memory ability improved, indicating that rhesus monkey neural stem cells noticeably improve spatial learning and memory abilities in rats with hippocampal lesions.

  19. Capacity of Human Dental Follicle Cells to Differentiate into Neural Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Shingo Kanao

    2017-01-01

    Full Text Available The dental follicle is an ectomesenchymal tissue surrounding the developing tooth germ. Human dental follicle cells (hDFCs have the capacity to commit to differentiation into multiple cell types. Here we investigated the capacity of hDFCs to differentiate into neural cells and the efficiency of a two-step strategy involving floating neurosphere-like bodies for neural differentiation. Undifferentiated hDFCs showed a spindle-like morphology and were positive for neural markers such as nestin, β-III-tubulin, and S100β. The cellular morphology of several cells was neuronal-like including branched dendrite-like processes and neurites. Next, hDFCs were used for neurosphere formation in serum-free medium containing basic fibroblast growth factor, epidermal growth factor, and B27 supplement. The number of cells with neuronal-like morphology and that were strongly positive for neural markers increased with sphere formation. Gene expression of neural markers also increased in hDFCs with sphere formation. Next, gene expression of neural markers was examined in hDFCs during neuronal differentiation after sphere formation. Expression of Musashi-1 and Musashi-2, MAP2, GFAP, MBP, and SOX10 was upregulated in hDFCs undergoing neuronal differentiation via neurospheres, whereas expression of nestin and β-III-tubulin was downregulated. In conclusion, hDFCs may be another optimal source of neural/glial cells for cell-based therapies to treat neurological diseases.

  20. Convolutional neural networks for segmentation and object detection of human semen

    DEFF Research Database (Denmark)

    Nissen, Malte Stær; Krause, Oswin; Almstrup, Kristian

    2017-01-01

    We compare a set of convolutional neural network (CNN) architectures for the task of segmenting and detecting human sperm cells in an image taken from a semen sample. In contrast to previous work, samples are not stained or washed to allow for full sperm quality analysis, making analysis harder due...

  1. Mindboggle: Automated brain labeling with multiple atlases

    International Nuclear Information System (INIS)

    Klein, Arno; Mensh, Brett; Ghosh, Satrajit; Tourville, Jason; Hirsch, Joy

    2005-01-01

    To make inferences about brain structures or activity across multiple individuals, one first needs to determine the structural correspondences across their image data. We have recently developed Mindboggle as a fully automated, feature-matching approach to assign anatomical labels to cortical structures and activity in human brain MRI data. Label assignment is based on structural correspondences between labeled atlases and unlabeled image data, where an atlas consists of a set of labels manually assigned to a single brain image. In the present work, we study the influence of using variable numbers of individual atlases to nonlinearly label human brain image data. Each brain image voxel of each of 20 human subjects is assigned a label by each of the remaining 19 atlases using Mindboggle. The most common label is selected and is given a confidence rating based on the number of atlases that assigned that label. The automatically assigned labels for each subject brain are compared with the manual labels for that subject (its atlas). Unlike recent approaches that transform subject data to a labeled, probabilistic atlas space (constructed from a database of atlases), Mindboggle labels a subject by each atlas in a database independently. When Mindboggle labels a human subject's brain image with at least four atlases, the resulting label agreement with coregistered manual labels is significantly higher than when only a single atlas is used. Different numbers of atlases provide significantly higher label agreements for individual brain regions. Increasing the number of reference brains used to automatically label a human subject brain improves labeling accuracy with respect to manually assigned labels. Mindboggle software can provide confidence measures for labels based on probabilistic assignment of labels and could be applied to large databases of brain images

  2. Spiking neural P systems with multiple channels.

    Science.gov (United States)

    Peng, Hong; Yang, Jinyu; Wang, Jun; Wang, Tao; Sun, Zhang; Song, Xiaoxiao; Luo, Xiaohui; Huang, Xiangnian

    2017-11-01

    Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computing systems inspired from the neurophysiological behavior of biological spiking neurons. In this paper, we investigate a new variant of SNP systems in which each neuron has one or more synaptic channels, called spiking neural P systems with multiple channels (SNP-MC systems, in short). The spiking rules with channel label are introduced to handle the firing mechanism of neurons, where the channel labels indicate synaptic channels of transmitting the generated spikes. The computation power of SNP-MC systems is investigated. Specifically, we prove that SNP-MC systems are Turing universal as both number generating and number accepting devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Neural Network Machine Learning and Dimension Reduction for Data Visualization

    Science.gov (United States)

    Liles, Charles A.

    2014-01-01

    Neural network machine learning in computer science is a continuously developing field of study. Although neural network models have been developed which can accurately predict a numeric value or nominal classification, a general purpose method for constructing neural network architecture has yet to be developed. Computer scientists are often forced to rely on a trial-and-error process of developing and improving accurate neural network models. In many cases, models are constructed from a large number of input parameters. Understanding which input parameters have the greatest impact on the prediction of the model is often difficult to surmise, especially when the number of input variables is very high. This challenge is often labeled the "curse of dimensionality" in scientific fields. However, techniques exist for reducing the dimensionality of problems to just two dimensions. Once a problem's dimensions have been mapped to two dimensions, it can be easily plotted and understood by humans. The ability to visualize a multi-dimensional dataset can provide a means of identifying which input variables have the highest effect on determining a nominal or numeric output. Identifying these variables can provide a better means of training neural network models; models can be more easily and quickly trained using only input variables which appear to affect the outcome variable. The purpose of this project is to explore varying means of training neural networks and to utilize dimensional reduction for visualizing and understanding complex datasets.

  4. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices

    DEFF Research Database (Denmark)

    Anwar, Mohammad Raffaqat; Andreasen, Christian Maaløv; Lippert, Solvej Kølvraa

    2008-01-01

    differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co......Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic...

  5. A 3D human neural cell culture system for modeling Alzheimer’s disease

    Science.gov (United States)

    Kim, Young Hye; Choi, Se Hoon; D’Avanzo, Carla; Hebisch, Matthias; Sliwinski, Christopher; Bylykbashi, Enjana; Washicosky, Kevin J.; Klee, Justin B.; Brüstle, Oliver; Tanzi, Rudolph E.; Kim, Doo Yeon

    2015-01-01

    Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer’s disease (AD) because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel three-dimensional (3D) culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of β-amyloid and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix, and the analysis of AD pathogenesis. The 3D culture generation takes 1–2 days. The aggregation of β-amyloid is observed after 6-weeks of differentiation followed by robust tau pathology after 10–14 weeks. PMID:26068894

  6. Shindigs, brunches, and rodeos: the neural basis of event words.

    Science.gov (United States)

    Bedny, Marina; Dravida, Swethasri; Saxe, Rebecca

    2014-09-01

    Events (e.g., "running" or "eating") constitute a basic type within human cognition and human language. We asked whether thinking about events, as compared to other conceptual categories, depends on partially independent neural circuits. Indirect evidence for this hypothesis comes from previous studies showing elevated posterior temporal responses to verbs, which typically label events. Neural responses to verbs could, however, be driven either by their grammatical or by their semantic properties. In the present experiment, we separated the effects of grammatical class (verb vs. noun) and semantic category (event vs. object) by measuring neural responses to event nouns (e.g., "the hurricane"). Participants rated the semantic relatedness of event nouns, as well as of two categories of object nouns-animals (e.g., "the alligator") and plants (e.g., "the acorn")-and three categories of verbs-manner of motion (e.g., "to roll"), emission (e.g., "to sparkle"), and perception (e.g., "to gaze"). As has previously been observed, we found larger responses to verbs than to object nouns in the left posterior middle (LMTG) and superior (LSTG) temporal gyri. Crucially, we also found that the LMTG responds more to event than to object nouns. These data suggest that part of the posterior lateral temporal response to verbs is driven by their semantic properties. By contrast, a more superior region, at the junction of the temporal and parietal cortices, responded more to verbs than to all nouns, irrespective of their semantic category. We concluded that the neural mechanisms engaged when thinking about event and object categories are partially dissociable.

  7. Implicitly Defined Neural Networks for Sequence Labeling

    Science.gov (United States)

    2017-07-31

    ularity has soared for the Long Short - Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and vari- ants such as Gated Recurrent Unit (GRU) (Cho et...610. Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short - term memory . Neural computation 9(8):1735– 1780. Zhiheng Huang, Wei Xu, and Kai Yu. 2015...network are coupled together, in order to improve perfor- mance on complex, long -range dependencies in either direction of a sequence. We contrast our

  8. Developmental differences in the neural mechanisms of facial emotion labeling.

    Science.gov (United States)

    Wiggins, Jillian Lee; Adleman, Nancy E; Kim, Pilyoung; Oakes, Allison H; Hsu, Derek; Reynolds, Richard C; Chen, Gang; Pine, Daniel S; Brotman, Melissa A; Leibenluft, Ellen

    2016-01-01

    Adolescence is a time of increased risk for the onset of psychological disorders associated with deficits in face emotion labeling. We used functional magnetic resonance imaging (fMRI) to examine age-related differences in brain activation while adolescents and adults labeled the emotion on fearful, happy and angry faces of varying intensities [0% (i.e. neutral), 50%, 75%, 100%]. Adolescents and adults did not differ on accuracy to label emotions. In the superior temporal sulcus, ventrolateral prefrontal cortex and middle temporal gyrus, adults show an inverted-U-shaped response to increasing intensities of fearful faces and a U-shaped response to increasing intensities of happy faces, whereas adolescents show the opposite patterns. In addition, adults, but not adolescents, show greater inferior occipital gyrus activation to negative (angry, fearful) vs positive (happy) emotions. In sum, when subjects classify subtly varying facial emotions, developmental differences manifest in several 'ventral stream' brain regions. Charting the typical developmental course of the brain mechanisms of socioemotional processes, such as facial emotion labeling, is an important focus for developmental psychopathology research. Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US.

  9. CLASSIFICATION OF URBAN AERIAL DATA BASED ON PIXEL LABELLING WITH DEEP CONVOLUTIONAL NEURAL NETWORKS AND LOGISTIC REGRESSION

    Directory of Open Access Journals (Sweden)

    W. Yao

    2016-06-01

    Full Text Available The recent success of deep convolutional neural networks (CNN on a large number of applications can be attributed to large amounts of available training data and increasing computing power. In this paper, a semantic pixel labelling scheme for urban areas using multi-resolution CNN and hand-crafted spatial-spectral features of airborne remotely sensed data is presented. Both CNN and hand-crafted features are applied to image/DSM patches to produce per-pixel class probabilities with a L1-norm regularized logistical regression classifier. The evidence theory infers a degree of belief for pixel labelling from different sources to smooth regions by handling the conflicts present in the both classifiers while reducing the uncertainty. The aerial data used in this study were provided by ISPRS as benchmark datasets for 2D semantic labelling tasks in urban areas, which consists of two data sources from LiDAR and color infrared camera. The test sites are parts of a city in Germany which is assumed to consist of typical object classes including impervious surfaces, trees, buildings, low vegetation, vehicles and clutter. The evaluation is based on the computation of pixel-based confusion matrices by random sampling. The performance of the strategy with respect to scene characteristics and method combination strategies is analyzed and discussed. The competitive classification accuracy could be not only explained by the nature of input data sources: e.g. the above-ground height of nDSM highlight the vertical dimension of houses, trees even cars and the nearinfrared spectrum indicates vegetation, but also attributed to decision-level fusion of CNN’s texture-based approach with multichannel spatial-spectral hand-crafted features based on the evidence combination theory.

  10. Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Ambros J. [Technical University of Munich (TUM), Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Holzapfel, Konstantin; Settles, Marcus; Rummeny, Ernst J. [Technical University of Munich, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Neudorfer, Juliana; Kroenig, Holger; Peschel, Christian; Bernhard, Helga [TUM, Munich, Department of Hematology/Oncology, Klinikum rechts der Isar, Munich (Germany); Piontek, Guido; Schlegel, Juergen [TUM, Munich, Division of Neuropathology, Institute of Pathology, Klinikum rechts der Isar, Munich (Germany)

    2008-06-15

    New technologies are needed to characterize the migration and survival of antigen-specific T cells in vivo. In this study, we developed a novel technique for the labeling of human cytotoxic T lymphocytes with superparamagnetic iron-oxide particles and the subsequent depiction with a conventional 1.5-T magnetic resonance scanner. Antigen-specific CD8{sup +} T lymphocytes were labeled with ferucarbotran by lipofection. The uptake of ferucarbotran was confirmed by immunofluorescence microscopy using a dextran-specific antibody, and the intracellular enrichment of iron was measured by atomic absorption spectrometry. The imaging of T cells was performed by magnetic resonance on day 0, 2, 7 and 14 after the labeling procedure. On day 0 and 2 post labeling, a pronounced shortening of T2*-relaxation times was observed, which diminished after 7 days and was not detectable anymore after 14 days, probably due to the retained mitotic activity of the labeled T cells. Of importance, the antigen-specific cytolytic activity of the T cells was preserved following ferucarbotran labeling. Efficient ferucarbotran labeling of functionally active T lymphocytes and their detection by magnetic resonance imaging allows the in vivo monitoring of T cells and, subsequently, will impact the further development of T cell-based therapies. (orig.)

  11. Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles

    International Nuclear Information System (INIS)

    Beer, Ambros J.; Holzapfel, Konstantin; Settles, Marcus; Rummeny, Ernst J.; Neudorfer, Juliana; Kroenig, Holger; Peschel, Christian; Bernhard, Helga; Piontek, Guido; Schlegel, Juergen

    2008-01-01

    New technologies are needed to characterize the migration and survival of antigen-specific T cells in vivo. In this study, we developed a novel technique for the labeling of human cytotoxic T lymphocytes with superparamagnetic iron-oxide particles and the subsequent depiction with a conventional 1.5-T magnetic resonance scanner. Antigen-specific CD8 + T lymphocytes were labeled with ferucarbotran by lipofection. The uptake of ferucarbotran was confirmed by immunofluorescence microscopy using a dextran-specific antibody, and the intracellular enrichment of iron was measured by atomic absorption spectrometry. The imaging of T cells was performed by magnetic resonance on day 0, 2, 7 and 14 after the labeling procedure. On day 0 and 2 post labeling, a pronounced shortening of T2*-relaxation times was observed, which diminished after 7 days and was not detectable anymore after 14 days, probably due to the retained mitotic activity of the labeled T cells. Of importance, the antigen-specific cytolytic activity of the T cells was preserved following ferucarbotran labeling. Efficient ferucarbotran labeling of functionally active T lymphocytes and their detection by magnetic resonance imaging allows the in vivo monitoring of T cells and, subsequently, will impact the further development of T cell-based therapies. (orig.)

  12. Brief Report: Robo1 Regulates the Migration of Human Subventricular Zone Neural Progenitor Cells During Development.

    Science.gov (United States)

    Guerrero-Cazares, Hugo; Lavell, Emily; Chen, Linda; Schiapparelli, Paula; Lara-Velazquez, Montserrat; Capilla-Gonzalez, Vivian; Clements, Anna Christina; Drummond, Gabrielle; Noiman, Liron; Thaler, Katrina; Burke, Anne; Quiñones-Hinojosa, Alfredo

    2017-07-01

    Human neural progenitor cell (NPC) migration within the subventricular zone (SVZ) of the lateral ganglionic eminence is an active process throughout early brain development. The migration of human NPCs from the SVZ to the olfactory bulb during fetal stages resembles what occurs in adult rodents. As the human brain develops during infancy, this migratory stream is drastically reduced in cell number and becomes barely evident in adults. The mechanisms regulating human NPC migration are unknown. The Slit-Robo signaling pathway has been defined as a chemorepulsive cue involved in axon guidance and neuroblast migration in rodents. Slit and Robo proteins expressed in the rodent brain help guide neuroblast migration from the SVZ through the rostral migratory stream to the olfactory bulb. Here, we present the first study on the role that Slit and Robo proteins play in human-derived fetal neural progenitor cell migration (hfNPC). We describe that Robo1 and Robo2 isoforms are expressed in the human fetal SVZ. Furthermore, we demonstrate that Slit2 is able to induce a chemorepellent effect on the migration of hfNPCs derived from the human fetal SVZ. In addition, when Robo1 expression is inhibited, hfNPCs are unable to migrate to the olfactory bulb of mice when injected in the anterior SVZ. Our findings indicate that the migration of human NPCs from the SVZ is partially regulated by the Slit-Robo axis. This pathway could be regulated to direct the migration of NPCs in human endogenous neural cell therapy. Stem Cells 2017;35:1860-1865. © 2017 AlphaMed Press.

  13. Developing convolutional neural networks for measuring climate change opinions from social media data

    Science.gov (United States)

    Mao, H.; Bhaduri, B. L.

    2016-12-01

    Understanding public opinions on climate change is important for policy making. Public opinion, however, is typically measured with national surveys, which are often too expensive and thus being updated at a low frequency. Twitter has become a major platform for people to express their opinions on social and political issues. Our work attempts to understand if Twitter data can provide complimentary insights about climate change perceptions. Since the nature of social media is real-time, this data source can especially help us understand how public opinion changes over time in response to climate events and hazards, which though is very difficult to be captured by manual surveys. We use the Twitter Streaming API to collect tweets that contain keywords, "climate change" or "#climatechange". Traditional machine-learning based opinion mining algorithms require a significant amount of labeled data. Data labeling is notoriously time consuming. To address this problem, we use hashtags (a significant feature used to mark topics of tweets) to annotate tweets automatically. For example, hashtags, #climatedenial and #climatescam, are negative opinion labels, while #actonclimate and #climateaction are positive. Following this method, we can obtain a large amount of training data without human labor. This labeled dataset is used to train a deep convolutional neural network that classifies tweets into positive (i.e. believe in climate change) and negative (i.e. do not believe). Based on the positive/negative tweets obtained, we will further analyze risk perceptions and opinions towards policy support. In addition, we analyze twitter user profiles to understand the demographics of proponents and opponents of climate change. Deep learning techniques, especially convolutional deep neural networks, have achieved much success in computer vision. In this work, we propose a convolutional neural network architecture for understanding opinions within text. This method is compared with

  14. Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stem cells

    DEFF Research Database (Denmark)

    Maxwell, Dustin J; Bonde, Jesper; Hess, David A

    2008-01-01

    culture conditions to maintain viability without inducing terminal differentiation. In the current study, fluorescent molecules were covalently linked to dextran-coated iron oxide nanoparticles (Feridex) to characterize human HSC labeling to monitor the engraftment process. Conjugating fluorophores...... to the dextran coat for fluorescence-activated cell sorting purification eliminated spurious signals from nonsequestered nanoparticle contaminants. A short-term defined incubation strategy was developed that allowed efficient labeling of both quiescent and cycling HSC, with no discernable toxicity in vitro...

  15. Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells.

    Science.gov (United States)

    Chandrasekaran, Abinaya; Avci, Hasan X; Ochalek, Anna; Rösingh, Lone N; Molnár, Kinga; László, Lajos; Bellák, Tamás; Téglási, Annamária; Pesti, Krisztina; Mike, Arpad; Phanthong, Phetcharat; Bíró, Orsolya; Hall, Vanessa; Kitiyanant, Narisorn; Krause, Karl-Heinz; Kobolák, Julianna; Dinnyés, András

    2017-12-01

    Neural progenitor cells (NPCs) from human induced pluripotent stem cells (hiPSCs) are frequently induced using 3D culture methodologies however, it is unknown whether spheroid-based (3D) neural induction is actually superior to monolayer (2D) neural induction. Our aim was to compare the efficiency of 2D induction with 3D induction method in their ability to generate NPCs, and subsequently neurons and astrocytes. Neural differentiation was analysed at the protein level qualitatively by immunocytochemistry and quantitatively by flow cytometry for NPC (SOX1, PAX6, NESTIN), neuronal (MAP2, TUBB3), cortical layer (TBR1, CUX1) and glial markers (SOX9, GFAP, AQP4). Electron microscopy demonstrated that both methods resulted in morphologically similar neural rosettes. However, quantification of NPCs derived from 3D neural induction exhibited an increase in the number of PAX6/NESTIN double positive cells and the derived neurons exhibited longer neurites. In contrast, 2D neural induction resulted in more SOX1 positive cells. While 2D monolayer induction resulted in slightly less mature neurons, at an early stage of differentiation, the patch clamp analysis failed to reveal any significant differences between the electrophysiological properties between the two induction methods. In conclusion, 3D neural induction increases the yield of PAX6 + /NESTIN + cells and gives rise to neurons with longer neurites, which might be an advantage for the production of forebrain cortical neurons, highlighting the potential of 3D neural induction, independent of iPSCs' genetic background. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Endogenous neurogenesis in the human brain following cerebral infarction.

    Science.gov (United States)

    Minger, Stephen L; Ekonomou, Antigoni; Carta, Eloisa M; Chinoy, Amish; Perry, Robert H; Ballard, Clive G

    2007-01-01

    Increased endogenous neurogenesis has a significant regenerative role in many experimental models of cerebrovascular diseases, but there have been very few studies in humans. We therefore examined whether there was evidence of altered endogenous neurogenesis in an 84-year-old patient who suffered a cerebrovascular accident 1 week prior to death. Using antibodies that specifically label neural stem/neural progenitor cells, we examined the presence of immunopositive cells around and distant from the infarcted area, and compared this with a control, age-matched individual. Interestingly, a large number of neural stem cells, vascular endothelial growth factor-immunopositive cells and new blood vessels were observed only around the region of infarction, and none in the corresponding brain areas of the healthy control. In addition, an increased number of neural stem cells was observed in the neurogenic region of the lateral ventricle wall. Our results suggest increased endogenous neurogenesis associated with neovascularization and migration of newly-formed cells towards a region of cerebrovascular damage in the adult human brain and highlight possible mechanisms underlying this process.

  17. Neurally and mathematically motivated architecture for language and thought.

    Science.gov (United States)

    Perlovsky, L I; Ilin, R

    2010-01-01

    Neural structures of interaction between thinking and language are unknown. This paper suggests a possible architecture motivated by neural and mathematical considerations. A mathematical requirement of computability imposes significant constraints on possible architectures consistent with brain neural structure and with a wealth of psychological knowledge. How language interacts with cognition. Do we think with words, or is thinking independent from language with words being just labels for decisions? Why is language learned by the age of 5 or 7, but acquisition of knowledge represented by learning to use this language knowledge takes a lifetime? This paper discusses hierarchical aspects of language and thought and argues that high level abstract thinking is impossible without language. We discuss a mathematical technique that can model the joint language-thought architecture, while overcoming previously encountered difficulties of computability. This architecture explains a contradiction between human ability for rational thoughtful decisions and irrationality of human thinking revealed by Tversky and Kahneman; a crucial role in this contradiction might be played by language. The proposed model resolves long-standing issues: how the brain learns correct words-object associations; why animals do not talk and think like people. We propose the role played by language emotionality in its interaction with thought. We relate the mathematical model to Humboldt's "firmness" of languages; and discuss possible influence of language grammar on its emotionality. Psychological and brain imaging experiments related to the proposed model are discussed. Future theoretical and experimental research is outlined.

  18. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression

    Directory of Open Access Journals (Sweden)

    Montzka Katrin

    2009-03-01

    Full Text Available Abstract Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as

  19. Focal Transplantation of Human iPSC-Derived Glial-Rich Neural Progenitors Improves Lifespan of ALS Mice

    Directory of Open Access Journals (Sweden)

    Takayuki Kondo

    2014-08-01

    Full Text Available Transplantation of glial-rich neural progenitors has been demonstrated to attenuate motor neuron degeneration and disease progression in rodent models of mutant superoxide dismutase 1 (SOD1-mediated amyotrophic lateral sclerosis (ALS. However, translation of these results into a clinical setting requires a renewable human cell source. Here, we derived glial-rich neural progenitors from human iPSCs and transplanted them into the lumbar spinal cord of ALS mouse models. The transplanted cells differentiated into astrocytes, and the treated mouse group showed prolonged lifespan. Our data suggest a potential therapeutic mechanism via activation of AKT signal. The results demonstrated the efficacy of cell therapy for ALS by the use of human iPSCs as cell source.

  20. Distribution of 131I-labeled recombinant human erythropoietin in maternal and fetal organs following intravenous administration in pregnant rats

    International Nuclear Information System (INIS)

    Yilmaz, O.; Lambrecht, F.Y.; Durkan, K.; Gokmen, N.; Erbayraktar, S.

    2007-01-01

    The aim of the present study was to demonstrate the possible transplacental transmission of 131 I labeled recombinant human erythropoietin ( 131 I-rh-EPO) in pregnant rats and its distribution through maternal and fetal organs. Six Wistar Albino Rats in their pregnancy of 18 days were used 131 I labeled recombinant human erythropoietin (specific activity = 2.4 μCi/IU) was injected into the tail vein of rats. After 30 minutes labeled erythropoietin infusion maternal stomach, kidney, lung, liver, brain and heart as well as fetus were removed. Then, the same organs were removed from each fetus. Measuring weight of maternal and fetal organs as well as placenta were followed by radioactivity count via Cd(Te) detector. 131 I labeled recombinant human erythropoietin was found to be able to pass rat placenta and its distribution order in fetal organs was similar to those of maternal organs. Besides, as measurements were performed closer to cornu uteri, uptakes were decreasing in every fetus and its corresponding placenta. (author)

  1. Signs of noise-induced neural degeneration in humans

    DEFF Research Database (Denmark)

    Holtegaard, Pernille; Olsen, Steen Østergaard

    2015-01-01

    of background noise, while leaving the processing of low-level stimuli unaffected. The purpose of this study was to investigate if signs of such primary neural damage from noise-exposure could also be found in noiseexposed human individuals. It was investigated: (1) if noise-exposed listeners with hearing......Animal studies demonstrated that noise exposure causes a primary and selective loss of auditory-nerve fibres with low spontaneous firing rate. This neuronal impairment, if also present in humans, can be assumed to affect the processing of supra-threshold stimuli, especially in the presence...... thresholds within the “normal” range perform poorer, in terms of their speech recognition threshold in noise (SRTN), and (2) if auditory brainstem responses (ABR) reveal lower amplitude of wave I in the noise-exposed listeners. A test group of noise/music-exposed individuals and a control group were...

  2. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang [East Hospital, Tongji University School of Medicine, Shanghai (China); Dong, Chuanming [East Hospital, Tongji University School of Medicine, Shanghai (China); Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong (China); Sun, Chenxi; Ma, Rongjie; Yang, Danjing [East Hospital, Tongji University School of Medicine, Shanghai (China); Zhu, Hongwen, E-mail: hongwen_zhu@hotmail.com [Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin (China); Xu, Jun, E-mail: xunymc2000@yahoo.com [East Hospital, Tongji University School of Medicine, Shanghai (China)

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.

  3. Human Age Recognition by Electrocardiogram Signal Based on Artificial Neural Network

    Science.gov (United States)

    Dasgupta, Hirak

    2016-12-01

    The objective of this work is to make a neural network function approximation model to detect human age from the electrocardiogram (ECG) signal. The input vectors of the neural network are the Katz fractal dimension of the ECG signal, frequencies in the QRS complex, male or female (represented by numeric constant) and the average of successive R-R peak distance of a particular ECG signal. The QRS complex has been detected by short time Fourier transform algorithm. The successive R peak has been detected by, first cutting the signal into periods by auto-correlation method and then finding the absolute of the highest point in each period. The neural network used in this problem consists of two layers, with Sigmoid neuron in the input and linear neuron in the output layer. The result shows the mean of errors as -0.49, 1.03, 0.79 years and the standard deviation of errors as 1.81, 1.77, 2.70 years during training, cross validation and testing with unknown data sets, respectively.

  4. Photoaffinity labeling of the progesterone receptor from human endometrial carcinoma

    International Nuclear Information System (INIS)

    Clarke, C.L.; Satyaswaroop, P.G.

    1985-01-01

    A nude mouse model for the growth of human endometrial carcinoma and hormonal modulation of the progesterone receptor (PR) was established previously. This study describes the effect of 17 beta-estradiol and tamoxifen (TAM) on growth rate and PR concentration in a hormonally responsive human endometrial tumor (EnCa 101) grown in this experimental system and presents the first characterization of human endometrial carcinoma PR. EnCa 101 was transplanted subcutaneously into ovariectomized, BALB/c, nu/nu athymic mice and grown under 17 beta-estradiol-stimulated, TAM-stimulated, and control conditions. Both 17 beta-estradiol and TAM increased the growth rate of EnCa 101 in nude mice, and a parallel increase in the cytosol PR concentration was observed. PR was partially purified by phosphocellulose and DEAE cellulose chromatography, and the DEAE eluate was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and photoaffinity labeling with [17 alpha-methyl- 3 H]promegestone ([ 3 H]R5020). Two PR-negative tumors (EnCa K and EnCa V) were also examined in parallel. Photolabeling and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of EnCa 101 grown in the presence of 17 beta-estradiol or TAM revealed incorporation of [3H]R5020 into proteins of molecular weight approximately 116,000 and 85,000. Labeled proteins of molecular weight 66,000, 45,000, and 35,000 were also observed. No incorporation of [ 3 H]R5020 was observed in EnCa 101 grown in the absence of estrogen, nor was any observed in EnCa K or EnCa V

  5. Implicity Defined Neural Networks for Sequence Labeling

    Science.gov (United States)

    2017-02-13

    assumption - that a hid- den variable changes its state based only on its current state and observables. In finding maximum likelihood state sequences...this setup, we have the following variables : data X labels Y parameters θ and functions: implicit hidden layer definition H = F (θ, ξ,H) loss function L...tagging task. In future work, we intend to consider implicit varia - tions of other archetectures, such as the LSTM, as well as additional, more challenging

  6. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  7. Quantitative Analysis of Human Pluripotency and Neural Specification by In-Depth (PhosphoProteomic Profiling

    Directory of Open Access Journals (Sweden)

    Ilyas Singec

    2016-09-01

    Full Text Available Controlled differentiation of human embryonic stem cells (hESCs can be utilized for precise analysis of cell type identities during early development. We established a highly efficient neural induction strategy and an improved analytical platform, and determined proteomic and phosphoproteomic profiles of hESCs and their specified multipotent neural stem cell derivatives (hNSCs. This quantitative dataset (nearly 13,000 proteins and 60,000 phosphorylation sites provides unique molecular insights into pluripotency and neural lineage entry. Systems-level comparative analysis of proteins (e.g., transcription factors, epigenetic regulators, kinase families, phosphorylation sites, and numerous biological pathways allowed the identification of distinct signatures in pluripotent and multipotent cells. Furthermore, as predicted by the dataset, we functionally validated an autocrine/paracrine mechanism by demonstrating that the secreted protein midkine is a regulator of neural specification. This resource is freely available to the scientific community, including a searchable website, PluriProt.

  8. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    International Nuclear Information System (INIS)

    Manceur, Aziza P.; Tseng, Michael; Holowacz, Tamara; Witterick, Ian; Weksberg, Rosanna; McCurdy, Richard D.; Warsh, Jerry J.; Audet, Julie

    2011-01-01

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  9. Recognizing different tissues in human fetal femur cartilage by label-free Raman microspectroscopy

    Science.gov (United States)

    Kunstar, Aliz; Leijten, Jeroen; van Leuveren, Stefan; Hilderink, Janneke; Otto, Cees; van Blitterswijk, Clemens A.; Karperien, Marcel; van Apeldoorn, Aart A.

    2012-11-01

    Traditionally, the composition of bone and cartilage is determined by standard histological methods. We used Raman microscopy, which provides a molecular "fingerprint" of the investigated sample, to detect differences between the zones in human fetal femur cartilage without the need for additional staining or labeling. Raman area scans were made from the (pre)articular cartilage, resting, proliferative, and hypertrophic zones of growth plate and endochondral bone within human fetal femora. Multivariate data analysis was performed on Raman spectral datasets to construct cluster images with corresponding cluster averages. Cluster analysis resulted in detection of individual chondrocyte spectra that could be separated from cartilage extracellular matrix (ECM) spectra and was verified by comparing cluster images with intensity-based Raman images for the deoxyribonucleic acid/ribonucleic acid (DNA/RNA) band. Specific dendrograms were created using Ward's clustering method, and principal component analysis (PCA) was performed with the separated and averaged Raman spectra of cells and ECM of all measured zones. Overall (dis)similarities between measured zones were effectively visualized on the dendrograms and main spectral differences were revealed by PCA allowing for label-free detection of individual cartilaginous zones and for label-free evaluation of proper cartilaginous matrix formation for future tissue engineering and clinical purposes.

  10. Specific and spatial labeling of P0-Cre versus Wnt1-Cre in cranial neural crest in early mouse embryos.

    Science.gov (United States)

    Chen, Guiqian; Ishan, Mohamed; Yang, Jingwen; Kishigami, Satoshi; Fukuda, Tomokazu; Scott, Greg; Ray, Manas K; Sun, Chenming; Chen, Shi-You; Komatsu, Yoshihiro; Mishina, Yuji; Liu, Hong-Xiang

    2017-06-01

    P0-Cre and Wnt1-Cre mouse lines have been widely used in combination with loxP-flanked mice to label and genetically modify neural crest (NC) cells and their derivatives. Wnt1-Cre has been regarded as the gold standard and there have been concerns about the specificity of P0-Cre because it is not clear about the timing and spatial distribution of the P0-Cre transgene in labeling NC cells at early embryonic stages. We re-visited P0-Cre and Wnt1-Cre models in the labeling of NC cells in early mouse embryos with a focus on cranial NC. We found that R26-lacZ Cre reporter responded to Cre activity more reliably than CAAG-lacZ Cre reporter during early embryogenesis. Cre immunosignals in P0-Cre and reporter (lacZ and RFP) activity in P0-Cre/R26-lacZ and P0-Cre/R26-RFP embryos was detected in the cranial NC and notochord regions in E8.0-9.5 (4-19 somites) embryos. P0-Cre transgene expression was observed in migrating NC cells and was more extensive in the forebrain and hindbrain but not apparent in the midbrain. Differences in the Cre distribution patterns of P0-Cre and Wnt1-Cre were profound in the midbrain and hindbrain regions, that is, extensive in the midbrain of Wnt1-Cre and in the hindbrain of P0-Cre embryos. The difference between P0-Cre and Wnt1-Cre in labeling cranial NC may provide a better explanation of the differential distributions of their NC derivatives and of the phenotypes caused by Cre-driven genetic modifications. © 2017 Wiley Periodicals, Inc.

  11. Preparation of Human Serum Albumin Macroaggregated (MAA) labelled with 99mTc via Ligand Exchange

    International Nuclear Information System (INIS)

    El-Mohty, A.A.; El-Ghany, E.A.; Amin, A.A.; El-Koaly, M.T.; Raieh, M.

    2000-01-01

    An alternative method for the preparation of human serum albumin macroaggregated (MAA) labelled with 99m Tc for lung scanning is described. The method is based on the use of stannous methylene diphosphonate (Sn-MDP) as a reducing agent. The may be also increase the number of binding sites in the MAA. The different parameters affecting the labelling yield and in-vitro stability of 99m Tc-MAA have been studied in order to determine the optimum conditions for labelling macroaggregated with 99m Tc. A high labelling yield (98.9%) was achieved and more than 98% of 99m Tc-MAA coated with Sn-MDP. The determined lung uptake in mice was found to be ≥ 90% which better than the reported data. A particular procedure compared to the existing reported procedures, which is recommended for the preparation of Sn-MDP coated MAA labelled with 99m Tc for lung perfusion imaging

  12. Neural correlates of heat-evoked pain memory in humans.

    Science.gov (United States)

    Wang, Liping; Gui, Peng; Li, Lei; Ku, Yixuan; Bodner, Mark; Fan, Gaojie; Zhou, Yong-Di; Dong, Xiao-Wei

    2016-03-01

    The neural processes underlying pain memory are not well understood. To explore these processes, contact heat-evoked potentials (CHEPs) were recorded in humans with electroencephalography (EEG) technique during a delayed matching-to-sample task, a working memory task involving presentations of two successive painful heat stimuli (S-1 and S-2) with different intensities separated by a 2-s interval (the memorization period). At the end of the task, the subject was required to discriminate the stimuli by indicating which (S-1 or S-2) induced more pain. A control task was used, in which no active discrimination was required between stimuli. All event-related potential (ERP) analysis was aligned to the onset of S-1. EEG activity exhibited two successive CHEPs: an N2-P2 complex (∼400 ms after onset of S-1) and an ultralate component (ULC, ∼900 ms). The amplitude of the N2-P2 at vertex, but not the ULC, was significantly correlated with stimulus intensity in these two tasks, suggesting that the N2-P2 represents neural coding of pain intensity. A late negative component (LNC) in the frontal recording region was observed only in the memory task during a 500-ms period before onset of S-2. LNC amplitude differed between stimulus intensities and exhibited significant correlations with the N2-P2 complex. These indicate that the frontal LNC is involved in maintenance of intensity of pain in working memory. Furthermore, alpha-band oscillations observed in parietal recording regions during the late delay displayed significant power differences between tasks. This study provides in the temporal domain previously unidentified neural evidence showing the neural processes involved in working memory of painful stimuli. Copyright © 2016 the American Physiological Society.

  13. Optimization of in vitro cell labeling methods for human umbilical cord-derived mesenchymal stem cells.

    Science.gov (United States)

    Tao, R; Sun, T-J; Han, Y-Q; Xu, G; Liu, J; Han, Y-F

    2014-01-01

    Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are a novel source of seed cells for cell therapy and tissue engineering. However, in vitro labeling methods for hUCMSCs need to be optimized for better detection of transplanted cells. To identify the most stable and efficient method for labeling hUCMSCs in vitro. hUCMSCs were isolated using a modified enzymatic digestion procedure and cultured. hUCMSCs of passage three (P3) were then labeled with BrdU, PKH26, or lentivirus-GFP and passaged further. Cells from the first labeled passage (LP1), the fourth labeled passage (LP4) and later passages were observed using a fluorescence microscope. The differentiation potential of LP4 cells was assessed by induction with adipogenic and osteogenic medium. Flow cytometry was used to measure the percentage of labeled cells and the percentage of apoptotic or dead cells. The labeling efficiencies of the three hUCMSC-labeling methods were compared in vitro. BrdU, PKH26, and lentivirus-GFP all labeled LP1 cells with high intensity and clarity. However, the BrdU labeling of the LP4 cells was vague and not localized to the cell nuclei; LP9 cells were not detected under a fluorescence microscope. There was also a significant decrease in the fluorescence intensity of PKH26-labeled LP4 cells, and LP11 cells were not detected under a fluorescence microscope. However, the fluorescence of LP4 cells labeled with lentivirus-GFP remained strong, and cells labeled with lentivirus-GFP were detected up to LP14 under a fluorescence microscope. Statistical analyses indicated that percentages of LP1 cells labeled with PKH26 and lentivirus-GFP were significantly higher than that of cells labeled with BrdU (p 0.05) was observed between the death rates of labeled and unlabeled cells. Lentivirus-GFP is a valid method for long-term in vitro labeling, and it may be used as a long-term hUCMSC tracker following transplantation in vivo.

  14. Continuous Timescale Long-Short Term Memory Neural Network for Human Intent Understanding

    Directory of Open Access Journals (Sweden)

    Zhibin Yu

    2017-08-01

    Full Text Available Understanding of human intention by observing a series of human actions has been a challenging task. In order to do so, we need to analyze longer sequences of human actions related with intentions and extract the context from the dynamic features. The multiple timescales recurrent neural network (MTRNN model, which is believed to be a kind of solution, is a useful tool for recording and regenerating a continuous signal for dynamic tasks. However, the conventional MTRNN suffers from the vanishing gradient problem which renders it impossible to be used for longer sequence understanding. To address this problem, we propose a new model named Continuous Timescale Long-Short Term Memory (CTLSTM in which we inherit the multiple timescales concept into the Long-Short Term Memory (LSTM recurrent neural network (RNN that addresses the vanishing gradient problem. We design an additional recurrent connection in the LSTM cell outputs to produce a time-delay in order to capture the slow context. Our experiments show that the proposed model exhibits better context modeling ability and captures the dynamic features on multiple large dataset classification tasks. The results illustrate that the multiple timescales concept enhances the ability of our model to handle longer sequences related with human intentions and hence proving to be more suitable for complex tasks, such as intention recognition.

  15. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    Science.gov (United States)

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.

  16. Prolonged Expansion Induces Spontaneous Neural Progenitor Differentiation from Human Gingiva-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Rajan, Thangavelu Soundara; Scionti, Domenico; Diomede, Francesca; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2017-12-01

    Neural crest-derived mesenchymal stem cells (MSCs) obtained from dental tissues received considerable interest in regenerative medicine, particularly in nerve regeneration owing to their embryonic origin and ease of harvest. Proliferation efficacy and differentiation capacity into diverse cell lineages propose dental MSCs as an in vitro tool for disease modeling. In this study, we investigated the spontaneous differentiation efficiency of dental MSCs obtained from human gingiva tissue (hGMSCs) into neural progenitor cells after extended passaging. At passage 41, the morphology of hGMSCs changed from typical fibroblast-like shape into sphere-shaped cells with extending processes. Next-generation transcriptomics sequencing showed increased expression of neural progenitor markers such as NES, MEIS2, and MEST. In addition, de novo expression of neural precursor genes, such as NRN1, PHOX2B, VANGL2, and NTRK3, was noticed in passage 41. Immunocytochemistry results showed suppression of neurogenesis repressors TP53 and p21, whereas Western blot results revealed the expression of neurotrophic factors BDNF and NT3 at passage 41. Our results showed the spontaneous efficacy of hGMSCs to differentiate into neural precursor cells over prolonged passages and that these cells may assist in producing novel in vitro disease models that are associated with neural development.

  17. Development of high-performance chemical isotope labeling LC-MS for profiling the human fecal metabolome.

    Science.gov (United States)

    Xu, Wei; Chen, Deying; Wang, Nan; Zhang, Ting; Zhou, Ruokun; Huan, Tao; Lu, Yingfeng; Su, Xiaoling; Xie, Qing; Li, Liang; Li, Lanjuan

    2015-01-20

    Human fecal samples contain endogenous human metabolites, gut microbiota metabolites, and other compounds. Profiling the fecal metabolome can produce metabolic information that may be used not only for disease biomarker discovery, but also for providing an insight about the relationship of the gut microbiome and human health. In this work, we report a chemical isotope labeling liquid chromatography-mass spectrometry (LC-MS) method for comprehensive and quantitative analysis of the amine- and phenol-containing metabolites in fecal samples. Differential (13)C2/(12)C2-dansyl labeling of the amines and phenols was used to improve LC separation efficiency and MS detection sensitivity. Water, methanol, and acetonitrile were examined as an extraction solvent, and a sequential water-acetonitrile extraction method was found to be optimal. A step-gradient LC-UV setup and a fast LC-MS method were evaluated for measuring the total concentration of dansyl labeled metabolites that could be used for normalizing the sample amounts of individual samples for quantitative metabolomics. Knowing the total concentration was also useful for optimizing the sample injection amount into LC-MS to maximize the number of metabolites detectable while avoiding sample overloading. For the first time, dansylation isotope labeling LC-MS was performed in a simple time-of-flight mass spectrometer, instead of high-end equipment, demonstrating the feasibility of using a low-cost instrument for chemical isotope labeling metabolomics. The developed method was applied for profiling the amine/phenol submetabolome of fecal samples collected from three families. An average of 1785 peak pairs or putative metabolites were found from a 30 min LC-MS run. From 243 LC-MS runs of all the fecal samples, a total of 6200 peak pairs were detected. Among them, 67 could be positively identified based on the mass and retention time match to a dansyl standard library, while 581 and 3197 peak pairs could be putatively

  18. Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans.

    NARCIS (Netherlands)

    Hermans, E.J.; Ramsey, N.F.; Honk, J. van

    2008-01-01

    BACKGROUND: In a range of species, the androgen steroid testosterone is known to potentiate neural circuits involved in intraspecific aggression. Disorders of impulsive aggression in humans have likewise been associated with high testosterone levels, but human evidence for the link between

  19. Direct in vivo characterization of delta 5 desaturase activity in humans by deuterium labeling: Effect of insulin

    International Nuclear Information System (INIS)

    el Boustani, S.; Causse, J.E.; Descomps, B.; Monnier, L.; Mendy, F.; Crastes de Paulet, A.

    1989-01-01

    The conversion of dihomogamma linolenic acid (DHLA) into arachidonic acid (AA) was compared in normal subjects and diabetic patients before and after treatment with insulin. The kinetics of the incorporation of deuterium-labeled DHLA and its conversion product, deuterium-labeled AA, was determined in plasma triglycerides, plasma phospholipids, and platelet lipids of subjects after ingestion of 2 g of the labeled precursor. Analysis was performed by gas liquid chromatography-mass spectrometry using multiple ion detection. In normal subjects, the deuterium-labeled DHLA concentration rose to 24 to 69 mg/L in plasma triglycerides four to nine hours after ingestion and to 20 to 34 mg/L in plasma phospholipids about four hours later. Deuterium-labeled AA appeared at 12 hours, rose to 2.4 to 3.8 mg/L between 48 and 72 hours in plasma phospholipids, but remained at the limit of detection in plasma triglycerides and was undetectable in platelet lipids. In diabetic patients both before and after insulin treatment, the deuterium-labeled DHLA concentration in plasma triglycerides and in plasma phospholipids followed the same pattern as in normal subjects. However, the deuterium-labeled arachidonic acid concentration was below 1 mg/L in plasma phospholipids before insulin. After insulin treatment the patients recovered normal DHLA metabolism because deuterium-labeled AA rose in phospholipids to a mean value of 3.5 mg/L, which is in the same range as that observed in normal subjects (3.2 mg/L). The present data provide direct evidence for the conversion of DHLA into AA in humans. The effect of insulin and the data from the literature of animal studies suggest insulin dependence of delta 5 desaturase in humans

  20. Multimodal neural correlates of cognitive control in the Human Connectome Project.

    Science.gov (United States)

    Lerman-Sinkoff, Dov B; Sui, Jing; Rachakonda, Srinivas; Kandala, Sridhar; Calhoun, Vince D; Barch, Deanna M

    2017-12-01

    Cognitive control is a construct that refers to the set of functions that enable decision-making and task performance through the representation of task states, goals, and rules. The neural correlates of cognitive control have been studied in humans using a wide variety of neuroimaging modalities, including structural MRI, resting-state fMRI, and task-based fMRI. The results from each of these modalities independently have implicated the involvement of a number of brain regions in cognitive control, including dorsal prefrontal cortex, and frontal parietal and cingulo-opercular brain networks. However, it is not clear how the results from a single modality relate to results in other modalities. Recent developments in multimodal image analysis methods provide an avenue for answering such questions and could yield more integrated models of the neural correlates of cognitive control. In this study, we used multiset canonical correlation analysis with joint independent component analysis (mCCA + jICA) to identify multimodal patterns of variation related to cognitive control. We used two independent cohorts of participants from the Human Connectome Project, each of which had data from four imaging modalities. We replicated the findings from the first cohort in the second cohort using both independent and predictive analyses. The independent analyses identified a component in each cohort that was highly similar to the other and significantly correlated with cognitive control performance. The replication by prediction analyses identified two independent components that were significantly correlated with cognitive control performance in the first cohort and significantly predictive of performance in the second cohort. These components identified positive relationships across the modalities in neural regions related to both dynamic and stable aspects of task control, including regions in both the frontal-parietal and cingulo-opercular networks, as well as regions

  1. In vitro assessment of Tc-99m labeled bovine thrombin and streptokinase-activated human plasmin: concise communication

    International Nuclear Information System (INIS)

    Wong, D.W.; Tanaka, T.; Mishkin, F.; Lee, T.

    1979-01-01

    Bovine thrombin and streptokinase-activated human plasmin have been labeled with Tc-99m using stannous reduction of pertechnetate under physiological conditions (pH 7.4). The binding efficiency of radiotechnetium to these enzymes is greater than 94%, with less than 5% of reduced but unbound Tc-99m (Sn) complex as assayed by ascending paper radiochromatography using ITLC silica gel plate. Free or unbound pertechnetate is less than 1%. In vitro enzymatic analyses of the Tc-99m-labeled enzymes demonstrate no evidence of protein denaturation or significant loss of enzymatic activity after labeling. Both labeled enzymes are biochemically active in vitro with their respective substrates

  2. Neural Plasticity following Abacus Training in Humans: A Review and Future Directions

    Directory of Open Access Journals (Sweden)

    Yongxin Li

    2016-01-01

    Full Text Available The human brain has an enormous capacity to adapt to a broad variety of environmental demands. Previous studies in the field of abacus training have shown that this training can induce specific changes in the brain. However, the neural mechanism underlying these changes remains elusive. Here, we reviewed the behavioral and imaging findings of comparisons between abacus experts and average control subjects and focused on changes in activation patterns and changes in brain structure. Finally, we noted the limitations and the future directions of this field. We concluded that although current studies have provided us with information about the mechanisms of abacus training, more research on abacus training is needed to understand its neural impact.

  3. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    Energy Technology Data Exchange (ETDEWEB)

    Manceur, Aziza P. [Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario (Canada); Donnelly Centre, University of Toronto, Toronto, Ontario (Canada); Tseng, Michael [Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario (Canada); Department of Psychiatry, University of Toronto, Toronto, ON (Canada); Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Holowacz, Tamara [Donnelly Centre, University of Toronto, Toronto, Ontario (Canada); Witterick, Ian [Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Department of Otolaryngology, Head and Neck Surgery, University of Toronto, ON (Canada); Weksberg, Rosanna [Institute of Medical Science, University of Toronto, Toronto, ON (Canada); The Hospital for Sick Children, Research Institute, Program in Genetics and Genomic Biology, Toronto, Ontario Canada (Canada); McCurdy, Richard D. [The Hospital for Sick Children, Research Institute, Program in Genetics and Genomic Biology, Toronto, Ontario Canada (Canada); Warsh, Jerry J. [Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario (Canada); Department of Psychiatry, University of Toronto, Toronto, ON (Canada); Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Audet, Julie, E-mail: julie.audet@utoronto.ca [Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario (Canada); Donnelly Centre, University of Toronto, Toronto, Ontario (Canada)

    2011-09-10

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  4. Learning classification models with soft-label information.

    Science.gov (United States)

    Nguyen, Quang; Valizadegan, Hamed; Hauskrecht, Milos

    2014-01-01

    Learning of classification models in medicine often relies on data labeled by a human expert. Since labeling of clinical data may be time-consuming, finding ways of alleviating the labeling costs is critical for our ability to automatically learn such models. In this paper we propose a new machine learning approach that is able to learn improved binary classification models more efficiently by refining the binary class information in the training phase with soft labels that reflect how strongly the human expert feels about the original class labels. Two types of methods that can learn improved binary classification models from soft labels are proposed. The first relies on probabilistic/numeric labels, the other on ordinal categorical labels. We study and demonstrate the benefits of these methods for learning an alerting model for heparin induced thrombocytopenia. The experiments are conducted on the data of 377 patient instances labeled by three different human experts. The methods are compared using the area under the receiver operating characteristic curve (AUC) score. Our AUC results show that the new approach is capable of learning classification models more efficiently compared to traditional learning methods. The improvement in AUC is most remarkable when the number of examples we learn from is small. A new classification learning framework that lets us learn from auxiliary soft-label information provided by a human expert is a promising new direction for learning classification models from expert labels, reducing the time and cost needed to label data.

  5. Xenotransplantation of human neural progenitor cells to the subretinal space of nonimmunosuppressed pigs

    DEFF Research Database (Denmark)

    Warfvinge, Karin; Schwartz, Philip H; Kiilgaard, Jens Folke

    2011-01-01

    To investigate the feasibility of transplanting human neural progenitor cells (hNPCs) to the retina of nonimmunosuppressed pigs, cultured hNPCs were injected into the subretinal space of 5 adult pigs after laser burns were applied to promote donor cell integration. Postoperatively, the retinal ve...

  6. Optimized localization of bacterial infections with technetium-99m labelled human immunoglobulin after protein charge selection

    International Nuclear Information System (INIS)

    Welling, M.; Feitsma, H.I.J.; Calame, W.; Ensing, G.J.; Goedemans, W.; Pauwels, E.K.J.

    1994-01-01

    To improve the scintigraphic detection of bacterial infections a protein charge-purified fraction of polyclonal human immunoglobulin was applied as a radiopharmaceutical. This purification was achieved by attaching the immunoglobulin to an anion-exchanger column and by obtaining the column-bound fraction with buffer. The binding to bacteria in vitro and the target to non-target ratios of an experimental thigh infection with Staphylococcus aureus or Klebsiella pneumoniae in mice were evaluated to compare the purified and the unpurified immunoglobulin. The percentage of binding to all gram-positive and gram-negative bacteria used in this study was significantly (P 99m Tc-labelled protein charge-purified polyclonal human immunoglobulin was administered intravenously. At all time intervals the target (infected thighs) to non-target (non-infected thighs) ratios for both infections were significantly higher (P 99m Tc-labelled protein charge-purified immunoglobulin localizes both a gram-positive and a gram-negative thigh infection more intensely and faster than 99m Tc-labelled unpurified immunoglobulin. (orig.)

  7. Evaluation of 99mTc-Labeled Bevacizumab-N-HYNIC Conjugate in Human Ovarian Tumor Xenografts.

    Science.gov (United States)

    Shah, Syed Qaiser; Mahmood, Samia

    2018-03-20

    The aim of the present investigation was to examine the suitability of 99m Tc-N-HYNIC-BZMB as a specific vascular endothelial growth factor (VEGF)-targeting agent. Bevacizumab is a recombinant humanized monoclonal antibody that inhibits VEGF. N-hydroxysuccinimide-2-hydrazinonicotinic acid (N-HYNIC) was conjugated to BZMB, followed by labeling with 99m Tc using N-[Tris(hydroxymethyl)methyl] glycine (tricine), ethylenediamine-N,N'-diacetic acid (EDDA), and nicotinic acid as coligands. 99m Tc-labeled BZMB was characterized in terms of 99m TcO 4 , radiocolloids, and labeled N-HYNIC-BZMB using thin-layer chromatography and HPLC. Poor metastatic SKOV-3 and high metastatic SKOV-3.ip1 human ovarian cancer cell lines were used for in vitro binding uptake of 99m Tc-N-HYNIC-BZMB. Biodistribution and scintigraphy accuracy were examined in human ovarian tumor xenografts in rats and rabbits. 99m Tc-N-HYNIC-BZMB prepared by using a mixture of tricine and EDDA demonstrated relatively high radiochemical purity (more than 98%). In L-cysteine and serum, it exhibited a stable behavior up to 16 hours. In vitro binding uptake indicated that it targets high metastatic SKOV-3.ip1 tumors. Biodistribution in human ovarian tumor xenografts in rats confirmed a significant uptake in SKOV-3.ip1 tumors (5.69% ± 1.86%, 4 hours). Scintigraphic accuracy in human ovarian tumor xenografts in rabbits validated its suitability as a high metastatic SKOV-3.ip1 radiotracer. High radiochemical purity, stability in saline and serum, biodistribution, and scintigraphy of 99m Tc-N-HYNIC-BZMB in human ovarian tumor xenografts in rats and rabbits confirmed its suitability as a potential radiotracer for imaging high metastatic SKOV-3.ip1 sites.

  8. Origin-Dependent Neural Cell Identities in Differentiated Human iPSCs In Vitro and after Transplantation into the Mouse Brain

    Directory of Open Access Journals (Sweden)

    Gunnar Hargus

    2014-09-01

    Full Text Available The differentiation capability of induced pluripotent stem cells (iPSCs toward certain cell types for disease modeling and drug screening assays might be influenced by their somatic cell of origin. Here, we have compared the neural induction of human iPSCs generated from fetal neural stem cells (fNSCs, dermal fibroblasts, or cord blood CD34+ hematopoietic progenitor cells. Neural progenitor cells (NPCs and neurons could be generated at similar efficiencies from all iPSCs. Transcriptomics analysis of the whole genome and of neural genes revealed a separation of neuroectoderm-derived iPSC-NPCs from mesoderm-derived iPSC-NPCs. Furthermore, we found genes that were similarly expressed in fNSCs and neuroectoderm, but not in mesoderm-derived iPSC-NPCs. Notably, these neural signatures were retained after transplantation into the cortex of mice and paralleled with increased survival of neuroectoderm-derived cells in vivo. These results indicate distinct origin-dependent neural cell identities in differentiated human iPSCs both in vitro and in vivo.

  9. Urinary transforming growth factors in neoplasia: separation of 125I-labeled transforming growth factor-alpha from epidermal growth factor in human urine

    International Nuclear Information System (INIS)

    Stromberg, K.; Hudgins, W.R.

    1986-01-01

    Purified human epidermal growth factor (hEGF) from urine promotes anchorage-independent cell growth in soft agar medium. This growth is enhanced by transforming growth factor-beta (TGF-beta), and is specifically inhibited by hEGF antiserum. Transforming growth factors of the alpha type (TGF-alpha), potentially present in normal human urine or urine from tumor-bearing patients, also promote anchorage-independent cell growth and compete with EGF for membrane receptor binding. Consequently, TGF-alpha cannot be distinguished from urinary hEGF by these two functional assays. Therefore, a technique for separation of TGF-alpha and related peptides from urinary EGF based on biochemical characteristics would be useful. Radioiodination of characterized growth factors [mouse EGF (mEGF), hEGF, and rat TGF-alpha (rTGF-alpha)], which were then separately added to human urine, was used to evaluate a resolution scheme that separates TGF-alpha from the high level of background hEGF present in human urine. Methyl bonded microparticulate silica efficiently adsorbed the 125 I-labeled mEGF, 125 I-labeled hEGF, and 125 I-labeled rTGF-alpha that were added to 24-h human urine samples. Fractional elution with acetonitrile (MeCN) of the adsorbed silica released approximately 70 to 80% of the 125 I-labeled mEGF and 125 I-labeled hEGF between 25 and 30% MeCN, and over 80% of the 125 I-labeled rTGF-alpha between 15 and 25% MeCN, with retention after dialysis of less than 0.2 and 1.7% of the original urinary protein, respectively. A single-step enrichment of about 400-fold for mEGF and hEGF, and 50-fold for rTGF-alpha were achieved rapidly. 125 I-labeled mEGF and 125 I-labeled hEGF eluted later than would be predicted on the basis of their reported molecular weight of approximately 6000, whereas 125 I-labeled rTGF-alpha eluted from Bio-Gel P-10 at an approximate molecular weight of 8000 to 9000

  10. Biodistribution of 99mTc-labeled anti-human epidermal growth factor receptor (EGF-R) humanized monoclonal antibody h-R3 in a xenograft model of human lung adenocarcinoma

    International Nuclear Information System (INIS)

    Morales-Morales, Alejo; Duconge, Jorge; Caballero-Torres, Idania; Nunez-Gandolff, Gilda; Fernandez, Eduardo; Iznaga-Escobar, Normando

    1999-01-01

    The anti-human epidermal growth factor receptor (EGF-R) humanized monoclonal antibody (MAb) h-R3 is an (IgG 1 ), which binds to an extracellular domain of EGF-R. It was used to evaluate the biodistribution on nude mice xenografted with H-125 human lung adenocarcinoma cell line. Results were compared with its murine version of the MAb ior-egf/r3. Twenty-one athymic female 4NMRI nu/nu mice were injected intraperitoneally with 10 μg/100 μCi of 99m Tc-labeled MAbs. Immunoreactivity of 99m Tc-labeled MAbs were measured by enzyme-linked immunosorbent assay (ELISA) on H-125 cell line and the immunoreactive fractions was determined by the Lindmo method. Among all organs, significant accumulation was found in serum (27.05 ± 2.08 %ID/g) and tumor (3.903 ± 0.89 %ID/g) at 4 h after injection. These values decreased to 5.03 ± 0.50 %ID/g and 2.19 ± 0.56 %ID/g for serum and tumor, respectively. The immunoreactive fraction was found to be 0.70, with a correlation coefficient r=0.9984. With the good biodistribution and tumor uptake of the 99m Tc-labeled humanized antibody h-R3, a phase I diagnostic clinical trial of tumor with epithelial origin should be pursued

  11. Bioactivity assays and application of 125I labeled human mouse chimeric anti-CD22 monoclonal antibody SM03

    International Nuclear Information System (INIS)

    Lu Pingping; Meng Zhiyun; Dou Guifang; Wu Yingliang; Wang Minwei

    2008-01-01

    To investigate the bioactivity and application of 125 I labeled human mouse chimeric monoclonal SM03, SM03 was labeled with 125 I using Indogen method. The labeled mixture was purified by Sephacryl S-300 HR separation chromospectry. The purity and concentration of separated fractions were determined by HPLC and Protein Assay Kit, respectively. Competitive binding method and ELISA method were used for bioactivity assays. 125 I-SM03 was applied to screen cell lines which express the most abundant CD22 antigen. The purity and recovery of 125 I-SM03 were >99% and >47%, respectively. The bioactivity of 125 I- SM03 and SM03 hasn't significant difference in statistics. Ramos cell line had the strongest special radioactivity when 125 I-SM03 bound with in Raji, Daudi and Ramos cell lines. Indogen method is a good way to label Human mouse chimeric anti-CD22 monoclonal antibody SM03 and the label will not affect the activity of SM03. The 125 I-SM03 not only can be used for detect agent, but also may be put into market for NHL therapy. (authors)

  12. Clinical application of antibody monoclonal humanized anti-EGFrnimotuzumab labeled

    International Nuclear Information System (INIS)

    Perera Pintado, Alejandro; Peña Quián, Yamilé; Batista Cuéllar, Juan F.; Prats Capote, Anaís; Torres Aroche, Leonel A.; Casacó Santana, Caridad; Sánchez Mendosa, Elvia L.; Sánchez González, Yolaine; Romero Collado, Susana; Quesada Pozo, Rodobaldo; Valladares Oviedo, Lourdes; Masquida García, Elsa M.; Leyva Montaña, René; Casacó, Angel; Ramos Suzarte, Mayra; Crombet, Tania

    2016-01-01

    Most malignant tumors are of epithelial origin. These are characterized by overexpression of the receptor of epidermal growth factor (EGFR), which the neoplastic cells escape the regulatory mechanisms are allowed, so its high concentration of membrane is generally associated with a poor prognosis . By binding an antibody specifically to this receptor, preventing binding of EGF latter and activation mechanism tyrosine kinase inhibiting cell mitosis and apoptosis causing tumor cell. For this reason, the EGFr has been considered as an attractive target for anti-tumor therapy. The humanized monoclonal antibody anti-EGFr nimotuzumab was developed by the Center of Molecular Immunology (Havana, Cuba). Numerous clinical trials have been developed in the Department of Clinical Research Center Isotopes (Cuba), in which it has been applied this antibody, both labeled with 99mTc for immuno gammagraphic detection of tumors, as labeled with 188 Re for radioimmunotherapy of gliomas high degree of malignancy. The aim of this paper is to show the experience of the Department of Clinical Research of CENTIS in various clinical trials with marking for both immuno gammagraphics detection of tumors, such as for radioimmunotherapy nimotuzumab. (author)

  13. SOX10-Nano-Lantern Reporter Human iPS Cells; A Versatile Tool for Neural Crest Research.

    Directory of Open Access Journals (Sweden)

    Tomoko Horikiri

    Full Text Available The neural crest is a source to produce multipotent neural crest stem cells that have a potential to differentiate into diverse cell types. The transcription factor SOX10 is expressed through early neural crest progenitors and stem cells in vertebrates. Here we report the generation of SOX10-Nano-lantern (NL reporter human induced pluripotent stem cells (hiPS by using CRISPR/Cas9 systems, that are beneficial to investigate the generation and maintenance of neural crest progenitor cells. SOX10-NL positive cells are produced transiently from hiPS cells by treatment with TGFβ inhibitor SB431542 and GSK3 inhibitor CHIR99021. We found that all SOX10-NL-positive cells expressed an early neural crest marker NGFR, however SOX10-NL-positive cells purified from differentiated hiPS cells progressively attenuate their NL-expression under proliferation. We therefore attempted to maintain SOX10-NL-positive cells with additional signaling on the plane and sphere culture conditions. These SOX10-NL cells provide us to investigate mass culture with neural crest cells for stem cell research.

  14. Application of structured support vector machine backpropagation to a convolutional neural network for human pose estimation.

    Science.gov (United States)

    Witoonchart, Peerajak; Chongstitvatana, Prabhas

    2017-08-01

    In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Multiscale neural connectivity during human sensory processing in the brain

    Science.gov (United States)

    Maksimenko, Vladimir A.; Runnova, Anastasia E.; Frolov, Nikita S.; Makarov, Vladimir V.; Nedaivozov, Vladimir; Koronovskii, Alexey A.; Pisarchik, Alexander; Hramov, Alexander E.

    2018-05-01

    Stimulus-related brain activity is considered using wavelet-based analysis of neural interactions between occipital and parietal brain areas in alpha (8-12 Hz) and beta (15-30 Hz) frequency bands. We show that human sensory processing related to the visual stimuli perception induces brain response resulted in different ways of parieto-occipital interactions in these bands. In the alpha frequency band the parieto-occipital neuronal network is characterized by homogeneous increase of the interaction between all interconnected areas both within occipital and parietal lobes and between them. In the beta frequency band the occipital lobe starts to play a leading role in the dynamics of the occipital-parietal network: The perception of visual stimuli excites the visual center in the occipital area and then, due to the increase of parieto-occipital interactions, such excitation is transferred to the parietal area, where the attentional center takes place. In the case when stimuli are characterized by a high degree of ambiguity, we find greater increase of the interaction between interconnected areas in the parietal lobe due to the increase of human attention. Based on revealed mechanisms, we describe the complex response of the parieto-occipital brain neuronal network during the perception and primary processing of the visual stimuli. The results can serve as an essential complement to the existing theory of neural aspects of visual stimuli processing.

  16. The human factor: behavioral and neural correlates of humanized perception in moral decision making.

    Science.gov (United States)

    Majdandžić, Jasminka; Bauer, Herbert; Windischberger, Christian; Moser, Ewald; Engl, Elisabeth; Lamm, Claus

    2012-01-01

    The extent to which people regard others as full-blown individuals with mental states ("humanization") seems crucial for their prosocial motivation towards them. Previous research has shown that decisions about moral dilemmas in which one person can be sacrificed to save multiple others do not consistently follow utilitarian principles. We hypothesized that this behavior can be explained by the potential victim's perceived humanness and an ensuing increase in vicarious emotions and emotional conflict during decision making. Using fMRI, we assessed neural activity underlying moral decisions that affected fictitious persons that had or had not been experimentally humanized. In implicit priming trials, participants either engaged in mentalizing about these persons (Humanized condition) or not (Neutral condition). In subsequent moral dilemmas, participants had to decide about sacrificing these persons' lives in order to save the lives of numerous others. Humanized persons were sacrificed less often, and the activation pattern during decisions about them indicated increased negative affect, emotional conflict, vicarious emotions, and behavioral control (pgACC/mOFC, anterior insula/IFG, aMCC and precuneus/PCC). Besides, we found enhanced effective connectivity between aMCC and anterior insula, which suggests increased emotion regulation during decisions affecting humanized victims. These findings highlight the importance of others' perceived humanness for prosocial behavior - with aversive affect and other-related concern when imagining harming more "human-like" persons acting against purely utilitarian decisions.

  17. The human factor: behavioral and neural correlates of humanized perception in moral decision making.

    Directory of Open Access Journals (Sweden)

    Jasminka Majdandžić

    Full Text Available The extent to which people regard others as full-blown individuals with mental states ("humanization" seems crucial for their prosocial motivation towards them. Previous research has shown that decisions about moral dilemmas in which one person can be sacrificed to save multiple others do not consistently follow utilitarian principles. We hypothesized that this behavior can be explained by the potential victim's perceived humanness and an ensuing increase in vicarious emotions and emotional conflict during decision making. Using fMRI, we assessed neural activity underlying moral decisions that affected fictitious persons that had or had not been experimentally humanized. In implicit priming trials, participants either engaged in mentalizing about these persons (Humanized condition or not (Neutral condition. In subsequent moral dilemmas, participants had to decide about sacrificing these persons' lives in order to save the lives of numerous others. Humanized persons were sacrificed less often, and the activation pattern during decisions about them indicated increased negative affect, emotional conflict, vicarious emotions, and behavioral control (pgACC/mOFC, anterior insula/IFG, aMCC and precuneus/PCC. Besides, we found enhanced effective connectivity between aMCC and anterior insula, which suggests increased emotion regulation during decisions affecting humanized victims. These findings highlight the importance of others' perceived humanness for prosocial behavior - with aversive affect and other-related concern when imagining harming more "human-like" persons acting against purely utilitarian decisions.

  18. Intranasal oxytocin modulates neural functional connectivity during human social interaction.

    Science.gov (United States)

    Rilling, James K; Chen, Xiangchuan; Chen, Xu; Haroon, Ebrahim

    2018-02-10

    Oxytocin (OT) modulates social behavior in primates and many other vertebrate species. Studies in non-primate animals have demonstrated that, in addition to influencing activity within individual brain areas, OT influences functional connectivity across networks of areas involved in social behavior. Previously, we used fMRI to image brain function in human subjects during a dyadic social interaction task following administration of either intranasal oxytocin (INOT) or placebo, and analyzed the data with a standard general linear model. Here, we conduct an extensive re-analysis of these data to explore how OT modulates functional connectivity across a neural network that animal studies implicate in social behavior. OT induced widespread increases in functional connectivity in response to positive social interactions among men and widespread decreases in functional connectivity in response to negative social interactions among women. Nucleus basalis of Meynert, an important regulator of selective attention and motivation with a particularly high density of OT receptors, had the largest number of OT-modulated connections. Regions known to receive mesolimbic dopamine projections such as the nucleus accumbens and lateral septum were also hubs for OT effects on functional connectivity. Our results suggest that the neural mechanism by which OT influences primate social cognition may include changes in patterns of activity across neural networks that regulate social behavior in other animals. © 2018 Wiley Periodicals, Inc.

  19. Imaging of endogenous exchangeable proton signals in the human brain using frequency labeled exchange transfer imaging.

    Science.gov (United States)

    Yadav, Nirbhay N; Jones, Craig K; Hua, Jun; Xu, Jiadi; van Zijl, Peter C M

    2013-04-01

    To image endogenous exchangeable proton signals in the human brain using a recently reported method called frequency labeled exchange transfer (FLEX) MRI. As opposed to labeling exchangeable protons using saturation (i.e., chemical exchange saturation transfer, or CEST), FLEX labels exchangeable protons with their chemical shift evolution. The use of short high-power frequency pulses allows more efficient labeling of rapidly exchanging protons, while time domain acquisition allows removal of contamination from semi-solid magnetization transfer effects. FLEX-based exchangeable proton signals were detected in human brain over the 1-5 ppm frequency range from water. Conventional magnetization transfer contrast and the bulk water signal did not interfere in the FLEX spectrum. The information content of these signals differed from in vivo CEST data in that the average exchange rate of these signals was 350-400 s(-1) , much faster than the amide signal usually detected using direct saturation (∼30 s(-1) ). Similarly, fast exchanging protons could be detected in egg white in the same frequency range where amide and amine protons of mobile proteins and peptides are known to resonate. FLEX MRI in the human brain preferentially detects more rapidly exchanging amide/amine protons compared to traditional CEST experiments, thereby changing the information content of the exchangeable proton spectrum. This has the potential to open up different types of endogenous applications as well as more easy detection of rapidly exchanging protons in diaCEST agents or fast exchanging units such as water molecules in paracest agents without interference of conventional magnetization transfer contrast. Copyright © 2013 Wiley Periodicals, Inc.

  20. Test of neural inertia in humans during general anaesthesia.

    Science.gov (United States)

    Kuizenga, M H; Colin, P J; Reyntjens, K M E M; Touw, D J; Nalbat, H; Knotnerus, F H; Vereecke, H E M; Struys, M M R F

    2018-03-01

    Neural inertia is defined as the tendency of the central nervous system to resist transitions between arousal states. This phenomenon has been observed in mice and Drosophila anaesthetized with volatile anaesthetics: the effect-site concentration required to induce anaesthesia in 50% of the population (C 50 ) was significantly higher than the effect-site concentration for 50% of the population to recover from anaesthesia. We evaluated this phenomenon in humans using propofol or sevoflurane (both with or without remifentanil) as anaesthetic agents. Thirty-six healthy volunteers received four sessions of anaesthesia with different drug combinations in a step-up/step-down design. Propofol or sevoflurane was administered with or without remifentanil. Serum concentrations of propofol and remifentanil were measured from arterial blood samples. Loss and return of responsiveness (LOR-ROR), response to pain (PAIN), Patient State Index (PSI) and spectral edge frequency (SEF) were modeled with NONMEM®. For propofol, the C 50 for induction and recovery of anaesthesia was not significantly different across the different endpoints. For sevoflurane, for all endpoints except SEF, significant differences were found. For some endpoints (LOR and PAIN) the difference was significant only when sevoflurane was combined with remifentanil. Our results nuance earlier findings with volatile anaesthetics in mice and Drosophila. Methodological aspects of the study, such as the measured endpoint, influence the detection of neural inertia. A more thorough definition of neural inertia, with a robust methodological framework for clinical studies is required to advance our knowledge of this phenomenon. NCT 02043938. Copyright © 2017 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  1. Serial in vivo imaging of the porcine heart after percutaneous, intramyocardially injected 111In-labeled human mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Lyngbaek, Stig; Ripa, Rasmus S; Haack-Sørensen, Mandana

    2010-01-01

    This pilot trial aimed to investigate the utilization of (111)In-labeling of mesenchymal stromal cells (MSC) for in vivo tracking after intramyocardial transplantation in a xenotransplantation model with gender mismatched cells. Human male MSC were expanded ex vivo and labeled with (111)In...

  2. Serial in vivo imaging of the porcine heart after percutaneous, intramyocardially injected (111)In-labeled human mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Lyngbæk, Stig; Ripa, Rasmus Sejersten; Haack-Sørensen, Mandana

    2009-01-01

    This pilot trial aimed to investigate the utilization of (111)In-labeling of mesenchymal stromal cells (MSC) for in vivo tracking after intramyocardial transplantation in a xenotransplantation model with gender mismatched cells. Human male MSC were expanded ex vivo and labeled with (111)In...

  3. Labeling of human serum albumin with 105Rh-cysteine complexes

    International Nuclear Information System (INIS)

    Lo, J.M.; Pillai, M.R.A.; John, C.S.; Troutner, D.E.

    1990-01-01

    The conjugation of a complex formed by reacting RhCl 3 with cysteine to human serum albumin has been investigated. Approximately 50% of the rhodium (labelled with 105 Rh) was converted to the complex. Conjugation of the complex to HSA via the ECDI method resulted in yields of ∼ 40% of the total rhodium or ∼ 80% of the Rh-cysteine complex. No conjugation was observed in the absence of the ECDI. At approximately equal molar concentrations of rhodium and HSA, an average of ∼ 0.4 rhodium atoms per HSA molecule was achieved. (author)

  4. Biodistribution of {sup 99m}Tc-labeled anti-human epidermal growth factor receptor (EGF-R) humanized monoclonal antibody h-R3 in a xenograft model of human lung adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Morales, Alejo; Duconge, Jorge; Caballero-Torres, Idania; Nunez-Gandolff, Gilda; Fernandez, Eduardo; Iznaga-Escobar, Normando E-mail: normando@ict.cim.sld.cu

    1999-04-01

    The anti-human epidermal growth factor receptor (EGF-R) humanized monoclonal antibody (MAb) h-R3 is an (IgG{sub 1}), which binds to an extracellular domain of EGF-R. It was used to evaluate the biodistribution on nude mice xenografted with H-125 human lung adenocarcinoma cell line. Results were compared with its murine version of the MAb ior-egf/r3. Twenty-one athymic female 4NMRI nu/nu mice were injected intraperitoneally with 10 {mu}g/100 {mu}Ci of {sup 99m}Tc-labeled MAbs. Immunoreactivity of {sup 99m}Tc-labeled MAbs were measured by enzyme-linked immunosorbent assay (ELISA) on H-125 cell line and the immunoreactive fractions was determined by the Lindmo method. Among all organs, significant accumulation was found in serum (27.05 {+-} 2.08 %ID/g) and tumor (3.903 {+-} 0.89 %ID/g) at 4 h after injection. These values decreased to 5.03 {+-} 0.50 %ID/g and 2.19 {+-} 0.56 %ID/g for serum and tumor, respectively. The immunoreactive fraction was found to be 0.70, with a correlation coefficient r=0.9984. With the good biodistribution and tumor uptake of the {sup 99m}Tc-labeled humanized antibody h-R3, a phase I diagnostic clinical trial of tumor with epithelial origin should be pursued.

  5. Effect of 3D-scaffold formation on differentiation and survival in human neural progenitor cells.

    Science.gov (United States)

    Ortinau, Stefanie; Schmich, Jürgen; Block, Stephan; Liedmann, Andrea; Jonas, Ludwig; Weiss, Dieter G; Helm, Christiane A; Rolfs, Arndt; Frech, Moritz J

    2010-11-11

    3D-scaffolds have been shown to direct cell growth and differentiation in many different cell types, with the formation and functionalisation of the 3D-microenviroment being important in determining the fate of the embedded cells. Here we used a hydrogel-based scaffold to investigate the influences of matrix concentration and functionalisation with laminin on the formation of the scaffolds, and the effect of these scaffolds on human neural progenitor cells cultured within them. In this study we used different concentrations of the hydrogel-based matrix PuraMatrix. In some experiments we functionalised the matrix with laminin I. The impact of concentration and treatment with laminin on the formation of the scaffold was examined with atomic force microscopy. Cells from a human fetal neural progenitor cell line were cultured in the different matrices, as well as in a 2D culture system, and were subsequently analysed with antibody stainings against neuronal markers. In parallel, the survival rate of the cells was determined by a live/dead assay. Atomic force microscopy measurements demonstrated that the matrices are formed by networks of isolated PuraMatrix fibres and aggregates of fibres. An increase of the hydrogel concentration led to a decrease in the mesh size of the scaffolds and functionalisation with laminin promoted aggregation of the fibres (bundle formation), which further reduces the density of isolated fibres. We showed that laminin-functionalisation is essential for human neural progenitor cells to build up 3D-growth patterns, and that proliferation of the cells is also affected by the concentration of matrix. In addition we found that 3D-cultures enhanced neuronal differentiation and the survival rate of the cells compared to 2D-cultures. Taken together, we have demonstrated a direct influence of the 3D-scaffold formation on the survival and neuronal differentiation of human neural progenitor cells. These findings emphasize the importance of optimizing 3

  6. Yttrium-86-labelled human serum albumin microspheres: relation of surface structure with in vivo stability

    International Nuclear Information System (INIS)

    Schiller, Eik; Bergmann, Ralf; Pietzsch, Jens; Noll, Bernhard; Sterger, Antje; Johannsen, Bernd; Wunderlich, Gerd; Pietzsch, Hans-Juergen

    2008-01-01

    Introduction: Radiolabelled particles are an attractive tool in the therapy of malignancies of the liver. We consider particles manufactured from denatured human serum albumin (HSA) as useful carriers of therapeutic radionuclides. Covalent attachment of suitable chelators onto the surface of the spheres promises an easy access to radiolabelled HSA microspheres. Methods: We synthesized 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA) bearing smooth, medium-rough and rough surfaced HSA microspheres (mean diameter: 25 μm). In vitro stability of 86 Y-labelled particles was determined after incubation in human plasma and in a DTPA challenge experiment. In vivo stability of 86 Y DOTA-HSA microspheres was determined after single intravenous application in rats. Subsequently, the particles were completely trapped in the lung microvasculature. Thus, the lung serves in our experiments as target organ. Results: DOTA-HSA microspheres were 86 Y labelled in reproducible high yields (>95%). No differences between smooth and rough surfaced spheres were found for both DOTA coupling and 86 Y labelling. Labelled microspheres showed high in vitro stability in human plasma and in DTPA solution with only 8±1% and 2±0% loss of radioactivity from the surface, respectively, 48 h postinjection (pi). The three batches (smooth, medium-rough and rough surfaced microspheres) differed considerably in their radioactivity recovery in the lungs of rats 48 h pi. Smooth particles showed the highest in vivo stability of the radiolabel on the surface of the spheres, presumably because of slower proteolytic degradation. Conclusion: We found that for the preparation of HSA-derived microspheres for radiotherapeutic application, smooth surfaced spheres are superior to rough spheres due to their higher in vivo stability of the radionuclide fixation

  7. Explaining neural signals in human visual cortex with an associative learning model.

    Science.gov (United States)

    Jiang, Jiefeng; Schmajuk, Nestor; Egner, Tobias

    2012-08-01

    "Predictive coding" models posit a key role for associative learning in visual cognition, viewing perceptual inference as a process of matching (learned) top-down predictions (or expectations) against bottom-up sensory evidence. At the neural level, these models propose that each region along the visual processing hierarchy entails one set of processing units encoding predictions of bottom-up input, and another set computing mismatches (prediction error or surprise) between predictions and evidence. This contrasts with traditional views of visual neurons operating purely as bottom-up feature detectors. In support of the predictive coding hypothesis, a recent human neuroimaging study (Egner, Monti, & Summerfield, 2010) showed that neural population responses to expected and unexpected face and house stimuli in the "fusiform face area" (FFA) could be well-described as a summation of hypothetical face-expectation and -surprise signals, but not by feature detector responses. Here, we used computer simulations to test whether these imaging data could be formally explained within the broader framework of a mathematical neural network model of associative learning (Schmajuk, Gray, & Lam, 1996). Results show that FFA responses could be fit very closely by model variables coding for conditional predictions (and their violations) of stimuli that unconditionally activate the FFA. These data document that neural population signals in the ventral visual stream that deviate from classic feature detection responses can formally be explained by associative prediction and surprise signals.

  8. Macrophages loaded with gold nanoshells for photothermal ablation of glioma: An in vitro model

    Science.gov (United States)

    Makkouk, Amani Riad

    The current median survival of patients with glioblastoma multiforme (GBM), the most common type of glioma, remains at 14.6 months despite multimodal treatments (surgery, radiotherapy and chemotherapy). This research aims to study the feasibility of photothermal ablation of glioma using gold nanoshells that are heated upon laser irradiation at their resonance wavelength. The novelty of our approach lies in improving nanoshell tumor delivery by loading them in macrophages, which are known to be recruited to gliomas via tumor-released chemoattractive agents. Ferumoxides, superparamagnetic iron oxide (SPIO) nanoparticles, are needed as an additional macrophage load in order to visualize macrophage accumulation in the tumor with magnetic resonance imaging (MRI) prior to laser irradiation. The feasibility of this approach was studied in an in vitro model of glioma spheroids with the use of continuous wave (CW) laser light for ablation. The optimal loading of both murine and rat macrophages with Ferumoxides was determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Higher concentrations of SPIO were observed in rat macrophages, and the optimal concentration was chosen at 100 microg Fe/ml. Macrophages were found to be very sensitive to near infra-red (NIR) laser irradiation, and their use as vehicles was thus not expected to hinder the function of loaded nanoshells as tumor-ablating tools. The intracellular presence of gold nanoshells in macrophages was confirmed with TEM imaging. Next, the loading of both murine and rat macrophages with gold nanoshells was studied using UV/Vis spectrophotometry, where higher nanoshell uptake was found in rat macrophages. Incubation of loaded murine and rat macrophages with rat C-6 and human ACBT spheroids, respectively, resulted in their infiltration of the spheroids. Subsequent laser irradiation at 55 W/cm2 for 10 min and follow-up of spheroid average diameter size over 14 days post-irradiation showed that

  9. Follitropin receptors in rat testis. Characterization with enzymatically 125I-labeled human follitropin.

    Science.gov (United States)

    Ketelslegers, J M; Catt, K J

    1978-07-03

    The interaction between enzymatically radioiodinated human follitropin and the follitropin receptors in testis homogenate was investigated in immature and adult rats. The 125I-labeled human follitropin exhibited high binding activity with specific binding of up to 17% in the presence of an excess of testis homogenate. Approx. 50% of the bound hormone could be eluted at pH 5, and the receptor purified tracer exhibited a 3.6-fold increase in binding activity when compared with the original tracer preparation. Quantitative analysis of equilibrium binding data was performed with corrections for the measured specific activity and maximum binding activity of the tracer hormone. The equilibrium association constants (Ka) determined 24 degrees C were not significantly different in immature and adult rat testis, and the mean value for Ka was 3.9 . 10(9) M-1. At 37 degrees C, the Ka value obtained using immature rat testis was 1.3 . 10(10) M-1. The association of 125I-labeled human follitropin with immature rat testis homogenate was time and temperature dependent. In the presence of an excess of unlabeled hormone, 30--60% of the preformed hormone . receptor complex was dissociated after 24 h incubation. A specific and sensitive radioligand-receptor assay for follitropin was developed using immature rat testis homogenate. The minimum detectable dose of purified human follitropin was 0.6 ng, and human urinary and pituitary follitropin, ovine follitropin and pregnant mare serum gonadotropin reacted in the assay with equivalent slopes. The potencies of highly purified pregnent mare serum gonadotropin and highly purified human follitropin were similar in the radioligand-receptor assay, consistent with the follitropin bioactivity of the equine gonadotropin.

  10. Mathematical Modeling and Evaluation of Human Motions in Physical Therapy Using Mixture Density Neural Networks.

    Science.gov (United States)

    Vakanski, A; Ferguson, J M; Lee, S

    2016-12-01

    The objective of the proposed research is to develop a methodology for modeling and evaluation of human motions, which will potentially benefit patients undertaking a physical rehabilitation therapy (e.g., following a stroke or due to other medical conditions). The ultimate aim is to allow patients to perform home-based rehabilitation exercises using a sensory system for capturing the motions, where an algorithm will retrieve the trajectories of a patient's exercises, will perform data analysis by comparing the performed motions to a reference model of prescribed motions, and will send the analysis results to the patient's physician with recommendations for improvement. The modeling approach employs an artificial neural network, consisting of layers of recurrent neuron units and layers of neuron units for estimating a mixture density function over the spatio-temporal dependencies within the human motion sequences. Input data are sequences of motions related to a prescribed exercise by a physiotherapist to a patient, and recorded with a motion capture system. An autoencoder subnet is employed for reducing the dimensionality of captured sequences of human motions, complemented with a mixture density subnet for probabilistic modeling of the motion data using a mixture of Gaussian distributions. The proposed neural network architecture produced a model for sets of human motions represented with a mixture of Gaussian density functions. The mean log-likelihood of observed sequences was employed as a performance metric in evaluating the consistency of a subject's performance relative to the reference dataset of motions. A publically available dataset of human motions captured with Microsoft Kinect was used for validation of the proposed method. The article presents a novel approach for modeling and evaluation of human motions with a potential application in home-based physical therapy and rehabilitation. The described approach employs the recent progress in the field of

  11. Recurrent Neural Networks to Correct Satellite Image Classification Maps

    Science.gov (United States)

    Maggiori, Emmanuel; Charpiat, Guillaume; Tarabalka, Yuliya; Alliez, Pierre

    2017-09-01

    While initially devised for image categorization, convolutional neural networks (CNNs) are being increasingly used for the pixelwise semantic labeling of images. However, the proper nature of the most common CNN architectures makes them good at recognizing but poor at localizing objects precisely. This problem is magnified in the context of aerial and satellite image labeling, where a spatially fine object outlining is of paramount importance. Different iterative enhancement algorithms have been presented in the literature to progressively improve the coarse CNN outputs, seeking to sharpen object boundaries around real image edges. However, one must carefully design, choose and tune such algorithms. Instead, our goal is to directly learn the iterative process itself. For this, we formulate a generic iterative enhancement process inspired from partial differential equations, and observe that it can be expressed as a recurrent neural network (RNN). Consequently, we train such a network from manually labeled data for our enhancement task. In a series of experiments we show that our RNN effectively learns an iterative process that significantly improves the quality of satellite image classification maps.

  12. Medical image segmentation by a constraint satisfaction neural network

    International Nuclear Information System (INIS)

    Chen, C.T.; Tsao, E.C.K.; Lin, W.C.

    1991-01-01

    This paper proposes a class of Constraint Satisfaction Neural Networks (CSNNs) for solving the problem of medical image segmentation which can be formulated as a Constraint Satisfaction Problem (CSP). A CSNN consists of a set of objects, a set of labels for each object, a collection of constraint relations linking the labels of neighboring objects, and a topological constraint describing the neighborhood relationship among various objects. Each label for a particular object indicates one possible interpretation for that object. The CSNN can be viewed as a collection of neurons that interconnect with each other. The connections and the topology of a CSNN are used to represent the constraints in a CSP. The mechanism of the neural network is to find a solution that satisfies all the constraints in order to achieve a global consistency. The final solution outlines segmented areas and simultaneously satisfies all the constraints. This technique has been applied to medical images and the results show that this CSNN method is a very promising approach for image segmentation

  13. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L [School of Aeronautics and Astronautics, Tongji University, Shanghai (China); Zhang, Y Y [Chinese-German School of Postgraduate Studies, Tongji University (China); Ding, L [Chinese-German School of Postgraduate Studies, Tongji University (China)

    2006-10-15

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module.

  14. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    Science.gov (United States)

    Wang, L.; Zhang, Y. Y.; Ding, L.

    2006-10-01

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module.

  15. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    International Nuclear Information System (INIS)

    Wang, L; Zhang, Y Y; Ding, L

    2006-01-01

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module

  16. Neural speech recognition: continuous phoneme decoding using spatiotemporal representations of human cortical activity

    Science.gov (United States)

    Moses, David A.; Mesgarani, Nima; Leonard, Matthew K.; Chang, Edward F.

    2016-10-01

    Objective. The superior temporal gyrus (STG) and neighboring brain regions play a key role in human language processing. Previous studies have attempted to reconstruct speech information from brain activity in the STG, but few of them incorporate the probabilistic framework and engineering methodology used in modern speech recognition systems. In this work, we describe the initial efforts toward the design of a neural speech recognition (NSR) system that performs continuous phoneme recognition on English stimuli with arbitrary vocabulary sizes using the high gamma band power of local field potentials in the STG and neighboring cortical areas obtained via electrocorticography. Approach. The system implements a Viterbi decoder that incorporates phoneme likelihood estimates from a linear discriminant analysis model and transition probabilities from an n-gram phonemic language model. Grid searches were used in an attempt to determine optimal parameterizations of the feature vectors and Viterbi decoder. Main results. The performance of the system was significantly improved by using spatiotemporal representations of the neural activity (as opposed to purely spatial representations) and by including language modeling and Viterbi decoding in the NSR system. Significance. These results emphasize the importance of modeling the temporal dynamics of neural responses when analyzing their variations with respect to varying stimuli and demonstrate that speech recognition techniques can be successfully leveraged when decoding speech from neural signals. Guided by the results detailed in this work, further development of the NSR system could have applications in the fields of automatic speech recognition and neural prosthetics.

  17. Labelling malaria-infected human erythrocytes with Tc-99m

    International Nuclear Information System (INIS)

    Garmelius-Larsson, B.; Pettersson, F.; Vogt, A.; Jonsson, C.

    2002-01-01

    Aim: Malaria is an old and a very common disease, especially in undeveloped countries. The malaria parasites infect the erythrocytes and the aim of this work was to label infected cells for future studies of their distribution and life span. Material and Method: With a commercial kit containing stannous fluoride and sodium medronate, which is used to label erythrocytes in vivo, in vitro and in vivo/vitro methods, we labelled the cells by using a modified method and a small volume, 5 - 50 microlitre, of packed cells. The cells were labelled with Tc-99m in the range of 60 - 1500 MBq. The kit was reconstituted with saline and the pH was adjusted to 7.0. The cells were incubated with 1 ml of the kitsolution in 37 0 C for 5 min. The remaining Sn-ions were reduced by adding NaOCl and then the solution was centrifuged.The supernantant was discarded and the Tc-99m was added to the precipitate and incubated 37 0 C for 20 min and then washed 3 times. This labelling procedure was performed on both infected and on non-infected cells. Results: Ten samples of cells have been labelled. The best labelling result was obtained using 7 - 20 MBq per 10 microlitre of packed cells. The labelling efficiency was, on average, 35%. Conclusion: It is possible to label both infected and non-infected cells in very small volumes. The cells were visually inspected in a microscope and were viable after labelling. Furthermore, the cell distribution was traced in vivo in an animal model by a gamma camera

  18. Alpha spectral analysis via artificial neural networks

    International Nuclear Information System (INIS)

    Kangas, L.J.; Hashem, S.; Keller, P.E.; Kouzes, R.T.; Troyer, G.L.

    1994-10-01

    An artificial neural network system that assigns quality factors to alpha particle energy spectra is discussed. The alpha energy spectra are used to detect plutonium contamination in the work environment. The quality factors represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with a quality factor by an expert and used in training the artificial neural network expert system. The investigation shows that the expert knowledge of alpha spectra quality factors can be transferred to an ANN system

  19. Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells.

    Science.gov (United States)

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C

    2013-11-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are unique cell sources for disease modeling, drug discovery screens, and cell therapy applications. The first step in producing neural lineages from hPSCs is the generation of neural stem cells (NSCs). Current methods of NSC derivation involve the time-consuming, labor-intensive steps of an embryoid body generation or coculture with stromal cell lines that result in low-efficiency derivation of NSCs. In this study, we report a highly efficient serum-free pluripotent stem cell neural induction medium that can induce hPSCs into primitive NSCs (pNSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. The pNSCs expressed the neural stem cell markers Pax6, Sox1, Sox2, and Nestin; were negative for Oct4; could be expanded for multiple passages; and could be differentiated into neurons, astrocytes, and oligodendrocytes, in addition to the brain region-specific neuronal subtypes GABAergic, dopaminergic, and motor neurons. Global gene expression of the transcripts of pNSCs was comparable to that of rosette-derived and human fetal-derived NSCs. This work demonstrates an efficient method to generate expandable pNSCs, which can be further differentiated into central nervous system neurons and glia with temporal, spatial, and positional cues of brain regional heterogeneity. This method of pNSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  20. Biophysical characteristics reveal neural stem cell differentiation potential.

    Directory of Open Access Journals (Sweden)

    Fatima H Labeed

    Full Text Available Distinguishing human neural stem/progenitor cell (huNSPC populations that will predominantly generate neurons from those that produce glia is currently hampered by a lack of sufficient cell type-specific surface markers predictive of fate potential. This limits investigation of lineage-biased progenitors and their potential use as therapeutic agents. A live-cell biophysical and label-free measure of fate potential would solve this problem by obviating the need for specific cell surface markers.We used dielectrophoresis (DEP to analyze the biophysical, specifically electrophysiological, properties of cortical human and mouse NSPCs that vary in differentiation potential. Our data demonstrate that the electrophysiological property membrane capacitance inversely correlates with the neurogenic potential of NSPCs. Furthermore, as huNSPCs are continually passaged they decrease neuron generation and increase membrane capacitance, confirming that this parameter dynamically predicts and negatively correlates with neurogenic potential. In contrast, differences in membrane conductance between NSPCs do not consistently correlate with the ability of the cells to generate neurons. DEP crossover frequency, which is a quantitative measure of cell behavior in DEP, directly correlates with neuron generation of NSPCs, indicating a potential mechanism to separate stem cells biased to particular differentiated cell fates.We show here that whole cell membrane capacitance, but not membrane conductance, reflects and predicts the neurogenic potential of human and mouse NSPCs. Stem cell biophysical characteristics therefore provide a completely novel and quantitative measure of stem cell fate potential and a label-free means to identify neuron- or glial-biased progenitors.

  1. 21 CFR 341.90 - Professional labeling.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Professional labeling. 341.90 Section 341.90 Food... HUMAN USE Labeling § 341.90 Professional labeling. The labeling of the product provided to health professionals (but not to the general public) may contain the following additional dosage information for...

  2. Efficient and Rapid Derivation of Primitive Neural Stem Cells and Generation of Brain Subtype Neurons From Human Pluripotent Stem Cells

    OpenAIRE

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C.

    2013-01-01

    This study developed a highly efficient serum-free pluripotent stem cell (PSC) neural induction medium that can induce human PSCs into primitive neural stem cells (NSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. This method of primitive NSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  3. Generation and properties of a new human ventral mesencephalic neural stem cell line

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Ana; Liste, Isabel; Courtois, Elise T.; Seiz, Emma G.; Ramos, Milagros [Center of Molecular Biology ' Severo Ochoa' , Autonomous University of Madrid-C.S.I.C., Campus Cantoblanco 28049-Madrid (Spain); Meyer, Morten [Department of Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark, Winslowparken 21,st, DK-500, Odense C (Denmark); Juliusson, Bengt; Kusk, Philip [NsGene A/S, Ballerup (Denmark); Martinez-Serrano, Alberto, E-mail: amserrano@cbm.uam.es [Center of Molecular Biology ' Severo Ochoa' , Autonomous University of Madrid-C.S.I.C., Campus Cantoblanco 28049-Madrid (Spain)

    2009-07-01

    Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization. The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal of growth factors, proliferation and expression of v-myc were dramatically reduced and the cells differentiated into astrocytes, oligodendrocytes and neurons. hVM1 cells yield a large number of dopaminergic neurons (about 12% of total cells are TH{sup +}) after differentiation, which also produce dopamine. In addition to proneural genes (NGN2, MASH1), differentiated cells show expression of several genuine mesencephalic dopaminergic markers such as: LMX1A, LMX1B, GIRK2, ADH2, NURR1, PITX3, VMAT2 and DAT, indicating that they retain their regional identity. Our data indicate that this cell line and its clonal derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing.

  4. Neurally and ocularly informed graph-based models for searching 3D environments.

    Science.gov (United States)

    Jangraw, David C; Wang, Jun; Lance, Brent J; Chang, Shih-Fu; Sajda, Paul

    2014-08-01

    As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions-our implicit 'labeling' of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the 'similar' objects it identifies. We show that by exploiting the subjects' implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers' inference of subjects' implicit labeling. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user's interests.

  5. Co-Labeling for Multi-View Weakly Labeled Learning.

    Science.gov (United States)

    Xu, Xinxing; Li, Wen; Xu, Dong; Tsang, Ivor W

    2016-06-01

    It is often expensive and time consuming to collect labeled training samples in many real-world applications. To reduce human effort on annotating training samples, many machine learning techniques (e.g., semi-supervised learning (SSL), multi-instance learning (MIL), etc.) have been studied to exploit weakly labeled training samples. Meanwhile, when the training data is represented with multiple types of features, many multi-view learning methods have shown that classifiers trained on different views can help each other to better utilize the unlabeled training samples for the SSL task. In this paper, we study a new learning problem called multi-view weakly labeled learning, in which we aim to develop a unified approach to learn robust classifiers by effectively utilizing different types of weakly labeled multi-view data from a broad range of tasks including SSL, MIL and relative outlier detection (ROD). We propose an effective approach called co-labeling to solve the multi-view weakly labeled learning problem. Specifically, we model the learning problem on each view as a weakly labeled learning problem, which aims to learn an optimal classifier from a set of pseudo-label vectors generated by using the classifiers trained from other views. Unlike traditional co-training approaches using a single pseudo-label vector for training each classifier, our co-labeling approach explores different strategies to utilize the predictions from different views, biases and iterations for generating the pseudo-label vectors, making our approach more robust for real-world applications. Moreover, to further improve the weakly labeled learning on each view, we also exploit the inherent group structure in the pseudo-label vectors generated from different strategies, which leads to a new multi-layer multiple kernel learning problem. Promising results for text-based image retrieval on the NUS-WIDE dataset as well as news classification and text categorization on several real-world multi

  6. Robust Active Label Correction

    DEFF Research Database (Denmark)

    Kremer, Jan; Sha, Fei; Igel, Christian

    2018-01-01

    for the noisy data lead to different active label correction algorithms. If loss functions consider the label noise rates, these rates are estimated during learning, where importance weighting compensates for the sampling bias. We show empirically that viewing the true label as a latent variable and computing......Active label correction addresses the problem of learning from input data for which noisy labels are available (e.g., from imprecise measurements or crowd-sourcing) and each true label can be obtained at a significant cost (e.g., through additional measurements or human experts). To minimize......). To select labels for correction, we adopt the active learning strategy of maximizing the expected model change. We consider the change in regularized empirical risk functionals that use different pointwise loss functions for patterns with noisy and true labels, respectively. Different loss functions...

  7. Healthy human CSF promotes glial differentiation of hESC-derived neural cells while retaining spontaneous activity in existing neuronal networks

    Directory of Open Access Journals (Sweden)

    Heikki Kiiski

    2013-05-01

    The possibilities of human pluripotent stem cell-derived neural cells from the basic research tool to a treatment option in regenerative medicine have been well recognized. These cells also offer an interesting tool for in vitro models of neuronal networks to be used for drug screening and neurotoxicological studies and for patient/disease specific in vitro models. Here, as aiming to develop a reductionistic in vitro human neuronal network model, we tested whether human embryonic stem cell (hESC-derived neural cells could be cultured in human cerebrospinal fluid (CSF in order to better mimic the in vivo conditions. Our results showed that CSF altered the differentiation of hESC-derived neural cells towards glial cells at the expense of neuronal differentiation. The proliferation rate was reduced in CSF cultures. However, even though the use of CSF as the culture medium altered the glial vs. neuronal differentiation rate, the pre-existing spontaneous activity of the neuronal networks persisted throughout the study. These results suggest that it is possible to develop fully human cell and culture-based environments that can further be modified for various in vitro modeling purposes.

  8. Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor.

    Science.gov (United States)

    Yan, Yuanwei; Song, Liqing; Tsai, Ang-Chen; Ma, Teng; Li, Yan

    2016-01-01

    Conventional two-dimensional (2-D) culture systems cannot provide large numbers of human pluripotent stem cells (hPSCs) and their derivatives that are demanded for commercial and clinical applications in in vitro drug screening, disease modeling, and potentially cell therapy. The technologies that support three-dimensional (3-D) suspension culture, such as a stirred bioreactor, are generally considered as promising approaches to produce the required cells. Recently, suspension bioreactors have also been used to generate mini-brain-like structure from hPSCs for disease modeling, showing the important role of bioreactor in stem cell culture. This chapter describes a detailed culture protocol for neural commitment of hPSCs into neural progenitor cell (NPC) spheres using a spinner bioreactor. The basic steps to prepare hPSCs for bioreactor inoculation are illustrated from cell thawing to cell propagation. The method for generating NPCs from hPSCs in the spinner bioreactor along with the static control is then described. The protocol in this study can be applied to the generation of NPCs from hPSCs for further neural subtype specification, 3-D neural tissue development, or potential preclinical studies or clinical applications in neurological diseases.

  9. The Human Factor: Behavioral and Neural Correlates of Humanized Perception in Moral Decision Making

    Science.gov (United States)

    Majdandžić, Jasminka; Bauer, Herbert; Windischberger, Christian; Moser, Ewald; Engl, Elisabeth; Lamm, Claus

    2012-01-01

    The extent to which people regard others as full-blown individuals with mental states (“humanization”) seems crucial for their prosocial motivation towards them. Previous research has shown that decisions about moral dilemmas in which one person can be sacrificed to save multiple others do not consistently follow utilitarian principles. We hypothesized that this behavior can be explained by the potential victim’s perceived humanness and an ensuing increase in vicarious emotions and emotional conflict during decision making. Using fMRI, we assessed neural activity underlying moral decisions that affected fictitious persons that had or had not been experimentally humanized. In implicit priming trials, participants either engaged in mentalizing about these persons (Humanized condition) or not (Neutral condition). In subsequent moral dilemmas, participants had to decide about sacrificing these persons’ lives in order to save the lives of numerous others. Humanized persons were sacrificed less often, and the activation pattern during decisions about them indicated increased negative affect, emotional conflict, vicarious emotions, and behavioral control (pgACC/mOFC, anterior insula/IFG, aMCC and precuneus/PCC). Besides, we found enhanced effective connectivity between aMCC and anterior insula, which suggests increased emotion regulation during decisions affecting humanized victims. These findings highlight the importance of others’ perceived humanness for prosocial behavior - with aversive affect and other-related concern when imagining harming more “human-like” persons acting against purely utilitarian decisions. PMID:23082194

  10. Comparison of the stability of Y-90-, Lu-177- and Ga-68- labeled human serum albumin microspheres (DOTA-HSAM)

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Gerd [Department of Nuclear Medicine, University Hospital, 01307 Dresden (Germany); Schiller, Eik, E-mail: eisc@rotop-pharmaka.d [ROTOP Pharmaka AG, 01454 Radeberg (Germany); Bergmann, Ralf; Pietzsch, Hans-Juergen [Forschungszentrum Dresden-Rossendorf, Institute of Radiopharmacy, P.O. Box 510119, 01314 Dresden (Germany)

    2010-11-15

    Introduction: Microparticles derived from denatured human serum albumin (DOTA-derivatized human serum albumin microspheres, or DOTA-HSAM) are attractive carriers of radionuclides for both therapeutic and diagnostic purposes. In this article, we describe a labeling procedure for diagnostic (Ga-68) and therapeutic (Y-90, Lu-177) radionuclides and report on the results of stability studies of these products. Methods: DOTA-HSAM was labeled in 0.5 M ammonium acetate buffer, pH 5.0, containing 0.02 mg/ml detergent. After adding the radionuclide, the mixture was shaken for 15 min at 90{sup o}C. Labeling yields and in vitro stability were determined by thin-layer chromatography. For determination of the in vivo stability of Ga-68 and Y-90 DOTA-HSAM, the particles were injected intravenously in Wistar rats. Results: Labeling yields up to 95% in the case of Ga-68 and Lu-177 were achieved. Ga-68-labeled DOTA-HSAM showed high in vitro and in vivo stability. The amount of particle-bound radioactivity of Lu-177 DOTA-HSAM declines slowly in a linear manner to approximately 72% after 13 days. For Y-90, the labeling yield decreased with increasing radioactivity level. We presume radiolysis as the reason for these findings. Conclusion: The labeling of DOTA-HSAM with different radionuclides is easy to perform. The radiation-induced cleavage of the labeled chelator together with the rather short half-life of radioactivity fixation in vivo (3.7 days) is, in our opinion, opposed to therapeutic applications of DOTA-HSAM. On the other hand, the high stability of Ga-68 DOTA-HSAM makes them an attractive candidate for the measurement of regional perfusion by PET.

  11. Comparison of the stability of Y-90-, Lu-177- and Ga-68- labeled human serum albumin microspheres (DOTA-HSAM)

    International Nuclear Information System (INIS)

    Wunderlich, Gerd; Schiller, Eik; Bergmann, Ralf; Pietzsch, Hans-Juergen

    2010-01-01

    Introduction: Microparticles derived from denatured human serum albumin (DOTA-derivatized human serum albumin microspheres, or DOTA-HSAM) are attractive carriers of radionuclides for both therapeutic and diagnostic purposes. In this article, we describe a labeling procedure for diagnostic (Ga-68) and therapeutic (Y-90, Lu-177) radionuclides and report on the results of stability studies of these products. Methods: DOTA-HSAM was labeled in 0.5 M ammonium acetate buffer, pH 5.0, containing 0.02 mg/ml detergent. After adding the radionuclide, the mixture was shaken for 15 min at 90 o C. Labeling yields and in vitro stability were determined by thin-layer chromatography. For determination of the in vivo stability of Ga-68 and Y-90 DOTA-HSAM, the particles were injected intravenously in Wistar rats. Results: Labeling yields up to 95% in the case of Ga-68 and Lu-177 were achieved. Ga-68-labeled DOTA-HSAM showed high in vitro and in vivo stability. The amount of particle-bound radioactivity of Lu-177 DOTA-HSAM declines slowly in a linear manner to approximately 72% after 13 days. For Y-90, the labeling yield decreased with increasing radioactivity level. We presume radiolysis as the reason for these findings. Conclusion: The labeling of DOTA-HSAM with different radionuclides is easy to perform. The radiation-induced cleavage of the labeled chelator together with the rather short half-life of radioactivity fixation in vivo (3.7 days) is, in our opinion, opposed to therapeutic applications of DOTA-HSAM. On the other hand, the high stability of Ga-68 DOTA-HSAM makes them an attractive candidate for the measurement of regional perfusion by PET.

  12. Engrafted human induced pluripotent stem cell-derived anterior specified neural progenitors protect the rat crushed optic nerve.

    Directory of Open Access Journals (Sweden)

    Leila Satarian

    Full Text Available BACKGROUND: Degeneration of retinal ganglion cells (RGCs is a common occurrence in several eye diseases. This study examined the functional improvement and protection of host RGCs in addition to the survival, integration and neuronal differentiation capabilities of anterior specified neural progenitors (NPs following intravitreal transplantation. METHODOLOGY/PRINCIPAL FINDINGS: NPs were produced under defined conditions from human induced pluripotent stem cells (hiPSCs and transplanted into rats whose optic nerves have been crushed (ONC. hiPSCs were induced to differentiate into anterior specified NPs by the use of Noggin and retinoic acid. The hiPSC-NPs were labeled by green fluorescent protein or a fluorescent tracer 1,1' -dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI and injected two days after induction of ONC in hooded rats. Functional analysis according to visual evoked potential recordings showed significant amplitude recovery in animals transplanted with hiPSC-NPs. Retrograde labeling by an intra-collicular DiI injection showed significantly higher numbers of RGCs and spared axons in ONC rats treated with hiPSC-NPs or their conditioned medium (CM. The analysis of CM of hiPSC-NPs showed the secretion of ciliary neurotrophic factor, basic fibroblast growth factor, and insulin-like growth factor. Optic nerve of cell transplanted groups also had increased GAP43 immunoreactivity and myelin staining by FluoroMyelin™ which imply for protection of axons and myelin. At 60 days post-transplantation hiPSC-NPs were integrated into the ganglion cell layer of the retina and expressed neuronal markers. CONCLUSIONS/SIGNIFICANCE: The transplantation of anterior specified NPs may improve optic nerve injury through neuroprotection and differentiation into neuronal lineages. These NPs possibly provide a promising new therapeutic approach for traumatic optic nerve injuries and loss of RGCs caused by other diseases.

  13. The experimental study of genetic engineering human neural stem cells mediated by lentivirus to express multigene.

    Science.gov (United States)

    Cai, Pei-qiang; Tang, Xun; Lin, Yue-qiu; Martin, Oudega; Sun, Guang-yun; Xu, Lin; Yang, Yun-kang; Zhou, Tian-hua

    2006-02-01

    To explore the feasibility to construct genetic engineering human neural stem cells (hNSCs) mediated by lentivirus to express multigene in order to provide a graft source for further studies of spinal cord injury (SCI). Human neural stem cells from the brain cortex of human abortus were isolated and cultured, then gene was modified by lentivirus to express both green fluorescence protein (GFP) and rat neurotrophin-3 (NT-3); the transgenic expression was detected by the methods of fluorescence microscope, dorsal root ganglion of fetal rats and slot blot. Genetic engineering hNSCs were successfully constructed. All of the genetic engineering hNSCs which expressed bright green fluorescence were observed under the fluorescence microscope. The conditioned medium of transgenic hNSCs could induce neurite flourishing outgrowth from dorsal root ganglion (DRG). The genetic engineering hNSCs expressed high level NT-3 which could be detected by using slot blot. Genetic engineering hNSCs mediated by lentivirus can be constructed to express multigene successfully.

  14. A wireless transmission neural interface system for unconstrained non-human primates.

    Science.gov (United States)

    Fernandez-Leon, Jose A; Parajuli, Arun; Franklin, Robert; Sorenson, Michael; Felleman, Daniel J; Hansen, Bryan J; Hu, Ming; Dragoi, Valentin

    2015-10-01

    Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.

  15. A wireless transmission neural interface system for unconstrained non-human primates

    Science.gov (United States)

    Fernandez-Leon, Jose A.; Parajuli, Arun; Franklin, Robert; Sorenson, Michael; Felleman, Daniel J.; Hansen, Bryan J.; Hu, Ming; Dragoi, Valentin

    2015-10-01

    Objective. Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. Approach. To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. Main results. We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. Significance. We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.

  16. Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood

    International Nuclear Information System (INIS)

    Lee, Myoung Woo; Moon, Young Joon; Yang, Mal Sook; Kim, Sun Kyung; Jang, In Keun; Eom, Young-woo; Park, Joon Seong; Kim, Hugh C.; Song, Kye Yong; Park, Soon Cheol; Lim, Hwan Sub; Kim, Young Jin

    2007-01-01

    Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types, including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications

  17. In vitro assessment of Tc-99m labeled bovine thrombin and streptokinase-activated human plasmin: concise communication. [Iodine 125

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.W.; Tanaka, T.; Mishkin, F.; Lee, T.

    1979-09-01

    Bovine thrombin and streptokinase-activated human plasmin have been labeled with Tc-99m using stannous reduction of pertechnetate under physiological conditions (pH 7.4). The binding efficiency of radiotechnetium to these enzymes is greater than 94%, with less than 5% of reduced but unbound Tc-99m (Sn) complex as assayed by ascending paper radiochromatography using ITLC silica gel plate. Free or unbound pertechnetate is less than 1%. In vitro enzymatic analyses of the Tc-99m-labeled enzymes demonstrate no evidence of protein denaturation or significant loss of enzymatic activity after labeling. Both labeled enzymes are biochemically active in vitro with their respective substrates.

  18. 21 CFR 355.60 - Professional labeling.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Professional labeling. 355.60 Section 355.60 Food... HUMAN USE ANTICARIES DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Labeling § 355.60 Professional... health professionals (but not to the general public) may contain the following additional dosage...

  19. Statistical control chart and neural network classification for improving human fall detection

    KAUST Repository

    Harrou, Fouzi; Zerrouki, Nabil; Sun, Ying; Houacine, Amrane

    2017-01-01

    This paper proposes a statistical approach to detect and classify human falls based on both visual data from camera and accelerometric data captured by accelerometer. Specifically, we first use a Shewhart control chart to detect the presence of potential falls by using accelerometric data. Unfortunately, this chart cannot distinguish real falls from fall-like actions, such as lying down. To bypass this difficulty, a neural network classifier is then applied only on the detected cases through visual data. To assess the performance of the proposed method, experiments are conducted on the publicly available fall detection databases: the University of Rzeszow's fall detection (URFD) dataset. Results demonstrate that the detection phase play a key role in reducing the number of sequences used as input into the neural network classifier for classification, significantly reducing computational burden and achieving better accuracy.

  20. Expression of Pluripotency Markers in Nonpluripotent Human Neural Stem and Progenitor Cells

    DEFF Research Database (Denmark)

    Vincent, P.; Benedikz, Eirikur; Uhlén, Per

    2017-01-01

    Nonpluripotent neural progenitor cells (NPCs) derived from the human fetal central nervous system were found to express a number of messenger RNA (mRNA) species associated with pluripotency, such as NANOG, REX1, and OCT4. The expression was restricted to small subpopulations of NPCs. In contrast...... to pluripotent stem cells, there was no coexpression of the pluripotency-associated genes studied. Although the expression of these genes rapidly declined during the in vitro differentiation of NPCs, we found no evidence that the discrete expression was associated with the markers of multipotent neural stem...... cells (CD133+/CD24lo), the capacity of sphere formation, or high cell proliferation rates. The rate of cell death among NPCs expressing pluripotency-associated genes was also similar to that of other NPCs. Live cell imaging showed that NANOG- and REX1-expressing NPCs continuously changed morphology...

  1. Statistical control chart and neural network classification for improving human fall detection

    KAUST Repository

    Harrou, Fouzi

    2017-01-05

    This paper proposes a statistical approach to detect and classify human falls based on both visual data from camera and accelerometric data captured by accelerometer. Specifically, we first use a Shewhart control chart to detect the presence of potential falls by using accelerometric data. Unfortunately, this chart cannot distinguish real falls from fall-like actions, such as lying down. To bypass this difficulty, a neural network classifier is then applied only on the detected cases through visual data. To assess the performance of the proposed method, experiments are conducted on the publicly available fall detection databases: the University of Rzeszow\\'s fall detection (URFD) dataset. Results demonstrate that the detection phase play a key role in reducing the number of sequences used as input into the neural network classifier for classification, significantly reducing computational burden and achieving better accuracy.

  2. Plasmid-based generation of induced neural stem cells from adult human fibroblasts

    Directory of Open Access Journals (Sweden)

    Philipp Capetian

    2016-10-01

    Full Text Available Direct reprogramming from somatic to neural cell types has become an alternative to induced pluripotent stem cells. Most protocols employ viral expression systems, posing the risk of random genomic integration. Recent developments led to plasmid-based protocols, lowering this risk. However, these protocols either relied on continuous presence of a variety of small molecules or were only able to reprogram murine cells. We therefore established a reprogramming protocol based on vectors containing the Epstein-Barr virus (EBV-derived oriP/EBNA1 as well as the defined expression factors Oct3/4, Sox2, Klf4, L-myc, Lin28, and a small hairpin directed against p53. We employed a defined neural medium in combination with the neurotrophins bFGF, EGF and FGF4 for cultivation without the addition of small molecules. After reprogramming, cells demonstrated a temporary increase in the expression of endogenous Oct3/4. We obtained induced neural stem cells (iNSC 30 days after transfection. In contrast to previous results, plasmid vectors as well as a residual expression of reprogramming factors remained detectable in all cell lines. Cells showed a robust differentiation into neuronal (72% and glial cells (9% astrocytes, 6% oligodendrocytes. Despite the temporary increase of pluripotency-associated Oct3/4 expression during reprogramming, we did not detect pluripotent stem cells or non-neural cells in culture (except occasional residual fibroblasts. Neurons showed electrical activity and functional glutamatergic synapses. Our results demonstrate that reprogramming adult human fibroblasts to iNSC by plasmid vectors and basic neural medium without small molecules is possible and feasible. However, a full set of pluripotency-associated transcription factors may indeed result in the acquisition of a transient (at least partial pluripotent intermediate during reprogramming. In contrast to previous reports, the EBV-based plasmid system remained present and active inside

  3. Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory.

    Science.gov (United States)

    Censor, Nitzan; Cohen, Leonardo G

    2011-01-01

    In the last two decades, there has been a rapid development in the research of the physiological brain mechanisms underlying human motor learning and memory. While conventional memory research performed on animal models uses intracellular recordings, microfusion of protein inhibitors to specific brain areas and direct induction of focal brain lesions, human research has so far utilized predominantly behavioural approaches and indirect measurements of neural activity. Repetitive transcranial magnetic stimulation (rTMS), a safe non-invasive brain stimulation technique, enables the study of the functional role of specific cortical areas by evaluating the behavioural consequences of selective modulation of activity (excitation or inhibition) on memory generation and consolidation, contributing to the understanding of the neural substrates of motor learning. Depending on the parameters of stimulation, rTMS can also facilitate learning processes, presumably through purposeful modulation of excitability in specific brain regions. rTMS has also been used to gain valuable knowledge regarding the timeline of motor memory formation, from initial encoding to stabilization and long-term retention. In this review, we summarize insights gained using rTMS on the physiological and neural mechanisms of human motor learning and memory. We conclude by suggesting possible future research directions, some with direct clinical implications.

  4. Decoding of Human Movements Based on Deep Brain Local Field Potentials Using Ensemble Neural Networks

    Directory of Open Access Journals (Sweden)

    Mohammad S. Islam

    2017-01-01

    Full Text Available Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs for robust movement decoding of Parkinson’s disease (PD and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value at about 0.729±0.16 for decoding movement from the resting state and about 0.671±0.14 for decoding left and right visually cued movements.

  5. Feasibility of 3D Reconstruction of Neural Morphology Using Expansion Microscopy and Barcode-Guided Agglomeration.

    Science.gov (United States)

    Yoon, Young-Gyu; Dai, Peilun; Wohlwend, Jeremy; Chang, Jae-Byum; Marblestone, Adam H; Boyden, Edward S

    2017-01-01

    We here introduce and study the properties, via computer simulation, of a candidate automated approach to algorithmic reconstruction of dense neural morphology, based on simulated data of the kind that would be obtained via two emerging molecular technologies-expansion microscopy (ExM) and in-situ molecular barcoding. We utilize a convolutional neural network to detect neuronal boundaries from protein-tagged plasma membrane images obtained via ExM, as well as a subsequent supervoxel-merging pipeline guided by optical readout of information-rich, cell-specific nucleic acid barcodes. We attempt to use conservative imaging and labeling parameters, with the goal of establishing a baseline case that points to the potential feasibility of optical circuit reconstruction, leaving open the possibility of higher-performance labeling technologies and algorithms. We find that, even with these conservative assumptions, an all-optical approach to dense neural morphology reconstruction may be possible via the proposed algorithmic framework. Future work should explore both the design-space of chemical labels and barcodes, as well as algorithms, to ultimately enable routine, high-performance optical circuit reconstruction.

  6. Neurally mediated airway constriction in human and other species: a comparative study using precision-cut lung slices (PCLS.

    Directory of Open Access Journals (Sweden)

    Marco Schlepütz

    Full Text Available The peripheral airway innervation of the lower respiratory tract of mammals is not completely functionally characterized. Recently, we have shown in rats that precision-cut lung slices (PCLS respond to electric field stimulation (EFS and provide a useful model to study neural airway responses in distal airways. Since airway responses are known to exhibit considerable species differences, here we examined the neural responses of PCLS prepared from mice, rats, guinea pigs, sheep, marmosets and humans. Peripheral neurons were activated either by EFS or by capsaicin. Bronchoconstriction in response to identical EFS conditions varied between species in magnitude. Frequency response curves did reveal further species-dependent differences of nerve activation in PCLS. Atropine antagonized the EFS-induced bronchoconstriction in human, guinea pig, sheep, rat and marmoset PCLS, showing cholinergic responses. Capsaicin (10 µM caused bronchoconstriction in human (4 from 7 and guinea pig lungs only, indicating excitatory non-adrenergic non-cholinergic responses (eNANC. However, this effect was notably smaller in human responder (30 ± 7.1% than in guinea pig (79 ± 5.1% PCLS. The transient receptor potential (TRP channel blockers SKF96365 and ruthenium red antagonized airway contractions after exposure to EFS or capsaicin in guinea pigs. In conclusion, the different species show distinct patterns of nerve-mediated bronchoconstriction. In the most common experimental animals, i.e. in mice and rats, these responses differ considerably from those in humans. On the other hand, guinea pig and marmoset monkey mimic human responses well and may thus serve as clinically relevant models to study neural airway responses.

  7. Radioimmunoscintigraphy of colorectal carcinoma using technetium-99m-labeled, totally human monoclonal antibody 88BV59H21-2.

    Science.gov (United States)

    Gulec, S A; Serafini, A N; Moffat, F L; Vargas-Cuba, R D; Sfakianakis, G N; Franceschi, D; Crichton, V Z; Subramanian, R; Klein, J L; De Jager, R L

    1995-12-01

    Radioimmunoscintigraphy (RIS) using human monoclonal antibodies offers the important clinical advantage of repeated imaging over murine monoclonal antibodies by eliminating the cross-species antibody response. This article reports a Phase I-II clinical trial with Tc-99m-labeled, totally human monoclonal antibody 88BV59H21-2 in patients with colorectal carcinoma. The study population consisted of 34 patients with colorectal cancer (20 men and 14 women; age range, 44-81 years). Patients were administered 5-10 mg antibody labeled with 21-41 mCi Tc-99m by the i.v. route and imaged at 3-10 and 16-24 h after infusion using planar and single-photon emission computed tomographic (CT) techniques. Pathological confirmation was obtained in 25 patients who underwent surgery. Human antihuman antibody (HAHA) titers were checked prior to and 1 and 3 months after the infusion. RIS with Tc-99m-labeled 88BV59H21-2 revealed a better detection rate in the abdomen-pelvis region compared with axial CT. The combined use of both modalities increased the sensitivity in both the liver and abdomen-pelvis regions. Ten patients developed mild adverse reactions (chills and fever). No HAHA response was detected in this series. Tc-99m-labeled human monoclonal antibody 88BV59H21-2 RIS shows promise as a useful diagnostic modality in patients with colorectal cancer. RIS alone or in combination with CT is more sensitive than CT in detecting tumor within the abdomen and pelvis. Repeated RIS studies may be possible, due to the lack of a HAHA response.

  8. Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: phase 1 trial outcomes.

    Science.gov (United States)

    Feldman, Eva L; Boulis, Nicholas M; Hur, Junguk; Johe, Karl; Rutkove, Seward B; Federici, Thais; Polak, Meraida; Bordeau, Jane; Sakowski, Stacey A; Glass, Jonathan D

    2014-03-01

    The US Food and Drug Administration-approved trial, "A Phase 1, Open-Label, First-in-Human, Feasibility and Safety Study of Human Spinal Cord-Derived Neural Stem Cell Transplantation for the Treatment of Amyotrophic Lateral Sclerosis, Protocol Number: NS2008-1," is complete. Our overall objective was to assess the safety and feasibility of stem cell transplantation into lumbar and/or cervical spinal cord regions in amyotrophic lateral sclerosis (ALS) subjects. Preliminary results have been reported on the initial trial cohort of 12 ALS subjects. Here, we describe the safety and functional outcome monitoring results for the final trial cohort, consisting of 6 ALS subjects receiving 5 unilateral cervical intraspinal neural stem cell injections. Three of these subjects previously received 10 total bilateral lumbar injections as part of the earlier trial cohort. All injections utilized a novel spinal-mounted stabilization and injection device to deliver 100,000 neural stem cells per injection, for a dosing range up to 1.5 million cells. Subject assessments included detailed pre- and postsurgical neurological outcome measures. The cervical injection procedure was well tolerated and disease progression did not accelerate in any subject, verifying the safety and feasibility of cervical and dual-targeting approaches. Analyses on outcome data revealed preliminary insight into potential windows of stem cell biological activity and identified clinical assessment measures that closely correlate with ALS Functional Rating Scale-Revised scores, a standard assessment for ALS clinical trials. This is the first report of cervical and dual-targeted intraspinal transplantation of neural stem cells in ALS subjects. This approach is feasible and well-tolerated, supporting future trial phases examining therapeutic dosing and efficacy. © 2014 Child Neurology Society/American Neurological Association.

  9. Synthesis of fluorine-18-labeled ciprofloxacin for PET studies in humans

    International Nuclear Information System (INIS)

    Langer, Oliver; Mitterhauser, Markus; Brunner, Martin; Zeitlinger, Markus; Wadsak, Wolfgang; Mayer, Bernhard X.; Kletter, Kurt; Mueller, Markus

    2003-01-01

    Ciprofloxacin (1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-quinoline- 3-carboxylic acid), a widely-prescribed antibiotic, was labeled with fluorine-18 with the aim to perform positron emission tomography studies in humans for pharmacokinetic measurements. Due to a lack of chemical activation of ciprofloxacin for a direct nucleophilic exchange reaction a novel two-step synthetic approach, which employed an activated 6-fluoro-7-chloro substituted precursor molecule, was developed. The radiosynthesis yielded, starting from 52.5 ± 11.3 GBq of [ 18 F]fluoride, 1.3 ± 0.6 GBq (n = 13) [ 18 F]ciprofloxacin ready for intravenous administration in about 130 min synthesis time. A series of analytical tests was performed in order to prove the identity of the radiolabeled compound and its suitability for human applications

  10. Histochemical evidence for the differential surface labeling, uptake, and intracellular transport of a colloidal gold-labeled insulin complex by normal human blood cells.

    Science.gov (United States)

    Ackerman, G A; Wolken, K W

    1981-10-01

    A colloidal gold-labeled insulin-bovine serum albumin (GIA) reagent has been developed for the ultrastructural visualization of insulin binding sites on the cell surface and for tracing the pathway of intracellular insulin translocation. When applied to normal human blood cells, it was demonstrated by both visual inspection and quantitative analysis that the extent of surface labeling, as well as the rate and degree of internalization of the insulin complex, was directly related to cell type. Further, the pathway of insulin (GIA) transport via round vesicles and by tubulo-vesicles and saccules and its subsequent fate in the hemic cells was also related to cell variety. Monocytes followed by neutrophils bound the greatest amount of labeled insulin. The majority of lymphocytes bound and internalized little GIA, however, between 5-10% of the lymphocytes were found to bind considerable quantities of GIA. Erythrocytes rarely bound the labeled insulin complex, while platelets were noted to sequester large quantities of the GIA within their extracellular canalicular system. GIA uptake by the various types of leukocytic cells appeared to occur primarily by micropinocytosis and by the direct opening of cytoplasmic tubulo-vesicles and saccules onto the cell surface in regions directly underlying surface-bound GIA. Control procedures, viz., competitive inhibition of GIA labeling using an excess of unlabeled insulin in the incubation medium, preincubation of the GIA reagent with an antibody directed toward porcine insulin, and the incorporation of 125I-insulin into the GIA reagent, indicated the specificity and selectivity of the GIA histochemical procedure for the localization of insulin binding sites.

  11. Histochemical evidence for the differential surface labeling, uptake, and intracellular transport of a colloidal gold-labeled insulin complex by normal human blood cells

    International Nuclear Information System (INIS)

    Ackerman, G.A.; Wolken, K.W.

    1981-01-01

    A colloidal gold-labeled insulin-bovine serum albumin (GIA) reagent has been developed for the ultrastructural visualization of insulin binding sites on the cell surface and for tracing the pathway of intracellular insulin translocation. When applied to normal human blood cells, it was demonstrated by both visual inspection and quantitative analysis that the extent of surface labeling, as well as the rate and degree of internalization of the insulin complex, was directly related to cell type. Further, the pathway of insulin (GIA) transport via round vesicles and by tubulo-vesicles and saccules and its subsequent fate in the hemic cells was also related to cell variety. Monocytes followed by neutrophils bound the greatest amount of labeled insulin. The majority of lymphocytes bound and internalized little GIA, however, between 5-10% of the lymphocytes were found to bind considerable quantities of GIA. Erythrocytes rarely bound the labeled insulin complex, while platelets were noted to sequester large quantities of the GIA within their extracellular canalicular system. GIA uptake by the various types of leukocytic cells appeared to occur primarily by micropinocytosis and by the direct opening of cytoplasmic tubulo-vesicles and saccules onto the cell surface in regions directly underlying surface-bound GIA. Control procedures, viz., competitive inhibition of GIA labeling using an excess of unlabeled insulin in the incubation medium, preincubation of the GIA reagent with an antibody directed toward porcine insulin, and the incorporation of 125I-insulin into the GIA reagent, indicated the specificity and selectivity of the GIA histochemical procedure for the localization of insulin binding sites

  12. Xenotransplantation of human neural progenitor cells to the subretinal space of nonimmunosuppressed pigs

    DEFF Research Database (Denmark)

    Warfvinge, Karin; Schwartz, Philip H; Kiilgaard, Jens Folke

    2011-01-01

    To investigate the feasibility of transplanting human neural progenitor cells (hNPCs) to the retina of nonimmunosuppressed pigs, cultured hNPCs were injected into the subretinal space of 5 adult pigs after laser burns were applied to promote donor cell integration. Postoperatively, the retinal ve...... that modulation of host immunity is likely necessary for prolonged xenograft survival in this model....

  13. An externally head-mounted wireless neural recording device for laboratory animal research and possible human clinical use.

    Science.gov (United States)

    Yin, Ming; Li, Hao; Bull, Christopher; Borton, David A; Aceros, Juan; Larson, Lawrence; Nurmikko, Arto V

    2013-01-01

    In this paper we present a new type of head-mounted wireless neural recording device in a highly compact package, dedicated for untethered laboratory animal research and designed for future mobile human clinical use. The device, which takes its input from an array of intracortical microelectrode arrays (MEA) has ninety-seven broadband parallel neural recording channels and was integrated on to two custom designed printed circuit boards. These house several low power, custom integrated circuits, including a preamplifier ASIC, a controller ASIC, plus two SAR ADCs, a 3-axis accelerometer, a 48MHz clock source, and a Manchester encoder. Another ultralow power RF chip supports an OOK transmitter with the center frequency tunable from 3GHz to 4GHz, mounted on a separate low loss dielectric board together with a 3V LDO, with output fed to a UWB chip antenna. The IC boards were interconnected and packaged in a polyether ether ketone (PEEK) enclosure which is compatible with both animal and human use (e.g. sterilizable). The entire system consumes 17mA from a 1.2Ahr 3.6V Li-SOCl2 1/2AA battery, which operates the device for more than 2 days. The overall system includes a custom RF receiver electronics which are designed to directly interface with any number of commercial (or custom) neural signal processors for multi-channel broadband neural recording. Bench-top measurements and in vivo testing of the device in rhesus macaques are presented to demonstrate the performance of the wireless neural interface.

  14. BrainCrafter: An investigation into human-based neural network engineering

    DEFF Research Database (Denmark)

    Piskur, J.; Greve, P.; Togelius, J.

    2015-01-01

    This paper presents the online application Brain-Crafter, in which users can manually build artificial neural networks (ANNs) to control a robot in a maze environment. Users can either start to construct networks from scratch or elaborate on networks created by other users. In particular, Brain......Crafter was designed to study how good we as humans are at building ANNs for control problems and if collaborating with other users can facilitate this process. The results in this paper show that (1) some users were in fact able to successfully construct ANNs that solve the navigation tasks, (2) collaboration between...

  15. Neural mechanisms underlying human consensus decision-making.

    Science.gov (United States)

    Suzuki, Shinsuke; Adachi, Ryo; Dunne, Simon; Bossaerts, Peter; O'Doherty, John P

    2015-04-22

    Consensus building in a group is a hallmark of animal societies, yet little is known about its underlying computational and neural mechanisms. Here, we applied a computational framework to behavioral and fMRI data from human participants performing a consensus decision-making task with up to five other participants. We found that participants reached consensus decisions through integrating their own preferences with information about the majority group members' prior choices, as well as inferences about how much each option was stuck to by the other people. These distinct decision variables were separately encoded in distinct brain areas-the ventromedial prefrontal cortex, posterior superior temporal sulcus/temporoparietal junction, and intraparietal sulcus-and were integrated in the dorsal anterior cingulate cortex. Our findings provide support for a theoretical account in which collective decisions are made through integrating multiple types of inference about oneself, others, and environments, processed in distinct brain modules. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Nonstimulated human uncommitted mesenchymal stem cells express cell markers of mesenchymal and neural lineages.

    Science.gov (United States)

    Minguell, José J; Fierro, Fernando A; Epuñan, María J; Erices, Alejandro A; Sierralta, Walter D

    2005-08-01

    Ex vivo cultures of human bone marrow-derived mesenchymal stem cells (MSCs) contain subsets of progenitors exhibiting dissimilar properties. One of these subsets comprises uncommitted progenitors displaying distinctive features, such as morphology, a quiescent condition, growth factor production, and restricted tissue biodistribution after transplantation. In this study, we assessed the competence of these cells to express, in the absence of differentiation stimuli, markers of mesoderm and ectodermic (neural) cell lineages. Fluorescence microscopy analysis showed a unique pattern of expression of osteogenic, chondrogenic, muscle, and neural markers. The depicted "molecular signature" of these early uncommitted progenitors, in the absence of differentiation stimuli, is consistent with their multipotentiality and plasticity as suggested by several in vitro and in vivo studies.

  17. Neural Conversion and Patterning of Human Pluripotent Stem Cells: A Developmental Perspective.

    Science.gov (United States)

    Zirra, Alexandra; Wiethoff, Sarah; Patani, Rickie

    2016-01-01

    Since the reprogramming of adult human terminally differentiated somatic cells into induced pluripotent stem cells (hiPSCs) became a reality in 2007, only eight years have passed. Yet over this relatively short period, myriad experiments have revolutionized previous stem cell dogmata. The tremendous promise of hiPSC technology for regenerative medicine has fuelled rising expectations from both the public and scientific communities alike. In order to effectively harness hiPSCs to uncover fundamental mechanisms of disease, it is imperative to first understand the developmental neurobiology underpinning their lineage restriction choices in order to predictably manipulate cell fate to desired derivatives. Significant progress in developmental biology provides an invaluable resource for rationalising directed differentiation of hiPSCs to cellular derivatives of the nervous system. In this paper we begin by reviewing core developmental concepts underlying neural induction in order to provide context for how such insights have guided reductionist in vitro models of neural conversion from hiPSCs. We then discuss early factors relevant in neural patterning, again drawing upon crucial knowledge gained from developmental neurobiological studies. We conclude by discussing open questions relating to these concepts and how their resolution might serve to strengthen the promise of pluripotent stem cells in regenerative medicine.

  18. Neural Conversion and Patterning of Human Pluripotent Stem Cells: A Developmental Perspective

    Directory of Open Access Journals (Sweden)

    Alexandra Zirra

    2016-01-01

    Full Text Available Since the reprogramming of adult human terminally differentiated somatic cells into induced pluripotent stem cells (hiPSCs became a reality in 2007, only eight years have passed. Yet over this relatively short period, myriad experiments have revolutionized previous stem cell dogmata. The tremendous promise of hiPSC technology for regenerative medicine has fuelled rising expectations from both the public and scientific communities alike. In order to effectively harness hiPSCs to uncover fundamental mechanisms of disease, it is imperative to first understand the developmental neurobiology underpinning their lineage restriction choices in order to predictably manipulate cell fate to desired derivatives. Significant progress in developmental biology provides an invaluable resource for rationalising directed differentiation of hiPSCs to cellular derivatives of the nervous system. In this paper we begin by reviewing core developmental concepts underlying neural induction in order to provide context for how such insights have guided reductionist in vitro models of neural conversion from hiPSCs. We then discuss early factors relevant in neural patterning, again drawing upon crucial knowledge gained from developmental neurobiological studies. We conclude by discussing open questions relating to these concepts and how their resolution might serve to strengthen the promise of pluripotent stem cells in regenerative medicine.

  19. 21 CFR 357.280 - Professional labeling.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Professional labeling. 357.280 Section 357.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... Drug Products § 357.280 Professional labeling. The labeling provided to health professionals (but not...

  20. 21 CFR 333.280 - Professional labeling.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Professional labeling. 333.280 Section 333.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... Drug Products § 333.280 Professional labeling. The labeling provided to health professionals (but not...

  1. 21 CFR 820.120 - Device labeling.

    Science.gov (United States)

    2010-04-01

    ... designed to prevent mixups. (d) Labeling operations. Each manufacturer shall control labeling and packaging... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Device labeling. 820.120 Section 820.120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES...

  2. Mechanisms underlying metabolic and neural defects in zebrafish and human multiple acyl-CoA dehydrogenase deficiency (MADD.

    Directory of Open Access Journals (Sweden)

    Yuanquan Song

    2009-12-01

    Full Text Available In humans, mutations in electron transfer flavoprotein (ETF or electron transfer flavoprotein dehydrogenase (ETFDH lead to MADD/glutaric aciduria type II, an autosomal recessively inherited disorder characterized by a broad spectrum of devastating neurological, systemic and metabolic symptoms. We show that a zebrafish mutant in ETFDH, xavier, and fibroblast cells from MADD patients demonstrate similar mitochondrial and metabolic abnormalities, including reduced oxidative phosphorylation, increased aerobic glycolysis, and upregulation of the PPARG-ERK pathway. This metabolic dysfunction is associated with aberrant neural proliferation in xav, in addition to other neural phenotypes and paralysis. Strikingly, a PPARG antagonist attenuates aberrant neural proliferation and alleviates paralysis in xav, while PPARG agonists increase neural proliferation in wild type embryos. These results show that mitochondrial dysfunction, leading to an increase in aerobic glycolysis, affects neurogenesis through the PPARG-ERK pathway, a potential target for therapeutic intervention.

  3. Renal excretion of iodine-131 labelled meta-iodobenzylguanidine and metabolites after therapeutic doses in patients suffering from different neural crest-derived tumours

    International Nuclear Information System (INIS)

    Wafelman, A.R.; Hoefnagel, C.A.; Maessen, H.J.M.; Maes, R.A.A.; Beijnen, J.H.

    1997-01-01

    Iodine-131 labelled meta-iodobenzylguanidine ([ 131 I[MIBG) is used for diagnostic scintigraphy and radionuclide therapy of neural crest-derived tumours. After administration of therapeutic doses of [ 131 I[MIBG (3.1-7.5 GBq) to 17 patients (n=32 courses), aged 2-73 years, 56%±10%, 73%±11%, 80%±10% and 83%±10% of the dose was cumulatively excreted as total radioactivity in urine at t=24 h, 48 h, 72 h and 96 h, respectively. Except for two adult patients, who showed excretion of 14%-18% of [ 131 I[meta-iodohippuric acid ([ 131 I[MIHA), the cumulatively excreted radioactivity consisted of >85% [ 131 I[MIBG, with 6% of the dose excreted as free [ 131 I[iodide, 4% as [ 131 I[MIHA and 2.5% as an unknown iodine-131 labelled metabolite. Cumulative renal excretion rates of total radioactivity and of [ 131 I[MIBG appeared to be higher in neuroblastoma and phaeochromocytoma patients than in carcinoid patients. Based on the excretion of small amounts of [ 131 I[meta-iodobenzoic acid in two patients, a possible metabolic pathway for [ 131 I[MIBG is suggested. The degree of metabolism was not related to the extent of liver uptake of radioactivity. (orig.). With 2 figs., 5 tabs

  4. Radioimmunoscintigraphy of human pancreatic carcinoma xenografts in nude mice with 131I-labeled monoclonal antibody

    International Nuclear Information System (INIS)

    Tsuda, Takatoshi; Koshiba, H.; Usui, T.; Kubota, M.; Kikuchi, Kokichi; Morita, Kazuo

    1990-01-01

    Encouraged by reports of radioimmunoimaging of colorectal carcinomas and by examining an immunohistochemical report on resected pancreas cancer tissues, we studied the diagnostic potential of radioimmunoimaging with the radioiodinelabeled monoclonal antibody (MoAb; HC-1) to a human pancreas cancer cell line (HGC25) was labeled with radioiodine and injected into athymic nude mice implanted with human pancreas cancer cells. Antibody HC-1 was cleared from the circulation and accumulated significantly in the implanted tumor sites. (author)

  5. Relabeling exchange method (REM) for learning in neural networks

    Science.gov (United States)

    Wu, Wen; Mammone, Richard J.

    1994-02-01

    The supervised training of neural networks require the use of output labels which are usually arbitrarily assigned. In this paper it is shown that there is a significant difference in the rms error of learning when `optimal' label assignment schemes are used. We have investigated two efficient random search algorithms to solve the relabeling problem: the simulated annealing and the genetic algorithm. However, we found them to be computationally expensive. Therefore we shall introduce a new heuristic algorithm called the Relabeling Exchange Method (REM) which is computationally more attractive and produces optimal performance. REM has been used to organize the optimal structure for multi-layered perceptrons and neural tree networks. The method is a general one and can be implemented as a modification to standard training algorithms. The motivation of the new relabeling strategy is based on the present interpretation of dyslexia as an encoding problem.

  6. 21 CFR 357.180 - Professional labeling.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Professional labeling. 357.180 Section 357.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... Products § 357.180 Professional labeling. The labeling provided to health professionals (but not to the...

  7. Neurally and ocularly informed graph-based models for searching 3D environments

    Science.gov (United States)

    Jangraw, David C.; Wang, Jun; Lance, Brent J.; Chang, Shih-Fu; Sajda, Paul

    2014-08-01

    Objective. As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions—our implicit ‘labeling’ of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. Approach. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the ‘similar’ objects it identifies. Main results. We show that by exploiting the subjects’ implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers’ inference of subjects’ implicit labeling. Significance. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user’s interests.

  8. Label Review Training: Module 1: Label Basics, Page 8

    Science.gov (United States)

    Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human he

  9. Δ9-THC Disrupts Gamma (γ)-Band Neural Oscillations in Humans.

    Science.gov (United States)

    Cortes-Briones, Jose; Skosnik, Patrick D; Mathalon, Daniel; Cahill, John; Pittman, Brian; Williams, Ashley; Sewell, R Andrew; Ranganathan, Mohini; Roach, Brian; Ford, Judith; D'Souza, Deepak Cyril

    2015-08-01

    Gamma (γ)-band oscillations play a key role in perception, associative learning, and conscious awareness and have been shown to be disrupted by cannabinoids in animal studies. The goal of this study was to determine whether cannabinoids disrupt γ-oscillations in humans and whether these effects relate to their psychosis-relevant behavioral effects. The acute, dose-related effects of Δ-9-tetrahydrocannabinol (Δ(9)-THC) on the auditory steady-state response (ASSR) were studied in humans (n=20) who completed 3 test days during which they received intravenous Δ(9)-THC (placebo, 0.015, and 0.03 mg/kg) in a double-blind, randomized, crossover, and counterbalanced design. Electroencephalography (EEG) was recorded while subjects listened to auditory click trains presented at 20, 30, and 40 Hz. Psychosis-relevant effects were measured with the Positive and Negative Syndrome scale (PANSS). Δ(9)-THC (0.03 mg/kg) reduced intertrial coherence (ITC) in the 40 Hz condition compared with 0.015 mg/kg and placebo. No significant effects were detected for 30 and 20 Hz stimulation. Furthermore, there was a negative correlation between 40 Hz ITC and PANSS subscales and total scores under the influence of Δ(9)-THC. Δ(9)-THC (0.03 mg/kg) reduced evoked power during 40 Hz stimulation at a trend level. Recent users of cannabis showed blunted Δ(9)-THC effects on ITC and evoked power. We show for the first time in humans that cannabinoids disrupt γ-band neural oscillations. Furthermore, there is a relationship between disruption of γ-band neural oscillations and psychosis-relevant phenomena induced by cannabinoids. These findings add to a growing literature suggesting some overlap between the acute effects of cannabinoids and the behavioral and psychophysiological alterations observed in psychotic disorders.

  10. On-site preparation of technetium-99m labeled human serum albumin for clinical application

    International Nuclear Information System (INIS)

    Wang Yuhfeng; Chuang Meihua; Cham Thauming; Chung Meiing; Chiu Jainnshiun

    2007-01-01

    Technetium-99m labeled human serum albumin (Tc-99m HSA) is an important radiopharmaceutical for clinical applications, such as cardiac function tests or protein-losing gastroenteropathy assessment. However, because of transfusion-induced infectious diseases, the safety of serum products is a serious concern. In this context, serum products acquired from patients themselves are the most ideal tracer. However, the development of rapid separation and easy clinical labeling methods is not yet well established. Under such situation, products from the same ethnic group or country are now recommended by the World Health Organization as an alternative preparation. This article describes the on-site preparation of Tc-99m HSA from locally supplied serum products. Different formulations were prepared and the labeling efficiency and stability were examined. Radio-labeling efficiencies were more than 90% in all preparation protocols, except for one that omitted the stannous solution. The most cost-effective protocol contained HSA 0.1 mg, treated with stannous fluoride 0.2 mg, and mixed with Tc-99m pertechnetate 30 mCi. A biodistribution study was performed in rats using a gamma camera immediately after intravenous administration of radiolabeled HSA. Tissue/organ uptake was obtained by measuring the radioactivity in organs after sacrificing the rats at timed intervals. The biologic half-life was about 32 min, determined from sequential venous blood collections. These data indicate that our preparation of Tc-99m HSA is useful and potentially applicable clinically. In addition, this on-site preparation provides the possibility of labeling a patient's own serum for subsequent clinical application. (author)

  11. 78 FR 57394 - Draft Guidance for Industry on Patient Counseling Information Section of Labeling for Human...

    Science.gov (United States)

    2013-09-18

    ... Drug and Biological Products--Content and Format; Availability AGENCY: Food and Drug Administration... Labeling for Human Prescription Drug and Biological Products--Content and Format.'' The recommendations in... the extent possible, consistent in content and format. DATES: Although you can comment on any guidance...

  12. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments

    Science.gov (United States)

    Jozwik, Kamila M.; Kriegeskorte, Nikolaus; Storrs, Katherine R.; Mur, Marieke

    2017-01-01

    Recent advances in Deep convolutional Neural Networks (DNNs) have enabled unprecedentedly accurate computational models of brain representations, and present an exciting opportunity to model diverse cognitive functions. State-of-the-art DNNs achieve human-level performance on object categorisation, but it is unclear how well they capture human behavior on complex cognitive tasks. Recent reports suggest that DNNs can explain significant variance in one such task, judging object similarity. Here, we extend these findings by replicating them for a rich set of object images, comparing performance across layers within two DNNs of different depths, and examining how the DNNs’ performance compares to that of non-computational “conceptual” models. Human observers performed similarity judgments for a set of 92 images of real-world objects. Representations of the same images were obtained in each of the layers of two DNNs of different depths (8-layer AlexNet and 16-layer VGG-16). To create conceptual models, other human observers generated visual-feature labels (e.g., “eye”) and category labels (e.g., “animal”) for the same image set. Feature labels were divided into parts, colors, textures and contours, while category labels were divided into subordinate, basic, and superordinate categories. We fitted models derived from the features, categories, and from each layer of each DNN to the similarity judgments, using representational similarity analysis to evaluate model performance. In both DNNs, similarity within the last layer explains most of the explainable variance in human similarity judgments. The last layer outperforms almost all feature-based models. Late and mid-level layers outperform some but not all feature-based models. Importantly, categorical models predict similarity judgments significantly better than any DNN layer. Our results provide further evidence for commonalities between DNNs and brain representations. Models derived from visual features

  13. Generation of human cortical neurons from a new immortal fetal neural stem cell line

    International Nuclear Information System (INIS)

    Cacci, E.; Villa, A.; Parmar, M.; Cavallaro, M.; Mandahl, N.; Lindvall, O.; Martinez-Serrano, A.; Kokaia, Z.

    2007-01-01

    Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markers like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology

  14. Characterizing Active Pharmaceutical Ingredient Binding to Human Serum Albumin by Spin-Labeling and EPR Spectroscopy.

    Science.gov (United States)

    Hauenschild, Till; Reichenwallner, Jörg; Enkelmann, Volker; Hinderberger, Dariush

    2016-08-26

    Drug binding to human serum albumin (HSA) has been characterized by a spin-labeling and continuous-wave (CW) EPR spectroscopic approach. Specifically, the contribution of functional groups (FGs) in a compound on its albumin-binding capabilities is quantitatively described. Molecules from different drug classes are labeled with EPR-active nitroxide radicals (spin-labeled pharmaceuticals (SLPs)) and in a screening approach CW-EPR spectroscopy is used to investigate HSA binding under physiological conditions and at varying ratios of SLP to protein. Spectral simulations of the CW-EPR spectra allow extraction of association constants (KA ) and the maximum number (n) of binding sites per protein. By comparison of data from 23 SLPs, the mechanisms of drug-protein association and the impact of chemical modifications at individual positions on drug uptake can be rationalized. Furthermore, new drug modifications with predictable protein binding tendency may be envisaged. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Large deep neural networks for MS lesion segmentation

    Science.gov (United States)

    Prieto, Juan C.; Cavallari, Michele; Palotai, Miklos; Morales Pinzon, Alfredo; Egorova, Svetlana; Styner, Martin; Guttmann, Charles R. G.

    2017-02-01

    Multiple sclerosis (MS) is a multi-factorial autoimmune disorder, characterized by spatial and temporal dissemination of brain lesions that are visible in T2-weighted and Proton Density (PD) MRI. Assessment of lesion burden and is useful for monitoring the course of the disease, and assessing correlates of clinical outcomes. Although there are established semi-automated methods to measure lesion volume, most of them require human interaction and editing, which are time consuming and limits the ability to analyze large sets of data with high accuracy. The primary objective of this work is to improve existing segmentation algorithms and accelerate the time consuming operation of identifying and validating MS lesions. In this paper, a Deep Neural Network for MS Lesion Segmentation is implemented. The MS lesion samples are extracted from the Partners Comprehensive Longitudinal Investigation of Multiple Sclerosis (CLIMB) study. A set of 900 subjects with T2, PD and a manually corrected label map images were used to train a Deep Neural Network and identify MS lesions. Initial tests using this network achieved a 90% accuracy rate. A secondary goal was to enable this data repository for big data analysis by using this algorithm to segment the remaining cases available in the CLIMB repository.

  16. A modified procedure for the labelling of human serum albumin microspheres with 99m Tc for lung scanning

    International Nuclear Information System (INIS)

    El-Kolaly, M.T.; Amin, A.; Raieh, M.; El-Mohty, A.

    1996-01-01

    A modified procedure is reported for the labelling of human serum albumin microspheres (HSAM) with 99m Tc. Albumin microspheres were first soaked in Sn-methylene diphosphonate (Sn-MDP) solution, then heated in a boiling water both for 10-15 minutes. The Sn-MDP coated HSAM were washed twice with saline containing poly sorbate-80 to remove the excess Sn-MDP solution. The coated albumin microspheres were then labelled with 99m Tc. More than 95% labelling yield are achieved by using the following quantities: 10 mg dry albumin microspheres, 5 mg MDP, 0.05 mg Sn Cl 2 .2 H 2 O, 0.1 mg ascorbic acid. The biological distribution of the labelled microspheres in mice has been studied and more than 85% lung uptake is achieved after 10 min of injection and the lung/liver ratio was 62. 8 tabs

  17. Fluorine-18 labeling of proteins

    International Nuclear Information System (INIS)

    Kilbourn, M.R.; Dence, C.S.; Welch, M.J.; Mathias, C.J.

    1987-01-01

    Two fluorine-18-labeled reagents, methyl 3-[ 18 F]fluoro-5-nitrobenzimidate and 4-[ 18 F]fluorophenacyl bromide, have been prepared for covalent attachment of fluorine-18 to proteins. Both reagents can be prepared in moderate yields (30-50%, EOB) in synthesis times of 50-70 min. Reaction of these reagents with proteins (human serum albumin, human fibrinogen, and human immunoglobulin A) is pH independent, protein concentration dependent, and takes 5-60 min at mild pH (8.0) and temperature (25-37 degrees C), in yields up to 95% (corrected). The 18 F-labeled proteins are purified by size exclusion chromatography

  18. Pesticide Labels

    Science.gov (United States)

    Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human health and the environment.

  19. Neural Determinants of Task Performance during Feature-Based Attention in Human Cortex

    Science.gov (United States)

    Gong, Mengyuan

    2018-01-01

    Abstract Studies of feature-based attention have associated activity in a dorsal frontoparietal network with putative attentional priority signals. Yet, how this neural activity mediates attentional selection and whether it guides behavior are fundamental questions that require investigation. We reasoned that endogenous fluctuations in the quality of attentional priority should influence task performance. Human subjects detected a speed increment while viewing clockwise (CW) or counterclockwise (CCW) motion (baseline task) or while attending to either direction amid distracters (attention task). In an fMRI experiment, direction-specific neural pattern similarity between the baseline task and the attention task revealed a higher level of similarity for correct than incorrect trials in frontoparietal regions. Using transcranial magnetic stimulation (TMS), we disrupted posterior parietal cortex (PPC) and found a selective deficit in the attention task, but not in the baseline task, demonstrating the necessity of this cortical area during feature-based attention. These results reveal that frontoparietal areas maintain attentional priority that facilitates successful behavioral selection. PMID:29497703

  20. Pharmacokinetics, biodistribution and dosimetry of 99mTc-labeled anti-human epidermal growth factor receptor humanized monoclonal antibody R3 in rats

    International Nuclear Information System (INIS)

    Escobar, Normando Iznaga; Morales, Alejo Morales; Duconge, Jorge; Torres, Idania Caballero; Fernandez, Eduardo; Gomez, Jose A.

    1998-01-01

    The pharmacokinetics, biodistribution and dosimetry of 99m Tc-labeled anti-human epidermal growth factor receptor (anti-hEGF-r) humanized monoclonal antibody (MAb) R3 was investigated following intravenous injection in normal Wistar rats. Serum disappearance curves were best fit by a two-compartment model having a mean distribution half-life (t (1(2α)) ) of 0.250 h and a mean elimination (t (1(2β)) ) of 13.89 h. Among the various organs, a little accumulation of the radiolabeled antibody was found only in kidneys. Biodistribution and dosimetry studies in humans were performed by extrapolation of the animal data to humans. Absorbed dose to normal organs and the remainder of the whole body were estimated using the medical internal radiation dose formula, and dose contributions from radioactivity in transit through the gastrointestinal tract were estimated using a compartment model. Extrapolated values of radiation absorbed dose to normal organs in rads per millicurie administered were whole body, 0.0085; lower large intestine wall, 0.0898; small intestine, 0.0530; upper large intestine wall, 0.0731; and kidneys, 0.0455. The effective dose equivalent predicted was 0.0162 rem/mCi and the effective dose was found to be 0.015 rem/mCi. On the basis of the pharmacokinetics, biodistribution and internal radiation dosimetry information obtained in this study, a diagnostic phase I clinical trial with 99m Tc-labeled humanized MAb R3 conjugate in patients should be supported

  1. Emotional expectations influence neural sensitivity to fearful faces in humans:An event-related potential study

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The present study tested whether neural sensitivity to salient emotional facial expressions was influenced by emotional expectations induced by a cue that validly predicted the expression of a subsequently presented target face. Event-related potentials (ERPs) elicited by fearful and neutral faces were recorded while participants performed a gender discrimination task under cued (‘expected’) and uncued (‘unexpected’) conditions. The behavioral results revealed that accuracy was lower for fearful compared with neutral faces in the unexpected condition, while accuracy was similar for fearful and neutral faces in the expected condition. ERP data revealed increased amplitudes in the P2 component and 200–250 ms interval for unexpected fearful versus neutral faces. By contrast, ERP responses were similar for fearful and neutral faces in the expected condition. These findings indicate that human neural sensitivity to fearful faces is modulated by emotional expectations. Although the neural system is sensitive to unpredictable emotionally salient stimuli, sensitivity to salient stimuli is reduced when these stimuli are predictable.

  2. Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses.

    Science.gov (United States)

    Yan, Yuanwei; Bejoy, Julie; Xia, Junfei; Guan, Jingjiao; Zhou, Yi; Li, Yan

    2016-09-15

    Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells/tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capacity of signaling factors that regulate 3-D neural tissue patterning in vitro and differential responses of the resulting neural populations to various biomolecules have not yet been fully understood. By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog (SHH) signaling, this study generated different 3-D neuronal cultures that were mainly comprised of either cortical glutamatergic neurons or motor neurons. Abundant glutamatergic neurons were observed following the treatment with an antagonist of SHH signaling, cyclopamine, while Islet-1 and HB9-expressing motor neurons were enriched by an SHH agonist, purmorphamine. In neurons derived with different neural patterning factors, whole-cell patch clamp recordings showed similar voltage-gated Na(+)/K(+) currents, depolarization-evoked action potentials and spontaneous excitatory post-synaptic currents. Moreover, these different neuronal populations exhibited differential responses to three classes of biomolecules, including (1) matrix metalloproteinase inhibitors that affect extracellular matrix remodeling; (2) N-methyl-d-aspartate that induces general neurotoxicity; and (3) amyloid β (1-42) oligomers that cause neuronal subtype-specific neurotoxicity. This study should advance our understanding of hiPSC self-organization and neural tissue development and provide a transformative approach to establish 3-D models for neurological disease modeling and drug discovery. Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells, tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capability of sonic hedgehog-related small molecules to tune

  3. Label Review Training: Module 1: Label Basics, Page 4

    Science.gov (United States)

    Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human health and the environment.

  4. Label Review Training: Module 1: Label Basics, Page 9

    Science.gov (United States)

    Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human health and the environment.

  5. Label Review Training: Module 1: Label Basics, Page 5

    Science.gov (United States)

    Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human health and the environment.

  6. Label Review Training: Module 1: Label Basics, Page 2

    Science.gov (United States)

    Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human health and the environment.

  7. Label Review Training: Module 1: Label Basics, Page 3

    Science.gov (United States)

    Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human health and the environment.

  8. Dansylation isotope labeling liquid chromatography mass spectrometry for parallel profiling of human urinary and fecal submetabolomes

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xiaoling [State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003 (China); Wang, Nan [State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003 (China); Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Chen, Deying [State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003 (China); Li, Yunong [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Lu, Yingfeng [State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003 (China); Huan, Tao [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Xu, Wei [State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003 (China); Li, Liang, E-mail: Liang.Li@ualberta.ca [State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003 (China); Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Li, Lanjuan, E-mail: ljli@zju.edu.cn [State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003 (China)

    2016-01-15

    Human urine and feces can be non-invasively collected for metabolomics-based disease biomarker discovery research. Because urinary and fecal metabolomes are thought to be different, analysis of both biospecimens may generate a more comprehensive metabolomic profile that can be better related to the health state of an individual. Herein we describe a method of using differential chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) for parallel metabolomic profiling of urine and feces. Dansylation labeling was used to quantify the amine/phenol submetabolome changes among different samples based on {sup 12}C-labeling of individual samples and {sup 13}C-labeling of a pooled urine or pooled feces and subsequent analysis of the {sup 13}C-/{sup 12}C-labeled mixture by LC-MS. The pooled urine and pooled feces are further differentially labeled, mixed and then analyzed by LC-MS in order to relate the metabolite concentrations of the common metabolites found in both biospecimens. This method offers a means of direct comparison of urinary and fecal submetabolomes. We evaluated the analytical performance and demonstrated the utility of this method in the analysis of urine and feces collected daily from three healthy individuals for 7 days. On average, 2534 ± 113 (n = 126) peak pairs or metabolites could be detected from a urine sample, while 2507 ± 77 (n = 63) peak pairs were detected from a fecal sample. In total, 5372 unique peak pairs were detected from all the samples combined; 3089 and 3012 pairs were found in urine and feces, respectively. These results reveal that the urine and fecal metabolomes are very different, thereby justifying the consideration of using both biospecimens to increase the probability of finding specific biomarkers of diseases. Furthermore, the CIL LC-MS method described can be used to perform parallel quantitative analysis of urine and feces, resulting in more complete coverage of the human metabolome

  9. Dansylation isotope labeling liquid chromatography mass spectrometry for parallel profiling of human urinary and fecal submetabolomes

    International Nuclear Information System (INIS)

    Su, Xiaoling; Wang, Nan; Chen, Deying; Li, Yunong; Lu, Yingfeng; Huan, Tao; Xu, Wei; Li, Liang; Li, Lanjuan

    2016-01-01

    Human urine and feces can be non-invasively collected for metabolomics-based disease biomarker discovery research. Because urinary and fecal metabolomes are thought to be different, analysis of both biospecimens may generate a more comprehensive metabolomic profile that can be better related to the health state of an individual. Herein we describe a method of using differential chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) for parallel metabolomic profiling of urine and feces. Dansylation labeling was used to quantify the amine/phenol submetabolome changes among different samples based on "1"2C-labeling of individual samples and "1"3C-labeling of a pooled urine or pooled feces and subsequent analysis of the "1"3C-/"1"2C-labeled mixture by LC-MS. The pooled urine and pooled feces are further differentially labeled, mixed and then analyzed by LC-MS in order to relate the metabolite concentrations of the common metabolites found in both biospecimens. This method offers a means of direct comparison of urinary and fecal submetabolomes. We evaluated the analytical performance and demonstrated the utility of this method in the analysis of urine and feces collected daily from three healthy individuals for 7 days. On average, 2534 ± 113 (n = 126) peak pairs or metabolites could be detected from a urine sample, while 2507 ± 77 (n = 63) peak pairs were detected from a fecal sample. In total, 5372 unique peak pairs were detected from all the samples combined; 3089 and 3012 pairs were found in urine and feces, respectively. These results reveal that the urine and fecal metabolomes are very different, thereby justifying the consideration of using both biospecimens to increase the probability of finding specific biomarkers of diseases. Furthermore, the CIL LC-MS method described can be used to perform parallel quantitative analysis of urine and feces, resulting in more complete coverage of the human metabolome. - Highlights: • A

  10. Epithelium-Stroma Classification via Convolutional Neural Networks and Unsupervised Domain Adaptation in Histopathological Images.

    Science.gov (United States)

    Huang, Yue; Zheng, Han; Liu, Chi; Ding, Xinghao; Rohde, Gustavo K

    2017-11-01

    Epithelium-stroma classification is a necessary preprocessing step in histopathological image analysis. Current deep learning based recognition methods for histology data require collection of large volumes of labeled data in order to train a new neural network when there are changes to the image acquisition procedure. However, it is extremely expensive for pathologists to manually label sufficient volumes of data for each pathology study in a professional manner, which results in limitations in real-world applications. A very simple but effective deep learning method, that introduces the concept of unsupervised domain adaptation to a simple convolutional neural network (CNN), has been proposed in this paper. Inspired by transfer learning, our paper assumes that the training data and testing data follow different distributions, and there is an adaptation operation to more accurately estimate the kernels in CNN in feature extraction, in order to enhance performance by transferring knowledge from labeled data in source domain to unlabeled data in target domain. The model has been evaluated using three independent public epithelium-stroma datasets by cross-dataset validations. The experimental results demonstrate that for epithelium-stroma classification, the proposed framework outperforms the state-of-the-art deep neural network model, and it also achieves better performance than other existing deep domain adaptation methods. The proposed model can be considered to be a better option for real-world applications in histopathological image analysis, since there is no longer a requirement for large-scale labeled data in each specified domain.

  11. Invariant recognition drives neural representations of action sequences.

    Directory of Open Access Journals (Sweden)

    Andrea Tacchetti

    2017-12-01

    Full Text Available Recognizing the actions of others from visual stimuli is a crucial aspect of human perception that allows individuals to respond to social cues. Humans are able to discriminate between similar actions despite transformations, like changes in viewpoint or actor, that substantially alter the visual appearance of a scene. This ability to generalize across complex transformations is a hallmark of human visual intelligence. Advances in understanding action recognition at the neural level have not always translated into precise accounts of the computational principles underlying what representations of action sequences are constructed by human visual cortex. Here we test the hypothesis that invariant action discrimination might fill this gap. Recently, the study of artificial systems for static object perception has produced models, Convolutional Neural Networks (CNNs, that achieve human level performance in complex discriminative tasks. Within this class, architectures that better support invariant object recognition also produce image representations that better match those implied by human and primate neural data. However, whether these models produce representations of action sequences that support recognition across complex transformations and closely follow neural representations of actions remains unknown. Here we show that spatiotemporal CNNs accurately categorize video stimuli into action classes, and that deliberate model modifications that improve performance on an invariant action recognition task lead to data representations that better match human neural recordings. Our results support our hypothesis that performance on invariant discrimination dictates the neural representations of actions computed in the brain. These results broaden the scope of the invariant recognition framework for understanding visual intelligence from perception of inanimate objects and faces in static images to the study of human perception of action sequences.

  12. Use of the doubly labeled water technique in humans during heavy sustained exercise

    International Nuclear Information System (INIS)

    Westerterp, K.R.; Saris, W.H.; van Es, M.; ten Hoor, F.

    1986-01-01

    We measured energy expenditure with the doubly labeled water technique during heavy sustained exercise in the Tour de France, a bicycle race lasting more than 3 wk. Four subjects were observed for consecutive intervals of 7, 8, and 7 days. Each interval started with an oral isotope dose to reach an excess isotope level of 200 ppm 18O and 130 ppm 2H. The biological half-lives of the isotopes were between 2.25 and 3.80 days. Energy expenditure was compared with simultaneous measurements of energy intake, and body mass and body composition did not change significantly. The doubly labeled water technique gave higher values for energy expenditure than the food record technique. The discrepancy showed a systematic increment from the first to the third interval, being 12.9 +/- 7.9, 21.4 +/- 9.8, and 35.3 +/- 4.4% of the energy expenditure calculated from dietary intake, respectively. Possible explanations for the discrepancy are discussed. The subjects reached an average daily metabolic rate of 3.4-3.9 or 4.3-5.3 times basal metabolic rate based on the food record technique and the doubly labeled water technique, respectively. Thus, when measured with the same technique, the energetic ceiling for performance in humans is comparable with that of animals like birds

  13. A rapid chemical method of labelling human plasma proteins with sup(99m)Tc-pertechnetate at pH 7.4

    International Nuclear Information System (INIS)

    Wong, D.W.; Mishkin, F.; Lee, T.

    1978-01-01

    A successful method for labelling human plasma proteins with sup(99m)Tc-pertechnetate by chemical means is described. The labelling methodology involves the production of Sup(99m)Tc-(Sn)citrate complex species with high protein binding capacity at pH 7.4 condition following initial chemical reduction of sodium sup(99m)Tc-pertechnetate by stannous chloride. A combined labelling efficiency range of 95-99% for sup(99m)Tc-labelled fibrinogen, immune gamma globulin and serum albumin is achieved. The actual amount of labelled protein content in the product is found to be 85-95% when assayed by ITLC and 74-85% by TCAA protein precipitation. In vitro experimental data indicate that sup(99m)Tc-fibrinogen contains an average of 85% clottable protein with an average clottability of 95%. This strongly suggests that the radioactive proteins retain much of their biological and physiological activities after the labelling process. (author)

  14. 21 CFR 895.25 - Labeling.

    Science.gov (United States)

    2010-04-01

    ... labeling or advertising of the device. (d) If such voluntary action is not taken, the Commissioner may take... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES BANNED DEVICES General Provisions § 895.25 Labeling. (a) If the Commissioner determines that the...

  15. Automatic segmentation of cerebral MR images using artificial neural networks

    International Nuclear Information System (INIS)

    Alirezaie, J.; Jernigan, M.E.; Nahmias, C.

    1996-01-01

    In this paper we present an unsupervised clustering technique for multispectral segmentation of magnetic resonance (MR) images of the human brain. Our scheme utilizes the Self Organizing Feature Map (SOFM) artificial neural network for feature mapping and generates a set of codebook vectors. By extending the network with an additional layer the map will be classified and each tissue class will be labelled. An algorithm has been developed for extracting the cerebrum from the head scan prior to the segmentation. Extracting the cerebrum is performed by stripping away the skull pixels from the T2 image. Three tissue types of the brain: white matter, gray matter and cerebral spinal fluid (CSF) are segmented accurately. To compare the results with other conventional approaches we applied the c-means algorithm to the problem

  16. Learning to Segment Human by Watching YouTube.

    Science.gov (United States)

    Liang, Xiaodan; Wei, Yunchao; Chen, Yunpeng; Shen, Xiaohui; Yang, Jianchao; Lin, Liang; Yan, Shuicheng

    2016-08-05

    An intuition on human segmentation is that when a human is moving in a video, the video-context (e.g., appearance and motion clues) may potentially infer reasonable mask information for the whole human body. Inspired by this, based on popular deep convolutional neural networks (CNN), we explore a very-weakly supervised learning framework for human segmentation task, where only an imperfect human detector is available along with massive weakly-labeled YouTube videos. In our solution, the video-context guided human mask inference and CNN based segmentation network learning iterate to mutually enhance each other until no further improvement gains. In the first step, each video is decomposed into supervoxels by the unsupervised video segmentation. The superpixels within the supervoxels are then classified as human or non-human by graph optimization with unary energies from the imperfect human detection results and the predicted confidence maps by the CNN trained in the previous iteration. In the second step, the video-context derived human masks are used as direct labels to train CNN. Extensive experiments on the challenging PASCAL VOC 2012 semantic segmentation benchmark demonstrate that the proposed framework has already achieved superior results than all previous weakly-supervised methods with object class or bounding box annotations. In addition, by augmenting with the annotated masks from PASCAL VOC 2012, our method reaches a new stateof- the-art performance on the human segmentation task.

  17. SIRB, sans iron oxide rhodamine B, a novel cross-linked dextran nanoparticle, labels human neuroprogenitor and SH-SY5Y neuroblastoma cells and serves as a USPIO cell labeling control.

    Science.gov (United States)

    Shen, Wei-Bin; Vaccaro, Dennis E; Fishman, Paul S; Groman, Ernest V; Yarowsky, Paul

    2016-05-01

    This is the first report of the synthesis of a new nanoparticle, sans iron oxide rhodamine B (SIRB), an example of a new class of nanoparticles. SIRB is designed to provide all of the cell labeling properties of the ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle Molday ION Rhodamine B (MIRB) without containing the iron oxide core. MIRB was developed to label cells and allow them to be tracked by MRI or to be manipulated by magnetic gradients. SIRB possesses a similar size, charge and cross-linked dextran coating as MIRB. Of great interest is understanding the biological and physiological changes in cells after they are labeled with a USPIO. Whether these effects are due to the iron oxide buried within the nanoparticle or to the surface coating surrounding the iron oxide core has not been considered previously. MIRB and SIRB represent an ideal pairing of nanoparticles to identify nanoparticle anatomy responsible for post-labeling cytotoxicity. Here we report the effects of SIRB labeling on the SH-SY5Y neuroblastoma cell line and primary human neuroprogenitor cells (hNPCs). These effects are contrasted with the effects of labeling SH-SY5Y cells and hNPCs with MIRB. We find that SIRB labeling, like MIRB labeling, (i) occurs without the use of transfection reagents, (ii) is packaged within lysosomes distributed within cell cytoplasm, (iii) is retained within cells with no loss of label after cell storage, and (iv) does not alter cellular viability or proliferation, and (v) SIRB labeled hNPCs differentiate normally into neurons or astrocytes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Purification of human induced pluripotent stem cell-derived neural precursors using magnetic activated cell sorting.

    Science.gov (United States)

    Rodrigues, Gonçalo M C; Fernandes, Tiago G; Rodrigues, Carlos A V; Cabral, Joaquim M S; Diogo, Maria Margarida

    2015-01-01

    Neural precursor (NP) cells derived from human induced pluripotent stem cells (hiPSCs), and their neuronal progeny, will play an important role in disease modeling, drug screening tests, central nervous system development studies, and may even become valuable for regenerative medicine treatments. Nonetheless, it is challenging to obtain homogeneous and synchronously differentiated NP populations from hiPSCs, and after neural commitment many pluripotent stem cells remain in the differentiated cultures. Here, we describe an efficient and simple protocol to differentiate hiPSC-derived NPs in 12 days, and we include a final purification stage where Tra-1-60+ pluripotent stem cells (PSCs) are removed using magnetic activated cell sorting (MACS), leaving the NP population nearly free of PSCs.

  19. Label Review Training: Module 1: Label Basics, Page 6

    Science.gov (United States)

    Page 6, Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human health and the environment

  20. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  1. Non-invasive neural stimulation

    Science.gov (United States)

    Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas

    2017-05-01

    Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.

  2. Recycling signals in the neural crest

    OpenAIRE

    Taneyhill, Lisa A.; Bronner-Fraser, Marianne E.

    2006-01-01

    Vertebrate neural crest cells are multipotent and differentiate into structures that include cartilage and the bones of the face, as well as much of the peripheral nervous system. Understanding how different model vertebrates utilize signaling pathways reiteratively during various stages of neural crest formation and differentiation lends insight into human disorders associated with the neural crest.

  3. Recycling signals in the neural crest.

    Science.gov (United States)

    Taneyhill, Lisa A; Bronner-Fraser, Marianne

    2005-01-01

    Vertebrate neural crest cells are multipotent and differentiate into structures that include cartilage and the bones of the face, as well as much of the peripheral nervous system. Understanding how different model vertebrates utilize signaling pathways reiteratively during various stages of neural crest formation and differentiation lends insight into human disorders associated with the neural crest.

  4. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    Science.gov (United States)

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  5. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Emilio J Gualda

    2014-08-01

    Full Text Available The development of three dimensional cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex three dimensional matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy is becoming an excellent tool for fast imaging of such three-dimensional biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment.

  6. Shades of grey; Assessing the contribution of the magno- and parvocellular systems to neural processing of the retinal input in the human visual system from the influence of neural population size and its discharge activity on the VEP.

    Science.gov (United States)

    Marcar, Valentine L; Baselgia, Silvana; Lüthi-Eisenegger, Barbara; Jäncke, Lutz

    2018-03-01

    Retinal input processing in the human visual system involves a phasic and tonic neural response. We investigated the role of the magno- and parvocellular systems by comparing the influence of the active neural population size and its discharge activity on the amplitude and latency of four VEP components. We recorded the scalp electric potential of 20 human volunteers viewing a series of dartboard images presented as a pattern reversing and pattern on-/offset stimulus. These patterns were designed to vary both neural population size coding the temporal- and spatial luminance contrast property and the discharge activity of the population involved in a systematic manner. When the VEP amplitude reflected the size of the neural population coding the temporal luminance contrast property of the image, the influence of luminance contrast followed the contrast response function of the parvocellular system. When the VEP amplitude reflected the size of the neural population responding to the spatial luminance contrast property the image, the influence of luminance contrast followed the contrast response function of the magnocellular system. The latencies of the VEP components examined exhibited the same behavior across our stimulus series. This investigation demonstrates the complex interplay of the magno- and parvocellular systems on the neural response as captured by the VEP. It also demonstrates a linear relationship between stimulus property, neural response, and the VEP and reveals the importance of feedback projections in modulating the ongoing neural response. In doing so, it corroborates the conclusions of our previous study.

  7. What is adapted in face adaptation? The neural representations of expression in the human visual system.

    Science.gov (United States)

    Fox, Christopher J; Barton, Jason J S

    2007-01-05

    The neural representation of facial expression within the human visual system is not well defined. Using an adaptation paradigm, we examined aftereffects on expression perception produced by various stimuli. Adapting to a face, which was used to create morphs between two expressions, substantially biased expression perception within the morphed faces away from the adapting expression. This adaptation was not based on low-level image properties, as a different image of the same person displaying that expression produced equally robust aftereffects. Smaller but significant aftereffects were generated by images of different individuals, irrespective of gender. Non-face visual, auditory, or verbal representations of emotion did not generate significant aftereffects. These results suggest that adaptation affects at least two neural representations of expression: one specific to the individual (not the image), and one that represents expression across different facial identities. The identity-independent aftereffect suggests the existence of a 'visual semantic' for facial expression in the human visual system.

  8. Development of 68Ga-labeled mannosylated human serum albumin (MSA) as a lymph node imaging agent for positron emission tomography

    International Nuclear Information System (INIS)

    Choi, Jae Yeon; Jeong, Jae Min; Yoo, Byong Chul; Kim, Kyunggon; Kim, Youngsoo; Yang, Bo Yeun; Lee, Yun-Sang; Lee, Dong Soo; Chung, June-Key; Lee, Myung Chul

    2011-01-01

    Introduction: Although many sentinel lymph node (SLN) imaging agents labeled with 99m Tc have been developed, no positron-emitting agent has been specifically designed for SLN imaging. Furthermore, the development of the beta probe and the requirement for better image resolution have increased the need for a positron-emitting SLN imaging agent. Here, we describe the development of a novel positron-emitting SLN imaging agent labeled with 68 Ga. Methods: A mannosylated human serum albumin (MSA) was synthesized by conjugating α-D-mannopyranosylphenyl isothiocyanate to human serum albumin in sodium carbonate buffer (pH 9.5), and then 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid was conjugated to synthesize NOTA-MSA. Numbers of mannose and NOTA units conjugated in NOTA-MSA were determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. NOTA-MSA was labeled with 68 Ga at room temperature. The stability of 68 Ga-NOTA-MSA was checked in labeling medium at room temperature and in human serum at 37 o C. Biodistribution in normal ICR mice was investigated after tail vein injection, and micro-positron emission tomography (PET) images were obtained after injecting 68 Ga-NOTA-MSA into a tail vein or a footpad. Results: The numbers of conjugated α-D-mannopyranosylphenyl isothiocyanate and 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid units in NOTA-MSA were 10.6 and 6.6, respectively. The labeling efficiency of 68 Ga-NOTA-MSA was greater than 99% at room temperature, and its stability was greater than 99% at 4 h. Biodistribution and micro-PET studies of 68 Ga-NOTA-MSA showed high liver and spleen uptakes after intravenous injection. 68 Ga-NOTA-MSA injected into a footpad rapidly migrated to the lymph node. Conclusions: 68 Ga-NOTA-MSA was successfully developed as a novel SLN imaging agent for PET. NOTA-MSA is easily labeled at high efficiency, and subcutaneously administered 68 Ga-NOTA-MSA was

  9. 21 CFR 660.55 - Labeling.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Labeling. 660.55 Section 660.55 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS ADDITIONAL... name such as polyspecific may appear in smaller type. (4) Visual inspection. When the label has been...

  10. Tumorigenicity and Validity of Fluorescence Labelled Mesenchymal and Epithelial Human Oral Cancer Cell Lines in Nude Mice

    Directory of Open Access Journals (Sweden)

    Wei Xin Cai

    2016-01-01

    Full Text Available Tumorigenicity and metastatic activity can be visually monitored in cancer cells that were labelled with stable fluorescence. The aim was to establish and validate local and distant spread of subcutaneously previously injected fluorescence transduced human tongue cancer cell lines of epithelial and mesenchymal phenotype in nude mice. A total of 32 four-week-old male athymic Balb/c nude mice were randomly allocated into 4 groups (n=8. A single dose of 0.3 mL PBS containing 1 × 107 of four different cancer cell-lines (UM1, UM1-GFP, UM2, and UM2-RFP was injected subcutaneously into the right side of their posterolateral back. Validity assessment of the labelled cancer cells’ tumorigenicity was assessed by physical examination, imaging, and histology four weeks after the injection. The tumor take rate of cancer cells was similar in animals injected with either parental or transduced cancer cells. Transduced cancer cells in mice were easily detectable in vivo and after cryosection using fluorescent imaging. UM1 cells showed increased tumor take rate and mean tumor volume, presenting with disorganized histopathological patterns. Fluorescence labelled epithelial and mesenchymal human tongue cancer cell lines do not change in tumorigenicity or cell phenotype after injection in vivo.

  11. 21 CFR 340.50 - Labeling of stimulant drug products.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Labeling of stimulant drug products. 340.50 Section 340.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE STIMULANT DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Labeling § 340.50...

  12. Human Face Recognition Using Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Răzvan-Daniel Albu

    2009-10-01

    Full Text Available In this paper, I present a novel hybrid face recognition approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns. The convolutional network extracts successively larger features in a hierarchical set of layers. With the weights of the trained neural networks there are created kernel windows used for feature extraction in a 3-stage algorithm. I present experimental results illustrating the efficiency of the proposed approach. I use a database of 796 images of 159 individuals from Reims University which contains quite a high degree of variability in expression, pose, and facial details.

  13. Application of photoactivation in the preparation of radiopharmaceuticals. Pt. 3. Human serum albumin labelled with technetium (99mTc)

    International Nuclear Information System (INIS)

    Komarek, P.; Kleisner, I.; Konopkova, M.; Komarkova, I.

    1997-01-01

    Human serum albumin was photoactivated with UV light at 254 nm and labelled with technetium ( 99m Tc) by reducing pertechnetate ( 99m Tc) with stannous chloride. Radiochemical purity was determined by using paper chromatography, columns and electrophoresis. The biodistribution of labelled albumin in rats was assessed by activity counting in isolated organs 15 and 60 minutes after administration. Photoactivation increases the number of free SH groups, which affect favourably the labelling efficiency. Irradiated albumin exhibits a higher labelling efficiency (99%) than non-irradiated albumin (96%). The structural changes depend on the UV radiation dose, concentration of irradiated substances, and metal ion content (Sn 2+ ). The results obtained suggest that the elimination from blood of albumin whose structure has been altered by photoactivation can be accelerated, thereby creating favourable conditions for its application in the diagnosis of inflammatory diseases. (author)

  14. Drive Control Scheme of Electric Power Assisted Wheelchair Based on Neural Network Learning of Human Wheelchair Operation Characteristics

    Science.gov (United States)

    Tanohata, Naoki; Seki, Hirokazu

    This paper describes a novel drive control scheme of electric power assisted wheelchairs based on neural network learning of human wheelchair operation characteristics. “Electric power assisted wheelchair” which enhances the drive force of the operator by employing electric motors is expected to be widely used as a mobility support system for elderly and disabled people. However, some handicapped people with paralysis of the muscles of one side of the body cannot maneuver the wheelchair as desired because of the difference in the right and left input force. Therefore, this study proposes a neural network learning system of such human wheelchair operation characteristics and a drive control scheme with variable distribution and assistance ratios. Some driving experiments will be performed to confirm the effectiveness of the proposed control system.

  15. Neural codes of seeing architectural styles.

    Science.gov (United States)

    Choo, Heeyoung; Nasar, Jack L; Nikrahei, Bardia; Walther, Dirk B

    2017-01-10

    Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such as Toronto. Despite the substantial impact of architectural design on people's visual experience of built environments, we know little about its neural representation in the human brain. In the present study, we have found patterns of neural activity associated with specific architectural styles in several high-level visual brain regions, but not in primary visual cortex (V1). This finding suggests that the neural correlates of the visual perception of architectural styles stem from style-specific complex visual structure beyond the simple features computed in V1. Surprisingly, the network of brain regions representing architectural styles included the fusiform face area (FFA) in addition to several scene-selective regions. Hierarchical clustering of error patterns further revealed that the FFA participated to a much larger extent in the neural encoding of architectural styles than entry-level scene categories. We conclude that the FFA is involved in fine-grained neural encoding of scenes at a subordinate-level, in our case, architectural styles of buildings. This study for the first time shows how the human visual system encodes visual aspects of architecture, one of the predominant and longest-lasting artefacts of human culture.

  16. Alternative splicing events identified in human embryonic stem cells and neural progenitors.

    Directory of Open Access Journals (Sweden)

    Gene W Yeo

    2007-10-01

    Full Text Available Human embryonic stem cells (hESCs and neural progenitor (NP cells are excellent models for recapitulating early neuronal development in vitro, and are key to establishing strategies for the treatment of degenerative disorders. While much effort had been undertaken to analyze transcriptional and epigenetic differences during the transition of hESC to NP, very little work has been performed to understand post-transcriptional changes during neuronal differentiation. Alternative RNA splicing (AS, a major form of post-transcriptional gene regulation, is important in mammalian development and neuronal function. Human ESC, hESC-derived NP, and human central nervous system stem cells were compared using Affymetrix exon arrays. We introduced an outlier detection approach, REAP (Regression-based Exon Array Protocol, to identify 1,737 internal exons that are predicted to undergo AS in NP compared to hESC. Experimental validation of REAP-predicted AS events indicated a threshold-dependent sensitivity ranging from 56% to 69%, at a specificity of 77% to 96%. REAP predictions significantly overlapped sets of alternative events identified using expressed sequence tags and evolutionarily conserved AS events. Our results also reveal that focusing on differentially expressed genes between hESC and NP will overlook 14% of potential AS genes. In addition, we found that REAP predictions are enriched in genes encoding serine/threonine kinase and helicase activities. An example is a REAP-predicted alternative exon in the SLK (serine/threonine kinase 2 gene that is differentially included in hESC, but skipped in NP as well as in other differentiated tissues. Lastly, comparative sequence analysis revealed conserved intronic cis-regulatory elements such as the FOX1/2 binding site GCAUG as being proximal to candidate AS exons, suggesting that FOX1/2 may participate in the regulation of AS in NP and hESC. In summary, a new methodology for exon array analysis was introduced

  17. Structured prediction models for RNN based sequence labeling in clinical text.

    Science.gov (United States)

    Jagannatha, Abhyuday N; Yu, Hong

    2016-11-01

    Sequence labeling is a widely used method for named entity recognition and information extraction from unstructured natural language data. In clinical domain one major application of sequence labeling involves extraction of medical entities such as medication, indication, and side-effects from Electronic Health Record narratives. Sequence labeling in this domain, presents its own set of challenges and objectives. In this work we experimented with various CRF based structured learning models with Recurrent Neural Networks. We extend the previously studied LSTM-CRF models with explicit modeling of pairwise potentials. We also propose an approximate version of skip-chain CRF inference with RNN potentials. We use these methodologies for structured prediction in order to improve the exact phrase detection of various medical entities.

  18. 78 FR 24211 - Draft Guidance for Industry on Safety Considerations for Container Labels and Carton Labeling...

    Science.gov (United States)

    2013-04-24

    ... Labeling Design to Minimize Medication Errors.'' In Title I of the Food and Drug Administration Amendments..., dose designations, and error-prone label and packaging designs. Among these measures, FDA agreed that... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-D-0401...

  19. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by 19F- and diffusion-MRI

    Science.gov (United States)

    Bible, Ellen; Dell’Acqua, Flavio; Solanky, Bhavana; Balducci, Anthony; Crapo, Peter; Badylak, Stephen F.; Ahrens, Eric T.; Modo, Michel

    2012-01-01

    Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based 1H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a 19F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on 1H-MRI scans. Twenty percent of cells labeled with the 19F-agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T2- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively. PMID:22244696

  20. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by (19)F- and diffusion-MRI.

    Science.gov (United States)

    Bible, Ellen; Dell'Acqua, Flavio; Solanky, Bhavana; Balducci, Anthony; Crapo, Peter M; Badylak, Stephen F; Ahrens, Eric T; Modo, Michel

    2012-04-01

    Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based (1)H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a (19)F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on (1)H-MRI scans. Twenty percent of cells labeled with the (19)F agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T(2)- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. DEVELOPMENT OF WEARABLE HUMAN FALL DETECTION SYSTEM USING MULTILAYER PERCEPTRON NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    Hamideh Kerdegari

    2013-02-01

    Full Text Available This paper presents an accurate wearable fall detection system which can identify the occurrence of falls among elderly population. A waist worn tri-axial accelerometer was used to capture the movement signals of human body. A set of laboratory-based falls and activities of daily living (ADL were performed by volunteers with different physical characteristics. The collected acceleration patterns were classified precisely to fall and ADL using multilayer perceptron (MLP neural network. This work was resulted to a high accuracy wearable fall-detection system with the accuracy of 91.6%.

  2. Predicting human splicing branchpoints by combining sequence-derived features and multi-label learning methods.

    Science.gov (United States)

    Zhang, Wen; Zhu, Xiaopeng; Fu, Yu; Tsuji, Junko; Weng, Zhiping

    2017-12-01

    Alternative splicing is the critical process in a single gene coding, which removes introns and joins exons, and splicing branchpoints are indicators for the alternative splicing. Wet experiments have identified a great number of human splicing branchpoints, but many branchpoints are still unknown. In order to guide wet experiments, we develop computational methods to predict human splicing branchpoints. Considering the fact that an intron may have multiple branchpoints, we transform the branchpoint prediction as the multi-label learning problem, and attempt to predict branchpoint sites from intron sequences. First, we investigate a variety of intron sequence-derived features, such as sparse profile, dinucleotide profile, position weight matrix profile, Markov motif profile and polypyrimidine tract profile. Second, we consider several multi-label learning methods: partial least squares regression, canonical correlation analysis and regularized canonical correlation analysis, and use them as the basic classification engines. Third, we propose two ensemble learning schemes which integrate different features and different classifiers to build ensemble learning systems for the branchpoint prediction. One is the genetic algorithm-based weighted average ensemble method; the other is the logistic regression-based ensemble method. In the computational experiments, two ensemble learning methods outperform benchmark branchpoint prediction methods, and can produce high-accuracy results on the benchmark dataset.

  3. Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model.

    Directory of Open Access Journals (Sweden)

    Hong J Lee

    Full Text Available BACKGROUND: Intracerebral hemorrhage (ICH is a lethal stroke type. As mortality approaches 50%, and current medical therapy against ICH shows only limited effectiveness, an alternative approach is required, such as stem cell-based cell therapy. Previously we have shown that intravenously transplanted human neural stem cells (NSCs selectively migrate to the brain and induce behavioral recovery in rat ICH model, and that combined administration of NSCs and vascular endothelial growth factor (VEGF results in improved structural and functional outcome from cerebral ischemia. METHODS AND FINDINGS: We postulated that human NSCs overexpressing VEGF transplanted into cerebral cortex overlying ICH lesion could provide improved survival of grafted NSCs, increased angiogenesis and behavioral recovery in mouse ICH model. ICH was induced in adult mice by unilateral injection of bacterial collagenase into striatum. HB1.F3.VEGF human NSC line produced an amount of VEGF four times higher than parental F3 cell line in vitro, and induced behavioral improvement and 2-3 fold increase in cell survival at two weeks and eight weeks post-transplantation. CONCLUSIONS: Brain transplantation of F3 human NSCs over-expressing VEGF near ICH lesion sites provided differentiation and survival of grafted human NSCs and renewed angiogenesis of host brain and functional recovery of ICH animals. These results suggest a possible application of the human neural stem cell line, which is genetically modified to over-express VEGF, as a therapeutic agent for ICH-stroke.

  4. Correlation between the rate of bioreduction of nitroxide spin label by human tumor cells and their low-dose radiation response

    International Nuclear Information System (INIS)

    Halpern, H.J.; Peric, M.; Nguyen, T.D.; Spencer, D.P.; Bowman, M.K.; Beckett, M.; Weichselbaum, R.R.

    1988-01-01

    The authors discuss a correlation observed between the bioreduction of nitroxide spin label by four human tumor cell lines and a normal tissue fibroblast clone and their low-dose radiation response, specifically their D Q . In measurements of the bioreduction rate of several other cell lines, this correlation appears to persist. In order to define the mechanism of this correlation, they have begun by subtly altering the measurement conditions. The original conditions for measurement involved adding the spin label to cells whose culture medium had been changed (the label was added to the new medium). By delaying the addition of the label to the culture medium, they substantially reduced the variation of the bioreduction rate between the cell lines. This implies that the fresh medium provides a nonspecific irritant or disequilibrium to the cultured cell system to which they response variably by accelerating, among other things, the metabolic process responsible for spin label bioreduction

  5. Laminin enhances the growth of human neural stem cells in defined culture media

    Directory of Open Access Journals (Sweden)

    Lathia Justin D

    2008-07-01

    Full Text Available Abstract Background Human neural stem cells (hNSC have the potential to provide novel cell-based therapies for neurodegenerative conditions such as multiple sclerosis and Parkinson's disease. In order to realise this goal, protocols need to be developed that allow for large quantities of hNSC to be cultured efficiently. As such, it is important to identify factors which enhance the growth of hNSC. In vivo, stem cells reside in distinct microenvironments or niches that are responsible for the maintenance of stem cell populations. A common feature of niches is the presence of the extracellular matrix molecule, laminin. Therefore, this study investigated the effect of exogenous laminin on hNSC growth. Results To measure hNSC growth, we established culture conditions using B27-supplemented medium that enable neurospheres to grow from human neural cells plated at clonal densities. Limiting dilution assays confirmed that neurospheres were derived from single cells at these densities. Laminin was found to increase hNSC numbers as measured by this neurosphere formation. The effect of laminin was to augment the proliferation/survival of the hNSC, rather than promoting the undifferentiated state. In agreement, apoptosis was reduced in dissociated neurospheres by laminin in an integrin β1-dependent manner. Conclusion The addition of laminin to the culture medium enhances the growth of hNSC, and may therefore aid their large-scale production.

  6. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  7. Learning to Detect Human-Object Interactions

    KAUST Repository

    Chao, Yu-Wei; Liu, Yunfan; Liu, Xieyang; Zeng, Huayi; Deng, Jia

    2017-01-01

    In this paper we study the problem of detecting human-object interactions (HOI) in static images, defined as predicting a human and an object bounding box with an interaction class label that connects them. HOI detection is a fundamental problem in computer vision as it provides semantic information about the interactions among the detected objects. We introduce HICO-DET, a new large benchmark for HOI detection, by augmenting the current HICO classification benchmark with instance annotations. We propose Human-Object Region-based Convolutional Neural Networks (HO-RCNN), a novel DNN-based framework for HOI detection. At the core of our HO-RCNN is the Interaction Pattern, a novel DNN input that characterizes the spatial relations between two bounding boxes. We validate the effectiveness of our HO-RCNN using HICO-DET. Experiments demonstrate that our HO-RCNN, by exploiting human-object spatial relations through Interaction Patterns, significantly improves the performance of HOI detection over baseline approaches.

  8. Learning to Detect Human-Object Interactions

    KAUST Repository

    Chao, Yu-Wei

    2017-02-17

    In this paper we study the problem of detecting human-object interactions (HOI) in static images, defined as predicting a human and an object bounding box with an interaction class label that connects them. HOI detection is a fundamental problem in computer vision as it provides semantic information about the interactions among the detected objects. We introduce HICO-DET, a new large benchmark for HOI detection, by augmenting the current HICO classification benchmark with instance annotations. We propose Human-Object Region-based Convolutional Neural Networks (HO-RCNN), a novel DNN-based framework for HOI detection. At the core of our HO-RCNN is the Interaction Pattern, a novel DNN input that characterizes the spatial relations between two bounding boxes. We validate the effectiveness of our HO-RCNN using HICO-DET. Experiments demonstrate that our HO-RCNN, by exploiting human-object spatial relations through Interaction Patterns, significantly improves the performance of HOI detection over baseline approaches.

  9. Single-Cell Transcriptomics and Fate Mapping of Ependymal Cells Reveals an Absence of Neural Stem Cell Function.

    Science.gov (United States)

    Shah, Prajay T; Stratton, Jo A; Stykel, Morgan Gail; Abbasi, Sepideh; Sharma, Sandeep; Mayr, Kyle A; Koblinger, Kathrin; Whelan, Patrick J; Biernaskie, Jeff

    2018-05-03

    Ependymal cells are multi-ciliated cells that form the brain's ventricular epithelium and a niche for neural stem cells (NSCs) in the ventricular-subventricular zone (V-SVZ). In addition, ependymal cells are suggested to be latent NSCs with a capacity to acquire neurogenic function. This remains highly controversial due to a lack of prospective in vivo labeling techniques that can effectively distinguish ependymal cells from neighboring V-SVZ NSCs. We describe a transgenic system that allows for targeted labeling of ependymal cells within the V-SVZ. Single-cell RNA-seq revealed that ependymal cells are enriched for cilia-related genes and share several stem-cell-associated genes with neural stem or progenitors. Under in vivo and in vitro neural-stem- or progenitor-stimulating environments, ependymal cells failed to demonstrate any suggestion of latent neural-stem-cell function. These findings suggest remarkable stability of ependymal cell function and provide fundamental insights into the molecular signature of the V-SVZ niche. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Pharmacokinetics, biodistribution and dosimetry of {sup 99m}Tc-labeled anti-human epidermal growth factor receptor humanized monoclonal antibody R3 in rats

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Normando Iznaga; Morales, Alejo Morales; Duconge, Jorge; Torres, Idania Caballero; Fernandez, Eduardo; Gomez, Jose A

    1998-01-01

    The pharmacokinetics, biodistribution and dosimetry of {sup 99m}Tc-labeled anti-human epidermal growth factor receptor (anti-hEGF-r) humanized monoclonal antibody (MAb) R3 was investigated following intravenous injection in normal Wistar rats. Serum disappearance curves were best fit by a two-compartment model having a mean distribution half-life (t{sub (1(2{alpha}}{sub ))}) of 0.250 h and a mean elimination (t{sub (1(2{beta}}{sub ))}) of 13.89 h. Among the various organs, a little accumulation of the radiolabeled antibody was found only in kidneys. Biodistribution and dosimetry studies in humans were performed by extrapolation of the animal data to humans. Absorbed dose to normal organs and the remainder of the whole body were estimated using the medical internal radiation dose formula, and dose contributions from radioactivity in transit through the gastrointestinal tract were estimated using a compartment model. Extrapolated values of radiation absorbed dose to normal organs in rads per millicurie administered were whole body, 0.0085; lower large intestine wall, 0.0898; small intestine, 0.0530; upper large intestine wall, 0.0731; and kidneys, 0.0455. The effective dose equivalent predicted was 0.0162 rem/mCi and the effective dose was found to be 0.015 rem/mCi. On the basis of the pharmacokinetics, biodistribution and internal radiation dosimetry information obtained in this study, a diagnostic phase I clinical trial with {sup 99m}Tc-labeled humanized MAb R3 conjugate in patients should be supported.

  11. Studies of the labelling of human serum albumin with 99mTc using Sn(II) tartrate and Sn(II)Cl2 as reducing agents

    International Nuclear Information System (INIS)

    El-Kolaly, M.T.; El-Asrag, H.A.; El-Wetery, A.S.; El-Mohty, A.A.

    1990-01-01

    A comparative study has been carried out on the effect of Sn(II) tartrate and Sn(II)Cl 2 on the labelling efficiency and tissue distribution of 99m Tc-human serum albumin. The effect of reductant content, reaction time (incubation time), albumin content, pH, and ascorbic acid on the efficiency of labelling and the tissue distribution of the labelled albumin has been investigated. The percentage of labelling was determined by paper and thin layer radiochromatography. Ascorbic acid shows no effect on either labelling efficiency or tissue distribution of 99m Tc-HSA prepared by Sn(II) tartrate or Sn(II)Cl 2 . (author)

  12. Determination of capillary permeability with labeled human albumin

    International Nuclear Information System (INIS)

    Behar, A.; Tournoux, A.; Baillet, J.; Lagrue, G.

    1976-01-01

    We propose a new test for measuring the 'capillary permeability' with labeled albumin, with simpler methods, satisfactory results and good discrimination between normal subjects and pathological patients. In normal subjects, after the removal of the tourniquet, the radioactivity returns to former values (under 10% of this figure). In pathological patients, even after the 3 min following the removal of the tourniquet, there is no return to the former value (the retention of labeled albumin is always over 10%). It is in cycle oedema that the test provides the most interesting results. (orig) [de

  13. Neural crest cells: from developmental biology to clinical interventions.

    Science.gov (United States)

    Noisa, Parinya; Raivio, Taneli

    2014-09-01

    Neural crest cells are multipotent cells, which are specified in embryonic ectoderm in the border of neural plate and epiderm during early development by interconnection of extrinsic stimuli and intrinsic factors. Neural crest cells are capable of differentiating into various somatic cell types, including melanocytes, craniofacial cartilage and bone, smooth muscle, and peripheral nervous cells, which supports their promise for cell therapy. In this work, we provide a comprehensive review of wide aspects of neural crest cells from their developmental biology to applicability in medical research. We provide a simplified model of neural crest cell development and highlight the key external stimuli and intrinsic regulators that determine the neural crest cell fate. Defects of neural crest cell development leading to several human disorders are also mentioned, with the emphasis of using human induced pluripotent stem cells to model neurocristopathic syndromes. © 2014 Wiley Periodicals, Inc.

  14. Effects of epidermal growth factor on neural crest cells in tissue culture

    International Nuclear Information System (INIS)

    Erickson, C.A.; Turley, E.A.

    1987-01-01

    Epidermal growth factor (EGF) stimulates the release of hyaluronic acid (HA) and chondroitin sulfate proteoglycan (CSPG) from quail trunk neural crest cultures in a dose-dependent fashion. It also promotes the expression of cell-associated heparan sulfate proteoglycan (HSPG) as detected by immunofluorescence and immunoprecipitation of the 3 H-labeled proteoglycan. Furthermore, EGF stimulates [ 3 H]thymidine incorporation into total cell DNA. These results raise the possibility that EGF or an analogous growth factor is involved in regulation of neural crest cell morphogenesis

  15. Transplantation dose alters the dynamics of human neural stem cell engraftment, proliferation and migration after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Katja M. Piltti

    2015-09-01

    Full Text Available The effect of transplantation dose on the spatiotemporal dynamics of human neural stem cell (hNSC engraftment has not been quantitatively evaluated in the central nervous system. We investigated changes over time in engraftment/survival, proliferation, and migration of multipotent human central nervous system-derived neural stem cells (hCNS-SCns transplanted at doses ranging from 10,000 to 500,000 cells in spinal cord injured immunodeficient mice. Transplant dose was inversely correlated with measures of donor cell proliferation at 2 weeks post-transplant (WPT and dose-normalized engraftment at 16 WPT. Critically, mice receiving the highest cell dose exhibited an engraftment plateau, in which the total number of engrafted human cells never exceeded the initial dose. These data suggest that donor cell expansion was inversely regulated by target niche parameters and/or transplantation density. Investigation of the response of donor cells to the host microenvironment should be a key variable in defining target cell dose in pre-clinical models of CNS disease and injury.

  16. Dual small-molecule targeting of SMAD signaling stimulates human induced pluripotent stem cells toward neural lineages.

    Directory of Open Access Journals (Sweden)

    Methichit Wattanapanitch

    Full Text Available Incurable neurological disorders such as Parkinson's disease (PD, Huntington's disease (HD, and Alzheimer's disease (AD are very common and can be life-threatening because of their progressive disease symptoms with limited treatment options. To provide an alternative renewable cell source for cell-based transplantation and as study models for neurological diseases, we generated induced pluripotent stem cells (iPSCs from human dermal fibroblasts (HDFs and then differentiated them into neural progenitor cells (NPCs and mature neurons by dual SMAD signaling inhibitors. Reprogramming efficiency was improved by supplementing the histone deacethylase inhibitor, valproic acid (VPA, and inhibitor of p160-Rho associated coiled-coil kinase (ROCK, Y-27632, after retroviral transduction. We obtained a number of iPS colonies that shared similar characteristics with human embryonic stem cells in terms of their morphology, cell surface antigens, pluripotency-associated gene and protein expressions as well as their in vitro and in vivo differentiation potentials. After treatment with Noggin and SB431542, inhibitors of the SMAD signaling pathway, HDF-iPSCs demonstrated rapid and efficient differentiation into neural lineages. Six days after neural induction, neuroepithelial cells (NEPCs were observed in the adherent monolayer culture, which had the ability to differentiate further into NPCs and neurons, as characterized by their morphology and the expression of neuron-specific transcripts and proteins. We propose that our study may be applied to generate neurological disease patient-specific iPSCs allowing better understanding of disease pathogenesis and drug sensitivity assays.

  17. Fluorescently labeled chimeric anti-CEA antibody improves detection and resection of human colon cancer in a patient-derived orthotopic xenograft (PDOX) nude mouse model.

    Science.gov (United States)

    Metildi, Cristina A; Kaushal, Sharmeela; Luiken, George A; Talamini, Mark A; Hoffman, Robert M; Bouvet, Michael

    2014-04-01

    The aim of this study was to evaluate a new fluorescently labeled chimeric anti-CEA antibody for improved detection and resection of colon cancer. Frozen tumor and normal human tissue samples were stained with chimeric and mouse antibody-fluorophore conjugates for comparison. Mice with patient-derived orthotopic xenografts (PDOX) of colon cancer underwent fluorescence-guided surgery (FGS) or bright-light surgery (BLS) 24 hr after tail vein injection of fluorophore-conjugated chimeric anti-CEA antibody. Resection completeness was assessed using postoperative images. Mice were followed for 6 months for recurrence. The fluorophore conjugation efficiency (dye/mole ratio) improved from 3-4 to >5.5 with the chimeric CEA antibody compared to mouse anti-CEA antibody. CEA-expressing tumors labeled with chimeric CEA antibody provided a brighter fluorescence signal on frozen human tumor tissues (P = 0.046) and demonstrated consistently lower fluorescence signals in normal human tissues compared to mouse antibody. Chimeric CEA antibody accurately labeled PDOX colon cancer in nude mice, enabling improved detection of tumor margins for more effective FGS. The R0 resection rate increased from 86% to 96% with FGS compared to BLS. Improved conjugating efficiency and labeling with chimeric fluorophore-conjugated antibody resulted in better detection and resection of human colon cancer in an orthotopic mouse model. © 2013 Wiley Periodicals, Inc.

  18. Differential expression of the neural cell adhesion molecule NCAM 140 in human pituitary tumors

    OpenAIRE

    Aletsee-Ufrecht, M. C.; Langley, O. K.; Gratzl, O.; Gratzl, Manfred

    1990-01-01

    We have analyzed the expression of the intracellular marker protein neuron specific enolase (NSE), synaptophysin (SYN) and of the cell surface marker NCAM (neural cell adhesion molecule) in both normal human hypophysis and in pituitary adenomas in order to explore their potential use as diagnostic tools. All adenomas (4 prolactinomas, 3 growth hormone (GH) producing adenomas and 4 inactive adenomas) showed SYN and NSE immunoreactivity on tissue sections and this was confirmed by immunoblots. ...

  19. Radial contour labeling with straight leaders

    NARCIS (Netherlands)

    Niedermann, B.; Nöllenburg, M.; Rutter, I.

    2017-01-01

    The usefulness of technical drawings as well as scientific illustrations such as medical drawings of human anatomy essentially depends on the placement of labels that describe all relevant parts of the figure. In order to not spoil or clutter the figure with text, the labels are often placed around

  20. Human neural progenitors derived from integration-free iPSCs for SCI therapy

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2017-03-01

    Full Text Available As a potentially unlimited autologous cell source, patient induced pluripotent stem cells (iPSCs provide great capability for tissue regeneration, particularly in spinal cord injury (SCI. However, despite significant progress made in translation of iPSC-derived neural progenitor cells (NPCs to clinical settings, a few hurdles remain. Among them, non-invasive approach to obtain source cells in a timely manner, safer integration-free delivery of reprogramming factors, and purification of NPCs before transplantation are top priorities to overcome. In this study, we developed a safe and cost-effective pipeline to generate clinically relevant NPCs. We first isolated cells from patients' urine and reprogrammed them into iPSCs by non-integrating Sendai viral vectors, and carried out experiments on neural differentiation. NPCs were purified by A2B5, an antibody specifically recognizing a glycoganglioside on the cell surface of neural lineage cells, via fluorescence activated cell sorting. Upon further in vitro induction, NPCs were able to give rise to neurons, oligodendrocytes and astrocytes. To test the functionality of the A2B5+ NPCs, we grafted them into the contused mouse thoracic spinal cord. Eight weeks after transplantation, the grafted cells survived, integrated into the injured spinal cord, and differentiated into neurons and glia. Our specific focus on cell source, reprogramming, differentiation and purification method purposely addresses timing and safety issues of transplantation to SCI models. It is our belief that this work takes one step closer on using human iPSC derivatives to SCI clinical settings.

  1. Neural computing thermal comfort index for HVAC systems

    International Nuclear Information System (INIS)

    Atthajariyakul, S.; Leephakpreeda, T.

    2005-01-01

    The primary purpose of a heating, ventilating and air conditioning (HVAC) system within a building is to make occupants comfortable. Without real time determination of human thermal comfort, it is not feasible for the HVAC system to yield controlled conditions of the air for human comfort all the time. This paper presents a practical approach to determine human thermal comfort quantitatively via neural computing. The neural network model allows real time determination of the thermal comfort index, where it is not practical to compute the conventional predicted mean vote (PMV) index itself in real time. The feed forward neural network model is proposed as an explicit function of the relation of the PMV index to accessible variables, i.e. the air temperature, wet bulb temperature, globe temperature, air velocity, clothing insulation and human activity. An experiment in an air conditioned office room was done to demonstrate the effectiveness of the proposed methodology. The results show good agreement between the thermal comfort index calculated from the neural network model in real time and those calculated from the conventional PMV model

  2. Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?

    OpenAIRE

    Tajbakhsh, Nima; Shin, Jae Y.; Gurudu, Suryakanth R.; Hurst, R. Todd; Kendall, Christopher B.; Gotway, Michael B.; Liang, Jianming

    2017-01-01

    Training a deep convolutional neural network (CNN) from scratch is difficult because it requires a large amount of labeled training data and a great deal of expertise to ensure proper convergence. A promising alternative is to fine-tune a CNN that has been pre-trained using, for instance, a large set of labeled natural images. However, the substantial differences between natural and medical images may advise against such knowledge transfer. In this paper, we seek to answer the following centr...

  3. Photoaffinity labeling of the human erythrocyte monosaccharide transporter with an aryl azide derivative of D-glucose

    International Nuclear Information System (INIS)

    Shanahan, M.F.; Wadzinski, B.E.; Lowndes, J.M.; Ruoho, A.E.

    1985-01-01

    A photoreactive, radioiodinated derivative of glucose, N-(4-iodoazidosalicyl)-6-amido-6-deoxyglucopyranose (IASA-glc), has been synthesized and used as a photoaffinity label for the human erythrocyte monosaccharide transporter. Photoinactivation and photoinsertion are both light-dependent and result in a marked decrease in the absorption spectra of the compound. When [ 125 I]IASA-glc was photolyzed with erythrocyte ghost membranes, photoinsertion of radiolabel was observed in three major regions, spectrin, band 3, and a protein of 58,000 daltons located in the zone 4.5 region. Of the three regions which were photolabeled, only labeling of polypeptides in the zone 4.5 region was partially blocked by D-glucose. In the non-iodinated form, N-(4-azidosalicyl)-6-amido-6-deoxy-glucopyranose inhibited the labeling of the transporter by [ 125 I]IASA-glc more effectively than D-glucose. The ability to synthesize this [ 125 I]containing photoprobe for the monosaccharide transporter at carrier-free levels offers several new advantages for investigating the structure of this transport protein in the erythrocyte

  4. Inhibition of iodine-125-labeled human follitropin binding to testicular receptor by epidermal growth factor and synthetic peptides

    International Nuclear Information System (INIS)

    Sluss, P.M.; Krystek, S.R. Jr.; Andersen, T.T.; Melson, B.E.; Huston, J.S.; Ridge, R.; Reichert, L.E. Jr.

    1986-01-01

    Two tetrapeptide sequence homologies between mouse epidermal growth factor precursor (mEGFP) and human follitropin (FSH) were revealed by a computer program that identifies identical residues among polypeptide sequences. The two tetrapeptides, Lys-Thr-Cys-Thr (KTCT) and Thr-Arg-Asp-Leu (TRDL), are present in the hormone-specific beta subunit of FSH from all species studied. These tetrapeptides are not present in the alpha subunit, which is common to all pituitary glycoprotein hormones. Both tetrapeptides are also found in mEGFP, and one tetrapeptide, TRDL, is located within the 53-residue form of mEGF purified from mouse submaxillary glands. Computer-generated hydropathy profiles predicted that both tetrapeptides are located in hydrophilic portions of the FSH beta subunit and that TRDL is in a hydrophilic portion of commercially available mEGF. Therefore, the tetrapeptides might be accessible to receptor binding sites for FSH. We report that mEGF inhibits binding of 125 I-labeled human FSH to receptors in testis by 50% (I50) at a concentration of 1.8 X 10(-5) M. No binding inhibition was observed by GnRH or arginine-vasopressin at 10(-4) M, neither of which contain the tetrapeptide sequences. FSH beta subunit, which contains both tetrapeptides, also inhibited binding (I50 = 9 X 10(-8) M) of 125 I-labeled human FSH to testis receptor. Thus, it appears that FSH beta subunit and mEGF are capable of inhibiting binding of FSH to testicular FSH receptors, presumably through interactions that include the homologous tetrapeptides. This presumption was supported by the observation that the synthetic tetrapeptides (KTCT or TRDL) were also active in inhibiting binding of 125 I-labeled human FSH to testis receptor

  5. 76 FR 30050 - Food Labeling; Nutrition Labeling of Standard Menu Items in Restaurants and Similar Retail Food...

    Science.gov (United States)

    2011-05-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Parts 11 and 101 [Docket No. FDA-2011-F-0172] RIN 0910-AG57 Food Labeling; Nutrition Labeling of Standard Menu Items in Restaurants and Similar Retail Food Establishments; Correction AGENCY: Food and Drug Administration, HHS...

  6. 76 FR 30051 - Food Labeling; Nutrition Labeling of Standard Menu Items in Restaurants and Similar Retail Food...

    Science.gov (United States)

    2011-05-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Parts 11 and 101 [Docket No. FDA-2011-F-0172] RIN 0910-AG57 Food Labeling; Nutrition Labeling of Standard Menu Items in Restaurants and Similar Retail Food Establishments; Extension of Comment Period AGENCY: Food and Drug...

  7. Immediate bromodeoxyuridine labelling of unseparated human bone marrow cells ex vivo is superior to labelling after routine laboratory processing

    DEFF Research Database (Denmark)

    Jensen, P O; Mortensen, B T; Christensen, I J

    1998-01-01

    It is important to evaluate the proliferation of bone marrow cells in several disease conditions and during treatment of patients with for example cytokines. Labelling with bromodeoxyuridine (BrdUrd), immunocytochemical staining with anti-BrdUrd antibody and analysis by flow cytometry provides...... a reliable and reproducible technique for estimation of the fraction of cells that incorporated BrdUrd into DNA during S-phase. We have compared immediate BrdUrd labelling of unseparated bone marrow cells with the previously used labelling in the laboratory after routine separation of the mononuclear cells....... Bone marrow aspirates from seven lymphoma patients without bone marrow involvement were studied with these two methods. We found higher BrdUrd labelling indices (LI) in the mononuclear cells, when cells were labelled immediately. A large variation in LI was found between patients. Our results suggest...

  8. Human Vitamin B12 Absorption and Metabolism are Measured by Accelerator Mass Spectrometry Using Specifically Labeled 14C-Cobalamin

    International Nuclear Information System (INIS)

    Carkeet, C; Dueker, S R; Lango, J; Buchholz, B A; Miller, J W; Green, R; Hammock, B D; Roth, J R; Anderson, P J

    2006-01-01

    There is need for an improved test of human ability to assimilate dietary vitamin B 12 . Assaying and understanding absorption and uptake of B 12 is important because defects can lead to hematological and neurological complications. Accelerator mass spectrometry (AMS) is uniquely suited for assessing absorption and kinetics of 14 C-labeled substances after oral ingestion because it is more sensitive than decay counting and can measure levels of carbon-14 ( 14 C) in microliter volumes of biological samples, with negligible exposure of subjects to radioactivity. The test we describe employs amounts of B 12 in the range of normal dietary intake. The B 12 used was quantitatively labeled with 14 C at one particular atom of the DMB moiety by exploiting idiosyncrasies of Salmonellametabolism. In order to grow aerobically on ethanolamine, S. entericamust be provided with either pre-formed B 12 or two of its precursors: cobinamide and dimethylbenzimidazole (DMB). When provided with 14 C-DMB specifically labeled in the C2 position, cells produced 14 C-B 12 of high specific activity (2.1 GBq/mmol, 58 mCi/mmol) and no detectable dilution of label from endogenous DMB synthesis. In a human kinetic study, a physiological dose (1.5 mg, 2.2 KBq/59 nCi) of purified 14 C-B 12 was administered and showed plasma appearance and clearance curves consistent with the predicted behavior of the pure vitamin. This method opens new avenues for study of B 12 assimilation

  9. Human Episodic Memory Retrieval Is Accompanied by a Neural Contiguity Effect.

    Science.gov (United States)

    Folkerts, Sarah; Rutishauser, Ueli; Howard, Marc W

    2018-04-25

    Cognitive psychologists have long hypothesized that experiences are encoded in a temporal context that changes gradually over time. When an episodic memory is retrieved, the state of context is recovered-a jump back in time. We recorded from single units in the medial temporal lobe of epilepsy patients performing an item recognition task. The population vector changed gradually over minutes during presentation of the list. When a probe from the list was remembered with high confidence, the population vector reinstated the temporal context of the original presentation of that probe during study, a neural contiguity effect that provides a possible mechanism for behavioral contiguity effects. This pattern was only observed for well remembered probes; old probes that were not well remembered showed an anti-contiguity effect. These results constitute the first direct evidence that recovery of an episodic memory in humans is associated with retrieval of a gradually changing state of temporal context, a neural "jump back in time" that parallels the act of remembering. SIGNIFICANCE STATEMENT Episodic memory is the ability to relive a specific experience from one's life. For decades, researchers have hypothesized that, unlike other forms of memory that can be described as simple associations between stimuli, episodic memory depends on the recovery of a neural representation of spatiotemporal context. During study of a sequence of stimuli, the brain state of epilepsy patients changed slowly over at least a minute. When the participant remembered a particular event from the list, this gradually changing state was recovered. This provides direct confirmation of the prediction from computational models of episodic memory. The resolution of this point means that the study of episodic memory can focus on the mechanisms by which this representation of spatiotemporal context is maintained and sometimes recovered. Copyright © 2018 the authors 0270-6474/18/384200-12$15.00/0.

  10. Adolescents' emotional competence is associated with parents' neural sensitivity to emotions.

    Science.gov (United States)

    Telzer, Eva H; Qu, Yang; Goldenberg, Diane; Fuligni, Andrew J; Galván, Adriana; Lieberman, Matthew D

    2014-01-01

    An essential component of youths' successful development is learning to appropriately respond to emotions, including the ability to recognize, identify, and describe one's feelings. Such emotional competence is thought to arise through the parent-child relationship. Yet, the mechanisms by which parents transmit emotional competence to their children are difficult to measure because they are often implicit, idiosyncratic, and not easily articulated by parents or children. In the current study, we used a multifaceted approach that went beyond self-report measures and examined whether parental neural sensitivity to emotions predicted their child's emotional competence. Twenty-two adolescent-parent dyads completed an fMRI scan during which they labeled the emotional expressions of negatively valenced faces. Results indicate that parents who recruited the amygdala, VLPFC, and brain regions involved in mentalizing (i.e., inferring others' emotional states) had adolescent children with greater emotional competence. These results held after controlling for parents' self-reports of emotional expressivity and adolescents' self-reports of the warmth and support of their parent relationships. In addition, adolescents recruited neural regions involved in mentalizing during affect labeling, which significantly mediated the associated between parental neural sensitivity and adolescents' emotional competence, suggesting that youth are modeling or referencing their parents' emotional profiles, thereby contributing to better emotional competence.

  11. Adolescents’ emotional competence is associated with parents’ neural sensitivity to emotions

    Directory of Open Access Journals (Sweden)

    Eva H Telzer

    2014-07-01

    Full Text Available An essential component of youths’ successful development is learning to appropriately respond to emotions, including the ability to recognize, identify, and describe one’s feelings. Such emotional competence is thought to arise through the parent-child relationship. Yet, the mechanisms by which parents transmit emotional competence to their children are difficult to measure because they are often implicit, idiosyncratic, and not easily articulated by parents or children. In the current study, we used a multifaceted approach that went beyond self-report measures and examined whether parental neural sensitivity to emotions predicted their child’s emotional competence. Twenty-two adolescent-parent dyads completed an fMRI scan during which they labeled the emotional expressions of negatively valenced faces. Results indicate that parents who recruited the amygdala, VLPFC, and brain regions involved in mentalizing (i.e., inferring others’ emotional states had adolescent children with greater emotional competence. These results held after controlling for parents’ self-reports of emotional expressivity and adolescents’ self-reports of the warmth and support of their parent relationships. In addition, adolescents recruited neural regions involved in mentalizing during affect labeling, which significantly mediated the associated between parental neural sensitivity and adolescents’ emotional competence, suggesting that youth are modeling or referencing their parents’ emotional profiles, thereby contributing to better emotional competence.

  12. Radioimmunoimaging of human colon carcinoma grafted into nudemice using 131I-labeled monoclonal anticea antibody and its F(ab')2 fragments

    International Nuclear Information System (INIS)

    Liu Guangda

    1988-01-01

    131 I-labeled monoclonal anti-CEA antibody and its F(ab') 2 fragments were injected into nude mice bearing human colon carcinoma xenografts for tumor localization and radioimmunoimaging studies. Transplanted tumors were visualized in 12 hours after injection of the labeled anti-CEA or its F(ab') 2 by gamma camera. Biodistribution data indicated that F(ab') 2 fragments were cleared more rapidly from blood (T 1/2 = 13.3 h for F(ab') 2 , T 1/2 = 21.1 h for intact antibody) over 6-24 h and had higher tumor blood ratios. The intact antibody was concentrated in the tumor better than F(ab') 2 . In double-label experiments, a nonspecific localization of the control ( 125 I-labeled anti-HCG) in the tumor was also observed

  13. Generation of Regionally Specific Neural Progenitor Cells (NPCs) and Neurons from Human Pluripotent Stem Cells (hPSCs).

    Science.gov (United States)

    Cutts, Josh; Brookhouser, Nicholas; Brafman, David A

    2016-01-01

    Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population capable of long-term expansion and differentiation into a variety of neuronal subtypes. As such, NPCs have tremendous potential for disease modeling, drug screening, and regenerative medicine. Current methods for the generation of NPCs results in cell populations homogenous for pan-neural markers such as SOX1 and SOX2 but heterogeneous with respect to regional identity. In order to use NPCs and their neuronal derivatives to investigate mechanisms of neurological disorders and develop more physiologically relevant disease models, methods for generation of regionally specific NPCs and neurons are needed. Here, we describe a protocol in which exogenous manipulation of WNT signaling, through either activation or inhibition, during neural differentiation of hPSCs, promotes the formation of regionally homogenous NPCs and neuronal cultures. In addition, we provide methods to monitor and characterize the efficiency of hPSC differentiation to these regionally specific cell identities.

  14. Effects of light emitting diode irradiation on neural differentiation of human umbilical cord-derived mesenchymal cells.

    Science.gov (United States)

    Dehghani-Soltani, Samereh; Shojaee, Mohammad; Jalalkamali, Mahshid; Babaee, Abdolreza; Nematollahi-Mahani, Seyed Noureddin

    2017-08-30

    Recently, light emitting diodes (LEDs) have been introduced as a potential physical factor for proliferation and differentiation of various stem cells. Among the mesenchymal stem cells human umbilical cord matrix-derived mesenchymal (hUCM) cells are easily propagated in the laboratory and their low immunogenicity make them more appropriate for regenerative medicine procedures. We aimed at this study to evaluate the effect of red and green light emitted from LED on the neural lineage differentiation of hUCM cells in the presence or absence of retinoic acid (RA). Harvested hUCM cells exhibited mesenchymal and stemness properties. Irradiation of these cells by green and red LED with or without RA pre-treatment successfully differentiated them into neural lineage when the morphology of the induced cells, gene expression pattern (nestin, β-tubulin III and Olig2) and protein synthesis (anti-nestin, anti-β-tubulin III, anti-GFAP and anti-O4 antibodies) was evaluated. These data point for the first time to the fact that LED irradiation and optogenetic technology may be applied for neural differentiation and neuronal repair in regenerative medicine.

  15. Preparation of high-quality iodine-125-labelled pituitary human follicle-stimulating hormone (hFSH) for radioimmunoassay

    International Nuclear Information System (INIS)

    Pinto, H.; Lerario, A.C.; Toledo e Souza, I.T. de; Wajchenberg, B.L.; Mattar, E.; Pieroni, R.R.

    1977-01-01

    A method is described for the enzymatic radioiodination of human follice-stimulating hormone (hFSH) by a system consisting of lactoperoxidase, hydrogen peroxide and Na 125 I. It is compared with the chloramine-T modified technique. A satisfactory specific activity of the labelled hormone is obtained with the enzymatic iodination, with much greater immunoreactivity and stability than with chloramine-T [pt

  16. γ-Secretase modulators reduce endogenous amyloid β42 levels in human neural progenitor cells without altering neuronal differentiation

    Science.gov (United States)

    D’Avanzo, Carla; Sliwinski, Christopher; Wagner, Steven L.; Tanzi, Rudolph E.; Kim, Doo Yeon; Kovacs, Dora M.

    2015-01-01

    Soluble γ-secretase modulators (SGSMs) selectively decrease toxic amyloid β (Aβ) peptides (Aβ42). However, their effect on the physiologic functions of γ-secretase has not been tested in human model systems. γ-Secretase regulates fate determination of neural progenitor cells. Thus, we studied the impact of SGSMs on the neuronal differentiation of ReNcell VM (ReN) human neural progenitor cells (hNPCs). Quantitative PCR analysis showed that treatment of neurosphere-like ReN cell aggregate cultures with γ-secretase inhibitors (GSIs), but not SGSMs, induced a 2- to 4-fold increase in the expression of the neuronal markers Tuj1 and doublecortin. GSI treatment also induced neuronal marker protein expression, as shown by Western blot analysis. In the same conditions, SGSM treatment selectively reduced endogenous Aβ42 levels by ∼80%. Mechanistically, we found that Notch target gene expressions were selectively inhibited by a GSI, not by SGSM treatment. We can assert, for the first time, that SGSMs do not affect the neuronal differentiation of hNPCs while selectively decreasing endogenous Aβ42 levels in the same conditions. Our results suggest that our hNPC differentiation system can serve as a useful model to test the impact of GSIs and SGSMs on both endogenous Aβ levels and γ-secretase physiologic functions including endogenous Notch signaling.—D’Avanzo, C., Sliwinski, C., Wagner, S. L., Tanzi, R. E., Kim, D. Y., Kovacs, D. M. γ-Secretase modulators reduce endogenous amyloid β42 levels in human neural progenitor cells without altering neuronal differentiation. PMID:25903103

  17. MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION

    Directory of Open Access Journals (Sweden)

    Artur Popko

    2013-06-01

    Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.

  18. Detection of human cancer in an animal model using radio-labelled tumour-associated monoclonal antibodies

    International Nuclear Information System (INIS)

    Epenetos, A.A.; Arklie, J.; Knowles, R.W.; Bodmer, W.F.

    1982-01-01

    Monoclonal antibodies to epithelial-cell antigenic determinants, labelled with 123 I and 125 I, were administered parenterally to immunodeficient mice bearing human tumours derived from a human cancer cell line. Anterior, posterior and lateral radioscans of the body were taken with a gamma scintillation camera at various times from immediately to 65 days after injection. Visual displays of the images were processed by standard computer techniques. The model used a human colon-cancer cell line, HT29, and the monoclonal antibody, AUAl, which is specific to an epithelial proliferating antigen. Tumour detection was achieved in all the mice. The smallest tumour detectable appeared to be about 1 mm in diameter. The degree of antibody uptake in a tumour depended on its size and the blood supply of its surrounding tissues. (author)

  19. The fate of hypoxic (pimonidazole-labelled) cells in human cervix tumours undergoing chemo-radiotherapy

    International Nuclear Information System (INIS)

    Durand, Ralph E.; Aquino-Parsons, Christina

    2006-01-01

    Background and purpose: A subset of patients in a clinical study where sequential biopsies were to be obtained during multifraction radiotherapy received pimonidazole prior to initiating treatment, allowing a unique opportunity of following hypoxic cells in situ during therapy. Material and methods: After institutional ethics review and with informed consent, women expecting to undergo radical treatment for cancer of the cervix received pimonidazole hydrochloride, with a biopsy approximately 24 h later. Therapy was then started, and weekly biopsies were obtained. In the laboratory, the biopsies were reduced to single cell suspensions for flow cytometry analysis of DNA content, pimonidazole, and proliferation markers. Results: Pre-treatment pimonidazole-positive cells were largely in G /G 1 . Pimonidazole-labelled cells, though expected to be radioresistant, were markedly decreased even early into treatment, and continued to disappear with a half-time of about 3 days. Concurrently, the cell cycle distribution of the previously hypoxic cells changed from predominantly quiescent to mostly proliferating. Conclusions: While a part of the rapid apparent loss of hypoxic cells was certainly due to loss of pimonidazole adducts through repair and dilution by cell division, the speed with which this occurred suggests that many labelled cells could rapidly re-enter the proliferative pool, a result consistent with many of those pimonidazole-labelled human cervix tumour cells being cyclically, rather than continuously, hypoxic

  20. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts

    Directory of Open Access Journals (Sweden)

    James C K Lai

    2008-12-01

    Full Text Available James C K Lai1, Maria B Lai1, Sirisha Jandhyam1, Vikas V Dukhande1, Alok Bhushan1, Christopher K Daniels1, Solomon W Leung21Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and Biomedical Research Institute; 2Department of Civil and Environmental Engineering, College of Engineering and Biomedical Research Institute, Idaho State University, Pocatello, ID, USAAbstract: The use of titanium dioxide (TiO2 in various industrial applications (eg, production of paper, plastics, cosmetics, and paints has been expanding thereby increasing the occupational and other environmental exposure of these nanoparticles to humans and other species. However, the health effects of exposure to TiO2 nanoparticles have not been systematically assessed even though recent studies suggest that such exposure induces inflammatory responses in lung tissue and cells. Because the effects of such nanoparticles on human neural cells are unknown, we have determined the putative cytotoxic effects of these nanoparticles on human astrocytes-like astrocytoma U87 cells and compared their effects on normal human fibroblasts. We found that TiO2 micro- and nanoparticles induced cell death on both human cell types in a concentration-related manner. We further noted that zinc oxide (ZnO nanoparticles were the most effective, TiO2 nanoparticles the second most effective, and magnesium oxide (MgO nanoparticles the least effective in inducing cell death in U87 cells. The cell death mechanisms underlying the effects of TiO2 micro- and nanoparticles on U87 cells include apoptosis, necrosis, and possibly apoptosis-like and necrosis-like cell death types. Thus, our findings may have toxicological and other pathophysiological implications on exposure of humans and other mammalian species to metallic oxide nanoparticles.Keywords: cytotoxicity of titanium dioxide micro- and nanoparticles, cytotoxicity of zinc oxide and magnesium oxide nanoparticles, human neural cells

  1. Comprehensive quantitative comparison of the membrane proteome and PTM-ome of human embryonic stem cells and neural stem cells

    DEFF Research Database (Denmark)

    Braga, Marcella Nunes de Melo; Schulz, Melanie; Jakobsen, Lene

    Introduction: Human embryonic stem cells (hESCs) can differentiate into all three germ layers and self-renew. Due to its ability to differentiate in vitro into human neural stem cells (hNSCs), which can further be differentiated into motor neurons and dopaminergic neurons, these cells are potential...... identified phosphorylated and SA glycosylated proteins, respectively. This study allowed us to identify several significantly regulated proteins during the differentiation process, including proteins involved in the early embryonic development as well as in the neural development. In the latter group...... of proteins we could identify a number of proteins associated with synaptic vesicles, which are vesicles that store neurotransmitters in the nerve-terminals. An example of an upregulated protein in hESCs is the gap junction alpha 1 (GJA1), a phosphorylated protein which plays a crucial role in embryonic...

  2. Location of the higher affinity copper site on human hemoglobin by the use of the spin label technique

    International Nuclear Information System (INIS)

    Tabak, M.; Louro, S.R.W.

    1983-11-01

    Addition of copper (II) ions to Cys β-93 maleimide spin-labelled human hemoglobin A produces a dramatic decrease in the amplitude of the spin-label ESR spectra. This effect was analyzed in the framework of Leigh's theory which permits interspin distances to be deduced from the effect of dipolar coupling on the ESR spectra and led to an estimate of 9A as the distance between the label and the higher affinity copper site. Taking into account the previous results which suggest that four nitrogen atoms coordinate with copper, and that the N terminal val β-1 and His β-2 residues are involved, the location of the higher affinity copper site is proposed to be at the β 1 β 2 interface of the hemoglobin molecule, involving the N terminal of one β subunit and the C terminal of the other. (Author) [pt

  3. Gastric ulcer localization by direct in vivo labeling of sucralfate: work in progress

    Energy Technology Data Exchange (ETDEWEB)

    Pera, A.; Seevers, R.H.; Meyer, K.; Hall, C.; Bekerman, C.; Anderson, T.M.; Katzen, H.; Laakso, L.; Pinsky, S.M.

    1985-09-01

    The authors developed and evaluated a new procedure for imaging gastric ulcer disease with technetium 99m - labeled sucralfate. The new method employs direct in vivo labeling of sucralfate instead of in vitro labeling using human serum albumin, as previously reported in the literature. In 26 studies using humans with sucralfate labeled directly in vivo, 15 gave true-negative results. Of 14 studies using humans with in vitro labeled sucralfate, three gave true-negative results, three gave true-positive results, and the results of eight were either false-negative or could not be interpreted because of high levels of activity remaining in the stomach. They suggest that the direct in vivo labeling method significantly improves the sucralfate gastric ulcer imaging technique.

  4. Gastric ulcer localization by direct in vivo labeling of sucralfate: work in progress

    International Nuclear Information System (INIS)

    Pera, A.; Seevers, R.H.; Meyer, K.; Hall, C.; Bekerman, C.; Anderson, T.M.; Katzen, H.; Laakso, L.; Pinsky, S.M.

    1985-01-01

    The authors developed and evaluated a new procedure for imaging gastric ulcer disease with technetium 99m - labeled sucralfate. The new method employs direct in vivo labeling of sucralfate instead of in vitro labeling using human serum albumin, as previously reported in the literature. In 26 studies using humans with sucralfate labeled directly in vivo, 15 gave true-negative results. Of 14 studies using humans with in vitro labeled sucralfate, three gave true-negative results, three gave true-positive results, and the results of eight were either false-negative or could not be interpreted because of high levels of activity remaining in the stomach. They suggest that the direct in vivo labeling method significantly improves the sucralfate gastric ulcer imaging technique

  5. /sup 99m/Tc-labeled solid-phase meal: a quantitative clinical measurement of human gastric emptying

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.L.; Beck, W.J.; McDonald, A.P.; Carlson, G.M.; Mathias, J.R.

    1983-08-01

    A solid-phase meal labeled with /sup 99m/Tc-sulfur colloid provides an improved clinical test for the quantitative evaluation of human gastric emptying. We studied 12 healthy male controls and five male patients with known gastric stasis secondary to a vagotomy and drainage procedure. All subjects were fasted for 8 hours before the study, and each consumed an unbuttered biscuit and a poached egg white containing 1 mCi of /sup 99m/Tc-sulfur colloid. For 2 hours, 60-second counts were measured every 10 minutes by a Pho Gamma III scintillation camera. The t/sup 1///sup 2/ for control subjects was 60 minutes, at which time patients with gastric stasis had retained 98% of the test meal. At 120 minutes, control subjects and patients with gastric stasis had 4.7% and 89%, respectively, of the meal remaining in the stomach. The solid-phase test meal labeled with /sup 99m/Tc-sulfur colloid is easy to perform and can be used clinically to quantitatively measure gastric emptying in humans. This test can discriminate between control subjects and patients with known gastric stasis.

  6. /sup 99m/Tc-labeled solid-phase meal: a quantitative clinical measurement of human gastric emptying

    International Nuclear Information System (INIS)

    Martin, J.L.; Beck, W.J.; McDonald, A.P.; Carlson, G.M.; Mathias, J.R.

    1983-01-01

    A solid-phase meal labeled with /sup 99m/Tc-sulfur colloid provides an improved clinical test for the quantitative evaluation of human gastric emptying. We studied 12 healthy male controls and five male patients with known gastric stasis secondary to a vagotomy and drainage procedure. All subjects were fasted for 8 hours before the study, and each consumed an unbuttered biscuit and a poached egg white containing 1 mCi of /sup 99m/Tc-sulfur colloid. For 2 hours, 60-second counts were measured every 10 minutes by a Pho Gamma III scintillation camera. The t 1 / 2 for control subjects was 60 minutes, at which time patients with gastric stasis had retained 98% of the test meal. At 120 minutes, control subjects and patients with gastric stasis had 4.7% and 89%, respectively, of the meal remaining in the stomach. The solid-phase test meal labeled with /sup 99m/Tc-sulfur colloid is easy to perform and can be used clinically to quantitatively measure gastric emptying in humans. This test can discriminate between control subjects and patients with known gastric stasis

  7. Efficient derivation of multipotent neural stem/progenitor cells from non-human primate embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Hiroko Shimada

    Full Text Available The common marmoset (Callithrix jacchus is a small New World primate that has been used as a non-human primate model for various biomedical studies. We previously demonstrated that transplantation of neural stem/progenitor cells (NS/PCs derived from mouse and human embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs promote functional locomotor recovery of mouse spinal cord injury models. However, for the clinical application of such a therapeutic approach, we need to evaluate the efficacy and safety of pluripotent stem cell-derived NS/PCs not only by xenotransplantation, but also allotransplantation using non-human primate models to assess immunological rejection and tumorigenicity. In the present study, we established a culture method to efficiently derive NS/PCs as neurospheres from common marmoset ESCs. Marmoset ESC-derived neurospheres could be passaged repeatedly and showed sequential generation of neurons and astrocytes, similar to that of mouse ESC-derived NS/PCs, and gave rise to functional neurons as indicated by calcium imaging. Although marmoset ESC-derived NS/PCs could not differentiate into oligodendrocytes under default culture conditions, these cells could abundantly generate oligodendrocytes by incorporating additional signals that recapitulate in vivo neural development. Moreover, principal component analysis of microarray data demonstrated that marmoset ESC-derived NS/PCs acquired similar gene expression profiles to those of fetal brain-derived NS/PCs by repeated passaging. Therefore, marmoset ESC-derived NS/PCs may be useful not only for accurate evaluation by allotransplantation of NS/PCs into non-human primate models, but are also applicable to analysis of iPSCs established from transgenic disease model marmosets.

  8. Immunogold labels: cell-surface markers in atomic force microscopy

    NARCIS (Netherlands)

    Putman, Constant A.J.; Putman, C.A.J.; de Grooth, B.G.; Hansma, Paul K.; van Hulst, N.F.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect

  9. The Postischemic Environment Differentially Impacts Teratoma or Tumor Formation After Transplantation of Human Embryonic Stem Cell-Derived Neural Progenitors

    Czech Academy of Sciences Publication Activity Database

    Seminatore, CH.; Polentes, J.; Ellman, D.; Kozubenko, Nataliya; Itier, V.; Tine, S.; Tritschler, L.; Brenot, M.; Guidou, E.; Blondeau, J.; Lhuillier, M.; Bugi, A.; Aubry, L.; Jendelová, Pavla; Syková, Eva; Perrier, A. L.; Finsen, B.; Onteniente, B.

    2010-01-01

    Roč. 41, č. 1 (2010), s. 153-159 ISSN 0039-2499 Institutional research plan: CEZ:AV0Z50390703 Keywords : brain transplantation * human embryonic stem cells * neural differentiation Subject RIV: FH - Neurology Impact factor: 5.756, year: 2010

  10. Protein Kinase-A Inhibition Is Sufficient to Support Human Neural Stem Cells Self-Renewal.

    Science.gov (United States)

    Georges, Pauline; Boissart, Claire; Poulet, Aurélie; Peschanski, Marc; Benchoua, Alexandra

    2015-12-01

    Human pluripotent stem cell-derived neural stem cells offer unprecedented opportunities for producing specific types of neurons for several biomedical applications. However, to achieve it, protocols of production and amplification of human neural stem cells need to be standardized, cost effective, and safe. This means that small molecules should progressively replace the use of media containing cocktails of protein-based growth factors. Here we have conducted a phenotypical screening to identify pathways involved in the regulation of hNSC self-renewal. We analyzed 80 small molecules acting as kinase inhibitors and identified compounds of the 5-isoquinolinesulfonamide family, described as protein kinase A (PKA) and protein kinase G inhibitors, as candidates to support hNSC self-renewal. Investigating the mode of action of these compounds, we found that modulation of PKA activity was central in controlling the choice between self-renewal or terminal neuronal differentiation of hNSC. We finally demonstrated that the pharmacological inhibition of PKA using the small molecule HA1004 was sufficient to support the full derivation, propagation, and long-term maintenance of stable hNSC in absence of any other extrinsic signals. Our results indicated that tuning of PKA activity is a core mechanism regulating hNSC self-renewal and differentiation and delineate the minimal culture media requirement to maintain undifferentiated hNSC in vitro. © 2015 AlphaMed Press.

  11. Harmine stimulates proliferation of human neural progenitors

    Directory of Open Access Journals (Sweden)

    Vanja Dakic

    2016-12-01

    Full Text Available Harmine is the β-carboline alkaloid with the highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants reverse the symptoms of depression by stimulating neuronal proliferation. It has been shown that Ayahuasca presents antidepressant effects in patients with depressive disorder. In the present study, we investigated the effects of harmine in cell cultures containing human neural progenitor cells (hNPCs, 97% nestin-positive derived from pluripotent stem cells. After 4 days of treatment, the pool of proliferating hNPCs increased by 71.5%. Harmine has been reported as a potent inhibitor of the dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A, which regulates cell proliferation and brain development. We tested the effect of analogs of harmine, an inhibitor of DYRK1A (INDY, and an irreversible selective inhibitor of monoamine oxidase (MAO but not DYRK1A (pargyline. INDY but not pargyline induced proliferation of hNPCs similarly to harmine, suggesting that inhibition of DYRK1A is a possible mechanism to explain harmine effects upon the proliferation of hNPCs. Our findings show that harmine enhances proliferation of hNPCs and suggest that inhibition of DYRK1A may explain its effects upon proliferation in vitro and antidepressant effects in vivo.

  12. Speaker diarization system using HXLPS and deep neural network

    Directory of Open Access Journals (Sweden)

    V. Subba Ramaiah

    2018-03-01

    Full Text Available In general, speaker diarization is defined as the process of segmenting the input speech signal and grouped the homogenous regions with regard to the speaker identity. The main idea behind this system is that it is able to discriminate the speaker signal by assigning the label of the each speaker signal. Due to rapid growth of broadcasting and meeting, the speaker diarization is burdensome to enhance the readability of the speech transcription. In order to solve this issue, Holoentropy with the eXtended Linear Prediction using autocorrelation Snapshot (HXLPS and deep neural network (DNN is proposed for the speaker diarization system. The HXLPS extraction method is newly developed by incorporating the Holoentropy with the XLPS. Once we attain the features, the speech and non-speech signals are detected by the Voice Activity Detection (VAD method. Then, i-vector representation of every segmented signal is obtained using Universal Background Model (UBM model. Consequently, DNN is utilized to assign the label for the speaker signal which is then clustered according to the speaker label. The performance is analysed using the evaluation metrics, such as tracking distance, false alarm rate and diarization error rate. The outcome of the proposed method ensures the better diarization performance by achieving the lower DER of 1.36% based on lambda value and DER of 2.23% depends on the frame length. Keywords: Speaker diarization, HXLPS feature extraction, Voice activity detection, Deep neural network, Speaker clustering, Diarization Error Rate (DER

  13. Over-expression of hNGF in adult human olfactory bulb neural stem cells promotes cell growth and oligodendrocytic differentiation

    NARCIS (Netherlands)

    H.E.S. Marei (Hany); A. Althani (Asmaa); N. Afifi (Nahla); A. Abd-Elmaksoud (Ahmed); C. Bernardini (Camilla); F. Michetti (Fabrizio); M. Barba (Marta); M. Pescatori (Mario); G. Maira (Giulio); E. Paldino (Emanuela); L. Manni (Luigi); P. Casalbore (Patrizia); C. Cenciarelli (Carlo)

    2013-01-01

    textabstractThe adult human olfactory bulb neural stem/progenitor cells (OBNC/PC) are promising candidate for cell-based therapy for traumatic and neurodegenerative insults. Exogenous application of NGF was suggested as a promising therapeutic strategy for traumatic and neurodegenerative diseases,

  14. Conversion of Human Fibroblasts to Stably Self-Renewing Neural Stem Cells with a Single Zinc-Finger Transcription Factor

    Directory of Open Access Journals (Sweden)

    Ebrahim Shahbazi

    2016-04-01

    Full Text Available Direct conversion of somatic cells into neural stem cells (NSCs by defined factors holds great promise for mechanistic studies, drug screening, and potential cell therapies for different neurodegenerative diseases. Here, we report that a single zinc-finger transcription factor, Zfp521, is sufficient for direct conversion of human fibroblasts into long-term self-renewable and multipotent NSCs. In vitro, Zfp521-induced NSCs maintained their characteristics in the absence of exogenous factor expression and exhibited morphological, molecular, developmental, and functional properties that were similar to control NSCs. In addition, the single-seeded induced NSCs were able to form NSC colonies with efficiency comparable with control NSCs and expressed NSC markers. The converted cells were capable of surviving, migrating, and attaining neural phenotypes after transplantation into neonatal mouse and adult rat brains, without forming tumors. Moreover, the Zfp521-induced NSCs predominantly expressed rostral genes. Our results suggest a facilitated approach for establishing human NSCs through Zfp521-driven conversion of fibroblasts.

  15. Identifying beneficial task relations for multi-task learning in deep neural networks

    DEFF Research Database (Denmark)

    Bingel, Joachim; Søgaard, Anders

    2017-01-01

    Multi-task learning (MTL) in deep neural networks for NLP has recently received increasing interest due to some compelling benefits, including its potential to efficiently regularize models and to reduce the need for labeled data. While it has brought significant improvements in a number of NLP...

  16. Development of {sup 68}Ga-labeled mannosylated human serum albumin (MSA) as a lymph node imaging agent for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Yeon [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Jeong, Jae Min, E-mail: jmjng@snu.ac.k [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Yoo, Byong Chul [Research Institute, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of); Kim, Kyunggon; Kim, Youngsoo [Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Yang, Bo Yeun; Lee, Yun-Sang; Lee, Dong Soo [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Chung, June-Key [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Myung Chul [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2011-04-15

    Introduction: Although many sentinel lymph node (SLN) imaging agents labeled with {sup 99m}Tc have been developed, no positron-emitting agent has been specifically designed for SLN imaging. Furthermore, the development of the beta probe and the requirement for better image resolution have increased the need for a positron-emitting SLN imaging agent. Here, we describe the development of a novel positron-emitting SLN imaging agent labeled with {sup 68}Ga. Methods: A mannosylated human serum albumin (MSA) was synthesized by conjugating {alpha}-D-mannopyranosylphenyl isothiocyanate to human serum albumin in sodium carbonate buffer (pH 9.5), and then 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid was conjugated to synthesize NOTA-MSA. Numbers of mannose and NOTA units conjugated in NOTA-MSA were determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. NOTA-MSA was labeled with {sup 68}Ga at room temperature. The stability of {sup 68}Ga-NOTA-MSA was checked in labeling medium at room temperature and in human serum at 37{sup o}C. Biodistribution in normal ICR mice was investigated after tail vein injection, and micro-positron emission tomography (PET) images were obtained after injecting {sup 68}Ga-NOTA-MSA into a tail vein or a footpad. Results: The numbers of conjugated {alpha}-D-mannopyranosylphenyl isothiocyanate and 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid units in NOTA-MSA were 10.6 and 6.6, respectively. The labeling efficiency of {sup 68}Ga-NOTA-MSA was greater than 99% at room temperature, and its stability was greater than 99% at 4 h. Biodistribution and micro-PET studies of {sup 68}Ga-NOTA-MSA showed high liver and spleen uptakes after intravenous injection. {sup 68}Ga-NOTA-MSA injected into a footpad rapidly migrated to the lymph node. Conclusions: {sup 68}Ga-NOTA-MSA was successfully developed as a novel SLN imaging agent for PET. NOTA-MSA is easily labeled at high

  17. An Efficient Feature Extraction Method with Pseudo-Zernike Moment in RBF Neural Network-Based Human Face Recognition System

    Directory of Open Access Journals (Sweden)

    Ahmadi Majid

    2003-01-01

    Full Text Available This paper introduces a novel method for the recognition of human faces in digital images using a new feature extraction method that combines the global and local information in frontal view of facial images. Radial basis function (RBF neural network with a hybrid learning algorithm (HLA has been used as a classifier. The proposed feature extraction method includes human face localization derived from the shape information. An efficient distance measure as facial candidate threshold (FCT is defined to distinguish between face and nonface images. Pseudo-Zernike moment invariant (PZMI with an efficient method for selecting moment order has been used. A newly defined parameter named axis correction ratio (ACR of images for disregarding irrelevant information of face images is introduced. In this paper, the effect of these parameters in disregarding irrelevant information in recognition rate improvement is studied. Also we evaluate the effect of orders of PZMI in recognition rate of the proposed technique as well as RBF neural network learning speed. Simulation results on the face database of Olivetti Research Laboratory (ORL indicate that the proposed method for human face recognition yielded a recognition rate of 99.3%.

  18. Remote Sensing Scene Classification Based on Convolutional Neural Networks Pre-Trained Using Attention-Guided Sparse Filters

    Directory of Open Access Journals (Sweden)

    Jingbo Chen

    2018-02-01

    Full Text Available Semantic-level land-use scene classification is a challenging problem, in which deep learning methods, e.g., convolutional neural networks (CNNs, have shown remarkable capacity. However, a lack of sufficient labeled images has proved a hindrance to increasing the land-use scene classification accuracy of CNNs. Aiming at this problem, this paper proposes a CNN pre-training method under the guidance of a human visual attention mechanism. Specifically, a computational visual attention model is used to automatically extract salient regions in unlabeled images. Then, sparse filters are adopted to learn features from these salient regions, with the learnt parameters used to initialize the convolutional layers of the CNN. Finally, the CNN is further fine-tuned on labeled images. Experiments are performed on the UCMerced and AID datasets, which show that when combined with a demonstrative CNN, our method can achieve 2.24% higher accuracy than a plain CNN and can obtain an overall accuracy of 92.43% when combined with AlexNet. The results indicate that the proposed method can effectively improve CNN performance using easy-to-access unlabeled images and thus will enhance the performance of land-use scene classification especially when a large-scale labeled dataset is unavailable.

  19. Investigation of Slow-wave Activity Saturation during Surgical Anesthesia Reveals a Signature of Neural Inertia in Humans.

    Science.gov (United States)

    Warnaby, Catherine E; Sleigh, Jamie W; Hight, Darren; Jbabdi, Saad; Tracey, Irene

    2017-10-01

    Previously, we showed experimentally that saturation of slow-wave activity provides a potentially individualized neurophysiologic endpoint for perception loss during anesthesia. Furthermore, it is clear that induction and emergence from anesthesia are not symmetrically reversible processes. The observed hysteresis is potentially underpinned by a neural inertia mechanism as proposed in animal studies. In an advanced secondary analysis of 393 individual electroencephalographic data sets, we used slow-wave activity dose-response relationships to parameterize slow-wave activity saturation during induction and emergence from surgical anesthesia. We determined whether neural inertia exists in humans by comparing slow-wave activity dose responses on induction and emergence. Slow-wave activity saturation occurs for different anesthetics and when opioids and muscle relaxants are used during surgery. There was wide interpatient variability in the hypnotic concentrations required to achieve slow-wave activity saturation. Age negatively correlated with power at slow-wave activity saturation. On emergence, we observed abrupt decreases in slow-wave activity dose responses coincident with recovery of behavioral responsiveness in ~33% individuals. These patients are more likely to have lower power at slow-wave activity saturation, be older, and suffer from short-term confusion on emergence. Slow-wave activity saturation during surgical anesthesia implies that large variability in dosing is required to achieve a targeted potential loss of perception in individual patients. A signature for neural inertia in humans is the maintenance of slow-wave activity even in the presence of very-low hypnotic concentrations during emergence from anesthesia.

  20. Learning and adaptation: neural and behavioural mechanisms behind behaviour change

    Science.gov (United States)

    Lowe, Robert; Sandamirskaya, Yulia

    2018-01-01

    This special issue presents perspectives on learning and adaptation as they apply to a number of cognitive phenomena including pupil dilation in humans and attention in robots, natural language acquisition and production in embodied agents (robots), human-robot game play and social interaction, neural-dynamic modelling of active perception and neural-dynamic modelling of infant development in the Piagetian A-not-B task. The aim of the special issue, through its contributions, is to highlight some of the critical neural-dynamic and behavioural aspects of learning as it grounds adaptive responses in robotic- and neural-dynamic systems.

  1. In vivo instability of reduction-mediated 99mTc-labeled monoclonal antibody

    International Nuclear Information System (INIS)

    Sakahara, Harumi; Saga, Tsuneo; Endo, Keigo

    1993-01-01

    A murine monoclonal antibody that reacts with human osteogenic sarcoma (OST7) was reduced and directly labelled with 99m Tc without any loss of immunoreactivity. No fragmentation of the antibody was detected by high performance liquid chromatography after the labelling. However, SDS-PAGE analysis of the labelled antibody demonstrated the presence of low molecular weight species. Although more than 95% of the radioactivity remained bound at the antibody after incubation with human serum for 24 h, 99m Tc-labelled OST7 was cleared faster from the circulation than 125 I-labelled OST7 or 111 In-labelled OST7 in mice. (author)

  2. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks

    Directory of Open Access Journals (Sweden)

    Meeri Eeva-Liisa Mäkinen

    2018-03-01

    Full Text Available The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging and temporal resolution microelectrode array (MEA. We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling.

  3. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks

    Science.gov (United States)

    Mäkinen, Meeri Eeva-Liisa; Ylä-Outinen, Laura; Narkilahti, Susanna

    2018-01-01

    The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling. PMID:29559893

  4. In vitro autoradiographic studies for determination of mitotic index and labelling index in biopsies of the human oral mucosa

    International Nuclear Information System (INIS)

    Etzbach, T.

    1980-01-01

    In order to find the most favourable method of incubation for in-vitro autoradiographies of biopsies of human oral mucosa, tissue biopsies were taken from oral mucosa transplants of 10 patients (7 females, 3 males) and either fixed or incubated at once. The author then investigated the mitotic index of the non-incubated tissue specimens, the mitotic index of the tissue specimens incubated in atmospheric conditions (A), and the mitotic index of the tissue specimens incubated under pressure (B). Simultaneously, autoradiographs of the incubated tissue specimens were prepared in order to determine their labelling indices. The mitotic indices of the non-incubated tissue specimen were found to differ significantly from those of the A-incubated tissue specimens. A similar difference was found between the mitotic indices of the A- and B-incubated tissue biopsies. Further, the labelling indices of A autoradiographs differed significantly from the labelling indices of B autoradiographs. The findings suggest that incubation with an excess oxygen pressure of 2 bar is the method of choice for in-vitro studies of human oral mucosa as the cells retain their specific activity and cell processes will continue unhindered. Further, the findings can be transferred to in-vivo conditions with a reasonable error rate. (orig./MG) [de

  5. Gold nanoparticle labeling with tyramide signal amplification for highly sensitive detection of alpha fetoprotein in human serum by ICP-MS.

    Science.gov (United States)

    Li, Xiaoting; Chen, Beibei; He, Man; Xiao, Guangyang; Hu, Bin

    2018-01-01

    In this work, we developed an immunoassay based on tyramide signal amplification (TSA) and gold nanoparticles (Au NPs) labeling for highly sensitive detection of alpha fetoprotein (AFP) by inductively coupled plasma mass spectrometry (ICP-MS). AFP was captured by anti-AFP1 coating on the 96-well plate and labeled by anti-AFP2-horseradish peroxidase (HRP), in which the HRP can catalyze the deposition of biotinylated tyramine on the nearby protein. Then the streptavidin (SA)-Au NPs was labeled on the deposited biotinylated tyramine as the intensive signal probe for ICP-MS measurement. Under the optimal experimental conditions, the limit of detection of the developed method for AFP was 1.85pg/mL and the linear range was 0.005-2ng/mL. The relative standard deviation for seven replicate detections of 0.01ng/mL AFP was 5.2%. The proposed method was successfully applied to the detection of AFP in human serum with good recoveries. This strategy is highly sensitive and easy to operate, and can be extended to the sensitive detection of other biomolecules in human serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Nuclear Receptor TLX Regulates Cell Cycle Progression in Neural Stem Cells of the Developing Brain

    OpenAIRE

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2007-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal ...

  7. Transcriptional profiling of MEF2-regulated genes in human neural progenitor cells derived from embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Shing Fai Chan

    2015-03-01

    Full Text Available The myocyte enhancer factor 2 (MEF2 family of transcription factors is highly expressed in the brain and constitutes a key determinant of neuronal survival, differentiation, and synaptic plasticity. However, genome-wide transcriptional profiling of MEF2-regulated genes has not yet been fully elucidated, particularly at the neural stem cell stage. Here we report the results of microarray analysis comparing mRNAs isolated from human neural progenitor/stem cells (hNPCs derived from embryonic stem cells expressing a control vector versus progenitors expressing a constitutively-active form of MEF2 (MEF2CA, which increases MEF2 activity. Microarray experiments were performed using the Illumina Human HT-12 V4.0 expression beadchip (GEO#: GSE57184. By comparing vector-control cells to MEF2CA cells, microarray analysis identified 1880 unique genes that were differentially expressed. Among these genes, 1121 genes were up-regulated and 759 genes were down-regulated. Our results provide a valuable resource for identifying transcriptional targets of MEF2 in hNPCs.

  8. Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy.

    Science.gov (United States)

    Zhang, Jinlong; Lu, Xiaohui; Feng, Guijuan; Gu, Zhifeng; Sun, Yuyu; Bao, Guofeng; Xu, Guanhua; Lu, Yuanzhou; Chen, Jiajia; Xu, Lingfeng; Feng, Xingmei; Cui, Zhiming

    2016-10-01

    Cell-based transplantation strategies hold great potential for spinal cord injury (SCI) repair. Chitosan scaffolds have therapeutic benefits for spinal cord regeneration. Human dental pulp stem cells (DPSCs) are abundant available stem cells with low immunological incompatibility and can be considered for cell replacement therapy. The purpose of this study is to investigate the role of chitosan scaffolds in the neural differentiation of DPSCs in vitro and to assess the supportive effects of chitosan scaffolds in an animal model of SCI. DPSCs were incubated with chitosan scaffolds. Cell viability and the secretion of neurotrophic factors were analyzed. DPSCs incubated with chitosan scaffolds were treated with neural differentiation medium for 14 days and then neural genes and protein markers were analyzed by Western blot and reverse transcription plus the polymerase chain reaction. Our study revealed a higher cell viability and neural differentiation in the DPSC/chitosan-scaffold group. Compared with the control group, the levels of BDNF, GDNF, b-NGF, and NT-3 were significantly increased in the DPSC/chitosan-scaffold group. The Wnt/β-catenin signaling pathway played a key role in the neural differentiation of DPSCs combined with chitosan scaffolds. Transplantation of DPSCs together with chitosan scaffolds into an SCI rat model resulted in the marked recovery of hind limb locomotor functions. Thus, chitosan scaffolds were non-cytotoxic and provided a conducive and favorable microenvironment for the survival and neural differentiation of DPSCs. Transplantation of DPSCs might therefore be a suitable candidate for treating SCI and other neuronal degenerative diseases.

  9. Human Detection System by Fusing Depth Map-Based Method and Convolutional Neural Network-Based Method

    Directory of Open Access Journals (Sweden)

    Anh Vu Le

    2017-01-01

    Full Text Available In this paper, the depth images and the colour images provided by Kinect sensors are used to enhance the accuracy of human detection. The depth-based human detection method is fast but less accurate. On the other hand, the faster region convolutional neural network-based human detection method is accurate but requires a rather complex hardware configuration. To simultaneously leverage the advantages and relieve the drawbacks of each method, one master and one client system is proposed. The final goal is to make a novel Robot Operation System (ROS-based Perception Sensor Network (PSN system, which is more accurate and ready for the real time application. The experimental results demonstrate the outperforming of the proposed method compared with other conventional methods in the challenging scenarios.

  10. Therapeutic efficacy of intralesional 131I-labelled hyaluronectin in grafted human glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Girard, N.; Courel, M.N.; Vera, P.; Delpech, B. [Centre Henri-Becquerel, Rouen (France). Laboratoire d' Oncologie Moleculaire

    2000-07-01

    The grafted human glioblastoma cell CB109 was used as a model for intralesional therapy with 131I-labelled hyaluronectin glycoprotein (131I-HN). 131I-HN bound specifically to in situ hyaluronic acid (HA), a main component of the extracellular matrix which is involved in tumour invasion. Labelling experimental conditions were determined and, finally, 25 {mu}Ci/{mu}gHN, 1 {mu}g chloramine-T/{mu}gHN and a 60-s stirring period provided a 131I-HN preparation with an optimal affinity for HA (64% compared to unlabelled HN). Following intratumoral injection, 131I-HN was retained with a limited diffusion outside the tumour. On day 4 the radioactivity concentrated in the tumour was still 25 times greater than that in the liver, spleen and kidneys combined. For therapeutic assays, 65 {mu}Ci 131I-HN was injected into the tumour, resulting in a delivery of 6.8 Gy over a 7-day period. Controls received unlabelled HN, heat-inactivated HN, a mixture of inactivated HN plus free 131I or no treatment (six animals per group). Tumour volumes were evaluated every second day from treatment day and the rate of tumour growth was expressed as a ratio of tumour size at time intervals to the tumour size at the time of injection. Growth curves were compared: heat-inactivated with or without free 131I had no anti-tumour effect. Unlabelled HN-injected tumours had a slightly slower growth rate than untreated tumours (p < 0.02) and growth rate of 131I-HN-injected tumours was much lower (p < 0.00002). A pronounced inhibitory effect with intralesional 131I-labelled HN injection resulted from a combination of a) blockage of HA, a proliferation facilitating factor, and b) local irradiation of tumoral tissue, while uptake in normal tissues was minimized.

  11. Therapeutic efficacy of intralesional 131I-labelled hyaluronectin in grafted human glioblastoma

    International Nuclear Information System (INIS)

    Girard, N.; Courel, M.N.; Vera, P.; Delpech, B.

    2000-01-01

    The grafted human glioblastoma cell CB109 was used as a model for intralesional therapy with 131I-labelled hyaluronectin glycoprotein (131I-HN). 131I-HN bound specifically to in situ hyaluronic acid (HA), a main component of the extracellular matrix which is involved in tumour invasion. Labelling experimental conditions were determined and, finally, 25 μCi/μgHN, 1 μg chloramine-T/μgHN and a 60-s stirring period provided a 131I-HN preparation with an optimal affinity for HA (64% compared to unlabelled HN). Following intratumoral injection, 131I-HN was retained with a limited diffusion outside the tumour. On day 4 the radioactivity concentrated in the tumour was still 25 times greater than that in the liver, spleen and kidneys combined. For therapeutic assays, 65 μCi 131I-HN was injected into the tumour, resulting in a delivery of 6.8 Gy over a 7-day period. Controls received unlabelled HN, heat-inactivated HN, a mixture of inactivated HN plus free 131I or no treatment (six animals per group). Tumour volumes were evaluated every second day from treatment day and the rate of tumour growth was expressed as a ratio of tumour size at time intervals to the tumour size at the time of injection. Growth curves were compared: heat-inactivated with or without free 131I had no anti-tumour effect. Unlabelled HN-injected tumours had a slightly slower growth rate than untreated tumours (p < 0.02) and growth rate of 131I-HN-injected tumours was much lower (p < 0.00002). A pronounced inhibitory effect with intralesional 131I-labelled HN injection resulted from a combination of a) blockage of HA, a proliferation facilitating factor, and b) local irradiation of tumoral tissue, while uptake in normal tissues was minimized

  12. Direct labelling of the human P2X7 receptor and identification of positive and negative cooperativity of binding.

    Science.gov (United States)

    Michel, A D; Chambers, L J; Clay, W C; Condreay, J P; Walter, D S; Chessell, I P

    2007-05-01

    The P2X(7) receptor exhibits complex pharmacological properties. In this study, binding of a [(3)H]-labelled P2X(7) receptor antagonist to human P2X(7) receptors has been examined to further understand ligand interactions with this receptor. The P2X(7) receptor antagonist, N-[2-({2-[(2-hydroxyethyl)amino]ethyl}amino)-5-quinolinyl]-2-tricyclo[3.3.1.1(3,7)]dec-1-ylacetamide (compound-17), was radiolabelled with tritium and binding studies were performed using membranes prepared from U-2 OS or HEK293 cells expressing human recombinant P2X(7) receptors. Binding of [(3)H]-compound-17 was higher in membranes prepared from cells expressing P2X(7) receptors than from control cells and was inhibited by ATP suggesting labelled sites represented human P2X(7) receptors. Binding was reversible, saturable and modulated by P2X(7) receptor ligands (Brilliant Blue G, KN62, ATP, decavanadate). Furthermore, ATP potency was reduced in the presence of divalent cations or NaCl. Radioligand binding exhibited both positive and negative cooperativity. Positive cooperativity was evident from bell shaped Scatchard plots, reduction in radioligand dissociation rate by unlabelled compound-17 and enhancement of radioligand binding by KN62 and unlabelled compound-17. ATP and decavanadate inhibited binding in a negative cooperative manner as they enhanced radioligand dissociation. These data demonstrate that human P2X(7) receptors can be directly labelled and provide novel insights into receptor function. The positive cooperativity observed suggests that binding of compound-17 to one subunit in the P2X(7) receptor complex enhances subsequent binding to other P2X(7) subunits in the same complex. The negative cooperative effects of ATP suggest that ATP and compound-17 bind at separate, interacting, sites on the P2X(7) receptor.

  13. FDA Online Label Repository

    Data.gov (United States)

    U.S. Department of Health & Human Services — The drug labels and other drug-specific information on this Web site represent the most recent drug listing information companies have submitted to the Food and Drug...

  14. Clinical Trial of Human Fetal Brain-Derived Neural Stem/Progenitor Cell Transplantation in Patients with Traumatic Cervical Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Ji Cheol Shin

    2015-01-01

    Full Text Available In a phase I/IIa open-label and nonrandomized controlled clinical trial, we sought to assess the safety and neurological effects of human neural stem/progenitor cells (hNSPCs transplanted into the injured cord after traumatic cervical spinal cord injury (SCI. Of 19 treated subjects, 17 were sensorimotor complete and 2 were motor complete and sensory incomplete. hNSPCs derived from the fetal telencephalon were grown as neurospheres and transplanted into the cord. In the control group, who did not receive cell implantation but were otherwise closely matched with the transplantation group, 15 patients with traumatic cervical SCI were included. At 1 year after cell transplantation, there was no evidence of cord damage, syrinx or tumor formation, neurological deterioration, and exacerbating neuropathic pain or spasticity. The American Spinal Injury Association Impairment Scale (AIS grade improved in 5 of 19 transplanted patients, 2 (A → C, 1 (A → B, and 2 (B → D, whereas only one patient in the control group showed improvement (A → B. Improvements included increased motor scores, recovery of motor levels, and responses to electrophysiological studies in the transplantation group. Therefore, the transplantation of hNSPCs into cervical SCI is safe and well-tolerated and is of modest neurological benefit up to 1 year after transplants. This trial is registered with Clinical Research Information Service (CRIS, Registration Number: KCT0000879.

  15. Pyrolysed 3D-Carbon Scaffolds Induce Spontaneous Differentiation of Human Neural Stem Cells and Facilitate Real-Time Dopamine Detection

    DEFF Research Database (Denmark)

    Amato, Letizia; Heiskanen, Arto; Caviglia, Claudia

    2014-01-01

    Structurally patterned pyrolysed three-dimensional carbon scaffolds (p3Dcarbon) are fabricated and applied for differentiation of human neural stem cells (hNSCs) developed for cell replacement therapy and sensing of released dopamine. In the absence of differentiation factors (DF) the pyrolysed c...

  16. Protection of visual functions by human neural progenitors in a rat model of retinal disease.

    Directory of Open Access Journals (Sweden)

    David M Gamm

    2007-03-01

    Full Text Available A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat.Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90-100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed.Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in

  17. Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data.

    Science.gov (United States)

    Sun, Wenqing; Tseng, Tzu-Liang Bill; Zhang, Jianying; Qian, Wei

    2017-04-01

    In this study we developed a graph based semi-supervised learning (SSL) scheme using deep convolutional neural network (CNN) for breast cancer diagnosis. CNN usually needs a large amount of labeled data for training and fine tuning the parameters, and our proposed scheme only requires a small portion of labeled data in training set. Four modules were included in the diagnosis system: data weighing, feature selection, dividing co-training data labeling, and CNN. 3158 region of interests (ROIs) with each containing a mass extracted from 1874 pairs of mammogram images were used for this study. Among them 100 ROIs were treated as labeled data while the rest were treated as unlabeled. The area under the curve (AUC) observed in our study was 0.8818, and the accuracy of CNN is 0.8243 using the mixed labeled and unlabeled data. Copyright © 2016. Published by Elsevier Ltd.

  18. 21 CFR 101.3 - Identity labeling of food in packaged form.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Identity labeling of food in packaged form. 101.3... (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING General Provisions § 101.3 Identity labeling of food in... food is labeled pursuant to the provisions of § 101.9, and provided the labeling with respect to any...

  19. Semantic Labeling of Nonspeech Audio Clips

    Directory of Open Access Journals (Sweden)

    Xiaojuan Ma

    2010-01-01

    Full Text Available Human communication about entities and events is primarily linguistic in nature. While visual representations of information are shown to be highly effective as well, relatively little is known about the communicative power of auditory nonlinguistic representations. We created a collection of short nonlinguistic auditory clips encoding familiar human activities, objects, animals, natural phenomena, machinery, and social scenes. We presented these sounds to a broad spectrum of anonymous human workers using Amazon Mechanical Turk and collected verbal sound labels. We analyzed the human labels in terms of their lexical and semantic properties to ascertain that the audio clips do evoke the information suggested by their pre-defined captions. We then measured the agreement with the semantically compatible labels for each sound clip. Finally, we examined which kinds of entities and events, when captured by nonlinguistic acoustic clips, appear to be well-suited to elicit information for communication, and which ones are less discriminable. Our work is set against the broader goal of creating resources that facilitate communication for people with some types of language loss. Furthermore, our data should prove useful for future research in machine analysis/synthesis of audio, such as computational auditory scene analysis, and annotating/querying large collections of sound effects.

  20. Modeling activity recognition of multi resident using label combination of multi label classification in smart home

    Science.gov (United States)

    Mohamed, Raihani; Perumal, Thinagaran; Sulaiman, Md Nasir; Mustapha, Norwati; Zainudin, M. N. Shah

    2017-10-01

    Pertaining to the human centric concern and non-obtrusive way, the ambient sensor type technology has been selected, accepted and embedded in the environment in resilient style. Human activities, everyday are gradually becoming complex and thus complicate the inferences of activities when it involving the multi resident in the same smart environment. Current works solutions focus on separate model between the resident, activities and interactions. Some study use data association and extra auxiliary of graphical nodes to model human tracking information in an environment and some produce separate framework to incorporate the auxiliary for interaction feature model. Thus, recognizing the activities and which resident perform the activity at the same time in the smart home are vital for the smart home development and future applications. This paper will cater the above issue by considering the simplification and efficient method using the multi label classification framework. This effort eliminates time consuming and simplifies a lot of pre-processing tasks comparing with previous approach. Applications to the multi resident multi label learning in smart home problems shows the LC (Label Combination) using Decision Tree (DT) as base classifier can tackle the above problems.

  1. Nonequilibrium landscape theory of neural networks

    Science.gov (United States)

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-01-01

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451

  2. Nonequilibrium landscape theory of neural networks.

    Science.gov (United States)

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-11-05

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.

  3. A comparative transcriptomic analysis of astrocytes differentiation from human neural progenitor cells.

    Science.gov (United States)

    Magistri, Marco; Khoury, Nathalie; Mazza, Emilia Maria Cristina; Velmeshev, Dmitry; Lee, Jae K; Bicciato, Silvio; Tsoulfas, Pantelis; Faghihi, Mohammad Ali

    2016-11-01

    Astrocytes are a morphologically and functionally heterogeneous population of cells that play critical roles in neurodevelopment and in the regulation of central nervous system homeostasis. Studies of human astrocytes have been hampered by the lack of specific molecular markers and by the difficulties associated with purifying and culturing astrocytes from adult human brains. Human neural progenitor cells (NPCs) with self-renewal and multipotent properties represent an appealing model system to gain insight into the developmental genetics and function of human astrocytes, but a comprehensive molecular characterization that confirms the validity of this cellular system is still missing. Here we used an unbiased transcriptomic analysis to characterize in vitro culture of human NPCs and to define the gene expression programs activated during the differentiation of these cells into astrocytes using FBS or the combination of CNTF and BMP4. Our results demonstrate that in vitro cultures of human NPCs isolated during the gliogenic phase of neurodevelopment mainly consist of radial glial cells (RGCs) and glia-restricted progenitor cells. In these cells the combination of CNTF and BMP4 activates the JAK/STAT and SMAD signaling cascades, leading to the inhibition of oligodendrocytes lineage commitment and activation of astrocytes differentiation. On the other hand, FBS-derived astrocytes have properties of reactive astrocytes. Our work suggests that in vitro culture of human NPCs represents a valuable cellular system to study human disorders characterized by impairment of astrocytes development and function. Our datasets represent an important resource for researchers studying human astrocytes development and might set the basis for the discovery of novel human-specific astrocyte markers. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Human Aortic Endothelial Cell Labeling with Positive Contrast Gadolinium Oxide Nanoparticles for Cellular Magnetic Resonance Imaging at 7 Tesla

    Directory of Open Access Journals (Sweden)

    Yasir Loai

    2012-03-01

    Full Text Available Positive T1 contrast using gadolinium (Gd contrast agents can potentially improve detection of labeled cells on magnetic resonance imaging (MRI. Recently, gadolinium oxide (Gd2O3 nanoparticles have shown promise as a sensitive T1 agent for cell labeling at clinical field strengths compared to conventional Gd chelates. The objective of this study was to investigate Gado CELLTrack, a commercially available Gd2O3 nanoparticle, for cell labeling and MRI at 7 T. Relaxivity measurements yielded r1 = 4.7 s−1 mM−1 and r2/r1 = 6.2. Human aortic endothelial cells were labeled with Gd2O3 at various concentrations and underwent MRI from 1 to 7 days postlabeling. The magnetic resonance relaxation times T1 and T2 of labeled cell pellets were measured. Cellular contrast agent uptake was quantified by inductively coupled plasma–atomic emission spectroscopy, which showed very high uptake compared to conventional Gd compounds. MRI demonstrated significant positive T1 contrast and stable labeling on cells. Enhancement was optimal at low Gd concentrations, attained in the 0.02 to 0.1 mM incubation concentration range (corresponding cell uptake was 7.26 to 34.1 pg Gd/cell. Cell viability and proliferation were unaffected at the concentrations tested and up to at least 3 days postlabeling. Gd2O3 is a promising sensitive and stable positive contrast agent for cellular MRI at 7 T.

  5. The influences and neural correlates of past and present during gambling in humans.

    Science.gov (United States)

    Sacré, Pierre; Subramanian, Sandya; Kerr, Matthew S D; Kahn, Kevin; Johnson, Matthew A; Bulacio, Juan; González-Martínez, Jorge A; Sarma, Sridevi V; Gale, John T

    2017-12-07

    During financial decision-making tasks, humans often make "rational" decisions, where they maximize expected reward. However, this rationality may compete with a bias that reflects past outcomes. That is, if one just lost money or won money, this may impact future decisions. It is unclear how past outcomes influence future decisions in humans, and how neural circuits encode present and past information. In this study, six human subjects performed a financial decision-making task while we recorded local field potentials from multiple brain structures. We constructed a model for each subject characterizing bets on each trial as a function of present and past information. The models suggest that some patients are more influenced by previous trial outcomes (i.e., previous return and risk) than others who stick to more fixed decision strategies. In addition, past return and present risk modulated with the activity in the cuneus; while present return and past risk modulated with the activity in the superior temporal gyrus and the angular gyrus, respectively. Our findings suggest that these structures play a role in decision-making beyond their classical functions by incorporating predictions and risks in humans' decision strategy, and provide new insight into how humans link their internal biases to decisions.

  6. Complex-Valued Neural Networks

    CERN Document Server

    Hirose, Akira

    2012-01-01

    This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...

  7. Memristor-based neural networks

    International Nuclear Information System (INIS)

    Thomas, Andy

    2013-01-01

    The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them. (topical review)

  8. Expression of Pluripotency Markers in Nonpluripotent Human Neural Stem and Progenitor Cells.

    Science.gov (United States)

    Vincent, Per Henrik; Benedikz, Eirikur; Uhlén, Per; Hovatta, Outi; Sundström, Erik

    2017-06-15

    Nonpluripotent neural progenitor cells (NPCs) derived from the human fetal central nervous system were found to express a number of messenger RNA (mRNA) species associated with pluripotency, such as NANOG, REX1, and OCT4. The expression was restricted to small subpopulations of NPCs. In contrast to pluripotent stem cells, there was no coexpression of the pluripotency-associated genes studied. Although the expression of these genes rapidly declined during the in vitro differentiation of NPCs, we found no evidence that the discrete expression was associated with the markers of multipotent neural stem cells (CD133 + /CD24 lo ), the capacity of sphere formation, or high cell proliferation rates. The rate of cell death among NPCs expressing pluripotency-associated genes was also similar to that of other NPCs. Live cell imaging showed that NANOG- and REX1-expressing NPCs continuously changed morphology, as did the nonexpressing cells. Depletion experiments showed that after the complete removal of the subpopulations of NANOG- and REX1-expressing NPCs, the expression of these genes appeared in other NPCs within a few days. The percentage of NANOG- and REX1-expressing cells returned to that observed before depletion. Our results are best explained by a model in which there is stochastic transient expression of pluripotency-associated genes in proliferating NPCs.

  9. Neural Signature of Value-Based Sensorimotor Prioritization in Humans.

    Science.gov (United States)

    Blangero, Annabelle; Kelly, Simon P

    2017-11-01

    value biases in sensorimotor decision making have been widely studied, little is known about the neural processes that set these biases in place beforehand. Here, we report the discovery of a transient, spatially selective neural signal in humans that encodes the relative value of competing decision alternatives and strongly predicts behavioral value biases in decisions made ∼500 ms later. Follow-up manipulations of value differential, reward valence, response modality, sensory features, and time constraints establish that the signal reflects an active, feature- and effector-general preparatory mechanism for value-based prioritization. Copyright © 2017 the authors 0270-6474/17/3710725-13$15.00/0.

  10. Study on sensitivity of southern blotting hybridization using a 32P-labeled probe of PCR products in detecting human cytomegalovirus

    International Nuclear Information System (INIS)

    Bu Hengfu; Chen Juan; Shen Rongsen; Ma Liren; Xu Yongqiang

    1996-01-01

    Southern blotting hybridization (SBH) using a 32 P-labeled probe is one of the most practical methods for genetic diagnosis of pathogen. On the basis of establishing PCR and nested PCR for detecting human cytomegalovirus (HCMV), a 32 P-labeled probe was prepared with the amplified products of 613 bp PCR outer primers and hybridized with 300 bp inner primer amplified product, resulting in increase in detecting sensitivity from 17 ng (in 1.2% agarose electrophoresis) before SBH to 500 pg (autoradiographed), in other words, increasing the sensitivity of detecting HCMV by 10 2 dilutions after using SBH. The method of PCR and SBH using a 32 P-labeled probe could detect less than 1 gene copy of HCMV, therefore, it is a rapid and reliable diagnosis method for detecting HCMV latent infection

  11. In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence.

    Science.gov (United States)

    Ribot, Emeline J; Gaudet, Jeffrey M; Chen, Yuhua; Gilbert, Kyle M; Foster, Paula J

    2014-01-01

    Mesenchymal stem cells (MSC) are used to restore deteriorated cell environments. There is a need to specifically track these cells following transplantation in order to evaluate different methods of implantation, to follow their migration within the body, and to quantify their accumulation at the target. Cellular magnetic resonance imaging (MRI) using fluorine-based nanoemulsions is a great means to detect these transplanted cells in vivo because of the high specificity for fluorine detection and the capability for precise quantification. This technique, however, has low sensitivity, necessitating improvement in MR sequences. To counteract this issue, the balanced steady-state free precession (bSSFP) imaging sequence can be of great interest due to the high signal-to-noise ratio (SNR). Furthermore, it can be applied to obtain 3D images within short acquisition times. In this paper, bSSFP provided accurate quantification of samples of the perfluorocarbon Cell Sense-labeled cells in vitro. Cell Sense was internalized by human MSC (hMSC) without adverse alterations in cell viability or differentiation into adipocytes/osteocytes. The bSSFP sequence was applied in vivo to track and quantify the signals from both Cell Sense-labeled and iron-labeled hMSC after intramuscular implantation. The fluorine signal was observed to decrease faster and more significantly than the volume of iron-associated voids, which points to the advantage of quantifying the fluorine signal and the complexity of quantifying signal loss due to iron.

  12. Uncertainty Flow Facilitates Zero-Shot Multi-Label Learning in Affective Facial Analysis

    Directory of Open Access Journals (Sweden)

    Wenjun Bai

    2018-02-01

    Full Text Available Featured Application: The proposed Uncertainty Flow framework may benefit the facial analysis with its promised elevation in discriminability in multi-label affective classification tasks. Moreover, this framework also allows the efficient model training and between tasks knowledge transfer. The applications that rely heavily on continuous prediction on emotional valance, e.g., to monitor prisoners’ emotional stability in jail, can be directly benefited from our framework. Abstract: To lower the single-label dependency on affective facial analysis, it urges the fruition of multi-label affective learning. The impediment to practical implementation of existing multi-label algorithms pertains to scarcity of scalable multi-label training datasets. To resolve this, an inductive transfer learning based framework, i.e.,Uncertainty Flow, is put forward in this research to allow knowledge transfer from a single labelled emotion recognition task to a multi-label affective recognition task. I.e., the model uncertainty—which can be quantified in Uncertainty Flow—is distilled from a single-label learning task. The distilled model uncertainty ensures the later efficient zero-shot multi-label affective learning. On the theoretical perspective, within our proposed Uncertainty Flow framework, the feasibility of applying weakly informative priors, e.g., uniform and Cauchy prior, is fully explored in this research. More importantly, based on the derived weight uncertainty, three sets of prediction related uncertainty indexes, i.e., soft-max uncertainty, pure uncertainty and uncertainty plus are proposed to produce reliable and accurate multi-label predictions. Validated on our manual annotated evaluation dataset, i.e., the multi-label annotated FER2013, our proposed Uncertainty Flow in multi-label facial expression analysis exhibited superiority to conventional multi-label learning algorithms and multi-label compatible neural networks. The success of our

  13. Food labels promote healthy choices by a decision bias in the amygdala.

    Science.gov (United States)

    Grabenhorst, Fabian; Schulte, Frank P; Maderwald, Stefan; Brand, Matthias

    2013-07-01

    Food labeling is the major health policy strategy to counter rising obesity rates. Based on traditional economic theory, such strategies assume that detailed nutritional information will necessarily help individuals make better, healthier choices. However, in contrast to the well-known utility of labels in food marketing, evidence for the efficacy of nutritional labeling is mixed. Psychological and behavioral economic theories suggest that successful marketing strategies activate automatic decision biases and emotions, which involve implicit emotional brain systems. Accordingly, simple, intuitive food labels that engage these neural systems could represent a promising approach for promoting healthier choices. Here we used functional MRI to investigate this possibility. Healthy, mildly hungry subjects performed a food evaluation task and a food choice task. The main experimental manipulation was to pair identical foods with simple labels that emphasized either taste benefits or health-related food properties. We found that such labels biased food evaluations in the amygdala, a core emotional brain system. When labels biased the amygdala's evaluations towards health-related food properties, the strength of this bias predicted behavioral shifts towards healthier choices. At the time of decision-making, amygdala activity encoded key decision variables, potentially reflecting active amygdala participation in food choice. Our findings underscore the potential utility of food labeling in health policy and indicate a principal role for emotional brain systems when labels guide food choices. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Labelling of anti-human bladder tumor chimeric antibody with 99Tcm and radioimmunoimaging of bladder carcinoma xenograft in nude mice

    International Nuclear Information System (INIS)

    Zhang Chunli; Wang Rongfu; Fu Zhanli; Bai Yin; Ding Yi; Yu Lizhang

    2003-01-01

    Objective: To study the in vitro immunoreactivity and in vivo tissue distribution, tumor targeting property of anti-human bladder tumor human-murine chimeric antibody (ch-BDI) labeled with 99 Tc m and to investigate its possibility for being used in guiding diagnosis and guiding therapy of bladder cancer. Methods: The ch-BDI was labeled with 99 Tc m by improved Schwarz method and the labeled antibody was purified by Sephadex G-50. Labeling yield and radiochemical purity were measured by paper chromatography. The immunoreactive fraction and association constant (K a ) were measured by Lindmo method and Scatchard analysis, respectively. 11.1 MBq (30 μg) 99 Tc m -ch-BDI was intravenously injected into nude mice bearing human bladder cancer xenografts in the right thigh and radioimmunoimaging (RII) was performed 2, 6, 20 and 24 h postinjection. The images were processed by region of interest (ROI) method to acquire the counts of whole body and the tumor and the counts ratios of tumor to contralateral normal tissue or to tissues of other non-tumor bearing organs. The mice were killed after 24 h postinjection imaging and tissue distribution was measured. %ID/g and target to nontarget (T/NT) ratios were calculated. Results: The labeling yield and radiochemical purity of 99 Tc m -ch-BDI were (66.5±7.3)% and >90%, respectively. The immunoreactive fraction was 76% and K a was 3.56 x 10 9 L/mol. RII showed that the tumor was clearly visualized 6 h postinjection and becoming clearer along with time prolonging. The radioactivity of whole body decreased rapidly with time, whereas the radioactivity of the tumor decreased slowly. The T/NT ratios was increased with time. Biodistribution results showed that tumor uptake was 17.4%ID/g 24 h postinjection. T/NT ratios were very high except for the kidney. T/NT ratios for brain, muscle, intestinal wall, bone and heart wall were 136.0, 55.1, 39.3, 29.7 and 27.9, respectively. Conclusion: 99 Tc m -ch-BDI exhibits excellent

  15. Variation in the binding of 125I-labeled interferon-beta ser to cellular receptors during growth of human renal and bladder carcinoma cells in vitro

    International Nuclear Information System (INIS)

    Ruzicka, F.J.; Schmid, S.M.; Groveman, D.S.; Cummings, K.B.; Borden, E.C.

    1987-01-01

    Studies of various established human bladder and renal carcinoma cell lines cultured in vitro demonstrated the presence of specific, saturable, high affinity binding sites for 125 I-labeled human interferon Beta ser IFN-beta ser). This recombinant produced interferon labeled with approximately one atom of 125 I/molecule of IFN expressed minimal or no loss of antiviral activity. A single class of binding sites (1000-2000/cell) with an affinity constant of 10(10)-10(11) L/M was measured at 4 degrees C for cells exhibiting widely different sensitivity to the antiproliferative effect of IFN-beta ser. Major fluctuations in the binding of 125 I-labeled IFN-beta ser to cellular receptors were observed during in vitro proliferation of four of five cell lines examined. A significant decrease (P less than 0.001) in specific binding was observed 48 h after cultures were established. Cell cycle analysis suggested that within the first 24 h and in the very late log and stationary phase of growth of ACHN (human renal carcinoma) cells, variations in the binding of 125 I-labeled IFN-beta ser were partially attributable to binding fluctuations during the mitotic cycle. The 2- to 3-fold decline 24 h following plating of ACHN cells corresponded to a 70% decrease in the number of cells in G0-G1. T24 (human transitional cell carcinoma) and ACHN cells, synchronized by serum starvation, demonstrated increased binding of 125 I-labeled IFN-beta ser 4-16 h following serum replenishment. This increase in receptor binding occurred prior to the onset of DNA and protein synthesis and was followed by a decline immediately prior to cell division. Binding site analysis indicated that the increased binding prior to DNA synthesis was due to a 5- to 6-fold increase in receptor affinity for the radiolabeled ligand

  16. 21 CFR 101.108 - Temporary exemptions for purposes of conducting authorized food labeling experiments.

    Science.gov (United States)

    2010-04-01

    ... authorized food labeling experiments. 101.108 Section 101.108 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Exemptions From Food Labeling Requirements § 101.108 Temporary exemptions for purposes of conducting authorized food...

  17. Regeneration of neural crest derivatives in the Xenopus tadpole tail

    Directory of Open Access Journals (Sweden)

    Slack Jonathan MW

    2007-05-01

    Full Text Available Abstract Background After amputation of the Xenopus tadpole tail, a functionally competent new tail is regenerated. It contains spinal cord, notochord and muscle, each of which has previously been shown to derive from the corresponding tissue in the stump. The regeneration of the neural crest derivatives has not previously been examined and is described in this paper. Results Labelling of the spinal cord by electroporation, or by orthotopic grafting of transgenic tissue expressing GFP, shows that no cells emigrate from the spinal cord in the course of regeneration. There is very limited regeneration of the spinal ganglia, but new neurons as well as fibre tracts do appear in the regenerated spinal cord and the regenerated tail also contains abundant peripheral innervation. The regenerated tail contains a normal density of melanophores. Cell labelling experiments show that melanophores do not arise from the spinal cord during regeneration, nor from the mesenchymal tissues of the skin, but they do arise by activation and proliferation of pre-existing melanophore precursors. If tails are prepared lacking melanophores, then the regenerates also lack them. Conclusion On regeneration there is no induction of a new neural crest similar to that seen in embryonic development. However there is some regeneration of neural crest derivatives. Abundant melanophores are regenerated from unpigmented precursors, and, although spinal ganglia are not regenerated, sufficient sensory systems are produced to enable essential functions to continue.

  18. A Deep Convolutional Neural Network for Location Recognition and Geometry based Information

    NARCIS (Netherlands)

    Bidoia, Francesco; Sabatelli, Matthia; Shantia, Amir; Wiering, Marco A.; Schomaker, Lambert; De Marsico, Maria; Sanniti di Baja, Gabriella; Fred, Ana

    2018-01-01

    In this paper we propose a new approach to Deep Neural Networks (DNNs) based on the particular needs of navigation tasks. To investigate these needs we created a labeled image dataset of a test environment and we compare classical computer vision approaches with the state of the art in image

  19. Time-dependent labelling course of human eosinophilic granulocytes after 3H thymidine application

    International Nuclear Information System (INIS)

    Walle, A.J.

    1975-01-01

    After intravenous injection of 0.1 μCi/g body weight 3 H-Thymidine and taking of blood samples in intervals of 6-12 hrs. on three test persons with healthy blood, the labelling course of the eosinophilic granulocytes was studied. The cells were classified in four groups, according to the relative frequency of the different degrees of labelling. The time-dependent labelling index curves showed a nawe-sheped course. Elimination of the eosinophilics from the blood is carried out according to the 'At-random'-principle. 12 hrs. p.i. already 10% of the eosinophilics in the blood were labelled with maximally 5 grains. The cell flow-in phase of 13 hrs. was succeeded by a flow-out phase of nearly the same duration, afthr the first labelling maximum of 17%. 80 hrs. p.i. the first massive in-flow of high-labelled cells containing more than 30 grains. After reaching the labelling maximum of 58%, the labelling index values decreased continuously. Until the 11th day p.i., appr. 50% of the eosinophilics were still labelled, after 17 days appr. 25%, more than 65% of which consisted of cells with only 2-4 grains. Comparison of the labelling index curves of the grain groups with each other shows at first a synchronous, then an increasingly asynchronous course, according to the desynchronization of the several eosinophilic generation cycles in the bone marrow which gets more significant in the course of time. (orig.) [de

  20. Radiotoxicity of systemically administered 211At-labeled human/mouse chimeric monoclonal antibody: a long-term survival study with histologic analysis

    International Nuclear Information System (INIS)

    McLendon, Roger E.; Archer, Gary E.; Larsen, Roy H.; Akabani, Gamal; Bigner, Darell D.; Zalutsky, Michael R.

    1999-01-01

    Purpose: The antitenascin human/mouse chimeric monoclonal antibody labeled with the α-particle-emitting radionuclide 211 At is of interest as an endo radiotherapeutic agent for the treatment of brain tumors. To facilitate the investigation of 211 At-labeled chimeric 81C6 in patients, the long-term radiotoxicity of this radiopharmaceutical has been evaluated. Methods and Materials: Antibody labeling was performed using N-succinimidyl 3-[ 211 At]astato-benzoate. After an initial dose-finding experiment, a second toxicity study was carried out at 4 dose levels in groups of 30 non thyroid blocked B6C3F 1 mice per group (15 males, 15 females). Male mice received either saline or 15-81 kBq/g and females received either saline or 16-83 kBq/g of 211 At-labeled antibody. Ten animals (5 males, 5 females) were followed for 6 months and the remainder for 1 year. Results: The lethal dose in 10% of animals (LD 10 ) for 211 At-labeled chimeric 81C6 was 46 kBq/g in females and 102 kBq/g in males. Toxic effects--perivascular fibrosis of the intraventricular septum of the heart, bone marrow suppression, splenic white pulp atrophy, and spermatic maturational delay--generally were confined to a few animals receiving the highest doses of labeled antibody. Conclusions: The LD 10 of 211 At-labeled chimeric 81C6 in this mouse strain was about half that of [ 211 At]astatide. These results establish the preclinical maximum tolerated dose of 211 At-labeled chimeric 81C6 and define in the mouse the target organs for toxicity. These studies will be useful for determining starting doses for clinical studies with 211 At-labeled chimeric 81C6

  1. 21 CFR 347.50 - Labeling of skin protectant drug products.

    Science.gov (United States)

    2010-04-01

    ... omitted. (f) Products containing only cocoa butter, petrolatum, or white petrolatum identified in § 347.10... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Labeling of skin protectant drug products. 347.50... (CONTINUED) DRUGS FOR HUMAN USE SKIN PROTECTANT DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Labeling § 347...

  2. Localization of 131I-labeled p97-specific Fab fragments in human melanoma as a basis for radiotherapy

    International Nuclear Information System (INIS)

    Larson, S.M.; Carrasquillo, J.A.; Krohn, K.A.

    1983-01-01

    33 patients with advanced malignant melanoma were studied after intravenous administration of 131 I-labeled Fab fragments specific for p97, an oncofetal glycoprotein of human melanoma. In all, 47 gamma camera imaging studies were performed for the purpose of localization of metastatic deposits. In addition to tumor, 131 I-Fab uptake was also seen in liver and kidney. 20 of these studies included simultaneous administration of both an 131 I-labeled Fab specific for p97, and an 125 I-labeled Fab not specific for p97. Blood clearance of p97-specific Fab was significantly more rapid than for nonspecific Fab. Eight of these patients had biopsies of subcutaneous nodules at 48 and 72 h postinjection in order to assess whether localization of radioactivity was antigen specific. Antigen-specific localization was observed with average ratios of specific/nonspecific uptake of 3.7 (48 h) and 3.4 (72 h); uptake was strongly correlated with tumor p97 concentration (r . 0.81, P less than 0.01). Also, imaging studies of the bio-distribution of 131 I-labeled anti-p97 Fab in patients selected for high p97 tumor concentration showed avid tumor uptake and more prolonged retention of labeled Fab in tumor than in normal tissues. Based on these studies, we estimated that total 131 I doses of 500 mCi could be safely given to patients before dose-limiting toxicity would be observed

  3. Expandable and Rapidly Differentiating Human Induced Neural Stem Cell Lines for Multiple Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Dana M. Cairns

    2016-09-01

    Full Text Available Limited availability of human neurons poses a significant barrier to progress in biological and preclinical studies of the human nervous system. Current stem cell-based approaches of neuron generation are still hindered by prolonged culture requirements, protocol complexity, and variability in neuronal differentiation. Here we establish stable human induced neural stem cell (hiNSC lines through the direct reprogramming of neonatal fibroblasts and adult adipose-derived stem cells. These hiNSCs can be passaged indefinitely and cryopreserved as colonies. Independently of media composition, hiNSCs robustly differentiate into TUJ1-positive neurons within 4 days, making them ideal for innervated co-cultures. In vivo, hiNSCs migrate, engraft, and contribute to both central and peripheral nervous systems. Lastly, we demonstrate utility of hiNSCs in a 3D human brain model. This method provides a valuable interdisciplinary tool that could be used to develop drug screening applications as well as patient-specific disease models related to disorders of innervation and the brain.

  4. 23rd Workshop of the Italian Neural Networks Society (SIREN)

    CERN Document Server

    Esposito, Anna; Morabito, Francesco

    2014-01-01

    This volume collects a selection of contributions which has been presented at the 23rd Italian Workshop on Neural Networks, the yearly meeting of the Italian Society for Neural Networks (SIREN). The conference was held in Vietri sul Mare, Salerno, Italy during May 23-24, 2013. The annual meeting of SIREN is sponsored by International Neural Network Society (INNS), European Neural Network Society (ENNS) and IEEE Computational Intelligence Society (CIS). The book – as well as the workshop-  is organized in two main components, a special session and a group of regular sessions featuring different aspects and point of views of artificial neural networks, artificial and natural intelligence, as well as psychological and cognitive theories for modeling human behaviors and human machine interactions, including Information Communication applications of compelling interest.  .

  5. Neural evidence that human emotions share core affective properties.

    Science.gov (United States)

    Wilson-Mendenhall, Christine D; Barrett, Lisa Feldman; Barsalou, Lawrence W

    2013-06-01

    Research on the "emotional brain" remains centered around the idea that emotions like fear, happiness, and sadness result from specialized and distinct neural circuitry. Accumulating behavioral and physiological evidence suggests, instead, that emotions are grounded in core affect--a person's fluctuating level of pleasant or unpleasant arousal. A neuroimaging study revealed that participants' subjective ratings of valence (i.e., pleasure/displeasure) and of arousal evoked by various fear, happiness, and sadness experiences correlated with neural activity in specific brain regions (orbitofrontal cortex and amygdala, respectively). We observed these correlations across diverse instances within each emotion category, as well as across instances from all three categories. Consistent with a psychological construction approach to emotion, the results suggest that neural circuitry realizes more basic processes across discrete emotions. The implicated brain regions regulate the body to deal with the world, producing the affective changes at the core of emotions and many other psychological phenomena.

  6. Endogenous neural stem cells in central canal of adult rats acquired limited ability to differentiate into neurons following mild spinal cord injury

    Science.gov (United States)

    Liu, Yuan; Tan, Botao; Wang, Li; Long, Zaiyun; Li, Yingyu; Liao, Weihong; Wu, Yamin

    2015-01-01

    Endogenous neural stem cells in central canal of adult mammalian spinal cord exhibit stem cell properties following injury. In the present study, the endogenous neural stem cells were labeled with Dil to track the differentiation of cells after mild spinal cord injury (SCI). Compared with 1 and 14 days post mild injury, the number of endogenous neural stem cells significantly increased at the injured site of spinal cord on 3 and 7 days post-injury. Dil-labeled βIII-tublin and GFAP expressing cells could be detected on 7 days post-injury, which indicated that the endogenous neural stem cells in central canal of spinal cord differentiated into different type of neural cells, but there were more differentiated astrocytes than the neurons after injury. Furthermore, after injury the expression of inhibitory Notch1 and Hes1 mRNA began to increase at 6 hours and was evident at 12 and 24 hours, which maintained high levels up to 7 days post-injury. These results indicated that a mild SCI in rat is sufficient to induce endogenous neural stem cells proliferation and differentiation. However, the ability to differentiate into neurons is limited, which may be, at least in part, due to high expression of inhibitory Notch1 and Hes1 genes after injury. PMID:26097566

  7. MR-based imaging of neural stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Politi, Letterio S. [San Raffaele Scientific Institute, Neuroradiology Department, Milano (Italy)

    2007-06-15

    The efficacy of therapies based on neural stem cells (NSC) has been demonstrated in preclinical models of several central nervous system (CNS) diseases. Before any potential human application of such promising therapies can be envisaged, there are some important issues that need to be solved. The most relevant one is the requirement for a noninvasive technique capable of monitoring NSC delivery, homing to target sites and trafficking. Knowledge of the location and temporospatial migration of either transplanted or genetically modified NSC is of the utmost importance in analyzing mechanisms of correction and cell distribution. Further, such a technique may represent a crucial step toward clinical application of NSC-based approaches in humans, for both designing successful protocols and monitoring their outcome. Among the diverse imaging approaches available for noninvasive cell tracking, such as nuclear medicine techniques, fluorescence and bioluminescence, magnetic resonance imaging (MRI) has unique advantages. Its high temporospatial resolution, high sensitivity and specificity render MRI one of the most promising imaging modalities available, since it allows dynamic visualization of migration of transplanted cells in animal models and patients during clinically useful time periods. Different cellular and molecular labeling approaches for MRI depiction of NSC are described and discussed in this review, as well as the most relevant issues to be considered in optimizing molecular imaging techniques for clinical application. (orig.)

  8. MR-based imaging of neural stem cells

    International Nuclear Information System (INIS)

    Politi, Letterio S.

    2007-01-01

    The efficacy of therapies based on neural stem cells (NSC) has been demonstrated in preclinical models of several central nervous system (CNS) diseases. Before any potential human application of such promising therapies can be envisaged, there are some important issues that need to be solved. The most relevant one is the requirement for a noninvasive technique capable of monitoring NSC delivery, homing to target sites and trafficking. Knowledge of the location and temporospatial migration of either transplanted or genetically modified NSC is of the utmost importance in analyzing mechanisms of correction and cell distribution. Further, such a technique may represent a crucial step toward clinical application of NSC-based approaches in humans, for both designing successful protocols and monitoring their outcome. Among the diverse imaging approaches available for noninvasive cell tracking, such as nuclear medicine techniques, fluorescence and bioluminescence, magnetic resonance imaging (MRI) has unique advantages. Its high temporospatial resolution, high sensitivity and specificity render MRI one of the most promising imaging modalities available, since it allows dynamic visualization of migration of transplanted cells in animal models and patients during clinically useful time periods. Different cellular and molecular labeling approaches for MRI depiction of NSC are described and discussed in this review, as well as the most relevant issues to be considered in optimizing molecular imaging techniques for clinical application. (orig.)

  9. Labeling and stability of radiolabeled antibody fragments by a direct 99mTc-labeling method

    International Nuclear Information System (INIS)

    Pak, K.Y.; Nedelman, M.A.; Tam, S.H.; Wilson, E.; Daddona, P.E.

    1992-01-01

    The in vitro labeling and stability of 99m Tc-labeled antibody Fab' fragments prepared by a direct labeling technique were evaluated. Eight antibody fragments derived from murine IgG1 (N = 5), IgG2a (N = 2) and IgG3 (N = 1) isotypes were labeled with a preformed 99m Tc-D-glucarate complex. No loss of radioactivity incorporation was observed for all the 99m Tc-labeled antibody fragments after 24 h incubation at 37 o C. 99m Tc-labeled antibody fragments (IgG1, N = 2; IgG2a, n = 2; IgG3, N = 1) were stable upon challenge with DTPA, EDTA or acidic pH. Using the affinity chromatography technique, two of the 99m Tc-labeled antibody fragments displayed no loss of immunoreactivity after prolonged incubation in phosphate buffer up to 24 h at 37 o C. Bonding between 99m Tc and antibody fragments was elucidated by challenging with a diamide ditholate (N 2 S 2 ) compound. The Fab' with IgG2a isotype displayed tighter binding to 99m Tc in comparison to Fab' from IgG1 and IgG3 isotype in N 2 S 2 challenge and incubation with human plasma. The in vivo biodistribution of five 99m Tc-labeled fragments were evaluated in normal mice. (Author)

  10. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  11. Improved Neural Signal Classification in a Rapid Serial Visual Presentation Task Using Active Learning.

    Science.gov (United States)

    Marathe, Amar R; Lawhern, Vernon J; Wu, Dongrui; Slayback, David; Lance, Brent J

    2016-03-01

    The application space for brain-computer interface (BCI) technologies is rapidly expanding with improvements in technology. However, most real-time BCIs require extensive individualized calibration prior to use, and systems often have to be recalibrated to account for changes in the neural signals due to a variety of factors including changes in human state, the surrounding environment, and task conditions. Novel approaches to reduce calibration time or effort will dramatically improve the usability of BCI systems. Active Learning (AL) is an iterative semi-supervised learning technique for learning in situations in which data may be abundant, but labels for the data are difficult or expensive to obtain. In this paper, we apply AL to a simulated BCI system for target identification using data from a rapid serial visual presentation (RSVP) paradigm to minimize the amount of training samples needed to initially calibrate a neural classifier. Our results show AL can produce similar overall classification accuracy with significantly less labeled data (in some cases less than 20%) when compared to alternative calibration approaches. In fact, AL classification performance matches performance of 10-fold cross-validation (CV) in over 70% of subjects when training with less than 50% of the data. To our knowledge, this is the first work to demonstrate the use of AL for offline electroencephalography (EEG) calibration in a simulated BCI paradigm. While AL itself is not often amenable for use in real-time systems, this work opens the door to alternative AL-like systems that are more amenable for BCI applications and thus enables future efforts for developing highly adaptive BCI systems.

  12. IRMS detection of testosterone manipulated with 13C labeled standards in human urine by removing the labeled 13C

    International Nuclear Information System (INIS)

    Wang, Jingzhu; Yang, Rui; Yang, Wenning; Liu, Xin; Xing, Yanyi; Xu, Youxuan

    2014-01-01

    Highlights: • 13 C labeled testosterone can be used to adjust the isotope ratio of testosterone. • The novel testosterone cannot be detected by the regular IRMS method in doping test. • A method was explored to remove the labeled 13 C. • The established method can be used to detect the manipulated testosterone. - Abstract: Isotope ratio mass spectrometry (IRMS) is applied to confirm testosterone (T) abuse by determining the carbon isotope ratios (δ 13 C value). However, 13 C labeled standards can be used to control the δ 13 C value and produce manipulated T which cannot be detected by the current method. A method was explored to remove the 13 C labeled atom at C-3 from the molecule of androsterone (Andro), the metabolite of T in urine, to produce the resultant (A-nor-5α-androstane-2,17-dione, ANAD). The difference in δ 13 C values between Andro and ANAD (Δδ 13 C Andro–ANAD , ‰) would change significantly in case manipulated T is abused. Twenty-one volunteers administered T manipulated with different 13 C labeled standards. The collected urine samples were analyzed with the established method, and the maximum value of Δδ 13 C Andro–ANAD post ingestion ranged from 3.0‰ to 8.8‰. Based on the population reference, the cut-off value of Δδ 13 C Andro–ANAD for positive result was suggested as 1.2‰. The developed method could be used to detect T manipulated with 3- 13 C labeled standards

  13. Utility of the indium 111-labeled human immunoglobulin G scan for the detection of focal vascular graft infection

    International Nuclear Information System (INIS)

    LaMuraglia, G.M.; Fischman, A.J.; Strauss, H.W.; Keech, F.; Wilkinson, R.; Callahan, R.J.; Khaw, B.A.; Rubin, R.H.

    1989-01-01

    The ability to diagnose and localize vascular graft infections has been a major challenge. Recent studies in animal models and humans with focal bacterial infection have shown that radiolabeled, polyclonal, human immunoglobulin G accumulates at the site of inflammation and can serve as the basis for an imaging technique. This study investigated this new technique for the diagnosis and localization of vascular graft infections. Twenty-five patients with suspected vascular infections involving grafts (22), atherosclerotic aneurysms (2), and subclavian vein thrombophlebitis (1) were studied. Gamma camera images of the suspected area were obtained between 5 and 48 hours after intravenous administration of 1.5 to 2.0 mCi (56 to 74 mBq) of indium 111-labeled, human, polyclonal immunoglobulin G. Scan results were interpreted without clinical information about the patient and were subsequently correlated with surgical findings, other imaging modalities, and/or clinical follow-up. In 10 of 10 patients found to have positive scan results, localized infections were confirmed at the involved sites. In 14 of 15 patients whose scan results were interpreted as negative, no vascular infections were identified at follow-up. The patient with false-negative results and recurrent bacteremia from an aortoduodenal fistula was found to have a negative scan outcome at a time when his disease was quiescent. These data suggest that nonspecific, human, indium 111-labeled immunoglobulin G scanning can be a useful noninvasive means of localizing vascular infections

  14. Rhenium 188 labelling of peptide conjugates

    International Nuclear Information System (INIS)

    Melendez-Alafort, Laura

    2001-01-01

    Many human tumours express high levels, of somatostatin receptors. In order to make possible a radiotherapeutic treatment of this kind for tumour a series of somatostatin analogues that can tightly chelate beta emitting isotopes have been developed in recent years. The work carried out for this thesis has been aimed towards development of a new therapeutic radiopharmaceutical for treatment of somatostatin receptor positive tumours. The first chapters describe work with technetium-99m to establish the labelling and analytical conditions for a somatostatin analogue, [Tyr 3 ]-octreotide (TOC), as a precursor to undertaking labelling studies with the beta emitter rhenium-188. 6-Hydrazinopyridine-3-carboxylic acid (HYNIC) was conjugated to TOC and labelled with 99m using different coligands. Then the stability, receptor binding and biodistribution of each complex were assessed. 99m Tc-HYNIC-TOC using EDDA as coligand showed the best characteristics, and was superior for tumour imaging in humans than the commercially available 111 In-DTPA-octreotide. The conditions for labelling the HYNIC-TOC conjugate with 188 Re were then optimised using tricine as a co-ligand. A labelling yield of ∼80% was achieved. After purification however, the stability of the complex was low. The use of other coligand systems which had proved useful for 99m Tc labelling was explored, but yields were very poor. Other chelators such as diethylenetriamine pentaacetic acid (DTPA), dimercaptosuccinic acid (DMSA) and mercaptoacetyltriglycine (MAG 3 ) were studied as potential co-ligand agents to label the HYNIC-TOC conjugate with 188 Re but, again low yields of the labelled peptide complexes were achieved. A novel 188 Re-HYNIC complex was prepared in high yields using N-N-disubstituted dithiocarbamates as coligands. However to date, the specific activities achieved with this system are relatively low. The use of the [ 99m Tc(CO) 3 (H 2 O) 3 ] complex to label the HYNIC-TOC conjugate was investigated

  15. Human neural stem cells over-expressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction.

    Science.gov (United States)

    Park, Dongsun; Lee, Hong Jun; Joo, Seong Soo; Bae, Dae-Kwon; Yang, Goeun; Yang, Yun-Hui; Lim, Inja; Matsuo, Akinori; Tooyama, Ikuo; Kim, Yun-Bae; Kim, Seung U

    2012-04-01

    A human neural stem cell (NSC) line over-expressing human choline acetyltransferase (ChAT) gene was generated and these F3.ChAT NSCs were transplanted into the brain of rat Alzheimer disease (AD) model which was induced by application of ethylcholine mustard aziridinium ion (AF64A) that specifically denatures cholinergic nerves and thereby leads to memory deficit as a salient feature of AD. Transplantation of F3.ChAT human NSCs fully recovered the learning and memory function of AF64A animals, and induced elevated levels of acetylcholine (ACh) in cerebrospinal fluid (CSF). Transplanted F3.ChAT human NSCs were found to migrate to various brain regions including cerebral cortex, hippocampus, striatum and septum, and differentiated into neurons and astrocytes. The present study demonstrates that brain transplantation of human NSCs over-expressing ChAT ameliorates complex learning and memory deficits in AF64A-cholinotoxin-induced AD rat model. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Automatic extraction of drug indications from FDA drug labels.

    Science.gov (United States)

    Khare, Ritu; Wei, Chih-Hsuan; Lu, Zhiyong

    2014-01-01

    Extracting computable indications, i.e. drug-disease treatment relationships, from narrative drug resources is the key for building a gold standard drug indication repository. The two steps to the extraction problem are disease named-entity recognition (NER) to identify disease mentions from a free-text description and disease classification to distinguish indications from other disease mentions in the description. While there exist many tools for disease NER, disease classification is mostly achieved through human annotations. For example, we recently resorted to human annotations to prepare a corpus, LabeledIn, capturing structured indications from the drug labels submitted to FDA by pharmaceutical companies. In this study, we present an automatic end-to-end framework to extract structured and normalized indications from FDA drug labels. In addition to automatic disease NER, a key component of our framework is a machine learning method that is trained on the LabeledIn corpus to classify the NER-computed disease mentions as "indication vs. non-indication." Through experiments with 500 drug labels, our end-to-end system delivered 86.3% F1-measure in drug indication extraction, with 17% improvement over baseline. Further analysis shows that the indication classifier delivers a performance comparable to human experts and that the remaining errors are mostly due to disease NER (more than 50%). Given its performance, we conclude that our end-to-end approach has the potential to significantly reduce human annotation costs.

  17. Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells.

    Science.gov (United States)

    Zhang, Meixiang; Ngo, Justine; Pirozzi, Filomena; Sun, Ying-Pu; Wynshaw-Boris, Anthony

    2018-03-15

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been widely used to generate cellular models harboring specific disease-related genotypes. Of particular importance are ESC and iPSC applications capable of producing dorsal telencephalic neural progenitor cells (NPCs) that are representative of the cerebral cortex and overcome the challenges of maintaining a homogeneous population of cortical progenitors over several passages in vitro. While previous studies were able to derive NPCs from pluripotent cell types, the fraction of dorsal NPCs in this population is small and decreases over several passages. Here, we present three protocols that are highly efficient in differentiating mouse and human ESCs, as well as human iPSCs, into a homogeneous and stable population of dorsal NPCs. These protocols will be useful for modeling cerebral cortical neurological and neurodegenerative disorders in both mouse and human as well as for high-throughput drug screening for therapeutic development. We optimized three different strategies for generating dorsal telencephalic NPCs from mouse and human pluripotent cell types through single or double inhibition of bone morphogenetic protein (BMP) and/or SMAD pathways. Mouse and human pluripotent cells were aggregated to form embryoid bodies in suspension and were treated with dorsomorphin alone (BMP inhibition) or combined with SB431542 (double BMP/SMAD inhibition) during neural induction. Neural rosettes were then selected from plated embryoid bodies to purify the population of dorsal NPCs. We tested the expression of key dorsal NPC markers as well as nonectodermal markers to confirm the efficiency of our three methods in comparison to published and commercial protocols. Single and double inhibition of BMP and/or SMAD during neural induction led to the efficient differentiation of dorsal NPCs, based on the high percentage of PAX6-positive cells and the NPC gene expression profile. There were no statistically

  18. Activation of Group II Metabotropic Glutamate Receptors Increases Proliferation but does not Influence Neuronal Differentiation of a Human Neural Stem Cell Line

    DEFF Research Database (Denmark)

    Dindler, Anne; Blaabjerg, Morten; Kamand, Morad

    2018-01-01

    of pharmacological activation and inhibition of mGluR2/3 on proliferation, differentiation and viability of a human neural stem cell line. Immunofluorescence staining revealed the presence of mGluR2/3 receptors on both proliferating and differentiating stem cells, including cells differentiated into β-tubulin III....... Western blot analysis revealed that the active, dimeric form of mGluR2/3 was mainly present on the proliferating cells, which may explain our findings. The present study emphasises the importance of glutamate and mGluRs on regulation of human neural stem cells and suggests a significant role of mGluR2....../3 during cell proliferation. This article is protected by copyright. All rights reserved....

  19. The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors

    DEFF Research Database (Denmark)

    Seminatore, Christine; Polentes, Jerome; Ellman, Ditte

    2010-01-01

    Risk of tumorigenesis is a major obstacle to human embryonic and induced pluripotent stem cell therapy. Likely linked to the stage of differentiation of the cells at the time of implantation, formation of teratoma/tumors can also be influenced by factors released by the host tissue. We have...... analyzed the relative effects of the stage of differentiation and the postischemic environment on the formation of adverse structures by transplanted human embryonic stem cell-derived neural progenitors....

  20. Assessing Collagen and Elastin Pressure-Dependent Microarchitectures in Live, Human Resistance Arteries by Label-Free Fluorescence Microscopy

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Thorsted, Bjarne; Brewer, Jonathan R.

    2017-01-01

    The pathogenic contribution of resistance artery remodeling is documented in essential hypertension, diabetes and the metabolic syndrome. Investigations and development of microstructurally motivated mathematical models for understanding the mechanical properties of human resistance arteries...... in health and disease have the potential to aid understanding how disease and medical treatments affect the human microcirculation. To develop these mathematical models, it is essential to decipher the relationship between the mechanical and microarchitectural properties of the microvascular wall....... In this work, we describe an ex vivo method for passive mechanical testing and simultaneous label-free three-dimensional imaging of the microarchitecture of elastin and collagen in the arterial wall of isolated human resistance arteries. The imaging protocol can be applied to resistance arteries of any species...

  1. GBM secretome induces transient transformation of human neural precursor cells.

    Science.gov (United States)

    Venugopal, Chitra; Wang, X Simon; Manoranjan, Branavan; McFarlane, Nicole; Nolte, Sara; Li, Meredith; Murty, Naresh; Siu, K W Michael; Singh, Sheila K

    2012-09-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor in humans, with a uniformly poor prognosis. The tumor microenvironment is composed of both supportive cellular substrates and exogenous factors. We hypothesize that exogenous factors secreted by brain tumor initiating cells (BTICs) could predispose normal neural precursor cells (NPCs) to transformation. When NPCs are grown in GBM-conditioned media, and designated as "tumor-conditioned NPCs" (tcNPCs), they become highly proliferative and exhibit increased stem cell self-renewal, or the unique ability of stem cells to asymmetrically generate another stem cell and a daughter cell. tcNPCs also show an increased transcript level of stem cell markers such as CD133 and ALDH and growth factor receptors such as VEGFR1, VEGFR2, EGFR and PDGFRα. Media analysis by ELISA of GBM-conditioned media reveals an elevated secretion of growth factors such as EGF, VEGF and PDGF-AA when compared to normal neural stem cell-conditioned media. We also demonstrate that tcNPCs require prolonged or continuous exposure to the GBM secretome in vitro to retain GBM BTIC characteristics. Our in vivo studies reveal that tcNPCs are unable to form tumors, confirming that irreversible transformation events may require sustained or prolonged presence of the GBM secretome. Analysis of GBM-conditioned media by mass spectrometry reveals the presence of secreted proteins Chitinase-3-like 1 (CHI3L1) and H2A histone family member H2AX. Collectively, our data suggest that GBM-secreted factors are capable of transiently altering normal NPCs, although for retention of the transformed phenotype, sustained or prolonged secretome exposure or additional transformation events are likely necessary.

  2. Monoclonal antibodies and coupling reagents to cell membrane proteins for leukocyte labeling

    International Nuclear Information System (INIS)

    McAfee, J.G.; Gagne, G.; Subramanian, G.; Schneider, R.F.

    1984-01-01

    Current gamma-emitting agents for tagging leukocytes, In-111 oxine or tropolone, label all cell types indiscriminantly, and nuclear localization in lymphocytes results in radiation damage. Coupling reagents and murine monoclonal antibodies (Mab) specific for cell surface antigens of human leukocytes were tried as cell labeling agents to avoid nuclear localization. 10/sup 8/ mixed human leukocytes in Hepes buffer were added to tubes coated with 5 mg of dry cyclic dianhydride of DTPA for 15 minutes at room temperature. After washing, 0.1 ml of In-111 Cl in ACD (pH 6.8) was added. After 30 minutes, a cell labeling yield of 23% was obtained. Washing the cells in an elutriation centrifuge showed that this label was irreversible. Mab for cell surface antigens of human granulocytes were labeled with 300 μCi of I-125 using the Iodobead technic and unbound activity was removed by gel column chromatography. 1-10 μg were added to 10/sup 8/ mixed leukocytes in 0.5 ml plasma or saline for 1 hr. With Mab anti-leu M4 (clone G7 E11), an IgM, the cell labeling yield was 21%, irreversible, and specific for granulocytes. With anti-human leukocyte Mab NEI-042 (clone 9.4), and IgG2a, and anti-granulocyte Mab MAS-065 (clone FMCl1) an IgG1, the cell labeling was relatively unstable. Labeling of leukocyte subpopulations with Mab is feasible, and the binding of multivalent IgM is stronger than that of other immunoglobulins. DTPA cyclic anhydride is firmly bound to cell membranes, but the labeling is non-specific

  3. Indirect labeling of proteins with radioiodine

    International Nuclear Information System (INIS)

    Araujo, Elaine Bortoleti de; Lavinas, Tatiana; Muramoto, Emiko; Pereira, Nilda P.S. de; Silva, Constancia P.G.; Tavares, Leoberto C.

    2000-01-01

    A procedure is described for the radioiodination of proteins using an iodinated derivative of N succinimidyl 3-(tri-n-butylstannyl)benzoate (ATE), previously described by Zalutsky. ATE was obtained in a high pure form and the iodination has been performed with 131-Iodine in 70-80% yield. Protein labeling studies performed with human IgG indicate that the ATE intermediate is an important alternative to conventional labeling methods. (author)

  4. Radioiodine-labelled compounds previously or currently used for tumour localization

    International Nuclear Information System (INIS)

    Beierwaltes, W.H.

    1976-01-01

    131 I-labelled human serum albumin, though not used for tumour localization today, is an excellent ''standard'' with which to compare uptake of ''tumour-specific'' radiolabelled compounds. 131 I-labelled fibrinogen and antibodies to fibrinogen have a non-specific uptake in tumours. Nungester, Beierwaltes and Knorpp are credited by Mahaley as first treating a human for cancer with 131 I-labelled antibody globulins (malignant melanoma). Although many theoretical problems remain in obtaining diagnostic localization of 131 I-IgG, Quinones, Mizejewski and Beierwaltes demonstrated the uptake of 131 I-labelled immune antibodies in Syrian hamster cheeck pouch with chorionic gonadotropic hormone as the specific tumour-associated antigen. This model was then used successfully by Goldenberg and Hoffer for demonstrating colon carcinoma by using antibodies to carcinoembryonic antigen. A 131 I-labelled chloroquine analogue, synthesized by Counsell, has been demonstrated by Beierwaltes et al. to concentrate diagnostically and therapeutically in the malignant melanotic melanoma. 131 I-19-iodocholesterol, synthesized by Counsell, has been demonstrated by Beierwaltes et al. to concentrate diagnostically in the human adrenal cortex. It has many unique diagnostic capabilities not available with other routine diagnostic methods available today. (author)

  5. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles

    International Nuclear Information System (INIS)

    Oh, Jung-Hwa; Son, Mi-Young; Choi, Mi-Sun; Kim, Soojin; Choi, A-young; Lee, Hyang-Ae; Kim, Ki-Suk; Kim, Janghwan; Song, Chang Woo; Yoon, Seokjoo

    2016-01-01

    Given the rapid growth of engineered and customer products made of silver nanoparticles (Ag NPs), understanding their biological and toxicological effects on humans is critically important. The molecular developmental neurotoxic effects associated with exposure to Ag NPs were analyzed at the physiological and molecular levels, using an alternative cell model: human embryonic stem cell (hESC)-derived neural stem/progenitor cells (NPCs). In this study, the cytotoxic effects of Ag NPs (10–200 μg/ml) were examined in these hESC-derived NPCs, which have a capacity for neurogenesis in vitro, at 6 and 24 h. The results showed that Ag NPs evoked significant toxicity in hESC-derived NPCs at 24 h in a dose-dependent manner. In addition, Ag NPs induced cell cycle arrest and apoptosis following a significant increase in oxidative stress in these cells. To further clarify the molecular mechanisms of the toxicological effects of Ag NPs at the transcriptional and post-transcriptional levels, the global expression profiles of genes and miRNAs were analyzed in hESC-derived NPCs after Ag NP exposure. The results showed that Ag NPs induced oxidative stress and dysfunctional neurogenesis at the molecular level in hESC-derived NPCs. Based on this hESC-derived neural cell model, these findings have increased our understanding of the molecular events underlying developmental neurotoxicity induced by Ag NPs in humans. - Highlights: • This system served as a suitable model for developmental neurotoxicity testing. • Ag NPs induce the apoptosis in human neural cells by ROS generation. • Genes for development of neurons were dysregulated in response to Ag NPs. • Molecular events during early developmental neurotoxicity were proposed.

  6. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung-Hwa [Korea Institute of Toxicology (KIT), Daejeon 34114 (Korea, Republic of); Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113 (Korea, Republic of); Son, Mi-Young [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Department of functional genomics, University of Science & Technology, 217 Gajungro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Choi, Mi-Sun; Kim, Soojin; Choi, A-young [Korea Institute of Toxicology (KIT), Daejeon 34114 (Korea, Republic of); Lee, Hyang-Ae; Kim, Ki-Suk [Korea Institute of Toxicology (KIT), Daejeon 34114 (Korea, Republic of); Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113 (Korea, Republic of); Kim, Janghwan [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Department of functional genomics, University of Science & Technology, 217 Gajungro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Song, Chang Woo, E-mail: cwsong@kitox.re.kr [Korea Institute of Toxicology (KIT), Daejeon 34114 (Korea, Republic of); Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113 (Korea, Republic of); Yoon, Seokjoo, E-mail: sjyoon@kitox.re.kr [Korea Institute of Toxicology (KIT), Daejeon 34114 (Korea, Republic of); Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113 (Korea, Republic of)

    2016-05-15

    Given the rapid growth of engineered and customer products made of silver nanoparticles (Ag NPs), understanding their biological and toxicological effects on humans is critically important. The molecular developmental neurotoxic effects associated with exposure to Ag NPs were analyzed at the physiological and molecular levels, using an alternative cell model: human embryonic stem cell (hESC)-derived neural stem/progenitor cells (NPCs). In this study, the cytotoxic effects of Ag NPs (10–200 μg/ml) were examined in these hESC-derived NPCs, which have a capacity for neurogenesis in vitro, at 6 and 24 h. The results showed that Ag NPs evoked significant toxicity in hESC-derived NPCs at 24 h in a dose-dependent manner. In addition, Ag NPs induced cell cycle arrest and apoptosis following a significant increase in oxidative stress in these cells. To further clarify the molecular mechanisms of the toxicological effects of Ag NPs at the transcriptional and post-transcriptional levels, the global expression profiles of genes and miRNAs were analyzed in hESC-derived NPCs after Ag NP exposure. The results showed that Ag NPs induced oxidative stress and dysfunctional neurogenesis at the molecular level in hESC-derived NPCs. Based on this hESC-derived neural cell model, these findings have increased our understanding of the molecular events underlying developmental neurotoxicity induced by Ag NPs in humans. - Highlights: • This system served as a suitable model for developmental neurotoxicity testing. • Ag NPs induce the apoptosis in human neural cells by ROS generation. • Genes for development of neurons were dysregulated in response to Ag NPs. • Molecular events during early developmental neurotoxicity were proposed.

  7. Micro-bead injection spectroscopy for label-free automated determination of immunoglobulin G in human serum.

    Science.gov (United States)

    Ramos, Inês I; Magalhães, Luís M; Barreiros, Luisa; Reis, Salette; Lima, José L F C; Segundo, Marcela A

    2018-01-01

    Immunoglobulin G (IgG) represents the major fraction of antibodies in healthy adult human serum, and deviations from physiological levels are a generic marker of disease corresponding to different pathologies. Therefore, screening methods for IgG evaluation are a valuable aid to diagnostics. The present work proposes a rapid, automatic, and miniaturized method based on UV-vis micro-bead injection spectroscopy (μ-BIS) for the real-time determination of human serum IgG with label-free detection. Relying on attachment of IgG in rec-protein G immobilized in Sepharose 4B, a bioaffinity column is automatically assembled, where IgG is selectively retained and determined by on-column optical density measurement. A "dilution-and-shoot" approach (50 to 200 times) was implemented without further sample treatment because interferences were flushed out of the column upon sample loading, with minimization of carryover and cross-contamination by automatically discarding the sorbent (0.2 mg) after each determination. No interference from human serum albumin at 60 mg mL -1 in undiluted sample was found. The method allowed IgG determination in the range 100-300 μg mL -1 (corresponding to 5.0-60 mg mL -1 in undiluted samples), with a detection limit of 33 μg mL -1 (1.7 mg mL -1 for samples, dilution factor of 50). RSD values were time-to-result decreased from several hours to times, showing the potential of the proposed approach as a point-of-care method. Graphical abstract Micro-Bead Injection Spectroscopy method for real time, automated and label-free determination of total serum human Immunoglobulin G (IgG). The method was designed for Lab-on-Valve (LOV) platforms using a miniaturised protein G bioaffinity separative approach. IgG are separated from serum matrix components upon quantification with low non-specific binding in less than 5 min.

  8. Radiobromination of humanized anti-HER2 monoclonal antibody trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate, a potential label for immunoPET

    Energy Technology Data Exchange (ETDEWEB)

    Mume, Eskender [Organic Chemistry, Department of Chemistry, Uppsala University, S-751 24 Uppsala (Sweden); Orlova, Anna [Affibody AB, S-161 02 Bromma (Sweden); Malmstroem, Per-Uno [Division of Urology, Department of Surgical Sciences, Uppsala University, S-751 85 Uppsala (Sweden); Lundqvist, Hans [Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, S-751 85 Uppsala (Sweden); Sjoeberg, Stefan [Organic Chemistry, Department of Chemistry, Uppsala University, S-751 24 Uppsala (Sweden); Tolmachev, Vladimir [Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, S-751 85 Uppsala (Sweden)]. E-mail: vladimir.tolmachev@bms.uu.se

    2005-08-01

    Combining the specificity of radioimmunoscintigraphy and the high sensitivity of PET in an in vivo detection technique could improve the quality of nuclear diagnostics. Positron-emitting nuclide {sup 76}Br (T {sub 1/2}=16.2 h) might be a possible candidate for labeling monoclonal antibodies (mAbs) and their fragments, provided that the appropriate labeling chemistry has been established. For internalizing antibodies, such as the humanized anti-HER2 monoclonal antibody, trastuzumab, radiobromine label should be residualizing, i.e., ensuring that radiocatabolites are trapped intracellularly after the proteolytic degradation of antibody. This study evaluated the chemistry of indirect radiobromination of trastuzumab using N-succinimidyl 5-(tributylstannyl)-3-pyridinecarboxylate. Literature data indicated that the use of this method provided residualizing properties for iodine and astatine labels on some antibodies. An optimized 'one-pot' procedure produced an overall labeling efficiency of 45.5{+-}1.2% over 15 min. The bromine label was stable under physiological and denaturing conditions. The labeled trastuzumab retained its capacity to bind specifically to HER2-expressing SKOV-3 ovarian carcinoma cells in vitro (immunoreactivity more than 75%). However, in vitro cell test did not demonstrate that the radiobromination of trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate improves cellular retention of radioactivity in comparison with the use of N-succinimidyl 4-bromobenzoate.

  9. Sacred or Neural?

    DEFF Research Database (Denmark)

    Runehov, Anne Leona Cesarine

    Are religious spiritual experiences merely the product of the human nervous system? Anne L.C. Runehov investigates the potential of contemporary neuroscience to explain religious experiences. Following the footsteps of Michael Persinger, Andrew Newberg and Eugene d'Aquili she defines...... the terminological bounderies of "religious experiences" and explores the relevant criteria for the proper evaluation of scientific research, with a particular focus on the validity of reductionist models. Runehov's theis is that the perspectives looked at do not necessarily exclude each other but can be merged....... The question "sacred or neural?" becomes a statement "sacred and neural". The synergies thus produced provide manifold opportunities for interdisciplinary dialogue and research....

  10. Labelling and standardizing some pituitary hormones for radioimmunoassay

    International Nuclear Information System (INIS)

    Kim, Y.S.

    1976-11-01

    Optimum conditions for efficient 125 I labelling of human follicle stimulating hormone (FSH) and human chorionic gonadotropin (HCG) using chloramine-T have been established for radioimmunoassay (RIA). The amount of the hormone, chloramine-T, 125 I, and the reaction time were, respetively, controlled evaluating the yield and the bindability of the labelled hormone to its antibody. To measure the bindability, the labelled hormone was incubated together with its antibody for a definite temperature. In the separation of the free hormone (F) from the antibody bound (B), a double antibody technique was applied comparing with the chromatoelectrophoresis. For the efficient separation of the labelled hormone, two methods of separation such as gel filtration and gel electrophoresis were compared in the sensitivity and in the immunological activity points of view. Experiments for the production of HCG antibody were also conducted. The produced antisera were tested in two ways; i.e., the incubation test with the labelled hormone, and the Ouchterlony test. Using the produced anti-HCG serum and the purchased anti-FSH serum, standard dose-response curves were plotted correlating with the international standard preparation of the hormones

  11. Tissue factor-dependent activation of tritium-labeled factor IX and factor X in human plasma

    International Nuclear Information System (INIS)

    Morrison, S.A.; Jesty, J.

    1984-01-01

    A comparism was made of the tissue factor-dependent activation of tritium-labeled factor IX and factor X in a human plasma system and a study was made of the role of proteases known to stimulate factor VII activity. Plasma was defibrinated by heating and depleted of its factors IX and X by passing it through antibody columns. Addition of human brain thromboplastin, Ca2+, and purified 3H-labeled factor X to the plasma resulted, after a short lag, in burst-like activation of the factor X, measured as the release of radiolabeled activation peptide. The progress of activation was slowed by both heparin and a specific inhibitor of factor Xa but factor X activation could not be completely abolished by such inhibitors. In the case of 3H-factor IX activation, the rate also increased for approximately 3 min after addition of thromboplastin, but was not subsequently curtailed. A survey of proteases implicated as activators of factor VII in other settings showed that both factor Xa and factor IXa could accelerate the activation of factor IX. However, factor Xa was unique in obliterating activation when present at concentrations greater than approximately 1 nM. Heparin inhibited the tissue factor-dependent activation of factor IX almost completely, apparently through the effect of antithrombin on the feedback reactions of factors Xa and IXa on factor VII. These results suggest that a very tight, biphasic control of factor VII activity exists in human plasma, which is modulated mainly by factor Xa. At saturation of factor VIIa/tissue factor, factor IX activation was significantly more rapid than was previously found in bovine plasma under similar conditions. The activation of factor X at saturation was slightly more rapid than in bovine plasma, despite the presence of heparin

  12. Quantitative amino acid profiling and stable isotopically labeled amino acid tracer enrichment used for in vivo human systemic and tissue kinetics measurements

    DEFF Research Database (Denmark)

    Bornø, Andreas; van Hall, Gerrit

    2014-01-01

    An important area within clinical functional metabolomics is in vivo amino acid metabolism and protein turnover measurements for which accurate amino acid concentrations and stable isotopically labeled amino acid enrichments are mandatory not the least when tissue metabolomics is determined....... The present study describes a new sensitive liquid chromatography tandem mass-spectrometry method quantifying 20 amino acids and their tracer(s) ([ring-(13)C6]/D5Phenylalanine) in human plasma and skeletal muscle specimens. Before analysis amino acids were extracted and purified via deprotonization....../ion exchange, derivatized using a phenylisothiocyanate reagent and each amino acid was quantitated with its own stable isotopically labeled internal standard (uniformly labeled-(13)C/(15)N). The method was validated according to general recommendations for chromatographic analytical methods. The calibration...

  13. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Erica L. McGrath

    2017-03-01

    Full Text Available Zika virus (ZIKV infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7, to infect primary human neural stem cells (hNSCs originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection.

  14. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection.

    Science.gov (United States)

    McGrath, Erica L; Rossi, Shannan L; Gao, Junling; Widen, Steven G; Grant, Auston C; Dunn, Tiffany J; Azar, Sasha R; Roundy, Christopher M; Xiong, Ying; Prusak, Deborah J; Loucas, Bradford D; Wood, Thomas G; Yu, Yongjia; Fernández-Salas, Ildefonso; Weaver, Scott C; Vasilakis, Nikos; Wu, Ping

    2017-03-14

    Zika virus (ZIKV) infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7), to infect primary human neural stem cells (hNSCs) originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Determination of reduced homocysteine in human serum by elemental labelling and liquid chromatography with ICP-MS and ESI-MS detection.

    Science.gov (United States)

    Espina, Juan Gómez; Montes-Bayón, Maria; Blanco-González, Elisa; Sanz-Medel, Alfredo

    2015-10-01

    Analytical methods allowing sensitive determination of reduced homocysteine (rHcy), one of the so-called biothiols, in human serum is a topic of growing interest due to its close relation to several human disorders, mainly cardiovascular diseases. Although most widely used analytical strategies to determine total Hcy involve derivatization by means of fluorescent labels, this work proposes the use of ebselen, a Se-containing labelling agent to derivatize the reactive sulfhydryl group of the Hcy molecule in its "free" reduced form, which is more likely to play different roles in disease pathogenesis. Optimization of the derivatization and separation conditions by high-performance liquid chromatography (HPLC) to isolate the excess of derivatizing reagent is carried out here using UV/VIS detection. Further, the study of the Se labelling reaction by electrospray ionization tandem mass spectrometry (ESI-MS/MS) provides a stoichiometry of the derivative of 1:1. The main advantage of using ebselen as a labelling agent is the presence of the Se atom in the molecule that allows the use of inductively coupled plasma mass spectrometry (ICP-MS) as a sensitive and selective Se detector. The coupling of HPLC with ICP-MS provided excellent features for the determination of Se-derivatized rHcy (detection limit of 9.6 nM) in real samples. Quantification was accomplished by using post-column isotope dilution (ID) of Se in serum samples, after precipitation of the main serum proteins. Quantitative results for "free" rHcy turned out to be around 0.18-0.22 μM in serum samples from healthy individuals that could be directly analyzed without sample preconcentration.

  16. Dynamics of neuroepithelial body (NEB) formation in developing hamster lung: Light microscopic autoradiography after 3H-thymidine labeling in vivo

    International Nuclear Information System (INIS)

    Hoyt, R.F. Jr.; McNelly, N.A.; Sorokin, S.P.

    1990-01-01

    Autoradiographs were prepared from lungs of a newborn Syrian golden hamster exposed continuously to 3H-thymidine for the final 4.5 days of a normal 16 day gestation. Silver grains were counted over nuclei of 1,298 small-granule endocrine cells in 165 neuroepithelial bodies (NEBs) in the right upper lobe and along the left axial bronchus, where nodal NEBs occurred at branch points and internodal NEBs in the airway between them. Nuclei of 1,005 nonendocrine airway epithelial cells were counted next to the NEBs. Label was distributed differently in the two populations: All nonendocrine cells were labeled, whereas many endocrine cells were not. In NEBs of the right upper lobe, total label (net grains/nuclear profile) averaged only 23% of that in nonendocrine cells. Along the left axial bronchus, mean label in nonendocrine cells and internodal NEBs rose 10-fold between the hilum and the periphery. Increases for both populations were linear and parallel, but total label in the NEBs was consistently lower than that in the surrounding epithelium by 15 grains/nuclear profile. Nodal NEBs were more lightly labeled than those of the internodes, consistent with their earlier formation. A few very heavily labeled small-granule cells (0.9%) occurred singly in the periphery of large, otherwise lightly labeled NEBs. In contrast to NEBs, neurons in 10 bronchial ganglia of the right lung were virtually unlabeled. These arise from vagal neural crest and seem to comprise an entirely distinct population. We conclude that NEBs belong intrinsically to pulmonary endoderm, not neural crest. During fetal life each develops from a cell or cells programmed to stop dividing well ahead of other elements in the epithelium. Their formation is linked closely to early proliferation of the bronchial tree and is an integral part of growth and differentiation of the airway lining

  17. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    International Nuclear Information System (INIS)

    Colleoni, Silvia; Galli, Cesare; Giannelli, Serena G.; Armentero, Marie-Therese; Blandini, Fabio; Broccoli, Vania; Lazzari, Giovanna

    2010-01-01

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  18. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    Energy Technology Data Exchange (ETDEWEB)

    Colleoni, Silvia, E-mail: silviacolleoni@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Galli, Cesare [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Dipartimento Clinico Veterinario, Universita di Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia (Italy); Giannelli, Serena G. [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Armentero, Marie-Therese; Blandini, Fabio [Laboratory of Functional Neurochemistry, Interdepartmental Research Center for Parkinson' s Disease, Neurological Institute C. Mondino, Via Mondino 2, 27100 Pavia (Italy); Broccoli, Vania, E-mail: broccoli.vania@hsr.it [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Lazzari, Giovanna, E-mail: giovannalazzari@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy)

    2010-04-15

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  19. In vitro effects of Epidiferphane™ on adult human neural progenitor cells

    Science.gov (United States)

    Neural stem cells have the capacity to respond to their environment, migrate to the injury site and generate functional cell types, and thus they hold great promise for cell therapies. In addition to representing a source for central nervous system (CNS) repair, neural stem and progenitor cells als...

  20. Preparation and in vivo evaluation of linkers for 211At labeling of humanized anti-Tac

    International Nuclear Information System (INIS)

    Yordanov, A.T.; Garmestani, K.; Zhang, M.; Zhang, Z.; Yao, Z.; Phillips, K.E.; Herring, B.; Horak, E.; Beitzel, M.P.; Schwarz, U.P.; Gansow, O.A.; Plascjak, P.S.; Eckelman, W.C.; Waldmann, T.A.; Brechbiel, M.W.

    2001-01-01

    The syntheses, radiolabeling, antibody conjugation, and in vivo evaluation of new linkers for 211 At labeling of humanized anti-Tac (Hu-anti-Tac), an antibody to the α-chain of the IL-2 receptor (IL-2Rα) shown to be a useful target for radioimmunotherapy are described. Synthesis of the organometallic linker precursors is accomplished by reaction of the corresponding bromo- or iodoaryl esters with bis(tributyltin) in the presence of a palladium catalyst. Subsequent conversion to the corresponding N-succinimidyl ester and labeling with 211 At of two new linkers, N-succinimidyl 4-[ 211 At]astato-3-methylbenzoate and N-succinimidyl N-(4-[ 211 At]astatophenethyl)succinamate (SAPS), together with the previously reported N-succinimidyl 4-[ 211 At]astatobenzoate and N-succinimidyl 3-[ 211 At]astato-4-methylbenzoate, are each conjugated to Hu-anti-Tac. The plasma survival times of these conjugates are compared to those of directly iodinated ( 125 I) Hu-anti-Tac. The N-succinimidyl N-(4-[ 211 At]astatophenethyl)succinamate compound (SAPS) emerged from this assay as the most viable candidate for 211 At-labeling of Hu-anti-Tac. SAPS, along with the directly analogous radio-iodinated reagent, N-succinimidyl N-(4-[ 125 I]astatophenethyl)succinamate (SIPS), are evaluated in a biodistribution study along with directly iodinated ( 125 I) Hu-anti-Tac. Blood clearance and biological accretion results indicate that SAPS is a viable candidate for further evaluation for radioimmunotherapy of cancer