WorldWideScience

Sample records for ferromagnetic co-ni-al alloys

  1. Structure investigations of ferromagnetic Co-Ni-Al alloys obtained by powder metallurgy.

    Maziarz, W; Dutkiewicz, J; Lityńska-Dobrzyńska, L; Santamarta, R; Cesari, E

    2010-03-01

    Elemental powders of Co, Ni and Al in the proper amounts to obtain Co(35)Ni(40)Al(25) and Co(40)Ni(35)Al(25) nominal compositions were ball milled in a high-energy mill for 80 h. After 40 h of milling, the formation of a Co (Ni, Al) solid solution with f.c.c. structure was verified by a change of the original lattice parameter and crystallite size. Analytical transmission electron microscopy observations and X-ray diffraction measurements of the final Co (Ni, Al) solid solution showed that the crystallite size scattered from 4 to 8 nm and lattice parameter a = 0.36086 nm. The chemical EDS point analysis of the milled powder particles allowed the calculation of the e/a ratio and revealed a high degree of chemical homogeneity of the powders. Hot pressing in vacuum of the milled powders resulted in obtaining compacts with a density of about 70% of the theoretical one. An additional heat treatment increased the density and induced the martensitic transformation in a parent phase. Selected area diffraction patterns and dark field images obtained from the heat-treated sample revealed small grains around 300 nm in diameter consisting mainly of the ordered gamma phase (gamma'), often appearing as twins, and a small amount of the L1(0) ordered martensite.

  2. Structure changes of Co-Ni-Al ferromagnetic shape memory alloys after vacuum annealing and hot rolling

    Maziarz, Wojciech

    2008-01-01

    The structure changes of vacuum annealed and hot rolled Co 35+x -Ni 40-x -Al 25 (x = 0, 2.5, 5.0) ferromagnetic shape memory alloys were examined by optical microscopy and X-ray diffraction measurements. Almost the same content of γ phase was observed in alloys after vacuum annealing. The change of grains morphology from dendrite in to equiaxed ones appeared after vacuum annealing. The hot rolling process was applied after annealing at 900 deg. C with thickness reduction up to about 90%. The structure of hot rolled samples revealed elongated grains of different phases. The hardness changes after heat treatment and plastic deformation processes have reflected the solution hardening and work hardening, respectively

  3. Two-dimensional nano-lattice in Fe-Co-Ni-Al-Cu alloys

    Kalanov, M.U.; Ibragimova, E.M.; Khamraeva, R.N.; Rustamova, V.M.; Ummatov, H.D.

    2007-01-01

    Full text: The high coercive strength of the dispersionally solidified alloys on the base of Fe-Co-Ni-Al-Cu system appears as a result of the special thermomagnetic annealing, when particles of the strong magnetic phase are distinguished in non-magnetic matrix along an external magnetic field direction. The neutron studying allows one to reveal the correlation between magnetization and inclusion axes, and also existence of magnetic microcell and perfectness of the lattice. This work presents results of neutron diffraction study with a double-crystal spectrometer (0.145 nm). Plate like samples of size 18 12 4 mm 3 were cut from a single crystal of alloy UNDK35 T5 along (100) plane. Magnetic field of 6 kOe was applied perpendicular to the neutron beam. Zero-field spectrum had only random variation of the background. Under the applied magnetic field two maxima appeared at the angles of 12 and 24 minute. In the case of the magnetic field directed in parallel to the scattering vector, the two maxima disappeared as expected. It is evidence that nuclear scattering is less than magnetic one and the observed maxima correspond to (10) and (20) reflections from a two dimensional ferro-magnetic microcell. The cell parameter of the magnetic microcell was found 40.6 nm. The coherent scattering region size was 120-160 nm. The ferro-magnetic rod diameter estimated from the peak widths was 16 nm. The diffraction pattern for the demagnetized sample strongly differs from the initial magnetized sample, where a diffuse reflection was observed near Bragg reflection and related with residual magnetization. So, the magnetic inclusions created in the Fe-Co-Ni-Al-Cu system at the thermomagnetic annealing by means of disintegration of the solid solution are strong ferro-magnetic and one-domain. These particles form the two-dimensional magnetic microcell and interact each to other within 3-4 periods of the cell. (authors)

  4. Shape memory alloy Co-Ni-Al as complex multiferroic

    Kopeček, Jaromír; Jarošová, Markéta; Jurek, Karel; Drahokoupil, Jan; Kratochvílová, Irena; Fekete, Ladislav; Bodnárová, Lucie; Seiner, Hanuš; Sedlák, Petr; Landa, Michal; Šepitka, J.; Lukeš, J.; Kopecký, Vít; Heczko, Oleg

    2012-01-01

    Roč. 19, č. 2 (2012), s. 114-115 ISSN 1211-5894. [Struktura 2012. Kolokvium Krystalografické společnosti. 11.06.2012-14.06.2012, Klatovy] R&D Projects: GA ČR(CZ) GA101/09/0702; GA ČR GAP107/10/0824; GA ČR(CZ) GAP107/11/0391; GA AV ČR IAA100100920 Institutional support: RVO:68378271 ; RVO:61388998 Keywords : Co-alloys * metallography * EBSD method * martensite Subject RIV: JG - Metallurgy http://www. xray .cz/ms/bul2012-2/sessionc.pdf

  5. The pseudoelasticity and the shape memory effect in CoNiAl alloys

    Kopeček, Jaromír; Jarošová, Markéta; Jurek, Karel; Heczko, Oleg

    2014-01-01

    Roč. 21, č. 1 (2014), s. 43-48 ISSN 1335-0803 R&D Projects: GA ČR(CZ) GA101/09/0702; GA ČR GAP107/10/0824; GA ČR(CZ) GAP107/11/0391; GA AV ČR IAA100100920 Institutional support: RVO:68378271 Keywords : shape memory alloys * co-alloys * metallography * martensitic transition * stress induced martensite Subject RIV: BM - Solid Matter Physics ; Magnetism

  6. Xenon focused ion beam in the shape memory alloys investigation – the case of NiTi and CoNiAl

    Kopeček, Jaromír; Jurek, Karel; Kopecký, Vít; Klimša, Ladislav; Seiner, Hanuš; Sedlák, Petr; Landa, Michal; Dluhoš, J.; Petrenec, M.; Hladík, L.; Doupal, A.; Heczko, Oleg

    2014-01-01

    Roč. 20, Aug (2014), s. 335-336 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:68378271 ; RVO:61388998 Keywords : scanning electron microscope * SEM * focused ion beam * FIB * xenon plasma focused ion beam * dual beam * shape memory alloy * SMA Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.877, year: 2014

  7. Ferromagnetic bulk glassy alloys

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  8. Hyperfine fields at 89Y nuclei in Y(Fesub(1-x)Tsub(x))2 (T=V, Mn, Co, Ni, Al) with low concentrations x

    Ichinose, Kazuyoshi; Yoshie, Hiroshi; Nagai, Hiroyuki; Tsujimura, Akira; Fujiwara, Katsuyuki.

    1983-01-01

    NMR of 89 Y nuclei in Y(Fesub(1-x)Tsub(x)) 2 (T=V, Mn, Co, Ni, Al) has been observed at 4.2K. Well-resolved satellite structures of Y resonance appear in these compounds. This shows that the Y hyperfine field is mainly due to the magnetic nearest neighbor atoms. The magnetic moment of T atoms is estimated by two methods: (i) the contribution of T atoms to the hyperfine field is proportional to the magnetic moments of Fe and T atoms and (ii) the well known empirical relation between the hyperfine field and the mean magnetic moment of alloys is used. These results are in good agreement with those in dilute T-Fe alloys except for T=Mn. The intensity ratio of satellite peaks is discussed based upon a statistical distribution of Fe and T atoms. (author)

  9. Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH

    Mohd Zobir Hussein

    2014-11-01

    Full Text Available Multi-walled carbon nanotubes (MWCNTs were prepared via chemical vapor deposition (CVD using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs. Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs.

  10. Development of an engineering model for ferromagnetic shape memory alloys

    Tani, Yoshiaki; Todaka, Takashi; Enokizono, Masato

    2008-01-01

    This paper presents a relationship among stress, temperature and magnetic properties of a ferromagnetic shape memory alloy. In order to derive an engineering model of ferromagnetic shape memory alloys, we have developed a measuring system of the relationship among stress, temperature and magnetic properties. The samples used in this measurement are Fe68-Ni10-Cr9-Mn7-Si6 wt% ferromagnetic shape memory alloy. They are thin ribbons made by rapid cooling in air. In the measurement, the ribbon sample is inserted into a sample holder winding consisting of the B-coil and compensation coils, and magnetized in an open solenoid coil. The ribbon is stressed with attachment weights and heated with a heating wire. The specific susceptibility was increased by applying tension, and slightly increased by heating below the Curie temperature

  11. Josephson junctions with ferromagnetic alloy interlayer

    Himmel, Nico

    2015-07-23

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO{sub x} vertical stroke Nb vertical stroke Ni{sub 60}Cu{sub 40} vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially

  12. Josephson junctions with ferromagnetic alloy interlayer

    Himmel, Nico

    2015-01-01

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO x vertical stroke Nb vertical stroke Ni 60 Cu 40 vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially a variation of

  13. Ferromagnetism and spin glass ordering in transition metal alloys (invited)

    Crane, S.; Carnegie, D. W., Jr.; Claus, H.

    1982-03-01

    Magnetic properties of transition metal alloys near the percolation threshold are often complicated by metallurgical effects. Alloys like AuFe, VFe, CuNi, RhNi, and PdNi are in general not random solid solutions but have various degrees of atomic clustering or short-range order (SRO), depending on the heat treatment. First, it is shown how the magnetic ordering temperature of these alloys varies with the degree of clustering or SRO. Second, by systematically changing this degree of clustering or SRO, important information can be obtained about the magnetic phase diagram. In all these alloys below the percolation limit, the onset of ferromagnetic order is probably preceded by a spin glass-type ordering. However, details of the magnetic phase diagram near the critical point can be quite different alloy systems.

  14. Coupled magnetoelastic waves in ferromagnetic shape-memory alloys

    Bar'Yakhtar, V. G.; Danilevich, A. G.; L'Vov, V. A.

    2011-10-01

    The theory of the spectra of coupled magnetoelastic waves in ferromagnetic shape-memory alloys (FSMA) is developed. The possibility of an abnormally strong coupling of spin waves with the soft elastic mode at approaching the martensitic transformation (MT) temperature is disclosed. In particular the magnetoelastic waves in Ni-Mn-Ga single crystals are considered. A considerable (by an order of magnitude) reduction of the shear elastic modulus and an appropriate lowering of the transversal velocity of sound in the applied magnetic field are predicted. Optimum conditions for the experimental observation of the predicted effects are specified.

  15. Magnetic and calorimetric investigations of ferromagnetic shape memory alloy Ni54Fe19Ga27

    Sharma, V K; Chattopadhyay, M K; Kumar, Ravi; Ganguli, Tapas; Kaul, Rakesh; Majumdar, S; Roy, S B

    2007-01-01

    We report results of magnetization and differential scanning calorimetry measurements in the ferromagnetic shape memory alloy Ni 54 Fe 19 Ga 27 . This alloy undergoes an austenite-martensite phase transition in its ferromagnetic state. The nature of the ferromagnetic state, both in the austenite and the martensite phase, is studied in detail. The ferromagnetic state in the martensite phase is found to have higher anisotropy energy as compared with the austenite phase. The estimated anisotropy constant is comparable to that of a well-studied ferromagnetic shape memory alloy system NiMnGa. Further, the present study highlights various interesting features accompanying the martensitic transition (MT). These features suggest the possibility of either a premartensitic transition and/or an inter-MT in this system

  16. Half-metallic ferromagnetism in (Z B, Al, Ga, and In) Heusler alloys ...

    K H SADEGHI

    2018-01-03

    11], and zincblende (ZB) transition-metal pnictides and chalcogenides [12–17]. Among HM ferromagnets, Heusler alloys are attractive because of their technical applications (in spin-injection devices [18], spin-filters [19], ...

  17. Ferromagnetic behavior of nanocrystalline Cu–Mn alloy prepared by ball milling

    Mondal, B.N., E-mail: bholanath_mondal@yahoo.co.in [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Sardar, G. [Department of Zoology, Baruipur College, South 24 parganas 743 610 (India); Nath, D.N. [Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2014-12-15

    50Cu–50Mn (wt%) alloy was produced by ball milling. The milling was continued up to 30 h followed by isothermal annealing over a four interval of temperature from 350 to 650 °C held for 1 h. Crystallite size, lattice strain, lattice parameter were determined by Rietveld refinement structure analysis of X-ray diffraction data. The amount of dissolved/precipitated Mn (wt%) after ball milling/milling followed by annealing was calculated by quantative phase analysis (QPA). The increase of coercivity could be attributed to the introduction of lattice strain and reduction of crystallite size as a function of milling time. Electron paramagnetic resonance and superconducting quantum interface device analysis indicate that soft ferromagnetic behavior has been achieved by ball milled and annealed Cu–Mn alloy. The maximum coercivity value of Cu–Mn alloy obtained after annealing at 350 °C for 1 h is 277 Oe. - Highlights: • A small amount of Mn has dissolved in Cu after ball milling for 30 h. • Coercivity of the Cu–Mn alloy has increased with an increase in milling time. • Substantial MnO has formed after annealing at 650 °C for 1 h. • The ball milled and annealed alloy have revealed soft ferromagnetic behavior. • The alloy annealed at 350 °C shows the maximum value of coercivity.

  18. Study of annealing effects on the giant magnetoresistance in ferromagnetic alloys

    Ju Sheng; Li Zhenya

    2005-01-01

    A self-consistent macroscopic theory is developed to improve on that of Gu et al (1996 Phys. Rev. B 53 11685) and to provide a physical understanding of some new experimental observations in ferromagnetic alloys. For composites with non-spherical inclusions, which is the general case in artificial granular systems, previous models based on the calculation of a spherical particle in the dilute limit are inadequate. By considering the particle shape distribution and its evolution with annealing effects, we have studied the shape dependence of the giant magnetoresistance (GMR) in ferromagnetic alloys. It is found that both the particle shape and its orientation are effective factors in determining the magnitude of the GMR. Based on a comparison between our calculations and experimental data, a comprehensive picture of the effects of annealing on GMR is obtained

  19. Martensitic transformation in Co-based ferromagnetic shape memory alloy

    Kopeček, Jaromír; Yokaichiya, F.; Laufek, F.; Jarošová, Markéta; Jurek, Karel; Drahokoupil, Jan; Sedláková-Ignácová, Silvia; Molnár, Peter; Heczko, Oleg

    2012-01-01

    Roč. 122, č. 3 (2012), s. 475-477 ISSN 0587-4246. [International Symposium on Physics of Materials, ISPMA /12./. Praha, 04.09.2011-08.09.2011] R&D Projects: GA ČR(CZ) GA101/09/0702; GA ČR GAP107/10/0824; GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : microstructure * shape memory alloys * neutron diffraction * cobalt alloys Subject RIV: JG - Metallurgy Impact factor: 0.531, year: 2012

  20. Ab Initio theory of the Gilbert damping in random ferromagnetic alloys

    Drchal, Václav; Turek, I.; Kudrnovský, Josef

    2017-01-01

    Roč. 30, č. 6 (2017), s. 1669-1672 ISSN 1557-1939 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68378271 Keywords : Gilbert damping * ferromagnetic alloys * ab initio * nonlocal torques Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.180, year: 2016

  1. Static critical phenomena in Co-Ni-Ga ferromagnetic shape memory alloy

    Sethi, Brahmananda; Sarma, S.; Srinivasan, A.; Santra, S. B.

    2014-01-01

    Ferromagnetic shape memory alloys are smart materials because they exhibit temperature driven shape memory effect and magnetic field induced strain. Thus two types of energy, i.e. thermal and magnetic, are used to control their shape memory behaviour. Study of critical phenomenon in such materials has received increased experimental and theoretical attention for better understanding of the magnetic phase transition behavior as well as further development of ferromagnetic shape memory materials. In the present study we report the preparation and characterization of bulk Co 45 Ni 25 Ga 30 alloy, prepared by a sequence of arc melting technique followed by homogenization at 1150 °C for 24 hours and ice-water quenching. Structural and magnetic properties of the alloys were studied by means of X-ray diffraction and vibrating sample magnetometer in an applied field range of ±18 kOe equipped with a high temperature oven. We have determined the critical temperature T C (∼375.5 K) and the critical exponents viz; β=0.40, γ=1.68 and δ=5.2. Asymptotic critical exponents β, γ, and δ obey Widom scaling relation, γ+β=βδ, and the magnetization data satisfy the scaling equation of state for second-order phase transition in the asymptotic critical region

  2. Two-fold origin of the deformation-induced ferromagnetism in bulk Fe60Al40 (at.%) alloys

    Menendez, E; Surinach, S; Baro, M D; Sort, J; Liedke, M O; Fassbender, J; Nogues, J

    2008-01-01

    The transition from the atomically ordered B2-phase to the chemically disordered A2-phase and the concomitant deformation-induced ferromagnetism have been investigated in bulk polycrystalline Fe 60 Al 40 (at.%) alloys subjected to compression processes. A detailed correlation between structural, magnetic and mechanical properties reveals that the generated ferromagnetism depends on the stress level but is virtually independent of the loading rate. The mechanisms governing the induced ferromagnetism also vary as the stress level is increased. Namely, in the low-stress regime both lattice cell expansion and atomic intermixing play a role in the induced ferromagnetic behavior. Conversely, lattice expansion seems to become the main mechanism contributing to the generated ferromagnetism in the high-stress regime. Furthermore, a correlation is also observed between the order-disorder transition and the mechanical hardness. Hence, a combination of magnetic and mechanical measurements can be used, in synergetic manner, to investigate this deformation-induced phase transition.

  3. Low-temperature specific heat of the 'nearly ferromagnetic' amorphous alloy Ysub(0.22)Nisub(0.78)

    Garoche, P.; Veyssie, J.J.; Lienard, A.; Rebouillat, J.P.

    1979-01-01

    Results of specific heat measurements, between 0.3K and 10 K in magnetic fields up to 75 kOe, on the 'nearly ferromagnetic' amorphous alloy Ysub(0.22)Nisub(0.78) are reported. The results, especially the magnetic field dependence, exclude any appreciable contribution from uniform paramagnons. In contrast a quantitative analysis is obtained in terms of superparamagnetic clusters, demonstrating that the onset of ferromagnetism, as a function of concentration, is inhomogeneous in this amorphous metallic system. (author)

  4. Absence of intrinsic ferromagnetism in Zn1-xMnxO alloys

    Zhang Huawei; Shi Erwei; Chen Zhizhan; Liu Xuechao; Xiao Bing

    2006-01-01

    Zn 1-x Mn x O alloys, with different Mn concentrations, were prepared by the hydrothermal method. X-ray diffraction and electron paramagnetic resonance spectra demonstrate that Zn 2+ ions are homogeneously substituted by Mn 2+ ions without changing the ZnO wurtzite structure. The x = 0.02 and 0.04 samples are paramagnetic. When the Mn concentrations are increased to x = 0.08 and 0.10, the samples exhibit some ferromagnetism due to a secondary phase (Zn,Mn)Mn 2 O 4 . (letter to the editor)

  5. Vacancy dynamic in Ni-Mn-Ga ferromagnetic shape memory alloys

    Merida, D., E-mail: david.merida@ehu.es [Fisika Aplikatua II Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); Elektrizitate eta Elektronika Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); García, J. A. [Fisika Aplikatua II Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); BC Materials (Basque Centre for Materials, Application and Nanostructures), 48040 Leioa (Spain); Sánchez-Alarcos, V.; Pérez-Landazábal, J. I.; Recarte, V. [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Plazaola, F. [Elektrizitate eta Elektronika Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain)

    2014-06-09

    Vacancies control any atomic ordering process and consequently most of the order-dependent properties of the martensitic transformation in ferromagnetic shape memory alloys. Positron annihilation spectroscopy demonstrates to be a powerful technique to study vacancies in NiMnGa alloys quenched from different temperatures and subjected to post-quench isothermal annealing treatments. Considering an effective vacancy type the temperature dependence of the vacancy concentration has been evaluated. Samples quenched from 1173 K show a vacancy concentration of 1100 ± 200 ppm. The vacancy migration and formation energies have been estimated to be 0.55 ± 0.05 eV and 0.90 ± 0.07 eV, respectively.

  6. Experimental study of the spin density of metastable fcc ferromagnetic Fe-Cu alloys

    Bove, L. E.; Petrillo, C.; Sacchetti, F.; Mazzone, G.

    2000-01-01

    Magnetization density measurements on metastable Fe x Cu 1-x alloys at four compositions (x=20, 40, 50, and 60 at. %) and at 5 K temperature were carried out by means of polarized neutron diffraction. The samples were produced by high-energy ball milling and characterized by x-ray diffraction and fluorescence measurements. Additional bulk magnetization measurements were carried out on the two samples at high Fe concentration. Over the present concentration region, the Fe-Cu system is ferromagnetic and the four samples were found to be in the fcc phase. Fe-Cu is therefore a very suitable system to investigate the magnetic state of Fe in an fcc environment. Other than confirming that the Fe-Cu system is not a simple dilution alloy, the present results were compatible with a two-state model for fcc Fe--that is, two different coexisting electronic states associated with different magnetic moments and form factors

  7. Evaluation of phase transformation in ferromagnetic shape memory Fe-Pd alloy by magnetic Barkhausen noise

    Furuya, Yasubumi; Tamoto, Shizuka; Kubota, Takeshi; Okazaki, Teiko; Hagood, Nesbitt W.; Spearing, S. Mark

    2002-07-01

    The possibility to detect the phase transformation with martensites by heating or cooling as well as stress-loading in ferromagnetic shape memory Fe-30at percent Pd alloy thin foil by using magnetic Markhausen noise sensor was studied. MBHN is caused by the irregular interactions between magnetic domain and thermally activated martensite twins during magnetization. In general, the envelope of the MBHN voltage versus time signals in Fe-29at percent Pd ribbon showed two peaks during magnetization, where secondary peak at intermediate state of magnetization process decreased with increasing temperature, while the MBHN envelopes in pure iron did not change with increasing temperature. The variety of MBHN due to the phase transformation was apt to arise at higher frequency part of spectrum during intermediate state of magnetization process and it decreased with disappearance of martensite twins. Besides, MBHN increased monotonically with increasing loading stress and then, it decreased with unloading, however MBHN showed large hysteresis between loading and unloading passes. Based on the experimental results from MBHN measurements for both thermoelastic and stress-induced martensite phase transformations in Fe-30at percent Pd ribbon samples, MBHN method seems a useful technique to non-destructive evaluation of martensite phase transformation of ferromagnetic shape memory alloy.

  8. Influence of atomic ordering on elastocaloric and magnetocaloric effects of a Ni–Cu–Mn–Ga ferromagnetic shape memory alloy

    Huang, Chonghui [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Yu, E-mail: yuwang@mail.xjtu.edu.cn [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Tang, Zhao; Liao, Xiaoqi; Yang, Sen; Song, Xiaoping [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-05-05

    Highlights: • Ni{sub 51}Cu{sub 4}Mn{sub 20}Ga{sub 25} alloy exhibits normal elastocaloric and magnetocaloric effects. • L2{sub 1} atomic order of the alloy is increased after annealing at 773 K for 10 h. • Increasing L2{sub 1} atomic order improves its elastocaloric and magnetocaloric effects. • Atomic ordering modifies the magnetic and martensitic transitions of the system. - Abstract: The coexisting elastocaloric and magnetocaloric effects in ferromagnetic shape memory alloys have attracted much attention for the potential application in solid state refrigeration. Previous studies show that the L2{sub 1} atomic ordering of Heusler ferromagnetic shape memory alloys plays important role on their magnetocaloric effect. However, no research work investigates the effect of atomic ordering on their elastocaloric effect yet. In this study, we investigated the influence of atomic ordering on the elastocaloric and magnetocaloric effects of a Ni{sub 51}Cu{sub 4}Mn{sub 20}Ga{sub 25} ferromagnetic shape memory alloy. The alloy exhibits normal elastocaloric effect and normal magnetocaloric effect near room temperature. Moreover, we found that the enhancement of atomic order in this alloy can greatly increase the entropy change and refrigeration capacity of its elastocaloric and magnetocaloric effects. This is attributed to that the atomic ordering modifies the magnetic and martensitic transitions of the system.

  9. Influence of atomic ordering on elastocaloric and magnetocaloric effects of a Ni–Cu–Mn–Ga ferromagnetic shape memory alloy

    Huang, Chonghui; Wang, Yu; Tang, Zhao; Liao, Xiaoqi; Yang, Sen; Song, Xiaoping

    2015-01-01

    Highlights: • Ni 51 Cu 4 Mn 20 Ga 25 alloy exhibits normal elastocaloric and magnetocaloric effects. • L2 1 atomic order of the alloy is increased after annealing at 773 K for 10 h. • Increasing L2 1 atomic order improves its elastocaloric and magnetocaloric effects. • Atomic ordering modifies the magnetic and martensitic transitions of the system. - Abstract: The coexisting elastocaloric and magnetocaloric effects in ferromagnetic shape memory alloys have attracted much attention for the potential application in solid state refrigeration. Previous studies show that the L2 1 atomic ordering of Heusler ferromagnetic shape memory alloys plays important role on their magnetocaloric effect. However, no research work investigates the effect of atomic ordering on their elastocaloric effect yet. In this study, we investigated the influence of atomic ordering on the elastocaloric and magnetocaloric effects of a Ni 51 Cu 4 Mn 20 Ga 25 ferromagnetic shape memory alloy. The alloy exhibits normal elastocaloric effect and normal magnetocaloric effect near room temperature. Moreover, we found that the enhancement of atomic order in this alloy can greatly increase the entropy change and refrigeration capacity of its elastocaloric and magnetocaloric effects. This is attributed to that the atomic ordering modifies the magnetic and martensitic transitions of the system

  10. Quantum chemical analysis of binary and ternary ferromagnetic alloys; Quantenchemische Untersuchungen binaerer und ternaerer ferromagnetischer Legierungen

    Jacobs, Yasemin Erika Charlotte

    2007-02-23

    In this work the electronic structures, densities of states, chemical bonding, magnetic exchange Parameters and Curie temperatures of binary and ternary ferromagnetic alloys are analyzed. The electronic structure of ferromagnetic MnAl has been calculated using density-functional techniques (TB-LMTO-ASA, FPLAPW) and quantum chemically analyzed by means of the crystal orbital Hamilton population analysis. The crystal structure of the ferromagnetic tetragonal MnAl may be understood to originate from the structure of nonmagnetic cubic MnAl with a CsCl motif through a two-step process. While the nonmagnetic cubic structure is stable against a structural deformation, antibonding Mn-Mn interactions at the Fermi level lead to spin polarization and the onset of magnetism, i.e., a symmetry reduction taking place solely in the electronic degrees of freedom, by that emptying antibonding Mn-Mn states. Residual antibonding Al--Al states can only be removed by a subsequent, energetically smaller structural deformation towards the tetragonal system. As a final result, homonuclear bonding is strengthened and heteronuclear bonding is weakened. Corresponding DFT calculations of the electronic structure as well as the calculation of the chemical bonding and the magnetic exchange interactions have been performed on the basis of LDA and GGA for a series of ferromagnetic full Heusler alloys of general formula Co2MnZ (Z=Ga,Si,Ge,Sn), Rh2MnZ (Z=Ge,Sn,Pb), Ni2MnZ (Z=Ga,In,Sn), Pd2MnZ (Z=Sn,Sb) and Cu2MnZ (Z=Al,In,Sn). The connection between the electronic spectra and the magnetic interactions have been studied. Correlations between the chemical bondings in Heusler alloys derived from COHP analysis and magnetic phenomena are obvious, and different mechanisms leading to spin polarization and ferromagnetism are derived. The band dependence of the exchange parameters, their dependence on volume and valence electron concentration have been thoroughly analyzed within the Green function technique

  11. Magnetic characterisation of large grain, bulk Y–Ba–Cu–O superconductor–soft ferromagnetic alloy hybrid structures

    Philippe, M.P.; Fagnard, J.-F.; Kirsch, S.; Xu, Z.; Dennis, A.R.; Shi, Y.-H.; Cardwell, D.A.; Vanderheyden, B.; Vanderbemden, P.

    2014-01-01

    Highlights: • Large grain, bulk YBaCuO superconductor (SC) combined with ferromagnetic elements. • The flux lines curve outwards through the ferromagnet in the remanent state. • The trapped field in the SC is enhanced by the presence of the ferromagnet. • The effects of the SC and the ferromagnet add when the ferromagnet is saturated. - Abstract: Large grain, bulk Y–Ba–Cu–O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell’s algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the

  12. First-principles study on half-metallic ferromagnetic properties of Zn1- x V x Se ternary alloys

    Khatta, Swati; Tripathi, S. K.; Prakash, Satya

    2017-09-01

    The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn1- x V x Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction.

  13. Fiber laser drilling of Ni46Mn27Ga27 ferromagnetic shape memory alloy

    Biffi, C. A.; Tuissi, A.

    2014-11-01

    The interest in ferromagnetic shape memory alloys (SMAs), such as NiMnGa, is increasing, thanks to the functional properties of these smart and functional materials. One of the most evident properties of these systems is their brittleness, which makes attractive the study of unconventional manufacturing processes, such as laser machining. In this work the interaction of laser beam, once focalized on the surface of Ni46Mn27Ga27 [at%] alloy, has been studied. The experiments were performed with a single laser pulse, using a 1 kW continuous wave fiber laser. The morphology of the laser machined surfaces was evaluated using scanning electron microscopy, coupled with energetic dispersion spectroscopy for the measurement of the chemical composition. The results showed that the high quality of the laser beam, coupled with great irradiances available, allow for blind or through holes to be machined on 1.8 mm plates with a single pulse in the order of a few ms. Holes were produced with size in the range of 200-300 μm; despite the long pulse duration, low amount of melted material is produced around the hole periphery. No significant variation of the chemical composition has been detected on the entrance surfaces while the exit ones have been characterized by the loss of Ga content, due to its melting point being significantly lower with respect to the other alloying elements.

  14. A comparative study of critical phenomena and magnetocaloric properties of ferromagnetic ternary alloys

    Yüksel, Yusuf; Akinci, Ümit

    2018-01-01

    Magnetic and magnetocaloric properties, as well as the phase diagrams of a ferromagnetic ternary alloy system have been studied. A detailed comparison of two different methods, namely the effective field theory (EFT), and Monte Carlo (MC) simulations has been provided. Our numerical data show that the general qualitative picture presented by two methods are in a good agreement with each other. In terms of the magnetocaloric properties, our results yield that it is possible to design magnetic materials with a variety of working temperatures and magnetocaloric properties (such as large ΔSM and q values) by manipulating the magnetic phase transition via tuning the compositional factor (i.e. the mixing ratio of sublattice ions). The observed magnetocaloric effect has been found to be a direct one with ΔSM < 0 associated with a second order phase transition.

  15. Pressure dependence of the magnetic properties of various weakly ferromagnetic transition metal alloys

    Buis, N.

    1979-01-01

    A large number of experimental results are summarized obtained in an apparatus designed for the measurement of magnetization under high pressures (up to 5k bar gas pressure), at temperatures from 4.2K to room temperature and in magnetic fields up to 5.1 T. Two alloy systems studied were Zr (Fesub(1-x)Cosub(x)) 2 and Y(Fesub(x)Cosub(1-x)) 2 and no consistent picture could be deduced from the large pressure effects on the magnetization. Apparently, one cannot apply the model for weak itinerant ferromagnetism on Zr(Fesub(1-x)Cosub(x)) 2 or a simple giant moment model on Y(Fesub(x)Cosub(1-x)) 2 with small iron content, because the magnetic behaviour of both systems is too complicated. (C.F.)

  16. Application of machine-learning methods to solid-state chemistry: ferromagnetism in transition metal alloys

    Landrum, G.A.Gregory A.; Genin, Hugh

    2003-01-01

    Machine-learning methods are a collection of techniques for building predictive models from experimental data. The algorithms are problem-independent: the chemistry and physics of the problem being studied are contained in the descriptors used to represent the known data. The application of a variety of machine-learning methods to the prediction of ferromagnetism in ordered and disordered transition metal alloys is presented. Applying a decision tree algorithm to build a predictive model for ordered phases results in a model that is 100% accurate. The same algorithm achieves 99% accuracy when trained on a data set containing both ordered and disordered phases. Details of the descriptor sets for both applications are also presented

  17. Visible microactuation of a ferromagnetic shape memory alloy by focused laser beam

    Hu, Zhibin; Tamang, Rajesh; Varghese, Binni; Sow, Chorng-Haur; Rajini Kanth, B; Mukhopadhyay, P K

    2012-01-01

    We used a focused laser beam to achieve large amplitude and localized controlled actuation in a microstructure made of a ferromagnetic shape memory alloy. Significant deformation (18 µm) was achieved at low laser power (20 mW) and the amplitude of actuation could be linearly controlled with the laser power. The rapid mechanical actuation shows no apparent sign of fatigue even after a million continuous oscillatory cycles. As a possible mechanism, we propose that the deformation of structure was induced by a combination of the thermal effect and the magnetic field of the incident laser light. This is possibly the first such reported visual evidence of microactuation of materials due to the optomagnetic field. (fast track communication)

  18. Magnetoresistance in ferromagnetic shape memory alloy NiMnFeGa

    Liu, Z.H.; Ma, X.Q.; Zhu, Z.Y.; Luo, H.Z.; Liu, G.D.; Chen, J.L.; Wu, G.H.; Zhang Xiaokai; Xiao, John Q.

    2011-01-01

    The magnetoresistance (MR){=[R(H)-R(0)]/R(0)} properties in ferromagnetic shape memory alloy of NiMnFeGa ribbons and single crystals, and NiFeGa ribbons have been investigated. It is found that the NiMnFeGa melt-spun ribbon exhibited GMR effect, arising from the spin-dependent scattering from magnetic inhomogeneities consisting of antiferromagnetically coupled Mn atoms in B2 structure. In the absence of these magnetic inhomogeneities, Heusler alloys seem to show a common linear MR behavior at around 0.8T C , regardless of sample structures. This may be explained by the s-d model. At low temperatures, conventional AMR behaviors due to the spin-orbital coupling are observed. This is most likely due to the diminished MR from s-d model because of much less spin fluctuation, and is not associated with martensite phase. MR anomaly at intermediate field (ρ perpendicular >ρ || ) is also observed in single crystal samples, which may be related to unique features of Heusler alloys. - Highlights: → NiMnFeGa melt-spun ribbon exhibited GMR effect with a large negative MR up to -13%. → GMR behavior is arising from the spin-dependent scattering from magnetic inhomogeneities. → In the absence of these magnetic inhomogeneities, Heusler alloys seem to show a common linear MR behavior at around 0.8T C . → Conventional AMR behaviors due to the spin-orbital coupling are observed in NiMnFeGa single crystal and Ni 2 FeGa ribbon samples at low temperatures.

  19. Short-range ferromagnetism in alloy ribbons of Fe-Cr-Si-Nb-(Ag, Cu)

    THANH, P. Q.; HOA, N. Q.; CHAU, N. [Vietnam National University, Hanoi (Viet Nam); HUU, C. X. [Danang University of Technology, Danang (Viet Nam); NGO, D. T. [Technical University of Denmark, Kgs. Lyngby (Denmark); PHAN, T. L. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-04-15

    We have studied the magnetic properties of two amorphous alloy ribbons Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Ag{sub 1} (FCSNB-Ag) and Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Cu{sub 1} (FCSNB-Cu), prepared by using a melt-spinning technique. Magnetization (M) measurements for various temperatures (T) and magnetic fields (H) indicate that ferromagnetic-paramagnetic (FM-PM) phase transitions take place in FCSNB-Ag and FCSNB-Cu at Curie temperatures (T{sub C} ) of about 308.3 K and 322.5 K, respectively. Analyses of M - H data at different temperatures in the vicinity of the FM-PM phase transition based on the modified Arrott plot method and scaling hypothesis yielded the exponent values of β = 0.369 ± 0.005, γ = 1.359 ± 0.005 and δ = 4.7 ± 0.1 for FCSNB-Ag, and β = 0.376 ± 0.002, γ = 1.315 ± 0.006 and δ = 4.5 ± 0.1 for FCSNB-Cu. Compared with the values from theoretical models, these values are close to those expected for the 3D Heisenberg model, demonstrating the existence of short-range FM order in the amorphous alloy ribbons.

  20. A new type of soft ferromagnetic alloys: RFe12-xGex

    Lachevre, V.; Barbara, B.; Fruchart, D.; Pontonnier, L.

    1998-01-01

    Ternary iron-rich rare earth germanides RFe 12-x Ge x with R=Y, La, Ce, Nd, Sm, Gd, Dy, Ho and Er reveal soft ferromagnetic properties. The structure, the microstructure and the soft magnetic properties of these materials have been studied versus the germanium content and the nature of the rare earth element. In the as-cast materials, at least three crystallized phases have been identified: α-Fe(Ge), RFe 2 Ge 2 and traces of Fe 3 Ge. The typical grain size is of some tens of micrometer. The Curie temperature of these alloys is rather high (i.e. >770 K). The transition temperature as well as the saturation magnetization are found to strongly depend on the nature of the R element. The rapidly quenched alloys appear fully homogenized compared with the as-cast materials and the grain size decreases to about one micrometer. Although X-ray diffraction patterns have shown that the two major phases remain present, the magnetic characteristics are fairly dependent on the earth rare element. For all the investigated materials, measurements of the hysterical behaviour reveal a very low coercivity level, i.e. H c <10 Oe. (orig.)

  1. Evolution of ferromagnetic interactions from cluster spin glass state in Co–Ga alloy

    Mohammad Yasin, Sk. [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Saha, Ritwik [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005 (India); Srinivas, V., E-mail: veeturi@iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Kasiviswanathan, S. [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Nigam, A.K. [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2016-11-15

    Low temperature magnetic properties of binary Co{sub x}Ga{sub 100−x} (x=54–57) alloy have been investigated. Analysis of frequency dependence of ac susceptibility provided a conclusive evidence for the existence of cluster spin glass like behavior with the freezing temperature ~8, 14 K for x=54, 55.5 respectively. The parameters for conventional ‘slowing down’ of the spin dynamics have been extracted from the acs data, which confirm the presence of glassy phase. The magnitude of Mydosh parameter obtained from the fits is larger than that reported for typical canonical spin glasses and smaller than those for non-interacting ideal superparamagnetic systems but comparable to those of known cluster-glass systems. Memory phenomena using specific cooling protocols also support the spin-glass features in Co{sub 55.5}Ga{sub 44.5} composition. Further the development of ferromagnetic clusters from the cluster spin glass state has been observed in x=57 composition. - Highlights: • Temperature dependence of DC and AC susceptibility (acs) analysis has been carried out on Co{sub x}Ga{sub 1−x,} (x=54–57). • M–H data above transition suggests presence of spin clusters. • A detailed analysis of acs data suggests a cluster glass behavior as oppose to SPM state for x=54 and 55.5. • Memory phenomena using specific cooling protocols also support the spin-glass features in Co{sub 55.5}Ga{sub 44.5} composition. • Development of ferromagnetic like behavior for x≥57 has been suggested from DC and AC magnetization data.

  2. Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α-Fe-Si alloys

    Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.; Mathaudhu, Suveen; Rohatgi, Aashish

    2018-01-01

    Diffusion of Si atom and vacancy in the A2-phase of α-Fe-Si alloys in the ferromagnetic state, with and without magnetic order and in various temperature ranges, are studied using AKSOME, an on-lattice self-learning KMC code. Diffusion of the Si atom and the vacancy are studied in the dilute limit and up to 12 at.% Si, respectively, in the temperature range 350-700 K. Local Si neighborhood dependent activation energies for vacancy hops were calculated on-the-fly using a broken-bond model based on pairwise interaction. The migration barrier and prefactor for the Si diffusion in the dilute limit were obtained and found to agree with published data within the limits of uncertainty. Simulations results show that the prefactor and the migration barrier for the Si diffusion are approximately an order of magnitude higher, and a tenth of an electron-volt higher, respectively, in the magnetic disordered state than in the fully ordered state. However, the net result is that magnetic disorder does not have a significant effect on Si diffusivity within the range of parameters studied in this work. Nevertheless, with increasing temperature, the magnetic disorder increases and its effect on the Si diffusivity also increases. In the case of vacancy diffusion, with increasing Si concentration, its diffusion prefactor decreases while the migration barrier more or less remained constant and the effect of magnetic disorder increases with Si concentration. Important vacancy-Si/Fe atom exchange processes and their activation barriers were identified, and the effect of energetics on ordered phase formation in Fe-Si alloys are discussed.

  3. Pulsed-mode operation and performance of a ferromagnetic shape memory alloy actuator

    Asua, E; García-Arribas, A; Etxebarria, V; Feuchtwanger, J

    2014-01-01

    The actuation capabilities and positioning performance of a single crystal ferromagnetic shape memory alloy (FSMA) operated in pulsed mode are evaluated in a prototype device. It consists of two orthogonal coil pairs that produce the magnetic fields necessary for the non-contact deformation of the material. The position of the top of the crystal after actuation is measured by a capacitive sensor. A specifically designed power module drives the discharge of a set of capacitors through the coils, producing fast current pulses of large amplitudes (about 250 A), the coil pairs are driven independently to control the direction of actuation. Open-loop experiments demonstrate that successive pulses of increasing magnitude successfully produced the desired expansion and contraction of the crystal, depending on the pair of coils that is activated. The deformation achieved is maintained after the pulses, highlighting the advantageous set-and-forget operation of the device. Closed-loop experiments are performed using a double proportional–integral–derivative controller, designed to take advantage of the energy-saving quality of the set-and-forget operation. Despite the nonlinear response and hysteric response of FSMA materials, a reference position can be reached and maintained with a maximum error of 0.5 μm. (paper)

  4. Gilbert damping constant of FePd alloy thin films estimated by broadband ferromagnetic resonance

    Kawai T.

    2014-07-01

    Full Text Available Magnetic relaxation of FePd alloy epitaxial thin films with very flat surfaces prepared on MgO(001 substrate are measured by in-plane broadband ferromagnetic resonance (FMR. Magnetic relaxation is investigated as Δω for FMR absorption peak by frequency sweep measurements. ΔH is calculated by using the measured Δω. Gilbert damping constant, α, is estimated by employing a straight line fitting of the resonant frequency dependence of ΔH. The α value for an FePd film deposited at 200 ˚C, which shows disordered A1 structure, is 0.010 and ΔH0, which is frequency independent part of ΔH, is 10 Oe. The α value for a film annealed at 400 ˚C, which shows partially L10 ordered structure (S=0.32, is 0.013, which is slightly larger than that for the disorder A1 structure film. However, ΔH0 for the annealed film is 85 Oe, which is much larger than that for the film with disordered structure. The results show that the magnetic relaxation of the 400 ˚C annealed film is mainly dominated by ΔH0, which is related with magnetic in-homogeneity caused by the appearance of perpendicular anisotropy of partially ordered phase.

  5. Designing a New Ni-Mn-Sn Ferromagnetic Shape Memory Alloy with Excellent Performance by Cu Addition

    Kun Zhang

    2018-02-01

    Full Text Available Both magnetic-field-induced reverse martensitic transformation (MFIRMT and a high working temperature are crucial for the application of Ni-Mn-Sn magnetic shape memory alloys. Here, by first-principles calculations, we demonstrate that the substitution of Cu for Sn is effective not only in enhancing the MFIRMT but also in increasing martensitic transformation, which is advantageous for its application. Large magnetization difference (ΔM in Ni-Mn-Sn alloy is achieved by Cu doping, which arises from the enhancement of magnetization of austenite due to the change of Mn-Mn interaction from anti-ferromagnetism to ferromagnetism. This directly leads to the enhancement of MFIRMT. Meanwhile, the martensitic transformation shifts to higher temperature, owing to the energy difference between the austenite L21 structure and the tetragonal martensite L10 structure increases by Cu doping. The results provide the theoretical data and the direction for developing a high temperature magnetic-field-induced shape memory alloy with large ΔM in the Ni-Mn-Sn Heusler alloy system.

  6. Phase transformation, magnetic property and microstructure of Ni-Mn-Fe-Co-Ga ferromagnetic shape memory alloys

    Tsuchiya, K.; Sho, Y.; Kushima, T.; Todaka, Y.; Umemoto, M.

    2007-01-01

    Effects of addition of Fe and Co on the phase stability, magnetic property and microstructures were investigated for Ni-Mn-Ga. In Ni-Mn 21- x -Fe x -Ga 27 alloys, martensitic transformation temperatures decreased with increasing amount of Fe (x) up to 15 mol%, then slightly increased by the further addition. The crystal structure of martensite phase was 10 M for x 15 mol%. Relatively high martensite stability was obtained for Ni 52 -Mn 16- x -Fe x -Co 5 -Ga 27 alloys. The highest stability of the ferromagnetic martensite phase was achieved in Ni 52 -Mn 6 -Fe 10 -Co 5 -Ga 27 after aging at 773 K for 3.6 ks. Martensite structure was non-modulated 2 M in this series of alloys

  7. Room temperature magnetocaloric effect in Ni-Mn-In-Cr ferromagnetic shape memory alloy thin films

    Akkera, Harish Sharma [Functionalnanomaterials Research Lab, Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand-247667 (India); Singh, Inderdeep [Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee, Uttarakhand-24667 (India); Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in [Functionalnanomaterials Research Lab, Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand-247667 (India)

    2017-02-15

    The influence of Cr substitution for In on the martensitic phase transformation and magnetocaloric effect (MCE) has been investigated in Ni-Mn-Cr-In ferromagnetic shape memory alloy (FSMA) thin films fabricated by magnetron sputtering. Temperature dependent magnetization (M-T) measurements demonstrated that the martensitic transformation temperatures (T{sub M}) monotonously increase with the increase of Cr content due to change in valence electron concentration (e/a) and cell volume. From the study of isothermal magnetization curves (M-H), magnetocaloric effect around the martensitic transformation has been investigated in these FSMA thin films. The magnetic entropy change ∆S{sub M} of 7.0 mJ/cm{sup 3}-K was observed in Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5} film at 302 K in an applied field of 2 T. Further, the refrigerant capacity (RC) was also calculated for all the films in an applied field of 2 T. These findings indicate that the Cr doped Ni-Mn-In FSMA thin films are potential candidates for room temperature micro-length-scale magnetic refrigeration applications. - Highlights: • The Cr content leads to an increase in the martensitic transformation temperature. • The ∆S{sub M} =7 mJ/cm{sup 3}-K at 302 K was observed in the Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5}. • The RC =39.2 mJ/K at 2 T was obtained in Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5} film.

  8. Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α -Fe–Si alloys

    Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.; Mathaudhu, Suveen; Rohatgi, Aashish

    2017-12-19

    Diffusion in α-Fe-Si alloys is studied using AKSOME, an on-lattice self-learning KMC code, in the ferromagnetic state. Si diffusivity in the α-Fe matrix were obtained with and without the magnetic disorder in various temperature ranges. In addition we studied vacancy diffusivity in ferromagnetic α-Fe at various Si concentrations up to 12.5at.% in the temperature range of 350–550 K. The results were compared with available experimental and theoretical values in the literature. Local Si-atom dependent activation energies for vacancy hops were calculated using a broken-model and were stored in a database. The migration barrier and prefactors for Si-diffusivity were found to be in reasonable agreement with available modeling results in the literature. Magnetic disorder has a larger effect on the prefactor than on the migration barrier. Prefactor was approximately an order of magnitude and the migration barrier a tenth of an electron-volt higher with magnetic disorder when compared to a fully ferromagnetic ordered state. In addition, the correlation between various have a larger effect on the Si-diffusivity extracted in various temperature range than the magnetic disorder. In the case of vacancy diffusivity, the migration barrier more or less remained constant while the prefactor decreased with increasing Si concentration in the disordered or A2-phase of Fe-Si alloy. Important vacancy-Si/Fe atom exchange processes and their activation barriers were also identified and discuss the effect of energetics on the formation of ordered phases in Fe-Si alloys.

  9. Absence of intrinsic ferromagnetism in Zn{sub 1-x}Mn{sub x}O alloys

    Zhang Huawei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Shi Erwei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Chen Zhizhan [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Liu Xuechao [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Xiao Bing [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2006-10-04

    Zn{sub 1-x}Mn{sub x}O alloys, with different Mn concentrations, were prepared by the hydrothermal method. X-ray diffraction and electron paramagnetic resonance spectra demonstrate that Zn{sup 2+} ions are homogeneously substituted by Mn{sup 2+} ions without changing the ZnO wurtzite structure. The x = 0.02 and 0.04 samples are paramagnetic. When the Mn concentrations are increased to x = 0.08 and 0.10, the samples exhibit some ferromagnetism due to a secondary phase (Zn,Mn)Mn{sub 2}O{sub 4}. (letter to the editor)

  10. Phonon dispersion in the ferromagnetic shape memory alloy Ni2MnGa studied by neutron spectroscopy

    Vorderwisch, P.; Shapiro, S.M.

    2006-01-01

    Neutron spectroscopy is an ideal technique to study the structure and dynamics of crystals. For the ferromagnetic shape memory alloy Ni 2 MnGa, all previously obtained information from inelastic neutron scattering experiments is restricted to the phonon dispersion in the austenitic (fcc) phase of alloys with different compositions. For the (tetragonally distorted) martensitic phase recent inelastic neutron scattering data are presented. These new data were taken on a single crystal with stoichiometric composition. A single-variant martensitic phase of the sample has been obtained by the application of magnetic fields in horizontal or vertical direction with respect to the scattering plane used in the experiments. The measured phonon-dispersion curves are compared with recently published ab initio (zero-temperature) phonon-dispersion calculations. The anomalous phonon behavior observed in both, the austenitic and martensitic phase is discussed

  11. Effect of Annealing in Magnetic Field on Ferromagnetic Nanoparticle Formation in Cu-Al-Mn Alloy with Induced Martensite Transformation.

    Titenko, Anatoliy; Demchenko, Lesya

    2016-12-01

    The paper considers the influence of aging of high-temperature phase on subsequent martensitic transformation in Cu-Al-Mn alloy. The morphology of behavior of martensitic transformation as a result of alloy aging under annealing in a constant magnetic field with different sample orientation relatively to the field direction and without field was studied for direct control of the processes of martensite induction at cooling. Temperature dependences of electrical resistance, magnetic susceptibility, and magnetization, as well as field dependences of magnetization, and phase composition were found. The tendency to the oriented growth of precipitated ferromagnetic phase nanoparticles in a direction of applied field and to an increase of their volume fraction under thermal magnetic treatment of material that favors a reversibility of induced martensitic transformation is observed.

  12. Ion mass dependence of irradiation-induced local creation of ferromagnetism in Fe60Al40 alloys

    Fassbender, J.; Liedke, M. O.; Strache, T.; Moeller, W.; Menendez, E.; Sort, J.; Rao, K. V.; Deevi, S. C.; Nogues, J.

    2008-01-01

    Ion irradiation of Fe 60 Al 40 alloys results in the phase transformation from the paramagnetic, chemically ordered B2 phase to the ferromagnetic, chemically disordered A2 phase. The magnetic phase transformation is related to the number of displacements per atom (dpa) during the irradiation. For heavy ions (Ar + , Kr + , and Xe + ), a universal curve is observed with a steep increase in the fraction of the ferromagnetic phase that reaches saturation, i.e., a complete phase transformation, at about 0.5 dpa. This proves the purely ballistic nature of the disordering process. If light ions are used (He + and Ne + ), a pronounced deviation from the universal curve is observed. This is attributed to bulk vacancy diffusion from the dilute collision cascades, which leads to a partial recovery of the thermodynamically favored B2 phase. Comparing different noble gas ion irradiation experiments allows us to assess the corresponding counteracting contributions. In addition, the potential to create local ferromagnetic areas embedded in a paramagnetic matrix is demonstrated

  13. Microstructure of precipitates and magnetic domain structure in an annealed Co.sub.38./sub.Ni.sub.33./sub.Al.sub.29./sub. shape memory alloy

    Bártová, Barbora; Wiese, N.; Schryvers, D.; Chapman, J. N.; Ignacová, Silvia

    2008-01-01

    Roč. 56, č. 16 (2008), 4470-4476 ISSN 1359-6454 Institutional research plan: CEZ:AV0Z10100520 Keywords : CoNiAl shape memory alloys * microstructure * precipitates * magnetic domains * Lorentz microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.729, year: 2008

  14. Effect of Mn addition on the structural and magnetic properties of Fe-Pd ferromagnetic shape memory alloys

    Sanchez-Alarcos, V.; Recarte, V.; Perez-Landazabal, J.I.; Gonzalez, M.A.; Rodriguez-Velamazan, J.A.

    2009-01-01

    The effect of Mn addition on the structural and magnetic properties of Fe-Pd ferromagnetic shape memory alloys is investigated. In particular, a complete characterization of the influence of the partial substitution of Fe by Mn has been performed on Fe 69.4-x Pd 30.6 Mn x (x = 0, 1, 2.5 and 5) alloys. The substitution of 1% Fe by Mn fully inhibits the undesirable irreversible face-centered tetragonal to body-centered tetragonal transformation without decreasing the face-centered cubic to face-centered tetragonal temperature. In addition, the substitution of 2.5% Fe by Mn gives rise to the highest thermoelastic transformation temperature observed to date in the Fe-Pd system, probably due to an increase in the valence electron concentration. The magnetocaloric effect has been evaluated in this alloy system for the first time. Nevertheless, the low values obtained suggest that the Fe-Pd alloys are not good candidates for magnetic refrigeration applications.

  15. Nanocrystalline soft ferromagnetic Ni-Co-P thin film on Al alloy by low temperature electroless deposition

    Aal, A. Abdel; Shaaban, A.; Hamid, Z. Abdel

    2008-01-01

    Soft ferromagnetic ternary Ni-Co-P films were deposited onto Al 6061 alloy from low temperature Ni-Co-P electroless plating bath. The effect of deposition parameters, such as time and pH, on the plating rate of the deposit were examined. The results showed that the plating rate is a function of pH bath and the highest coating thickness can be obtained at pH value from 8 to10. The surface morphology, phase structure and the magnetic properties of the prepared films have been investigated using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD) and vibrating magnetometer device (VMD), respectively. The deposit obtained at optimum conditions showed compact and smooth with nodular grains structure and exhibited high magnetic moments and low coercivety. Potentiodynamic polarization corrosion tests were used to study the general corrosion behavior of Al alloys, Ni-P and Ni-Co-P coatings in 3.5% NaCl solution. It was found that Ni-Co-P coated alloy demonstrated higher corrosion resistance than Ni-P coating containing same percent of P due to the Co addition. The Ni-Co-P coating with a combination of high corrosion resistance, high hardness and excellent magnetic properties would be expected to enlarge the applications of the aluminum alloys

  16. Giant magnetocaloric effect from reverse martensitic transformation in Ni–Mn–Ga–Cu ferromagnetic shape memory alloys

    Sarkar, Sudip Kumar, E-mail: sudips@barc.gov.in [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Sarita [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Babu, P.D. [UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC, Mumbai, 400085 (India); Biswas, Aniruddha [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Siruguri, Vasudeva [UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC, Mumbai, 400085 (India); Krishnan, Madangopal [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India)

    2016-06-15

    In an effort to produce Giant Magnetocaloric effect (GMCE) near room temperature, in a first ever such study, the austenite transformation temperature (A{sub s}) was fine tuned to ferromagnetic Curie temperature (T{sub C}) in Ferromagnetic Shape Memory Alloys (FSMA) and a large GMCE of ΔSM = −81.8 J/Kg-K was achieved in Ni{sub 50}Mn{sub 18.5}Cu{sub 6.5}Ga{sub 25} alloy during reverse martensitic transformation (heating cycle) for a magnetic field change of 9 T at 303 K. Fine tuning of A{sub s} with T{sub C} was achieved by Cu substitution in Ni{sub 50}Mn{sub 25−x}Cu{sub x}Ga{sub 25} (0 ≤ x ≤ 7.0)-based FSMAs. Characterizations of these alloys were carried out using Optical and Scanning Electron Microscopy, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and DC magnetization measurements. Addition of Cu to stoichiometric Heusler type Ni{sub 2}MnGa increases the martensitic transformation temperatures and decreases T{sub C}. Concurrently, ΔSM increases with Cu addition and peaks at 6.5 at% Cu for which there is a virtual overlap between T{sub C} and A{sub s}. Maximum Refrigerant Capacity (RCP) of 327.0 J/Kg was also achieved in the heating cycle for 9 T field change at 303 K. Corresponding values for the cooling cycle measurements (measured during forward transformation) were 30.4 J/Kg-K and 123.5 J/Kg respectively for the same 6.5 at% Cu sample under the same thermo-magnetic conditions. - Highlights: • A{sub s} was fine tuned to T{sub C} in Cu substituted Ni{sub 50}Mn{sub 25−x}Cu{sub x}Ga{sub 25} (0 ≤ x ≤ 7.0) alloys. • MT temperature increases with Cu addition while T{sub C} decreases. • A virtual overlapping of A{sub s} with T{sub C} was found in Ni{sub 50}Mn{sub 18.5}Cu{sub 6.5}Ga{sub 25} alloys. • ΔSM = −81.8 J/Kg-K achieved from reverse MT for Δ(μ{sub 0}H) = 9 T at 303 K. • A highest RCP value of 94.6 J/Kg was observed for Δ(μ{sub 0}H) = 5 T in Cu:6.5 alloys.

  17. Giant magnetocaloric effect from reverse martensitic transformation in Ni–Mn–Ga–Cu ferromagnetic shape memory alloys

    Sarkar, Sudip Kumar; Sarita; Babu, P.D.; Biswas, Aniruddha; Siruguri, Vasudeva; Krishnan, Madangopal

    2016-01-01

    In an effort to produce Giant Magnetocaloric effect (GMCE) near room temperature, in a first ever such study, the austenite transformation temperature (A_s) was fine tuned to ferromagnetic Curie temperature (T_C) in Ferromagnetic Shape Memory Alloys (FSMA) and a large GMCE of ΔSM = −81.8 J/Kg-K was achieved in Ni_5_0Mn_1_8_._5Cu_6_._5Ga_2_5 alloy during reverse martensitic transformation (heating cycle) for a magnetic field change of 9 T at 303 K. Fine tuning of A_s with T_C was achieved by Cu substitution in Ni_5_0Mn_2_5_−_xCu_xGa_2_5 (0 ≤ x ≤ 7.0)-based FSMAs. Characterizations of these alloys were carried out using Optical and Scanning Electron Microscopy, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and DC magnetization measurements. Addition of Cu to stoichiometric Heusler type Ni_2MnGa increases the martensitic transformation temperatures and decreases T_C. Concurrently, ΔSM increases with Cu addition and peaks at 6.5 at% Cu for which there is a virtual overlap between T_C and A_s. Maximum Refrigerant Capacity (RCP) of 327.0 J/Kg was also achieved in the heating cycle for 9 T field change at 303 K. Corresponding values for the cooling cycle measurements (measured during forward transformation) were 30.4 J/Kg-K and 123.5 J/Kg respectively for the same 6.5 at% Cu sample under the same thermo-magnetic conditions. - Highlights: • A_s was fine tuned to T_C in Cu substituted Ni_5_0Mn_2_5_−_xCu_xGa_2_5 (0 ≤ x ≤ 7.0) alloys. • MT temperature increases with Cu addition while T_C decreases. • A virtual overlapping of A_s with T_C was found in Ni_5_0Mn_1_8_._5Cu_6_._5Ga_2_5 alloys. • ΔSM = −81.8 J/Kg-K achieved from reverse MT for Δ(μ_0H) = 9 T at 303 K. • A highest RCP value of 94.6 J/Kg was observed for Δ(μ_0H) = 5 T in Cu:6.5 alloys.

  18. First-principles study on half-metallic ferromagnetic properties of Zn{sub 1-x}V{sub x}Se ternary alloys

    Khatta, Swati; Tripathi, S.K.; Prakash, Satya [Panjab University, Central of Advanced Study in Physics, Department of Physics, Chandigarh (India)

    2017-09-15

    The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn{sub 1-x}V{sub x}Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction. (orig.)

  19. Residual resistivity and its anisotropy in random CoNi and CuNi ferromagnetic alloys

    Turek, Ilja; Záležák, Tomáš

    2010-01-01

    Roč. 200, č. 5 (2010), 052029/1-052029/4 ISSN 1742-6588. [International Conference on Magnetism - ICM 2009. Karlsruhe, 26.07.2009-31.07.2009] Institutional research plan: CEZ:AV0Z20410507 Keywords : residual resistivity * anisotropic magnetoresistance * ferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. Systematic study of the spin stiffness dependence on phosphorus alloying in the ferromagnetic semiconductor (Ga,Mn)As

    Shihab, S.; Thevenard, L.; Bardeleben, H. J. von; Gourdon, C.; Riahi, H.; Lemaître, A.

    2015-01-01

    We study the dependence of the spin stiffness constant on the phosphorus concentration in the ferromagnetic semiconductor (Ga,Mn)(As,P) with the aim of determining whether alloying with phosphorus is detrimental, neutral, or advantageous to the spin stiffness. Time-resolved magneto-optical experiments are carried out in thin epilayers. Laser pulses excite two perpendicular standing spin wave modes, which are exchange related. We show that the first mode is spatially uniform across the layer corresponding to a k≈0 wavevector. From the two frequencies and k-vector spacings we obtain the spin stiffness constant for different phosphorus concentrations using weak surface pinning conditions. The mode assessment is checked by comparison to the spin stiffness obtained from domain pattern analysis for samples with out-of-plane magnetization. The spin stiffness is found to exhibit little variation with phosphorus concentration in contradiction with ab-initio predictions

  1. Microstructure, martensitic transformation and anomalies in c′-softening in Co–Ni–Al ferromagnetic shape memory alloys

    Seiner, Hanuš; Kopeček, Jaromír; Sedlák, Petr; Bodnárová, Lucie; Landa, Michal; Sedmák, P.; Heczko, Oleg

    2013-01-01

    Roč. 61, č. 15 (2013), s. 5869-5876 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA101/09/0702; GA ČR(CZ) GAP107/11/0391 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100761203 Program:M Institutional support: RVO:61388998 ; RVO:68378271 Keywords : ferromagnetic shape memory alloys * resonant ultrasound spectroscopy * premartensitic phenomena Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 3.940, year: 2013 http://www.sciencedirect.com/science/article/pii/S1359645413004679

  2. Shock wave induced martensitic transformations and morphology changes in Fe-Pd ferromagnetic shape memory alloy thin films

    Bischoff, A. J.; Arabi-Hashemi, A.; Ehrhardt, M.; Lorenz, P.; Zimmer, K.; Mayr, S. G.

    2016-01-01

    Combining experimental methods and classical molecular dynamics (MD) computer simulations, we explore the martensitic transformation in Fe_7_0Pd_3_0 ferromagnetic shape memory alloy thin films induced by laser shock peening. X-ray diffraction and scanning electron microscope measurements at shock wave pressures of up to 2.5 GPa reveal formation of martensitic variants with preferred orientation of the shorter c-axis of the tetragonal unit cell perpendicular to the surface plane. Moreover, consequential merging of growth islands on the film surface is observed. MD simulations unveil the underlying physics that are characterized by an austenite-martensite transformation with a preferential alignment of the c-axis along the propagation direction of the shock wave, resulting in flattening and in-plane expansion of surface features.

  3. Experimental evidence of stress-field-induced selection of variants in Ni-Mn-Ga ferromagnetic shape-memory alloys

    Wang, Y. D.; Brown, D. W.; Choo, H.; Liaw, P. K.; Benson, M. L.; Cong, D. Y.; Zuo, L.

    2007-01-01

    The in situ time-of-flight neutron-diffraction measurements captured well the martensitic transformation behavior of the Ni-Mn-Ga ferromagnetic shape-memory alloys under uniaxial stress fields. We found that a small uniaxial stress applied during phase transformation dramatically disturbed the distribution of variants in the product phase. The observed changes in the distributions of variants may be explained by considering the role of the minimum distortion energy of the Bain transformation in the effective partition among the variants belonging to the same orientation of parent phase. It was also found that transformation kinetics under various stress fields follows the scale law. The present investigations provide the fundamental approach for scaling the evolution of microstructures in martensitic transitions, which is of general interest to the condensed matter community

  4. Magnetic Hysteresis in Nanocomposite Films Consisting of a Ferromagnetic AuCo Alloy and Ultrafine Co Particles

    Federico Chinni

    2017-06-01

    Full Text Available One fundamental requirement in the search for novel magnetic materials is the possibility of predicting and controlling their magnetic anisotropy and hence the overall hysteretic behavior. We have studied the magnetism of Au:Co films (~30 nm thick with concentration ratios of 2:1, 1:1, and 1:2, grown by magnetron sputtering co-deposition on natively oxidized Si substrates. They consist of a AuCo ferromagnetic alloy in which segregated ultrafine Co particles are dispersed (the fractions of Co in the AuCo alloy and of segregated Co increase with decreasing the Au:Co ratio. We have observed an unexpected hysteretic behavior characterized by in-plane anisotropy and crossed branches in the loops measured along the hard magnetization direction. To elucidate this phenomenon, micromagnetic calculations have been performed for a simplified system composed of two exchange-coupled phases: a AuCo matrix surrounding a Co cluster, which represents an aggregate of particles. The hysteretic features are qualitatively well reproduced provided that the two phases have almost orthogonal anisotropy axes. This requirement can be plausibly fulfilled assuming a dominant magnetoelastic character of the anisotropy in both phases. The achieved conclusions expand the fundamental knowledge on nanocomposite magnetic materials, offering general guidelines for tuning the hysteretic properties of future engineered systems.

  5. Superconductivity, spin-glass properties, and ferromagnetism in amorphous La--Gd--Au alloys

    Poon, S.J.

    1978-01-01

    The superconducting and magnetic properties of splat cooled amorphous alloys of composition (La/sub 100-x/Gd/sub x/) 80 Au 20 (0 equal to or less than x equal to or less than 100) have been studied. The La 80 Au 20 alloys are ideal type II superconductors (critical temperature T/sub c/ = 3.5 0 K). The concentration range (x 80 Au 20 . The results are compared with recent theories on amorphous magnetism

  6. The ferromagnetic-spin glass transition in PdMn alloys: symmetry breaking of ferromagnetism and spin glass studied by a multicanonical method.

    Kato, Tomohiko; Saita, Takahiro

    2011-03-16

    The magnetism of Pd(1-x)Mn(x) is investigated theoretically. A localized spin model for Mn spins that interact with short-range antiferromagnetic interactions and long-range ferromagnetic interactions via itinerant d electrons is set up, with no adjustable parameters. A multicanonical Monte Carlo simulation, combined with a procedure of symmetry breaking, is employed to discriminate between the ferromagnetic and spin glass orders. The transition temperature and the low-temperature phase are determined from the temperature variation of the specific heat and the probability distributions of the ferromagnetic order parameter and the spin glass order parameter at different concentrations. The calculation results reveal that only the ferromagnetic phase exists at x glass phase exists at x > 0.04, and that the two phases coexist at intermediate concentrations. This result agrees semi-quantitatively with experimental results.

  7. Deconvolution of ferromagnetic resonance in devitrification process of Co-based amorphous alloys

    Montiel, H.; Alvarez, G.; Betancourt, I.; Zamorano, R.; Valenzuela, R.

    2006-01-01

    Ferromagnetic resonance (FMR) measurements were carried out on soft magnetic amorphous ribbons of composition Co 66 Fe 4 B 12 Si 13 Nb 4 Cu prepared by melt spinning. In the as-cast sample, a simple FMR spectrum was apparent. For treatment times of 5-20 min a complex resonant absorption at lower fields was detected; deconvolution calculations were carried out on the FMR spectra and it was possible to separate two contributions. These results can be interpreted as the combination of two different magnetic phases, corresponding to the amorphous matrix and nanocrystallites. The parameters of resonant absorptions can be associated with the evolution of nanocrystallization during the annealing

  8. Double ferromagnetism in single-crystal Gd-Y-Lu alloys

    Ito, T.; Oka, M.; Legvold, S.; Beaudry, B.J.

    1984-01-01

    Magnetization, electrical resistivity, specific-heat and thermal-expansion measurements have been made on Gd-Y-Lu single crystals. Low isofield magnetization data for the a-axis sample of Gd 75 Y/sub 17.5/ Lu/sub 7.5/ exhibit two different Curie-Weiss regimes, which suggests double ferromagnetism. Electrical resistivity, specific-heat, and thermal-expansion data show two anomalies at the transition temperatures. The anomaly at 231.5 K shows a lambda-type second-order phase transition and the anomaly at 223 K shows a sharp spike first-order phase transition

  9. Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys

    Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.

    2018-05-01

    High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.

  10. The half-metallic ferromagnetism character in Be1−xVxY (Y=Se and Te) alloys: An ab-initio study

    Sajjad, M.; Manzoor, Sadia; Zhang, H.X.; Noor, N.A.; Alay-e-Abbas, S.M.; Shaukat, A.; Khenata, R.

    2015-01-01

    Ab-initio calculations for V-doped BeSe and BeTe semiconductors are performed by means of all-electrons full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method. The structural properties are optimized using the Wu-Cohen generalized gradient approximation functional, whereas modified Becke and Jhonson local density approximation functional has been employed for evaluating the spin-polarized electronic and magnetic properties. Magnetic stability at various doping concentrations in ferromagnetic (FM) and anti-ferromagnetic (AFM) ordering is investigated by comparing the minimum total energies and enthalpies of formation (ΔH). Studied band structures, density of states, total energy, exchange interactions and magnetic moments manifest both alloys with half-metallic ferromagnetic behavior. Moreover, their valance bands are found to be paired ferromagnetically with V atoms. Furthermore, it was observed that the magnetic moment of vanadium atom reduces from free space charge value due to p–d hybridization which yields small magnetic moments on the Be, Se and Te sites. - Highlights: • Density functional calculations for V-doped BeSe and BeTe are performed. • V-doped BeSe and BeTe are found to be stable half-metallic ferromagnetism. • Improved electronic properties are achieved using mBJLDA which confirm HMF. • The half-metallic gaps show non-linear variation with increasing dopant concentration

  11. Study of the magnetic properties of the Ce{sub x} La{sub 1−x} Pt alloy system: Which interaction establishes ferromagnetism in Kondo systems?

    Očko, M., E-mail: ocko@ifs.hr [Institute of Physics, Bijenička c 46, 10000 Zagreb (Croatia); Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička c. 54, Zagreb (Croatia); Zadro, K. [Department of Physics, University of Zagreb, Bijenička c. 32, 10000 Zagreb (Croatia); Drobac, Đ.; Aviani, I.; Salamon, K. [Institute of Physics, Bijenička c 46, 10000 Zagreb (Croatia); Mixson, D.; Bauer, E.D.; Sarrao, J.L. [Los Alamos National Laboratory, Mail Stop K 764, Los Alamos, NM 87545 (United States)

    2016-11-01

    In order to study Kondo ferromagnetism, particularly of the CePt compound, we investigate the magnetic properties of the Ce{sub x}La{sub 1−x}Pt alloy system in the temperature range from 1.8 K to 320 K. The results of these investigations can be summarized as follows: dc-susceptibility can be described by the Curie–Weiss law at higher temperatures down to about 100 K, but also at the low temperatures above the phase transition. At higher temperatures, the extracted Curie–Weiss constant, θ{sub p}, is negative in contrast to the low temperatures, where θ{sub C} is positive. The extracted effective magnetic moment from the higher temperatures is the same for all the alloys and is close to the theoretical value of the isolated Ce{sup 3+} ion, μ=2.54 μ{sub B}, indicating the hybridization is weak and, and consequently, Kondo interaction is weak. These observations confirm the main important conclusions inferred from an earlier transport properties investigation of this alloy system. The Curie temperature extracted by various approaches was compared to the extraction from the ac-susceptibility measurements. We show that its concentration dependence is not consistent with Doniach's diagram. Hence, RKKY interaction is not responsible for the ferromagnetism in this alloy system. - Highlights: • We have found that for Ce{sub x}La{sub 1−x}Pt the temperature of the ferromagnetic transition linearly depends on x. • The Kondo temperature is independent of x. • Hence, RKKY interaction is not responsible for the ferromagnetism. • The lattice parameters show that direct exchange interaction is possible. • We expect that the investigations of Ce{sub x}Y{sub 1−x} will confirm our conclusions.

  12. Temperature dependence of magnetic susceptibility in the vicinity of martensitic transformation in ferromagnetic shape memory alloys

    Zablotskyy, Vitaliy A.; Pérez-Landazábal, J.I.; Recarte, V.; Gómez-Polo, C.

    2010-01-01

    Roč. 22, č. 31 (2010), 316004/1-316004/7 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100520 Keywords : shape memory alloys * magnetic susceptibility * martensitic transition * magnetic domains Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.332, year: 2010

  13. Characterisation and modelling of vacancy dynamics in Ni–Mn–Ga ferromagnetic shape memory alloys

    Merida, D., E-mail: david.merida@ehu.es [Fisika Aplikatua II Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); Elektrizitate eta Elektronika Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); García, J.A. [Fisika Aplikatua II Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); BC Materials (Basque Centre for Materials, Application and Nanostructures), 48040 Leioa (Spain); Sánchez-Alarcos, V. [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Pérez-Landazábal, J.I.; Recarte, V. [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Institute for Advanced Materials (INAMAT), Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona (Spain); Plazaola, F. [Elektrizitate eta Elektronika Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain)

    2015-08-05

    Highlights: • We study the dynamics of vacancies for three different Ni–Mn–Ga alloy samples. • The formation and migration energies have been obtained experimentally. • The entropic factor and the distance a vacancy has to reach a sink are measured. • We present a theoretical model to explain the dynamics of vacancies. • Results are applicable for any thermal treatment and extensible to other alloys. - Abstract: The dynamics of vacancies in Ni–Mn–Ga shape memory alloys has been studied by positron annihilation lifetime spectroscopy. The temperature evolution of the vacancy concentration for three different Ni–Mn–Ga samples, two polycrystalline and one monocrystalline, have been determined. The formation and migration energies and the entropic factors are quite similar in all cases, but vary slightly according to composition. However, the number of jumps a vacancy has to overtake to reach a sink is five times higher in the single crystal. This is an expected result, due to the role that surfaces and grain boundaries should play in balancing the vacancy concentration. In all cases, the initial vacancy concentration for the samples quenched from 1173 K lies between 1000 ppm and 2000 ppm. A phenomenological model able to explain the dynamics of vacancies has been developed in terms of the previous parameters. The model can reproduce the vacancy dynamics for any different kind of thermal history and can be easily extended to other alloys.

  14. Effect of Dy addition on mechanical and magnetic properties of Mn-rich Ni–Mn–Ga ferromagnetic shape memory alloys

    Gao, L.; Dong, G.F.; Gao, Z.Y.; Cai, W.

    2012-01-01

    Highlights: ► The Dy addition significantly improves the compressive properties of Ni–Mn–Ga alloy. ► The mechanism of the improved mechanical properties by adding Dy is discussed. ► Dy doping results in a change of the fracture type of Ni–Mn–Ga alloy. ► Curie temperature almost remained unchanged at low Dy content and then decreases. - Abstract: The effects of partial substitution of rare earth Dy for Ga on the mechanical and magnetic properties of Mn-rich Ni 50 Mn 29 Ga 21−x Dy x (0 ≤ x ≤ 5) ferromagnetic shape memory alloys were investigated in detail. The results show that an appropriate amount of Dy addition significantly improves the mechanical properties of Ni–Mn–Ga alloy. With an increase in Dy content, the compressive strength enhances rapidly at first and then becomes stable when the Dy content is more than 1 at.%. However, the compressive strain increases dramatically and reaches a maximum value with 1 at.% Dy addition. Further increase in Dy content makes the compressive strain of the alloys decrease gradually. The mechanism of the improved mechanical properties is also discussed. Moreover, Dy doping changes the fracture type from intergranular fracture of Ni–Mn–Ga alloy to transgranular cleavage fracture of Ni–Mn–Ga–Dy alloys. The Curie temperature remains almost unchanged at low Dy content and subsequently decreases.

  15. The half-metallic ferromagnetism character in Be1-xVxY (Y=Se and Te) alloys: An ab-initio study

    Sajjad, M.; Manzoor, Sadia; Zhang, H. X.; Noor, N. A.; Alay-e-Abbas, S. M.; Shaukat, A.; Khenata, R.

    2015-04-01

    Ab-initio calculations for V-doped BeSe and BeTe semiconductors are performed by means of all-electrons full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method. The structural properties are optimized using the Wu-Cohen generalized gradient approximation functional, whereas modified Becke and Jhonson local density approximation functional has been employed for evaluating the spin-polarized electronic and magnetic properties. Magnetic stability at various doping concentrations in ferromagnetic (FM) and anti-ferromagnetic (AFM) ordering is investigated by comparing the minimum total energies and enthalpies of formation (ΔH). Studied band structures, density of states, total energy, exchange interactions and magnetic moments manifest both alloys with half-metallic ferromagnetic behavior. Moreover, their valance bands are found to be paired ferromagnetically with V atoms. Furthermore, it was observed that the magnetic moment of vanadium atom reduces from free space charge value due to p-d hybridization which yields small magnetic moments on the Be, Se and Te sites.

  16. Phase transformation and magnetic anisotropy of an iron-palladium ferromagnetic shape-memory alloy

    Cui, J.; Shield, T.W.; James, R.D.

    2004-01-01

    Martensitic phase transformations in an Fe 7 Pd 3 alloy were studied using various experimental techniques: visual observation, differential scanning calorimeter (DSC) measurements and X-ray diffraction. Magnetic measurements on this alloy were made using a vibrating sample magnetometer (VSM) and a Susceptibility Kappa bridge. The VSM measurements were made with the sample in a compression fixture to bias the martensite phase to a single variant. Both X-ray and DSC measurements show that the FCC-FCT transformation is a weak first-order thermoelastic transition. The average lattice parameters are a=3.822±0.001 A and c=3.630±0.001 A for the FCT martensite, and a 0 =3.756±0.001 A for the FCC austenite. The latent heat of the FCC-FCT transformation is 10.79±0.01 J/cm 3 . A Susceptibility Kappa bridge measurement determined the Curie temperature to be 450 deg. C. The saturation magnetization from VSM data is m s =1220±10 emu/cm 3 at -20 deg. C for the martensite and m s =1080±10 emu/cm 3 at 60 deg. C for the austenite. The easy axes of a single variant of FCT martensite are the [1 0 0] and [0 1 0] directions (the a-axes of the FCT lattice) and the [0 0 1] direction (FCT c-axis) is the hard direction. The cubic magnetic anisotropy constant K 1 is -5±2x10 3 erg/cm 3 for the austenite at 60 deg. C, and the tetragonal anisotropy constant K 1 +K 2 is 3.41 ± 0.02 x 10 5 erg/cm 3 for the martensite at a temperature of -20 deg. C and under 8 MPa of compressive stress in the [0 0 1] direction

  17. Suppression of the ferromagnetic order in the Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 15} by hydrostatic pressure

    Salazar Mejía, C., E-mail: Catalina.Salazar@cpfs.mpg.de; Mydeen, K.; Naumov, P.; Medvedev, S. A.; Wang, C.; Schwarz, U.; Felser, C.; Nicklas, M., E-mail: nicklas@cpfs.mpg.de [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Hanfland, M. [ESRF, BP220, 38043 Grenoble (France); Nayak, A. K. [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany)

    2016-06-27

    We report on the effect of hydrostatic pressure on the magnetic and structural properties of the shape-memory Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 15}. Magnetization and x-ray diffraction experiments were performed at hydrostatic pressures up to 5 GPa using diamond anvil cells. Pressure stabilizes the martensitic phase, shifting the martensitic transition to higher temperatures, and suppresses the ferromagnetic austenitic phase. Above 3 GPa, where the martensitic-transition temperature approaches the Curie temperature in the austenite, the magnetization shows no longer indications of ferromagnetic ordering. We further find an extended temperature region with a mixture of martensite and austenite phases, which directly relates to the magnetic properties.

  18. Anisotropy of the ferromagnetic L10 phase in the Mn-Al-C alloys induced by high-pressure spark plasma sintering

    Tyrman, Muriel; Ahmim, Smail; Pasko, Alexandre; Etgens, Victor; Mazaleyrat, Frédéric; Quetel-Weben, Simon; Perrière, Loïc; Guillot, Ivan

    2018-05-01

    The metastable τ-phase of MnAl equi-atomic compound belongs to a family of ferromagnetic alloys with L10 crystal structure. Stabilization of the phase by adding 2 at. % using manganese carbide (Mn23C6) enhances the magnetization in relation with the increase in lattice volume. It is thus a promising candidate for rare-earth-free permanent magnets. Coercivity of Mn-Al-C alloys being still weak, there is an interest to see to which extend sintering/transformation of the ɛ-phase by Spark Plasma Sintering (SPS) can increase the coercivity and the anisotropy. The structural and the magnetic properties were studied for samples sintered at 550 °C under uniaxial pressure of 100, 200, 300 and 400 MPa. Coercivity, remanence and anistotropy appears with the sintering pressure. The high pressure applied while sintering produces preferential orientation of the flake-shaped grains which influences the remanence.

  19. Pressure dependence of magnetic properties in Fe–Mn–B amorphous alloys:evidence for inhomogeneous ferromagnetism

    Kiss, L. F.; Kemény, T.; Bednarčík, J.; Kamarád, Jiří; Arnold, Zdeněk; Konopková, Z.; Liermann, H.-P.

    2013-01-01

    Roč. 25, č. 34 (2013), s. 1-7 ISSN 0953-8984 Institutional support: RVO:68378271 Keywords : magnetic properties * ferromagnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.223, year: 2013

  20. Ferromagnetic shape memory alloys

    ugc

    transformation by growth of a lower ... Nice agreement between structural, magnetic and thermal techniques. Small .... Dip in the spectral function at the Fermi level is the signature of CDW. Page 20. Predict new FSMA. What is the strategy?

  1. A geometrical approach to determine reorientation start and continuation conditions in ferromagnetic shape memory alloys considering the effects of loading history

    Shirani, M; Kadkhodaei, M

    2014-01-01

    Ferromagnetic shape memory alloys (FSMAs) and magnetic shape memory alloys (MSMAs) are metallic alloys that can undergo inelastic responses when exposed to magnetic fields. Several constitutive models have been proposed so far to model the behaviors of FSMAs. In this work, the effects of loading history on reorientation start conditions are considered, and it is shown that reorientation start conditions are not fixed values; rather, they change with respect to the amount of loading history. To consider the effects of loading history on reorientation start conditions, an available phase diagram in stress-field space is generalized to reorientation surfaces in stress-field-loading history space. Correspondingly, kinetic laws are derived in a continuum framework to be used with the reorientation surfaces to determine the amount of the martensitic variant 2 volume fraction. Based on the geometry of the reorientation surfaces, conditions that must be satisfied to ensure the continuation of reorientations are obtained. Available experimental findings validate the proposed model and the reorientation surfaces. (paper)

  2. Magnetic properties near the ferromagnetic-paramagnetic transformation in the austenite phase of Ni43Mn44X2Sn11 (X = Fe and Co) Heusler alloys

    Nan, W. Z.; Thanh, T. D.; You, T. S.; Piao, H. G.; Yu, S. C.

    2018-03-01

    In this work, we present a detail study on the magnetic properties in the austenitic phase (A phase) Ni43Mn44X2Sn11 alloy with X = Fe and Co, which were prepared by an arc-melting method in an argon atmosphere. The M(T) curves of two samples exhibits a single magnetic phase transition at the Curie temperature of the ferromagnetic (FM) austenitic phase with TCA = 298 K and 334k for (X = Fe and Co) respectively. Based on the Landau theory and M(H) data measured at different temperatures, we found that the FM-PM phase transitions around TCA in both samples were the second-order phase transition. Under an applied field change of 30 kOe, around TCA , the magnetic entropy changes were found to be 0.66 J Kg-1 K-1 and 1.62 J Kg-1 K-1 for (X = Fe and Co) respectively.

  3. Structural stability, electronic structure and magnetic properties of the new hypothetical half-metallic ferromagnetic full-Heusler alloy CoNiMnSi

    Elahmar M.H.

    2016-03-01

    Full Text Available We investigated the structural stability as well as the mechanical, electronic and magnetic properties of the Full-Heusler alloy CoNiMnSi using the full-potential linearized augmented plane wave (FP-LAPW method. Two generalized gradient approximations (GGA and GGA + U were used to treat the exchange-correlation energy functional. The ground state properties of CoNiMnSi including the lattice parameter and bulk modulus were calculated. The elastic constants (Cij and their related elastic moduli as well as the thermodynamic properties for CoNiMnSi have been calculated for the first time. The existence of half-metallic ferromagnetism (HM-FM in this material is apparent from its band structure. Our results classify CoNiMnSi as a new HM-FM material with high spin polarization suitable for spintronic applications.

  4. Evaluation of stress-induced martensite phase in ferromagnetic shape memory alloy Fe-30.2at%Pd by non-destructive Barkhausen noise

    Furuya, Yasubumi; Okazaki, Teiko; Ueno, Takasi; Spearing, Mark; Wutting, Manfred

    2005-05-01

    Barkhausen noise (BHN) method seems a useful tecnique to non-destructive evaluation of martensite phase transformation of ferromagnetic shape memory alloy, which is used as the filler of our proposing "Smart Composite Board". The concept of design for "Smart Composite Board" which can combine the non-destructive magnetic inspection and shape recovery function in the material itself was formerly proposed. In the present study, we survey the possibility of Barkhausen noise (BHN) method to detect the transformation of microscopic martensite phase caused by stress-loading in Fe-30.2at%Pd thin foil, which has a stable austenite phase (fcc structure) at room temperature. The BHN voltage was measured at loading stress up to 100 MPa in temperature range of 300K to 373K. Stress-induced martensite twin was observed by laser microscope above loading stress of 25 MPa. A phase transformation caused by loading stress were analyzed also by X-ray diffraction. The signals of BHN are analyzed by the time of magnetization and the noise frequency. BHN caused by grain boundaries appears in the lower frequency range (1kHz-3kHz) and BHN by martensite twin in the higher frequency range (8kHz-10kHz). The envelope of the BHN voltage as a function of time of magnetization shows a peak due to austenite phase at weak magnetic field. The BHN envelope due to martensite twins creates additional two peaks at intermediate magnetic field. BHN method turns out to be a powerful technique for non-destructive evaluation of the phase transformation of ferromagnetic shape memory alloy.

  5. Nickel/carbon core/shell nanotubes: Lanthanum nickel alloy catalyzed synthesis, characterization and studies on their ferromagnetic and lithium-ion storage properties

    Anthuvan Rajesh, John; Pandurangan, Arumugam; Senthil, Chenrayan; Sasidharan, Manickam

    2014-01-01

    Highlights: • Ni/CNTs core/shell structure was synthesized using LaNi 5 alloy catalyst by CVD. • The magnetic and lithium-ion storage properties of Ni/CNTs structure were studied. • The specific Ni/CNTs structure shows strong ferromagnetic property with large coercivity value of 446.42 Oe. • Ni/CNTs structure shows enhanced electrochemical performance in terms of stable capacity and better rate capability. - Abstract: A method was developed to synthesize ferromagnetic nickel core/carbon shell nanotubes (Ni/CNTs) by chemical vapor deposition using Pauli paramagnetic lanthanum nickel (LaNi 5 ) alloy both as a catalyst and as a source for the Ni-core. The Ni-core was obtained through oxidative dissociation followed by hydrogen reduction during the catalytic growth of the CNTs. Transmission electron microscopy (TEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD) analyses reveal that the Ni-core exists as a face centered cubic single crystal. The magnetic hysteresis loop of Ni/CNTs particle shows increased coercivity (446.42 Oe) than bulk Ni at room temperature. Furthermore, the Ni/CNTs core/shell particles were investigated as anode materials in lithium-ion batteries. The Ni/CNTs electrode delivered a high discharge capacity of 309 mA h g −1 at 0.2 C, and a stable cycle-life, which is attributed to high structural stability of Ni/CNTs electrode during electrochemical lithium-ion insertion and de-insertion redox reactions

  6. Nanostructures based on superconducting Nb and ferromagnetic CuNi alloy for elaboration of spin-valve core

    Morari, Roman

    2013-01-01

    The main goal of our research group is the elaboration of superconducting spin-switch (valve) based on Ferromagnetic/Superconductor/Ferromagnetic core. We could realize all building blocks necessary for the fabrication of the core structure of the superconducting spin valve, consisting of two mirror symmetric bilayers. In other words, the spin valve consists of a F/S * /F trilayer, which can be regarded as a package of a F/S and S/F bilayer so that S * =2S in the trilayer. For such a trilayer, the theory predicts that the critical temperature depends on the relative orientation of the magnetization of the ferromagnetic layers. To enable a reversal of one of the magnetizations of the layers with respect to the other by an external magnetic field, the coercive forces of the F layers have to be different due to either intrinsic properties or to an antiferromagnetic pinning layer delivering an exchange bias. The main points of our study are presented here. (author)

  7. Spin glass and ferromagnetic properties of Ce(Cu_1_-_xNi_x)_4Mn alloys: Multicritical points in the magnetic phase diagram

    Synoradzki, K.; Toliński, T.

    2016-01-01

    We report on the CeNi_4Mn (ferromagnet FM) - CeCu_4Mn (spin-glass SG) transformation leading to a complex magnetic phase diagram (MPD). It is verified that all the Ce(Cu_1_-_xNi_x)_4Mn alloys are isostructural and the transformation is governed only by the Cu-Ni substitution. MPD is built based on the magnetic dc/ac susceptibility measurements and reveals SG formation as well as the region of the coexistence of the FM and SG state in the middle range of the Ni concentration. The complex MPD is explained by clusters formation and a competition of interactions between various crystallographic sites of the hexagonal CaCu_5-type structure, mainly the 3g-3g and 3g-2c interactions. The predominance of the SG state is confirmed by the analysis of the frequency dependence of the ac magnetic susceptibility components and the relaxation of the remanent magnetization. Additionally, the presence of two multicritical points is observed. - Highlights: • We fully characterized the magnetic properties of Ce(Cu_1_-_xNi_x)_4Mn alloys. • We show the presence of complex magnetic behaviour due to atomic-site disorder. • Magnetic phase diagram revels mixed-phase ground state. • Two multicritical points on magnetic phase diagram occurs.

  8. Ferromagnetic alloy material CoFeC with high thermal tolerance in MgO/CoFeC/Pt structure and comparable intrinsic damping factor with CoFeB

    Chen, Shaohai; Zhou, Jing; Lin, Weinan; Yu, Jihang; Guo, Rui; Poh, Francis; Shum, Danny; Chen, Jingsheng

    2018-02-01

    The thermal tolerance and perpendicular magnetic anisotropy (PMA) of ferromagnetic alloy Co40Fe40C20 in the structure MgO/CoFeC/Pt (or Ta) were investigated and compared with the commonly used CoFeB alloy. It is found that the PMA of CoFeC with {{K}i,CoFeC}=2.21 erg c{{m}-2} , which is 59% higher than that of CoFeB, can be obtained after proper post-annealing treatment. Furthermore, CoFeC alloy provides better thermal tolerance to temperature of 400 °C than CoFeB. The studies on ferromagnetic resonance show that the intrinsic damping constant α in of Co40Fe40C20 alloy is 0.0047, which is similar to the reported value of 0.004 for Co40Fe40B20 alloy. The comprehensive comparisons indicate that CoFeC alloy is a promising candidate for the application of the integration of spin torque transfer magnetic random access memory with complementary metal-oxide semiconductor processes.

  9. Molecular ferromagnetism

    Epstein, A.J.

    1990-01-01

    This past year has been one of substantial advancement in both the physics and chemistry of molecular and polymeric ferromagnets. The specific heat studies of (DMeFc)(TCNE) have revealed a cusp at the three-dimensional ferromagnetic transition temperature with a crossover to primarily 1-D behavior at higher temperatures. This paper discusses these studies

  10. The half-metallic ferromagnetism character in Be{sub 1−x}V{sub x}Y (Y=Se and Te) alloys: An ab-initio study

    Sajjad, M. [School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Manzoor, Sadia [Department of Physics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore (Pakistan); Zhang, H.X. [School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Noor, N.A. [Department of Physics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore (Pakistan); Alay-e-Abbas, S.M. [Department of Physics, GC University Faisalabad, Allama Iqbal Road, Faisalabad 38000 (Pakistan); Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan); Shaukat, A. [Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de Technologie, Université de Mascara, Mascara 29000 (Algeria)

    2015-04-01

    Ab-initio calculations for V-doped BeSe and BeTe semiconductors are performed by means of all-electrons full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method. The structural properties are optimized using the Wu-Cohen generalized gradient approximation functional, whereas modified Becke and Jhonson local density approximation functional has been employed for evaluating the spin-polarized electronic and magnetic properties. Magnetic stability at various doping concentrations in ferromagnetic (FM) and anti-ferromagnetic (AFM) ordering is investigated by comparing the minimum total energies and enthalpies of formation (ΔH). Studied band structures, density of states, total energy, exchange interactions and magnetic moments manifest both alloys with half-metallic ferromagnetic behavior. Moreover, their valance bands are found to be paired ferromagnetically with V atoms. Furthermore, it was observed that the magnetic moment of vanadium atom reduces from free space charge value due to p–d hybridization which yields small magnetic moments on the Be, Se and Te sites. - Highlights: • Density functional calculations for V-doped BeSe and BeTe are performed. • V-doped BeSe and BeTe are found to be stable half-metallic ferromagnetism. • Improved electronic properties are achieved using mBJLDA which confirm HMF. • The half-metallic gaps show non-linear variation with increasing dopant concentration.

  11. Magnetostructural transformation and magnetocaloric effect in Mn48‑x V x Ni42Sn10 ferromagnetic shape memory alloys

    Hassan, Najam ul; Shah, Ishfaq Ahmad; Khan, Tahira; Liu, Jun; Gong, Yuanyuan; Miao, Xuefei; Xu, Feng

    2018-03-01

    In this work, we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn48‑x V x Ni42Sn10 (x = 0, 1, 2, and 3) ferromagnetic shape memory alloys prepared by means of partial replacement of Mn by V. It is observed that the martensitic transformation temperatures decrease with the increase of V content. The shift of the transition temperatures to lower temperatures driven by the applied field, the metamagnetic behavior, and the thermal hysteresis indicates the first-order nature for the magnetostructural transformation. The entropy changes with a magnetic field variation of 0–5 T are 15.2, 18.8, and 24.3 {{J}}\\cdot {kg}}-1\\cdot {{{K}}}-1 for the x = 0, 1, and 2 samples, respectively. The tunable martensitic transformation temperature, enhanced field driving capacity, and large entropy change suggest that Mn48‑x V x Ni42Sn10 alloys have a potential for applications in magnetic cooling refrigeration. Project supported by the National Natural Science Foundation of China (Grant Nos. 51601092, 51571121, and 11604148), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 30916011344 and 30916011345), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China, the Postdoctoral Science Foundation Funded Project (Grant No. 2016M591851), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20160833, 20160829, and 20140035), the Qing Lan Project of Jiangsu Province, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Shanxi Scholarship Council of China (Grant No. 2016-092).

  12. Composition-dependent properties and phase stability of Fe-Pd ferromagnetic shape memory alloys: A first-principles study

    Li, Chun-Mei; Hu, Yan-Fei

    2017-12-01

    The composition-dependent properties and their correlation with the phase stability of Fe75+xPd25-x (- 10.0 ≤x ≤10.0 ) alloys are systematically investigated by using first-principles exact muffin-tin orbitals (EMTO)-coherent potential approximation (CPA) calculations. It is shown that the martensitic transformation (MT) from L 12 to body-centered-tetragonal (bct) occurs in the ordered alloys with about -5.0 ≤x ≤10.0 . In both the L 12 and bct phases, the evaluated a and c/a agree well with the available experimental data; the average magnetic moment per atom increases whereas the local magnetic moments of Fe atoms, dependent on both their positions and the structure of the alloy, decrease with increasing x. The tetragonal shear elastic constant of the L 12 phase ( C ' ) decreases whereas that of the bct phase (Cs) increases with x. The tetragonality of the martensite ( |1 -c /a | ) increases whereas its energy relative to the austenite with a negative value decreases with Fe addition. All these effects account for the increase of MT temperature (TM) with x. The MT from L 12 to bct is finally confirmed originating from the splitting of Fe 3d Eg and T2 g bands upon tetragonal distortion due to the Jahn-Teller effect.

  13. Thermodynamic-state and kinetic-process dependent dual ferromagnetic states in high-Si content FeMn(PSi) alloys

    Li, Guijiang; Eriksson, Olle; Johansson, Börje; Vitos, Levente

    2015-01-01

    We have found that thermodynamic state and kinetic process co-determine the dual ferromagnetic (FM) orders in high-Si content FeMnP 1−x Si x (0.25 < x < 0.5). Alloys undergoing high temperature annealing and quenching process prefer a high magnetic moment FM state in a chemically partial disordered structure with low c/a ratio. This mechanism is suggested to be responsible for the often discussed virgin effect as well. A chemically ordered structure obtained by a slow cooling process from a relatively low annealing temperature and the increase in Si content stabilize a metastable lattice with high c/a ratio and FM order with low magnetic moment. The non-simultaneity of the magnetic and structural transitions can be responsible for the occurrence of FM state in the high c/a range. Thus, a c/a ratio that changes from high to low is physically plausible to stabilize the metastable FM order at low temperature. Our theoretical observations indicate that suitable thermodynamic state and kinetic diffusion process is crucial for optimizing magnetocaloric properties and exploring feasible magnetocaloric materials

  14. Isotope effects in the diffusion of hydrogen and deuterium in ferromagnetic binary alloys of the Cu3Au type

    Hirscher, M.; Maier, C.U.; Schwendemann, B.; Kronmueller, H.

    1989-01-01

    The diffusion behaviour of hydrogen and deuterium at low temperatures was investigated in ordered and disordered alloys of Ni 3 Fe, Ni 3 Mn, and Fe 3 Pt by means of magnetic after-effect (MAE) measurements. After hydrogen charging all specimens show characteristic MAE relaxation spectra, which can be described taking into account the different octahedral positions of the hydrogen atoms in the Cu 3 Au structure. The observed isotope effect can qualitatively be explained by a thermally activated tunnelling process of the hydrogen isotopes. (orig.)

  15. Ab initio and Monte Carlo investigations of structural, electronic and magnetic properties of new ferromagnetic Heusler alloys with high Curie temperatures

    Dannenberg, Antje

    2011-08-30

    The mechanism which causes many of the unusual thermomechanical properties of martensitic alloys, as for example, superelasticity and the shape-memory effect, is the martensitic transformation. The prototype ferromagnetic shape memory alloy (FSMA) is Ni{sub 2}MnGa. But a technological breakthrough is missing due to its poor ductility and low operation temperatures. The goal of this thesis is the proposal of new FSMA appropriate for future technological applications. I focus on X{sub 2}YZ Heusler alloys which are mainly based on Mn, Fe, Co, and Ni for the X and Y sites and Z=Ga or Zn. The big challenge of this work is to find material classes which combine the unique magnetomechanical properties of FSMA which are large recoverable magnetostrictive strains, high magnetocrystalline anisotropy energy, and highly mobile twin boundaries with transformation temperatures clearly above room temperature and a reduced brittleness. Such a study, providing material classes which from a theoretical point of view are promising candidates for future FSMA, will help the experimental physicists to select interesting subgroups in the vast number of possible chemical compositions of X{sub 2}YZ Heusler alloys. I have systematically varied the composition in the new Heusler alloys in order to find trends indicating generic tendencies of the material properties, for instance, as a function of the valence electron concentration e/a. A main feature of this thesis is the attempt to find the origin of the competing structural ordering tendencies between conventional X{sub 2}YZ and inverse (XY)XZ Heusler structures which are observed for all systems investigated. In the first part of this work the accuracy and predictive power of ab initio and Monte Carlo simulations is demonstrated by reproducing the experimental phase diagram of Ni-Mn-(Ga,In,Sn,Sb). The linear increasing and decreasing slopes of T{sub M} and T{sub C} can be reproduced by total and free energy calculations and the analysis

  16. Effect of Cr addition on the structural, magnetic and mechanical properties of magnetron sputtered Ni-Mn-In ferromagnetic shape memory alloy thin films

    Akkera, Harish Sharma [Indian Institute of Technology Roorkee, Functional Nanomaterials Research Lab, Department of Physics, Roorkee, Uttarakhand (India); Madanapalle Institute of Technology and Science, Department of Physics, Madanapalle, Chittoor, Andhra Pradesh (India); Kaur, Davinder [Indian Institute of Technology Roorkee, Functional Nanomaterials Research Lab, Department of Physics, Roorkee, Uttarakhand (India)

    2016-12-15

    The effect of Cr substitution for In on the structural, martensitic phase transformation and mechanical properties of Ni-Mn-In ferromagnetic shape memory alloy (FSMA) thin films was systematically investigated. X-ray diffraction results revealed that the Ni-Mn-In-Cr thin films possessed purely austenitic cubic L2{sub 1} structure at lower content of Cr, whereas higher Cr content, the Ni-Mn-In-Cr thin films exhibited martensitic structure at room temperature. The temperature-dependent magnetization (M-T) and resistance (R-T) results confirmed that the monotonous increase in martensitic transformation temperatures (T{sub M}) with the addition of Cr content. Further, the room temperature nanoindentation studies revealed the mechanical properties such as hardness (H), elastic modulus (E), plasticity index (H/E) and resistance to plastic deformation (H{sup 3}/E {sup 2}) of all the samples. The addition of Cr content significantly enhanced the hardness (28.2 ± 2.4 GPa) and resistance to plastic deformation H{sup 3}/E{sup 2} (0.261) of Ni{sub 50.4}Mn{sub 34.96}In{sub 13.56}Cr{sub 1.08} film as compared with pure Ni-Mn-In film. As a result, the appropriate addition of Cr significantly improved the mechanical properties with a decrease in grain size, which could be further attributed to the grain boundary strengthening mechanism. These findings indicate that the Cr-doped Ni-Mn-In FSMA thin films are potential candidates for microelectromechanical systems applications. (orig.)

  17. Magnetic response in the vicinity of magnetic compensation: a case study in spin ferromagnetic Sm1-xGdxAl2 intermetallic alloys

    Venkatesh, S; Vaidya, Ulhas; Rakhecha, Veer Chand; Ramakrishnan, S; Grover, A K

    2010-01-01

    A compensated magnetic state in an ideally homogeneous system with long range magnetic order is characterized by a net zero magnetization (M) throughout the sample (macroscopic). In the pristine state of the sample (i.e. with no external field, H = 0), this implies that at the magnetic compensation temperature (T comp ) we must have M = 0 at H = 0 irrespective of any thermal and magnetic history of the sample and any underlying physics. This simple fact voids the usual identification (and interpretation) of M-H loop parameters at and in the vicinity of magnetic compensation temperature, specifically the coercivity, the remanence, and the exchange bias characteristics. The physics of coercivity and exchange bias continues to be fully relevant, but its manifestation in an M-H loop would get camouflaged at (and near) a magnetic compensation because M→0 at H = 0. We present an experimental elucidation of the above premise through a case study in the spin ferromagnetic Sm 1-x Gd x Al 2 alloys [x = 0.01-0.06], where the specimens with x ≤ 0.03 show compensation below the Curie temperature T c , while those with x ≥ 0.03 have rather small magnetization due to near cancellation of opposing contributions, but are otherwise devoid of compensation. The experiments comprised low field (near zero) as well as high field (70 kOe) magnetization measurements from the paramagnetic state down to 5 K in the ordered regime (T c ∼ 125 K) and isothermal M-H loop studies on the remnant magnetic state of polycrystalline samples.

  18. Critical behavior of the ferromagnetic-paramagnetic phase transition in Fe{sub 90−x}Ni{sub x}Zr{sub 10} alloy ribbons

    Thanh, Tran Dang, E-mail: thanhxraylab@yahoo.com [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Hanoi (Viet Nam); Huy Dan, Nguyen [Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Hanoi (Viet Nam); Phan, The-Long; Yu, Seong-Cho, E-mail: scyu@chungbuk.ac.kr [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kumarakuru, Haridas; Olivier, Ezra J.; Neethling, Johannes H. [Centre for HRTEM, Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2014-01-14

    This work presents a detailed study on the critical behavior of the ferromagnetic-paramagnetic (FM-PM) phase transition in Fe{sub 90−x}Ni{sub x}Zr{sub 10} (x = 0 and 5) alloy ribbons. Basing on field dependences of magnetization (M-H), M{sup 2} versus H/M plots prove the alloys exhibiting a second-order magnetic phase transition. To investigate the nature of the FM-PM phase transition at T{sub C} = 245 and 306 K for x = 0 and 5, respectively, we performed a critical-exponent study. The values of critical components β, γ, and δ determined by using the modified Arrott plots, Kouvel-Fisher (KF), and critical isotherm analyses agree with each other. For x = 0, the critical parameters β = 0.365 ± 0.013 and γ = 1.615 ± 0.033 are obtained by modified Arrott plots while β = 0.368 ± 0.008 and γ = 1.612 ± 0.016 are obtained by the KF method. These values are close to those expected for the 3D-Heisenberg model, revealing short-range FM interactions in Fe{sub 90}Zr{sub 10}. Meanwhile, for x = 5, the values of the critical parameters β = 0.423 ± 0.008 and γ = 1.325 ± 0.036 are obtained by modified Arrott plots, and β = 0.425 ± 0.006 and γ = 1.323 ± 0.012 are obtained by the KF method. The falling of the β value in between the values of the mean-field theory (β = 0.5) and the 3D-Heisenberg model (β = 0.365) indicates an existence of FM short-range order and magnetic inhomogeneity in Fe{sub 85}Ni{sub 5}Zr{sub 10}. With a partial replacement of Ni for Fe in Fe{sub 90−x}Ni{sub x}Zr{sub 10}, the value of the critical exponent β trends to shift towards that of the mean-field theory. Such the result proves the presence of Ni favors establishing FM long-range order. The nature of this phenomenon is carefully discussed.

  19. Effect of low temperature annealing on magneto-caloric effect of Ni–Mn–Sn–Al ferromagnetic shape memory alloy

    Agarwal, Sandeep [Haldia Institute of Technology, Haldia 721657, West Bengal (India); LCMP, Department of Condensed Matter Physics and Material Sciences, S.N. Bose National Centre for Basic Sciences, JD Block, Salt Lake, Kolkata 700098 (India); Stern-Taulats, Enric; Mañosa, Lluís [Departament d’Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Catalonia (Spain); Mukhopadhyay, P.K., E-mail: pkm@bose.res.in [LCMP, Department of Condensed Matter Physics and Material Sciences, S.N. Bose National Centre for Basic Sciences, JD Block, Salt Lake, Kolkata 700098 (India)

    2015-08-25

    Highlights: • Magnetic properties of the system changed after secondary heat treatment. • MCE was enhanced after Al was partially replaced with Sn in Ni–Mn–Al system. • Suitable heat treatment further increased overall MCE in the sample. • Change in magnetic properties occurred due to change in atomic ordering. - Abstract: We studied the effect of low temperature annealing on the atomic ordering and consequent changes in the magnetization and magnetocaloric effect of the sample. The annealing at lower temperatures initially decreased the magnetization and magnetocaloric effect in the sample, but at higher annealing temperatures both increased. The changes in magnetization and magnetocaloric effect arise from the change in atomic ordering. We have shown that post quenching heat treatment offers easy way of optimizing the alloy for magnetocaloric effect. In order to verify that there was no overestimation in the measurement of magnetocaloric effect we also performed an infield calorimetric measurements and compared them with those from the magnetization measurements. We did not find remarkable difference between them.

  20. Microstructure of epitaxial thin films of the ferromagnetic shape memory alloy Ni{sub 2}MnGa

    Eichhorn, Tobias

    2011-12-09

    This work is concerned with the preparation and detailed characterization of epitaxial thin films of the Heusler compound Ni{sub 2}MnGa. This multiferroic compound is of both technological and scientific interest due to the outstanding magnetic shape memory (MSM) behavior. Huge magnetic-field-induced strains up to 10 % have been observed for single crystals close to a Ni{sub 2}MnGa composition. The effect is based on a redistribution of crystallographic twin variants of tetragonal or orthorhombic symmetry. Under the driving force of the external magnetic field twin boundaries can move through the crystal, which largely affects the macroscopic shape. The unique combination of large reversible strain, high switching frequency and high work output makes the alloy a promising actuator material. Since the MSM effect results from an intrinsic mechanism, MSM devices possess great potential for implementation in microsystems, e.g. microfluidics. So far significant strains, in response to an external magnetic field, have been observed for bulk single crystals and foams solely. In order to take advantage of the effect in applications concepts for miniaturization are needed. The rather direct approach, based on epitaxial thin films, is explored in the course of this work. This involves sample preparation under optimized deposition parameters and fabrication of freestanding single-crystalline films. Different methods to achieve freestanding microstructures such as bridges and cantilevers are presented. The complex crystal structure is extensively studied by means of X-ray diffraction. Thus, the different crystallographic twin variants that are of great importance for the MSM effect are identified. In combination with microscopy the twinning architecture for films of different crystallographic orientation is clarified. Intrinsic blocking effects in samples of (100) orientation are explained on basis of the variant configuration. In contrast, a promising twinning microstructure

  1. Magnetic-field-induced irreversible antiferromagnetic–ferromagnetic phase transition around room temperature in as-cast Sm–Co based SmCo{sub 7−x}Si{sub x} alloys

    Feng, D.Y.; Zhao, L.Z.; Liu, Z.W., E-mail: zwliu@scut.edu.cn

    2016-04-15

    A magnetic-field-induced irreversible metamagnetic phase transition from antiferro- to ferromagnetism, which leads to an anomalous initial-magnetization curve lying outside the magnetic hysteresis loop, is reported in arc-melted SmCo{sub 7−x}Si{sub x} alloys. The transition temperatures are near room temperature, much higher than other compounds with similar initial curves. Detailed investigation shows that this phenomenon is dependent on temperature, magnetic field and Si content and shows some interesting characteristics. It is suggested that varying interactions between the Sm and Co layers in the crystal are responsible for the formation of a metastable AFM structure, which induces the anomalous phenomenon in as-cast alloys. The random occupation of 3g sites by Si and Co atoms also has an effect on this phenomenon.

  2. The effect of magnetic stress and stiffness modulus on resonant characteristics of Ni-Mn-Ga ferromagnetic shape memory alloy actuators

    Techapiesancharoenkij, Ratchatee; Kostamo, Jari; Allen, Samuel M.; O'Handley, Robert C.

    2011-01-01

    The prospect of using ferromagnetic shape memory alloys (FSMAs) is promising for a resonant actuator that requires large strain output and a drive frequency below 1 kHz. In this investigation, three FSMA actuators, equipped with tetragonal off-stoichiometric Ni 2 MnGa single crystals, were developed to study their frequency response and resonant characteristics. The first actuator, labeled as A1, was constructed with low-k bias springs and one Ni-Mn-Ga single crystal. The second actuator, labeled as A2, was constructed with high-k bias springs and one Ni-Mn-Ga crystal. The third actuator, labeled as A3, was constructed with high-k bias springs and two Ni-Mn-Ga crystals connected in parallel. The three actuators were magnetically driven over the frequency range of 10 Hz-1 kHz under 2 and 3.5 kOe magnetic-field amplitudes. The field amplitude of 2 kOe is insufficient to generate significant strain output from all three actuators; the maximum magnetic-field-induced strain (MFIS) at resonance is 2%. The resonant MFIS output improves to 5% under 3.5-kOe amplitude. The frequency responses of all three actuators show a strong effect of the spring k constant and the Ni-Mn-Ga modulus stiffness on the resonant frequencies. The resonant frequency of the Ni-Mn-Ga actuator was raised from 450 to 650 Hz by increasing bias spring k constant and/or the number of Ni-Mn-Ga crystals. The higher number of the Ni-Mn-Ga crystals not only increases the magnetic force output but also raises the total stiffness of the actuator resulting in a higher resonant frequency. The effective modulus of the Ni-Mn-Ga is calculated from the measured resonant frequencies using the mass-spring equation; the calculated modulus values for the three actuators fall in the range of 50-60 MPa. The calculated effective modulus appears to be close to the average modulus value between the low twinning modulus and high elastic modulus of the untwined Ni-Mn-Ga crystal. - Highlights: → Dynamic FSMA actuation shows

  3. Effect of heat treatment on the crystal structure, martensitic transformation and magnetic properties of Mn{sub 53}Ni{sub 25}Ga{sub 22} ferromagnetic shape memory alloy

    Dong, G.F., E-mail: dgfu0451@sina.com [Department of mechanics Dalian University, Dalian 116622 (China); Gao, Z.Y. [National Key Laboratory Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, P.O. Box 405, Harbin 150001 (China)

    2016-02-01

    In this study, the effect of heat treatment on crystal structure, martensitic transformation, thermodynamic behavior and magnetic properties of polycrystalline Mn{sub 53}Ni{sub 25}Ga{sub 22} ferromagnetic shape memory alloy was systematically investigated. The results show that the heat treatment has obvious effect on martensitic transformation temperatures, crystal structure and hysteresis loops. Heat treatment greatly effects on transformation temperatures due to modified composition of the matrix. Martensitic transformation temperature, saturation magnetization decreased with the increase heat treatment temperature, reaching their minimum values at the heat treatment temperature of 1173 K for 12 h. Curie temperature of maximum values obtained at solution-treated of 1173 K for 12 h. In other word, increasing heat treatment temperature and time has an effect on Curie temperature. In addition, the annealed alloy Mn{sub 53}Ni{sub 25}Ga{sub 22} may completely dissolve in vacuum tubes at 1173 K for 12 h. It is found that the studied alloys have some (Mn,Ni){sub 4} Ga-type compound precipitates, which can be seen dispersing both in grain interiors and on grain boundaries at other heat treatment process. Lastly, Rietveld analysis shows the good agreement between experiment and calculated data of XRD patterns. - Highlights: • Heat treatment has obvious effect on transformation, structure and hysteresis. • Transformation temperature decreased with increase heat treatment temperature. • Magnetization decreased with increase heat treatment temperature. • Annealed alloy completely dissolve in vacuum tubes at 1123 K for 24 h.

  4. Ferromagnetic resonance study of the half-Heusler alloy NiMnSb. The benefit of using NiMnSb as a ferromagnetic layer in pseudo-spin-valve based spin-torque oscillators

    Riegler, Andreas

    2011-11-25

    Since the discovery of spin torque in 1996, independently by Berger and Slonczewski, and given its potential impact on information storage and communication technologies, (e.g. through the possibility of switching the magnetic configuration of a bit by current instead of a magnetic field, or the realization of high frequency spin torque oscillators (STO)), this effect has been an important field of spintronics research. One aspect of this research focuses on ferromagnets with low damping. The lower the damping in a ferromagnet, the lower the critical current that is needed to induce switching of a spin valve or induce precession of its magnetization. In this thesis ferromagnetic resonance (FMR) studies of NiMnSb layers are presented along with experimental studies on various spin-torque (ST) devices using NiMnSb. NiMnSb, when crystallized in the half-Heusler structure, is a half-metal which is predicted to have 100% spin polarization, a consideration which further increases its potential as a candidate for memory devices based on the giant magnetoresistance (GMR) effect. The FMR measurements show an outstandingly low damping factor for NiMnSb, in low 10{sup -3} range. This is about a factor of two lower than permalloy and well comparable to lowest damping for iron grown by molecular beam epitaxy (MBE). According to theory the 100% spin polarization properties of the bulk disappear at interfaces where the break in translational symmetry causes the gap in the minority spin band to collapse but can remain in other crystal symmetries such as (111). Consequently NiMnSb layers on (111)(In,Ga)As buffer are characterized in respect of anisotropies and damping. The FMR measurements on these samples indicates a higher damping that for the 001 samples, and a thickness dependent uniaxial in-plane anisotropy. Investigations of the material for device use is pursued by considering sub-micrometer sized elements of NiMnSb on 001 substrates, which were fabricated by electron

  5. The fluctuation field and anomalous magnetic viscosity in commercial NdFeB alloys, AlNiCo and the bulk amorphous ferromagnets Nd{sub 60}Fe{sub 30}Al{sub 10} and Nd{sub 60}Fe{sub 20}Co{sub 10}Al{sub 10}

    Collocott, S.J. [CSIRO Materials Science and Engineering, Lindfield, NSW 2070 (Australia)], E-mail: stephen.collocott@csiro.au; Dunlop, J.B. [CSIRO Materials Science and Engineering, Lindfield, NSW 2070 (Australia)

    2008-08-15

    The fluctuation field, H{sub f}, is a useful parameter for characterising any ferromagnetic material that displays hysteresis, as it is a measure of the thermally activated rate processes that govern magnetisation reversals. Anomalous magnetic viscosity, i.e. nonmonotonic behaviour of the time dependent magnetisation, where the magnetisation is seen to increase, reach a peak, and then decrease, has been observed on both the upper and lower branches of minor loops or recoil curves in some ferromagnetic materials. Parameters relevant to the Preisach model are discussed as to their usefulness in predicting anomalous magnetic viscosity in ferromagnetic materials. This is done with reference to measurements of H{sub f} and the time dependent magnetisation in commercial NdFeB alloys, AlNiCo and the bulk amorphous ferromagnets Nd{sub 60}Fe{sub 30}Al{sub 10} and Nd{sub 60}Fe{sub 20}Co{sub 10}Al{sub 10}.

  6. Magnetocaloric properties of as-quenched Ni{sub 50.4}Mn{sub 34.9}In{sub 14.7} ferromagnetic shape memory alloy ribbons

    Sanchez Llamazares, J.L. [Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICYT), San Luis Potosi, S.L.P. (Mexico); Garcia, C. [MIT, Department of Materials Science and Engineering, Massachusetts (United States); Hernando, B.; Prida, V.M. [Universidad de Oviedo, Departamento de Fisica, Facultad de Ciencias, Oviedo (Spain); Baldomir, D.; Serantes, D. [Universidade de Santiago de Compostela, Departamento de Fisica Aplicada, Facultad de Fisica, Santiago de Compostela (Spain); Gonzalez, J. [UPV, Departamento Fisica de Materiales, Facultad de Quimica, San Sebastian (Spain)

    2011-06-15

    The temperature dependences of magnetic entropy change and refrigerant capacity have been calculated for a maximum field change of {delta} H=30 kOe in as-quenched ribbons of the ferromagnetic shape memory alloy Ni{sub 50.4}Mn{sub 34.9}In{sub 14.7} around the structural reverse martensitic transformation and magnetic transition of austenite. The ribbons crystallize into a single-phase austenite with the L2{sub 1}-type crystal structure and Curie point of 284 K. At 262 K austenite starts its transformation into a 10-layered structurally modulated monoclinic martensite. The first- and second-order character of the structural and magnetic transitions was confirmed by the Arrott plot method. Despite the superior absolute value of the maximum magnetic entropy change obtained in the temperature interval where the reverse martensitic transformation occurs ({delta}S{sub M} {sup max}=7.2 Jkg{sup -1}K{sup -1}) with respect to that obtained around the ferromagnetic transition of austenite ({delta} S{sub M} {sup max}=2.6 Jkg{sup -1}K{sup -1}), the large average hysteretic losses due to the effect of the magnetic field on the phase transformation as well as the narrow thermal dependence of the magnetic entropy change make the temperature interval around the ferromagnetic transition of austenite of a higher effective refrigerant capacity (RC{sup magn}{sub eff}=95Jkg{sup -1} versus RC{sup struct}{sub eff}=60Jkg{sup -1}). (orig.)

  7. Ferromagnetic nanorings

    Vaz, C A F; Hayward, T J; Llandro, J; Schackert, F; Morecroft, D; Bland, J A C; Klaeui, M; Laufenberg, M; Backes, D; Ruediger, U; Castano, F J; Ross, C A; Heyderman, L J; Nolting, F; Locatelli, A; Faini, G; Cherifi, S; Wernsdorfer, W

    2007-01-01

    Ferromagnetic metal rings of nanometre range widths and thicknesses exhibit fundamentally new spin states, switching behaviour and spin dynamics, which can be precisely controlled via geometry, material composition and applied field. Following the discovery of the 'onion state', which mediates the switching to and between vortex states, a range of fascinating phenomena has been found in these structures. In this overview of our work on ring elements, we first show how the geometric parameters of ring elements determine the exact equilibrium spin configuration of the domain walls of rings in the onion state, and we show how such behaviour can be understood as the result of the competition between the exchange and magnetostatic energy terms. Electron transport provides an extremely sensitive probe of the presence, spatial location and motion of domain walls, which determine the magnetic state in individual rings, while magneto-optical measurements with high spatial resolution can be used to probe the switching behaviour of ring structures with very high sensitivity. We illustrate how the ring geometry has been used for the study of a wide variety of magnetic phenomena, including the displacement of domain walls by electric currents, magnetoresistance, the strength of the pinning potential introduced by nanometre size constrictions, the effect of thermal excitations on the equilibrium state and the stochastic nature of switching events

  8. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  9. Single-phase high-entropy alloys. An overview

    Kozak, Roksolana; Steurer, Walter [ETH Zurich (Switzerland). Lab. of Crystallography; Sologubenko, Alla [ETH Zurich (Switzerland). Lab. of Nanotechnology

    2015-02-01

    The term 'high-entropy alloys (HEAs)' first appeared about 10 years ago defining alloys composed of n=5-13 principal elements with concentrations of approximately 100/n at.% each. Since then many equiatomic (or near equiatomic) single- and multi-phase multicomponent alloys were developed, which are reported for a combination of tunable properties: high hardness, strength and ductility, oxidation and wear resistance, magnetism, etc. In our paper, we focus on probably single-phase HEAs (solid solutions) out of all HEAs studied so far, discuss ways of their prediction, mechanical properties. In contrast to classical multielement/multiphase alloys, only single-phase multielement alloys (solid solutions) represent the basic concept underlying HEAs as mixing-entropy stabilized homogenous materials. The literature overview is complemented by own studies demonstrating that the alloys CrFeCoNi, CrFeCoNiAl{sub 0.3} and PdFeCoNi homogenized at 1300 and 1100 C, respectively, for 1 week are not single-phase HEAs, but a coherent mixture of two solid solutions.

  10. Mechanical and magneto-electronic properties of half-metallic ferromagnetism in Ti-doped ZnSe and CdSe alloys: Ab initio study

    El Amine Monir, Mohammed; Ullah, Hayat; Baltach, Hadj; Gulbahar Ashiq, M.; Khenata, R.

    2017-11-01

    In this article we have studied the structural, elastic, electronic and magnetic properties of Zn1-xTixSe and Cd1-xTixSe alloys at (x = 0.25, 0.50, 0.75) using first principles density functional theory calculations with local spin density approximation (LSDA) and generalized gradient approximation plus Hubbard parameter (GGA+U) as exchange-correlation potential. The physical properties of both alloys were investigated in the zinc-blend phase. The structural parameters at equilibrium are consistent with experimental and earlier theoretical predictions. The elastic constants are also computed and compared with the literature. The DOS curves of Zn1-xTixSe and Cd1-xTixSe alloys for all the concentrations show the existence of hybridization among Ti (3d) and Se (4p) states. The calculated exchange constants N0α(s-d) and N0β (p-d) are useful to determine the contribution in the valence band and conduction band and are also shows the magnetic character of these alloys. In addition, the p-d hybridization in the PDOS reduces local magnetic moment of Ti from its free space charge of 2 μB and results small magnetic moments on the nonmagnetic Zn, Cd and Se sites. The calculated negative values of formation energy (Ef) reveal that all the Zn1-xTixSe and Cd1-xTixSe alloys are thermodynamically stables. A larger/Smaller value of Curie temperature (TC) for all the Zn1-xTixSe and Cd1-xTixSe alloys shows the strong/low interaction among the magnetic atoms respectively.

  11. Effect of Sn and Sb element on the magnetism and functional properties of Ni–Mn–Al ferromagnetic shape memory alloys

    Agarwal, Sandeep, E-mail: sandeepxag@yahoo.co.in [LCMP, Department of Condensed Matter Physics and Material Sciences, SN Bose National Centre for Basic Sciences, JD Block, Salt Lake, Kolkata 700098 (India); Mukhopadhyay, P.K. [LCMP, Department of Condensed Matter Physics and Material Sciences, SN Bose National Centre for Basic Sciences, JD Block, Salt Lake, Kolkata 700098 (India)

    2016-03-15

    We have replaced Al partially with Sb and Sn in Ni–Mn–Al systems and investigated its effect on magnetism, entropy change and magnetoresistance in the vicinity of martensitic transformation. Both the samples had identical lattice parameters and Mn contents, which are mostly responsible for magnetism in these systems, yet there were marked changes in magnetic and functional properties of these systems. It was found that the magnetization increased in Sb alloy, while entropy change and magnetoresistance decreased as compared to Sn alloy. These changes are attributed to the change in antiferromagnetic interaction as a result of variation in the Ni d–Mn d hybridization arising due to presence of different sp elements. - Highlights: • Sn and Sb system has same Mn and Ni content and lattice parameter. • Both systems has disparity in magnetism, entropy change and magnetoresistance. • Difference was due to change in the Ni 3d–Mn 3d hybridization. • Sb based alloys are more suitable for mechanical devices. • Sn based alloys are more suitable for magnetocaloric effect and magnetoresistance.

  12. Microstructure and precipitates in annealed Co.sub.38./sub.Ni.sub.33./sub.Al.sub.29./sub. ferromagnetic shape memory alloy

    Lu, J.B.; Shi, H.; Sedláková-Ignácová, Silvia; Espinoza, R.; Kopeček, Jaromír; Šittner, Petr; Bártová, B.; Schryvers, D.

    2013-01-01

    Roč. 572, SEP (2013), s. 5-10 ISSN 0925-8388 R&D Projects: GA ČR GAP107/10/0824 Institutional support: RVO:68378271 Keywords : martensitic transformation * electron microscopy * precipitates * shape memory alloy Subject RIV: JG - Metallurgy Impact factor: 2.726, year: 2013

  13. Martensitic transformation and shape memory effect in Ni54.75Mn13.25Fe7Ga25 ferromagnetic shape memory alloy

    Wang, H.B.; Sui, J.H.; Liu, C.; Cai, W.

    2008-01-01

    The martensitic transformation and shape memory effect of Ni 54.75 Mn 13.25 Fe 7 Ga 25 (at.%) alloy are studied in the present paper. It is shown that tetragonal martensite with parallel bands substructure transforms to parent phase heated by electron beam. It can be clearly observed that the martensite band becomes smaller and smaller, then transforms to parent phase completely in the end. A large reversible transformation strain, about 1.5%, is obtained in this undeformed polycrystalline alloy due to martensitic transformation and its reverse transformation. This transformation strain is also increased to 1.8% by the external magnetic field. It is believed that the effect of the magnetic field on the preferential orientation of martensitic variants increases the transformation strain

  14. Ellipsometry applied to phase transitions and relaxation phenomena in Ni.sub.2./sub.MnGa ferromagnetic shape memory alloy

    Dejneka, Alexandr; Zablotskyy, Vitaliy A.; Tyunina, Marina; Jastrabík, Lubomír; Pérez-Landazábal, J.I.; Recarte, V.; Sánchez-Alarcos, V.; Chernenko, V.A.

    2012-01-01

    Roč. 101, č. 14 (2012), "141908-1"-"141908-5" ISSN 0003-6951 R&D Projects: GA TA ČR TA01010517; GA ČR GAP108/12/1941 Institutional research plan: CEZ:AV0Z10100522 Keywords : shape memory alloy * ellipsometry * Ni 2 MnGa Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.794, year: 2012 http://dx.doi.org/10.1063/1.4757393

  15. Ultrasound-induced martensitic transition in ferromagnetic Ni2.15Mn0.81Fe0.04Ga shape memory alloy

    Buchelnikov, V.; Dikshtein, I.; Grechishkin, R.; Khudoverdyan, T.; Koledov, V.; Kuzavko, Y.; Nazarkin, I.; Shavrov, V.; Takagi, T.

    2004-01-01

    The experimental observation of direct and reverse martensitic transformation due to ultrasound processing of Ni-Mn-Ga alloy is discussed. It was found that martensite-austenite as well as austenite-martensite structural transitions can be induced by the intense ultrasound at constant temperature. During the experiments low magnetic field susceptibility measurements and optical detection of twin domains arising due to martensitic transformation were performed in situ. The non-thermal nature of the effect is confirmed making use of the pulsed ultrasound technique

  16. Structural evolution in ferromagnetic shape memory alloy Co.sub.38./sub.Ni.sub.33./sub.Al.sub.29./sub

    Kopeček, Jaromír; Jarošová, Markéta; Jurek, Karel; Drahokoupil, Jan; Molnár, Peter; Heczko, Oleg

    2010-01-01

    Roč. 17, 2a (2010), k89-k90 ISSN 1211-5894 R&D Projects: GA ČR(CZ) GA101/09/0702; GA AV ČR IAA200100902; GA ČR GAP107/10/0824 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : shape memory alloys * martensitic transformation * metallography * SEM, * EBSD Subject RIV: BM - Solid Matter Physics ; Magnetism http://www. xray .cz/ xray /csca/kol2010/abst/kopecek.htm

  17. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    Pasanai, K.

    2017-01-01

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed.

  18. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    Pasanai, K., E-mail: krisakronmsu@gmail.com

    2017-01-15

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed. - Highlights: • The conductance spectra of a FM/FM/FM junction were calculated. • The conductance spectra were suppressed by the exchange energy. • The exchange energy and the potential strength play similar roles in the junctions.

  19. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    Pasanai, K.

    2017-01-01

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed. - Highlights: • The conductance spectra of a FM/FM/FM junction were calculated. • The conductance spectra were suppressed by the exchange energy. • The exchange energy and the potential strength play similar roles in the junctions.

  20. Carrier concentration induced ferromagnetism in semiconductors

    Story, T.

    2007-01-01

    In semiconductor spintronics the key materials issue concerns ferromagnetic semiconductors that would, in particular, permit an integration (in a single multilayer heterostructure) of standard electronic functions of semiconductors with magnetic memory function. Although classical semiconductor materials, such as Si or GaAs, are nonmagnetic, upon substitutional incorporation of magnetic ions (typically of a few atomic percents of Mn 2+ ions) and very heavy doping with conducting carriers (at the level of 10 20 - 10 21 cm -3 ) a ferromagnetic transition can be induced in such diluted magnetic semiconductors (also known as semimagnetic semiconductors). In the lecture the spectacular experimental observations of carrier concentration induced ferromagnetism will be discussed for three model semiconductor crystals. p - Ga 1-x Mn x As currently the most actively studied and most perspective ferromagnetic semiconductor of III-V group, in which ferromagnetism appears due to Mn ions providing both local magnetic moments and acting as acceptor centers. p - Sn 1-x Mn x Te and p - Ge 1-x Mn x Te classical diluted magnetic semiconductors of IV-VI group, in which paramagnet-ferromagnet and ferromagnet-spin glass transitions are found for very high hole concentration. n - Eu 1-x Gd x Te mixed magnetic crystals, in which the substitution of Gd 3+ ions for Eu 2+ ions creates very high electron concentration and transforms antiferromagnetic EuTe (insulating compound) into ferromagnetic n-type semiconductor alloy. For each of these materials systems the key physical features will be discussed concerning: local magnetic moments formation, magnetic phase diagram as a function of magnetic ions and carrier concentration as well as Curie temperature and magnetic anisotropy engineering. Various theoretical models proposed to explain the effect of carrier concentration induced ferromagnetism in semiconductors will be briefly discussed involving mean field approaches based on Zener and RKKY

  1. The Physics of Ferromagnetism

    Miyazaki, Terunobu

    2012-01-01

    This book covers both basic physics of ferromagnetism such as magnetic moment, exchange coupling, magnetic anisotropy and recent progress in advanced ferromagnetic materials. Special interests are focused on NdFeB permanent magnets and the materials studied in the field of spintronics. In the latter, development of tunnel magnetoresistance effect through so called giant magnetoresistance effect is explained.

  2. Critical current oscillations in superconductor-ferromagnet-superconductor structure taking into account s-d scattering

    Vedyaev, A.V.; Ryzhanova, N.V.; Pugach, N.G.

    2007-01-01

    One calculated the critical current in the Josephson contact with the transition metal slightly ferromagnetic alloy interlayer. One solved the Gorkov equations taking into account s-d-scattering in a ferromagnet. The account of the mentioned scattering breaking down the Cooper pairs is shown to enable to ensure the conformity with the experiment [ru

  3. Electromagnetic-acoustic coupling in ferromagnetic metals at liquid-helium temperatures

    Gordon, R A

    1981-01-01

    Electromagnetic-acoustic coupling at the surface and in the bulk of ferromagnetic metals at liquid-helium temperatures has been studied using electromagnetically excited acoustic standing-wave resonances at MHz frequencies in a number of ferromagnetic metals and alloys of commercial interest...

  4. Room temperature ferromagnetic gadolinium silicide nanoparticles

    Hadimani, Magundappa Ravi L.; Gupta, Shalabh; Harstad, Shane; Pecharsky, Vitalij; Jiles, David C.

    2018-03-06

    A particle usable as T1 and T2 contrast agents is provided. The particle is a gadolinium silicide (Gd5Si4) particle that is ferromagnetic at temperatures up to 290 K and is less than 2 .mu.m in diameter. An MRI contrast agent that includes a plurality of gadolinium silicide (Gd.sub.5Si.sub.4) particles that are less than 1 .mu.m in diameter is also provided. A method for creating gadolinium silicide (Gd5Si4) particles is also provided. The method includes the steps of providing a Gd5Si4 bulk alloy; grinding the Gd5Si4 bulk alloy into a powder; and milling the Gd5Si4 bulk alloy powder for a time of approximately 20 minutes or less.

  5. Eddy current inspection of mildly ferromagnetic tubing

    Mayo, W.R.; Carter, J.R.

    1984-02-01

    The past decade has seen the development of eddy current probes for inspection of the mildly ferro-magnetic alloy Monel 400. Due to the rapid advances in permanent magnet technology similar probes have been upgraded to magnetically saturate, and hence inspect, the duplex stainless steel Sandvik 3RE60, which has saturation induction more than twice that of Monel 400. Prototypes of these probes have been tested in three ways: saturation capability, quality of typical eddy current data, and ability to eliminate permeability induced signals. Successful laboratory testing, potential applications, and limitations of these type probes are discussed

  6. Superconducting Ferromagnetic Nanodiamond.

    Zhang, Gufei; Samuely, Tomas; Xu, Zheng; Jochum, Johanna K; Volodin, Alexander; Zhou, Shengqiang; May, Paul W; Onufriienko, Oleksandr; Kačmarčík, Jozef; Steele, Julian A; Li, Jun; Vanacken, Johan; Vacík, Jiri; Szabó, Pavol; Yuan, Haifeng; Roeffaers, Maarten B J; Cerbu, Dorin; Samuely, Peter; Hofkens, Johan; Moshchalkov, Victor V

    2017-06-27

    Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature T c ∼ 3 K and a Curie temperature T Curie > 400 K. In spite of the high T Curie , our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

  7. Superconducting Ferromagnetic Nanodiamond

    Zhang, G.; Samuely, T.; Xu, Z.; Jochum, J. K.; Volodin, A.; Zhou, S. Q.; May, P. W.; Onufriienko, O.; Kacmarik, J.; Steele, J. A.; Li, J.; Vanacken, J.; Vacík, Jiří; Szabo, P.; Yuan, H. F.; Roeffaers, M. B. J.; Cerbu, D.; Samuely, P.; Hofkens, J.; Moshchalkov, V.V.

    2017-01-01

    Roč. 11, č. 6 (2017), s. 5358-5366 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : nanodiamond * superconductivity and ferromagnetism * spin fluctuations * giant positive magnetoresistance * anamalous Hall effect Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nano-materials (production and properties ) Impact factor: 13.942, year: 2016

  8. Modelization of nanospace interaction involving a ferromagnetic atom: a spin polarization effect study by thermogravimetric analysis.

    Santhanam, K S V; Chen, Xu; Gupta, S

    2014-04-01

    Ab initio studies of ferromagnetic atom interacting with carbon nanotubes have been reported in the literature that predict when the interaction is strong, a higher hybridization with confinement effect will result in spin polarization in the ferromagnetic atom. The spin polarization effect on the thermal oxidation to form its oxide is modeled here for the ferromagnetic atom and its alloy, as the above studies predict the 4s electrons are polarized in the atom. The four models developed here provide a pathway for distinguishing the type of interaction that exists in the real system. The extent of spin polarization in the ferromagnetic atom has been examined by varying the amount of carbon nanotubes in the composites in the thermogravimetric experiments. In this study we report the experimental results on the CoNi alloy which appears to show selective spin polarization. The products of the thermal oxidation has been analyzed by Fourier Transform Infrared Spectroscopy.

  9. Transport properties of Josephson contacts with ferromagnetic tunnel barriers; Transporteigenschaften von Josephson-Kontakten mit ferromagnetischer Tunnelbarriere

    Sprungmann, Dirk

    2010-01-28

    The combination of the Josephson and the proximity effect is possible by the introduction of a ferromagnetic barrier into a Josephson contact resulting in a so called π coupling. The supra current through these contacts is flowing in the reverse direction. Specific new electronic circuits such as phase shifting devices are possible, for instance for high-speed analog-digital transducers. In the frame of this thesis SIFS Josephson contacts were studied, with a barrier consisting of a thin insulating Al2Ox barrier layer and a ferromagnetic thin film. For the ferromagnetic material weak ferromagnetic Ni(0.6)Cu(0.4), the strong ferromagnetic Fe(0.25)Co(0.75) and the ternary Heusler alloys Co2MnSn and Cu2MnAl were used. Josephson contacts with π coupling were realized with the NiCu alloy, triplet superconductivity seems to appear with the Heusler systems.

  10. Muon spin relaxation in ferromagnetic PdMn

    Dodds, S.A.; Gist, G.A.; Heffner, R.H.; Leon, M.; MacLaughlin, D.E.; Mydosh, J.A.; Nieuwenhuys, G.J.; Schillaci, M.E.

    1983-01-01

    Positive-muon (μ + ) spin relaxation experiments have been carried out in the dilute ferromagnetic alloy Pd + 2 at % Mn (T/sub c/ = 5.8 0 K). In the paramagnetic state the inhomogeneous μ + linewidth is proportional to the bulk magnetization. Below T/sub c/ the μ + linewidth and the width of the μ + local field distribution in zero applied field are both in qualitative accord with the Sherrington-Kirkpatrick theory of disordered magnets

  11. Muon spin relaxation in ferromagnetic PdMn

    Dodds, S.A.; Gist, G.A. (Rice Univ., Houston, TX (USA)); Heffner, R.H.; Leon, M.; Schillaci, M.E. (Los Alamos National Lab., NM (USA)); MacLaughlin, D.E. (California Univ., Riverside (USA)); Mydosh, J.A.; Nieuwenhuys, G.J. (Rijksuniversiteit Leiden (Netherlands). Kamerlingh Onnes Lab.)

    1984-01-01

    Positive-muon (..mu../sup +/) spin relaxation experiments have been carried out in the dilute ferromagnetic alloy Pd + 2 at.% Mn (Tsub(c) = 5.8 K). In the paramagnetic state the inhomogeneous ..mu../sup +/ linewidth is proportional to the bulk magnetization. Below Tsub(c) the ..mu../sup +/ linewidth and the width of the ..mu../sup +/ local field distribution in zero applied field are both in qualitative accord with the Sherrington-Kirkpatrick theory of disordered magnets.

  12. Hysteresis in conducting ferromagnets

    Schneider, Carl S.; Winchell, Stephen D.

    2006-01-01

    Maxwell's magnetic diffusion equation is solved for conducting ferromagnetic cylinders to predict a magnetic wave velocity, a time delay for flux penetration and an eddy current field, one of five fields in the linear unified field model of hysteresis. Measured Faraday voltages for a thin steel toroid are shown to be proportional to magnetic field step amplitude and decrease exponentially in time due to maximum rather than average permeability. Dynamic permeabilities are a field convolution of quasistatic permeability and the delay function from which we derive and observe square root dependence of coercivity on rate of field change

  13. Room temperature ferromagnetic gadolinium silicide nanoparticles

    Hadimani, Magundappa Ravi L.; Gupta, Shalabh; Harstad, Shane; Pecharsky, Vitalij; Jiles, David C.

    2018-03-06

    A particle usable as T1 and T2 contrast agents is provided. The particle is a gadolinium silicide (Gd5Si4) particle that is ferromagnetic at temperatures up to 290 K and is less than 2 .mu.m in diameter. An MRI contrast agent that includes a plurality of gadolinium silicide (Gd.sub.5Si.sub.4) particles that are less than 1 .mu.m in diameter is also provided. A method for creating gadolinium silicide (Gd5Si4) particles is also provided. The method includes the steps of providing a Gd5Si4 bulk alloy; grinding the Gd5Si4 bulk alloy into a powder; and milling the Gd5Si4 bulk alloy powder for a time of approximately 20 minutes or less.

  14. Ferromagnet / superconductor oxide superlattices

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  15. Ferromagnetic shape memory materials

    Tickle, Robert Jay

    Ferromagnetic shape memory materials are a new class of active materials which combine the properties of ferromagnetism with those of a diffusionless, reversible martensitic transformation. These materials have been the subject of recent study due to the unusually large magnetostriction exhibited in the martensitic phase. In this thesis we report the results of experiments which characterize the magnetic and magnetomechanical properties of both austenitic and martensitic phases of ferromagnetic shape memory material Ni2MnGa. In the high temperature cubic phase, anisotropy and magnetostriction constants are determined for a range of temperatures from 50°C down to the transformation temperature, with room temperature values of K1 = 2.7 +/- 104 ergs/cm3 and lambda100 = -145 muepsilon. In the low temperature tetragonal phase, the phenomenon of field-induced variant rearrangement is shown to produce anomalous results when traditional techniques for determining anisotropy and magnetostriction properties are employed. The requirement of single variant specimen microstructure is explained, and experiments performed on such a specimen confirm a uniaxial anisotropy within each martensitic variant with anisotropy constant Ku = 2.45 x 106 ergs/cm3 and a magnetostriction constant of lambdasv = -288 +/- 73 muepsilon. A series of magnetomechanical experiments investigate the effects of microstructure bias, repeated field cycling, varying field ramp rate, applied load, and specimen geometry on the variant rearrangement phenomenon in the martensitic phase. In general, the field-induced strain is found to be a function of the variant microstructure. Experiments in which the initial microstructure is biased towards a single variant state with an applied load generate one-time strains of 4.3%, while those performed with a constant bias stress of 5 MPa generate reversible strains of 0.5% over a period of 50 cycles. An increase in the applied field ramp rate is shown to reduce the

  16. Characterization of Ni{sub 5}3.5-Fe{sub 1}9.5-Ga{sub 2}7 Ni{sub 5}3.5 ferromagnetic shape memory alloy produced by powder metallurgy; Caracterizacion de la aleacion Ni{sub 5}3.5-Fe{sub 1}9.5-Ga{sub 2}7 con memoria de forma ferromagnetica producida por metalurgia de polvos

    Olmos, L.; Alvarado-Hernandez, F.; Omar Jimenez, H.; Vergara-Hernandez, J.; Arroyo Albiter, M.; Ochoa-Gamboa, R. A.

    2015-07-01

    The main drawback of ferromagnetic shape memory alloys fabricated through casting methods are its brittleness. In order to overcome this disadvantage, powder metallurgy is an ideal technique for the consolidation of many engineering parts. This paper is focused on the study of the milling and sintering effects of metallic powders over the evolution of the crystalline phases responsibly for the shape memory effect of these materials. To achieve this objective, ferromagnetic shape memory alloy powders (Ni{sub 5}3.5-Fe{sub 1}9.5-Ga{sub 2}7) were prepared from a cast ingot by mechanical milling at two different times of 30 and 60 minutes. The evolution of the phases was investigated through high temperature X-ray diffraction (HTXRD), whereas sintering was analyzed with dilatometry tests. X-ray studies showed that four different phases can be present depending on the particle size and temperature at which the heat treatment was performed. Coarser powders showed a B2 structure along with a γ phase while the finer showed a L21 structure when treated below 1173 K. Furthermore, finer powders had a modulated M14 martensitic structure after sintering at temperatures above 1273 K. The sintering of powders was slow and a mass diffusion mechanism was not clearly observed. (Author)

  17. Magnetic and anomalous magnetic viscosity in the bulk amorphous ferromagnet Pr58Fe24Al18 and partially amorphous ferromagnet Pr60Fe24Al16

    Collocott, S.J.; Dunlop, J.B.

    2009-01-01

    A number of ferromagnetic Pr-Fe-Al alloys have been prepared by argon arc melting and quenching into a copper mould. The alloy of composition Pr 58 Fe 24 Al 18 is identified as being amorphous (bulk metallic glass or bulk amorphous ferromagnet), and a range of magnetic measurements have been performed to explore differences and similarities between it and a partially amorphous alloy, containing a significant crystalline fraction, Pr 60 Fe 24 Al 16 . For both alloys, measurements of the irreversible susceptibility, and magnetic viscosity on the major hysteresis loop are reported. From the magnetic viscosity data, the fluctuation field is determined. The behaviour of the anomalous magnetic viscosity (non-monotonic behaviour of the magnetic viscosity, where the magnetisation as a function of time is seen to increase, reach a peak, and then decrease), on the recoil curve that leads to the dc demagnetised state is investigated. Both alloys display non-monotonic behaviour. After dc demagnetisation, spontaneous remagnetisation is observed in both alloys, and some comments are made on the thermal remagnetisation behaviour of the amorphous alloy. The anomalous magnetic viscosity is interpreted in the context of the Preisach model, as it predicts a simple functional relationship between the time taken to reach a peak and the applied magnetic field. The experimental data for both alloys is in good agreement with this prediction.

  18. Optical orientation in ferromagnet/semiconductor hybrids

    Korenev, V L

    2008-01-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin–spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism

  19. Optical orientation in ferromagnet/semiconductor hybrids

    Korenev, V. L.

    2008-11-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin-spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism.

  20. Optical Orientation in Ferromagnet/Semiconductor Hybrids

    Korenev, V. L.

    2008-01-01

    The physics of optical pumping of semiconductor electrons in the ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of the ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of the semiconductor. Spin-spin interactions near the interface ferromagnet/semiconductor play crucial role in the optical readout and the manipulation of ferromagnetism.

  1. Ferromagnetic Objects Magnetovision Detection System.

    Nowicki, Michał; Szewczyk, Roman

    2013-12-02

    This paper presents the application of a weak magnetic fields magnetovision scanning system for detection of dangerous ferromagnetic objects. A measurement system was developed and built to study the magnetic field vector distributions. The measurements of the Earth's field distortions caused by various ferromagnetic objects were carried out. The ability for passive detection of hidden or buried dangerous objects and the determination of their location was demonstrated.

  2. Ferromagnetic Objects Magnetovision Detection System

    Michał Nowicki

    2013-12-01

    Full Text Available This paper presents the application of a weak magnetic fields magnetovision scanning system for detection of dangerous ferromagnetic objects. A measurement system was developed and built to study the magnetic field vector distributions. The measurements of the Earth’s field distortions caused by various ferromagnetic objects were carried out. The ability for passive detection of hidden or buried dangerous objects and the determination of their location was demonstrated.

  3. Non-ferromagnetic overburden casing

    Vinegar, Harold J.; Harris, Christopher Kelvin; Mason, Stanley Leroy

    2010-09-14

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for electrically insulating an overburden portion of a heater wellbore is described. The system may include a heater wellbore located in a subsurface formation and an electrically insulating casing located in the overburden portion of the heater wellbore. The casing may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the casing.

  4. Flocking ferromagnetic colloids.

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S

    2017-02-01

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks).

  5. PREFACE: Half Metallic Ferromagnets

    Dowben, Peter

    2007-08-01

    Since its introduction by de Groot and colleagues in the early 1980s [1], the concept of half metallic ferromagnetism has attracted great interest. Idealized, half-metals have only one spin channel for conduction: the spin-polarized band structure exhibits metallic behavior for one spin channel, while the other spin band structure exhibits a gap at the Fermi level. Due to the gap for one spin direction, the density of states at the Fermi level has, theoretically, 100 & spin polarization. This gap in the density of states in one spin at the Fermi level, for example ↓ so N↓ (EF) = 0, also causes the resistance of that channel to go to infinity. At zero or low temperatures, the nonquasiparticle density of states (electron correlation effects), magnons and spin disorder reduce the polarization from the idealized 100 & polarization. At higher temperatures magnon-phonon coupling and irreversible compositional changes affect polarization further. Strategies for assessing and reducing the effects of finite temperatures on the polarization are now gaining attention. The controversies surrounding the polarization stability of half metallic ferromagnets are not, however, limited to the consideration of finite temperature effects alone. While many novel half metallic materials have been predicted, materials fabrication can be challenging. Defects, surface and interface segregation, and structural stability can lead to profound decreases in polarization, but can also suppress long period magnons. There is a 'delicate balance of energies required to obtain half metallic behaviour: to avoid spin flip scattering, tiny adjustments in atomic positions might occur so that a gap opens up in the other spin channel' [2]. When considering 'spintronics' devices, a common alibi for the study of half metallic systems, surfaces and interfaces become important. Free enthalpy differences between the surface and the bulk will lead to spin minority surface and interface states, as well as

  6. Erratum: Spin dynamics in ferromagnets: Gilbert damping and two-magnon scattering

    Zakeri, Kh.; Lindner, J.; Barsukov, I.; Meckenstock, R.; Farle, M.; von Horsten, U.; Wende, H.; Keune, W.; Rocker, J.; Kalarickal, S.S.; Lenz, K.; Kuch, W.; Baberschke, K.; Frait, Zdeněk

    2009-01-01

    Roč. 80, č. 5 (2009), 059901/1-059901/3 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferromagnetic resonance * Heusler alloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009

  7. Dynamical response of vibrating ferromagnets

    Gaganidze, E; Ziese, M

    2000-01-01

    The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of t...

  8. STM observations of ferromagnetic clusters

    Wawro, A.; Kasuya, A.

    1998-01-01

    Co, Fe and Ni clusters of nanometer size, deposited on silicon and graphite (highly oriented pyrolytic graphite), were observed by a scanning tunneling microscope. Deposition as well as the scanning tunneling microscope measurements were carried out in an ultrahigh vacuum system at room temperature. Detailed analysis of Co cluster height was done with the scanning tunneling microscope equipped with a ferromagnetic tip in a magnetic field up to 70 Oe. It is found that bigger clusters (few nanometers in height) exhibit a dependence of their apparent height on applied magnetic field. We propose that such behaviour originates from the ferromagnetic ordering of cluster and associate this effect to spin polarized tunneling. (author)

  9. Magnetic excitations in ferromagnetic semiconductors

    Furdyna, J.K.; Liu, X.; Zhou, Y.Y.

    2009-01-01

    Magnetic excitations in a series of GaMnAs ferromagnetic semiconductor films were studied by ferromagnetic resonance (FMR). Using the FMR approach, multi-mode spin wave resonance spectra have been observed, whose analysis provides information on magnetic anisotropy (including surface anisotropy), distribution of magnetization precession within the GaMnAs film, dynamic surface spin pinning (derived from surface anisotropy), and the value of exchange stiffness constant D. These studies illustrate a combination of magnetism and semiconductor physics that is unique to magnetic semiconductors

  10. Novel room temperature ferromagnetic semiconductors

    Gupta, Amita [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2004-06-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous

  11. Ferromagnetic Swimmers - Devices and Applications

    Hamilton, Joshua; Petrov, Peter; Winlove, C. Peter; Gilbert, Andrew; Bryan, Matthew; Ogrin, Feodor

    2017-11-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. We propose a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. Experimentally, these devices (3.6 mm) are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters and demonstrate stable propulsion over a wide range of Reynolds numbers. Manipulation of the external magnetic field resulted in robust control over the speed and direction of propulsion. We also demonstrate our ferromagnetic swimmer working as a macroscopic prototype of a microfluidic pump. By physically tethering the swimmer, instead of swimming, the swimmer generates a directional flow of liquid around itself.

  12. Band gap depiction of quaternary FeMnTiAl alloy using Hubbard (U) potential

    Bhat, Tahir Mohiuddin; Yousuf, Saleem; Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2018-05-01

    We have employed self-consistent ab-initio calculations to investigate new quaternary alloy FeMnTiAl by applying Hubbard potential (U). The alloy is found to be stable in ferromagnetic phase with cubic structure. The alloy shows half-metallic (HM) ferromagnet character. The values of minority band gap FeMnTiAl are found to be 0.33 eV respectively. Electronic charge density reveals that both types of bonds covalent as well as ionic are present in the alloy. Thus the new quaternary alloy can be proved as vital contender for spin valves and spin generator devices.

  13. Voltage control of a magnetization easy axis in piezoelectric/ferromagnetic hybrid films

    Kim, Sang-Koog; Lee, Jeong-Won; Shin, Sung-Chul; Song, Han Wook; Lee, Chang Ho; No, Kwangsoo

    2003-01-01

    We have established a spontaneous magnetization-axis switching in ferromagnetic films by applying a low voltage to a piezoelectric layer in a newly developed hybrid system comprised of the ferromagnetic and piezoelectric films. The magnetization easy axis along which a spontaneous magnetization is oriented, is readily switchable by a voltage without applying an external magnetic field through both the inverse magnetostrictive and piezoelectric effects of CoPd and lead-zirconate-titanate alloy films, respectively. This challenging work provides a new way into the memory writing as well as storage means of ultrahigh bit densities in nonvolatile magnetic random access memory

  14. Superconducting properties of Pb82Bi18 films controlled by ferromagnetic nanowire arrays

    Ye Zuxin; Lyuksyutov, Igor F; Wu Wenhao; Naugle, Donald G

    2011-01-01

    The superconducting properties of Pb 82 Bi 18 alloy films deposited on ferromagnetic nanowire arrays have been investigated. Ferromagnetic Co or Ni nanowires are first electroplated into the columnar pores of anodic aluminum oxide (AAO) membranes. Superconducting Pb 82 Bi 18 films are then quench condensed onto the polished surface of the AAO membranes filled with magnetic nanowires. A strong dependence of the Pb 82 Bi 18 superconducting properties on the ratio of the superconducting film thickness to the magnetic nanowire diameter and material variety was observed.

  15. Superconducting properties of Pb82Bi18 films controlled by ferromagnetic nanowire arrays

    Ye, Zuxin; Lyuksyutov, Igor F.; Wu, Wenhao; Naugle, Donald G.

    2011-02-01

    The superconducting properties of Pb82Bi18 alloy films deposited on ferromagnetic nanowire arrays have been investigated. Ferromagnetic Co or Ni nanowires are first electroplated into the columnar pores of anodic aluminum oxide (AAO) membranes. Superconducting Pb82Bi18 films are then quench condensed onto the polished surface of the AAO membranes filled with magnetic nanowires. A strong dependence of the Pb82Bi18 superconducting properties on the ratio of the superconducting film thickness to the magnetic nanowire diameter and material variety was observed.

  16. Superconducting Properties of Lead-Bismuth Films Controlled by Ferromagnetic Nanowire Arrays

    Ye, Zuxin; Lyuksyutov, Igor F.; Wu, Wenhao; Naugle, Donald G.

    2011-03-01

    Superconducting properties of lead-bismuth (82% Pb and 18% Bi) alloy films deposited on ferromagnetic nanowire arrays have been investigated. Ferromagnetic Co or Ni nanowires are first electroplated into the columnar pores of anodic aluminum oxide (AAO) membranes. Superconducting Pb 82 Bi 18 films are then quench-condensed onto the polished surface of the AAO membranes filled with magnetic nanowires. A strong dependence of the Pb 82 Bi 18 superconducting properties on the ratio of the superconducting film thickness to the magnetic nanowire diameter and the material variety was observed.

  17. Josephson junctions with ferromagnetic interlayer

    Wild, Georg Hermann

    2012-01-01

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO x /Pd 0.82 Ni 0.18 /Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to π-coupling is observed for a thickness d F =6 nm of the ferromagnetic Pd 0.82 Ni 0.18 interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd 0.82 Ni 0.18 has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  18. Josephson junctions with ferromagnetic interlayer

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  19. Energy gap of ferromagnet-superconductor bilayers

    Halterman, Klaus; Valls, Oriol T

    2003-10-15

    The excitation spectrum of clean ferromagnet-superconductor bilayers is calculated within the framework of the self-consistent Bogoliubov-de Gennes theory. Because of the proximity effect, the superconductor induces a gap in the ferromagnet spectrum, for thin ferromagnetic layers. The effect depends strongly on the exchange field in the ferromagnet. We find that as the thickness of the ferromagnetic layer increases, the gap disappears, and that its destruction arises from those quasiparticle excitations with wave vectors mainly along the interface. We discuss the influence that the interface quality and Fermi energy mismatch between the ferromagnet and superconductor have on the calculated energy gap. We also evaluate the density of states in the ferromagnet, and we find it in all cases consistent with the gap results.

  20. Dirac Magnons in Honeycomb Ferromagnets

    Sergey S. Pershoguba

    2018-01-01

    Full Text Available The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009RMPHAT0034-686110.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014ADPHAH0001-873210.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX_{3} (X=F, Cl, Br and I, that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956PHRVAO0031-899X10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956PHRVAO0031-899X10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr_{3} [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in

  1. Dirac Magnons in Honeycomb Ferromagnets

    Pershoguba, Sergey S.; Banerjee, Saikat; Lashley, J. C.; Park, Jihwey; Ågren, Hans; Aeppli, Gabriel; Balatsky, Alexander V.

    2018-01-01

    The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009), 10.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014), 10.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX3 (X =F , Cl, Br and I), that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956), 10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956), 10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr3 [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering: Spin-Wave Correlation

  2. Exchange bias in nearly perpendicularly coupled ferromagnetic/ferromagnetic system

    Bu, K.M.; Kwon, H.Y.; Oh, S.W.; Won, C.

    2012-01-01

    Exchange bias phenomena appear not only in ferromagnetic/antiferromagnetic systems but also in ferromagnetic/ferromagnetic systems in which two layers are nearly perpendicularly coupled. We investigated the origin of the symmetry-breaking mechanism and the relationship between the exchange bias and the system's energy parameters. We compared the results of computational Monte Carlo simulations with those of theoretical model calculation. We found that the exchange bias exhibited nonlinear behaviors, including sign reversal and singularities. These complicated behaviors were caused by two distinct magnetization processes depending on the interlayer coupling strength. The exchange bias reached a maximum at the transition between the two magnetization processes. - Highlights: ► Exchange bias phenomena are found in perpendicularly coupled F/F systems. ► Exchange bias exhibits nonlinear behaviors, including sign reversal and singularities. ► These complicated behaviors were caused by two distinct magnetization processes. ► Exchange bias reached a maximum at the transition between the two magnetization processes. ► We established an equation to maximize the exchange bias in perpendicularly coupled F/F system.

  3. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers.

    Stamopoulos, D; Aristomenopoulou, E

    2015-08-26

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent 'on' and 'off', thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.

  4. Magnetic excitations in amorphous ferromagnets

    Continentino, M.A.

    The propagation of magnetic excitations in amorphous ferromagnets is studied from the point of view of the theory of random frequency modulation. It is shown that the spin waves in the hydrodynamic limit are well described by perturbation theory while the roton-like magnetic excitations with wavevector about the peak in the structure factor are not. A criterion of validity of perturbation theory is found which is identical to a narrowing condition in magnetic resonance. (author) [pt

  5. Efficiency of homopolar generators without ferromagnetic circuit

    Kharitonov, V.V.

    1982-01-01

    E.m.f. and weights of homopolar generators (HG) without a ferromagnetic circuit and of similar generator with a ferromagnetic circuit are compared at equal armature diameters and armature rotative speed. HG without ferromagnetic cuircuit of disk and cylinder types with hot and superconducting excitation winding are considered. Areas of the most reasonable removal of a ferromagnetic circuit in the HG layout are found. The plots of relationships between the e.m.f. and HG weight that permit to estimate the efficiency of ''nonferrite'' HG constructions are presented

  6. Temperature dependence of magnetically dead layers in ferromagnetic thin-films

    M. Tokaç

    2017-11-01

    Full Text Available Polarized neutron reflectometry has been used to study interface magnetism and magnetic dead layers in model amorphous CoFeB:Ta alloy thin-film multilayers with Curie temperatures tuned to be below room-temperature. This allows temperature dependent variations in the effective magnetic thickness of the film to be determined at temperatures that are a significant fraction of the Curie temperature, which cannot be achieved in the material systems used for spintronic devices. In addition to variation in the effective magnetic thickness due to compositional grading at the interface with the tantalum capping layer, the key finding is that at the interface between ferromagnetic film and GaAs(001 substrate local interfacial alloying creates an additional magnetic dead-layer. The thickness of this magnetic dead-layer is temperature dependent, which may have significant implications for elevated-temperature operation of hybrid ferromagnetic metal-semiconductor spintronic devices.

  7. A cluster-bethe-lattice approach to spin-waves in dilute ferromagnets

    Salzberg, J.B.; Silva, C.E.T.G. da; Falicov, L.M.

    1975-01-01

    The spin-wave spectra of a dilute ferromagnet within the cluster-bethe-lattice approximation is studied. Short range order effects for the alloy are included. A study of finite size clusters connected at their edges to Bethe lattices of the same coordination number allows one to determine:(i) the stability condition for the magnetic system; (ii) the continuum spin-wave local density of states and (iii) the existence of localized states below and above the continuum states

  8. The ferromagnetic shape-memory effect in Ni-Mn-Ga

    Marioni, M.A.; O'Handley, R.C.; Allen, S.M.; Hall, S.R.; Paul, D.I.; Richard, M.L.; Feuchtwanger, J.; Peterson, B.W.; Chambers, J.M.; Techapiesancharoenkij, R.

    2005-01-01

    Active materials have long been used in the construction of sensors and devices. Examples are piezo-electric ceramics and shape memory alloys. The more recently developed ferromagnetic shape-memory alloys (FSMAs) have received considerable attention due to their large magnetic field-induced, reversible strains (up to 10%). In this article, we review the basic physical characteristics of the FSMA Ni-Mn-Ga (crystallography, thermal, mechanical and magnetic behavior). Also, we present some of the works currently under way in the areas of pulse-field and acoustic-assisted actuation, and vibration energy absorption

  9. Radioactive Probes on Ferromagnetic Surfaces

    2002-01-01

    On the (broad) basis of our studies of nonmagnetic radioactive probe atoms on magnetic surfaces and at interfaces, we propose to investigate the magnetic interaction of magnetic probe atoms with their immediate environment, in particular of rare earth (RE) elements positioned on and in ferromagnetic surfaces. The preparation and analysis of the structural properties of such samples will be performed in the UHV chamber HYDRA at the HMI/Berlin. For the investigations of the magnetic properties of RE atoms on surfaces Perturbed Angular Correlation (PAC) measurements and Mössbauer Spectroscopy (MS) in the UHV chamber ASPIC (Apparatus for Surface Physics and Interfaces at CERN) are proposed.

  10. Spin waves in ferromagnetic Tb/sub 0.76/Y/sub 0.24/

    Wakabayashi, N.; Nicklow, R.M.; Child, H.R.

    1978-01-01

    The conduction electron susceptibility chi (q) is considered to play an important role in the magnetism of rare-earth metals and alloys. In order to obtain information about chi (q), studies of the spin waves in the alloy Tb/sub 0.76/Y/sub 0.24/ have been carried out in a magnetic field. The magnetic structure of this alloy was found to remain spiral down to liquid helium temperature with zero field. The spin-wave dispersion curve in this structure has already been studied along the c*-direction, and the results were analyzed successfully in terms of a susceptibility function corresponding to a one-dimensional system with a slight modification. In order to obtain somewhat independent information about chi (q), the spin-wave dispersion curve for the ferromagnetic phase has been studied. A field of 14 kG was necessary to transform the structure into a ferromagnet at liquid helium temperature. Spin-wave energies which are calculated in terms of the susceptibility function determined from the measurements in the spiral structure agree rather well with the observed energies. A large damping and softening of the spin wave has been observed near the wave vector q=0.16 which characterized the spiral configuration. The origin of the phenomenon may be related to the instability of the ferromagnetic structure

  11. Onset of itinerant ferromagnetism associated with semiconductor ...

    In this paper, the magnetic and transport properties of the TiNb1−CoSn solid solution compounds with half Heusler cubic MgAgAs-type structure have been studied. This work shows the onset of ferromagnetism associated with a semiconductor to metal transition. The transition occurs directly from ferromagnetic metal to ...

  12. Voltage control of ferromagnetic resonance

    Ziyao Zhou

    2016-06-01

    Full Text Available Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME coupling mechanism: strain/stress, interfacial charge, spin–electromagnetic (EM coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin–EM coupling and exchange coupling.

  13. Local environment effects in disordered alloys

    Cable, J.W.

    1978-01-01

    The magnetic moment of an atom in a ferromagnetic disordered alloy depends on the local environment of that atom. This is particularly true for Ni and Pd based alloys for which neutron diffuse scattering measurements of the range and magnitude of the moment disturbances indicate that both magnetic and chemical environment are important in determining the moment distribution. In this paper we review recent neutron studies of local environment effects in Ni based alloys. These are discussed in terms of a phenomenological model that allows a separation of the total moment disturbance at a Ni site into its chemical and magnetic components

  14. Experimental study of mixed ferromagnetic spin glass systems

    Mirebeau, I.

    1987-01-01

    The mixed ferromagnetic spin glass systems are characterized by a distribution of positive and negative exchange interactions whose maximum occurs at a positive value. We have undertaken an experimental study of amorphous (Fe 1-x Mn x ) .75 PBA1, polycrystalline and monocrystalline Ni 1-x Mn x and Au 1-x Fe x alloys. By Moessbauer effect, magnetization and neutron scattering, we show that below a ''canting'' temperature T K , spin components transverse to the mean magnetization become frozen. Small angle neutron scattering studies with an applied field show a magnetic ''structure'' i.e. the intensity exhibits a maximum at a finite q value for temperatures below T K . This structure has been studied as a function of temperature, applied field and concentration using both small angle neutron scattering and 3 axis spectrometry where we separate the elastic from the inelastic components. Possible interpretations of this new structure will be given [fr

  15. Ferromagnetic material inspection for feedwater heater and condenser tubes

    Anon.

    1987-01-01

    In recent years, special ferritic stainless steels, such as AL29-4C/sup TM/, Sea-Cure/sup TM/, E-Brite/sup TM/, 439, and similar alloys have been introduced as tube material in condensers, feedwater heaters, moisture separator/reheaters, and other heat exchangers. In addition, carbon steel tubes are widely used in feedwater heaters and heat exchangers in chemical plants. The main problem with the in-service inspection of these ferritic alloys and carbon steel tubes lies in their highly ferromagnetic properties. These properties severely limit the application of the standard eddy current techniques. The effort was undertaken under EPRI sponsorship to develop a reliable technique for in-service inspection of ferromagnetic tubes. The new method combines the measurement of magnetic flux leakage generated around the defects with measurement of total flux in the tube wall. The heart of the inspection system is a special ID probe that magnetizes the tube and generates signals for any tube defect. A permanent record of inspection is provided with a strip-chart or magnetic tape recorder. The laboratory and field evaluation of this new system demonstrated its very good sensitivity to small defects, its reliability, and its ruggedness. Defects as small as 10% external wall loss in heavy wall carbon steel tube were detected. Tubes in the power plant were inspected at a rate of 300-500 tubes per eight-hour shift. The other advantages of this newly developed technique are its simplicity, low cost of instrumentation, easy data interpretation, and full portability

  16. Inhomogeneous superconductivity in a ferromagnet

    Kontos, T.; Aprili, M.; Lesueur, J.; Genet, F.; Boursier, R.; Grison, X.

    2003-01-01

    We have studied a new superconducting state where the condensate wave function resulting from conventional pairing, is modified by an exchange field. Superconductivity is induced into a ferromagnetic thin film (F) by the proximity effect with a superconducting reservoir (S). We observed oscillations of the superconducting order parameter induced in F as a function of the distance from the S/F interface. They originate from the finite momentum transfer provided to Cooper pairs by the splitting of the spin up and down bands. We measured the superconducting density of states in F by tunneling spectroscopy and the Josephson critical current when F is coupled with a superconducting counter-electrode. Negative values of the superconducting order parameter are revealed by capsized tunneling spectra in F and a negative Josephson coupling (π-junction)

  17. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Yushen [Jiangsu Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500 (China); Deng, Xiaohui [Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008 (China); Zhang, G. P. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States)

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  18. Dipolar ferromagnets and glasses (invited)

    Rosenbaum, T.F.; Wu, W.; Ellman, B.; Yang, J.; Aeppli, G.; Reich, D.H.

    1991-01-01

    What is the ground state and what are the dynamics of 10 23 randomly distributed Ising spins? We have attempted to answer these questions through magnetic susceptibility, calorimetric, and neutron scattering studies of the randomly diluted dipolar-coupled Ising magnet LiHo x Y 1-x F 4 . The material is ferromagnetic for dipole concentrations at least as low as x=0.46, with a Curie temperature obeying mean-field scaling relative to that of pure LiHoF 4 . In the dilute spin limit, an x=0.045 crystal shows very unusual glassy properties characterized by decreasing barriers to relaxation as T→0. Its properties are consistent with a single low degeneracy ground state with a large gap for excitations. A slightly more concentrated x=0.167 sample, however, supports a complex ground state with no appreciable gap, in accordance with prevailing theories of spin glasses. The underlying causes of such disparate behavior are discussed in terms of random clusters as probed by neutron studies of the x=0.167 sample. In addition to tracing the evolution of the glassy and ferromagnetic states with dipole concentration, we investigate the effects of a transverse magnetic field on the Ising spin glass, LiHo 0.167 Y 0.833 F 4 . The transverse field mixes the eigenfunctions of the ground-state Ising doublet with the otherwise inaccessible excited-state levels. We observe a rapid decrease in the characteristic relaxation times, large changes in the spectral form of the relaxation, and a depression of the spin-glass transition temperature with the addition of quantum fluctuations

  19. Studies of alloy structures and properties. Annual summary report, December 1, 1976--December 1, 1977

    Duwez, P.

    1977-01-01

    Brief summaries of research activities in the following areas are given: superconductivity to ferromagnetism in amorphous Gd--La--Au alloys; magnetic regimes in amorphous Ni--Fe--P--B alloys; electronic and magnetic properties of amorphous Fe--P--B alloys; critical phenomena and magnetic properties of amorphous gadolinium based ferromagnets; Kondo effect, spin correlations, and superconductivity in amorphous alloys doped with magnetic impurities; flux pinning by crystalline phase precipitates embedded in an amorphous superconducting matrix; kinetics of crystallization of amorphous alloys; properties of the flux lattice in amorphous superconductors; low temperature calorimeter; low temperature heat capacity of metastable superconductors; thermal relaxation effects and crystallization of amorphous alloys; fundamental studies of amorphous superconductors using superconductive tunneling; low temperature calorimetry of bulk amorphous metals; and mictomagnetism in amorphous alloys

  20. Heat dissipation due to ferromagnetic resonance in a ferromagnetic metal monitored by electrical resistance measurement

    Yamanoi, Kazuto; Yokotani, Yuki; Kimura, Takashi

    2015-01-01

    The heat dissipation due to the resonant precessional motion of the magnetization in a ferromagnetic metal has been investigated. We demonstrated that the temperature during the ferromagnetic resonance can be simply detected by the electrical resistance measurement of the Cu strip line in contact with the ferromagnetic metal. The temperature change of the Cu strip due to the ferromagnetic resonance was found to exceed 10 K, which significantly affects the spin-current transport. The influence of the thermal conductivity of the substrate on the heating was also investigated

  1. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb

    Tu, Nguyen Thanh; Hai, Pham Nam; Anh, Le Duc; Tanaka, Masaaki

    2016-01-01

    We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga_1_−_x,Fe_x)Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.

  2. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb

    Tu, Nguyen Thanh [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physics, Ho Chi Minh City University of Pedagogy, 280, An Duong Vuong Street, District 5, Ho Chi Minh City 748242 (Viet Nam); Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-0033 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Anh, Le Duc [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-05-09

    We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.

  3. Coexistence of Superconductivity and Ferromagnetism in ...

    KBHEEMA

    Ferromagnetic alignment can be expected to be strongly opposed by superconductivity. .... To obtain temperature dependent of energy gap of equation (23), we used the same techniques to solve the integral .... band metal ZrZn2. Nature, 412: ...

  4. Ferromagnetic and twin domains in LCMO manganites

    Jung, G.; Markovich, V.; Mogilyanski, D.; Beek, C. van der; Mukovskii, Y.M.

    2005-01-01

    Ferromagnetic and twin domains in lightly Ca-doped La 1-x Ca x MnO 3 single crystals have been visualized and investigated by means of the magneto-optical technique. Both types of domains became visible below the Curie temperature. The dominant structures seen in applied magnetic field are associated with magneto-crystalline anisotropy and twin domains. In a marked difference to the twin domains which appear only in applied magnetic field, ferromagnetic domains show up in zero applied field and are characterized by oppositely oriented spontaneous magnetization in adjacent domains. Ferromagnetic domains take form of almost periodic, corrugated strip-like structures. The corrugation of the ferromagnetic domain pattern is enforced by the underlying twin domains

  5. Josephson tunnel junctions with ferromagnetic interlayer

    Weides, M.P.

    2006-01-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al 2 O 3 tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or π coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, π) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-π Josephson junction. At a certain temperature this 0-π junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum Φ 0 . Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T → 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  6. Josephson tunnel junctions with ferromagnetic interlayer

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  7. Topological magnon bands in ferromagnetic star lattice

    Owerre, S A

    2017-01-01

    The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1–3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii–Moriya (DM) spin–orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases. (paper)

  8. Topological magnon bands in ferromagnetic star lattice.

    Owerre, S A

    2017-05-10

    The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1-3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii-Moriya (DM) spin-orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases.

  9. Effect of Thermomagnetic Treatment on Structure and Properties of Cu-Al-Mn Alloy.

    Titenko, A N; Demchenko, L D; Perekos, A O; Gerasimov, O Yu

    2017-12-01

    The paper studies the influence of magnetic field on magnetic and mechanical properties of Cu-Mn-Al alloy under annealing. The comparative analysis of the magnetic field orientation impact on solid solution decomposition processes in a fixed annealing procedure is held using the methods of low-field magnetic susceptibility, specific magnetization, and microhardness test. The paper highlights changes in the magnetic and mechanical properties of Cu-Al-Mn alloy as the result of change in a critical size of forming precipitated ferromagnetic phase and determines correlation in the behavior of magnetic and mechanical properties of the alloy, depending on a critical nucleus size of forming precipitated ferromagnetic phase.

  10. Inductive measurements of ferromagnetic resonance

    Woodward, R.C.; Kennewell, K.; Crew, D.C.; Stamps, R.L.

    2004-01-01

    Full text: The rapid advance in magnetic data storage has driven groundbreaking work in the science that underpins the properties of ferromagnetic materials at high frequencies. Recent work in this area has included the use of precession in order to produce ultra-high speed switching of magnetic elements, the generation of excited dynamical structures by application of inhomogeneous field pulses, and examination of the propagation of localized spin waves. This paper describes explorations of ultra-fast magnetization dynamics being undertaken at The University of Western Australia. We have studied the differences in magnetization dynamics in simple permalloy films when a sample is excited with sharp pulse compared to the to the dynamics generated by the application of a small amplitude continuous wave signal. We have observed a difference in the resonant frequency determined from these two excitations and will propose reasons for the different resonance responses of the system. Using the ultra-fast techniques described above we have measured dynamical properties that are significantly different to the static properties. These results are explained by the dynamical measurements being made on time scales smaller than the characteristic relaxation time. Future applications of these devices will be to examine broadening of line widths and frequency shifts associated with the excitation of magnetostatic modes, factors limiting quasiballistic reversal and differences between the dynamic and static properties of magnetic materials

  11. Alloy materials

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  12. Electromagnetic Characterization Of Metallic Sensory Alloy

    Wincheski, Russell A.; Simpson, John; Wallace, Terryl A.; Newman, John A.; Leser, Paul; Lahue, Rob

    2012-01-01

    Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.

  13. Spectrum of ferromagnetic transition metal magnetic excitations and neutron scattering

    Kuzemskij, A.L.

    1979-01-01

    Quantum statistical models of ferromagnetic transition metals as well as methods of their solutions are reviewed. The correspondence of results on solving these models and the data on scattering thermal neutrons in ferromagnetic is discussed

  14. Ferromagnetic Josephson Junctions for Cryogenic Memory

    Niedzielski, Bethany M.; Gingrich, Eric C.; Khasawneh, Mazin A.; Loloee, Reza; Pratt, William P., Jr.; Birge, Norman O.

    2015-03-01

    Josephson junctions containing ferromagnetic materials are of interest for both scientific and technological purposes. In principle, either the amplitude of the critical current or superconducting phase shift across the junction can be controlled by the relative magnetization directions of the ferromagnetic layers in the junction. Our approach concentrates on phase control utilizing two junctions in a SQUID geometry. We will report on efforts to control the phase of junctions carrying either spin-singlet or spin-triplet supercurrent for cryogenic memory applications. Supported by Northorp Grumman Corporation and by IARPA under SPAWAR Contract N66001-12-C-2017.

  15. Giant magnetotransmission and magnetoreflection in ferromagnetic materials

    Telegin, A.V.; Sukhorukov, Yu.P.; Loshkareva, N.N.; Mostovshchikova, E.V.; Bebenin, N.G.; Gan'shina, E.A.; Granovsky, A.B.

    2015-01-01

    We present a brief review on magnetotransmission (magnetoabsorption) and magnetoreflection of natural (unpolarized) light in ferromagnetic chromium chalcogenide spinel, manganites with perovskite structure and thin-film metallic nanostructures in the middle infrared spectral range. The magnetooptical effects under discussion are of high interest for numerous and promising applications in the infrared optoelectronics. - Highlights: • Magnetotransmission and magnetoreflection of light in ferromagnetic are presented. • The effects are greater than common magnetooptical phenomena in the infrared. • The effects may have a different origin depending on a material or spectral range. • Possible applications of the magnetotransmission and magnetoreflection are discussed

  16. Giant magnetotransmission and magnetoreflection in ferromagnetic materials

    Telegin, A.V., E-mail: telegin@imp.uran.ru [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620137 Yekaterinburg (Russian Federation); Sukhorukov, Yu.P.; Loshkareva, N.N.; Mostovshchikova, E.V.; Bebenin, N.G. [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620137 Yekaterinburg (Russian Federation); Gan' shina, E.A.; Granovsky, A.B. [Moscow State University, 119991 Moscow (Russian Federation)

    2015-06-01

    We present a brief review on magnetotransmission (magnetoabsorption) and magnetoreflection of natural (unpolarized) light in ferromagnetic chromium chalcogenide spinel, manganites with perovskite structure and thin-film metallic nanostructures in the middle infrared spectral range. The magnetooptical effects under discussion are of high interest for numerous and promising applications in the infrared optoelectronics. - Highlights: • Magnetotransmission and magnetoreflection of light in ferromagnetic are presented. • The effects are greater than common magnetooptical phenomena in the infrared. • The effects may have a different origin depending on a material or spectral range. • Possible applications of the magnetotransmission and magnetoreflection are discussed.

  17. Nonlinear nuclear magnetic resonance in ferromagnets

    Nurgaliev, T.

    1988-01-01

    The properties of nonlinear nuclear magnetic resonance (NMR) have been studied theoretically by taking into account the interaction between NMR and FMR in the ferromagnets. The Landau-Lifshitz-Bloch equations, describing the electron and nuclear magnetization behaviour in ferromagnets are presented in an integral form for a weakly excited electronic system. The stationary solution of these equations has been analysed in the case of equal NMR and FMR frequencies: the criteria for the appearance of two stable dynamic states is found and the high-frequency magnetic susceptibility for these systems is investigated. 2 figs., 8 refs

  18. Magnetic pinning in superconductor-ferromagnet multilayers

    Bulaevskii, L. N.; Chudnovsky, E. M.; Maley, M. P.

    2000-01-01

    We argue that superconductor/ferromagnet multilayers of nanoscale period should exhibit strong pinning of vortices by the magnetic domain structure in magnetic fields below the coercive field when ferromagnetic layers exhibit strong perpendicular magnetic anisotropy. The estimated maximum magnetic pinning energy for single vortex in such a system is about 100 times larger than the pinning energy by columnar defects. This pinning energy may provide critical currents as high as 10 6 -10 7 A/cm 2 at high temperatures (but not very close to T c ) at least in magnetic fields below 0.1 T. (c) 2000 American Institute of Physics

  19. Magnetic pinning in superconductor-ferromagnet multilayers

    Bulaevskii, L. N. [Department of Physics and Astronomy, CUNY Lehman College 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Chudnovsky, E. M. [Department of Physics and Astronomy, CUNY Lehman College, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Maley, M. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2000-05-01

    We argue that superconductor/ferromagnet multilayers of nanoscale period should exhibit strong pinning of vortices by the magnetic domain structure in magnetic fields below the coercive field when ferromagnetic layers exhibit strong perpendicular magnetic anisotropy. The estimated maximum magnetic pinning energy for single vortex in such a system is about 100 times larger than the pinning energy by columnar defects. This pinning energy may provide critical currents as high as 10{sup 6}-10{sup 7} A/cm{sup 2} at high temperatures (but not very close to T{sub c}) at least in magnetic fields below 0.1 T. (c) 2000 American Institute of Physics.

  20. Itinerant Ferromagnetism in Ultracold Fermi Gases

    Heiselberg, Henning

    2012-01-01

    Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC. Thermodyna......Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC...

  1. Proximity effects in ferromagnet/superconductor structures

    Yu, H.L.; Sun, G.Y.; Yang, L.Y.; Xing, D.Y.

    2004-01-01

    The Nambu spinor Green's function approach is applied to study proximity effects in ferromagnet/superconductor (FM/SC) structures. They include the induced superconducting order parameter and density of states (DOS) with superconducting feature on the FM side, and spin-dependent DOS within the energy gap on the SC side. The latter indicates an appearance of gapless superconductivity and a coexistence of ferromagnetism and superconductivity in a small regime near the interface. The influence of exchange energy in FM and barrier strength at interface on the proximity effects is discussed

  2. Magnon-photon interaction in ferromagnets

    Shrivastava, K.N.

    1980-01-01

    A magnon-photon interaction for the magnetic vector of the electromagnetic wave perpendicular to the direction of magnetization in a ferromagnet is constructed with the use of Bogoliubov transformation. The resulting magnon-photon interaction is found to contain several interesting new radiation effects. The self-energy of the magnon is calculated and life times arising from the radiation scattering are predicted. The magnon frequency shift due to the radiation field is found. One of the terms arising from the one-magnon one-photon scattering gives a line width that is in reasonable agreement with the experimentally measured value of ferromagnetic resonance line width in yttrium iron garnet. (orig.)

  3. Wellhead with non-ferromagnetic materials

    Hinson, Richard A [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2009-05-19

    Wellheads for coupling to a heater located in a wellbore in a subsurface formation are described herein. At least one wellhead may include a heater located in a wellbore in a subsurface formation; and a wellhead coupled to the heater. The wellhead may be configured to electrically couple the heater to one or more surface electrical components. The wellhead may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the wellhead. Systems and methods for using such wellheads for treating a subsurface formation are described herein.

  4. Vortex dynamics in ferromagnetic/superconducting bilayers

    Cieplak, M.Z.; Adamus, Z. [Polish Acad Sci, Inst Phys, PL-02668 Warsaw, (Poland); Konczykowski, M. [CEA, DSM, DRECAM, Lab Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642, F-91128 Palaiseau (France); Zhu, L.Y.; Chien, C.L. [Johns Hopkins Univ, Dept Phys and Astron, Baltimore, MD 21218 (United States)

    2008-07-01

    The dependence of vortex dynamics on the geometry of magnetic domain pattern is studied in the superconducting/ferromagnetic bilayers, in which niobium is a superconductor, and Co/Pt multilayer with perpendicular magnetic anisotropy serves as a ferromagnetic layer. Magnetic domain patterns with different density of domains per surface area and different domain size, w, are obtained for Co/Pt with different thickness of Pt. The dense patterns of domains with the size comparable to the magnetic penetration depth (w {>=} {lambda}) produce large vortex pinning and smooth vortex penetration, while less dense patterns with larger domains (w {>=}{>=} {lambda}) enhance pinning less effectively and result in flux jumps during flux motion. (authors)

  5. Temperature limited heater utilizing non-ferromagnetic conductor

    Vinegar,; Harold J. , Harris; Kelvin, Christopher [Houston, TX

    2012-07-17

    A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

  6. Ferromagnets as pure spin current generators and detectors

    Qu, Danru; Miao, Bingfeng; Chien, Chia -Ling; Huang, Ssu -Yen

    2015-09-08

    Provided is a spintronics device. The spintronics can include a ferromagnetic metal layer, a positive electrode disposed on a first surface portion of the ferromagnetic metal layer, and a negative electrode disposed on a second surface portion of the ferromagnetic metal.

  7. Towards ferromagnet/superconductor junctions on graphene

    Pakkayil, Shijin Babu

    2015-01-01

    Ever since A. Aspect et al. performed the famous 1982 experiment to prove the violation of Bell's inequality, there have been suggestions to conduct the same experiment in a solid state system. Some of those proposals involve superconductors as the source of entangled electron pair and spin depended interfaces as the optical analogue of polariser/filter. Semiconductors can serve as the best medium for such an experiment due to their long relaxation lengths. So far there are no reports on a ferromagnet/superconductor junctions on a semiconductor even though such junctions has been successfully realised in metallic systems. This thesis reports the successful fabrication of ferromagnet/superconductor junction along with characterising measurements in a perfectly two dimensional zero-gap semiconductor known as graphene. Since it's discovery in 2004, graphene has attracted prodigious interest from both academia and industry due to it's inimitable physical properties: very high mobility, high thermal and electrical conductivity, a high Young's modulus and impermeability. Graphene is also expected to have very long spin relaxation length and high spin life time because of it's low spin orbit coupling. For this reason and since researchers are always looking for novel materials and devices to comply with the high demands for better and faster data storage devices, graphene has emanated as a brand new material system for spin based devices. The very first spin injection and detection in graphene was realised in 2007 and ever since, the focal point of the research has been to improve the spin transport properties. A part of this thesis discusses a new fabrication recipe which has a high yield for successfully contacting graphene with a ferromagnet. A high starting yield for ferromagnetic contacts is a irremissible condition for combining superconducting contacts to the device to fabricate ferromagnet/superconductor junctions. Any fabrication recipe

  8. Towards ferromagnet/superconductor junctions on graphene

    Pakkayil, Shijin Babu

    2015-07-01

    Ever since A. Aspect et al. performed the famous 1982 experiment to prove the violation of Bell's inequality, there have been suggestions to conduct the same experiment in a solid state system. Some of those proposals involve superconductors as the source of entangled electron pair and spin depended interfaces as the optical analogue of polariser/filter. Semiconductors can serve as the best medium for such an experiment due to their long relaxation lengths. So far there are no reports on a ferromagnet/superconductor junctions on a semiconductor even though such junctions has been successfully realised in metallic systems. This thesis reports the successful fabrication of ferromagnet/superconductor junction along with characterising measurements in a perfectly two dimensional zero-gap semiconductor known as graphene. Since it's discovery in 2004, graphene has attracted prodigious interest from both academia and industry due to it's inimitable physical properties: very high mobility, high thermal and electrical conductivity, a high Young's modulus and impermeability. Graphene is also expected to have very long spin relaxation length and high spin life time because of it's low spin orbit coupling. For this reason and since researchers are always looking for novel materials and devices to comply with the high demands for better and faster data storage devices, graphene has emanated as a brand new material system for spin based devices. The very first spin injection and detection in graphene was realised in 2007 and ever since, the focal point of the research has been to improve the spin transport properties. A part of this thesis discusses a new fabrication recipe which has a high yield for successfully contacting graphene with a ferromagnet. A high starting yield for ferromagnetic contacts is a irremissible condition for combining superconducting contacts to the device to fabricate ferromagnet/superconductor junctions. Any fabrication recipe

  9. Tunneling Conductance in Ferromagnetic Metal/Normal Metal/Spin-Singlet -Wave Ferromagnetic Superconductor Junctions

    Hamidreza Emamipour

    2013-01-01

    Full Text Available In the framework of scattering theory, we study the tunneling conductance in a system including two junctions, ferromagnetic metal/normal metal/ferromagnetic superconductor, where ferromagnetic superconductor is in spin-singlet -wave pairing state. The non-magnetic normal metal is placed in the intermediate layer with the thickness ( which varies from 1 nm to 10000 nm. The interesting result which we have found is the existence of oscillations in conductance curves. The period of oscillations is independent of FS and FN exchange field while it depends on . The obtained results can serve as a useful tool to determine the kind of pairing symmetry in ferromagnetic superconductors.

  10. Ferromagnetism in poly(N-perfluorophenylpyrrole)

    Čík, G., E-mail: gabriel.cik@stuba.sk [Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Šeršeň, F. [Institute of Chemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava (Slovakia); Dlháň, L. [Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Zálupský, P. [Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Rapta, P. [Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Hrnčariková, K. [Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Plecenik, T. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava (Slovakia)

    2015-10-01

    Magnetic properties of the synthesized poly(N-perfluorophenylpyrrole) were studied. The synthesized polymer dissolves in common organic solvents. By the zero-field cooling-field cooling method (ZFC–FC) we found that at low temperatures (T{sub b}<50 K) the synthetic polymer reaches a state with prevailing ferromagnetism. The synthesized polymer retained ferromagnetism even at 300 K. The anomalous magnetic behavior was explained in terms of spin–spin interaction of triplet polarons. As can be seen from the calculated spin density of SOMO and SOMO 1 such a state arise as a consequence of 1-D spin interactions of polarons. Based on the calculated and visualized spin density (SOMO) on the polymer chain such interactions can be explained by the theory of flat-band-ferromagnetism. - Highlights: • We synthesized a new conducting polymer poly(N-perfluorophenylpyrrole). • By the ZFC–FC and EPR methods we measured magnetic properties of the prepared polymer. • We discussed stability and interactions of the polarons in triplet states. • At low temperatures the synthesized polymer reached ferromagnetism.

  11. On piezomagnetism at viscoplasticity of ferromagnetics

    Micunovic, M.

    2001-01-01

    The paper deals with viscoplasticity of ferromagnetic materials. Tensor representation is applied to a set of evolution equations comprising the plastic stretching and residual magnetization tensors. Small magnetoelastic strains of isotropic insulators are considered in detail in two special cases of finite as well as small plastic strain. A special emphasis is given to piezomagnetism effects in the case of uniaxial cycling strain (author)

  12. Magnetic profiles in ferromagnetic/superconducting superlattices.

    te Velthuis, S. G. E.; Hoffmann, A.; Santamaria, J.; Materials Science Division; Univ. Complutense de Madrid

    2007-02-28

    The interplay between ferromagnetism and superconductivity has been of longstanding fundamental research interest to scientists, as the competition between these generally mutually exclusive types of long-range order gives rise to a rich variety of physical phenomena. A method of studying these exciting effects is by investigating artificially layered systems, i.e. alternating deposition of superconducting and ferromagnetic thin films on a substrate, which enables a straight-forward combination of the two types of long-range order and allows the study of how they compete at the interface over nanometer length scales. While originally studies focused on low temperature superconductors interchanged with metallic ferromagnets, in recent years the scope has broadened to include superlattices of high T{sub c} superconductors and colossal magnetoresistance oxides. Creating films where both the superconducting as well as the ferromagnetic layers are complex oxide materials with similar crystal structures (Figure 1), allows the creation of epitaxial superlattices, with potentially atomically flat and ordered interfaces.

  13. Angular and linear momentum of excited ferromagnets

    Yan, P.; Kamra, A.; Cao, Y.; Bauer, G.E.W.

    2013-01-01

    The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist

  14. Ferromagnetic hysteresis and the effective field

    Naus, H.W.L.

    2002-01-01

    The Jiles-Atherton model of the behavior of ferromagnetic materials determines the irreversible magnetization from the effective field by using a differential equation. This paper presents an exact, analytical solution to the equation, one displaying hysteresis. The inclusion of magnetomechanical

  15. Ferromagnetism in diluted magnetic semiconductor heterojunction systems

    Lee, B.; Jungwirth, Tomáš; MacDonald, A. H.

    2002-01-01

    Roč. 17, - (2002), s. 393-403 ISSN 0268-1242 R&D Projects: GA ČR GA202/98/0085; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * heterostructures Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.241, year: 2002

  16. Pseudospin anisotropy classification of quantum Hall ferromagnets

    Jungwirth, Tomáš; MacDonald, A. H.

    2000-01-01

    Roč. 63, č. 3 (2000), s. 035305-1 - 035305-9 ISSN 0163-1829 R&D Projects: GA ČR GA202/98/0085 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum Hall ferromagnets * anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.065, year: 2000

  17. Skyrmion physics in Bose-Einstein ferromagnets

    Al Khawaja, U.; Stoof, H.T.C.

    2001-01-01

    We show that a ferromagnetic Bose-Einstein condensate has not only line-like vortex excitations, but in general, also allows for pointlike topological excitations, i.e., skyrmions. We discuss the thermodynamic stability and the dynamic properties of these skyrmions for both spin-1/2 and

  18. Nonmonotonic critical temperature in superconductor ferromagnet bilayers

    Fominov, Ya. V.; Fominov, I.V.; Chtchelkatchev, N.M.; Golubov, Alexandre Avraamovitch

    2002-01-01

    The critical temperature Tc of a superconductor/ferromagnet (SF) bilayer can exhibit nonmonotonic dependence on the thickness df of the F layer. SF systems have been studied for a long time; according to the experimental situation, a ¿dirty¿ limit is often considered which implies that the mean free

  19. Magnetization dissipation in ferromagnets from scattering theory

    Brataas, A.; Tserkovnyak, Y.; Bauer, G.E.W.

    2011-01-01

    The magnetization dynamics of ferromagnets is often formulated in terms of the Landau-Lifshitz-Gilbert (LLG) equation. The reactive part of this equation describes the response of the magnetization in terms of effective fields, whereas the dissipative part is parametrized by the Gilbert damping

  20. Room-temperature ferromagnetic and photoluminescence ...

    the ferromagnetic nature of ITO and the strength of magnetization is superior to those of In2O3 and SnO2. However, ... ties in the spintronic devices, the materials suitable for such devices ... into suitable quartz test tubes (10mm) whose interior was enclosed in .... related to metal indium In0 with binding energy 443.6 eV was.

  1. Neutron Depolarization in Submicron Ferromagnetic Materials

    Rekveldt, M.Th.

    1989-01-01

    The neutron depolarization technique is based on the loss of polarization of a polarized neutron beam after transmission through ferromagnetic substances. This loss, caused by Larmor precession in individual domains, determines the mean domain size, the mean square direction cosines of the domains

  2. Lattice effects on ferromagnetism in perovskite ruthenates

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, John B.

    2013-01-01

    Ferromagnetism and its evolution in the orthorhombic perovskite system Sr1–xCaxRuO3 have been widely believed to correlate with structural distortion. The recent development of high-pressure synthesis of the Ba-substituted Sr1–yBayRuO3 makes it possible to study ferromagnetism over a broader phase diagram, which includes the orthorhombic Imma and the cubic phases. However, the chemical substitutions introduce the A-site disorder effect on Tc, which complicates determination of the relationship between ferromagnetism and structural distortion. By clarifying the site disorder effect on Tc in several unique series of ruthenates in which the average bond length 〈A–O〉 remains the same but the bond-length variance varies, we are able to demonstrate a parabolic curve of Tc versus mean bond length 〈A–O〉. A much higher Tc ∼ 177 K than that found in orthorhombic SrRuO3 can be obtained from the curve at a bond length 〈A–O〉, which makes the geometric factor t = 〈A–O〉/(√2〈Ru–O〉) ∼ 1. This result reveals not only that the ferromagnetism in the ruthenates is extremely sensitive to the lattice strain, but also that it has an important implication for exploring the structure–property relationship in a broad range of oxides with perovskite or a perovskite-related structure. PMID:23904477

  3. Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation

    Zhang, Huiyan; Feng, Yuping [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E08193 (Spain); Nieto, Daniel [Microoptics and GRIN Optics Group, Applied Physics Department, University of Santiago de Compostela, E15782 Santiago de Compostela (Spain); García-Lecina, Eva [Unidad de Superficies Metálicas, IK4-CIDETEC, E20009 Donostia-San Sebastián Gipuzkoa (Spain); Mcdaniel, Clare [National Centre for Laser Applications, School of Physics, National University of Ireland, Galway (Ireland); Díaz-Marcos, Jordi [Unitat de Tècniques Nanomètriques, Centres Científics i Tecnològics, Universitat de Barcelona, E08028 Barcelona (Spain); Flores-Arias, María Teresa [Microoptics and GRIN Optics Group, Applied Physics Department, University of Santiago de Compostela, E15782 Santiago de Compostela (Spain); O’Connor, Gerard M. [National Centre for Laser Applications, School of Physics, National University of Ireland, Galway (Ireland); Baró, Maria Dolors [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E08193 (Spain); Pellicer, Eva, E-mail: eva.pellicer@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E08193 (Spain); and others

    2016-05-15

    Highlights: • Formation of ripples after femtosecond pulsed laser irradiation (FSPLI) of metallic glass was studied. • Magnetic patterning at the surface of non-ferromagnetic amorphous steel was induced by FSPLI. • The origin of the generated ferromagnetism is the laser-induced devitrification. - Abstract: Periodic ripple and nanoripple patterns are formed at the surface of amorphous steel after femtosecond pulsed laser irradiation (FSPLI). Formation of such ripples is accompanied with the emergence of a surface ferromagnetic behavior which is not initially present in the non-irradiated amorphous steel. The occurrence of ferromagnetic properties is associated with the laser-induced devitrification of the glassy structure to form ferromagnetic (α-Fe and Fe{sub 3}C) and ferrimagnetic [(Fe,Mn){sub 3}O{sub 4} and Fe{sub 2}CrO{sub 4}] phases located in the ripples. The generation of magnetic structures by FSPLI turns out to be one of the fastest ways to induce magnetic patterning without the need of any shadow mask. Furthermore, local variations of the adhesion force, wettability and nanomechanical properties are also observed and compared to those of the as-cast amorphous alloy. These effects are of interest for applications (e.g., biological, magnetic recording, etc.) where both ferromagnetism and tribological/adhesion properties act synergistically to optimize material performance.

  4. Heterogeneous nucleation of amorphous alloys on catalytic nanoparticles to produce 2D patterned nanocrystal arrays

    Gangopadhyay, A K [Department of Physics, Washington University in St Louis, MO 63130 (United States); Krishna, H [Department of Physics, Washington University in St Louis, MO 63130 (United States); Favazza, C [Department of Physics, Washington University in St Louis, MO 63130 (United States); Miller, C [Center for Materials Innovation, Washington University in St Louis, MO 63130 (United States); Kalyanaraman, R [Department of Physics, Washington University in St Louis, MO 63130 (United States)

    2007-12-05

    Templates are widely used to produce artificial nanostructures. Here, laser-assisted self-organization has been used to form one- and two-dimensional (D) nanoarrays of Cu nanocrystals. Using these nanoarrays as a template, a 2D patterned ferromagnetic nanostructure of FeCrSi nanocrystals has been produced by heterogeneous nucleation and growth of nanocrystals by partial devitrification from an amorphous Fe{sub 64.5}Cr{sub 10}Si{sub 13.5}B{sub 9}Nb{sub 3} alloy with the Cu nanoparticles acting as catalytic nucleation sites. The interaction among the ferromagnetic nanocrystals via the residual amorphous matrix can be controlled by suitable choice of the amorphous alloy composition. Although demonstrated for a ferromagnetic system, the processing method may have much wider applicability for producing artificial nanostructures of a wide variety of materials when materials-specific catalysts and amorphous alloy compositions are judiciously chosen.

  5. Heterogeneous nucleation of amorphous alloys on catalytic nanoparticles to produce 2D patterned nanocrystal arrays

    Gangopadhyay, A K; Krishna, H; Favazza, C; Miller, C; Kalyanaraman, R

    2007-01-01

    Templates are widely used to produce artificial nanostructures. Here, laser-assisted self-organization has been used to form one- and two-dimensional (D) nanoarrays of Cu nanocrystals. Using these nanoarrays as a template, a 2D patterned ferromagnetic nanostructure of FeCrSi nanocrystals has been produced by heterogeneous nucleation and growth of nanocrystals by partial devitrification from an amorphous Fe 64.5 Cr 10 Si 13.5 B 9 Nb 3 alloy with the Cu nanoparticles acting as catalytic nucleation sites. The interaction among the ferromagnetic nanocrystals via the residual amorphous matrix can be controlled by suitable choice of the amorphous alloy composition. Although demonstrated for a ferromagnetic system, the processing method may have much wider applicability for producing artificial nanostructures of a wide variety of materials when materials-specific catalysts and amorphous alloy compositions are judiciously chosen

  6. Enhancement of magnetic properties of Co{sub 2}MnSi Heusler alloy prepared by mechanical alloying method

    Rabie, Naeemeh; Gordani, Gholam Reza; Ghasemi, Ali, E-mail: ali13912001@yahoo.com

    2017-07-15

    Highlights: • Ferromagnetic Heusler alloys of Co{sub 2}MnSi were synthesized at low temperature. • There is an at least 30% reduction in the phase formation temperature. • Saturation magnetization of alloy was increased significantly after annealing. - Abstract: Ferromagnetic Heusler alloys of Co{sub 2}MnSi were synthesized by mechanical alloying method at low temperature. The effect of milling time and annealing process on structural and magnetic properties of ferromagnetic alloy samples were studied by X-ray diffraction, scanning electron microscopy and vibration sample magnetometer methods, respectively. Structural characteristics such as crystallite size, phase percentage, and lattice parameter determined using the Rietveld method. The values of these parameters were obtained 362.9 nm, 5.699 Å and 98.7%, respectively for annealed sample. Magnetization studies show that the Co2MnSi phase is formed at 15 h of milling and is optimized after 20 h of milling. VSM results showed that saturation magnetization (M{sub s}) of milled samples reduces from 112 to 75 (emu/g) with increasing milling time and then increased gradually to 95 emu/g. The effect of post-annealing on the structural and magnetic properties of milled samples was also investigated. The saturation magnetization of annealed sample (120 emu/g) is higher than the optimum milled sample (95 emu/g) due to increasing preferential ordered L2{sub 1} structure.

  7. Enhancement of magnetic properties of Co2MnSi Heusler alloy prepared by mechanical alloying method

    Rabie, Naeemeh; Gordani, Gholam Reza; Ghasemi, Ali

    2017-01-01

    Highlights: • Ferromagnetic Heusler alloys of Co 2 MnSi were synthesized at low temperature. • There is an at least 30% reduction in the phase formation temperature. • Saturation magnetization of alloy was increased significantly after annealing. - Abstract: Ferromagnetic Heusler alloys of Co 2 MnSi were synthesized by mechanical alloying method at low temperature. The effect of milling time and annealing process on structural and magnetic properties of ferromagnetic alloy samples were studied by X-ray diffraction, scanning electron microscopy and vibration sample magnetometer methods, respectively. Structural characteristics such as crystallite size, phase percentage, and lattice parameter determined using the Rietveld method. The values of these parameters were obtained 362.9 nm, 5.699 Å and 98.7%, respectively for annealed sample. Magnetization studies show that the Co2MnSi phase is formed at 15 h of milling and is optimized after 20 h of milling. VSM results showed that saturation magnetization (M s ) of milled samples reduces from 112 to 75 (emu/g) with increasing milling time and then increased gradually to 95 emu/g. The effect of post-annealing on the structural and magnetic properties of milled samples was also investigated. The saturation magnetization of annealed sample (120 emu/g) is higher than the optimum milled sample (95 emu/g) due to increasing preferential ordered L2 1 structure.

  8. Active and passive kink mode studies in a tokamak with a movable ferromagnetic wall

    Levesque, J. P.; Hughes, P. E.; Bialek, J.; Byrne, P. J.; Mauel, M. E.; Navratil, G. A.; Peng, Q.; Rhodes, D. J.; Stoafer, C. C. [Department of Applied Physics and Applied Mathematics, Columbia University, 500 W. 120th Street, New York, New York 10027 (United States)

    2015-05-15

    High-resolution active and passive kink mode studies are conducted in a tokamak with an adjustable ferromagnetic wall near the plasma surface. Ferritic tiles made from 5.6 mm thick Hiperco{sup ®} 50 alloy have been mounted on the plasma-facing side of half of the in-vessel movable wall segments in the High Beta Tokamak-Extended Pulse device [D. A. Maurer et al., Plasma Phys. Controlled Fusion 53, 074016 (2011)] in order to explore ferritic resistive wall mode stability. Low-activation ferritic steels are a candidate for structural components of a fusion reactor, and these experiments examine MHD stability of plasmas with nearby ferromagnetic material. Plasma-wall separation for alternating ferritic and non-ferritic wall segments is adjusted between discharges without opening the vacuum vessel. Amplification of applied resonant magnetic perturbations and plasma disruptivity are observed to increase when the ferromagnetic wall is close to plasma surface instead of the standard stainless steel wall. Rapidly rotating m/n=3/1 external kink modes have higher growth rates with the nearby ferritic wall. Feedback suppression of kinks is still as effective as before the installation of ferritic material in vessel, in spite of increased mode growth rates.

  9. Microstructural and magnetic characterization of iron precipitation in Ni-Fe-Al alloys

    Duman, Nagehan; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat

    2011-01-01

    The influence of annealing on the microstructural evolution and magnetic properties of Ni 50 Fe x Al 50-x alloys for x = 20, 25, and 30 has been investigated. Solidification microstructures of as-cast alloys reveal coarse grains of a single B2 type β-phase and typical off eutectic microstructure consisting of proeutectic B2 type β dendrites and interdendritic eutectic for x = 20 and x > 20 at.% Fe respectively. However, annealing at 1073 K results in the formation of FCC γ-phase particles along the grain boundaries as well as grain interior in x = 20 at.% Fe alloy. The volume fraction of interdentritic eutectic regions tend to decrease and their morphologies start to degenerate by forming FCC γ-phase for x > 20 at.% Fe alloys with increasing annealing temperatures. Increasing Fe content of alloys induce an enhancement in magnetization and a rise in the Curie transition temperature (T C ). Temperature scan magnetic measurements and transmission electron microscopy reveal that a transient rise in the magnetization at temperatures well above the T C of the alloys would be attributed to the precipitation of a nano-scale ferromagnetic BCC α-Fe phase. Retained magnetization above the Curie transition temperature of alloy matrix, together with enhanced room temperature saturation magnetization of alloys annealed at favorable temperatures support the presence of ferromagnetic precipitates. These nano-scale precipitates are shown to induce significant precipitation hardening of the β-phase in conjunction with enhanced room temperature saturation magnetization in particular when an annealing temperature of 673 K is used. - Research Highlights: → Evolution of microstructure and magnetic properties with varying Fe content. → Transient rise in magnetization via the formation of ferromagnetic phase. → Enhancements in saturation magnetization owing to precipitated ferromagnetic phase. → Nanoscale precipitation of ferromagnetic BCC α-Fe confirmed by TEM.

  10. Development of Metallic Sensory Alloys

    Wallace Terryl A.; Newman, John A.; Horne, Michael R.; Messick, Peter L.

    2010-01-01

    Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.

  11. Observation of strong ferromagnetism in the half-Heusler compound CoTiSb system

    Sedeek, K., E-mail: KamiliaSedeek@yahoo.com; Hantour, H.; Makram, N.; Said, Sh. A.

    2016-06-01

    Strong ferromagnetism has been detected in the semiconducting half-Heusler CoTiSb compound. The synthesis process was carried out by direct fusion of highly pure Co, Ti, and Sb in an evacuated quartz tube. The structural, micro structural and magnetic properties were investigated. The crystal structure was refined from X-ray powder diffraction data by the Rietveld method. Applying the search match program, three nano-crystalline phases of CoTiSb, Ti{sub 3}Sb and CoTi{sub 2} (50%, 33.3% and 16.7% respectively) were identified for the prepared system. The term “phase” is used to address the co-existence of different stable chemical composition for the same half-Heusler alloy. The scanning electron microscope SEM and the high resolution transmission electron microscope HR-TEM were applied to characterize the morphology, size, shape, crystallinity and lattice spacing. A mixture of ordered and disordered arrangement was detected. Well defined nano-crystalline structure with an average interatomic distance equals 0.333 nm and sharp diffraction spots were measured. Contrary to this, the HR-TEM and electron diffraction image shows distorted structured planes and smeared halo surrounded by weak rings. Thermo-magnetic measurements (M–T) have been measured between 640 °K and 920 °K. Clear magnetic phase transition is detected above 900 °K (T{sub c}), in addition to a second possible phase transition (T{sub FF}) around 740 °K. The latter is clarified by plotting ΔM/ΔT vs. T. To determine the type of the detected phase transitions, the field dependence of magnetization was measured at 300 °K and 740 °K. Arrot plots (M{sup 2}−H/M) confirm the ferromagnetic character at both temperatures. It may be reasonable to assume the T{sub FF} transition as an additional ferromagnetic contribution stemming from some sort of exchange interactions. A tentative magnetic phase diagram is given. Overall, the present results suggest that the prepared multiphases CoTiSb system does

  12. Magnetic enhancement of ferroelectric polarization in a self-grown ferroelectric-ferromagnetic composite

    Kumar, Amit; Narayan, Bastola; Pachat, Rohit; Ranjan, Rajeev

    2018-02-01

    Ferroelectric-ferromagnetic multiferroic composites are of great interest both from the scientific and technological standpoints. The extent of coupling between polarization and magnetization in such two-phase systems depends on how efficiently the magnetostrictive and electrostrictive/piezoelectric strain gets transferred from one phase to the other. This challenge is most profound in the easy to make 0-3 ferroelectric-ferromagnetic particulate composites. Here we report a self-grown ferroelectric-ferromagnetic 0-3 particulate composite through controlled spontaneous precipitation of ferrimagnetic barium hexaferrite phase (BaF e12O19 ) amid ferroelectric grains in the multiferroic alloy system BiFe O3-BaTi O3 . We demonstrate that a composite specimen exhibiting merely ˜1% hexaferrite phase exhibits ˜34% increase in saturation polarization in a dc magnetic field of ˜10 kOe. Using modified Rayleigh analysis of the polarization field loop in the subcoercive field region we argue that the substantial enhancement in the ferroelectric switching is associated with the reduction in the barrier heights of the pinning centers of the ferroelectric-ferroelastic domain walls in the stress field generated by magnetostriction in the hexaferrite grains when the magnetic field is turned on. Our study proves that controlled precipitation of the magnetic phase is a good strategy for synthesis of 0-3 ferroelectric-ferromagnetic particulate multiferroic composite as it not only helps in ensuring a good electrical insulating character of the composite, enabling it to sustain high enough electric field for ferroelectric switching, but also the factors associated with the spontaneity of the precipitation process ensure efficient transfer of the magnetostrictive strain/stress to the surrounding ferroelectric matrix making domain wall motion easy.

  13. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Lollobrigida, V. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Torino (Italy); Borgatti, F. [CNR, Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), I-40129 Bologna (Italy); Torelli, P.; Panaccione, G. [CNR, Istituto Officina dei Materiali (IOM), Lab. TASC, I-34149 Trieste (Italy); Tortora, L. [Laboratorio di Analisi di Superficie, Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Ingegneria Meccanica, Università Tor Vergata, I-00133 Rome (Italy); Stefani, G.; Offi, F. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy)

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  14. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Lollobrigida, V.; Basso, V.; Borgatti, F.; Torelli, P.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Tortora, L.; Stefani, G.; Panaccione, G.; Offi, F.

    2014-05-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  15. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Lollobrigida, V.; Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Borgatti, F.; Torelli, P.; Panaccione, G.; Tortora, L.; Stefani, G.; Offi, F.

    2014-01-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  16. Potential hazards and artifacts of ferromagnetic and nonferromagnetic surgical and dental materials and devices in nuclear magnetic resonance imaging

    New, P.F.J.; Rosen, B.R.; Brady, T.J.

    1983-01-01

    The risks to patients with metal surgical implants who are undergoing nuclear magnetic resonance (NMR) imaging and the artifacts caused by such implants were studied. Twenty-one aneurysm and other hemostatic clips and a variety of other materials (e.g., dental amalgam, 14 karat gold) were used. Longitudinal forces and torques were found to be exerted upon 16 of the 21 clips. With five aneurysm clips, forces and torques sufficient to produce risk of hemorrhage from dislocation of the clip from the vessel or aneurysm, or cerebral injury by clip displacement without dislodgement were identified. The induced ferromagnetism was shown to be related to the composition of the alloys from which the clips were manufactured. Clips with 10-14% nickel are evidently without sufficient induced ferromagnetism to cause hazard. The extent of NMR imaging artifacts was greater for materials with measurable ferromagnetic properties, but metals without measurable ferromagnetism in our tests also resulted in significant artifacts. Dental amalgam and 14 karat gold produced no imaging artifacts, but stainless steels in dentures and orthodontic braces produced extensive artifacts in the facial region

  17. Topological Aspects of Solitons in Ferromagnets

    Ren Jirong; Wang Jibiao; Li Ran; Xu Donghui; Duan Yishi

    2008-01-01

    Two kinds of topological soliton (skyrmion and magnetic vortex ring) in ferromagnets are studied. They have the common topological origin, a tensor H αβ = n-vector · (∂ α n-vector x ∂ β n-vector ), which describes the non-trivial distribution of local orientation of magnetization n-vector at large distances in space. The topological stability of skyrmion is protected by the winding number. Knot-like topological defect as magnetic vortex rings is also studied. On the assumption that magnetic vortex rings are geometric lines, we present their δ-function distribution in ferromagnetic materials. Furthermore, it is briefly shown that Hopf invariant is a proper topological invariant to describe the topology of magnetic vortex rings

  18. Ferromagnetism of Magnesium Oxide

    Jitendra Pal Singh

    2017-11-01

    Full Text Available Magnetism without d-orbital electrons seems to be unrealistic; however, recent observations of magnetism in non-magnetic oxides, such as ZnO, HfO2, and MgO, have opened new avenues in the field of magnetism. Magnetism exhibited by these oxides is known as d° ferromagnetism, as these oxides either have completely filled or unfilled d-/f-orbitals. This magnetism is believed to occur due to polarization induced by p-orbitals. Magnetic polarization in these oxides arises due to vacancies, the excitation of trapped spin in the triplet state. The presence of vacancies at the surface and subsurface also affects the magnetic behavior of these oxides. In the present review, origins of magnetism in magnesium oxide are discussed to obtain understanding of d° ferromagnetism.

  19. Ising ferromagnet: zero-temperature dynamic evolution

    Oliveira, P M C de; Newman, C M; Sidoravicious, V; Stein, D L

    2006-01-01

    The dynamic evolution at zero temperature of a uniform Ising ferromagnet on a square lattice is followed by Monte Carlo computer simulations. The system always eventually reaches a final, absorbing state, which sometimes coincides with a ground state (all spins parallel), and sometimes does not (parallel stripes of spins up and down). We initiate here the numerical study of 'chaotic time dependence' (CTD) by seeing how much information about the final state is predictable from the randomly generated quenched initial state. CTD was originally proposed to explain how nonequilibrium spin glasses could manifest an equilibrium pure state structure, but in simpler systems such as homogeneous ferromagnets it is closely related to long-term predictability and our results suggest that CTD might indeed occur in the infinite volume limit

  20. Silicon spintronics with ferromagnetic tunnel devices

    Jansen, R; Sharma, S; Dash, S P; Min, B C

    2012-01-01

    In silicon spintronics, the unique qualities of ferromagnetic materials are combined with those of silicon, aiming at creating an alternative, energy-efficient information technology in which digital data are represented by the orientation of the electron spin. Here we review the cornerstones of silicon spintronics, namely the creation, detection and manipulation of spin polarization in silicon. Ferromagnetic tunnel contacts are the key elements and provide a robust and viable approach to induce and probe spins in silicon, at room temperature. We describe the basic physics of spin tunneling into silicon, the spin-transport devices, the materials aspects and engineering of the magnetic tunnel contacts, and discuss important quantities such as the magnitude of the spin accumulation and the spin lifetime in the silicon. We highlight key experimental achievements and recent progress in the development of a spin-based information technology. (topical review)

  1. On the critical frontiers of Potts ferromagnets

    Magalhaes, A.C.N. de; Tsallis, C.

    1981-01-01

    A conjecture concerning the critical frontiers of q- state Potts ferromagnets on d- dimensional lattices (d > 1) which generalize a recent one stated for planar lattices is formulated. The present conjecture is verified within satisfactory accuracy (exactly in some cases) for all the lattices or arrays whose critical points are known. Its use leads to the prediction of: a) a considerable amount of new approximate critical points (26 on non-planar regular lattices, some others on Husimi trees and cacti); b) approximate critical frontiers for some 3- dimensional lattices; c) the possibly asymptotically exact critical point on regular lattices in the limit d→infinite for all q>=1; d) the possibly exact critical frontier for the pure Potts model on fully anisotropic Bethe lattices; e) the possibly exact critical frontier for the general quenched random-bond Potts ferromagnet (any P(J)) on isotropic Bethe lattices. (Author) [pt

  2. Ferromagnetism in doped or undoped spintronics nanomaterials

    Qiang, You

    2010-10-01

    Much interest has been sparked by the discovery of ferromagnetism in a range of oxide doped and undoped semiconductors. The development of ferromagnetic oxide semiconductor materials with giant magnetoresistance (GMR) offers many advantages in spintronics devices for future miniaturization of computers. Among them, TM-doped ZnO is an extensively studied n-type wide-band-gap (3.36 eV) semiconductor with a tremendous interest as future mini-computer, blue light emitting, and solar cells. In this talk, Co-doped ZnO and Co-doped Cu2O semiconductor nanoclusters are successfully synthesized by a third generation sputtering-gas-aggregation cluster technique. The Co-doped nanoclusters are ferromagnetic with Curie temperature above room temperature. Both of Co-doped nanoclusters show positive magnetoresistance (PMR) at low temperature, but the amplitude of the PMRs shows an anomalous difference. For similar Co doping concentration at 5 K, PMR is greater than 800% for Co-doped ZnO but only 5% for Co-doped Cu2O nanoclusters. Giant PMR in Co-doped ZnO which is attributed to large Zeeman splitting effect has a linear dependence on applied magnetic field with very high sensitivity, which makes it convenient for the future spintronics applications. The small PMR in Co-doped Cu2O is related to its vanishing density of states at Fermi level. Undoped Zn/ZnO core-shell nanoparticle gives high ferromagnetic properties above room temperature due to the defect induced magnetization at the interface.

  3. Fractal effects on excitations in diluted ferromagnets

    Kumar, D.

    1981-08-01

    The low energy spin-wave like excitations in diluted ferromagnets near percolation threshold are studied. For this purpose an explicit use of the fractal model for the backbone of the infinite percolating cluster due to Kirkpatrick is made. Three physical effects are identified, which cause the softening of spin-waves as the percolation point is approached. The importance of fractal effects in the calculation of density of states and the low temperature thermodynamics is pointed out. (author)

  4. Raman characterization of bulk ferromagnetic nanostructured graphite

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F.M.; Fernández-Werner, Luciana

    2012-01-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm -1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  5. Anomalous hall effect in ferromagnetic semiconductors

    Jungwirth, Tomáš; Niu, Q.; MacDonald, A. H.

    2002-01-01

    Roč. 88, č. 20 (2002), s. 207208-1-207208-4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * anomalous Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.323, year: 2002

  6. Magnon squeezing states in a ferromagnet

    Wang Junfeng; Cheng Ze; Ping Yunxia; Wan Jinyin; Zhang Yanmin

    2006-01-01

    In this Letter we discuss squeezing state of magnon in ferromagnet, which permits a reduction in the quantum fluctuation of the spin component to below the zero-point quantum noise level of coherent magnon states. We investigate the generation of squeezed magnon state through calculating the expectation values of spin component fluctuation. The mean field theory is introduced in dealing with the nonlinear interaction terms of Hamiltonian of magnon system

  7. FINEMET type alloy without Si: Structural and magnetic properties

    Muraca, D.; Cremaschi, V.; Moya, J.; Sirkin, H.

    2008-01-01

    Magnetic and structural properties of a Finemet type alloy (Fe 73.5 Ge 15.5 Nb 3 B 7 Cu 1 ) without Si and high Ge content were studied. Amorphous material was obtained by the melt spinning technique and was heat treated at different temperatures for 1 h under high vacuum to induce the nanocrystallization of the sample. The softest magnetic properties were obtained between 673 and 873 K. The role of Ge on the ferromagnetic paramagnetic transition of the as-quenched alloys and its influence on the crystallization process were studied using a calorimetric technique. Moessbauer spectroscopy was employed in the nanocrystallized alloy annealed at 823 K to obtain the composition of the nanocrystals and the amorphous phase fraction. Using this data and magnetic measurements of the as-quenched alloy, the magnetic contribution of nanocrystals to the alloy annealed at 823 K was estimated via a linear model

  8. The Kondo effect in ferromagnetic atomic contacts.

    Calvo, M Reyes; Fernández-Rossier, Joaquín; Palacios, Juan José; Jacob, David; Natelson, Douglas; Untiedt, Carlos

    2009-04-30

    Iron, cobalt and nickel are archetypal ferromagnetic metals. In bulk, electronic conduction in these materials takes place mainly through the s and p electrons, whereas the magnetic moments are mostly in the narrow d-electron bands, where they tend to align. This general picture may change at the nanoscale because electrons at the surfaces of materials experience interactions that differ from those in the bulk. Here we show direct evidence for such changes: electronic transport in atomic-scale contacts of pure ferromagnets (iron, cobalt and nickel), despite their strong bulk ferromagnetism, unexpectedly reveal Kondo physics, that is, the screening of local magnetic moments by the conduction electrons below a characteristic temperature. The Kondo effect creates a sharp resonance at the Fermi energy, affecting the electrical properties of the system; this appears as a Fano-Kondo resonance in the conductance characteristics as observed in other artificial nanostructures. The study of hundreds of contacts shows material-dependent log-normal distributions of the resonance width that arise naturally from Kondo theory. These resonances broaden and disappear with increasing temperature, also as in standard Kondo systems. Our observations, supported by calculations, imply that coordination changes can significantly modify magnetism at the nanoscale. Therefore, in addition to standard micromagnetic physics, strong electronic correlations along with atomic-scale geometry need to be considered when investigating the magnetic properties of magnetic nanostructures.

  9. Tunable Magnon Weyl Points in Ferromagnetic Pyrochlores.

    Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2016-10-07

    The dispersion relations of magnons in ferromagnetic pyrochlores with Dzyaloshinskii-Moriya interaction are shown to possess Weyl points, i. e., pairs of topologically nontrivial crossings of two magnon branches with opposite topological charge. As a consequence of their topological nature, their projections onto a surface are connected by magnon arcs, thereby resembling closely Fermi arcs of electronic Weyl semimetals. On top of this, the positions of the Weyl points in reciprocal space can be tuned widely by an external magnetic field: rotated within the surface plane, the Weyl points and magnon arcs are rotated as well; tilting the magnetic field out of plane shifts the Weyl points toward the center Γ[over ¯] of the surface Brillouin zone. The theory is valid for the class of ferromagnetic pyrochlores, i. e., three-dimensional extensions of topological magnon insulators on kagome lattices. In this Letter, we focus on the (111) surface, identify candidates of established ferromagnetic pyrochlores which apply to the considered spin model, and suggest experiments for the detection of the topological features.

  10. Ferroelectricity with Ferromagnetic Moment in Orthoferrites

    Tokunaga, Yusuke

    2010-03-01

    Exotic multiferroics with gigantic magnetoelectric (ME) coupling have recently been attracting broad interests from the viewpoints of both fundamental physics and possible technological application to next-generation spintronic devices. To attain a strong ME coupling, it would be preferable that the ferroelectric order is induced by the magnetic order. Nevertheless, the magnetically induced ferroelectric state with the spontaneous ferromagnetic moment is still quite rare apart from a few conical-spin multiferroics. To further explore multiferroic materials with both the strong ME coupling and spontaneous magnetization, we focused on materials with magnetic structures other than conical structure. In this talk we present that the most orthodox perovskite ferrite systems DyFeO3 and GdFeO3 have ``ferromagnetic-ferroelectric,'' i.e., genuinely multiferroic states in which weak ferromagnetic moment is induced by Dzyaloshinskii-Moriya interaction working on Fe spins and electric polarization originates from the striction due to symmetric exchange interaction between Fe and Dy (Gd) spins [1] [2]. Both materials showed large electric polarization (>0.1 μC/cm^2) and strong ME coupling. In addition, we succeeded in mutual control of magnetization and polarization with electric- and magnetic-fields in GdFeO3, and attributed the controllability to novel, composite domain wall structure. [4pt] [1] Y. Tokunaga et al., Phys. Rev. Lett. 101, 097205 (2008). [0pt] [2] Y. Tokunaga et al., Nature Mater. 8, 558 (2009).

  11. Mössbauer and XRD study of the Fe65Si35 alloy obtained by mechanical alloying

    Vélez, G. Y.; Rodríguez, R. R.; Melo, C. A.; Pérez Alcázar, G. A.; Zamora, Ligia E.; Tabares, J. A.

    2011-01-01

    A study was made on the alloy Fe 65 Si 35 using x-ray diffraction and Mössbauer spectrometry. The alloy was obtained by mechanical alloying in a high energy planetary mill, with milling times of 15, 30, 50, 75 and 100 h. The results show that in the alloys two structural phases are present, a Fe-Si BCC disordered phase and ferromagnetic, and a Fe-Si SC phase, whose nature is paramagnetic and which decreases with milling time. In the temporal evolution of the milling two stages are differentiated: one between 15 and 75 h of milling, in which silicon atoms diffuse into the bcc matrix of iron and its effect is to reduce the hyperfine magnetic field; the other, after 75 h of milling, where the alloy is consolidated, the effect of the milling is only to increase the disorder of the system, increasing the magnetic order.

  12. VANADIUM ALLOYS

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  13. An electromagnetically actuated fiber optic switch using magnetized ferromagnetic materials

    Pandojirao-S, Praveen; Dhaubanjar, Naresh; Phuyal, Pratibha C.; Chiao, Mu; Chiao, J.-C.

    2008-03-01

    This paper presents the design, fabrication and testing of a fiber optic switch actuated electromagnetically. The ferromagnetic gel coated optical fiber is actuated using external electromagnetic fields. The ferromagnetic gel consists of ferromagnetic powders dispersed in epoxy. The fabrication utilizes a simple cost-effective coating setup. A direct fiberto-fiber alignment eliminates the need for complementary optical parts and the displacement of fiber switches the laser coupling. The magnetic characteristics of magnetized ferromagnetic materials are performed using alternating gradient magnetometer and the magnetic hysteresis curves are measured for different ferromagnetic materials including iron, cobalt, and nickel. Optical fiber switches with various fiber lengths are actuated and their static and dynamic responses for the same volume of ferromagnetic gel are summarized. The highest displacement is 1.345 mm with an input current of 260mA. In this paper, the performance of fiber switches with various coating materials is presented.

  14. Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films

    Remes, Zdenek [Institute of Physics ASCR v.v.i., Cukrovarnicka 10, 162 00 Prague 6 (Czech Republic); Sun, Shih-Jye, E-mail: sjs@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Varga, Marian [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Chou, Hsiung [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hsu, Hua-Shu [Department of Applied Physics, National Pingtung University of Education, Pingtung 900, Taiwan (China); Kromka, Alexander [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Horak, Pavel [Nuclear Physics Institute, 250 68 Rez (Czech Republic)

    2015-11-15

    The nanocrystalline diamond films turn to be ferromagnetic after implanting various nitrogen doses on them. Through this research, we confirm that the room-temperature ferromagnetism of the implanted samples is derived from the measurements of magnetic circular dichroism (MCD) and superconducting quantum interference device (SQUID). Samples with larger crystalline grains as well as higher implanted doses present more robust ferromagnetic signals at room temperature. Raman spectra indicate that the small grain-sized samples are much more disordered than the large grain-sized ones. We propose that a slightly large saturated ferromagnetism could be observed at low temperature, because the increased localization effects have a significant impact on more disordered structure. - Highlights: • Nitrogen implanted nanocrystalline diamond films exhibit ferromagnetism at room temperature. • Nitrogen implants made a Raman deviation from the typical nanocrystalline diamond films. • The ferromagnetism induced from the structure distortion is dominant at low temperature.

  15. Tunnel barrier and noncollinear magnetization effects on shot noise in ferromagnetic/semiconductor/ferromagnetic heterojunctions

    An Xingtao; Liu Jianjun

    2008-01-01

    Based on the scattering approach, we investigate transport properties of electrons in a one-dimensional waveguide that contains a ferromagnetic/semiconductor/ferromagnetic heterojunction and tunnel barriers in the presence of Rashba and Dresselhaus spin-orbit interactions. We simultaneously consider significant quantum size effects, quantum coherence, Rashba and Dresselhaus spin-orbit interactions and noncollinear magnetizations. It is found that the tunnel barrier plays a decisive role in the transmission coefficient and shot noise of the ballistic spin electron transport through the heterojunction. When the small tunnel barriers are considered, the transport properties of electrons are quite different from those without tunnel barriers

  16. Modelling characteristics of ferromagnetic cores with the influence of temperature

    Górecki, K; Rogalska, M; Zarȩbski, J; Detka, K

    2014-01-01

    The paper is devoted to modelling characteristics of ferromagnetic cores with the use of SPICE software. Some disadvantages of the selected literature models of such cores are discussed. A modified model of ferromagnetic cores taking into account the influence of temperature on the magnetizing characteristics and the core losses is proposed. The form of the elaborated model is presented and discussed. The correctness of this model is verified by comparing the calculated and the measured characteristics of the selected ferromagnetic cores.

  17. A method for measuring exchange stiffness in ferromagnetic films

    Girt, Erol; Huttema, W.; Montoya, E.; Kardasz, B.; Eyrich, C.; Heinrich, B.; Mryasov, O. N.; Dobin, A. Yu.; Karis, O.

    2011-01-01

    An exchange stiffness, A ex , in ferromagnetic films is obtained by fitting the M(H) dependence of two ferromagnetic layers antiferromagnetically coupled across a nonmagnetic spacer layer with a simple micromagnetic model. In epitaxial and textured structures this method allows measuring A ex between the crystallographic planes perpendicular to the growth direction of ferromagnetic films. Our results show that A ex between [0001] planes in textured Co grains is 1.54 ± 0.12 x 10 -11 J/m.

  18. Room temperature ferromagnetism in ZnO prepared by microemulsion

    Qingyu Xu

    2011-09-01

    Full Text Available Clear room temperature ferromagnetism has been observed in ZnO powders prepared by microemulsion. The O vacancy (VO clusters mediated by the VO with one electron (F center contributed to the ferromagnetism, while the isolated F centers contributed to the low temperature paramagnetism. Annealing in H2 incorporated interstitial H (Hi in ZnO, and removed the isolated F centers, leading to the suppression of the paramagnetism. The ferromagnetism has been considered to originate from the VO clusters mediated by the Hi, leading to the enhancement of the coercivity. The ferromagnetism disappeared after annealing in air due to the reduction of Hi.

  19. Ferromagnetic pairing states on two-coupled chains

    Tanaka, Akinori

    2008-01-01

    We propose a concrete model which exhibits ferromagnetism and electron-pair condensation simultaneously. The model is defined on two chains and consists of the electron hopping term, the on-site Coulomb repulsion and a ferromagnetic interaction which describes ferromagnetic coupling between two electrons, one on a bond in a chain and the other on a site in the other chain. It is rigorously shown that the model has fully-polarized ferromagnetic pairing ground states. The higher dimensional version of the model is also presented

  20. Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET

    Wang, Siyan; Ding, Jie; Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn

    2015-02-15

    The interface region of welded A508–Alloy 52 M is characterized by scanning probe microscope (SPM) techniques, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM)/Energy Dispersive Spectroscopy (EDS) and scanning vibrate electrode technique (SVET). The regions along the welded A508–Alloy 52 M interface can be categorized into two types according to their different microstructures. In the type-I interface region, A508 and Alloy 52 M are separated by the fusion boundary, while in the type-II interface region, A508 and Alloy 52 M are separated by a martensite zone. A508, martensite zone and grain boundaries in Alloy 52 M are ferromagnetic while the Alloy 52 M matrix is paramagnetic. The Volta potentials measured by scanning Kelvin probe force microscopy (SKPFM) of A508, martensite zone and Alloy 52 M follow the order: V{sub 52} {sub M} > V{sub A508} > V{sub martensite}. The corrosion behavior of A508–Alloy 52 M interface region is galvanic corrosion, in which Alloy 52 M is cathode while A508 is anode. The martensite dissolves faster than Alloy 52 M, but slower than A508 in the test solution. - Highlights: • The A508–Alloy 52 M interface regions can be categorized into two types. • The chromium depleted region is observed along the Alloy 52 M grain boundary. • The Alloy 52 M grain boundaries which are close to the interface are ferromagnetic. • Martensite zone has lower Volta potential but higher corrosion resistance than A508.

  1. Nonswelling alloy

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  2. Nonswelling alloy

    Harkness, S.D.

    1975-01-01

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses

  3. Simulation study of ballistic spin-MOSFET devices with ferromagnetic channels based on some Heusler and oxide compounds

    Graziosi, Patrizio; Neophytou, Neophytos

    2018-02-01

    Newly emerged materials from the family of Heuslers and complex oxides exhibit finite bandgaps and ferromagnetic behavior with Curie temperatures much higher than even room temperature. In this work, using the semiclassical top-of-the-barrier FET model, we explore the operation of a spin-MOSFET that utilizes such ferromagnetic semiconductors as channel materials, in addition to ferromagnetic source/drain contacts. Such a device could retain the spin polarization of injected electrons in the channel, the loss of which limits the operation of traditional spin transistors with non-ferromagnetic channels. We examine the operation of four material systems that are currently considered some of the most prominent known ferromagnetic semiconductors: three Heusler-type alloys (Mn2CoAl, CrVZrAl, and CoVZrAl) and one from the oxide family (NiFe2O4). We describe their band structures by using data from DFT (Density Functional Theory) calculations. We investigate under which conditions high spin polarization and significant ION/IOFF ratio, two essential requirements for the spin-MOSFET operation, are both achieved. We show that these particular Heusler channels, in their bulk form, do not have adequate bandgap to provide high ION/IOFF ratios and have small magnetoconductance compared to state-of-the-art devices. However, with confinement into ultra-narrow sizes down to a few nanometers, and by engineering their spin dependent contact resistances, they could prove promising channel materials for the realization of spin-MOSFET transistor devices that offer combined logic and memory functionalities. Although the main compounds of interest in this paper are Mn2CoAl, CrVZrAl, CoVZrAl, and NiFe2O4 alone, we expect that the insight we provide is relevant to other classes of such materials as well.

  4. Magnetic microstructure of nanocrystalline ferromagnets and nanocrystalline systems combining ferromagnetic and antiferromagnetic phases

    Loeffler, J.; Wagner, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kostorz, G. [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Wiedenmann, A. [HMI Berlin (Germany)

    1997-09-01

    Magnetic small-angle neutron scattering measurements were performed on nanostructured ferromagnetic materials on the basis of Fe, Ni and Co, produced preferentially by the inert-gas condensation technique, with the aim to determine the magnetic microstructure of mesoscopic small-particle systems. (author) 1 fig., 3 refs.

  5. Competing ferromagnetic and anti-ferromagnetic interactions in iron nitride ζ-Fe2N

    Rao, K. Sandeep; Salunke, H. G.

    2018-03-01

    The paper discusses the magnetic state of zeta phase of iron nitride viz. ζ-Fe2N on the basis of spin polarized first principles electronic structure calculations together with a review of already published data. Results of our first principles study suggest that the ground state of ζ-Fe2N is ferromagnetic (FM) with a magnetic moment of 1.528μB on the Fe site. The FM ground state is lower than the anti-ferromagnetic (AFM) state by 8.44 meV and non-magnetic (NM) state by 191 meV per formula unit. These results are important in view of reports which claim that ζ-Fe2N undergoes an AFM transition below 10 K and others which do not observe any magnetic transition up to 4.2 K. We argue that the experimental results of AFM transition below 10 K are inconclusive and we propose the presence of competing FM and AFM superexchange interactions between Fe sites mediated by nitrogen atoms, which are consistent with Goodenough-Kanamori-Anderson rules. We find that the anti-ferromagnetically coupled Fe sites are outnumbered by ferromagnetically coupled Fe sites leading to a stable FM ground state. A Stoner analysis of the results also supports our claim of a FM ground state.

  6. Dynamic detection of spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance (Conference Presentation)

    Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.

    2016-10-01

    A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296

  7. Spin Transport in Ferromagnetic and Antiferromagnetic Textures

    Akosa, Collins A.

    2016-12-07

    In this dissertation, we provide an accurate description of spin transport in magnetic textures and in particular, we investigate in detail, the nature of spin torque and magnetic damping in such systems. Indeed, as will be further discussed in this thesis, the current-driven velocity of magnetic textures is related to the ratio between the so-called non-adiabatic torque and magnetic damping. Uncovering the physics underlying these phenomena can lead to the optimal design of magnetic systems with improved efficiency. We identified three interesting classes of systems which have attracted enormous research interest (i) Magnetic textures in systems with broken inversion symmetry: We investigate the nature of magnetic damping in non-centrosymmetric ferromagnets. Based on phenomenological and microscopic derivations, we show that the magnetic damping becomes chiral, i.e. depends on the chirality of the magnetic texture. (ii) Ferromagnetic domain walls, skyrmions and vortices: We address the physics of spin transport in sharp disordered magnetic domain walls and vortex cores. We demonstrate that upon spin-independent scattering, the non-adiabatic torque can be significantly enhanced. Such an enhancement is large for vortex cores compared to transverse domain walls. We also show that the topological spin currents owing in these structures dramatically enhances the non-adiabaticity, an effect unique to non-trivial topological textures (iii) Antiferromagnetic skyrmions: We extend this study to antiferromagnetic skyrmions and show that such an enhanced topological torque also exist in these systems. Even more interestingly, while such a non-adiabatic torque inuences the undesirable transverse velocity of ferromagnetic skyrmions, in antiferromagnetic skyrmions, the topological non-adiabatic torque directly determines the longitudinal velocity. As a consequence, scaling down the antiferromagnetic skyrmion results in a much more efficient spin torque.

  8. Room Temperature Ferromagnetic Mn:Ge(001

    George Adrian Lungu

    2013-12-01

    Full Text Available We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001, heated at relatively high temperature (starting with 250 °C. The samples were characterized by low energy electron diffraction (LEED, scanning tunneling microscopy (STM, high resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, superconducting quantum interference device (SQUID, and magneto-optical Kerr effect (MOKE. Samples deposited at relatively elevated temperature (350 °C exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001 crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001. The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  9. The generalized spherical model of ferromagnetic films

    Costache, G.

    1977-12-01

    The D→ infinity of the D-vectorial model of a ferromagnetic film with free surfaces is exactly solved. The mathematical mechanism responsible for the onset of a phase transition in the system is a generalized sticking phenomenon. It is shown that the temperature at which the sticking appears, the transition temperature of the model is monotonously increasing with increasing the number of layers of the film, contrary to what happens in the spherical model with overall constraint. Certain correlation inequalities of Griffiths type are shown to hold. (author)

  10. Ferromagnetic film on a superconducting substrate

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2001-01-01

    We study the equilibrium domain structure and magnetic flux around a ferromagnetic film with perpendicular magnetization M{sub 0} on a superconducting (SC) substrate. At 4{pi}M{sub 0}>1; {lambda}{sub L} being the London penetration length.

  11. Ferromagnetic film on a superconducting substrate

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2001-01-01

    We study the equilibrium domain structure and magnetic flux around a ferromagnetic film with perpendicular magnetization M 0 on a superconducting (SC) substrate. At 4πM 0 c1 the SC is in the Meissner state and the equilibrium domain width in the film, l, scales as (l/4πλ L )=(l N /4πλ L ) 2/3 with the domain width on a normal (nonsuperconducting) substrate, l N /4πλ L >>1; λ L being the London penetration length

  12. Ferromagnetic Film on a Superconducting Substrate

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2000-01-01

    We study the equilibrium domain structure and magnetic flux around a ferromagnetic (FM) film with perpendicular magnetization M_0 on a superconducting (SC) substrate. At 4{\\pi}M_0> 1. Here \\lambda_L is the London penetration length. For 4{\\pi}M_0 > H_{c1} and l_{N} in excess of about 35 {\\lambda}_{L}, the domains are connected by SC vortices. We argue that pinning of vortices by magnetic domains in FM/SC multilayers can provide high critical currents.

  13. Carbon Nanotubes Filled with Ferromagnetic Materials

    Albrecht Leonhardt

    2010-08-01

    Full Text Available Carbon nanotubes (CNT filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.

  14. Itinerant ferromagnetism in the narrow band limit

    Liu, S H

    2000-01-01

    It is shown that in the narrow band, strong interaction limit the paramagnetic state of an itinerant ferromagnet is described by the disordered local moment state. As a result, the Curie temperature is orders of magnitude lower than what is expected from the large exchange splitting of the spin bands. An approximate analysis has also been carried out for the partially ordered state, and the result explains the temperature evolvement of the magnetic contributions to the resistivity and low-energy optical conductivity of CrO sub 2.

  15. Carbon Nanotubes Filled with Ferromagnetic Materials

    Weissker, Uhland; Hampel, Silke; Leonhardt, Albrecht; Büchner, Bernd

    2010-01-01

    Carbon nanotubes (CNT) filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD) methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology. PMID:28883334

  16. Excitation spectrum of ferromagnetic xxz-chains

    Schneider, T.; Stoll, E.

    1983-01-01

    In the history of xxz-Heisenberg spin chains, understanding of the dynamic form factors (DFF) is much less advanced. In this paper the DFF of ferromagnetic xxz chains as a tool to probe and interpret excitation spectrum is reviewed. The Isingheisenberg chain, and the Planar-Heisenberg chain (where HF approximations become exact) are studied. The results provide instructive connections between spin systems, interacting fermions and bosons. Various new aspects--thermally induced bound state effects in terms of central peaks in DFF for Isinglike xxz chains; the possibility to observe bound states in S /SUB zz/ (q,w) accessible by neutron scattering techniques, in the planar system--are found

  17. Spin transport in ferromagnetically contacted carbon nanotubes

    Meyer, C.; Morgan, C.; Schneider, C.M. [Peter Gruenberg Institut, PGI-6, Forschungszentrum Juelich and JARA Juelich Aachen Research Alliance, 52425 Juelich (Germany)

    2011-11-15

    We present magnetoresistance (MR) measurements on carbon nanotubes (CNTs) with different ferromagnetic leads. A sample with permalloy (Ni{sub 80}Fe{sub 20}) contacts shows the expected tunneling-type MR effect. Measurements on devices with CoPd contacts show a larger change of resistance with magnetic field. However, only minor loops are observed, which is explained with domain wall pinning. This is supported by magnetic force microscopy (MFM) measurements, which reveal a complicated bubble and stripe domain pattern. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Nonlinear wave propagation through a ferromagnet with damping in ...

    magnetic waves in a ferromagnet can be reduced to an integro-differential equation. Keywords. Solitons; integro-differential equations; reductive perturbation method. PACS Nos 41.20 Jb; 05.45 Yv; 03.50 De; 78.20 Ls. 1. Introduction. The phenomenon of propagation of electromagnetic waves in ferromagnets are not only.

  19. Levitation properties of maglev systems using soft ferromagnets

    Huang, Chen-Guang; Zhou, You-He

    2015-03-01

    Soft ferromagnets are widely used as flux-concentration materials in the design of guideways for superconducting magnetic levitation transport systems. In order to fully understand the influence of soft ferromagnets on the levitation performance, in this work we apply a numerical model based on the functional minimization method and the Bean’s critical state model to study the levitation properties of an infinitely long superconductor immersed in the magnetic field created by a guideway of different sets of infinitely long parallel permanent magnets with soft ferromagnets between them. The levitation force, guidance force, magnetic stiffness and magnetic pole density are calculated considering the coupling between the superconductor and soft ferromagnets. The results show that the levitation performance is closely associated with the permanent magnet configuration and with the location and dimension of the soft ferromagnets. Introducing the soft ferromagnet with a certain width in a few configurations always decreases the levitation force. However, for most configurations, the soft ferromagnets contribute to improve the levitation performance only when they have particular locations and dimensions in which the optimized location and thickness exist to increase the levitation force the most. Moreover, if the superconductor is laterally disturbed, the presence of soft ferromagnets can effectively improve the lateral stability for small lateral displacement and reduce the degradation of levitation force.

  20. Spin Heat Accumulation Induced by Tunneling from a Ferromagnet

    Vera-Marun, I.J.; Wees, B.J. van; Jansen, R.

    2014-01-01

    An electric current from a ferromagnet into a nonmagnetic material can induce a spin-dependent electron temperature. Here, it is shown that this spin heat accumulation, when created by tunneling from a ferromagnet, produces a non-negligible voltage signal that is comparable to that due to the

  1. Modelling the power losses in the ferromagnetic materials

    Detka Kalina

    2017-07-01

    Full Text Available In this paper, the problem of describing power losses in ferromagnetic materials is considered. The limitations of Steinmetz formula are shown and a new analytical description of losses in a considered material is proposed. The correctness of the developed description is demonstrated experimentally by comparing the results of calculation with the catalogue characteristics for different ferromagnetic materials.

  2. Magnetic excitons in singlet-ground-state ferromagnets

    Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.

    1971-01-01

    The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...

  3. A study on electrodeposited NixFe1−x alloy films

    on the magnetic and magnetoresistance properties of NiFe alloy films are mostly focused on the ... is clear from the figure that the Ni deposit content is measured to be 42 wt% for .... grain size change, the degree of ferromagnetic coupling etc.

  4. Ferromagnetic properties of manganese doped iron silicide

    Ruiz-Reyes, Angel; Fonseca, Luis F.; Sabirianov, Renat

    We report the synthesis of high quality Iron silicide (FeSi) nanowires via Chemical Vapor Deposition (CVD). The materials exhibits excellent magnetic response at room temperature, especially when doped with manganese showing values of 2.0 X 10-04 emu for the FexMnySi nanowires. SEM and TEM characterization indicates that the synthesized nanowires have a diameter of approximately 80nm. MFM measurements present a clear description of the magnetic domains when the nanowires are doped with manganese. Electron Diffraction and XRD measurements confirms that the nanowires are single crystal forming a simple cubic structure with space group P213. First-principle calculations were performed on (111) FeSi surface using the Vienna ab initio simulation package (VASP). The exchange correlations were treated under the Ceperley-Alder (CA) local density approximation (LDA). The Brillouin Zone was sampled with 8x8x1 k-point grid. A total magnetic moment of about 10 μB was obtained for three different surface configuration in which the Iron atom nearest to the surface present the higher magnetization. To study the effect of Mn doping, Fe atom was replaced for a Mn. Stronger magnetization is presented when the Mn atom is close to the surface. The exchange coupling constant have been evaluated calculating the energy difference between the ferromagnetic and anti-ferromagnetic configurations.

  5. Giant proximity effect in ferromagnetic bilayers

    Ramos, Silvia; Charlton, Tim; Quintanilla, Jorge; Suter, Andreas; Moodera, Jagadeesh; Prokscha, Thomas; Salman, Zaher; Forgan, Ted

    2013-03-01

    The proximity effect is a phenomenon where an ordered state leaks from a material into an adjacent one over some finite distance, ξ. For superconductors, this distance is ~ the coherence length. Nevertheless much longer-range, ``giant'' proximity effects have been observed in cuprate junctions. This surprising effect can be understood as a consequence of critical opalescence. Since this occurs near all second order phase transitions, giant proximity effects should be very general and, in particular, they should be present in magnetic systems. The ferromagnetic proximity effect has the advantage that its order parameter (magnetization) can be observed directly. We investigate the above phenomenon in Co/EuS bilayer films, where both materials undergo ferromagnetic transitions but at rather different temperatures (bulk TC of 1400K for Co and 16.6K for EuS). A dramatic increase in the range of the proximity effect is expected near the TC of EuS. We present the results of our measurements of the magnetization profiles as a function of temperature, carried out using the complementary techniques of low energy muon rotation and polarized neutron reflectivity. Work supported by EPSRC, STFC and ONR grant N00014-09-1-0177 and NSF grant DMR 0504158.

  6. Titanium nitride room-temperature ferromagnetic nanoparticles

    Morozov, Iu.G., E-mail: morozov@ism.ac.ru [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 8 Academician Osipyan Street, Chernogolovka, Moscow Region, 142432 (Russian Federation); Belousova, O.V. [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 8 Academician Osipyan Street, Chernogolovka, Moscow Region, 142432 (Russian Federation); Belyakov, O.A. [Ogarev Mordovia State University, Saransk, 68 Bol' shevistskaya Street, 430005 (Russian Federation); Parkin, I.P., E-mail: i.p.parkin@ucl.ac.uk [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Sathasivam, S. [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Kuznetcov, M.V., E-mail: maxim1968@mail.ru [All-Russian Research Institute on Problems of Civil Defense and Emergencies of Emergency Control Ministry of Russia (EMERCOM), 7 Davidkovskaya Street, Moscow, 121352 (Russian Federation)

    2016-08-05

    Cubic and near-spherical TiN nanoparticles ranging in average size from 20 to 125 nm were prepared by levitation-jet aerosol synthesis through condensation of titanium vapor in an inert gas flow with gaseous nitrogen injection. The nanoparticles were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), BET measurements, UV–Vis, FT-IR, Raman spectroscopy, XPS, and vibrating-sample magnetometry. Room-temperature ferromagnetism with maximum magnetization up to 2.5 emu/g was recorded for the nanoparticles. The results indicate that the observed ferromagnetic ordering was related to the defect Ti–N structures on the surface of nanoparticles. This suggestion is in good correlation with the measured spectroscopical data. - Highlights: • Levitation-jet aerosol synthesis of TiN nanoparticles (NPs). • SEM, XRD, BET, UV–vis, FT-IR, Raman, XPS and magnetic characterization of the NPs. • Correlation between optical and XPS measurements data and maximum magnetization of the NPs.

  7. Resistivity and magnetoresistivity of amorphous rare-earth alloys

    Borchi, E.; Poli, M.; De Gennaro, S.

    1982-05-01

    The resistivity and magnetoresistivity of amorphous rare-earth alloys are studied starting from the general approach of Van Peski-Tinbergen and Dekker. The random axial crystal-field and the magnetic correlations between the rare-earth ions are consistently taken into account. The characteristic features of the available experimental data are explained both of the case of random ferromagnetic and antiferromagnetic order.

  8. Hyperfine field at 111Cd nuclei in Heusler alloys

    Styczen, B.; Walus, W.; Szytula, A.

    1978-01-01

    The magnitudes and signs of the hyperfine fields in the ordered ferromagnetic Heusler Alloys X 2 MnZ and XMnZ (where X is Cu, Ni, Pd while Z is In, Sn and Sb) have been investigated at liquid nitrogen and room temperatures using TDPAC method. Their signs have been found to be negative. The results have been compared with the predictions of Caroll-Blandin and Cambell-Blandin models and RKKY theory. (Auth)

  9. The role of adaptive martensite in magnetic shape memory alloys

    Niemann, R.; Rößler, U.K.; Gruner, M.E.; Heczko, Oleg; Schultz, L.; Fähler, S.

    2012-01-01

    Roč. 14, č. 8 (2012), s. 562-581 ISSN 1438-1656 Grant - others:AVČR(CZ) M100100913 Institutional research plan: CEZ:AV0Z10100520 Keywords : Ni-Mn-Ga * magnetic shape memory alloy * ferromagnetic martensite * modulated structure * adaptive phase * mobility of twin boundary Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.608, year: 2012

  10. Giant magnetoresistance in CrFeMn alloys

    Xu, W.M.; Zheng, P.; Chen, Z.J.

    1997-01-01

    The electrical resistance and longitudinal magnetoresistance of Cr 75 (Fe x Mn 1-x ) 25 alloys, x=0.64, 0.72, are studied in the temperature range 1.5-270 K in applied field up to 7.5 T. The magnetoresistance is negative and strongly correlated with the spin reorientation. In the temperature range where the antiferromagnetic and ferromagnetic domains coexist, the samples display giant magnetoresistance which follows a H n -law at high field. (orig.)

  11. A simple fluxgate magnetometer using amorphous alloys

    Ghatak, S.K.; Mitra, A.

    1992-01-01

    A simple fluxgate magnetometer is developed using low magnetostrictive ferromagnetic amorphous alloy acting as a sensing element. It uses the fact that the magnetization of sensing element symmetrically magnetized by a sinusoidal field contains even harmonic components in presence of dc signal field H and the amplitude of the second harmonic component of magnetization is proportional to H. The sensitivity and linearity of the magnetometer with signal field are studied for parallel configuration and the field ranging from 10 nT to 10 μT can be measured. The functioning of the magnetometer is demonstrated by studying the shielding and flux-trapping phenomena in high-Tc superconductor. (orig.)

  12. Room-temperature ferromagnetism in cerium dioxide powders

    Rakhmatullin, R. M., E-mail: rrakhmat@kpfu.ru; Pavlov, V. V.; Semashko, V. V.; Korableva, S. L. [Kazan Federal University, Institute of Physics (Russian Federation)

    2015-08-15

    Room-temperature ferromagnetism is detected in a CeO{sub 2} powder with a grain size of about 35 nm and a low (<0.1 at %) manganese and iron content. The ferromagnetism in a CeO{sub 2} sample with a submicron crystallite size and the same manganese and iron impurity content is lower than in the nanocrystalline sample by an order of magnitude. Apart from ferromagnetism, both samples exhibit EPR spectra of localized paramagnetic centers, the concentration of which is lower than 0.01 at %. A comparative analysis of these results shows that the F-center exchange (FCE) mechanism cannot cause ferromagnetism. This conclusion agrees with the charge-transfer ferromagnetism model proposed recently.

  13. Electrical Resistance Alloys and Low-Expansion Alloys

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...... thermoelastic coefficients and age hardenable low expansion alloys....

  14. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles

    Seto, Takafumi; Koga, Kenji; Akinaga, Hiroyuki; Takano, Fumiyoshi; Orii, Takaaki; Hirasawa, Makoto

    2006-01-01

    Monodispersed CoPt alloy nanoparticles were synthesized by a pulsed laser ablation (PLA) technique coupled with a low-pressure operating differential mobility analyzer (LP-DMA). The CoPt alloy nanoparticles were generated by laser ablating a solid Co-Pt target. In CoPt alloy nanoparticles synthesized from a target with a Co composition of 75 at%, the nanoparticle surfaces were covered by an oxide layer and exhibited a core-shell structure. In contrast, no shell was observed in particles generated from a target with a Co:Pt ratio of 50:50 at%. According to an EDX analysis, the compositions of the individual nanoparticles were almost the same as that of the target material. Finally, the magnetic hysteresis loops of the CoPt alloy nanoparticles exhibited ferromagnetism

  15. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles

    Seto, Takafumi, E-mail: t.seto@aist.go.jp; Koga, Kenji; Akinaga, Hiroyuki; Takano, Fumiyoshi; Orii, Takaaki; Hirasawa, Makoto [National Institute of Advanced Industrial Science and Technology (AIST), Research Consortium for Synthetic Nano-Function Materials Project (SYNAF) (Japan)

    2006-08-15

    Monodispersed CoPt alloy nanoparticles were synthesized by a pulsed laser ablation (PLA) technique coupled with a low-pressure operating differential mobility analyzer (LP-DMA). The CoPt alloy nanoparticles were generated by laser ablating a solid Co-Pt target. In CoPt alloy nanoparticles synthesized from a target with a Co composition of 75 at%, the nanoparticle surfaces were covered by an oxide layer and exhibited a core-shell structure. In contrast, no shell was observed in particles generated from a target with a Co:Pt ratio of 50:50 at%. According to an EDX analysis, the compositions of the individual nanoparticles were almost the same as that of the target material. Finally, the magnetic hysteresis loops of the CoPt alloy nanoparticles exhibited ferromagnetism.

  16. Dilute ferromagnetic semiconductors prepared by the combination of ion implantation with pulse laser melting

    Zhou, Shengqiang

    2015-01-01

    Combining semiconducting and ferromagnetic properties, dilute ferromagnetic semiconductors (DFS) have been under intensive investigation for more than two decades. Mn doped III–V compound semiconductors have been regarded as the prototype of DFS from both experimental and theoretic investigations. The magnetic properties of III–V:Mn can be controlled by manipulating free carriers via electrical gating, as for controlling the electrical properties in conventional semiconductors. However, the preparation of DFS presents a big challenge due to the low solubility of Mn in semiconductors. Ion implantation followed by pulsed laser melting (II-PLM) provides an alternative to the widely used low-temperature molecular beam epitaxy (LT-MBE) approach. Both ion implantation and pulsed-laser melting occur far enough from thermodynamic equilibrium conditions. Ion implantation introduces enough dopants and the subsequent laser pulse deposit energy in the near-surface region to drive a rapid liquid-phase epitaxial growth. Here, we review the experimental study on preparation of III–V:Mn using II-PLM. We start with a brief description about the development of DFS and the physics behind II-PLM. Then we show that ferromagnetic GaMnAs and InMnAs films can be prepared by II-PLM and they show the same characteristics of LT-MBE grown samples. Going beyond LT-MBE, II-PLM is successful to bring two new members, GaMnP and InMnP, into the family of III–V:Mn DFS. Both GaMnP and InMnP films show the signature of DFS and an insulating behavior. At the end, we summarize the work done for Ge:Mn and Si:Mn using II-PLM and present suggestions for future investigations. The remarkable advantage of II-PLM approach is its versatility. In general, II-PLM can be utilized to prepare supersaturated alloys with mismatched components. (topical review)

  17. Study of the structural, electronic and magnetic properties of ScFeCrT (T=Si, Ge) Heusler alloys by first principles approach

    Rasool, Muhammad Nasir [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Hussain, Altaf, E-mail: altafiub@yahoo.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Javed, Athar, E-mail: athar.physics@pu.edu.pk [Department of Physics, University of the Punjab, Lahore 54590 (Pakistan); Khan, Muhammad Azhar [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan)

    2017-03-15

    Spin polarized structural, electronic, magnetic and bonding properties of ScFeCrT (T=Si, Ge) Heusler alloys are studied by employing density functional theory. The total energy calculation (for a static lattice) shows that both alloys are structurally stable in ferromagnetic phase with compressibility C{sub ScFeCrSi}>C{sub ScFeCrGe}. The electronic and band structure analysis show that the ScFeCrT alloys exhibit half-metallic ferromagnetic (HMF) behaviour for spin ↑ channel while semiconducting behaviour in spin ↓ channel. Both alloys exhibit total magnetic moment, M{sub Total}=3.0 µ{sub B}/cell obeying the Slater Pauling rule, M{sub SPR}=(N{sub v} –18)μ{sub B}. For ScFeCrSi and ScFeCrGe alloys, the charge density and interatomic bonding character show highly covalent and polar covalent character, respectively. For both alloys, 100% spin polarization (for spin ↑ state) is expected which is an indication of their suitability for applications in spintronic devices. - Highlights: • Heusler alloys ScFeCrT (T= Si, Ge) are studied by first principles approach. • Structural, electronic, magnetic and bonding properties are reported. • Both alloys show half-metallicity and ferromagnetic behaviour. • Combination of properties shows the suitability of alloys in spintronic devices.

  18. Spin-flip scattering effect on the current-induced spin torque in ferromagnet-insulator-ferromagnet tunnel junctions

    Zhu Zhengang; Su Gang; Jin Biao; Zheng Qingrong

    2003-01-01

    We have investigated the current-induced spin transfer torque of a ferromagnet-insulator-ferromagnet tunnel junction by taking the spin-flip scatterings into account. It is found that the spin-flip scattering can induce an additional spin torque, enhancing the maximum of the spin torque and giving rise to an angular shift compared to the case when the spin-flip scatterings are neglected. The effects of the molecular fields of the left and right ferromagnets on the spin torque are also studied. It is found that τ Rx /I e (τ Rx is the spin-transfer torque acting on the right ferromagnet and I e is the tunneling electrical current) does vary with the molecular fields. At two certain angles, τ Rx /I e is independent of the molecular field of the right ferromagnet, resulting in two crossing points in the curve of τ Rx /I e versus the relevant orientation for different molecular fields

  19. Comparative Study by MS and XRD of Fe50Al50 Alloys Produced by Mechanical Alloying, Using Different Ball Mills

    Rojas Martinez, Y.; Perez Alcazar, G. A.; Bustos Rodriguez, H.; Oyola Lozano, D.

    2005-01-01

    In this work we report a comparative study of the magnetic and structural properties of Fe 50 Al 50 alloys produced by mechanical alloying using two different planetary ball mills with the same ball mass to powder mass relation. The Fe 50 Al 50 sample milled during 48 h using the Fritsch planetary ball mill pulverisette 5 and balls of 20 mm, presents only a bcc alloy phase with a majority of paramagnetic sites, whereas that sample milled during the same time using the Fritsch planetary ball mill pulverisette 7 with balls of 15 mm, presents a bcc alloy phase with paramagnetic site (doublet) and a majority of ferromagnetic sites which include pure Fe. However for 72 h of milling this sample presents a bcc paramagnetic phase, very similar to that prepared with the first system during 48 h. These results show that the conditions used in the first ball mill equipment make more efficient the milling process.

  20. Hydrostatic pressure effect on the magnetocaloric behavior of Ga-doped MnNiGe magnetic equiatomic alloy

    Dutta, P; Das, D; Chatterjee, S; Pramanick, S; Majumdar, S

    2016-01-01

    The magnetocaloric properties of a new class of ferromagnetic shape memory alloys of nominal composition MnNiGe 0.928 Ga 0.072 have been investigated in ambient conditions as well as in the presence of external hydrostatic pressure. Both inverse (6.35 Jkg −1 K −1 for 0  −  50 kOe around 160 K) and conventional (−4.54 Jkg −1 K −1 for 0–50 kOe around 210 K) magnetocaloric effects (MCEs) have been observed around the structural and magnetic transitions respectively. The sample can be thought of as being derived from the parent MnNiGe alloy, where Ga was doped at the expense of the Ge atom. Ga doping at Ge sites brings down the martensitic transition temperature to below room temperature and induces ferromagnetism by affecting the lattice volume of the alloy. However, below the first-order martensitic transition the alloy loses its ferromagnetism. Application of external hydrostatic pressure results in a revival of ferromagnetic interactions in the martensitic phase of the alloy and a considerable increase in the refrigeration capacity around the conventional MCE region. (paper)

  1. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  2. Driving higher magnetic field sensitivity of the martensitic transformation in MnCoGe ferromagnet

    Ma, S. C.; Ge, Q.; Hu, Y. F.; Wang, L.; Liu, K.; Jiang, Q. Z.; Wang, D. H.; Hu, C. C.; Huang, H. B.; Cao, G. P.; Zhong, Z. C.; Du, Y. W.

    2017-11-01

    The sharp metamagnetic martensitic transformation (MMT) triggered by a low critical field plays a pivotal role in magnetoresponsive effects for ferromagnetic shape memory alloys (FSMAs). Here, a sharper magnetic-field-induced metamagnetic martensitic transformation (MFIMMT) is realized in Mn1-xCo1+xGe systems with a giant magnetocaloric effect around room temperature, which represents the lowest magnetic driving and completion fields as well as the largest magnetization difference around MFIMMT reported heretofore in MnCoGe-based FSMAs. More interestingly, a reversible MFIMMT with field cycling is observed in the Mn0.965Co0.035Ge compound. These results indicate that the consensus would be broken that the magnetic field is difficult to trigger the MMT for MnCoGe-based systems. The origin of a higher degree of sensitivity of martensitic transformation to the magnetic field is discussed based on the X-ray absorption spectroscopic results.

  3. Comparison of field swept ferromagnetic resonance methods - A case study using Ni-Mn-Sn films

    Modak, R.; Samantaray, B.; Mandal, P.; Srinivasu, V. V.; Srinivasan, A.

    2018-05-01

    Ferromagnetic resonance spectroscopy is used to understand the magnetic behavior of Ni-Mn-Sn Heusler alloy film. Two popular experimental methods available for recording FMR spectra are presented here. In plane angular (φH) variation of magnetic relaxation is used to evaluate the in plane anisotropy (Ku) of the film. The out of plane (θH) variation of FMR spectra has been numerically analyzed to extract the Gilbert damping coefficient, effective magnetization and perpendicular magnetic anisotropy (K1). Magnetic homogeneity of the film had also been evaluated in terms of 2-magnon contribution from FMR linewidth. The advantage and limitations of these two popular FMR techniques are discussed on the basis of the results obtained in this comparative study.

  4. Ferromagnetic resonance linewidth and two-magnon scattering in Fe1-xGdx thin films

    Sheng Jiang

    2017-05-01

    Full Text Available Magnetization dynamics of Fe1-xGdx thin films (0 ≤ x ≤ 22% has been investigated by ferromagnetic resonance (FMR. Out-of-plane magnetic field orientation dependence of resonance field and linewidth has been measured. Resonance field and FMR linewidth have been fitted by the free energy of our system and Landau-Lifshitz-Gilbert (LLG equation. It is found that FMR linewidth contains huge extrinsic components including two-magnon scattering contribution and inhomogeneous broadening for FeGd alloy thin films. In addition, the intrinsic linewidth and real damping constants have been obtained by extracting the extrinsic linewidth. The damping constant enhanced from 0.011 to 0.038 as Gd dopants increase from 0 to 22% which originates from the enhancement of L-S coupling in FeGd thin films. Besides, gyromagnetic ratio, Landé factor g and magnetic anisotropy of our films have also been determined.

  5. Graphic User Interface for Monte Carlo Simulation of Ferromagnetic/Antiferromagnetic Manganite Bilayers

    Hector Barco-Ríos

    2011-06-01

    Full Text Available The manganites have been widely studied because of their important properties as colossal magnetoresistance and exchange bias that are important phenomena used in many technological applications. For this reason, in this work, a study of the exchange bias effect present in La2/3Ca1/3MnO3/La1/3Ca2/3MnO3. This study was carried out by using the Monte Carlo method and the Metropolis Algorithm. In order to make easy this study, a graphic user interface was built alloying a friendly interaction. The interface permits to control the thickness of Ferromagnetic and Antiferromagnetic layer, temperatures the magnetic field, the number of Monte Carlo steps and the exchange parameters. Results obtained reflected the influence of all of these parameters on the exchange bias and coercive fields.

  6. Perfect GMR effect in gapped graphene-based ferromagnetic normal ferromagnetic junctions

    Hossein Karbaschi; Gholam Reza Rashedi

    2015-01-01

    We investigate the quantum transport property in gapped graphene-based ferromagnetic/normal/ferromagnetic (FG/NG/FG) junctions by using the Dirac–Bogoliubov–de Gennes equation. The graphene is fabricated on SiC and BN substrates separately, so carriers in FG/NG/FG structures are considered as massive relativistic particles. Transmission prob-ability, charge, and spin conductances are studied as a function of exchange energy of ferromagnets (h), size of graphene gap, and thickness of normal graphene region (L) respectively. Using the experimental values of Fermi energy in the normal graphene part (EFN∼400 meV) and energy gap in graphene (260 meV for SiC and 50 meV for BN substrate), it is shown that this structure can be used for both spin-up and spin-down polarized current. The latter case has different behavior of gapped FG/NG/FG from that of gapless FG/NG/FG structures. Also perfect charge giant magnetoresistance is observed in a range of EFN−mv2F

  7. Magnetic excitations in transition-metal ferromagnets

    Uemura, Y.J.

    1984-01-01

    A review is given on current neutron scattering experiments at Brookhaven National Laboratory on transition-metal ferromagnets Ni, Fe, Pd 2 MnSn and MnSi. The scattering intensity in constant-energy scans, observed above T/sub c/ in all of these materials, exhibited a clear peak at finite momentum transfers. Using a simple scattering function with double-Lorentzian shape, we demonstrate that this peak is a manifestation of simple diffusive spin fluctuations. Experimental results of several parameters are compared in the context of localized-moment and itinerant-electron pictures. The ratio of spin wave stiffness constant D and transition temperature kT/sub c/ is shown to be a good yardstick for the degree of itinerancy of d-electrons

  8. ''Soft'' Anharmonic Vortex Glass in Ferromagnetic Superconductors

    Radzihovsky, Leo; Ettouhami, A. M.; Saunders, Karl; Toner, John

    2001-01-01

    Ferromagnetic order in superconductors can induce a spontaneous vortex (SV) state. For external field H=0 , rotational symmetry guarantees a vanishing tilt modulus of the SV solid, leading to drastically different behavior than that of a conventional, external-field-induced vortex solid. We show that quenched disorder and anharmoinc effects lead to elastic moduli that are wave-vector dependent out to arbitrarily long length scales, and non-Hookean elasticity. The latter implies that for weak external fields H , the magnetic induction scales universally like B(H)∼B(0)+cH α , with α∼0.72 . For weak disorder, we predict the SV solid is a topologically ordered glass, in the ''columnar elastic glass'' universality class

  9. Muon spin relaxation in ferromagnets. Pt. 1

    Lovesey, S.W.; Karlsson, E.B.

    1991-04-01

    Expressions for the dipolar and hyperfine contributions to the relaxation rate of muons implanted in a ferromagnet are presented and analysed using the Heisenberg model of spin-waves including dipolar and Zeeman energies. Calculations for EuO indicate that relaxation is likely to be dominated by the hyperfine mechanism, even if the ratio of the hyperfine and dipolar coupling constants is small. The hyperfine mechanism is sensitive to the dipolar energy of the atomic spins, whereas the dipolar mechanisms depend essentially on the exchange energy. For both mechanisms there is an almost quadratic dependence on temperature, throughout much of the ordered magnetic phase, which reflects two-spin-wave difference events from the Raman-type relaxation processes. (author)

  10. Ferromagnetic rollers in a harmonic confinement

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.

    We present the emergence of flocking and global rotation in a system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field confined in a harmonic potential. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clock / counterclockwise particle rotation, collisional alignment of particle velocities, and random particle re-orientations due to shape imperfections. We also emphasize a subtle role of rotational noise: While the low-frequency flocking appears to be noise-insensitive, the reentrant flocking happens to be noise-activated. Moreover, we uncover a new relation between collective motion and synchronisation.

  11. Quantum stability for the Heisenberg ferromagnet

    Bargheer, Till; Beisert, Niklas; Gromov, Nikolay

    2008-01-01

    Highly spinning classical strings on RxS 3 are described by the Landau-Lifshitz model or equivalently by the Heisenberg ferromagnet in the thermodynamic limit. The spectrum of this model can be given in terms of spectral curves. However, it is a priori not clear whether any given admissible spectral curve can actually be realized as a solution to the discrete Bethe equations, a property which can be referred to as stability. In order to study the issue of stability, we find and explore the general two-cut solution or elliptic curve. It turns out that the moduli space of this elliptic curve shows a surprisingly rich structure. We present the various cases with illustrations and thus gain some insight into the features of multi-cut solutions. It appears that all admissible spectral curves are indeed stable if the branch cuts are positioned in a suitable, non-trivial fashion.

  12. Critical behavior of ferromagnetic Ising thin films

    Cossio, P.; Mazo-Zuluaga, J.; Restrepo, J.

    2006-01-01

    In the present work, we study the magnetic properties and critical behavior of simple cubic ferromagnetic thin films. We simulate LxLxd films with semifree boundary conditions on the basis of the Monte Carlo method and the Ising model with nearest neighbor interactions. A Metropolis dynamics was implemented to carry out the energy minimization process. For different film thickness, in the nanometer range, we compute the temperature dependence of the magnetization, the magnetic susceptibility and the fourth order Binder's cumulant. Bulk and surface contributions of these quantities are computed in a differentiated fashion. Additionally, according to finite size scaling theory, we estimate the critical exponents for the correlation length, magnetic susceptibility, and magnetization. Results reveal a strong dependence of critical temperature and critical exponents on the film thickness. The obtained critical exponents are finally compared to those reported in literature for thin films

  13. Surface effects in the Potts ferromagnet

    Tsallis, C.; Sarmento, E.F.

    1984-01-01

    Within a real space renormalisation group framework, the phase diagram of a semi-infinite cubic-lattice q-state Potts ferromagnet is studied, in which the free surface coupling constant J sub(S) = (1+Δ)J sub(B) might be different from the bulk one J sub(B). The starting value Δ sub(c) (q) is calculated above which surface order is possible even if bulk order is absent. Our results can be alternatively seen as approximate for the simple cubic lattice (as a matter of fact, the Ising value Δ sub(c) (2) obtained approaches the series result better than any other theory known consequently Δ sub(c) (q) is expected to be quite satisfactory even for q not= 2) or as exact for a well defined diamond-like hierarchical lattice. In the q →0 limit, Δ sub(c) diverges as 1/√q. (Author) [pt

  14. Heat exchanges in a quenched ferromagnet

    Corberi, Federico; Zannetti, Marco [Dipartimento di Fisica ' E.R. Caianiello' , and CNISM, Unita di Salerno, Universita di Salerno, via Ponte don Melillo, I-84084 Fisciano, SA (Italy); Gonnella, Giuseppe; Piscitelli, Antonio [Dipartimento di Fisica, Universita di Bari and INFN, Sezione di Bari, via Amendola 173, I-70126 Bari (Italy)

    2013-02-01

    The off-equilibrium probability distribution of the heat exchanged by a ferromagnet in a time interval after a quench below the critical point is calculated analytically in the large-N limit. The distribution is characterized by a singular threshold Q{sub C} < 0, below which a macroscopic fraction of heat is released by the k = 0 Fourier component of the order parameter. The mathematical structure producing this phenomenon is the same responsible for the order parameter condensation in the equilibrium low temperature phase. The heat exchanged by the individual Fourier modes follows a non-trivial pattern, with the unstable modes at small wave vectors warming up the modes around a characteristic finite wave vector k{sub M}. Two internal temperatures, associated with the k = 0 and k = k{sub M} modes, rule the heat currents through a fluctuation relation similar to the one for stationary systems in contact with two thermal reservoirs. (fast track communication)

  15. Ultrafast Magnetism of Multi-component Ferromagnets and Ferrimagnets on the Time Scale of the Exchange Interaction

    Radu, Ilie

    2012-02-01

    Revealing the ultimate speed limit at which magnetic order can be controlled, is a fundamental challenge of modern magnetism having far reaching implications for the magnetic recording industry [1]. Exchange interaction is the strongest force in magnetism, being ultimately responsible for ferromagnetic or antiferromagnetic spin order. How do spins react after being optically excited on a timescale of or even faster than the exchange interaction? Here, we demonstrate that femtosecond (fs) measurements of ferrimagnetic and ferromagnetic alloys using X-ray magnetic circular dichroism provide revolutionary new insights into the problem of ultrafast magnetism on timescales pertinent to the exchange interaction. In particular, we show that upon fs optical excitation the ultrafast spin reversal of GdFeCo - a material with antiferromagnetic coupling of spins - occurs via a transient ferromagnetic state [2]. The latter emerges due to different dynamics of the Gd and Fe magnetic moments: Gd switches within 1.5 ps while it takes only 300 fs for Fe. Thus, by using a single fs laser pulse one can force the spin system to evolve via an energetically unfavorable way and temporarily switch from an antiferromagnetic to a ferromagnetic type of ordering. In order to understand whether the observation of this temporarily decoupled and element-specific dynamics is a general phenomenon or just something strictly related to the case of ferrimagnetic GdFeCo, we have investigated the demagnetization of the archetypal ferromagnetic NiFe alloys. Essentially, we observe the same distinct magnetization dynamics of the constituent magnetic moments: Ni demagnetizes within ˜300 fs being much faster than the demagnetization of Fe of ˜800 fs. This distinct demagnetization behavior leads to an apparent decoupling of the Fe and Ni magnetic moments on a few hundreds of fs time scale, despite the strong exchange interaction of 260meV (˜16 fs) that couples them. These observations supported by

  16. Neutron depolarization study of static and dynamic magnetic properties of ferromagnets

    Stuesser, N.

    1986-01-01

    In this thesis neutron depolarization experiments are performed on amorphous and crystalline ferromagnetic materials. The subjects studied are concerned with 'domain structure in magnetically weak uniaxial amorphous ferromagnetic ribbons', 'static critical behaviour at the ferromagnetic-paramagnetic phase transition', 'small magnetic anisotropy in nickel near T c ', and 'magnetization reversal in conducting ferromagnets'. 87 refs.; 37 figs.; 3 tabs

  17. Single-magnon tunneling through a ferromagnetic nanochain

    Petrov, E.G.; Ostrovsky, V.

    2010-01-01

    Magnon transmission between ferromagnetic contacts coupled by a linear ferromagnetic chain is studied at the condition when the chain exhibits itself as a tunnel magnon transmitter. It is shown that dependently on magnon energy at the chain, a distant intercontact magnon transmission occurs either in resonant or off-resonant tunneling regime. In the first case, a transmission function depends weakly on the number of chain sites whereas at off-resonant regime the same function manifests an exponential drop with the chain length. Change of direction of external magnetic field in one of ferromagnetic contacts blocks a tunnel transmission of magnon.

  18. Ferromagnetic properties of Mn-doped AlN

    Li, H.; Bao, H.Q.; Song, B.; Wang, W.J.; Chen, X.L.; He, L.J.; Yuan, W.X.

    2008-01-01

    Mn-doped AlN polycrystalline powders with a wurtzite structure were synthesized by solid-state reactions. A red-orange band at 600 nm, due to Mn 3+ incorporated into the AlN lattice, is observed in the photoluminescence (PL) spectrum at room temperature (RT). Magnetic measurements show the samples possess hysteresis loops up to 300 K, indicating that the obtained powders are ferromagnetic at around RT. The Mn concentration-induced RT ferromagnetism is less than 1 at%. Our results confirm that the RT ferromagnetism can be realized in Mn-doped AlN

  19. Flux penetration in a ferromagnetic/superconducting bilayer

    Adamus, Z.; Cieplak, M.Z.; Abal' Oshev, A. [Polish Acad Sci, Inst Phys, PL-02668 Warsaw, (Poland); Konczykowski, M. [CEA/DSM/DRECAM, Laboratoire des Solides Irradies, F-91191 Gif Sur Yvette, (France); Konczykowski, M. [Ecole Polytech, CNRS - UMR 7642, F-91128 Palaiseau, (France); Cheng, X.M.; Zhu, L.Y.; Chien, C.L. [Johns Hopkins Univ, Dept Phys and Astron, Baltimore, MD 21218 (United States)

    2007-07-01

    An array of miniature Hall sensors is used to study the magnetic flux penetration in a ferromagnetic/superconducting bilayer consisting of Nb as a superconducting layer and Co/Pt multilayer with perpendicular magnetic anisotropy as a ferromagnetic layer, separated by an amorphous Si layer to avoid the proximity effect. It is found that the magnetic domains in the ferromagnetic layer create a large edge barrier in the superconducting layer which delays flux penetration. The smooth flux profiles observed in the absence of magnetic pinning change into terraced profiles in the presence of domains. (authors)

  20. Effects of Rashba and Dresselhaus spin-orbit couplings on itinerant ferromagnetism

    Liu, Mengnan; Xu, Liping; Wan, Yong; Yan, Xu

    2018-02-01

    Based on Stoner model for itinerant ferromagnet, effects of spin-orbit coupling (SOC) on ferromagnetism were investigated at zero temperature. It was found that SOC will enhance the critical ferromagnetic exchange interaction for spontaneous magnetization, and then suppress ferromagnetism. In case of the coexistence of Rashba and Dresselhaus SOCs, the mixture of the two spin-orbit couplings showed stronger suppressed effect on ferromagnetism than only one kind of SOC alone. When the two SOCs mixed with equal magnitude, ferromagnetism in itinerant ferromagnet was suppressed to minimum.

  1. Study of magnetoresistance in the supercooled state of Dy-Y alloys

    Jena, Rudra Prasad; Lakhani, Archana

    2018-02-01

    We report the magnetoresistance studies on Dy1-xYx (x ≤ 0.05) alloys across the first order helimagnetic to ferromagnetic phase transition. These alloys exhibit multiple magnetic phases on varying the temperature and magnetic field. The magnetoresistance studies in the hysteresis region shows irreversibility in forward and reverse field cycles. The resistivity values at zero field for these alloys after zero field cooling to the measurement temperatures, are different in both forward and reverse field cycles. The path dependence of magnetoresistance suggests the presence of helimagnetic phase as the supercooled metastable state which transforms to the stable ferromagnetic state on increasing the field. At high magnetic fields negative magnetoresistance following a linear dependence with field is observed which is attributed to the magnon scattering.

  2. Superconducting alloys

    Bowers, J.E.

    1976-01-01

    Reference is made to superconductors having high critical currents. The superconductor described comprises an alloy consisting of a matrix of a Type II superconductor which is a homogeneous mixture of 50 to 95 at.% Pb and 5 to 40 at.%Bi and/or 10 to 50 at.%In. Dispersed in the matrix is a material to provide pinning centres comprising from 0.01% to 20% by volume of the alloy; this material is a stable discontinuous phase of discrete crystalline particles of Cu, Mn, Te, Se, Ni, Ca, Cr, Ce, Ge or La, either in the form of the element or a compound with a component of the matrix. These particles should have an average diameter of not more than 2μ. A method for making this alloy is described. (U.K.)

  3. Micromagnetism and the microstructure of ferromagnetic solids

    Kronmüller, Helmut

    2003-01-01

    Here is a fundamental introduction to microstructure magnetic property relations where microstructures on atomic, nano- and micrometer scales are considered. The authors demonstrate that outstanding magnetic properties require an optimization of microstructural properties where the microstructures in crystalline materials are point defects and dislocations as well as grain and phase boundaries. In amorphous alloys the type of microstructures on atomic scales are defined and used to describe intrinsic and extrinsic properties.

  4. Tunneling time and Hartman effect in a ferromagnetic graphene superlattice

    Farhad Sattari

    2012-03-01

    Full Text Available Using transfer-matrix and stationary phase methods, we study the tunneling time (group delay time in a ferromagnetic monolayer graphene superlattice. The system we peruse consists of a sequence of rectangular barriers and wells, which can be realized by putting a series of electronic gates on the top of ferromagnetic graphene. The magnetization in the two ferromagnetic layers is aligned parallel. We find out that the tunneling time for normal incident is independent of spin state of electron as well as the barrier height and electron Fermi energy while for the oblique incident angles the tunneling time depends on the spin state of electron and has an oscillatory behavior. Also the effect of barrier width on tunneling time is also investigated and shown that, for normal incident, the Hartman effect disappears in a ferromagnetic graphene superlattice but it appears for oblique incident angles when the x component of the electron wave vector in the barrier is imaginary.

  5. Possible mechanism for d0 ferromagnetism mediated by intrinsic defects

    Zhang, Zhenkui

    2014-01-01

    We examine the effects of several intrinsic defects on the magnetic behavior of ZnS nanostructures using hybrid density functional theory to gain insights into d0 ferromagnetism. Previous studies have predicted that the magnetism is due to a coupling between partially filled defect states. By taking into account the electronic correlations, we find an additional splitting of the defect states in Zn vacancies and thus the possibility of gaining energy by preferential filling of hole states, establishing ferromagnetism between spin polarized S 3p holes. We demonstrate a crucial role of neutral S vacancies in promoting ferromagnetism between positively charged S vacancies. S dangling bonds on the nanoparticle surface also induce ferromagnetism. This journal is

  6. Comment on ``Ferromagnetic film on a superconducting substrate''

    Sonin, E. B.

    2002-10-01

    A superconducting substrate is not able to shrink drastically domains in a ferromagnetic film, contrary to the prediction of Bulaevskii and Chudnovsky. This is shown on the basis of the exact solution for the stripe domain structure.

  7. Polarised neutron diffraction studies on weak ferromagnetism - a survey

    Radhakrishna, P.

    1982-10-01

    The physical basis of the phenomenon of weak ferromagnetism in certain antiferromagnetic insulators is briefly discussed. A survey of the contributions of polarised neutron diffraction towards the elucidation of different aspects of this field is presented

  8. Penetration of magnetic field in ferromagnetic transformer sheet

    Sikora, R; Ziolkowski, M

    1981-01-12

    The paper deals with the penetration of magnetic field in a ferromagnetic transformer sheet. The flux-density distribution is computed using Galerkin's procedure. The different boundary conditions and the nonlinear B/H characteristic is taken into account.

  9. Possible mechanism for d0 ferromagnetism mediated by intrinsic defects

    Zhang, Zhenkui; Schwingenschlö gl, Udo; Roqan, Iman S.

    2014-01-01

    We examine the effects of several intrinsic defects on the magnetic behavior of ZnS nanostructures using hybrid density functional theory to gain insights into d0 ferromagnetism. Previous studies have predicted that the magnetism is due to a

  10. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles

    Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu

    2014-01-01

    The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H 2 in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between “on” and “off” states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (V Zn  + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, V Zn  + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μ B . The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism

  11. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles

    Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu

    2014-01-01

    The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H2 in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between "on" and "off" states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (VZn + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, VZn + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μB. The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism.

  12. Micromagnetic simulation of exchange coupled ferri-/ferromagnetic heterostructures

    Oezelt, Harald, E-mail: harald.oezelt@fhstp.ac.at [Industrial Simulation, St. Pölten University of Applied Sciences, Matthias Corvinus-Straße 15, A-3100 St. Pölten (Austria); Kovacs, Alexander; Reichel, Franz; Fischbacher, Johann; Bance, Simon [Industrial Simulation, St. Pölten University of Applied Sciences, Matthias Corvinus-Straße 15, A-3100 St. Pölten (Austria); Gusenbauer, Markus [Center for Integrated Sensor Systems, Danube University Krems, Viktor Kaplan-Straße 2, A-2700 Wiener Neustadt (Austria); Schubert, Christian; Albrecht, Manfred [Institute of Physics, Chemnitz University of Technology, Reichenhainer Straße 70, D-09126 Chemnitz (Germany); Institute of Physics, University of Augsburg, Universitätsstraße 1, D-86159 Augsburg (Germany); Schrefl, Thomas [Industrial Simulation, St. Pölten University of Applied Sciences, Matthias Corvinus-Straße 15, A-3100 St. Pölten (Austria); Center for Integrated Sensor Systems, Danube University Krems, Viktor Kaplan-Straße 2, A-2700 Wiener Neustadt (Austria)

    2015-05-01

    Exchange coupled ferri-/ferromagnetic heterostructures are a possible material composition for future magnetic storage and sensor applications. In order to understand the driving mechanisms in the demagnetization process, we perform micromagnetic simulations by employing the Landau–Lifshitz–Gilbert equation. The magnetization reversal is dominated by pinning events within the amorphous ferrimagnetic layer and at the interface between the ferrimagnetic and the ferromagnetic layer. The shape of the computed magnetization reversal loop corresponds well with experimental data, if a spatial variation of the exchange coupling across the ferri-/ferromagnetic interface is assumed. - Highlights: • We present a model for exchange coupled ferri-/ferromagnetic heterostructures. • We incorporate the microstructural features of the amorphous ferrimagnet. • A distribution of interface exchange coupling is assumed to fit experimental data. • The reversal is dominated by pinning within the ferrimagnet and at the interface.

  13. Ferromagnetism of Pd-Fe (abstract)

    Griffith, G.; Carnegie, D. W., Jr.; Claus, H.

    1984-03-01

    We present new low field ac susceptibility measurements on Pd1-xFex alloys (0.002≤X<0.01). The Curie temperature TC, determined from these measurements, are significantly lower than those previously obtained in higher magnetic fields [G. J. Nieuwenhuys, Adv. Phys. 24, 515 (1975)]. We also found that for a given sample, TC depends very sensitively on its heat treatment. As an example, for an alloy with 0.4 at. % Fe, TC can be varied between 4 and 10 K. In other alloys, like PdNi or RhNi similar changes in TC are due to changes in the degree of atomic short-range order [S. Crane, D. W. Carnegie, Jr., and H. Claus, J. Appl. Phys. 53, 2179 (1982)]. However, for PdFe we show evidence that the changes in TC are due to absorption of small amounts of oxygen, the samples with the highest amount of oxygen having the highest TC. It thus seems that oxygen has the opposite effect from hydrogen on the exchange enhanced susceptibility of Pd [J. A. Mydosh, Phys. Rev. Lett. 33, 1562 (1974)].

  14. Structural, thermal and magnetic investigations on immiscible Ag–Co nanocrystalline alloy with addition of Mn

    Mondal, B.N., E-mail: bholanath_mondal@yahoo.co.in [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Chabri, S. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India); Sardar, G. [Department of Zoology, Baruipur College, South 24 Parganas 743610 (India); Nath, D.N. [Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2016-08-15

    50Ag–50Co (at%) and 40Ag–40Co–20Mn (at%) alloys prepared by ball milling up to 50 h and subsequent isothermal annealing at the temperature range of 350–650 °C for 1 h has been investigated systematically. Mn promotes early formation of the nanostructures and solid solutions of the alloys by ball milling. In contrast, annealing at 350 °C of Ag–Co alloy resulted the dissolution of hcp Co. Annealing above 350 °C decomposes the metastable Ag–Co alloy into the polycrystalline and segregated Ag and fcc Co. Enthalpy of mixing of both the alloy has increased with increase in milling time. Both the nanocrystalline alloys prepared by ball milling and annealing have been revealed the ferromagnetic behavior. The most significant improvement of magnetic properties is yielded in as-milled Ag–Co–Mn alloy obtained after annealing at 550 °C for 1 h. - Highlights: • A complete solid solution of Ag–Co–Mn alloy obtained after 50 h of milling. • A complete solid solution of milled Ag–Co alloy forms annealed at 350 {sup °}C for 1 h. • Precipitation of fcc Co are observed after annealing above 350 °C. • Enthalpy of mixing of the alloys increased with increase in milling time. • The superior magnetic properties achieved of Ag–Co–Mn alloy annealed at 550 °C.

  15. Remote field eddy current testing of ferromagnetic tubes

    David, B.

    1990-01-01

    In order to test ferromagnetic tubes using internal probes, Intercontrole and the CEA have carried out theoretical and experimental works and developed a method to adapt the Remote Field Eddy Current technique which has been known and used for 30 years now. This document briefly recalls the basic principles of the Remote Field Eddy Current technique, the various steps of the works carried out and mainly describes examples of field inspection of ferromagnetic tubes and pipes [fr

  16. Targets with thin ferromagnetic layers for transient field experiments

    Gallant, J.L.; Dmytrenko, P.

    1982-01-01

    Multilayer targets containing a central layer sufficiently thin so that all recoil nuclei can traverse it and subsequently stop in a suitable cubic environment have been prepared. Such targets are required in experiments making use of a magnetic field acting on an ion moving through a ferromagnetic material. The preparation and annealing of the ferromagnetic foils (iron and gadolinium) and the fabrication of the multilayer targets are described. (orig.)

  17. Evidence of weak ferromagnetism in chromium(III) oxide particles

    Vazquez-Vazquez, Carlos; Banobre-Lopez, Manuel; Lopez-Quintela, M.A.; Hueso, L.E.; Rivas, J.

    2004-01-01

    The low temperature (4< T(K)<350) magnetic properties of chromium(III) oxide particles have been studied. A clear evidence of the presence of weak ferromagnetism is observed below 250 K. The magnetisation curves as a function of the applied field show coercive fields due to the canted antiferromagnetism of the particles. Around 55 K a maximum is observed in the zero-field-cooled curves; this maximum can be assumed as a blocking temperature, similarly to ultrafine ferromagnetic particles

  18. Magnetic nesting and co-existence of ferromagnetism and superconductivity

    Elesin, V.F.; Kapaev, V.V.; Kopaev, Yu.V.

    2004-01-01

    In the case of providing for the magnetic nesting conditions of the electron spin dispersion law the co-existence of ferromagnetism and superconductivity is possible by any high magnetization. The co-existence of ferromagnetism and superconductivity in the layered cuprate compounds of the RuSr 2 GdCu 2 O 8 -type is explained on this basis, wherein due to the nonstrict provision of the magnetic nesting condition there exists the finite but sufficiently high critical magnetization [ru

  19. Pressure-induced weak ferromagnetism in uranium dioxide, UO2

    Sakai, H; Kato, H; Tokunaga, Y; Kambe, S; Walstedt, R E; Nakamura, A; Tateiwa, N; Kobayashi, T C

    2003-01-01

    The dc magnetization of insulating UO 2 under high pressure up to ∼1 GPa has been measured using a piston-cylinder cell. Pressure-induced weak ferromagnetism appeared at low pressure (∼0.2 GPa). Both the remanent magnetization and the coercive force increase as pressure increases. This weak ferromagnetism may come from spin canting or from uncompensated moments around grain boundaries

  20. Electronic structures and relevant physical properties of Ni2MnGa alloy films

    Kim, K. W.; Kim, J. B.; Huang, M. D.; Lee, N. N.; Lee, Y. P.; Kudryavtsev, Y. V.; Rhee, J. Y.

    2004-01-01

    The electronic structures and physical properties of the ordered and disordered Ni 2 MnGa alloy films were investigated in this study. Ordered and disordered Ni 2 MnGa alloy films were prepared by flash evaporation onto substrates maintained at 720 K and 150 K, respectively. The results show that the ordered films behave in nearly the same way as the bulk Ni 2 MnGa ferromagnetic shape-memory alloy, including the martensitic transformation at 200 K. It was also revealed that the film deposition onto substrates cooled by liquid nitrogen leads to the formation of a substantially-disordered or an amorphous phase which is not ferromagnetically ordered at room temperature. An annealing of such an amorphous film restores its crystallinity and also recovers the ferromagnetic order. It was also clarified how the structural disordering in the films influences the physical properties, including the loss of ferromagnetism in the disordered films, by performing electronic-structure calculations and a photoemission study.

  1. Spin Orbit Torque in Ferromagnetic Semiconductors

    Li, Hang

    2016-06-21

    Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read\\' and `write\\' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall

  2. Silicon Alloying On Aluminium Based Alloy Surface

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  3. Mossbauer studies of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy

    Jiang, Jianzhong

    1996-01-01

    This paper reports a Mossbauer study of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy between 10 and 673 K. The Curie temperature Tc is found to be 620-+ 1 K. The temperature dependence of the reduced average hyperfine field can be explained on the basis of Handrich's model of amorphous ferromagnetism...

  4. Novel superconducting state in ferromagnetic superconductor UCoGe. Microscopic coexistence of ferromagnetism and superconductivity probed by 59Co-NQR measurements

    Ishida, Kenji; Hattori, Taisuke; Ihara, Yoshihiko; Nakai, Yusuke; Sato, Noriaki K.; Deguchi, Kazuhiko; Tamura, Nobuyuki; Satoh, Isamu

    2010-01-01

    We have investigated the relationship between ferromagnetism and superconductivity in ferromagnetic superconductor UCoGe from 59 Co nuclear quadrupole resonance (NQR) measurements. Our experimental results indicate the microscopic coexistence of ferromagnetism and superconductivity in UCoGe, and suggest a 'self-induced vortex state' in its superconducting state. We also review NQR experiments, which play an important role in this study. (author)

  5. Mechanical and shape memory properties of ferromagnetic Ni2MnGa sputter-deposited films

    Ohtsuka, M.; Matsumoto, M.; Itagaki, K.

    2003-10-01

    The ternary intermetallic compound Ni2MnGa is an intelligent material, which has a shape memory effect and a ferromagnetic property. Use of shape memory alloy films for an actuator of micro machines is very attractive because of its large recovery force. The data of mechanical and shape memory properties of the films are required to use for the actuator. The purpose of this study is to investigate the effects of fabrication conditions and to clarify the relationships between these properties and fabrication conditions of the Ni{2}MnGa films. The Ni{2}MnGa films were deposited with a radio-frequency magnetron sputtering apparatus using a Ni{50}Mn{25}Ga{25} or Ni{52}Mn{24}Ga{24} target. After deposition, the films were annealed at 873sim 1173 K. The asdeposited films were crystalline and had columnar grains. After the heat treatment, the grains widened and the grain boundary became indistinct with increasing heat treatment temperature. MnO and Ni{3} (Mn, Ga) precipitations were observed in the heat-treated films. The mechanical properties of the films were measured by the nanoindentation method. Hardness and elastic modulus of as-deposited films were larger than those of arcmelted bulk alloys. The hardness of the films was affected by the composition, crystal structure, microstructure and precipitation, etc. The elastic modulus of the films was also changed with the heat treatment conditions. The heat-treated films showed a thermal two-way shape memory effect.

  6. TWO FERROMAGNETIC SPHERES IN HOMOGENEOUS MAGNETIC FIELD

    Yury A. Krasnitsky

    2018-01-01

    Full Text Available The problem of two spherical conductors is studied quite in detail with bispherical coordinates usage and has numerous appendices in an electrostatics. The boundary-value problem about two ferromagnetic spheres enclosed on homogeneous and infinite environment in which the lack of spheres exists like homogeneous magnetic field is considered. The solution of Laplace's equation in the bispherical system of coordinates allows us to find the potential and field distribution in all spaces, including area between spheres. The boundary conditions in potential continuity and in ordinary density constituent of spheres surfaces induction flux are used. It is supposed that spheres are identical, and magnetic permeability of their material is expressed in  >> 0. The problem about falling of electromagnetic plane wave on the system of two spheres, which possesses electrically small sizes, can be considered as quasistationary. The scalar potentials received as a result of Laplace's equation solution are represented by the series containing Legendre polynomials. The concept of two spheres system effective permeability is introduced. It is equal to the advantage in magnitude of magnetic induction flux vector through a certain system’s section arising due to its magnetic properties. Necessary ratios for the effective permeability referred to the central system’s section are obtained. Particularly, the results can be used during the analysis of ferroxcube core clearance, which influences on the magnetic antenna properties. 

  7. Vortex precession in thin elliptical ferromagnetic nanodisks

    Zaspel, C.E., E-mail: craig.zaspel@umwestern.edu

    2017-07-01

    Highlights: • A general form for the magnetostatic energy is calculated for the vortex state in a ferromagnetic ellipse. • The ellipse magnetostatic energy is minimized by conformal mapping the circular disk onto the ellipse. • The gyrotropic precession frequency is obtained in general for a range of ellipticities. - Abstract: The magnetostatic energy is calculated for a magnetic vortex in a noncircular elliptical nanodisk. It is well-known that the energy of a vortex in the circular disk is minimized though an ansatz that eliminates the magnetostatic charge at the disk edge. Beginning with this ansatz for the circular disk, a conformal mapping of a circle interior onto the interior of an ellipse results in the magnetization of the elliptical disk. This magnetization in the interior of an ellipse also has no magnetostatic charge at the disk edge also minimizing the magnetostatic energy. As expected the energy has a quadratic dependence on the displacement of the vortex core from the ellipse center, but reflecting the lower symmetry of the ellipse. Through numerical integration of the magnetostatic integral a general expression for the energy is obtained for ellipticity values from 1.0 to about 0.3. Finally a general expression for the gyrotropic frequency as described by the Thiele equation is obtained.

  8. Ferromagnetic resonance studies of lunar core stratigraphy

    Housley, R. M.; Cirlin, E. H.; Goldberg, I. B.; Crowe, H.

    1976-01-01

    We first review the evidence which links the characteristic ferromagnetic resonance observed in lunar fines samples with agglutinatic glass produced primarily by micrometeorite impacts and present new results on Apollo 15, 16, and 17 breccias which support this link by showing that only regolith breccias contribute significantly to the characteristic FMR intensity. We then provide a calibration of the amount of Fe metal in the form of uniformly magnetized spheres required to give our observed FMR intensities and discuss the theoretical magnetic behavior to be expected of Fe spheres as a function of size. Finally, we present FMR results on samples from every 5 mm interval in the core segments 60003, 60009, and 70009. These results lead us to suggest: (1) that secondary mixing may generally be extensive during regolith deposition so that buried regolith surfaces are hard to recognize or define; and (2) that local grinding of rocks and pebbles during deposition may lead to short scale fluctuations in grain size, composition, and apparent exposure age of samples.

  9. Ferromagnetic characteristics of HfFe2

    Novakovic, N.; Belosevic-Cavor, J.; Cekic, B.; Manasijevic, M.; Milosevic, Z. . E-mail address of correspoding author: novnik@rt270.vin.bg.ac.yu; Novakovic, N.)

    2003-01-01

    The magnetic hyperfine fields at 181 Ta ion-probe sites in the HfFe 2 polycrystalline binary compound were measured using the time-differential perturbed angular correlation (TDPAC) method. Measurements were performed in the absence of polarizing external magnetic field, at room temperature. The existence of two different structures, dominant cubic MgCu 2 -type and hexagonal MgZn 2 -type in our HfFe 2 sample was refined. Both structures are ferromagnetic with Curie temperatures, which differ significantly (588 K for MgCu 2 and 427 K for MgZn 2 ). The corresponding values of hyperfine fields are H hf 13.8±0.1 T for MgCu 2 -type structure and H hf = 8.0±0.2 T for MgZn 2 -type structure. Calculations using LAPW-Wien 97 program package are in progress and preliminary results are in good agreement with experiment. The analysis includes qualitative explanation of the exchange interactions mechanism between magnetic dipole moment of the observed 181 Ta ion-probe and magnetic dipole moments of the nearest neighbours on the corresponding coordination polyhedra. All these results will be published recently. (author)

  10. Nuclear magnetic resonance in ferromagnetic terbium metal

    Cha, C.L.T.

    1974-01-01

    The magnetic properties of terbium were studied by the method of zero field nuclear magnetic resonance at 1.5 to 4 and 85 to 160 0 K. Two unconventional experimental techniques have been employed: the swept frequency and the swept temperature technique. Near 4 0 K, triplet resonance line structures were found and interpreted in terms of the magnetic domain and wall structures of ferromagnetic terbium. In the higher temperature range, temperature dependence of the resonance frequency and the quadrupole splitting were measured. The former provides a measurement of the temperature dependence of the magnetization M, and it agrees with bulk M measurements as well as the latest spin wave theory of M(T) (Brooks 1968). The latter agrees well with a calculation using a very general single ion density matrix for collective excitations (Callen and Shtrikman 1965). In addition, the small temperature-independent contribution to the electric field gradient at the nucleus due to the lattice and conduction electrons was untangled from the P(T) data. Also an anomalous and unexplained relaxation phenomenon was also observed

  11. Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    Kishore, G. V. K.; Kumar, Anish; Chakraborty, Gopa; Albert, S. K.; Rao, B. Purna Chandra; Bhaduri, A. K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni-Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni-Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr-C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co-Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni-Cr alloy deposits on stainless steel.

  12. Valley and spin resonant tunneling current in ferromagnetic/nonmagnetic/ferromagnetic silicene junction

    Yaser Hajati

    2016-02-01

    Full Text Available We study the transport properties in a ferromagnetic/nonmagnetic/ferromagnetic (FNF silicene junction in which an electrostatic gate potential, U, is attached to the nonmagnetic region. We show that the electrostatic gate potential U is a useful probe to control the band structure, quasi-bound states in the nonmagnetic barrier as well as the transport properties of the FNF silicene junction. In particular, by introducing the electrostatic gate potential, both the spin and valley conductances of the junction show an oscillatory behavior. The amplitude and frequency of such oscillations can be controlled by U. As an important result, we found that by increasing U, the second characteristic of the Klein tunneling is satisfied as a result of the quasiparticles chirality which can penetrate through a potential barrier. Moreover, it is found that for special values of U, the junction shows a gap in the spin and valley-resolve conductance and the amplitude of this gap is only controlled by the on-site potential difference, Δz. Our findings of high controllability of the spin and valley transport in such a FNF silicene junction may improve the performance of nano-electronics and spintronics devices.

  13. Electrical detection of ferromagnetic resonance in ferromagnet/n-GaAs heterostructures by tunneling anisotropic magnetoresistance

    Liu, C.; Boyko, Y.; Geppert, C. C.; Christie, K. D.; Stecklein, G.; Crowell, P. A., E-mail: crowell@physics.umn.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Patel, S. J. [Department of Materials, University of California, Santa Barbara, California 93106 (United States); Palmstrøm, C. J. [Department of Materials, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2014-11-24

    We observe a dc voltage peak at ferromagnetic resonance (FMR) in samples consisting of a single ferromagnetic (FM) layer grown epitaxially on the n-GaAs (001) surface. The FMR peak is detected as an interfacial voltage with a symmetric line shape and is present in samples based on various FM/n-GaAs heterostructures, including Co{sub 2}MnSi/n-GaAs, Co{sub 2}FeSi/n-GaAs, and Fe/n-GaAs. We show that the interface bias voltage dependence of the FMR signal is identical to that of the tunneling anisotropic magnetoresistance (TAMR) over most of the bias range. Furthermore, we show how the precessing magnetization yields a dc FMR signal through the TAMR effect and how the TAMR phenomenon can be used to predict the angular dependence of the FMR signal. This TAMR-induced FMR peak can be observed under conditions where no spin accumulation is present and no spin-polarized current flows in the semiconductor.

  14. Magnetic regimes in amorphous Ni--Fe--P--B alloys

    Durand, J.

    1976-10-01

    A complete substitution of iron for nickel was obtained by splat-cooling in amorphous alloys of composition (Ni/sub 100-y/Fe/sub y/) 79 P 13 B 8 . Results of high-field magnetization (up to 70 kOe), ac and dc low-field susceptibility, Curie temperature, and resistivity measurements over a temperature range of 1.7 to 300 0 K are reported. The Ni 79 P 13 B 8 alloy is not ferromagnetic, but the magnetization behavior as a function of field and temperature is typically that of alloys in the critical concentration range for ferromagnetism. The Fe 79 P 13 B 8 alloy is ferromagnetic with a Curie temperature T/sub c/ of 616 0 K. For y = 1 at. percent, the Fe atoms are magnetic. The variation of the moment per Fe atom as a function of y is discussed. When y is increased, the Ni atoms are likely to be polarized progressively and the moment per Ni atom would be roughly constant for y equal to or greater than 30 at. percent. Various magnetic behaviors were defined as a function of the Fe content. The value of T/sub c/ reaches a maximum for y similarly ordered 90 at. percent and extrapolates to zero for y similarly ordered 7 at. percent. Alloys within the range 1 equal to or less than y equal to or less than 10 at. percent did not exhibit well-defined Curie transition, but sharp maxima in low-field susceptibility measurements were observed at T/sub M/. The value of T/sub M/ is proportional to y for 1 equal to or less than y equal to or less than 4 at. percent, as in classical spin-glass regimes. For 4 less than y equal to or less than 10 at. percent, the variation of T/sub M/ as a function of y implies a more complicated type of magnetic ordering (micromagnetism or superparamagnetism). Homogeneous ferromagnetic ordering emerges only for y greater than 10 at. percent. Results of resistivity measurements are discussed in relation to the magnetic properties of different regimes in the magnetic phase diagram. 6 figures, 2 tables

  15. Experimental study of the electric resistivity in Heusler alloys

    Kunzler, J.V.

    1980-01-01

    Electrical resistivity measurements have been performed in the Cu 2 Mn (A1sub(1-x) Snsub(x)) Heusler alloys, where x = 0, 0.05, 0.10 and 0.15, in the temperature range from 4.2 to 800 0 K. Measurements have also been made on the Ni 2 MnX Heusler asloys, with X = In, Sn or Sb, in the range from 4.2 to 300 0 K. The experimental curves clearly show the importance of the ferromagnetic character for the alloys resistivity. The results obtained for the copper alloys, as well as for the Ni 2 MnSn alloy, are in agreement with an interpretation in terms of Bloch-Gruneisen and spin-disorder models, and fail to provide evidences of s-d scattering for the conduction electrons. This is not the case for the Ni 2 MnIn and Ni 2 MnSb alloys, in which the presence of (s-d) interband electronic scattering process, via phonon, was detected. Specially for the two last alloys specific heat and electronic photo-emissivity experiments are suggested. (Author) [pt

  16. Magnetic transition induced by mechanical deformation in Fe{sub 60}Al{sub 40−x}Si{sub x} ternary alloys

    Legarra, E., E-mail: estibaliz.legarra@ehu.es [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain); Apiñaniz, E. [Dpto. Fisica Aplicada I, Universidad del Pais Vasco, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Plazaola, F. [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain); Jimenez, J.A. [Centro Nacional de Investigaciones Metalurgicas (CENIM), Avda. Gregorio del amo 8, 28040 Madrid (Spain)

    2014-02-15

    Highlights: • Fe{sub 60}Al{sub 40−x}Si{sub x} alloys were disordered by means of planetary ball milling technique. • Paramagnetic to ferromagnetic transition is observed with disordering. • Si addition hinders the disordering process and the increase of the lattice parameter. • Si addition promotes the paramagnetic to ferromagnetic transition. -- Abstract: We have used Mössbauer spectroscopy and X-ray diffraction to study the influence of different Al/Si ratios on the structural and magnetic properties of the mechanically deformed Fe{sub 60}Al{sub 40−x}Si{sub x} alloys. The results indicate that ternary alloys also present the magnetic transition with disordering observed in binary Fe{sub 60}Al{sub 40} alloys. Besides, Si introduction has two opposite contributions. From a structural point of view, hinders the disordering process, but, from a magnetic point of view promotes the magnetic transition.

  17. Magnetic properties of the binary Nickel/Bismuth alloy

    Keskin, Mustafa; Şarlı, Numan, E-mail: numansarli82@gmail.com

    2017-09-01

    Highlights: • We model and investigate the magnetic properties of the Ni/Bi alloy within the EFT. • Magnetizations of the Ni/Bi alloy are observed as Bi1 > Bi2 > Ni/Bi > Ni at T < Tc. • Magnetization of the Bi1 is dominant and Ni is at least dominant T < Tc. • Total magnetization of the Ni/Bi alloy is close to those of Ni at T < Tc. • Hysteresis curves are overlap at T < 0.1 and they behave separately at T > 0.1. - Abstract: Magnetic properties of the binary Nickel/Bismuth alloy (Ni/Bi) are investigated within the effective field theory. The Ni/Bi alloy has been modeled that the rhombohedral Bi lattice is surrounded by the hexagonal Ni lattice. According to lattice locations, Bi atoms have two different magnetic properties. Bi1 atoms are in the center of the hexagonal Ni atoms (Ni/Bi1 single layer) and Bi2 atoms are between two Ni/Bi1 bilayers. The Ni, Bi1, Bi2 and Ni/Bi undergo a second-order phase transition from the ferromagnetic phase to paramagnetic phase at Tc = 1.14. The magnetizations of the Ni/Bi alloy are observed as Bi1 > Bi2 > Ni/Bi > Ni at T < Tc; hence the magnetization of the Bi1 is dominant and Ni is at least dominant. However, the total magnetization of the Ni/Bi alloy is close to magnetization of the Ni at T < Tc. The corcivities of the Ni, Bi1, Bi2 and Ni/Bi alloy are the same with each others, but the remanence magnetizations are different. Our theoretical results of M(T) and M(H) of the Ni/Bi alloy are in quantitatively good agreement with the some experimental results of binary Nickel/Bismuth systems.

  18. Low-temperature electron properties of Heusler alloys Fe2VAl and Fe2CrAl: Effect of annealing

    Podgornykh, S. M.; Svyazhin, A. D.; Shreder, E. I.; Marchenkov, V. V.; Dyakina, V. P.

    2007-01-01

    We present the results of measurements of low-temperature heat capacity, as well as electrical and magnetic properties of Heusler alloys Fe 2 VAl and Fe 2 CrAl prepared in different ways using various heat treatment regimes. The density of states at the Fermi level is estimated. A contribution of ferromagnetic clusters in the low-temperature heat capacity of the Fe 2 VAl alloy is detected. The change in the number and volume of clusters as a result of annealing of an alloy affects the behavior of their low-temperature heat capacity, resistivity, and magnetic properties

  19. Ferromagnetic resonance response of electron-beam patterned arrays of ferromagnetic nanoparticles

    Jung, Sukkoo; Watkins, Byron; Feller, Jeffrey; Ketterson, John; Chandrasekhar, Venkat

    2001-03-01

    We report on the fabrication and the dynamic magnetic properties of periodic permalloy dot arrays. Electron-beam lithography and e-gun evaporation have been used to make the arrays with the aspect ratio of 2 (dot diameter : 40 nm, height : 80 nm) and periods of 100 - 200 nm. The magnetic properties of the arrays and their interactions have been investigated by ferromagnetic resonance (FMR), magnetic force microscopy (MFM), and SQUID magnetometry. The measured FMR data show that the position and magnitude of resonant absorption peaks strongly depend on the angle between magnetic field and the lattice structure. The results of dot arrays with various kinds of structural parameters will be presented. Supported by Army Research Office, DAAD19-99-1-0334/P001

  20. Peculiar long-range supercurrent in superconductor-ferromagnet-superconductor junction containing a noncollinear magnetic domain in the ferromagnetic region

    Meng, Hao, E-mail: menghao1982@shu.edu.cn [School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001 (China); National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Wu, Xiuqiang [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Ren, Yajie [School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001 (China)

    2015-01-14

    We study the supercurrent in clean superconductor-ferromagnet-superconductor heterostructure containing a noncollinear magnetic domain in the ferromagnetic region. It is demonstrated that the magnetic domain can lead to a spin-flip scattering process, which reverses the spin orientations of the singlet Cooper pair and simultaneously changes the sign of the corresponding electronic momentum. If the ferromagnetic layers on both sides of magnetic domain have the same features, the long-range proximity effect will take place. That is because the singlet Cooper pair will create an exact phase-cancellation effect and gets an additional π phase shift as it passes through the entire ferromagnetic region. Then, the equal spin triplet pair only exists in the magnetic domain region and can not diffuse into the other two ferromagnetic layers. So, the supercurrent mostly arises from the singlet Cooper pairs, and the equal spin triplet pairs are not involved. This result can provide a approach for generating the long-range supercurrent.

  1. Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions

    Zou Jianfei; Jin Guojun; Ma Yuqiang

    2009-01-01

    We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.

  2. Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions.

    Zou, Jianfei; Jin, Guojun; Ma, Yu-Qiang

    2009-03-25

    We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.

  3. Free energy distribution function of a random Ising ferromagnet

    Dotsenko, Victor; Klumov, Boris

    2012-01-01

    We study the free energy distribution function of a weakly disordered Ising ferromagnet in terms of the D-dimensional random temperature Ginzburg–Landau Hamiltonian. It is shown that besides the usual Gaussian 'body' this distribution function exhibits non-Gaussian tails both in the paramagnetic and in the ferromagnetic phases. Explicit asymptotic expressions for these tails are derived. It is demonstrated that the tails are strongly asymmetric: the left tail (for large negative values of the free energy) is much slower than the right one (for large positive values of the free energy). It is argued that at the critical point the free energy of the random Ising ferromagnet in dimensions D < 4 is described by a non-trivial universal distribution function which is non-self-averaging

  4. Larmor diffraction in the ferromagnetic superconductor UGe{sub 2}

    Ritz, Robert; Pfleiderer, Christian [Physik Department E21, TU Muenchen, D-85748 Garching (Germany); Sokolov, Dmitry; Huxley, Andrew [School of Physics and Astronomy, Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Keller, Thomas [MPI fuer Festkoerperforschung, Heisenbergstr. 1, D-70569 Stuttgart (Germany)

    2010-07-01

    Larmor Diffaction (LD) is a neutron resonance spin-echo technique which allows the study of the lattice constant as well the distribution of lattice constants. It was traditionally thought that neutron spin-echo measurements cannot be used in materials such as superconductors or ferromagnets, because they strongly depolarize a polarized neutron beam. In UGe{sub 2} we are able to demonstrate that this technique may be applied in ferromagnetic superconductors with a magnetic Ising anisotropy. UGe{sub 2} exhibits two ferromagnetic phases which are separated by a transition at temperature T{sub x}. With increasing hydrostatic pressure superconductivity emerges at the pressure for which T{sub x} is suppressed. Using LD we studied the temperature dependence of the lattice constant as well as the distribution of lattice constants for all three axis of UGe{sub 2} down to 0.5 K and at pressures up to 12 kbar.

  5. Ballistic spin filtering across the ferromagnetic-semiconductor interface

    Y.H. Li

    2012-03-01

    Full Text Available The ballistic spin-filter effect from a ferromagnetic metal into a semiconductor has theoretically been studied with an intention of detecting the spin polarizability of density of states in FM layer at a higher energy level. The physical model for the ballistic spin filtering across the interface between ferromagnetic metals and semiconductor superlattice is developed by exciting the spin polarized electrons into n-type AlAs/GaAs superlattice layer at a much higher energy level and then ballistically tunneling through the barrier into the ferromagnetic film. Since both the helicity-modulated and static photocurrent responses are experimentally measurable quantities, the physical quantity of interest, the relative asymmetry of spin-polarized tunneling conductance, could be extracted experimentally in a more straightforward way, as compared with previous models. The present physical model serves guidance for studying spin detection with advanced performance in the future.

  6. Ion beam induced effects on the ferromagnetism in Pd nanoparticles

    Kulriya, P. K.; Mehta, B. R.; Agarwal, D. C.; Agarwal, Kanika; Kumar, Praveen; Shivaprasad, S. M.; Avasthi, D. K.

    2012-01-01

    Present study demonstrates the role of metal-insulator interface and ion irradiation induced defects on the ferromagnetic properties of the non-magnetic materials. Magnetic properties of the Pd nanoparticles(NPs) embedded in the a-silica matrix synthesized using atom beam sputtering technique, were determined using SQUID magnetometry measurements which showed that ferromagnetic response of Pd increased by 3.5 times on swift heavy ion(SHI) irradiation. The ferromagnetic behavior of the as-deposited Pd NPs is due to strain induced by the surrounding matrix and modification in the electronic structure at the Pd-silica interface as revealed by insitu XRD and XPS investigations, respectively. The defects created by the SHI bombardment are responsible for enhancement of the magnetization in the Pd NPs.

  7. Anomalous Hall effect and Nernst effect in itinerant ferromagnets

    Asamitsu, A.; Miyasato, T.; Abe, N.; Fujii, T.; Onose, Y.; Onoda, S.; Nagaosa, N.; Tokura, Y.

    2007-01-01

    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in many ferromagnetic metals including pure metals, oxides, and calcogenides, are studied to obtain unified understandings of their origins. We show the universal behavior of anomalous Hall conductivity σ xy as a function of longitudinal conductivity σ xx over six orders of magnitude, which is well reproduced by rigorous unified theory assuming both intrinsic and extrinsic contributions to the AHE. ANE is closely related with AHE and gives us further information about the electronic state in the ground state of ferromagnets. The temperature dependence of transverse Peltier coefficient α xy shows almost similar behavior among various ferromagnets and this behavior is expected from a conventional Boltzmann transport theory

  8. Collective spin wave and phonon excitations in ferromagnetic organic polymers

    Leong, Jit-Liang; Sun, Shih-Jye

    2013-01-01

    We proposed a model to investigate the properties of a conductive and ferromagnetic organic-polymer (OCP), which contains two collective excitations—spin wave and phonon—competing with each other; namely, the spin wave excitation accompanies the electron–phonon (e–ph) interactions in the conductive and ferromagnetic OCP. The ferromagnetism of the OCP is induced from the conductive carriers which couple with the phonon to become polarons. Due to the competition between both excitations, the Curie temperature (T C ) is sensitively suppressed by the e–ph interaction. In addition, an optimal T C with a small e–ph interaction exists in a specific density of conduction carrier, yet is contrary to the large e–ph interaction case. Furthermore, the dimerization, i.e. the atomic displacement induced from the e–ph interactions, increases with the strength of the e–ph interaction and decreases upon reaching the maximum dimerization. (paper)

  9. Magnetic decoupling of ferromagnetic metals through a graphene spacer

    Grimaldi, I.; Papagno, M. [Dipartimento di Fisica, Universitá della Calabria, Arcavacata di Rende (CS), 87036 (Italy); Ferrari, L. [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Roma I-00133 (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste (Italy); Sheverdyaeva, P.M.; Mahatha, S.K. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste (Italy); Pacilé, D., E-mail: daniela.pacile@fis.unical.it [Dipartimento di Fisica, Universitá della Calabria, Arcavacata di Rende (CS), 87036 (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste (Italy); Carbone, C. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste (Italy)

    2017-03-15

    We study the magnetic coupling between different ferromagnetic metals (FMs) across a graphene (G) layer, and the role of graphene as a thin covalent spacer. Starting with G grown on a FM substrate (Ni or Co), we deposited on top at room temperature several FM metals (Fe, Ni, Co). By measuring the dichroic effect of 3p photoemission lines we detect the magnetization of the substrate and the sign of the exchange coupling in FM overlayer at room temperature. We show that the G layer magnetically decouples the FM metals. - Highlights: • The magnetic coupling between ferromagnets mediated by graphene is studied. • To this end, the linear dichroic effect in 3p photoemission lines is employed. • For selected junctions no magnetic coupling is attained through graphene. • Graphene inhibits the magnetic alignment that normally occurs between ferromagnets.

  10. Superconductivity near ferromagnetism in MgCNi3

    Rosner, H.; Weht, R.; Johannes, M.; Pickett, W.E.; Tosatti, E.

    2001-06-01

    Superconductivity and ferromagnetism have been believed to be incompatible over any extended temperature range until certain specific examples - RuSr 2 GdCu 2 O 8 and UGe 2 - have arisen in the past 2-3 years. The discovery of superconductivity above 8 K in MgCNi 3 , which is primarily the ferromagnetic element Ni and is strongly exchange-enhanced, provides a probable new and different example. This compound is shown here to be near ferromagnetism, requiring only hole-doping by 12% substitution of Mg by Na or Li. This system will provide the means to probe coupling, and possible coexistence, of these two forms of collective behavior without the requirement of pressure. (author)

  11. Structural, magnetic and electrical properties of ferromagnetic/ferroelectric multilayers

    Sirena, M.; Kaul, E.; Guimpel, J.; Steren, L. B.; Pedreros, M. B.; Rodriguez, C. A.

    2011-01-01

    The La 0.75 Sr 0.25 MnO 3 (LSMO)/Ba 0.7 Sr 0.3 TiO 3 (BSTO) superlattices and bilayers, where LSMO is ferromagnetic and BSTO is ferroelectric, were grown by dc sputtering. X-ray diffraction indicates that the samples present a textured growth with the c axis perpendicular to the substrate. Magnetization measurements show a decrease of the sample's magnetization for decreasing ferromagnetic thickness. This effect could be related to the presence of biaxial strain and a magnetic dead layer in the samples. Conductive atomic force microscopy indicates that the samples present a total covering of the ferromagnetic layer for a ferroelectric thickness higher than four unit cells. Transport tunneling of the carriers seems to be the preferred conduction mechanism through the ferroelectric layer. These are promising results for the development of multiferroic tunnel junctions.

  12. Anomalous Hall effect and Nernst effect in itinerant ferromagnets

    Miyasato, T.; Abe, N.; Fujii, T.; Asamitsu, A.; Onose, Y.; Onoda, S.; Nagaosa, N.; Tokura, Y.

    2007-01-01

    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in many ferromagnetic metals including pure metals, oxides, and chalcogenides, are studied to obtain unified understandings of their origins. We show the universal behavior of anomalous Hall conductivity σ xy as a function of longitudinal conductivity σ xx over six orders of magnitude, which is well reproduced by a recent theory assuming both the intrinsic and extrinsic contributions to the AHE. ANE is closely related with AHE and gives us further information about the electronic state in the ground state of ferromagnets. The temperature dependence of transverse Peltier coefficient α xy shows almost similar behavior among various ferromagnets, and this behavior is expected from a conventional Boltzmann transport theory

  13. Dynamics of magnetization in ferromagnet with spin-transfer torque

    Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming

    2014-11-01

    We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out

  14. Defect-band mediated ferromagnetism in Gd-doped ZnO thin films

    Venkatesh, S.; Franklin, J. B.; Ryan, M. P.; Lee, J.-S.; Ohldag, Hendrik; McLachlan, M. A.; Alford, N. M.; Roqan, Iman S.

    2015-01-01

    . %) at low oxygen deposition pressure (<25 mTorr) were ferromagnetic at room temperature. Negative magnetoresistance, electric transport properties showed that the ferromagnetic exchange is mediated by a spin-split defect band formed due to oxygen deficiency

  15. Scattering of polarized low-energy electrons by ferromagnetic metals

    Helman, J.S.

    1981-01-01

    A source of spin polarized electrons with remarkable characteristics based on negative electron affinity (NEA) GaAs has recently been developed. It constitutes a unique tool to investigate spin dependent interactions in electron scattering processes. The characteristics and working principles of the source are briefly described. Some theoretical aspects of the scattering of polarized low-energy electrons by ferromagnetic metals are discussed. Finally, the results of the first polarized low-energy electron diffraction experiment using the NEA GaAs source are reviewed; they give information about the surface magnetization of ferromagnetic Ni (110). (Author) [pt

  16. Simulation of ferromagnetic nanomaterial flow of Maxwell fluid

    Hayat, T.; Ahmad, Salman; Khan, M. Ijaz; Alsaedi, A.

    2018-03-01

    Ferromagnetic flow of rate type liquid over a stretched surface is addressed in this article. Heat and mass transport are investigated with Brownian movement and thermophoresis effects. Magnetic dipole is also taken into consideration. Procedure of similarity transformation is employed. The obtained nonlinear expressions have been tackled numerically by means of Shooting method. Graphical results are shown and analyzed for the impact of different variables. Temperature and concentration gradients are numerically computed in Tables 1 and 2. The results described here demonstrate that ferromagnetic variable boosts the thermal field. It is noticed that velocity and concentration profiles are higher when elastic and thermophoresis variables are enhanced.

  17. Spin-dependent dwell time through ferromagnetic graphene barrier

    Sattari, F.

    2014-01-01

    We investigated the dwell time of electrons tunneling through a ferromagnetic (FM) graphene barrier. The results show that the spin polarization can be efficiently controlled by the barrier width, barrier height, and the incident electron energy. Furthermore, it is found that electrons with different spin orientations will spend different times through the barrier. The difference of the dwell time between spin-up and spin-down electrons arises from the exchange splitting, which is induced by the FM strip. Study results indicate that a ferromagnetic graphene barrier can cause a nature spin filter mechanism in the time domain

  18. Phenomenology of the domain walls in thin ferromagnetic films

    Adam, G.

    1978-01-01

    The basic concepts and the main theoretical methods developed in the study of the domain walls in thin ferromagnetic films are given in this review. First, an insight into the origins and the classification criteria of the conceptually different wall structures is obtained by elementary considerations which are mainly based on the experimentally available data. Then, the more subtle aspect of the wall models dimensionality in soft ferromagnetic films is discussed. Finally, the various theoretical calculation methods of the wall parameters are summarized. (author)

  19. Spin-current diode with a ferromagnetic semiconductor

    Sun, Qing-Feng; Xie, X. C.

    2015-01-01

    Diode is a key device in electronics: the charge current can flow through the device under a forward bias, while almost no current flows under a reverse bias. Here, we propose a corresponding device in spintronics: the spin-current diode, in which the forward spin current is large but the reversed one is negligible. We show that the lead/ferromagnetic quantum dot/lead system and the lead/ferromagnetic semiconductor/lead junction can work as spin-current diodes. The spin-current diode, a low dissipation device, may have important applications in spintronics, as the conventional charge-current diode does in electronics

  20. 'Blocking' effects in magnetic resonance? The ferromagnetic nanowires case

    Ramos, C.A.; De Biasi, E.; Zysler, R.D.; Vassallo Brigneti, E.; Vazquez, M.

    2007-01-01

    We present magnetic resonance results obtained at L, X, and Q bands (1.2, 9.4 and 34GHz, respectively) on ferromagnetic nanowires with a hysteresis cycle characterized by a remanent magnetization M r /M s ∼0.92 and a coercive field H c =1.0kOe. The hysteretic response of the ferromagnetic resonance spectra is discussed in terms of independent contributions of the nanowires aligned along and opposite to the applied field. We will discuss the implications of this study on the magnetic resonance in nanoparticles and other systems with large anisotropy

  1. Influence of neutron irradiation on ferromagnetic metallic glasses

    Miglierini, M.; Nasu, Saburo; Sitek, J.

    1992-01-01

    Transmission 57 Fe Moessbauer spectroscopy is used to study effects of neutron irradiation on magnetic properties of Fe-based ferromagnetic metallic glasses. Elastic stress centers are produced during the process of neutron irradiation as a result of atom mixing. Rearrangement of the atoms causes changes in the average value of the hyperfine field distribution and orientation of the net magnetic moment. They are shown to depend on the composition of the investigated samples. Cr-doped metallic glasses depict transformation from ferromagnetic to paramagnetic state at room temperature after neutron irradiation implying changes in the Curie temperature. Presence of Ni in the samples reduces the effects of radiation damage. (orig.)

  2. Modified Sucksmith balances for ferromagnetic and paramagnetic measurements

    Lundquist, N; Myers, H P

    1962-02-15

    Two balances, one for measurement of ferromagnetic magnetisation, the other for paramagnetic susceptibility measurements, are described. Designs are based on Sucksmith's ring balance but the ring and optical lever system of the latter has been replaced by a strain gauge bridge, which allows the force on the magnetic specimens to be determined via potentiometer readings. The modified balances are very robust, insensitive to vibration and, if desired, suitable for direct recording. Relative accuracies of 0.3 % and 0.5 % are obtained respectively for the ferromagnetic and paramagnetic systems.

  3. Ferromagnetic shadow mask for spray coating of polymer patterns

    Keller, Stephan Sylvest; Bosco, Filippo; Boisen, Anja

    2013-01-01

    We present the fabrication of a wafer-scale shadow mask with arrays of circular holes with diameters of 150–400 μm. Standard UV photolithography is used to define 700 μm thick SU-8 structures followed by electroplating of nickel and etching of the template. The ferromagnetic properties of the sha......We present the fabrication of a wafer-scale shadow mask with arrays of circular holes with diameters of 150–400 μm. Standard UV photolithography is used to define 700 μm thick SU-8 structures followed by electroplating of nickel and etching of the template. The ferromagnetic properties...

  4. Crystal-field-modulated magnon squeezing states in a ferromagnet

    Peng Feng

    2003-01-01

    The magnon squeezing states in some magnetic crystals allow a reduction in the quantum fluctuations of the spin component to below the zero-point quantum noise level of the coherent magnon states. It is known that there are the magnon squeezing states in an antiferromagnet. However, their generating mechanism is not suitable for the ferromagnet. In this paper, we discuss the possibility of generating the magnon squeezing states in a ferromagnet, and discuss the effect of the crystal field on the magnon squeezing states

  5. Exact asymmetric Skyrmion in anisotropic ferromagnet and its helimagnetic application

    Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in

    2016-08-15

    Topological Skyrmions as intricate spin textures were observed experimentally in helimagnets on 2d plane. Theoretical foundation of such solitonic states to appear in pure ferromagnetic model, as exact solutions expressed through any analytic function, was made long ago by Belavin and Polyakov (BP). We propose an innovative generalization of the BP solution for an anisotropic ferromagnet, based on a physically motivated geometric (in-)equality, which takes the exact Skyrmion to a new class of functions beyond analyticity. The possibility of stabilizing such metastable states in helimagnets is discussed with the construction of individual Skyrmion, Skyrmion crystal and lattice with asymmetry, likely to be detected in precision experiments.

  6. Rearrangement of crystallographic domains driven by magnetic field in ferromagnetic Ni2MnGa and antiferromagnetic CoO

    Terai, Tomoyuki; Yasui, Motoyoshi; Yamamoto, Masataka; Kakeshita, Tomoyuki

    2009-01-01

    We have investigated the rearrangement of crystallographic domains (martensite variants) in Ni 2 MnGa ferromagnetic shape memory alloy and CoO antiferromagnetic oxide by applying magnetic field up to 8.0 MA/m. From the result of optical microscope observation of Ni 2 MnGa single crystal, when a magnetic field is applied along [001] p (p represents a parent phase), the rearrangement of crystallographic domains occurs and the single domain state is obtained below T Ms = 202 K. The same rearrangement occurs but partially when a magnetic field is applied along [110] p . On the other hand, when a magnetic field is applied along [111] p , the rearrangement does not occur. In case of the CoO single crystal, when a magnetic field is applied along [001] p below T Ms = 293 K, the rearrangement occurs at 170 K ≤ T ≤ 293 K, but does not occur at T p and [111] p , the rearrangement does not occur below T Ms . In order to explain the rearrangement in the alloy and the oxide, we have evaluated the magnetic shear stress, τ mag , which is derived from the difference in magnetic energy among crystallographic domains and have compared it with the shear stress required for the twinning plane movement, τ req . As a result, we have found that the rearrangement occurs when the value of τ mag is larger than or equal to the value of τ req for the present alloy and oxide.

  7. Oxygen vacancy-induced ferromagnetism in un-doped ZnO thin films

    Zhan, Peng; Wang, Weipeng; Liu, Can; Hu, Yang; Li, Zhengcao; Zhang, Zhengjun; Zhang, Peng; Wang, Baoyi; Cao, Xingzhong

    2012-02-01

    ZnO films became ferromagnetic when defects were introduced by thermal-annealing in flowing argon. This ferromagnetism, as shown by the photoluminescence measurement and positron annihilation analysis, was induced by the singly occupied oxygen vacancy with a saturated magnetization dependent positively on the amount of this vacancy. This study clarified the origin of the ferromagnetism of un-doped ZnO thin films and provides possibly an alternative way to prepare ferromagnetic ZnO films.

  8. Superconductivity and ferromagnetism in topological insulators

    Zhang, Duming

    exist when topological insulators are interfaced with superconductors. The observation of Majorana fermions would not only be fundamentally important, but would also lead to applications in fault-tolerant topological quantum computation. By interfacing topological insulator nanoribbons with superconducting electrodes, we observe distinct signatures of proximity-induced superconductivity, which is found to be present in devices with channel lengths that are much longer than the normal transport characteristic lengths. This might suggest preferential coupling of the proximity effect to a ballistic surface channel of the topological insulator. In addition, when the electrodes are in the superconducting state, we observe periodic magnetoresistance oscillations which suggest the formation of vortices in the proximity-induced region of the nanoribbons. Our results demonstrate that proximity-induced superconductivity and vortices can be realized in our nanoribbon geometry, which accomplishes a first important step towards the search for Majorana fermions in condensed matter. In Chapter 5, I will discuss experiments on a magnetically-doped topological insulator (Mn-doped Bi2Se3) to induce a surface state gap. The metallic Dirac cone surface states of a topological insulator are expected to be protected against small perturbations by time-reversal symmetry. However, these surface states can be dramatically modified and a finite energy gap can be opened at the Dirac point by breaking the time-reversal symmetry via magnetic doping. The interplay between magnetism and topological surface states is predicted to yield novel phenomena of fundamental interest such as a topological magneto-electric effect, a quantized anomalous Hall effect, and the induction of magnetic monopoles. Our systematic measurements reveal a close correlation between the onset of ferromagnetism and quantum corrections to diffusive transport, which crosses over from the symplectic (weak anti-localization) to the

  9. Suppression of the ferromagnetic state by disorder in the Kondo lattice

    Crisan, M.; Popoviciu, C.

    1992-01-01

    This paper reports that ferromagnetic ground state of a Kondo lattice with a low concentration of conduction electrons is ferromagnetic. Assuming the existence of disorder in the Fermi liquid of the conduction electrons the authors show that the ferromagnetic state can be suppressed by the effect of the spin fluctuations of the disordered Fermi liquid

  10. Test of the fast thin-film ferromagnetic shutters for ultracold neutrons

    Pokotilovskij, Yu.N.; Novopol'tsev, M.I.; Geltenbort, P.

    2008-01-01

    Test of thin-film ferromagnetic shutters of two types for ultracold neutrons has been performed. The first type is based on neutron reflection from the sequence of successively placed thin ferromagnetic layers with oppositely directed magnetization. The second one is based on neutron refraction in ferromagnetic foils inserted in the beam

  11. Translating VDM to Alloy

    Lausdahl, Kenneth

    2013-01-01

    specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  12. Soft Magnetic Properties of High-Entropy Fe-Co-Ni-Cr-Al-Si Thin Films

    Pei-Chung Lin

    2016-08-01

    Full Text Available Soft magnetic properties of Fe-Co-Ni-Al-Cr-Si thin films were studied. As-deposited Fe-Co-Ni-Al-Cr-Si nano-grained thin films showing no magnetic anisotropy were subjected to field-annealing at different temperatures to induce magnetic anisotropy. Optimized magnetic and electrical properties of Fe-Co-Ni-Al-Cr-Si films annealed at 200 °C are saturation magnetization 9.13 × 105 A/m, coercivity 79.6 A/m, out-of-plane uniaxial anisotropy field 1.59 × 103 A/m, and electrical resistivity 3.75 μΩ·m. Based on these excellent properties, we employed such films to fabricate magnetic thin film inductor. The performance of the high entropy alloy thin film inductors is superior to that of air core inductor.

  13. Study of magnetism in Ni–Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    Kishore, G.V.K.; Kumar, Anish, E-mail: anish@igcar.gov.in; Chakraborty, Gopa; Albert, S.K; Rao, B. Purna Chandra; Bhaduri, A.K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni–Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni–Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr–C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co–Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni–Cr alloy deposits on stainless steel. - Highlights: • Study of evolution of ferromagnetism in Comonoy-6 deposit on austenitic steel. • Magnetic force microscopy (MFM) exhibited ferromagnetic matrix in first two layers. • The maximum MFM

  14. Investigation of electronic, magnetic and thermoelectric properties of Zr{sub 2}NiZ (Z = Al,Ga) ferromagnets

    Yousuf, Saleem, E-mail: nengroosaleem17@gmail.com; Gupta, Dinesh C., E-mail: sosfizix@gmail.com

    2017-05-01

    Systematic investigation of impact of electronic structure and magnetism, on the thermoelectric properties of new Zr{sub 2}NiZ (Z = Al, Ga) Heusler alloys are determined using density functional theory calculations. Half-metallicity with ferromagnetic character is supported by their 100% spin polarizations at the Fermi level. Magnetic moment of ∼3 μ{sub B} is according to the Slater-Puling rule, enables their practical applications. Electron density plots are used to analyse the nature of bonding and chemical composition. Boltzmann's theory is conveniently employed to investigate the thermoelectric properties of these compounds. The analysis of the thermal transport properties specifies the Seebeck coefficient as 25.6 μV/K and 18.6 μV/K at room temperature for Zr{sub 2}NiAl and Zr{sub 2}NiGa, respectively. The half-metallic nature with efficient thermoelectric coefficients suggests the likelihood of these materials to have application in designing spintronic devices and imminent thermoelectric materials. - Highlights: • The compounds are half-metallic ferromagnets. • 100% spin-polarized compounds for spintronics. • Increasing Seebeck coefficient over a wide temperature range. • Zr{sub 2}NiAl is efficient thermoelectric material than Zr{sub 2}NiGa.

  15. Superconductor-ferromagnet-superconductor nanojunctions from perovskite materials

    Štrbík, V.; Beňačka, Š.; Gaži, Š.; Španková, M.; Šmatko, V.; Knoška, J.; Gál, N.; Chromik, Š.; Sojková, M.; Pisarčík, M.

    2017-01-01

    Highlights: • Superconductor-ferromagnet-superconductor nanojunction. • Nanojunctions prepared by Ga"3"+ focused ion beam patterning. • Indication of triplet Cooper pair component in junction superconducting current. • Qualitative agreement with theoretical model. - Abstract: The lateral superconductor-ferromagnet–superconductor (SFS) nanojunctions based on high critical temperature superconductor YBa_2Cu_3O_x (YBCO) and half-metallic ferromagnet La_0_._6_7Sr_0_._3_3MnO_3 (LSMO) thin films were prepared to investigate a possible presence of long range triplet component (LRTC) of Cooper pairs in the LSMO. We applied Ga"3"+ focused ion beam patterning to create YBCO/LSMO/YBCO lateral type nanojunctions with LSMO length as small as 40 nm. The resistivity vs. temperature, critical current density vs. temperature and resistance vs. magnetic field dependence were studied to recognize the LRTC of Cooper pairs in the LSMO. A non-monotonic temperature dependence of junction critical current density and a decrease of the SFS nanojunction resistance in increased magnetic field were observed. Only weak manifestations of LRTC and some qualitative agreement with theory were found out in SFS nanojunctions realized from the perovskite materials. The presence of equal-spin triplet component of Cooper pairs in half-metallic LSMO ferromagnet is not such apparent as in SFS junctions prepared from low temperature superconductors NbTiN and half-metallic ferromagnet CrO_2.

  16. Graphene-ferromagnet interfaces: hybridization, magnetization and charge transfer.

    Abtew, Tesfaye; Shih, Bi-Ching; Banerjee, Sarbajit; Zhang, Peihong

    2013-03-07

    Electronic and magnetic properties of graphene-ferromagnet interfaces are investigated using first-principles electronic structure methods in which a single layer graphene is adsorbed on Ni(111) and Co(111) surfaces. Due to the symmetry matching and orbital overlap, the hybridization between graphene pπ and Ni (or Co) d(z(2)) states is very strong. This pd hybridization, which is both spin and k dependent, greatly affects the electronic and magnetic properties of the interface, resulting in a significantly reduced (by about 20% for Ni and 10% for Co) local magnetic moment of the top ferromagnetic layer at the interface and an induced spin polarization on the graphene layer. The calculated induced magnetic moment on the graphene layer agrees well with a recent experiment. In addition, a substantial charge transfer across the graphene-ferromagnet interfaces is observed. We also investigate the effects of thickness of the ferromagnet slab on the calculated electronic and magnetic properties of the interface. The strength of the pd hybridization and the thickness-dependent interfacial properties may be exploited to design structures with desirable magnetic and transport properties for spintronic applications.

  17. Nuclear orientation of rare earth impurities in ferromagnetic host metals

    Keus, H.E.

    1981-01-01

    Experiments are described investigating the behaviour of the metals Nd and Lu as impurities in a ferromagnetic host metal - iron, cobalt and nickel. The systems have been studied with the aid of nuclear orientation, making use of the interactions between the atom nuclei and the electrons - the so called hyperfine interactions. (C.F.)

  18. Investigation of a Mesoporous Silicon Based Ferromagnetic Nanocomposite

    Roca AG

    2009-01-01

    Full Text Available Abstract A semiconductor/metal nanocomposite is composed of a porosified silicon wafer and embedded ferromagnetic nanostructures. The obtained hybrid system possesses the electronic properties of silicon together with the magnetic properties of the incorporated ferromagnetic metal. On the one hand, a transition metal is electrochemically deposited from a metal salt solution into the nanostructured silicon skeleton, on the other hand magnetic particles of a few nanometres in size, fabricated in solution, are incorporated by immersion. The electrochemically deposited nanostructures can be tuned in size, shape and their spatial distribution by the process parameters, and thus specimens with desired ferromagnetic properties can be fabricated. Using magnetite nanoparticles for infiltration into porous silicon is of interest not only because of the magnetic properties of the composite material due to the possible modification of the ferromagnetic/superparamagnetic transition but also because of the biocompatibility of the system caused by the low toxicity of both materials. Thus, it is a promising candidate for biomedical applications as drug delivery or biomedical targeting.

  19. Inertial and magnetic sensing of human movement near ferromagnetic materials

    Roetenberg, D.; Luinge, Hendrik J.; Veltink, Petrus H.

    2003-01-01

    This paper describes a Kalman filter design to estimate orientation of human body segments by fusing gyroscope, accelerometer and magnetometer signals. Ferromagnetic materials near the sensor disturb the local magnetic field and therefore the orientation estimation. The magnetic disturbance can be

  20. From ballistic transport to tunneling in electromigrated ferromagnetic breakjunctions

    Bolotin, Kirill I; Kuemmeth, Ferdinand; Pasupathy, Abhay N

    2006-01-01

    We fabricate ferromagnetic nanowires with constrictions whose cross section can be reduced gradually from 100 x 30 nm(2) to the atomic scale and eventually to the tunneling regime by means of electromigration. The contacts are mechanically and thermally stable. We measure low-temperature magnetor...

  1. Coherence and stiffness of spin waves in diluted ferromagnets

    Turek, Ilja; Kudrnovský, Josef; Drchal, Václav

    2016-01-01

    Roč. 94, č. 17 (2016), č. článku 174447. ISSN 2469-9950 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68081723 ; RVO:68378271 Keywords : spin wave s * diluted ferromagnets * disordered systems Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  2. Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations

    Baker, Alexander [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, 3PU, OX1 (United Kingdom); Beg, Marijan; Ashton, Gregory; Albert, Maximilian; Chernyshenko, Dmitri [Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton (United Kingdom); Wang, Weiwei [Department of Physics, Ningbo University, Ningbo, 315211 China (China); Zhang, Shilei [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, 3PU, OX1 (United Kingdom); Bisotti, Marc-Antonio; Franchin, Matteo [Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton (United Kingdom); Hu, Chun Lian; Stamps, Robert [SUPA School of Physics and Astronomy, University of Glasgow, G12, Glasgow, 8QQ United Kingdom (United Kingdom); Hesjedal, Thorsten, E-mail: t.hesjedal1@physics.ox.ac.uk [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, 3PU, OX1 (United Kingdom); Fangohr, Hans [Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton (United Kingdom)

    2017-01-01

    Nowadays, micromagnetic simulations are a common tool for studying a wide range of different magnetic phenomena, including the ferromagnetic resonance. A technique for evaluating reliability and validity of different micromagnetic simulation tools is the simulation of proposed standard problems. We propose a new standard problem by providing a detailed specification and analysis of a sufficiently simple problem. By analyzing the magnetization dynamics in a thin permalloy square sample, triggered by a well defined excitation, we obtain the ferromagnetic resonance spectrum and identify the resonance modes via Fourier transform. Simulations are performed using both finite difference and finite element numerical methods, with OOMMF and Nmag simulators, respectively. We report the effects of initial conditions and simulation parameters on the character of the observed resonance modes for this standard problem. We provide detailed instructions and code to assist in using the results for evaluation of new simulator tools, and to help with numerical calculation of ferromagnetic resonance spectra and modes in general. - Highlights: ●Micromagnetic standard problem for FerroMagnetic Resonance (FMR). ●Overview of FMR simulation techniques. ●Define reproducible test problem with ring down method. ●Example configuration files, scripts and post processing for OOMMF and NMag. ●Code and data available in Ref. [23].

  3. Thermal expansion of the superconducting ferromagnet UCoGe

    Gasparini, A.; Huang, Y.K.; Hartbaum, J.; v. Löhneysen, H.; de Visser, A.

    2010-01-01

    We report measurements of the coefficient of linear thermal expansion, α(T), of the superconducting ferromagnet UCoGe. The data taken on a single-crystalline sample along the orthorhombic crystal axes reveal a pronounced anisotropy with the largest length changes along the b axis. The large values

  4. Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles

    Varón, Miriam; Beleggia, Marco; Jordanovic, Jelena

    2015-01-01

    Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100-400 nm and lengths of up to some hundred microns. Lorenz microsco...

  5. Superconductor-ferromagnet-superconductor nanojunctions from perovskite materials

    Štrbík, V., E-mail: vladimir.strbik@savba.sk [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia); Beňačka, Š.; Gaži, Š.; Španková, M.; Šmatko, V. [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia); Knoška, J. [Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607, Hamburg (Germany); Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607, Hamburg (Germany); Gál, N.; Chromik, Š.; Sojková, M.; Pisarčík, M. [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia)

    2017-02-15

    Highlights: • Superconductor-ferromagnet-superconductor nanojunction. • Nanojunctions prepared by Ga{sup 3+} focused ion beam patterning. • Indication of triplet Cooper pair component in junction superconducting current. • Qualitative agreement with theoretical model. - Abstract: The lateral superconductor-ferromagnet–superconductor (SFS) nanojunctions based on high critical temperature superconductor YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) and half-metallic ferromagnet La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) thin films were prepared to investigate a possible presence of long range triplet component (LRTC) of Cooper pairs in the LSMO. We applied Ga{sup 3+} focused ion beam patterning to create YBCO/LSMO/YBCO lateral type nanojunctions with LSMO length as small as 40 nm. The resistivity vs. temperature, critical current density vs. temperature and resistance vs. magnetic field dependence were studied to recognize the LRTC of Cooper pairs in the LSMO. A non-monotonic temperature dependence of junction critical current density and a decrease of the SFS nanojunction resistance in increased magnetic field were observed. Only weak manifestations of LRTC and some qualitative agreement with theory were found out in SFS nanojunctions realized from the perovskite materials. The presence of equal-spin triplet component of Cooper pairs in half-metallic LSMO ferromagnet is not such apparent as in SFS junctions prepared from low temperature superconductors NbTiN and half-metallic ferromagnet CrO{sub 2}.

  6. Strain sensor system based on amorphous ferromagnetic ribbons

    Jančárik, V.; Švec, P.; Kraus, Luděk

    2002-01-01

    Roč. 53, 10/S (2002), s. 92-94 ISSN 1335-3632. [Magnetic Measurements'02. Bratislava, 11.09.2002-13.09.2002] Grant - others:NATO(XX) SfP 973649 Institutional research plan: CEZ:AV0Z1010914 Keywords : strain sensor * magnetoelastic effect * amorphous ferromagnetic Subject RIV: BM - Solid Matter Physics ; Magnetism

  7. Possibilities of Obtaining Flat Static Characteristic of DC Ferromagnetic Actuator

    Doležel, Ivo; Dvořák, P.; Mach, M.; Ulrych, B.

    2005-01-01

    Roč. 220, č. 1 (2005), s. 29-39 ISSN 0032-6216 R&D Projects: GA MŠk(CZ) LN00B084 Institutional research plan: CEZ:AV0Z20570509 Keywords : flat static characteristic * DC ferromagnetic actuator Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  8. Optimization of fatigue damage indication in ferromagnetic low carbon steel

    Tomáš, Ivan; Kovářík, O.; Kadlecová, Jana; Vértesy, G.

    2015-01-01

    Roč. 26, č. 9 (2015), 095603 ISSN 0957-0233 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : fatigue * residual lifetime * magnetic non-destructive evaluation * ferromagnetic construction materials Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.492, year: 2015

  9. Spin-polarized tunneling through a ferromagnetic insulator

    Kok, M.; Kok, M.; Beukers, J.N.; Brinkman, Alexander

    2009-01-01

    The polarization of the tunnel conductance of spin-selective ferromagnetic insulators is modeled, providing a generalized concept of polarization including both the effects of electrode and barrier polarization. The polarization model is extended to take additional non-spin-polarizing insulating

  10. Reorientation of magnetization with temperature in 2D ferromagnets

    Fridman, Yu. A.; Spirin, D.V.; Klevets, Ph. N.

    2002-01-01

    We investigated 2D Heisenberg ferromagnet (monolayer) with the account of dipolar forces and uniaxial anisotropy and found a reorientation phase transition in temperature from out-of-plane to in-plane phase. This phase transition is of the first order with hysteresis. We estimated the temperatures of switching both analytically and numerically

  11. Final Report. Novel Behavior of Ferromagnet/Superconductor Hybrid Systems

    Birge, Norman [Michigan State Univ., East Lansing, MI (United States)

    2016-09-26

    Final report for grant DE-FG02-06ER46341. This work has produced a most convincing experimental demonstration that spin-triplet supercurrent can appear in Josephson junctions containing ferromagnetic materials, even when the superconducting electrodes are conventional, spin-singlet superconductors.

  12. Defects induced ferromagnetism in Mn doped ZnO

    Chattopadhyay, S.; Neogi, S.K. [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India); Sarkar, A. [Department of Physics, Bangabasi Morning College, Kolkata 700009 (India); Mukadam, M.D.; Yusuf, S.M. [Solid State Physics Division, Bhaba Atomic Research Centre, Mumbai 400085 (India); Banerjee, A. [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.i [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India)

    2011-02-15

    Single phase Mn doped (2 at%) ZnO samples have been synthesized by the solid-state reaction technique. Before the final sintering at 500 {sup o}C, the mixed powders have been milled for different milling periods (6, 24, 48 and 96 h). The grain sizes of the samples are very close to each other ({approx}32{+-}4 nm). However, the defective state of the samples is different from each other as manifested from the variation of magnetic properties and electrical resistivity with milling time. All the samples have been found to be ferromagnetic with clear hysteresis loops at room temperature. The maximum value for saturation magnetization (0.11 {mu}{sub B}/Mn atom) was achieved for 96 h milled sample. Electrical resistivity has been found to increase with increase in milling time. The most resistive sample bears the largest saturation magnetization. Variation of average positron lifetime with milling time bears a close similarity with that of the saturation magnetization. This indicates the key role played by open volume vacancy defects, presumably zinc vacancies near grain surfaces, in inducing ferromagnetic order in Mn doped ZnO. To attain optimum defect configuration favorable for ferromagnetism in this kind of samples proper choice of milling period and annealing conditions is required. - Research highlights: 2 at% Mn doped ZnO samples are single phase. All the samples exhibit ferromagnetism at room temperature. Correlation between saturation magnetization and positron annihilation lifetime established.

  13. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles

    Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu, E-mail: ycwu@whu.edu.cn [School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan 430072 (China)

    2014-01-21

    The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H{sub 2} in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between “on” and “off” states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (V{sub Zn} + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, V{sub Zn} + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μ{sub B}. The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism.

  14. Defects induced ferromagnetism in Mn doped ZnO

    Chattopadhyay, S.; Neogi, S.K.; Sarkar, A.; Mukadam, M.D.; Yusuf, S.M.; Banerjee, A.; Bandyopadhyay, S.

    2011-01-01

    Single phase Mn doped (2 at%) ZnO samples have been synthesized by the solid-state reaction technique. Before the final sintering at 500 o C, the mixed powders have been milled for different milling periods (6, 24, 48 and 96 h). The grain sizes of the samples are very close to each other (∼32±4 nm). However, the defective state of the samples is different from each other as manifested from the variation of magnetic properties and electrical resistivity with milling time. All the samples have been found to be ferromagnetic with clear hysteresis loops at room temperature. The maximum value for saturation magnetization (0.11 μ B /Mn atom) was achieved for 96 h milled sample. Electrical resistivity has been found to increase with increase in milling time. The most resistive sample bears the largest saturation magnetization. Variation of average positron lifetime with milling time bears a close similarity with that of the saturation magnetization. This indicates the key role played by open volume vacancy defects, presumably zinc vacancies near grain surfaces, in inducing ferromagnetic order in Mn doped ZnO. To attain optimum defect configuration favorable for ferromagnetism in this kind of samples proper choice of milling period and annealing conditions is required. - Research highlights: → 2 at% Mn doped ZnO samples are single phase. → All the samples exhibit ferromagnetism at room temperature. → Correlation between saturation magnetization and positron annihilation lifetime established.

  15. Final Report. Novel Behavior of Ferromagnet/Superconductor Hybrid Systems

    Birge, Norman

    2016-01-01

    Final report for grant DE-FG02-06ER46341. This work has produced a most convincing experimental demonstration that spin-triplet supercurrent can appear in Josephson junctions containing ferromagnetic materials, even when the superconducting electrodes are conventional, spin-singlet superconductors.

  16. Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy

    Kita, Eiji; Kayano, Takeru; Sato, Suguru; Minagawa, Makoto; Yanagihara, Hideto; Kishimoto, Mikio [Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573 (Japan); Oda, Tatsuya; Hashimoto, Shinji; Yamada, Keiichi; Ohkohchi, Nobuhiro [Department of Surgery, Advanced Biomedical Applications, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba 305-8575 (Japan); Mitsumata, Chiharu, E-mail: kita@bk.tsukuba.ac.j [Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2010-12-01

    The use of ferromagnetic nanoparticles for hyperthermia and thermoablation therapies has shown great promise in the field of nanobiomedicine. Even local hyperthermia offers numerous advantages as a novel cancer therapy; however, it requires a remarkably high heating power of more than 1 kW g{sup -1} for heat agents. As a candidate for high heat generation, we focus on ferromagnetic nanoparticles and compare their physical properties with those of superparamagnetic substances. Numerical simulations for ideal single-domain ferromagnetic nanoparticles with cubic and uniaxial magnetic symmetries were carried out and MH curves together with minor loops were obtained. From the simulation, the efficient use of an alternating magnetic field (AMF) having a limited amplitude was discussed. Co-ferrite nanoparticles with various magnitudes of coercive force were produced by co-precipitation and a hydrothermal process. A maximum specific loss power of 420 W g{sup -1} was obtained using an AMF at 117 kHz with H{sub 0} = 51.4 kA m{sup -1} (640 Oe). The relaxation behaviour in the ferromagnetic state below the superparamagnetic blocking temperature was examined by Moessbauer spectroscopy.

  17. Theoretical models of ferromagnetic III-V semiconductors

    Jungwirth, Tomáš; Sinova, J.; Kučera, Jan; MacDonald, A. H.

    2003-01-01

    Roč. 3, - (2003), s. 461-464 ISSN 1567-1739. [Mesoscopic Electronics COST Workshop. Catania, 16.10.2002-19.10.2002] Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * diluted magnetic semiconductors * magneto-transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.117, year: 2002

  18. Field-effect magnetization reversal in ferromagnetic semiconductor quantum wellls

    Lee, B.; Jungwirth, Tomáš; MacDonald, A. H.

    2002-01-01

    Roč. 65, č. 19 (2002), s. 193311-1-193311-4 ISSN 0163-1829 R&D Projects: GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductor quantum wells * magnetization reversal process Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  19. Magnetization relaxation in (Ga, Mn)As ferromagnetic semiconductors

    Sinova, J.; Jungwirth, Tomáš; Liu, X.; Sasaki, Y.; Furdyna, J. K.; Atkinson, W. A.; MacDonald, A. H.

    2004-01-01

    Roč. 69, č. 8 (2004), 085209/1-085209/6 ISSN 0163-1829 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetization relaxation * ferromagnetic semiconductors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.075, year: 2004

  20. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions

    LI Xiao-Wei

    2011-01-01

    We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength x in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.%@@ We study heat transport in a graphene ferromagnet-insulator-superconducting junction.It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor(FIS)junction is an oscillatory function of the barrier strength X in the thin-barrier limit.The gate potential Uo decreases the amplitude of thermal conductance oscillation.Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh.The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.

  1. NdRhSn: A ferromagnet with an antiferromagnetic precursor

    Mihalik, M.; Prokleška, J.; Kamarád, Jiří; Prokeš, K.; Isnard, O.; McIntyre, G. J.; Dönni, A.; Yoshii, S.; Kitazawa, H.; Sechovský, V.; de Boer, F.R.

    2011-01-01

    Roč. 83, č. 10 (2011), "104403-1"-"104403-10" ISSN 1098-0121 R&D Projects: GA ČR GA202/09/1027 Institutional research plan: CEZ:AV0Z10100521 Keywords : NdRhSn * ferromagnet * antiferromagnetic precursor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  2. Ferromagnetism in the two-dimensional periodic Anderson model

    Batista, C. D.; Bonca, J.; Gubernatis, J. E.

    2001-01-01

    Using the constrained-path Monte Carlo method, we studied the magnetic properties of the two-dimensional periodic Anderson model for electron fillings between 1/4 and 1/2. We also derived two effective low-energy theories to assist in interpreting the numerical results. For 1/4 filling, we found that the system can be a Mott or a charge-transfer insulator, depending on the relative values of the Coulomb interaction and the charge-transfer gap between the two noninteracting bands. The insulator may be a paramagnet or antiferromagnet. We concentrated on the effect of electron doping on these insulating phases. Upon doping we obtained a partially saturated ferromagnetic phase for low concentrations of conduction electrons. If the system were a charge-transfer insulator, we would find that the ferromagnetism is induced by the well-known Ruderman-Kittel-Kasuya-Yosida interaction. However, we found a novel correlated hopping mechanism inducing the ferromagnetism in the region where the nondoped system is a Mott insulator. Our regions of ferromagnetism spanned a much smaller doping range than suggested by recent slave boson and dynamical mean-field theory calculations, but they were consistent with that obtained by density-matrix renormalization group calculations of the one-dimensional periodic Anderson model

  3. Bolometric detection of ferromagnetic resonance in amorphous microwires

    Kraus, Luděk

    2015-01-01

    Roč. 51, č. 1 (2015), s. 6100104 ISSN 0018-9464 R&D Projects: GA ČR GAP102/12/2177 Institutional support: RVO:68378271 Keywords : amorphous microwires * anisotropic magnetoresistance (AMR) * bolometric effect * ferromagnetic resonance (FMR) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.277, year: 2015

  4. Ferromagnetic resonance in low interacting permalloy nanowire arrays

    Raposo, V.; Zazo, M.; Flores, A. G.; Iñiguez, J. [Departamento de Física Aplicada, University of Salamanca, E-37071 Salamanca (Spain); Garcia, J.; Vega, V.; Prida, V. M. [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain)

    2016-04-14

    Dipolar interactions on magnetic nanowire arrays have been investigated by various techniques. One of the most powerful techniques is the ferromagnetic resonance spectroscopy, because the resonance field depends directly on the anisotropy field strength and its frequency dependence. In order to evaluate the influence of magnetostatic dipolar interactions among ferromagnetic nanowire arrays, several densely packed hexagonal arrays of NiFe nanowires have been prepared by electrochemical deposition filling self-ordered nanopores of alumina membranes with different pore sizes but keeping the same interpore distance. Nanowires’ diameter was changed from 90 to 160 nm, while the lattice parameter was fixed to 300 nm, which was achieved by carefully reducing the pore diameter by means of Atomic Layer Deposition of conformal Al{sub 2}O{sub 3} layers on the nanoporous alumina templates. Field and frequency dependence of ferromagnetic resonance have been studied in order to obtain the dispersion diagram which gives information about anisotropy, damping factor, and gyromagnetic ratio. The relationship between resonance frequency and magnetic field can be explained by the roles played by the shape anisotropy and dipolar interactions among the ferromagnetic nanowires.

  5. New look at magnetism in single-crystal Gd-Y alloys

    Ito, T.; Legvold, S.; Beaudry, B.J.

    1981-01-01

    Magnetic susceptibility, electrical resistivity, and specific-heat measurements have been made on a number of polycrystalline and single-crystal samples of Gd-rich Gd-Y alloys. It has been found (i) that samples with more than 30 at. % Y exhibit a helical structure phase; (ii) that samples between 10 and 30 at. % Y exhibit two different Curie-Weiss regimes leading to ''double'' ferromagnetism; and (iii) that samples with less than 10 at. % Y have Gd-like behavior

  6. Hyperfine magnetic fields at 111Cd in Heusler alloys

    Styczen, B.; Szytula, A.; Walus, W.

    1977-01-01

    The magnitudes and signs of the hyperfine magnetic field on 111 Cd nuclei at Z sites in the ordered ferromagnetic Heusler alloys X 2 MnZ and XMnZ (where X is Cu, Ni, Pd while Z is In, Sn and Sb) have been investigated at liquid nitrogen and room temperatures using TDPAC method. Their signs have been found to be negative. The results have been compared with the predictions of Caroli-Blandin and Campbell-Blandin models and RKKY theory. (author)

  7. Moessbauer effect studies of magnetic interactions in iron and dilute iron alloys

    Woude, F. van der; Schurer, P.J.; Sawatzky, G.A.

    1975-01-01

    A temperature-dependent Moessbauer study was conducted in FeX alloys, where X = Al, Si, Ti, V, Cr, Mn, Co, and Ni, aimed at solving the problem of 'what is localized and what is itinerant in iron ferromagnetism'. The experimental results are interpreted using a phenomenological model based on a modified Zener-Vonsovskij theory. Absorption spectra of FeX alloys were measured as a function of temperature. It was found that the 3d magnetic moments in iron were mainly localized while exchange coupling was provided by partly itinerant 3d electrons. (L.D.)

  8. Order-disorder transformation in the Ni-4.49 at.% Al alloy

    Adorno, A.T.; Garlipp, W.; Cilense, M.; Silva, R.A.G.

    2006-01-01

    The order-disorder transformation in the Ni-4.49 at.% Al alloy was studied using electrical resistivity measurements, microhardness measurements, differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The results confirmed the ordering behavior expected for Ni-Al dilute alloys and the suggested relation between resistivity changes and microhardness changes with anti-ferromagnetic spin ordering. The higher value obtained for the activation energy of vacancy migration was associated with a decrease in the Al concentration gradient near solute-depleted regions

  9. Evidence of new high-pressure magnetic phases in Fe-Pt Invar alloy

    Matsushita, M.; Endo, S.; Miura, K.; Ono, F.

    2003-01-01

    To investigate the magnetic properties of disordered Fe 70 Pt 30 Invar alloy under high pressure, measurements of the real part of the AC susceptibility (χ) were made under pressure up to 7.5 GPa in the temperature range 4.2-385 K using a cubic anvil high-pressure apparatus. The Curie temperature (T C ) decreased with increasing pressure, and then, two new high-pressure magnetic phases appeared. These results show that the ferromagnetism of Fe-Pt Invar alloy becomes weaker, and the antiferromagnetic interaction becomes dominant with increasing pressure

  10. Spin-dependent quasiparticle tunneling in junction superconductor-isolator-ferromagnetic

    Shlapak, Yu.V.; Shaternik, V.E.; Rudenko, E.M.

    2001-01-01

    The influence of Andreev reflection of quasiparticles in transparent tunnel junctions of superconductor-isolator-ferromagnetic on electric-current transport is studied within the framework of the Blonder-Tinkham-Klapwijk (BTK) model. It's obtained that current and signal-to-noise ratio can be increased for the memory cell by using in it the double-barrier tunnel junction ferromagnetic-isolator-superconductor-isolator-ferromagnetic instead off the usual tunnel junction ferromagnetic-isolator-ferromagnetic. The evolution of non-linear (tunnel-type) current-voltage characteristics with increasing of the junction transparency is described. (orig.)

  11. Magnetocaloric effect of Gd4(BixSb1-x)3 alloy series

    Niu, Xuejun

    1999-01-01

    Alloys from the Gd 4 (Bi x Sb 1-x ) 3 series were prepared by melting a stoichiometric amounts of pure metals in an induction furnace. The crystal structure is of the anti-Th 3 P 4 type (space group Ibar 43d) for all the compounds tested. The linear increase of the lattice parameters with Bi concentration is attributed to the larger atomic radius of Bi than that of Sb. Magnetic measurements show that the alloys order ferromagnetically from 266K to 330K, with the ordering temperature increasing with decreasing Bi concentration. The alloys are soft ferromagnets below their Curie temperatures, and follow the Curie-Weiss law above their ordering temperatures. The paramagnetic effective magnetic moments are low compared to the theoretical value for a free Gd 3+ , while the ordered magnetic moments are close to the theoretical value for Gd. The alloys exhibit a moderate magnetocaloric effect (MCE) whose maxima are located between 270K and 338K and have relatively wide peaks. The peak MCE temperature decreases with decreasing Bi concentration while the peak height increases with decreasing Bi concentration. The Curie temperatures determined from inflection points of heat capacity are in good agreement with those obtained from the magnetocaloric effect. The MCE results obtained from the two different methods (magnetization and heat capacity) agree quite well with each other for all of the alloys in the series

  12. Steel alloys

    Bloom, E.E.; Stiegler, J.O.; Rowcliffe, A.F.; Leitnaker, J.M.

    1977-01-01

    The invention deals with a fuel element for fast breeder reactors. It consits essentially of a uranium oxide, nitride, or carbide or a mixture of these fuels with a plutonium or thorium oxide, nitride, or carbide. The fuel elements are coated with an austenitic stainless steel alloy. Inside the fuel elements, vacancies or small cavities are produced by neutron effects which causes the steel coating to swell. According to the invention, swelling is prevented by a modification of type 304, 316, 321, or 12 K 72HV commercial steels. They consist mainly of Fe, Cr, and Ni in a ratio determined by a temary diagram. They may also contain 1.8 to 2.3% by weight of Mo and a fraction of Si (0.7 to 2% by weight) and Ti(0.10 to 0.5% by weight) to prevent cavity formation. They are structurally modified by cold working. (IHOE) [de

  13. Modulation of Magnetic Properties at the Nanometer Scale in Continuously Graded Ferromagnets

    Lorenzo Fallarino

    2018-02-01

    Full Text Available Ferromagnetic alloy materials with designed composition depth profiles provide an efficient route for the control of magnetism at the nanometer length scale. In this regard, cobalt-chromium and cobalt-ruthenium alloys constitute powerful model systems. They exhibit easy-to-tune magnetic properties such as saturation magnetization MS and Curie temperature TC while preserving their crystalline structure over a wide composition range. In order to demonstrate this materials design potential, we have grown a series of graded Co1−xCrx and Co1−wRuw (10 1 ¯ 0 epitaxial thin films, with x and w following predefined concentration profiles. Structural analysis measurements verify the epitaxial nature and crystallographic quality of our entire sample sets, which were designed to exhibit in-plane c-axis orientation and thus a magnetic in-plane easy axis to achieve suppression of magnetostatic domain generation. Temperature and field-dependent magnetic depth profiles have been measured by means of polarized neutron reflectometry. In both investigated structures, TC and MS are found to vary as a function of depth in accordance with the predefined compositional depth profiles. Our Co1−wRuw sample structures, which exhibit very steep material gradients, allow us to determine the localization limit for compositionally graded materials, which we find to be of the order of 1 nm. The Co1−xCrx systems show the expected U-shaped TC and MS depth profiles, for which these specific samples were designed. The corresponding temperature dependent magnetization profile is then utilized to control the coupling along the film depth, which even allows for a sharp onset of decoupling of top and bottom sample parts at elevated temperatures.

  14. Spin-dependent transport and functional design in organic ferromagnetic devices

    Guichao Hu

    2017-09-01

    Full Text Available Organic ferromagnets are intriguing materials in that they combine ferromagnetic and organic properties. Although challenges in their synthesis still remain, the development of organic spintronics has triggered strong interest in high-performance organic ferromagnetic devices. This review first introduces our theory for spin-dependent electron transport through organic ferromagnetic devices, which combines an extended Su–Schrieffer–Heeger model with the Green’s function method. The effects of the intrinsic interactions in the organic ferromagnets, including strong electron–lattice interaction and spin–spin correlation between π-electrons and radicals, are highlighted. Several interesting functional designs of organic ferromagnetic devices are discussed, specifically the concepts of a spin filter, multi-state magnetoresistance, and spin-current rectification. The mechanism of each phenomenon is explained by transmission and orbital analysis. These works show that organic ferromagnets are promising components for spintronic devices that deserve to be designed and examined in future experiments.

  15. Influence of atomic ordering on sigma phase precipitation of the Fe{sub 50}Cr{sub 50} alloy

    Vélez, G.Y., E-mail: g.y.velezcastillo@gmail.com [Universidad del Valle, Departamento de Física, A.A. 25360 Cali (Colombia); Instituto de Física, Universidad Autónoma de San Luis Potosí, avenida Manuel Nava 6, zona universitaria, 78290 San Luis Potosí, SLP México (Mexico); Pérez Alcázar, G.A. [Universidad del Valle, Departamento de Física, A.A. 25360 Cali (Colombia)

    2015-09-25

    Highlights: • σ-FeCr phase can be delayed when α-FeCr phase is ordered. • The formation of σ phase is favored by concentration gradients of α phase. • We determine the iron occupation number of the five sites of σ-Fe{sub 50}Cr{sub 50}. - Abstract: In this work we report a study of the kinetic of the formation of the σ-Fe{sub 50}Cr{sub 50} alloy which is obtained by heat treatment of α-FeCr samples with different atomic ordering. Two α-FeCr alloys were obtained, one by mechanical alloying and the other by arc-melting. Both alloys were heated at 925 K for 170 h and then quenched into ice water. Before heat treatment both alloys exhibit α-FeCr disordered structure with greater ferromagnetic behavior in the alloy obtained by mechanical alloying due to its higher atomic disorder. The sigma phase precipitation is influenced by the atomic ordering of the bcc samples: in the alloy obtained by mechanical alloying, the bcc phase is completely transformed into the σ phase; in the alloy obtained by melted the α–σ transformation is partial.

  16. An assessment of magnetic effects in ferromagnetic martensitic steels for use in fusion machines

    Lechtenberg, T.; Dahms, C.; Attaya, H.

    1984-01-01

    Interest in the 9-12%Cr class of martensitic stainless steels has accelerated since these materials were included in the U.S. Alloy Development for Irradiation Performance (ADIP) task funded by the Office of Fusion Energy in 1979. This program is focused on developing structural materials for fusion reactor first wall/breeding blanket components where the neutron damage is most severe. This area of a fusion reactor will be required to tolerate damage levels on the order of 110 dpa( 1 ). As a part of ADIP, study of the martensitic steels is focused on establishing the feasibility of using these materials. The interest in martensitic steels stems from their potential to tolerate high levels of radiation damage without significant degradation of material properties. Martensitic steels have a body-centered-cubic crystal structure that, unlike face-centered-cubic structure of austenitic steels, exhibits very little swelling under neutron irradiation( 2 ). One of the outstanding issues with martensitic steels is the possible parasitic stresses associated with ferromagnetic interaction with the magnetic fields. This paper is divided into two parts, the first reviews previous work on magnetic effects to the structure and plasma; the second presents new calculations of stresses on a coolant pipe in a Starfire model assumed to be made of 12Cr-1Mo steel(HT-9)

  17. Half-metallic ferromagnetism in Fe, Co and Ni doped BaS: First principles calculations

    Maurya, Savita; Sharma, Ramesh; Bhamu, K. C.

    2018-04-01

    The first principle investigation of structural, electronic, magnetic and optical properties of Ba1-xTMxS (x = 0.25) have been done using FPLAW method within the density functional theory (DFT) using generalized gradient approximation (GGA) for exchange correlation potential using two different functionals which are the PBE-sol and the modified Becke and Johnson local (spin) density approximation (mBJLDA). It was found that mBJLDA functional offer better account for the electronic structure of the Fe, Co and Ni-doped BaS. It was also observed that Fe/Co/Ni d, S p and Ba d states play a major role in determining the electronic properties of this alloy system. Investigation results shows that Ba0.75(Fe/Co/Ni)0.25S is ferromagnetic with magnetic moment of 3.72 µB, 2.73908 µB and 1.74324 µB at Fe, Co and Ni sites respectively. Complex dielectric constant ɛ(ω) and normal incidence reflectivity R(ω) are also been investigate for broad range of photon energies. These results are compared with the some reported existing experimental values.

  18. Thermoplastic deformation of ferromagnetic CoFe-based bulk metallic glasses

    Wu, Chenguang; Hu, Renchao; Man, Qikui; Chang, Chuntao; Wang, Xinmin

    2017-12-01

    The superplastic deformation behavior of the ferromagnetic Co31Fe31Nb8B30 bulk metallic glass (BMG) in the supercooled liquid region was investigated. At a given temperature, the BMG exhibits a Newtonian behavior at low strain rates but a non-Newtonian behavior at high strain rates. The high thermal stability of this glassy alloy system offers an enough processing window to thermoplastic forming (TPF), and the strong processing ability was examined by simple micro-replication experiments. It is demonstrated that the TPF formability on length scales ranging down to nanometers can be achieved in the selected experimental condition. Based on the analysis of deformation behavior, the nearly full density sample (i.e. nearly 100%), was produced from water-atomized glassy powders and consolidated by the hot-pressing technique. The sample exhibits good soft-magnetic and mechanical properties, i.e., low coercive force of 0.43 Oe, high initial permeability of 4100 and high Vickers hardness 1398. These results suggest that the hot-pressing process opens up possibilities for the commercial exploitation of BMGs in engineering applications.

  19. Orientation dependence and tension/compression asymmetry of shape memory effect and superelasticity in ferromagnetic Co40Ni33Al27, Co49Ni21Ga30 and Ni54Fe19Ga27 single crystals

    Chumlyakov, Y.; Panchenko, E.; Kireeva, I.; Karaman, I.; Sehitoglu, H.; Maier, H.J.; Tverdokhlebova, A.; Ovsyannikov, A.

    2008-01-01

    In the present study the effects of crystal axis orientation, stress state (tension/compression) and test temperature on shape memory effect and superelasticity of Ni 54 Fe 19 Ga 27 (I), Co 40 Ni 33 Al 27 (II), Co 49 Ni 21 Ga 30 (III) (numbers indicate at.%) single crystals were investigated. The shape memory effect, the start temperature of superelasticity T 1 and the mechanical hysteresis Δσ were found to be dependent on crystal axis orientation and stress state. Superelasticity was observed at T 1 = A f (A f , reverse transformation-finish temperature) in tension/compression for [0 0 1]-oriented Ni-Fe-Ga crystals and in compression for [0 0 1]-oriented Co-Ni-Ga crystals, which all displayed a small mechanical hysteresis (Δσ ≤ 30 MPa). An increase in Δσ of up to 90 MPa in the Co-Ni-Al and the Co-Ni-Ga crystals lead to stabilization of the stress-induced martensite, and an increase in to T 1 = A f + Δ. The maximal value of Δ (75 K) was found in [0 0 1]-oriented Co-Ni-Al crystals in tension. A thermodynamic criterion describing the dependencies of the start temperature of superelasticity T 1 on crystal axis orientation, stress state and the magnitude of mechanical hysteresis is discussed

  20. Perpendicular Magnetic Anisotropy in Heusler Alloy Films and Their Magnetoresistive Junctions

    Atsufumi Hirohata

    2018-01-01

    Full Text Available For the sustainable development of spintronic devices, a half-metallic ferromagnetic film needs to be developed as a spin source with exhibiting 100% spin polarisation at its Fermi level at room temperature. One of the most promising candidates for such a film is a Heusler-alloy film, which has already been proven to achieve the half-metallicity in the bulk region of the film. The Heusler alloys have predominantly cubic crystalline structures with small magnetocrystalline anisotropy. In order to use these alloys in perpendicularly magnetised devices, which are advantageous over in-plane devices due to their scalability, lattice distortion is required by introducing atomic substitution and interfacial lattice mismatch. In this review, recent development in perpendicularly-magnetised Heusler-alloy films is overviewed and their magnetoresistive junctions are discussed. Especially, focus is given to binary Heusler alloys by replacing the second element in the ternary Heusler alloys with the third one, e.g., MnGa and MnGe, and to interfacially-induced anisotropy by attaching oxides and metals with different lattice constants to the Heusler alloys. These alloys can improve the performance of spintronic devices with higher recording capacity.

  1. Stress-temperature phase diagram of a ferromagnetic Ni-Mn-Ga shape memory alloy

    Chernenko, V.A.; Pons, J.; Cesari, E.; Ishikawa, K.

    2005-01-01

    A sequence of thermally and stress-induced intermartensitic transformations has been found in a Ni 52.0 Mn 24.4 Ga 23.6 single crystal, which have been confirmed by transmission electron microscopy through in situ cooling experiments. The stress-strain-temperature behavior under compression along the P and P crystallographic directions has also been studied for this compound and a stress-temperature phase diagram has been established

  2. Magneto-optical spectroscopy of ferromagnetic shape-memory Ni-Mn-Ga alloy

    Veis, M.; Beran, L.; Zahradník, M.; Antoš, R.; Straka, L.; Kopeček, Jaromír; Fekete, Ladislav; Heczko, Oleg

    2014-01-01

    Roč. 115, č. 17 (2014), "17A936-1"-"17A936-3" ISSN 0021-8979 R&D Projects: GA ČR(CZ) GAP107/11/0391; GA ČR GA13-30397S Institutional support: RVO:68378271 Keywords : magnetooptical effects * Kerr effects * nickel * ultraviolet spectra * infrared spectra Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2014

  3. Nanoscale mechanical surface properties of single crystalline martensitic Ni-Mn-Ga ferromagnetic shape memory alloys

    Jakob, A M; Müller, M; Rauschenbach, B; Mayr, S G

    2012-01-01

    Located beyond the resolution limit of nanoindentation, contact resonance atomic force microscopy (CR-AFM) is employed for nano-mechanical surface characterization of single crystalline 14M modulated martensitic Ni-Mn-Ga (NMG) thin films grown by magnetron sputter deposition on (001) MgO substrates. Comparing experimental indentation moduli-obtained with CR-AFM-with theoretical predictions based on density functional theory (DFT) indicates the central role of pseudo plasticity and inter-martensitic phase transitions. Spatially highly resolved mechanical imaging enables the visualization of twin boundaries and allows for the assessment of their impact on mechanical behavior at the nanoscale. The CR-AFM technique is also briefly reviewed. Its advantages and drawbacks are carefully addressed. (paper)

  4. Nonlocal torque operators in ab initio theory of the Gilbert damping in random ferromagnetic alloys

    Turek, Ilja; Kudrnovský, Josef; Drchal, Václav

    2015-01-01

    Roč. 92, č. 21 (2015), 214407-1-214407-11 ISSN 1098-0121 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68081723 ; RVO:68378271 Keywords : magnetic damping * spin torque Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  5. Experimental study of directionally solidified ferromagnetic shape memory alloy under multi-field coupling

    Zhu, Yuping, E-mail: zhuyuping@126.com [Institute of Geophysics, China Earthquake Administration, Beijing 100081 (China); Chen, Tao; Teng, Yao [Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013 (China); Liu, Bingfei [Airport College, Civil Aviation University of China, Tianjin 300300 (China); Xue, Lijun [Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2016-11-01

    Directionally solidified, polycrystalline Ni–Mn–Ga is studied in this paper. The polycrystalline Ni–Mn–Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading–unloading cycle were measured. The experimental results show that the mechanical behavior during the loading–unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications. - Highlights: • The magnetic-induced strains in different directions are tested. • The temperature-induced strains in different directions are tested. • The effects of coupling factors on directional solidification samples are studied.

  6. Phase Transformations in Electrically Conductive Ferromagnetic Shape-Memory Alloys, Their Thermodynamics and Analysis

    Roubíček, Tomáš; Tomassetti, G.

    2013-01-01

    Roč. 210, č. 1 (2013), s. 1-43 ISSN 0003-9527 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : magnetostrictive materials * martensitic transformation * ferro-to-para-magnetic transformation Subject RIV: BA - General Mathematics Impact factor: 2.022, year: 2013 http://link.springer.com/article/10.1007/s00205-013-0648-2

  7. Galvanomagnetic transport properties and Gilbert damping in ferromagnetic PdCo alloy

    Kudrnovský, Josef; Drchal, Václav; Turek, I.

    2017-01-01

    Roč. 30, č. 5 (2017), s. 1367-1370 ISSN 1557-1939 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68378271 Keywords : anomalous Hall effect * Gilbert damping * partial order * first-principles Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.180, year: 2016

  8. Ab initio theory of galvanomagnetic phenomena in ferromagnetic metals and disordered alloys

    Turek, Ilja; Kudrnovský, Josef; Drchal, Václav

    2012-01-01

    Roč. 86, č. 1 (2012), 014405/1/-014405/8/ ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/11/1228 Institutional research plan: CEZ:AV0Z10100520 Institutional support: RVO:68081723 Keywords : electronic transport * galvanomagnetic phenomena Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012

  9. Physical properties of the FeRh alloys: the antiferromagnetic to ferromagnetic transition

    Kudrnovský, Josef; Drchal, Václav; Turek, I.

    2015-01-01

    Roč. 91, č. 1 (2015), "014435-1"-"014435-11" ISSN 1098-0121 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : coherent-potential approximation * phase-transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  10. Study of structural, electronic and magnetic properties of CoFeIn and Co2FeIn Heusler alloys

    El Amine Monir, M.; Khenata, R.; Baltache, H.; Murtaza, G.; Abu-Jafar, M.S.; Bouhemadou, A.; Bin Omran, S.

    2015-01-01

    The structural, electronic and magnetic properties of half-Heusler CoFeIn and full-Heusler Co 2 FeIn alloys have been investigated by using the state of the art full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential was treated with the generalized gradient approximation (PBE-GGA) for the calculation of the structural properties, whereas the PBE-GGA+U approximation (where U is the Hubbard Coulomb energy term) is applied for the computation of the electronic and magnetic properties in order to treat the “d” electrons. The structural properties have been calculated in the paramagnetic and ferromagnetic phases where we have found that both the CoFeIn and Co 2 FeIn alloys have a stable ferromagnetic phase. The obtained results of the spin-polarized band structure and the density of states show that the CoFeIn alloy is a metal and the Co 2 FeIn alloy has a complete half-metallic nature. Through the obtained values of the total spin magnetic moment, we conclude that in general, the Co 2 FeIn alloy is half-metallic ferromagnet material whereas the CoFeIn alloy has a metallic nature. - Highlights: • Based on DFT calculations, CoFeIn and Co2FeIn Heusler alloys were investigated. • The magnetic phase stability was determined from the total energy calculations. • Electronic properties reveal the metallic (half-metallic) nature for CoFeIn (Co2FeIn)

  11. Magnetic structures of holmium-lutetium alloys and superlattices

    Swaddling, P.P.; Cowley, R.A.; Ward, R.C.C.

    1996-01-01

    Alloys and superlattices of Ho and Lu have been grown using molecular beam epitaxy and their magnetic structures determined using neutron-scattering techniques. The 4f moments in the alloys form a helix at all compositions with the moments aligned in the basal plane perpendicular to the wave vector...... of the helix remaining coherent through the nonmagnetic Lu blocks. The neutron scattering from the superlattices is consistent with a model in which there are different phase advances of the helix turn angle through the Ho and Lu blocks, but with a localized moment on the Ho sites only. A comparison...... of Ho and Lu. At low temperatures, for superlattices with fewer than approximately twenty atomic planes of Ho, the Ho moments within a block undergo a phase transition from helical to ferromagnetic order, with the coupling between successive blocks dependent on the thickness of the Lu spacer....

  12. A novel magnetoresistance induced by charge ordering in ferromagnetic/charge-ordered/ferromagnetic trilayers

    Wang, Haiou; Li, Jinwei; Su, Kunpeng; Huo, Dexuan; Tan, Weishi

    2015-10-01

    Microstructure, magnetoresistance (MR) and magnetic properties of Pr0.7Sr0.3MnO3/La0.5Ca0.5MnO3/Pr0.7Sr0.3MnO3 trilayers, which are shown to be tunable with different La0.5Ca0.5MnO3 spacer thickness, are investigated. The trilayer with 6 nm thick La0.5Ca0.5MnO3 spacer show \\text{MR}∼37{%} at 195 K in 1 T and \\text{MR}∼80{%} at 220 K in 9 T, which is realized through the double-exchange mechanism. In contrast, trilayers with the thicker La0.5Ca0.5MnO3 spacer show enhanced MR at a wide low-temperature range. The obtained \\text{MR}∼52{%} at 50 K in 1 T in the trilayer with 18 nm thick La0.5Ca0.5MnO3 spacer is superior to that of other magnetic nanoscales. We surmise that this MR originates in the ferromagnetic/antiferromagnetic competition accompanied with the formation of a charge-ordered antiferromagnetic state and the collapse of the charge-ordered state at the applied magnetic field, rather than in the double-exchange mechanism. Large and tunable MR can be realized by controlling the strain state (the thickness of the La0.5Ca0.5MnO3 spacer), which can be applied in the used devices.

  13. Simulation of ferromagnetic nanomaterial flow of Maxwell fluid

    T. Hayat

    2018-03-01

    Full Text Available Ferromagnetic flow of rate type liquid over a stretched surface is addressed in this article. Heat and mass transport are investigated with Brownian movement and thermophoresis effects. Magnetic dipole is also taken into consideration. Procedure of similarity transformation is employed. The obtained nonlinear expressions have been tackled numerically by means of Shooting method. Graphical results are shown and analyzed for the impact of different variables. Temperature and concentration gradients are numerically computed in Tables 1 and 2. The results described here demonstrate that ferromagnetic variable boosts the thermal field. It is noticed that velocity and concentration profiles are higher when elastic and thermophoresis variables are enhanced. Keywords: Rate type fluid, Brownian movement, Thermophoresis effect, Magnetic dipole

  14. Valley and spin thermoelectric transport in ferromagnetic silicene junctions

    Ping Niu, Zhi; Dong, Shihao

    2014-01-01

    We have investigated the valley and spin resolved thermoelectric transport in a normal/ferromagnetic/normal silicene junction. Due to the coupling between the valley and spin degrees of freedom, thermally induced pure valley and spin currents can be demonstrated. The magnitude and sign of these currents can be manipulated by adjusting the ferromagnetic exchange field and local external electric field, thus the currents are controllable. We also find fully valley and/or spin polarized currents. Similar to the currents, owing to the band structure symmetry, tunable pure spin and/or valley thermopowers with zero charge counterpart are generated. The results obtained here suggest a feasible way of generating a pure valley (spin) current and thermopower in silicene

  15. Thermal expansion of coexistence of ferromagnetism and superconductivity

    Hatayama, Nobukuni; Konno, Rikio

    2010-01-01

    The temperature dependence of thermal expansion of coexistence of ferromag-netism and superconductivity below the superconducting transition temperature T cu of a majority spin conduction band is investigated. Majority spin and minority spin superconducting gaps exist in the coexistent state. We assume that the Curie temperature is much larger than the superconducting transition temperatures. The free energy that Linder et al. [Phys. Rev. B76, 054511 (2007)] derived is used. The thermal expansion of coexistence of ferromagnetism and superconductivity is derived by the application of the method of Takahashi and Nakano [J. Phys.: Condens. Matter 18, 521 (2006)]. We find that we have the anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures.

  16. Room temperature ferromagnetism in a phthalocyanine based carbon material

    Honda, Z.; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N.; Hagiwara, M.; Kida, T.

    2014-01-01

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T c  = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material

  17. Passive high-frequency devices based on superlattice ferromagnetic nanowires

    Ye, B.; Li, F.; Cimpoesu, D.; Wiley, J.B.; Jung, J.-S.; Stancu, A.; Spinu, L.

    2007-01-01

    In this paper we propose to tailor the bandwidth of a microwave filter by exploitation of shape anisotropy of nanowires. In order to achieve this control of shape anisotropy, we considered superlattice wires containing varying-sized ferromagnetic regions separated by nonferromagnetic regions. Superlattice wires of Ni and Au with a nominal diameter of 200 nm were grown using standard electrodeposition techniques. The microwave properties were probed using X-band (9.8 GHz) ferromagnetic resonance (FMR) experiments performed at room temperature. In order to investigate the effectiveness of the shape anisotropy on the superlattice nanowire based filter the FMR spectrum of superlattice structure is compared to the FMR spectra of nanowires samples with constant length

  18. Spin Hall and spin swapping torques in diffusive ferromagnets

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  19. Itinerant ferromagnetism in fermionic systems with SP (2 N) symmetry

    Yang, Wang; Wu, Congjun

    The Ginzburg-Landau free energy of systems with SP (2 N) symmetry describes a second order phase transition on the mean field level, since the Casimir invariants of the SP (2 N) group can be only of even order combinations of the generators of the SP (2 N) group. This is in contrast with systems having the SU (N) symmetry, where the allowance of cubic term generally makes the phase transition into first order. In this work, we consider the Hertz-Millis type itinerant ferromagnetism in an interacting fermionic system with SP (2 N) symmetry, where the ferromagnetic orders are enriched by the multi-component nature of the system. The quantum criticality is discussed near the second order phase transition point.

  20. Investigation of ferromagnetism in oxygen deficient hafnium oxide thin films

    Hildebrandt, Erwin; Kurian, Jose; Krockenberger, Yoshiharu; Alff, Lambert [Institut fuer Materialwissenschaft, TU Darmstadt (Germany); Suter, Andreas [PSI, Villingen (Switzerland); Wilhelm, Fabrice; Rogalev, Andrei [ESRF, Grenoble (France)

    2008-07-01

    Oxygen deficient thin films of hafnium oxide were grown on single crystal r-cut and c-cut sapphire by reactive molecular beam epitaxy. RF-activated oxygen was used for the in situ oxidation of hafnium oxide thin films. Oxidation conditions were varied substantially in order to create oxygen deficiency in hafnium oxide films intentionally. The films were characterized by X-ray and magnetic measurements. X-ray diffraction studies show an increase in lattice parameter with increasing oxygen deficiency. Oxygen deficient hafnium oxide thin films also showed a decreasing bandgap with increase in oxygen deficiency. The magnetisation studies carried out with SQUID did not show any sign of ferromagnetism in the whole oxygen deficiency range. X-ray magnetic circular dichroism measurements also confirmed the absence of ferromagnetism in oxygen deficient hafnium oxide thin films.

  1. Spin Hall and spin swapping torques in diffusive ferromagnets

    Pauyac, C. O.; Chshiev, M.; Manchon, Aurelien; Nikolaev, S. A.

    2017-01-01

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  2. Calculation of Gilbert damping in ferromagnetic films

    Edwards D. M.

    2013-01-01

    Full Text Available The Gilbert damping constant in the phenomenological Landau-Lifshitz-Gilbert equation which describes the dynamics of magnetization, is calculated for Fe, Co and Ni bulk ferromagnets, Co films and Co/Pd bilayers within a nine-band tight-binding model with spin-orbit coupling included. The calculational effciency is remarkably improved by introducing finite temperature into the electronic occupation factors and subsequent summation over the Matsubara frequencies. The calculated dependence of Gilbert damping constant on scattering rate for bulk Fe, Co and Ni is in good agreement with the results of previous ab initio calculations. Calculations are reported for ferromagnetic Co metallic films and Co/Pd bilayers. The dependence of the Gilbert damping constant on Co film thickness, for various scattering rates, is studied and compared with recent experiments.

  3. Energy based model for temperature dependent behavior of ferromagnetic materials

    Sah, Sanjay; Atulasimha, Jayasimha

    2017-01-01

    An energy based model for temperature dependent anhysteretic magnetization curves of ferromagnetic materials is proposed and benchmarked against experimental data. This is based on the calculation of macroscopic magnetic properties by performing an energy weighted average over all possible orientations of the magnetization vector. Most prior approaches that employ this method are unable to independently account for the effect of both inhomogeneity and temperature in performing the averaging necessary to model experimental data. Here we propose a way to account for both effects simultaneously and benchmark the model against experimental data from ~5 K to ~300 K for two different materials in both annealed (fewer inhomogeneities) and deformed (more inhomogeneities) samples. This demonstrates that this framework is well suited to simulate temperature dependent experimental magnetic behavior. - Highlights: • Energy based model for temperature dependent ferromagnetic behavior. • Simultaneously accounts for effect of temperature and inhomogeneities. • Benchmarked against experimental data from 5 K to 300 K.

  4. Thin Co films with tunable ferromagnetic resonance frequency

    Maklakov, Sergey S.; Maklakov, Sergey A.; Ryzhikov, Ilya A.; Rozanov, Konstantin N.; Osipov, Alexey V.

    2012-01-01

    The tailored production of thin Co films of 50 nm thick with ferromagnetic resonance frequency in a range from 2.9 to 7.3 GHz using the DC magnetron sputtering is reported. The ferromagnetic resonance frequency, coercivity, effective magnetic field and nanocrystalline structure parameters are shown to be governed by the Co deposition rate. For this investigation, FMR, VSM and TEM techniques were used. - Highlights: ► Thin Co films with FMR frequency in a range from 2.9 to 7.3 GHz are obtained. ► The films' properties are governed by the deposition rate during DC magnetron sputtering. ► FMR, VSM and TEM techniques were used during the study.

  5. Helimagnetism and weak ferromagnetism in edge-shared chain cuprates

    Drechsler, S.-L.; Richter, J.; Kuzian, R.; Malek, J.; Tristan, N.; Buechner, B.; Moskvin, A.S.; Gippius, A.A.; Vasiliev, A.; Volkova, O.; Prokofiev, A.; Rakoto, H.; Broto, J.-M.; Schnelle, W.; Schmitt, M.; Ormeci, A.; Loison, C.; Rosner, H.

    2007-01-01

    The present understanding of a novel growing class of chain cuprates with intriguing magnetic properties is reviewed. Among them, several undoped edge-shared CuO 2 chain compounds show at low temperature a clear tendency to helicoidal magnetical ordering with acute pitch angles and sometimes also to weak ferromagnetism. Our analysis is based on the isotropic 1D frustrated J 1 -J 2 Heisenberg model with ferromagnetic (FM) 1st neighbor and antiferromagnetic 2nd neighbor exchange. The achieved assignment is supported by microscopic calculations of the electronic and magnetic structure. We consider Na(Li)Cu 2 O 2 , LiVCuO 4 as the best studied helimagnets, Li 2 ZrCuO 4 and other systems close to a FM quantum critical point, as well as Li 2 CuO 2 with FM inchain ordering. The interplay of frustrated inchain couplings, anisotropy and interchain exchange is discussed

  6. Design and installation of a ferromagnetic wall in tokamak geometry

    Hughes, P. E.; Levesque, J. P.; Rivera, N.; Mauel, M. E.; Navratil, G. A.

    2015-01-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak–Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics and overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability

  7. Spin heat accumulation induced by tunneling from a ferromagnet.

    Vera-Marun, I J; van Wees, B J; Jansen, R

    2014-02-07

    An electric current from a ferromagnet into a nonmagnetic material can induce a spin-dependent electron temperature. Here, it is shown that this spin heat accumulation, when created by tunneling from a ferromagnet, produces a non-negligible voltage signal that is comparable to that due to the coexisting electrical spin accumulation and can give a different Hanle spin precession signature. The effect is governed by the spin polarization of the Peltier coefficient of the tunnel contact, its Seebeck coefficient, and the spin heat resistance of the nonmagnetic material, which is related to the electrical spin resistance by a spin-Wiedemann-Franz law. Moreover, spin heat injection is subject to a heat conductivity mismatch that is overcome if the tunnel interface has a sufficiently large resistance.

  8. Pumping of magnons in a Dzyaloshinskii-Moriya ferromagnet

    Kovalev, Alexey A.; Zyuzin, Vladimir A.; Li, Bo

    2017-04-01

    We formulate a microscopic linear response theory of magnon pumping applicable to multiple-magnonic-band uniform ferromagnets with Dzyaloshinskii-Moriya interactions. From the linear response theory, we identify the extrinsic and intrinsic contributions where the latter is expressed via the Berry curvature of magnonic bands. We observe that in the presence of a time-dependent magnetization Dzyaloshinskii-Moriya interactions can act as fictitious electric fields acting on magnons. We study various current responses to this fictitious field and analyze the role of Berry curvature. In particular, we obtain an analog of the Hall-like response in systems with nontrivial Berry curvature of magnon bands. After identifying the magnon-mediated contribution to the equilibrium Dzyaloshinskii-Moriya interaction, we also establish the Onsager reciprocity between the magnon mediated thermal torques and heat pumping. We apply our theory to the magnonic heat pumping and torque responses in honeycomb and kagome lattice ferromagnets.

  9. The paramagnetic properties of ferromagnetic mixed-spin chain system

    Hu, Ai-Yuan; Wu, Zhi-Min; Cui, Yu-Ting; Qin, Guo-Ping

    2015-01-01

    The double-time Green's function method is used to investigate the paramagnetic properties of ferromagnetic mixed-spin chain system within the random-phase approximation and Anderson–Callen's decoupling approximation. The analytic expressions of the transverse susceptibility, longitudinal susceptibility and correlation length are obtained under transverse and longitudinal magnetic field. Using the analytic expressions of the transverse and longitudinal susceptibility to fit the experimental results, our results well agree with experimental data and the results from the high temperature series expansion within a simple Padé approximation. - Highlights: • We investigate the magnetic properties of a ferromagnetic mixed-spin chain system. • We use the double-time temperature-dependent Green's function technique. • Different single-ion anisotropy values for different spin values are considered. • Our results agree with experimental data and the results from the other theoretical methods

  10. Ferromagnetic interaction model of activity level in workplace communication

    Akitomi, Tomoaki; Ara, Koji; Watanabe, Jun-ichiro; Yano, Kazuo

    2013-03-01

    The nature of human-human interaction, specifically, how people synchronize with each other in multiple-participant conversations, is described by a ferromagnetic interaction model of people’s activity levels. We found two microscopic human interaction characteristics from a real-environment face-to-face conversation. The first characteristic is that people quite regularly synchronize their activity level with that of the other participants in a conversation. The second characteristic is that the degree of synchronization increases as the number of participants increases. Based on these microscopic ferromagnetic characteristics, a “conversation activity level” was modeled according to the Ising model. The results of a simulation of activity level based on this model well reproduce macroscopic experimental measurements of activity level. This model will give a new insight into how people interact with each other in a conversation.

  11. Room temperature ferromagnetism in a phthalocyanine based carbon material

    Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N. [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Hagiwara, M.; Kida, T. [KYOKUGEN (Center for Quantum Science and Technology under Extreme Conditions), Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2014-02-07

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c} = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

  12. Influence of lattice defects on criticality of Potts ferromagnet

    Souza Costa, U.M. de.

    1985-01-01

    The critical properties of the q-state Potts ferromagnet and the anisotropic Heisenberg model on hypercubic lattices (d = 2,3); emphasis is given to the free surface and the interface effects, the Real Space Renormalization Group approach. The criticality of the quenched bond-mixed q-state Potts ferromagnet on square lattice is discussed. It is shown that, the crossover from the pure fixed point to the random one occurs, while q increases, through a pitchfork bifurcation; the relation-ship with the Harris criterion is analyzed. High precision numerical values for the critical temperatures corresponding to arbitrary concentrations of the coupling constants J sub(1) and J sub(2), and arbitrary ratios J sub(1)/J sub(2) are presented.(author)

  13. Ferromagnetic artificial pinning centers in multifilamentary superconducting wires

    Wang, J.Q.; Rizzo, N.D.; Prober, D.E.

    1997-01-01

    The authors fabricated multifilamentary NbTi wires with ferromagnetic (FM) artificial pinning centers (APCs) to enhance the critical current density (J c ) in magnetic fields. They used a bundle and draw technique to process the APC wires with either Ni or Fe as the pinning centers. Both wires produced higher J c in the high field range (5-9 T) than previous non-magnetic APC wires similarly processed, even though the authors have not yet optimized pin percentage. Using a magnetometer they found that the pins remained ferromagnetic for the wires with maximum J c . However, they did observe a substantial loss of FM material for the wires where the pin diameter approached 3 nm. Thus, they expect further enhancement of J c with better pin quality

  14. Design and installation of a ferromagnetic wall in tokamak geometry

    Hughes, P. E., E-mail: peh2109@columbia.edu; Levesque, J. P.; Rivera, N.; Mauel, M. E.; Navratil, G. A. [Columbia University Plasma Physics Laboratory, Columbia University, 102 S.W. Mudd, 500 W. 120th St., New York, New York 10027 (United States)

    2015-10-15

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak–Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics and overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability.

  15. Magnetism in structures with ferromagnetic and superconducting layers

    Zhaketov, V. D.; Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Radu, F. [Helmholtz-Zentrum Berlin für Materialen un Energie (Germany); Petrenko, A. V. [Joint Institute for Nuclear Research (Russian Federation); Csik, A. [MTA Atomki, Institute for Nuclear Research (Hungary); Borisov, M. M.; Mukhamedzhanov, E. Kh. [Russian Research Centre Kurchatov Institute (Russian Federation); Aksenov, V. L. [Russian Research Centre Kurchatov Institute, Konstantinov St. Petersburg Nuclear Physics Institute (Russian Federation)

    2017-01-15

    The influence of superconductivity on ferromagnetism in the layered Ta/V/Fe{sub 1–x}V{sub x}/V/Fe{sub 1–x}V{sub x}/Nb/Si structures consisting of ferromagnetic and superconducting layers is studied using polarized neutron reflection and scattering. It is experimentally shown that magnetic structures with linear sizes from 5 nm to 30 μm are formed in these layered structures at low temperatures. The magnetization of the magnetic structures is suppressed by superconductivity at temperatures below the superconducting transition temperatures in the V and Nb layers. The magnetic states of the structures are shown to undergo relaxation over a wide magnetic-field range, which is caused by changes in the states of clusters, domains, and Abrikosov vortices.

  16. Alloy Fabrication Laboratory

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  17. Controlled Thermal Expansion Alloys

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  18. Nanostructured silicon ferromagnet collected by a permanent neodymium magnet.

    Okuno, Takahisa; Thürmer, Stephan; Kanoh, Hirofumi

    2017-11-30

    Nanostructured silicon (N-Si) was prepared by anodic electroetching of p-type silicon wafers. The obtained magnetic particles were separated by a permanent neodymium magnet as a magnetic nanostructured silicon (mN-Si). The N-Si and mN-Si exhibited different magnetic properties: the N-Si exhibited ferromagnetic-like behaviour, whereas the mN-Si exhibited superparamagnetic-like behaviour.

  19. Anisotropic magneto-capacitance in ferromagnetic-plate capacitors

    Haigh, J.A.; Ciccarelli, C.; Betz, A.C.; Irvine, A.; Novák, Vít; Jungwirth, Tomáš; Wunderlich, Joerg

    2015-01-01

    Roč. 91, č. 14 (2015), , "140409-1"-"140409-5" ISSN 1098-0121 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : ferromagnetic semiconductors * electronic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  20. Magnetization behavior of nanocrystalline systems combining ferromagnetic and antiferromagnetic phases

    Loeffler, J.; Wagner, W.; Svygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Meier, J.; Doudin, B.; Ansermet, J.P. [Ecole Polytechnique Federale, Lausanne (Switzerland)

    1997-09-01

    The magnetic properties of nanostructured materials on the basis of Fe and Ni have been investigated with a SQUID magnetometer, complementary to the small-angle neutron scattering study reported in the same volume. Measurements of the coercive field in a temperature range from 5 to 300 K confirm the validity of the random anisotropy model for our nanostructured systems. Furthermore, we obtain information about the presence and distribution of the antiferromagnetic oxides, joining the ferromagnetic grains. (author) 2 figs., 3 refs.

  1. Tetragonal ternary borides: superconductivity, ferromagnetism and the role of scandium

    Matthias, B.T.; Patel, C.K.N.; Barz, H.; Corenzwit, E.; Vandenberg, J.M.

    1978-01-01

    The authors report and discuss two discoveries made while studying the condensation phenomena of ternary rhodium borides, MRh 4 B 4 . M is generally a trivalent transition metal, usually a rare earth element RE. An exception is scandium which by itself does not form an isomorphous boride, but in combination with many other elements will do just that. A suprising correlation between ferromagnetic and superconducting transition temperatures has been found. (Auth.)

  2. Room temperature ferromagnetism in Cu doped ZnO

    Ali, Nasir; Singh, Budhi; Khan, Zaheer Ahmed; Ghosh, Subhasis

    2018-05-01

    We report the room temperature ferromagnetism in 2% Cu doped ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. X-ray photoelectron spectroscopy was used to ascertain the oxidation states of Cu in ZnO. The presence of defects within Cu-doped ZnO films can be revealed by electron paramagnetic resonance. It has been observed that saturated magnetic moment increase as we increase the zinc vacancies during deposition.

  3. Magnetization behavior of nanocrystalline systems combining ferromagnetic and antiferromagnetic phases

    Loeffler, J.; Wagner, W.; Svygenhoven, H. van; Meier, J.; Doudin, B.; Ansermet, J.P.

    1997-01-01

    The magnetic properties of nanostructured materials on the basis of Fe and Ni have been investigated with a SQUID magnetometer, complementary to the small-angle neutron scattering study reported in the same volume. Measurements of the coercive field in a temperature range from 5 to 300 K confirm the validity of the random anisotropy model for our nanostructured systems. Furthermore, we obtain information about the presence and distribution of the antiferromagnetic oxides, joining the ferromagnetic grains. (author) 2 figs., 3 refs

  4. Polarized Neutron Reflectivity Simulation of Ferromagnet/ Antiferromagnet Thin Films

    Kim, Ki Yeon; Lee, Jeong Soo

    2008-02-15

    This report investigates the current simulating and fitting programs capable of calculating the polarized neutron reflectivity of the exchange-biased ferromagnet/antiferromagnet magnetic thin films. The adequate programs are selected depending on whether nonspin flip and spin flip reflectivities of magnetic thin films and good user interface are available or not. The exchange-biased systems such as Fe/Cr, Co/CoO, CoFe/IrMn/Py thin films have been simulated successfully with selected programs.

  5. Magneto-optic dynamics in a ferromagnetic nematic liquid crystal

    Potisk, Tilen; Mertelj, Alenka; Sebastian, Nerea; Osterman, Natan; Lisjak, Darja; Brand, Helmut R.; Pleiner, Harald; Svenšek, Daniel

    2018-01-01

    We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M, and the director field, n, associated with the liquid crystalline orientational order. We demonstrate that the experimentally studied macroscopic dynamic behavior reveals t...

  6. Mixing of the Glauber dynamics for the ferromagnetic Potts model

    Bordewich, Magnus; Greenhill, Catherine; Patel, Viresh

    2013-01-01

    We present several results on the mixing time of the Glauber dynamics for sampling from the Gibbs distribution in the ferromagnetic Potts model. At a fixed temperature and interaction strength, we study the interplay between the maximum degree ($\\Delta$) of the underlying graph and the number of colours or spins ($q$) in determining whether the dynamics mixes rapidly or not. We find a lower bound $L$ on the number of colours such that Glauber dynamics is rapidly mixing if at least $L$ colours...

  7. Anisotropic square lattice Potts ferromagnet: renormalization group treatment

    Oliveira, P.M.C. de; Tsallis, C.

    1981-01-01

    The choice of a convenient self-dual cell within a real space renormalization group framework enables a satisfactory treatment of the anisotropic square lattice q-state Potts ferromagnet criticality. The exact critical frontier and dimensionality crossover exponent PHI as well as the expected universality behaviour (renormalization flow sense) are recovered for any linear scaling factor b and all values of q(q - [pt

  8. Long range anti-ferromagnetic spin model for prebiotic evolution

    Nokura, Kazuo

    2003-01-01

    I propose and discuss a fitness function for one-dimensional binary monomer sequences of macromolecules for prebiotic evolution. The fitness function is defined by the free energy of polymers in the high temperature random coil phase. With repulsive interactions among the same kind of monomers, the free energy in the high temperature limit becomes the energy function of the one-dimensional long range anti-ferromagnetic spin model, which is shown to have a dynamical phase transition and glassy states

  9. Transport through hybrid superconducting/ferromagnetic double-path junction

    Facio, T.J.S. [Departamento de Física e Química, Universidade Estadual Paulista – UNESP, 15385-000, Ilha Solteira, SP (Brazil); Orellana, P.A. [Departamento de Física, Universidad Técnica Federico Santa Maria, Av. Vicuña Mackenna, 3939, Santiago (Chile); Jurelo, A.R. [Departamento de Física, Universidade Estadual de Ponta Grossa – UEPG, 84030-000, Ponta Grossa, PR (Brazil); Figueira, M.S. [Instituto de Física, Universidade Federal Fluminense, 24210-340, Niterói, RJ (Brazil); Cabrera, G.G. [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas – UNICAMP, 13083-859, Campinas, SP (Brazil); Siqueira, E.C., E-mail: ecosta@utfpr.edu.br [Departamento de Física, Universidade Tecnológica Federal do Paraná – UTFPR, 84016-210, Ponta Grossa, PR (Brazil)

    2017-02-05

    In this paper we study a double-path junction formed by a ferromagnetic and a superconductor lead. The first path connects the superconductor and ferromagnet directly while the second path connects these metals through a quantum dot. The whole system works as an Aharonov–Bohm interferometer allowing the study of the interference between these two paths under the presence of spin imbalance and Andreev bound states. We considered the effect of Fano interference on the electronic transmittance through the quantum dot and observed two regimes of conduction depending on the strength of the direct coupling. For the weak coupling regime, the transmittance presented the usual four resonances due to the Andreev bound states whereas for the strong coupling regime the profile was inverted and resonances became anti-resonances. However, even in the strong coupling regime it was possible to observe a central resonance due to the interference between the Andreev bound states. We have also studied the signatures of Fano interference on the average occupation within the quantum dot. The spin accumulation was analyzed and how it depends on the direct coupling and an external magnetic field applied to the system. The results obtained may be used in a possible experimental implementation of this system in order to probe spin related effects in ferromagnetic superconductor nanostructures. - Highlights: • An Aharonov–Bohm interferometer composed by a quantum-dot coupled to a superconductor and ferromagnetic lead is studied. • The transmittance through the QD is determined by the interplay between Andreev and Fano interference. • Spin accumulation within the quantum dot is studied as a function of bias/gate voltages and an external magnetic flux.

  10. Infrared conductivity of metallic (III, Mn)V ferromagnets

    Sinova, J.; Jungwirth, Tomáš; Yang, E. S. R.; MacDonald, A. H.

    2002-01-01

    Roč. 66, č. 4 (2002), s. 041202-1-041202-4 ISSN 0163-1829 R&D Projects: GA ČR GA202/02/0912; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * infrared conductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  11. Curie temperature trends in (III, Mn)V ferromagnetic semiconductors

    Jungwirth, Tomáš; König, J.; Sinova, J.; Kučera, Jan; MacDonald, A. H.

    2002-01-01

    Roč. 66, č. 1 (2002), s. 012402-1-012402-4 ISSN 0163-1829 R&D Projects: GA MŠk OC P5.10; GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * Curie temperature Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  12. Two-dimensional Ising physics in quantum Hall ferromagnets

    Jungwirth, Tomáš; MacDonald, A. H.; Rezayi, E. H.

    2002-01-01

    Roč. 12, - (2002), s. 1-7 ISSN 1386-9477 R&D Projects: GA ČR GA202/01/0754; GA MŠk OC 514.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum Hall ferromagnets * higher Landau levels * domain walls Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.107, year: 2002

  13. Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films

    Remeš, Zdeněk; Sun, S. J.; Varga, M.; Chou, H.; Hsu, H.S.; Kromka, A.; Horák, Pavel

    2015-01-01

    Roč. 394, Nov (2015), s. 477-480 ISSN 0304-8853 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LD14011 EU Projects: European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:68378271 ; RVO:61389005 Keywords : diamond * nonmetallic ferromagnetic materials * fine-particle systems * nanocrystalline materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.357, year: 2015

  14. Mechanism of carrier-induced ferromagnetism in diluted magnetic semiconductors

    Takahashi, M.; Furukawa, N.; Kubo, K.

    2004-01-01

    Using the spin-polarized band obtained by applying the dynamical coherent potential approximation to a simple model, we have calculated the magnetization of Ga x Mn 1-x As as a function of the temperature for various values of carrier density. The result is consistent with the experimental observation, supporting the view previously proposed by us that the ferromagnetism is induced by the carriers in the bandtail through double-exchange-like mechanism

  15. Phase transitions of a spin-one Ising ferromagnetic superlattice

    Saber, A.

    2001-09-01

    Using the effective field theory with a probability distribution technique, the magnetic properties in an infinite superlattice consisting of two different ferromagnets are studied in a spin-one Ising model. The dependence of the Curie temperatures are calculated as a function of two slabs in one period and as a function of the intra- and interlayer exchange interactions. A critical value of the exchange reduced interaction above which the interface magnetism appears is found. (author)

  16. Competition between superconductivity and magnetism in ferromagnet/superconductor heterostructures

    Izyumov, Yurii A; Proshin, Yurii N; Khusainov, Mensur G

    2002-01-01

    The mutual influence of superconductivity and magnetism in F/S systems, i.e. systems of alternating ferromagnetic (F) and superconducting (S) layers, is comprehensively reviewed. For systems with ferromagnetic metal (FM) layers, a theory of the proximity effect in the dirty limit is constructed based on the Usadel equations. For an FM/S bilayer and an FM/S superlattice, a boundary-value problem involving finite FM/S boundary transparency and the diffusion and wave modes of quasi-particle motion is formulated; and the critical temperature T c is calculated as a function of FM- and S-layer thicknesses. A detailed analysis of a large amount of experimental data amply confirms the proposed theory. It is shown that the superconducting state of an FM/S system is a superposition of two pairing mechanisms, Bardin - Cooper - Schrieffer's in S layers and Larkin - Ovchinnikov - Fulde - Ferrell's in FM ones. The competition between ferromagnetic and antiferromagnetic spontaneous moment orientations in FM layers is explored for the 0- and π-phase superconductivity in FM/S systems. For FI/S structures, where FI is a ferromagnetic insulator, a model for exchange interactions is proposed, which, along with direct exchange inside FI layers, includes indirect Ruderman - Kittel - Kasuya - Yosida exchange between localized spins via S-layer conduction electrons. Within this framework, possible mutual accommodation scenarios for superconducting and magnetic order parameters are found, the corresponding phase diagrams are plotted, and experimental results are explained. The results of the theory of the Josephson effect for S/F/S junctions are presented and the application of the theory of spin-dependent transport to F/S/F junctions is discussed. Application aspects of the subject are examined. (reviews of topical problems)

  17. Analysis of ultra-narrow ferromagnetic domain walls

    Jenkins, Catherine; Paul, David

    2012-01-10

    New materials with high magnetic anisotropy will have domains separated by ultra-narrow ferromagnetic walls with widths on the order of a few unit cells, approaching the limit where the elastic continuum approximation often used in micromagnetic simulations is accurate. The limits of this approximation are explored, and the static and dynamic interactions with intrinsic crystalline defects and external driving elds are modeled. The results developed here will be important when considering the stability of ultra-high-density storage media.

  18. Ferromagnetic domain structures and spin configurations measured in doped manganite

    He, J.Q.; Volkov, V.V.; Beleggia, Marco

    2010-01-01

    We report on measurements of the spin configuration across ferromagnetic domains in La0.325Pr0.3Ca0.375MnO3 films obtained by means of low-temperature Lorentz electron microscopy with in situ magnetizing capabilities. Due to the particular crystal symmetry of the material, we observe two sets of ...... and the crystal symmetry might affect the magnetoresistivity under an applied magnetic field in a strongly correlated electron system....

  19. Blue shift of the plasma edge of a ferromagnetic semimetal

    Wachter, P.; Bommeli, F.; Degiorgi, L.; Burlet, P.; Bourdarot, F.

    1998-01-01

    Full text: In general rare earth pnictides are semimetals and antiferromagnets. Only some nitrides are quoted as ferri or ferromagnetic. However, it has been shown when prepared stoichiometrically and in single crystalline form the free carrier concentration is only in the percent per cation range, thus they are typical low carrier systems. Under these conditions the nitrides are all canted antiferromagnets and metamagnets, i.e. they show Abstract only. The full magnetic moment only with an applied magnetic field. However, when prepared as single crystals but with excess of the rare earths they become spontaneously ferromagnets due to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in addition to the superexchange mechanisms. On such ferromagnetic compositions of TbN and GdN and also in EuB 6 a new magneto-optic effect has been discovered, a spontaneous blue shift of the plasma edge upon magnetic order. The plasma edge is measured with optical reflectivity and it depends on the free carrier concentration. In other words the free carrier concentration increases upon ferromagnetic order. This effect can be understood with the spontaneous exchange splitting of mainly the 5d conduction band, lowering the bottom of the spin up 5d band, thus increasing the indirect overlap with the valence p band of the anions and thus enhancing the carrier concentration. This blue shift of the plasma edge follows a spin correlation function. An external magnetic field applied near TC enhances the blue shift since the magnetization is not yet saturated. For T→0 a magnetic field has no effect since the magnetization is spontaneously saturated

  20. Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers

    Prados, C; Pina, E; Hernando, A; Montone, A

    2002-01-01

    The sign of the exchange bias in field cooled nanocrystalline antiferromagnetic-ferromagnetic bilayers (Co-O and Ni-O/permalloy) is reversed at temperatures approaching the antiferromagnetic (AFM) blocking temperature. A similar phenomenon is observed after magnetic training processes at similar temperatures. These effects can be explained assuming that the boundaries of nanocrystalline grains in AFM layers exhibit lower transition temperatures than grain cores