WorldWideScience

Sample records for ferromagnetic charge ordering

  1. A novel magnetoresistance induced by charge ordering in ferromagnetic/charge-ordered/ferromagnetic trilayers

    Wang, Haiou; Li, Jinwei; Su, Kunpeng; Huo, Dexuan; Tan, Weishi

    2015-10-01

    Microstructure, magnetoresistance (MR) and magnetic properties of Pr0.7Sr0.3MnO3/La0.5Ca0.5MnO3/Pr0.7Sr0.3MnO3 trilayers, which are shown to be tunable with different La0.5Ca0.5MnO3 spacer thickness, are investigated. The trilayer with 6 nm thick La0.5Ca0.5MnO3 spacer show \\text{MR}∼37{%} at 195 K in 1 T and \\text{MR}∼80{%} at 220 K in 9 T, which is realized through the double-exchange mechanism. In contrast, trilayers with the thicker La0.5Ca0.5MnO3 spacer show enhanced MR at a wide low-temperature range. The obtained \\text{MR}∼52{%} at 50 K in 1 T in the trilayer with 18 nm thick La0.5Ca0.5MnO3 spacer is superior to that of other magnetic nanoscales. We surmise that this MR originates in the ferromagnetic/antiferromagnetic competition accompanied with the formation of a charge-ordered antiferromagnetic state and the collapse of the charge-ordered state at the applied magnetic field, rather than in the double-exchange mechanism. Large and tunable MR can be realized by controlling the strain state (the thickness of the La0.5Ca0.5MnO3 spacer), which can be applied in the used devices.

  2. Percolative transport in the vicinity of charge-order ferromagnetic ...

    field driven charge transport in the system is modelled on the basis of an inhomogeneous medium consisting of ... The charge-ordered phase for incommensurate distribution of man- ganese ions (i.e. ... position x = 0.35 measured in a constant voltage mode. The electric ... a drop in resistance on decreasing the temperature.

  3. Investigation of magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures

    Das, Kalipada

    2017-10-01

    In our present study, we address in detail the magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures. In these core-shell nanostructures, well-known half metallic La0.67Sr0.33MnO3 nanoparticles (average particle size, ˜20 nm) are wrapped by the charge ordered antiferromagnetic Pr0.67Ca0.33MnO3 (PCMO) matrix. The intrinsic properties of PCMO markedly modify it into such a core-shell form. The robustness of the PCMO matrix becomes fragile and melts at an external magnetic field (H) of ˜20 kOe. The analysis of magneto-transport data indicates the systematic reduction of the electron-electron and electron-magnon interactions in the presence of an external magnetic field in these nanostructures. The pronounced training effect appears in this phase separated compound, which was analyzed by considering the second order tunneling through the grain boundaries of the nanostructures. Additionally, the analysis of low field magnetoconductance data supports the second order tunneling and shows the close value of the universal limit (˜1.33).

  4. Charge order suppression, emergence of ferromagnetism and absence of exchange bias effect in Bi0.25Ca0.75MnO3 nanoparticles: Electron paramagnetic resonance and magnetization studies

    Singh, Geetanjali; Bhat, S. V.

    2012-06-01

    We report the results of magnetization and electron paramagnetic resonance (EPR) studies on nanoparticles (average diameter ˜ 30 nm) of Bi0.25Ca0.75MnO3 (BCMO) and compare them with the results on bulk BCMO. The nanoparticles were prepared using the nonaqueous sol-gel technique and characterized by XRD and TEM analysis. Magnetization measurements were carried out with a commercial physical property measurement system (PPMS). While the bulk BCMO exhibits a charge ordering transition at ˜230 K and an antiferromagnetic (AFM) transition at ˜130 K, in the nanoparticles, the CO phase is seen to have disappeared and a transition to a ferromagnetic (FM) state is observed at Tc ˜ 120 K. However, interestingly, the exchange bias effect observed in other nanomanganite ferromagnets is absent in BCMO nanoparticles. EPR measurements were carried out in the X-band between 8 and 300 K. Lineshape fitting to a Lorentzian with two terms (accounting for both the clockwise and anticlockwise rotations of the microwave field) was employed to obtain the relevant EPR parameters as functions of temperature. The results confirm the occurrence of ferromagnetism in the nanoparticles of BCMO.

  5. Revival of ferromagnetic behavior in charge-ordered Pr0.75Na0.25MnO3 manganite by ruthenium doping at Mn site and its MR effect

    Elyana, E.; Mohamed, Z.; Kamil, S. A.; Supardan, S. N.; Chen, S. K.; Yahya, A. K.

    2018-02-01

    Ru doping in charge-ordered Pr0.75Na0.25Mn1-xRuxO3 (x = 0-0.1) manganites was studied to investigate its effect on structure, electrical transport, magnetic properties, and magnetotransport properties. DC electrical resistivity (ρ), magnetic susceptibility, and χ' measurements showed that sample x = 0 exhibits insulating behavior within the entire temperature range and antiferromagnetic (AFM) behavior below the charge-ordering (CO) transition temperature TCO of 221 K. Ru4+ substitution (x>0.01) suppressed the CO state, which resulted in the revival of paramagnetic to ferromagnetic (FM) transition at the Curie temperature Tc, increasing from 120 K (x = 0.01) to 193 K (x = 0.1). Deviation from the Curie-Weiss law above Tc in the 1/χ' versus T plot for x = 0.01 doped samples indicated the existence of Griffiths phase with Griffith temperature at 169 K. Electrical resistivity measurements showed that Ru4+ substitution increased the metallic-to-insulating transition temperature TMI from 144 K (x = 0.01) to 192 K (x = 0.05) due to enhanced double-exchange mechanism, but TMI decreased to 176 K (x = 0.1) probably due to the existence of AFM clusters within the FM domain. The present work also discussed the possible theoretical models at the resistivity curve of Pr0.75Na0.25Mn1-xRuxO3 (x = 0-0.1) for the entire temperature range.

  6. Inducement of ferromagnetic-metallic phase in intermediate-doped charge-ordered Pr0.75Na0.25MnO3 manganite by K+ substitution

    Rozilah, R.; Ibrahim, N.; Mohamed, Z.; Yahya, A. K.; Khan, Nawazish A.; Khan, M. Nasir

    2017-09-01

    Polycrystalline Pr0.75Na0.25-xKxMnO3 (x = 0, 0.05, 0.10, 0.15 and 0.20) ceramics were prepared using conventional solid-state method and their structural, magnetic and electrical transport properties were investigated. Magnetization versus temperature measurements showed un-substituted sample exhibited paramagnetic behavior with charge-ordered temperature, TCO around 218 K followed by antiferromagnetic behavior at transition temperature, TN ∼ 170 K. K+-substitution initially weakened CO state for x = 0.05-0.10 then successfully suppressed the CO state for x = 0.15-0.20 and inducing ferromagnetic-paramagnetic transition with Curie temperature, TC increased with x. In addition, deviation of the temperature dependence of inverse magnetic susceptibility curves from the Curie-Weiss law suggests the existence of Griffiths phase-like increased with x. Magnetization versus magnetic field curves show existence of hysteresis loops at T critical field. Electrical resistivity measurements showed an insulating behavior for x = 0 sample while for x = 0.05-0.20 samples showed metal-insulator transition and transition temperature, TMI increased with x. The increased in TC and TMI are attributed to the increase in tolerance factor which indicates reduction in MnO6 octahedral distortion consequently enhanced double exchange interaction.

  7. Graphene-ferromagnet interfaces: hybridization, magnetization and charge transfer.

    Abtew, Tesfaye; Shih, Bi-Ching; Banerjee, Sarbajit; Zhang, Peihong

    2013-03-07

    Electronic and magnetic properties of graphene-ferromagnet interfaces are investigated using first-principles electronic structure methods in which a single layer graphene is adsorbed on Ni(111) and Co(111) surfaces. Due to the symmetry matching and orbital overlap, the hybridization between graphene pπ and Ni (or Co) d(z(2)) states is very strong. This pd hybridization, which is both spin and k dependent, greatly affects the electronic and magnetic properties of the interface, resulting in a significantly reduced (by about 20% for Ni and 10% for Co) local magnetic moment of the top ferromagnetic layer at the interface and an induced spin polarization on the graphene layer. The calculated induced magnetic moment on the graphene layer agrees well with a recent experiment. In addition, a substantial charge transfer across the graphene-ferromagnet interfaces is observed. We also investigate the effects of thickness of the ferromagnet slab on the calculated electronic and magnetic properties of the interface. The strength of the pd hybridization and the thickness-dependent interfacial properties may be exploited to design structures with desirable magnetic and transport properties for spintronic applications.

  8. Irrational Charge from Topological Order

    Moessner, R.; Sondhi, S. L.

    2010-10-01

    Topological or deconfined phases of matter exhibit emergent gauge fields and quasiparticles that carry a corresponding gauge charge. In systems with an intrinsic conserved U(1) charge, such as all electronic systems where the Coulombic charge plays this role, these quasiparticles are also characterized by their intrinsic charge. We show that one can take advantage of the topological order fairly generally to produce periodic Hamiltonians which endow the quasiparticles with continuously variable, generically irrational, intrinsic charges. Examples include various topologically ordered lattice models, the three-dimensional resonating valence bond liquid on bipartite lattices as well as water and spin ice. By contrast, the gauge charges of the quasiparticles retain their quantized values.

  9. Chemical disorder and charge transport in ferromagnetic manganites

    Pickett, W.E.; Singh, D.J.

    1997-01-01

    Disorder broadening due to randomly distributed La 3+ and A 2+ (A=Ca,Sr,Ba) cations is combined with a virtual-crystal treatment of the average system to evaluate the effects on both majority and minority transport in the ferromagnetic La 2/3 A 1/3 MnO 3 system. The low-density minority carriers which lie in the band tail are localized by disorder, while the majority carriers retain long mean free paths reflected in the observed strongly metallic conductivity. In addition to obtaining transport parameters, we provide evidence that local distortions are due to nearby ionic charges rather than to ion size considerations. copyright 1997 The American Physical Society

  10. A model study of tunneling conductance spectra of ferromagnetically ordered manganites

    Panda, Saswati; Kar, J. K.; Rout, G. C.

    2018-02-01

    We report here the interplay of ferromagnetism (FM) and charge density wave (CDW) in manganese oxide systems through the study of tunneling conductance spectra. The model Hamiltonian consists of strong Heisenberg coupling in core t2g band electrons within mean-field approximation giving rise to ferromagnetism. Ferromagnetism is induced in the itinerant eg electrons due to Kubo-Ohata type double exchange (DE) interaction among the t2g and eg electrons. The charge ordering (CO) present in the eg band giving rise to CDW interaction is considered as the extra-mechanism to explain the colossal magnetoresistance (CMR) property of manganites. The magnetic and CDW order parameters are calculated using Zubarev's Green's function technique and solved self-consistently and numerically. The eg electron density of states (DOS) calculated from the imaginary part of the Green's function explains the experimentally observed tunneling conductance spectra. The DOS graph exhibits a parabolic gap near the Fermi energy as observed in tunneling conductance spectra experiments.

  11. Ferromagnetism and spin glass ordering in transition metal alloys (invited)

    Crane, S.; Carnegie, D. W., Jr.; Claus, H.

    1982-03-01

    Magnetic properties of transition metal alloys near the percolation threshold are often complicated by metallurgical effects. Alloys like AuFe, VFe, CuNi, RhNi, and PdNi are in general not random solid solutions but have various degrees of atomic clustering or short-range order (SRO), depending on the heat treatment. First, it is shown how the magnetic ordering temperature of these alloys varies with the degree of clustering or SRO. Second, by systematically changing this degree of clustering or SRO, important information can be obtained about the magnetic phase diagram. In all these alloys below the percolation limit, the onset of ferromagnetic order is probably preceded by a spin glass-type ordering. However, details of the magnetic phase diagram near the critical point can be quite different alloy systems.

  12. Charge states of ions, and mechanisms of charge ordering transitions

    Pickett, Warren E.; Quan, Yundi; Pardo, Victor

    2014-07-01

    To gain insight into the mechanism of charge ordering transitions, which conventionally are pictured as a disproportionation of an ion M as 2Mn+→M(n+1)+ + M(n-1)+, we (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new results for the putative charge ordering compound AgNiO2 and the dual charge state insulator AgO, and (3) analyze the cationic occupations of the actual (not formal) charge, and work to reconcile the conundrums that arise. We establish that several of the clearest cases of charge ordering transitions involve no disproportion (no charge transfer between the cations, and hence no charge ordering), and that the experimental data used to support charge ordering can be accounted for within density functional-based calculations that contain no charge transfer between cations. We propose that the charge state picture retains meaning and importance, at least in many cases, if one focuses on Wannier functions rather than atomic orbitals. The challenge of modeling charge ordering transitions with model Hamiltonians isdiscussed.

  13. Quantum spin and charge pumping through double quantum dots with ferromagnetic leads

    Pan, Hui, E-mail: hpan@buaa.edu.cn [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), Beihang University, Beijing 100191 (China); Chen, Ziyu; Zhao, Sufen [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Lue, Rong [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2011-06-06

    The pumping of electrons through double quantum dots (DQDs) attached to ferromagnetic leads have been theoretically investigated by using the nonequilibrium Green's function method. It is found that an oscillating electric field applied to the quantum dot may give rise to the pumped charge and spin currents. In the case that both leads are ferromagnet, a pure spin current can be generated in the antiparallel magnetization configuration, where no net charge current exists. The possibility of manipulating the pumped spin current is explored by tuning the dot level and the ac field. By making use of various tunings, the magnitude and direction of the pumped spin current can be well controlled. For the case that only one lead is ferromagnetic, both of the charge and spin currents can be pumped and flow in opposite directions on the average. The control of the magnitude and direction of the pumped charge and spin currents is also discussed by means of the magnetic flux threading through the DQD ring. -- Highlights: → We theoretically investigate the pumping of electrons through double quantum dots attached to ferromagnetic leads. → An oscillating electric field applied to the quantum dot may give rise to the pumped charge and spin currents. → When both leads are ferromagnet, a pure spin current can be generated in the antiparallel magnetization configuration. → By making use of various tunings, the magnitude and direction of the pumped spin current can be well controlled. → When only one lead is ferromagnetic, both of the charge and spin currents can be pumped and flow in opposite directions.

  14. Charge orders in organic charge-transfer salts

    Kaneko, Ryui; Valentí, Roser; Tocchio, Luca F; Becca, Federico

    2017-01-01

    Motivated by recent experimental suggestions of charge-order-driven ferroelectricity in organic charge-transfer salts, such as κ -(BEDT-TTF) 2 Cu[N(CN) 2 ]Cl, we investigate magnetic and charge-ordered phases that emerge in an extended two-orbital Hubbard model on the anisotropic triangular lattice at 3/4 filling. This model takes into account the presence of two organic BEDT-TTF molecules, which form a dimer on each site of the lattice, and includes short-range intramolecular and intermolecular interactions and hoppings. By using variational wave functions and quantum Monte Carlo techniques, we find two polar states with charge disproportionation inside the dimer, hinting to ferroelectricity. These charge-ordered insulating phases are stabilized in the strongly correlated limit and their actual charge pattern is determined by the relative strength of intradimer to interdimer couplings. Our results suggest that ferroelectricity is not driven by magnetism, since these polar phases can be stabilized also without antiferromagnetic order and provide a possible microscopic explanation of the experimental observations. In addition, a conventional dimer-Mott state (with uniform density and antiferromagnetic order) and a nonpolar charge-ordered state (with charge-rich and charge-poor dimers forming a checkerboard pattern) can be stabilized in the strong-coupling regime. Finally, when electron–electron interactions are weak, metallic states appear, with either uniform charge distribution or a peculiar 12-site periodicity that generates honeycomb-like charge order. (paper)

  15. The effect of interfacial charge transfer on ferromagnetism in perovskite oxide superlattices

    Yang, F. [Univ. of California, Davis, CA (United States). Department of Chemical Engineering and Materials Science; Gu, M. [Univ. of California, Davis, CA (United States). Department of Chemical Engineering and Materials Science; Arenholz, E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Browning, N. D. [Univ. of California, Davis, CA (United States). Department of Molecular and Cellular Biology; Takamura, Y. [Univ. of California, Davis, CA (United States). Department of Chemical Engineering and Materials Science

    2012-01-05

    We investigate the structural, magnetic, and electrical properties of superlattices composed of the ferromagnetic/metal La0.7Sr0.3MnO3 and non-magnetic/metal La0.5Sr0.5TiO3 grown on (001)-oriented SrTiO3 substrates. Using a combination of bulk magnetometry, soft x-ray magnetic spectroscopy, and scanning transmission electron microscopy, we demonstrate that robust ferromagnetic properties can be maintained in this superlattice system where charge transfer at the interfaces is minimized. Thus, ferromagnetism can be controlled effectively through the chemical identity and the thickness of the individual superlattice layers.

  16. Spin-wave damping in ferromagnets in the ordered regime

    Reinecke, T.L.; Stinchcombe, R.B.

    1978-01-01

    Theoretical results based on a high-density approach are compared with experimental measurements for the damping of long-wavelength spin waves in the nearly isotropic ferromagnet for temperatures up to the critical regime. The theory, which has no adjustable parameters, is shown to account well for the overall magnitude of the spin-wave widths measured in recent neutron scattering experiments on EuO, and it is also in satisfactory agreement with the measured wave vector and temperature dependence of these widths. An estimate is also given for the contribution of dipolar coupling to the spin-wave widths

  17. Quasi-phase transformation in ferromagnetic semiconductors with two-charged donors

    Kovalenko, A.A.; Nagaev, Eh.L.

    1978-01-01

    Effect of term inversion of two-charged donors 1s2s → 1s 2 on properties of ferromagnetic semiconductors, has been investigated. Term inversion is accompanied by changes in local magnetic ordering in the donor area and takes place as spread phase transformation of the first type in the system of n 2 atoms, enveloped by donor 2s-orbit. It is a reason for creating not only heat capacity peak at Tsub(c), but another peak at inversion temperature Tsub(i) as well. At temperatures T > Tsub(i) introduction of external magnetic field can lead to a reverse term inversion 1s 2 → 1s2s, under that condition crystal magnetization should clearly increase. Term inversion tells upon electric properties of crystals: in Ti inversion point, the energy of conductivity activation of ungenerate semiconductors changes abruptly. In the case of larger concentrations of donors, term inversion can lead to metal-insulator transformation. Analysis of experimental data on magnetic susceptibility of EuO crystals with oxygen vacancies, shows that transformation in these crystals takes place according to a different mechanism

  18. Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects

    Veenendaal, Michel van

    2016-01-01

    The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50–100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than a picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. Finally, for small long-range interactions, recovery can be slow due to domain formation.

  19. Coexisting Ferromagnetic and Ferroelectric Order in a CuCl4-based Organic-Inorganic Hybrid

    Polyakov, Alexey O.; Arkenbout, Anne H.; Baas, Jacob; Blake, Graeme R.; Meetsma, Auke; Caretta, Antonio; van Loosdrecht, Paul H. M.; Palstra, Thomas T. M.

    2012-01-01

    We investigate the structural, magnetic, and dielectric properties of the organic-inorganic hybrid material CuCl4(C6H5CH2CH2NH3)(2) and demonstrate that spontaneous ferroelectric order sets in below 340 K, which coexists with ferromagnetic ordering below 13 K. We use X-ray diffraction to show that

  20. Controlling Thermodynamic Properties of Ferromagnetic Group-IV Graphene-Like Nanosheets by Dilute Charged Impurity

    Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos

    2017-05-01

    Using the Kane-Mele Hamiltonian, Dirac theory and self-consistent Born approximation, we investigate the effect of dilute charged impurity on the electronic heat capacity and magnetic susceptibility of two-dimensional ferromagnetic honeycomb structure of group-IV elements including silicene, germanene and stanene within the Green’s function approach. We also find these quantities in the presence of applied external electric field. Our results show that the silicene (stanene) has the maximum (minimum) heat capacity and magnetic susceptibility at uniform electric fields. From the behavior of theses quantities, the band gap has been changed with impurity concentration, impurity scattering strength and electric field. The analysis on the impurity-dependent magnetic susceptibility curves shows a phase transition from ferromagnetic to paramagnetic and antiferromagnetic phases. Interestingly, electronic heat capacity increases (decreases) with impurity concentration in silicene (germanene and stanene) structure.

  1. Charge transport of graphene ferromagnetic-insulator-superconductor junction with pairing state of broken time reversal symmetry

    Yaser Hajati

    2015-04-01

    Full Text Available We investigate the charge transport through a graphene-based ferromagnetic-insulator-superconductor junction with a broken time reversal symmetry (BTRS of dx2−y2 + is and dx2−y2 + idxy superconductor using the extended Blonder-Tinkham-Klapwijk formalism. Our analysis have shown several charateristics in this junction, providing a useful probe to understand the role of the order parameter symmetry in the superconductivity. We find that the presence of the BTRS (X state in the superconductor region has a strong effect on the tunneling conductance curves which leads to a decrease in the height of the zero-bias conductance peak (ZBCP. In particular, we show that the magnitude of the superconducting proximity effect depends to a great extent on X and by increasing X, the zero-bias charge conductance oscillations with respect to the rotation angle β are suppressed. In addition, we find that at the maximum rotation angle β = π/4, introducing BTRS in the FIS junction causes oscillatory behavior of the zero-bias charge conductance with the barrier strength (χG by a period of π and by approaching the X to 1, the amplitude of charge conductance oscillations increases. This behavior is drastically different from none BTRS similar graphene junctions. At last, we suggest an experimental setup for verifying our predicted effects.

  2. Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron

    C. P. Chui

    2014-03-01

    Full Text Available Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.

  3. Paramagnetic fluctuations in Pr0.65Ca0.35MnO3 around the charge-ordering temperature

    Daoud-Aladine, A; Roessli, B; Gvasaliya, S N; Perca, C; Pinsard-Gaudart, L; Rodriguez-Carvajal, J; Revcolevschi, A

    2006-01-01

    We have studied the ferromagnetic and antiferromagnetic fluctuations in the charge-ordered Pr 0.65 Ca 0.35 MnO 3 antiferromagnet by triple-axis neutron spectrometry. Whereas ferromagnetic fluctuations are observed above and below the charge-ordering transition (T CO ), the antiferromagnetic fluctuations develop only below T CO . The dynamical exponent z of both ferromagnetic and antiferromagnetic fluctuations are determined. The ferromagnetic fluctuations are not completely suppressed below T CO and their correlation lengths are short-ranged at all temperatures. The results are discussed with respect to the Zener polaron model recently introduced to describe the charge-ordered state of Pr 0.6 Ca 0.40 MnO 3

  4. Oxygen vacancy induced by La and Fe into ZnO nanoparticles to modify ferromagnetic ordering

    Verma, Kuldeep Chand; Kotnala, R.K.

    2016-01-01

    We reported long-range ferromagnetic interactions in La doped Zn 0.95 Fe 0.05 O nanoparticles that mediated through lattice defects or vacancies. Zn 0.92 Fe 0.05 La 0.03 O (ZFLaO53) nanoparticles were synthesized by a sol–gel process. X-ray fluorescence spectrum of ZFLaO53 detects the weight percentage of Zn, Fe, La and O. X-ray diffraction shows the hexagonal Wurtzite ZnO phase. The Rietveld refinement has been used to calculate the lattice parameters and the position of Zn, Fe, La and O atoms in the Wurtzite unit cell. The average size of ZFLaO53 nanoparticles is 99 nm. The agglomeration type product due to OH ions with La results into ZnO nanoparticles than nanorods that found in pure ZnO and Zn 0.95 Fe 0.05 O sample. The effect of doping concentration to induce Wurtzite ZnO structure and lattice defects has been analyzed by Raman active vibrational modes. Photoluminescence spectra show an abnormal emission in both UV and visible region, and a blue shift at near band edge is formed with doping. The room temperature magnetic measurement result into weak ferromagnetism but pure ZnO is diamagnetic. However, the temperature dependent magnetic measurement using zero-field and field cooling at dc magnetizing field 500 Oe induces long-range ferromagnetic ordering. It results into antiferromagnetic Neel temperature of ZFLaO53 at around 42 K. The magnetic hysteresis is also measured at 200, 100, 50 and 10 K measurement that indicate enhancement in ferromagnetism at low temperature. Overall, the La doping into Zn 0.95 Fe 0.05 O results into enhanced antiferromagnetic interaction as well as lattice defects/vacancies. The role of the oxygen vacancy as the dominant defects in doped ZnO must form Bound magnetic polarons has been described. - Graphical abstract: The long-range ferromagnetic order in Zn 0.92 Fe 0.05 La 0.03 O nanoparticles at low temperature measurements involves oxygen vacancy as the medium of magnetic interactions. - Highlights: • The La and Fe doping

  5. First principle calculations of charge ordering in manganites

    Baldomir, D.; Pardo, V.; Castro, J.; Iglesias, M.; Arias, J.E.; Rivas, J.

    2007-01-01

    Electronic structure calculations were performed on the compound La 0.5 Ca 0.5 MnO 3 to study the relationship between the magnetic ordering, the charge ordering and the geometry of the compound. Charge ordering is intimately related to the magnetic ordering. An antiferromagnetic ordering induces charge disproportionation via a Jahn-Teller distortion. A full disproportionation in Mn 3+ /Mn 4+ occurs for the experimental geometry and allows to predict the experimentally found antiferromagnetic insulating state

  6. Charge ordering in the rare earth manganates: the experimental situation

    Rao, C.N.R.; Cheetham, A.K.; Raveau, Bernard

    2000-01-01

    Charge-ordered phases of rare earth manganates are novel manifestations arising from interactions between the charge carriers and phonons, giving rise to the localization of carriers at specific sites in the lattice below a certain temperature. Accompanying this phenomenon, the Mn 3+ (e g ) orbitals and the associated lattice distortions also exhibit long range ordering (orbital ordering). What makes the manganates even more interesting is the occurrence of complex spin ordering related to anisotropic magnetic interactions. In this article, we discuss the emerging scenario of charge-ordered rare earth manganates in the light of specific case studies and highlight some of the new experimental findings related to spin, orbital and charge ordering. We also examine features such as the charge stripes and phase separation found experimentally in these materials, and discuss the factors that affect charge-ordering such as the size of A-site cations and magnetic and electric fields, as well as isotopic and chemical substitutions. (author)

  7. Spectral properties of an extended Hubbard ladder with long range anti-ferromagnetic order

    Yang, Chun; Feiguin, Adrian

    We study the spectral properties of a Hubbard ladder with anti-ferromagnetic long range order by introducing a staggered Heisenberg interaction that decays algebraically. Unlike an alternating field or the t -Jz model, our problem preserves both SU (2) and translational invariance. We solve the problem with the time-dependent density matrix renormalization group and analyze the binding between holons and spinons and the structure of the elementary excitations. We discuss the implications in the context of the 2D Hubbard model at, and away from half-filling by using cluster perturbation theory (CPT). AF acknowledges the U.S. Department of Energy, Office of Basic Energy Sciences, for support under Grant DE-SC0014407.

  8. Ferromagnetic clustering and ordering in manganese deficient LaMnO3: An EMR probe

    Auslender, M.; Shames, A.I.; Rozenberg, E.; Gorodetsky, G.; Hebert, S.; Martin, C.

    2007-01-01

    Electron magnetic resonance (EMR) properties of LaMn 1-x O 3 (x=0, 0.02 and 0.06) are studied in the range 115-600K. It is shown that above 200K either ferromagnetic clusters or long-range ferromagnetic correlation present in all samples, and that LaMn 0.94 O 3 is ferromagnetic below 113.4+/-1.5K

  9. Formal Valence, 3 d Occupation, and Charge Ordering Transitions

    Pickett, Warren

    2014-03-01

    The metal-insulator transition (MIT), discovered by Verwey in the late 1930s, has been thought to be one of the best understood of MITs, the other ones being named after Wigner, Peierls, Mott, and Anderson. Continuing work on these transitions finds in some cases less and less charge to order, raising the fundamental question of just where the entropy is coming from, and just what is ordering. To provide insight into the mechanism of charge-ordering transitions, which conventionally are pictured as a disproportionation, I will (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new theoretical results for the rare earth nickelates (viz. YNiO3), the putative charge ordering compound AgNiO2, and the dual charge state insulator AgO, and (3) analyze cationic occupations of actual (not formal) charge, and work to reconcile the conundrums that arise. Several of the clearest cases of charge ordering transitions involve no disproportion; moreover, the experimental data used to support charge ordering can be accounted for within density functional based calculations that contain no charge transfer The challenge of modeling charge ordering transitions with model Hamiltonians will be discussed. Acknowledgment: Y. Quan, V. Pardo. Supported by NSF award DMR-1207622-0.

  10. High-resolution x-ray scattering studies of charge ordering in highly correlated electron systems

    Ghazi, M.E.

    2002-01-01

    1/2 Sr 1/2 MnO 3 a series of phase transitions were observed using high-resolution synchrotron X-ray scattering. Above the charge ordering transition temperature, T CO , by measuring the peak profiles of Bragg reflections as a function of temperature, it was found that this crystal undergoes two transitions corresponding to the transition from a paramagnetic- to a ferromagnetic state at T ∼ 252 K, and the formation of a mixture of the antiferromagnetic and ferromagnetic phases below T ∼ 200 K. Below the charge ordering temperature, T CO =162 K, additional satellite reflections with the wavevector, q = (1/2, 0, 0), were observed due to Jahn-Teller distortion of the MnO 6 octahedra caused by charge- and orbital ordering in sample. This transition was observed to be of first-order with a hysteresis width of 10 K. In addition, another very weak satellites with wavevector (1/2, 1, 1/2) were observed possibly due to spin ordering. (author)

  11. Anomalous columnar order of charged colloidal platelets

    Morales-Anda, L.; Wensink, H. H.; Galindo, A.; Gil-Villegas, A.

    2012-01-01

    Monte Carlo computer simulations are carried out for a model system of like-charged colloidal platelets in the isothermal-isobaric ensemble (NpT). The aim is to elucidate the role of electrostatic interactions on the structure of synthetic clay systems at high particle densities. Short-range repulsions between particles are described by a suitable hard-core model representing a discotic particle. This potential is supplemented with an electrostatic potential based on a Yukawa model for the screened Coulombic potential between infinitely thin disklike macro-ions. The particle aspect-ratio and electrostatic parameters were chosen to mimic an aqueous dispersion of thin, like-charged, rigid colloidal platelets at finite salt concentration. An examination of the fluid phase diagram reveals a marked shift in the isotropic-nematic transition compared to the hard cut-sphere reference system. Several statistical functions, such as the pair correlation function for the center-of-mass coordinates and structure factor, are obtained to characterize the structural organization of the platelets phases. At low salinity and high osmotic pressure we observe anomalous hexagonal columnar structures characterized by interpenetrating columns with a typical intercolumnar distance corresponding to about half of that of a regular columnar phase. Increasing the ionic strength leads to the formation of glassy, disordered structures consisting of compact clusters of platelets stacked into finite-sized columns. These so-called "nematic columnar" structures have been recently observed in systems of charge-stabilized gibbsite platelets. Our findings are corroborated by an analysis of the static structure factor from a simple density functional theory.

  12. Room temperature p-type conductivity and coexistence of ferroelectric order in ferromagnetic Li doped ZnO nanoparticles

    Awan, Saif Ullah; Hasanain, S. K.; Anjum, Dalaver H.; Awan, M. S.; Shah, Saqlain A.

    2014-01-01

    for long range order ferromagnetic coupling in Li doped samples. Room temperature ferroelectric hysteresis loops were observed in 8% and 10% Li doped samples. We demonstrated ferroelectric coercivity (remnant polarization) 2.5kV/cm (0.11 μC/cm2) and 2.8k

  13. Charge ordering phenomena in high temperature superconductors

    Tassini, Leonardo; Prestel, Wolfgang; Hackl, Rudi; Erb, Andreas; Lambacher, Michael

    2007-01-01

    The electronic Raman effect has been studied in single crystals of Y 1-x Ca x Ba 2 Cu 3 O 6 (Y-123) and La 2-x Sr x CuO 4 (LSCO) at different doping. The experimental results provide evidences of an anomalous contribution to the response at low energies and temperatures. In LSCO the additional excitation is in B 2g symmetry for x = 0.02 and in B 1g symmetry for x = 0.10. In Y-123, we observed the additional feature in B 2g symmetry at 1.5% doping. Mainly on the basis of the selection rules we conclude that the additional peaks are the response of a dynamical charge modulation (stripes) in the two-dimensional CuO 2 planes. The selection rules allow us to determine the orientation of the stripes to be along the diagonal of the CuO 2 planes in Y-123 and LSCO at x = 0.02, and along the principal axes in LSCO at x = 0.10

  14. Influence of atomic ordering on elastocaloric and magnetocaloric effects of a Ni–Cu–Mn–Ga ferromagnetic shape memory alloy

    Huang, Chonghui [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Yu, E-mail: yuwang@mail.xjtu.edu.cn [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Tang, Zhao; Liao, Xiaoqi; Yang, Sen; Song, Xiaoping [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-05-05

    Highlights: • Ni{sub 51}Cu{sub 4}Mn{sub 20}Ga{sub 25} alloy exhibits normal elastocaloric and magnetocaloric effects. • L2{sub 1} atomic order of the alloy is increased after annealing at 773 K for 10 h. • Increasing L2{sub 1} atomic order improves its elastocaloric and magnetocaloric effects. • Atomic ordering modifies the magnetic and martensitic transitions of the system. - Abstract: The coexisting elastocaloric and magnetocaloric effects in ferromagnetic shape memory alloys have attracted much attention for the potential application in solid state refrigeration. Previous studies show that the L2{sub 1} atomic ordering of Heusler ferromagnetic shape memory alloys plays important role on their magnetocaloric effect. However, no research work investigates the effect of atomic ordering on their elastocaloric effect yet. In this study, we investigated the influence of atomic ordering on the elastocaloric and magnetocaloric effects of a Ni{sub 51}Cu{sub 4}Mn{sub 20}Ga{sub 25} ferromagnetic shape memory alloy. The alloy exhibits normal elastocaloric effect and normal magnetocaloric effect near room temperature. Moreover, we found that the enhancement of atomic order in this alloy can greatly increase the entropy change and refrigeration capacity of its elastocaloric and magnetocaloric effects. This is attributed to that the atomic ordering modifies the magnetic and martensitic transitions of the system.

  15. Influence of atomic ordering on elastocaloric and magnetocaloric effects of a Ni–Cu–Mn–Ga ferromagnetic shape memory alloy

    Huang, Chonghui; Wang, Yu; Tang, Zhao; Liao, Xiaoqi; Yang, Sen; Song, Xiaoping

    2015-01-01

    Highlights: • Ni 51 Cu 4 Mn 20 Ga 25 alloy exhibits normal elastocaloric and magnetocaloric effects. • L2 1 atomic order of the alloy is increased after annealing at 773 K for 10 h. • Increasing L2 1 atomic order improves its elastocaloric and magnetocaloric effects. • Atomic ordering modifies the magnetic and martensitic transitions of the system. - Abstract: The coexisting elastocaloric and magnetocaloric effects in ferromagnetic shape memory alloys have attracted much attention for the potential application in solid state refrigeration. Previous studies show that the L2 1 atomic ordering of Heusler ferromagnetic shape memory alloys plays important role on their magnetocaloric effect. However, no research work investigates the effect of atomic ordering on their elastocaloric effect yet. In this study, we investigated the influence of atomic ordering on the elastocaloric and magnetocaloric effects of a Ni 51 Cu 4 Mn 20 Ga 25 ferromagnetic shape memory alloy. The alloy exhibits normal elastocaloric effect and normal magnetocaloric effect near room temperature. Moreover, we found that the enhancement of atomic order in this alloy can greatly increase the entropy change and refrigeration capacity of its elastocaloric and magnetocaloric effects. This is attributed to that the atomic ordering modifies the magnetic and martensitic transitions of the system

  16. Modulational instability and nano-scale energy localization in ferromagnetic spin chain with higher order dispersive interactions

    Kavitha, L.; Mohamadou, A.; Parasuraman, E.; Gopi, D.; Akila, N.; Prabhu, A.

    2016-01-01

    The nonlinear localization phenomena in ferromagnetic spin lattices have attracted a steadily growing interest and their existence has been predicted in a wide range of physical settings. We investigate the onset of modulational instability of a plane wave in a discrete ferromagnetic spin chain with physically significant higher order dispersive octupole–dipole and dipole–dipole interactions. We derive the discrete nonlinear equation of motion with the aid of Holstein–Primakoff (H–P) transformation combined with Glauber's coherent state representation. We show that the discrete ferromagnetic spin dynamics is governed by an entirely new discrete NLS model with complex coefficients not reported so far. We report the study of modulational instability (MI) of the ferromagnetic chain with long range dispersive interactions both analytically in the frame work of linear stability analysis and numerically by means of molecular dynamics (MD) simulations. Our numerical simulations explore that the analytical predictions correctly describe the onset of instability. It is found that the presence of the various exchange and dispersive higher order interactions systematically favors the local gathering of excitations and thus supports the growth of high amplitude, long-lived discrete breather (DB) excitations. We analytically compute the strongly localized odd and even modes. Further, we employ the Jacobi elliptic function method to solve the nonlinear evolution equation and an exact propagating bubble-soliton solution is explored. - Highlights: • Higher order dispersive interactions plays significant role in ferromagnetic spin chain. • The energy localization is studied both analytically and numerically. • The existence of DBs are studied under the effect of higher order dispersive interaction.

  17. Room temperature p-type conductivity and coexistence of ferroelectric order in ferromagnetic Li doped ZnO nanoparticles

    Awan, Saif Ullah

    2014-10-28

    Memory and switching devices acquired new materials which exhibit ferroelectric and ferromagnetic order simultaneously. We reported multiferroic behavior in Zn1-yLiyO(0.00≤y≤0.10) nanoparticles. The analysis of transmission electron micrographs confirmed the hexagonal morphology and wurtzite crystalline structure. We investigated p-type conductivity in doped samples and measured hole carriers in range 2.4×1017/cc to 7.3×1017/cc for different Li contents. We found that hole carriers are responsible for long range order ferromagnetic coupling in Li doped samples. Room temperature ferroelectric hysteresis loops were observed in 8% and 10% Li doped samples. We demonstrated ferroelectric coercivity (remnant polarization) 2.5kV/cm (0.11 μC/cm2) and 2.8kV/cm (0.15 μC/cm2) for y=0.08 and y=0.10 samples. We propose that the mechanism of Li induced ferroelectricity in ZnO is due to indirect dipole interaction via hole carriers. We investigated that if the sample has hole carriers ≥5.3×1017/cc, they can mediate the ferroelectricity. Ferroelectric and ferromagnetic measurements showed that higher electric polarization and larger magnetic moment is attained when the hole concentration is larger and vice versa. Our results confirmed the hole dependent coexistence of ferromagnetic and ferroelectric behavior at room temperature, which provide potential applications for switchable and memory devices.

  18. Understanding lattice defects to influence ferromagnetic order of ZnO nanoparticles by Ni, Cu, Ce ions

    Verma, Kuldeep Chand, E-mail: dkuldeep.physics@gmail.com [Department of Physics, Panjab University, Chandigarh 160014 (India); Kotnala, R.K., E-mail: rkkotnala@gmail.com [CSIR-National Physical Laboratory, New Delhi 110012 (India)

    2017-02-15

    Future spintronics technologies based on diluted magnetic semiconductors (DMS) will rely heavily on a sound understanding of the microscopic origins of ferromagnetism in such materials. It remains unclear, however, whether the ferromagnetism in DMS is intrinsic - a precondition for spintronics - or due to dopant clustering. For this, we include a simultaneous doping from transition metal (Ni, Cu) and rare earth (Ce) ions in ZnO nanoparticles that increase the antiferromagnetic ordering to achieve high-T{sub c} ferromagnetism. Rietveld refinement of XRD patterns indicate that the dopant ions in ZnO had a wurtzite structure and the dopants, Ni{sup 2+}, Cu{sup 2+}, Ce{sup 3+} ions, are highly influenced the lattice constants to induce lattice defects. The Ni, Cu, Ce ions in ZnO have nanoparticles formation than nanorods was observed in pure sample. FTIR involve some organic groups to induce lattice defects and the metal-oxygen bonding of Zn, Ni, Cu, Ce and O atoms to confirm wurtzite structure. Raman analysis evaluates the crystalline quality, structural disorder and defects in ZnO lattice with doping. Photoluminescence spectra have strong near-band-edge emission and visible emission bands responsible for defects due to oxygen vacancies. The energy band gap is calculated using Tauc relation. Room temperature ferromagnetism has been described due to bound magnetic polarons formation with Ni{sup 2+}, Cu{sup 2+}, Ce{sup 3+} ions in ZnO via oxygen vacancies. The zero field and field cooling SQUID measurement confirm the strength of antiferromagnetism in ZnO. The field cooling magnetization is studied by Curie-Weiss law that include antiferromagnetic interactions up to low temperature. The XPS spectra have involve +3/+4 oxidation states of Ce ions to influence the observed ferromagnetism. - Graphical abstract: The lattice defects/vacancies attributed by Ni and Ce ions in the wurtzite ZnO structure are responsible in high T{sub c} -ferromagnetism due to long-range magnetic

  19. Ferromagnetic ordering and halfmetallic state in a shandite: Co3Sn2S2

    Schnelle, Walter; Leithe-Jasper, Andreas; Rosner, Helge; Weihrich, Richard

    2013-03-01

    The rapid advance in spintronics challenges an improved understanding of the underlying microscopic properties. Here, we present a joint experimental and theoretical study of Co3Sn2S2 (shandite) and related compounds. From magnetic susceptibility, specific heat and magneto-transport measurements on a shandite single crystal sample we find a phase transition to a ferromagnetic metallic state at 177 K with a saturation moment of 0.92 μB/f.u. Full potential electronic structure calculations within the local spin density approximation result in a halfmetallic ferromagnetic groundstate with a moment of 1 μB/f.u. and a tiny gap in the minority spin channel. The calculated structure optimization and structure variations show that the size of the gap is rather sensitive to the lattice geometry. Possiblities to stabilize the halfmetallic ferromagnetic behavior by various substitutions have been studied theoretically and will be discussed.

  20. The search for competing charge orders in frustrated ladder systems

    Lal, Siddhartha; Laad, Mukul S.

    2007-08-01

    A recent study revealed the dynamics of the charge sector of a one-dimensional quarter- filled electronic system with extended Hubbard interactions to be that of an effective pseudospin transverse-field Ising model (TFIM) in the strong coupling limit. With the twin motivations of studying the co-existing charge and spin order found in strongly correlated chain systems and the effects of inter-chain couplings, we investigate the phase diagram of coupled effective (TFIM) systems. A bosonisation and RG analysis for a two-leg TFIM ladder yields a rich phase diagram showing Wigner/Peierls charge order and Neel/dimer spin order. In a broad parameter regime, the orbital antiferromagnetic phase is found to be stable. An intermediate gapless phase of finite width is found to lie in between two charge-ordered gapped phases. Kosterlitz-Thouless transitions are found to lead from the gapless phase to either of the charge-ordered phases. Low energy effective Hamiltonian analyses of a strongly coupled 2-chain ladder system confirm a phase diagram with in-chain CO, rung-dimer, and orbital antiferromagnetic ordered phases with varying interchain couplings as well as superconductivity upon hole-doping. Our work is potentially relevant for a unified description of a class of strongly correlated, quarter-filled chain and ladder systems. (autor)

  1. Electronic heat, charge and spin transport in superconductor-ferromagnetic insulator structures

    Bergeret, Sebastian [Materials Physics Center (CFM-CSIC), San Sebastian (Spain); Donostia International Physics Center (DIPC), San Sebastian (Spain)

    2015-07-01

    It is known for some time that a superconducting (S) film in contact with a ferromagnetic insulator (FI) exhibits a spin-splitting in the density of states (DoS). Recently we have explored different S-FI hybrid structures and predicted novel effects exploiting such spin-splitting of the DoS. In this talk I will briefly discuss (i) a heat valve based on a FI-S-I-S-FI Josephson junction; (ii) a thermoelectric transistor and (iii) the occurrence of a giant thermophase in a thermally-biased Josephson junction.

  2. Gd doping induced weak ferromagnetic ordering in ZnS nanoparticles synthesized by low temperature co-precipitation technique

    Kaur, Palvinder [Department of Physics, Punjabi University, Patiala, Punjab, 147002 (India); Kumar, Sanjeev, E-mail: sanjeev04101977@gmail.com [Applied Science Department, PEC University of Technology, Chandigarh, 160012 (India); Chen, Chi-Liang, E-mail: chen.cl@nsrrc.org.tw [National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 30076, Taiwan (China); Yang, Kai-Siang [National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 30076, Taiwan (China); Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan (China); Wei, Da-Hua [Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan (China); Dong, Chung-Li [Department of Physics, Tamkang University, Tamsui, Taiwan (China); Srivastava, C. [Materials Engineering Department, Indian Institute of Science, Bangalore, 560012 (India); Rao, S.M. [Department of Physics, Punjabi University, Patiala, Punjab, 147002 (India); Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan (China)

    2017-01-15

    Zn{sub 1−x}Gd{sub x}S nanoparticles with Gd concentration x = 0.00, 0.02 and 0.04 were synthesized by the chemical co-precipitation technique using thioglycerol as capping agent. X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, X-ray absorption near-edge structure (XANES) and vibrating sample magnetometer (VSM) were employed to characterize the as synthesized Gd doped ZnS nanoparticles. XRD and TEM studies show the formation of cubic ZnS nanoparticles with an average size in the range 5–10 nm. The doping did not alter the phase of the ZnS. The PL spectra of doped ZnS nanoparticles showed the presence of sulphur vacancies in the lattice. XANES of Gd doped ZnS nanoparticles depicts spectral changes may arise from charge transfer between host Zn and dopant Gd ions. A VSM study shows that the weak ferromagnetic behaviour increases with increase in Gd doping ZnS nanoparticles. - Highlights: • Gd doped ZnS nanoparticles synthesized using co-precipitation technique. • PL studies depict sulphur and zinc vacancies in Gd doped ZnS nanoparticles. • XANES studies depict the charge transfer between host Zn and dopant Gd ions. • Room temperature weak ferromagnetism is observed in Gd doped ZnS nanoparticles.

  3. Gd doping induced weak ferromagnetic ordering in ZnS nanoparticles synthesized by low temperature co-precipitation technique

    Kaur, Palvinder; Kumar, Sanjeev; Chen, Chi-Liang; Yang, Kai-Siang; Wei, Da-Hua; Dong, Chung-Li; Srivastava, C.; Rao, S.M.

    2017-01-01

    Zn_1_−_xGd_xS nanoparticles with Gd concentration x = 0.00, 0.02 and 0.04 were synthesized by the chemical co-precipitation technique using thioglycerol as capping agent. X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, X-ray absorption near-edge structure (XANES) and vibrating sample magnetometer (VSM) were employed to characterize the as synthesized Gd doped ZnS nanoparticles. XRD and TEM studies show the formation of cubic ZnS nanoparticles with an average size in the range 5–10 nm. The doping did not alter the phase of the ZnS. The PL spectra of doped ZnS nanoparticles showed the presence of sulphur vacancies in the lattice. XANES of Gd doped ZnS nanoparticles depicts spectral changes may arise from charge transfer between host Zn and dopant Gd ions. A VSM study shows that the weak ferromagnetic behaviour increases with increase in Gd doping ZnS nanoparticles. - Highlights: • Gd doped ZnS nanoparticles synthesized using co-precipitation technique. • PL studies depict sulphur and zinc vacancies in Gd doped ZnS nanoparticles. • XANES studies depict the charge transfer between host Zn and dopant Gd ions. • Room temperature weak ferromagnetism is observed in Gd doped ZnS nanoparticles.

  4. Charge ordering in two-dimensional ionic liquids

    Perera, Aurélien; Urbic, Tomaz

    2018-04-01

    The structural properties of model two-dimensional (2D) ionic liquids are examined, with a particular focus on the charge ordering process, with the use of computer simulation and integral equation theories. The influence of the logarithmic form of the Coulomb interaction, versus that of a 3D screened interaction form, is analysed. Charge order is found to hold and to be analogous for both interaction models, despite their very different form. The influence of charge ordering in the low density regime is discussed in relation to well known properties of 2D Coulomb fluids, such as the Kosterlitz-Thouless transition and criticality. The present study suggests the existence of a stable thermodynamic labile cluster phase, implying the existence of a liquid-liquid "transition" above the liquid-gas binodal. The liquid-gas and Kosterlitz-Thouless transitions would then take place inside the predicted cluster phase.

  5. Local density of states and order parameter configurations in layered ferromagnet-superconductor structures

    Halterman, Klaus [Physics and Computational Sciences, Research and Engineering Sciences Department, Naval Air Warfare Center, China Lake, CA 93555 (United States)]. E-mail: klaus.halterman@navy.mil; Valls, Oriol T. [School of Physics and Astronomy and Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: otvalls@umn.edu

    2005-04-01

    We analyze the local density of states (LDOS) of heterostructures consisting of alternating ferromagnet, F, and superconductor, S, layers. We consider structures of the SFS and SFSFSFS type, with thin nanometer scale F and S layers, within the ballistic regime. The spin-splitting effects of the ferromagnet and the mutual coupling between the S regions, yield several nontrivial stable and metastable pair amplitude configurations, and we find that the details of the spatial behavior of the pair amplitude govern the calculated electronic spectra. These are reflected in discernible signatures of the LDOS. The roles that the magnetic exchange energy, interface scattering strength, and the Fermi wavevector mismatch each have on the LDOS for the different allowed junction configurations, are systematically investigated.

  6. Local density of states and order parameter configurations in layered ferromagnet-superconductor structures

    Halterman, Klaus; Valls, Oriol T.

    2005-01-01

    We analyze the local density of states (LDOS) of heterostructures consisting of alternating ferromagnet, F, and superconductor, S, layers. We consider structures of the SFS and SFSFSFS type, with thin nanometer scale F and S layers, within the ballistic regime. The spin-splitting effects of the ferromagnet and the mutual coupling between the S regions, yield several nontrivial stable and metastable pair amplitude configurations, and we find that the details of the spatial behavior of the pair amplitude govern the calculated electronic spectra. These are reflected in discernible signatures of the LDOS. The roles that the magnetic exchange energy, interface scattering strength, and the Fermi wavevector mismatch each have on the LDOS for the different allowed junction configurations, are systematically investigated

  7. Observation of ferromagnetic ordering in a stable α -Co (OH) 2 phase grown on a Mo S2 surface

    Debnath, Anup; Bhattacharya, Shatabda; Saha, Shyamal K.

    2017-12-01

    Because of the potential application of Co (OH) 2 in a magnetic cooling system as a result of its superior magnetocaloric effect many people have investigated magnetic properties of Co (OH) 2 . Unfortunately, most of the works have been carried out on the β -Co (OH) 2 phase due to the fact that the α -Co (OH) 2 phase is very unstable and continuously transformed into the stable β -Co (OH) 2 phase. However, in the present work, using a Mo S2 sheet as a two-dimensional template, we have been able to synthesize a stable α -Co (OH) 2 phase in addition to a β -Co (OH) 2 phase by varying the layer thickness. It is seen that for thinner samples the β phase, while for thicker samples α phase, is grown on the Mo S2 surface. Magnetic measurements are carried out for the samples over the temperature range from 2 to 300 K and it is seen that for the β phase, ferromagnetic ordering with fairly large coercivity (1271 Oe) at 2 K is obtained instead of the usual antiferromagnetism. The most interesting result is the observation of ferromagnetic ordering with a transition temperature (Curie temperature) more than 100 K in the α -Co (OH) 2 phase. Complete saturation in the hysteresis curve under application of very low field having coercivity of ˜162 Oe at 2 K and 60 Oe at 50 K is obtained. A thin stable α -Co (OH) 2 phase grown on Mo S2 surface with very soft ferromagnetic ordering will be very useful as the core material in electromagnets.

  8. Multiferroic nature of charge-ordered rare earth manganites

    Serrao, Claudy Rayan; Sundaresan, A; Rao, C N R

    2007-01-01

    Charge-ordered rare earth manganites Nd 0.5 Ca 0.5 MnO 3 ,La 0.25 Nd 0.25 Ca 0.5 MnO 3 , Pr 0.7 Ca 0.3 MnO 3 and Pr 0.6 Ca 0.4 MnO 3 are found to exhibit dielectric constant anomalies around the charge-ordering or the antiferromagnetic transition temperatures. Magnetic fields have a marked effect on the dielectric properties, indicating the presence of coupling between the magnetic and electrical order parameters. The observation of magnetoferroelectricity in these manganites is in accord with the recent theoretical predictions of Khomskii and co-workers

  9. Multiferroic nature of charge-ordered rare earth manganites

    Serrao, Claudy Rayan [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore-560064 (India); Sundaresan, A [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore-560064 (India); Rao, C N R [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore-560064 (India)

    2007-12-12

    Charge-ordered rare earth manganites Nd{sub 0.5}Ca{sub 0.5}MnO{sub 3},La{sub 0.25}Nd{sub 0.25}Ca{sub 0.5}MnO{sub 3}, Pr{sub 0.7}Ca{sub 0.3}MnO{sub 3} and Pr{sub 0.6}Ca{sub 0.4}MnO{sub 3} are found to exhibit dielectric constant anomalies around the charge-ordering or the antiferromagnetic transition temperatures. Magnetic fields have a marked effect on the dielectric properties, indicating the presence of coupling between the magnetic and electrical order parameters. The observation of magnetoferroelectricity in these manganites is in accord with the recent theoretical predictions of Khomskii and co-workers.

  10. First- and second-order charged particle optics

    Brown, K.L.; Servranckx, R.V.

    1984-07-01

    Since the invention of the alternating gradient principle there has been a rapid evolution of the mathematics and physics techniques applicable to charged particle optics. In this publication we derive a differential equation and a matrix algebra formalism valid to second-order to present the basic principles governing the design of charged particle beam transport systems. A notation first introduced by John Streib is used to convey the essential principles dictating the design of such beam transport systems. For example the momentum dispersion, the momentum resolution, and all second-order aberrations are expressed as simple integrals of the first-order trajectories (matrix elements) and of the magnetic field parameters (multipole components) characterizing the system. 16 references, 30 figures

  11. Phonon Dispersion and the Competition between Pairing and Charge Order

    Costa, N. C.; Blommel, T.; Chiu, W.-T.; Batrouni, G.; Scalettar, R. T.

    2018-05-01

    The Holstein model describes the interaction between fermions and a collection of local (dispersionless) phonon modes. In the dilute limit, the phonon degrees of freedom dress the fermions, giving rise to polaron and bipolaron formation. At higher densities, the phonons mediate collective superconducting (SC) and charge-density wave (CDW) phases. Quantum Monte Carlo (QMC) simulations have considered both these limits but have not yet focused on the physics of more general phonon spectra. Here we report QMC studies of the role of phonon dispersion on SC and CDW order in such models. We quantify the effect of finite phonon bandwidth and curvature on the critical temperature Tcdw for CDW order and also uncover several novel features of diagonal long-range order in the phase diagram, including a competition between charge patterns at momenta q =(π ,π ) and q =(0 ,π ) which lends insight into the relationship between Fermi surface nesting and the wave vector at which charge order occurs. We also demonstrate SC order at half filling in situations where a nonzero bandwidth sufficiently suppresses Tcdw.

  12. Femtosecond Single-Shot Imaging of Nanoscale Ferromagnetic Order in Co/Pd Multilayers using Resonant X-ray Holography

    Wang, Tianhan; Zhu, Diling; Benny Wu,; Graves, Catherine; Schaffert, Stefan; Rander, Torbjorn; Muller, leonard; Vodungbo, Boris; Baumier, Cedric; Bernstein, David P.; Brauer, Bjorn; Cros, Vincent; Jong, Sanne de; Delaunay, Renaud; Fognini, Andreas; Kukreja, Roopali; Lee, Sooheyong; Lopez-Flores, Victor; Mohanty, Jyoti; Pfau, Bastian; Popescu, 5 Horia

    2012-05-15

    We present the first single-shot images of ferromagnetic, nanoscale spin order taken with femtosecond x-ray pulses. X-ray-induced electron and spin dynamics can be outrun with pulses shorter than 80 fs in the investigated fluence regime, and no permanent aftereffects in the samples are observed below a fluence of 25 mJ/cm{sup 2}. Employing resonant spatially-muliplexed x-ray holography results in a low imaging threshold of 5 mJ/cm{sup 2}. Our results open new ways to combine ultrafast laser spectroscopy with sequential snapshot imaging on a single sample, generating a movie of excited state dynamics.

  13. Photo-induced charge-transfer phase transition of rubidium manganese hexacyanoferrate in ferromagnetic and paramagnetic states

    Tokoro, Hiroko; Hashimoto, Kazuhito; Ohkoshi, Shin-ichi

    2007-01-01

    A charge transfer phase transition with thermal hysteresis loop is observed in a series of rubidium manganese hexacyanoferrates, RbMn[Fe(China) 6 ] (1), Rb 0.88 Mn[Fe(China) 6 ] 0.96 .0.6H 2 O (2), and Rb 0.97 Mn[Fe(China) 6 ] 0.99 .0.2H 2 O (3). This phase transition is accompanied by a structural change from cubic (F4-bar 3m) to tetragonal (I4-bar m2). Its high-temperature (HT) and low-temperature (LT) phases are composed of Mn II (S=2/5)NC-Fe III (S=1/2) and Mn III (S=2)-NC-Fe II (S=0), respectively. The phase transition is caused by a metal-to-metal charge transfer from Mn II to Fe III and a Jahn-Teller distortion of the produced Mn III ion. At the ferromagnetic state in LT phase of 2, the photo-induced phase transition is observed, i.e., magnetization is quenched by the irradiation with only one shot of laser pulse. This phenomenon is caused by a photo-induced phase transition from the LT phase to the HT phase. In 3, optical switching between LT and HT phases at room temperature in paramagnetic region is observed

  14. Superconductivity, charge orderings, magnetism, and their phase separations in the ground state of lattice models of superconductor with very short coherence length

    Kapcia, Konrad Jerzy

    2015-01-01

    This is an author-created, un-copyedited version of an article accepted for publication in Journal of Superconductivity and Novel Magnetism. We present the ground state results for lattice models of superconductor (SC) with extremely short coherence length, which also involve the interplay with charge (CO) and (anti-)ferromagnetic orderings. Our preliminary results at zero-temperature (derived by means of the variational approach which treats the on-site interaction term exactly and the in...

  15. Charge ordering in Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3}: ESR and magnetometry study

    Polishchuk, D.M.; Tovstolytkin, A.I. [Institute of Magnetism of NASU, 36b Vernadsky Boulevard, Kyiv 03680 (Ukraine); Fertman, E.L.; Desnenko, V.A.; Kravchyna, O. [B. Verkin Institute for Low Temperature Physics and Engineering of NASU, 47 Lenin Ave., Kharkov 61103 (Ukraine); Khalyavin, D.D. [ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Salak, A.N. [Department of Materials and Ceramic Engineering/CICECO, University of Aveiro, Aveiro 3810-193 (Portugal); Anders, A.G. [V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61000 (Ukraine); Feher, A. [Institute of Physics, Faculty of Science, P. J. Šafárik University in Košice, Park Angelinum 9, Košice 04154 (Slovakia)

    2016-07-15

    The evolution of magnetic and electric properties of the narrow-band manganite Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3} was studied by the electron-spin resonance (ESR), static magnetic field (dc) and resistivity techniques in the temperature range of 100–380 K. It was found that below the charge ordering temperature, T{sub CO}≈212 K, the compound is a mixture of the charge ordered and charge disordered phases in varying proportions depending on the temperature. The exchange phase process, when the amount of the charge ordered phase increases under cooling, while the amount of the charge disordered phase decreases is the most intense between ∼220 K and 180 K. At low temperatures, T<160 K, the charge ordered to the charge disordered phase ratio is about 4:1, which is in excellent agreement with previous neutron diffraction data. Both a sharp decrease of the magnetic susceptibility and a huge resistivity increase are evident of the weakening of ferromagnetic correlations and suppression of the double exchange interaction across the charge ordering due to the localization of the charge carriers. - Highlights: • The electron spin resonance and magnetometry study of Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3} compound has been done. • Phase segregated state of the compound below the charge ordering temperature was revealed. • Charge ordered and charge disordered phases in varying proportions depending on the temperature are coexistent. • The exchange phase process is the most intense between ~220 K and 180 K. • At low temperatures the charge ordered to the charge disordered phase ratio is about 4:1.

  16. Linear chains of magnetic ions stacked with variable distance: ferromagnetic ordering with a Curie temperature above 20 K

    Friedlaender, Stefan; Poeppl, Andreas [Abteilung Magnetische Resonanz komplexer Quantenfestkoerper, Fakultaet fuer Physik und Geowissenschaften, Universitaet Leipzig (Germany); Liu, Jinxuan [Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, Dalian University of Technology (China); Addicoat, Matt; Petkov, Petko; Vankova, Nina; Rueger, Robert; Kuc, Agnieszka [Wilhelm-Ostwald-Institut fuer Physikalische und Theoretische Chemie, Leipzig (Germany); Guo, Wei; Zhou, Wencai; Wang, Zhengbang; Weidler, Peter G.; Woell, Christof [Institut fuer Funktionelle Grenzflaechen, Karlsruher Institut fuer Technologie, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen (Germany); Lukose, Binit [Engineering and Science, Department of Physics and Earth Science, Jacobs University Bremen (Germany); Ziese, Michael [Abteilung Supraleitung und Magnetismus, Fakultaet fuer Physik und Geowissenschaften, Universitaet Leipzig (Germany); Heine, Thomas [Engineering and Science, Department of Physics and Earth Science, Jacobs University Bremen (Germany); Wilhelm-Ostwald-Institut fuer Physikalische und Theoretische Chemie, Leipzig (Germany)

    2016-10-04

    We have studied the magnetic properties of the SURMOF-2 series of metal-organic frameworks (MOFs). Contrary to bulk MOF-2 crystals, where Cu{sup 2+} ions form paddlewheels and are antiferromagnetically coupled, in this case the Cu{sup 2+} ions are connected via carboxylate groups in a zipper-like fashion. This unusual coupling of the spin {sup 1}/{sub 2} ions within the resulting one-dimensional chains is found to stabilize a low-temperature, ferromagnetic (FM) phase. In contrast to other ordered 1D systems, no strong magnetic fields are needed to induce the ferromagnetism. The magnetic coupling constants describing the interaction between the individual metal ions have been determined in SQUID experiments. They are fully consistent with the results of ab initio DFT electronic structure calculations. The theoretical results allow the unusual magnetic behavior of this exotic, yet easy-to-fabricate, material to be described in a detailed fashion. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Unexpected ferromagnetic ordering enhancement with crystallite size growth observed in La{sub 0.5}Ca{sub 0.5}MnO₃ nanoparticles

    Iniama, G.; Ita, B. I. [Department of Pure and Applied Chemistry, University of Calabar, Calabar (Nigeria); Presa, P. de la, E-mail: pmpresa@ucm.es; Hernando, A. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Fac. CC Físicas, Dpto. Física de Materiales, Univ. Complutense de Madrid, 28040 Madrid (Spain); Alonso, J. M. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Instituto de Ciencia de Materiales, CSIC, 28049-Madrid (Spain); Multigner, M. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Cortés-Gil, R.; Ruiz-González, M. L. [Fac. CC Químicas, Dpto. Química Inorgánica, Univ. Complutense de Madrid, 28040 Madrid (Spain); Gonzalez-Calbet, J. M. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Fac. CC Químicas, Dpto. Química Inorgánica, Univ. Complutense de Madrid, 28040 Madrid (Spain)

    2014-09-21

    In this paper, the physical properties of half-doped manganite La{sub 0.5}Ca{sub 0.5}MnO₃ with crystallite sizes ranging from 15 to 40 nm are investigated. As expected, ferromagnetic order strengthens at expense of antiferromagnetic one as crystallite size is reduced to 15 nm. However, contrary to previously reported works, an enhancement of saturation magnetization is observed as crystallite size increases from 15 to 22 nm. This unexpected behavior is accompanied by an unusual cell volume variation that seems to induce ferromagnetic-like behavior at expense of antiferromagnetic one. Besides, field cooled hysteresis loops show exchange bias field and coercivity enhancement for increasing cooling fields, which suggest a kind of core-shell structure with AFM-FM coupling for crystallite sizes as small as 15 nm. It is expected that inner core orders antiferromagnetically, whereas uncompensated surface spins behave as spin glass with ferromagnetic-like ordering.

  18. Stability of charge and orbital order in half-doped Y{sub 0.5}Ca{sub 0.5}MnO{sub 3} nanocrystallites

    Chowdhury, Putul Malla, E-mail: putularun@gmail.com; Ghosh, Barnali, E-mail: barnali@bose.res.in; Raychaudhuri, A. K., E-mail: arup@bose.res.in [S N Bose National Centre for Basic Sciences, Unit for Nano Science, Department of Condensed Matter Physics and Materials Science (India); Kaushik, S. D.; Siruguri, V. [UGC-DAE Consortium for Scientific Research Mumbai Centre, R-5 Shed, Bhabha Atomic Research Centre (India)

    2013-04-15

    In this paper, we report a detailed study of the structure, magnetic, and electrical transport properties in nanocrystallites of hole-doped manganite Y{sub 0.5}Ca{sub 0.5}MnO{sub 3}, with the aim to study the effect of size reduction on the stability of the charge-orbital order and the antiferromagnetic spin order that are seen in the bulk samples of the half-doped manganite. The investigations have been done in the general context of investigating how size reduction affects competing interactions in complex oxides and thus, changes their ground state. The bulk sample of the material (average crystallite size {approx}1 {mu}m), with the smallest radius of the cation in A-site (Y), shows a robust charge and orbital ordered insulating state below the transition temperature near 290 K and an antiferromagnetic spin order at 110 K. The experiments carried out on well-characterized nanocrystalline samples, with average crystallite sizes down to 75 nm, establish that the size reduction changes the structural parameters, and the charge and orbital ordering are suppressed. However, the antiferromagnetic spin order (as revealed by neutron diffraction experiments carried out down to 2 K) persists in the nanocrystallites and co-exists with ferromagnetic order below 110 K. The nanocrystalline samples have significant lower resistivities (by few orders) compared to those of the bulk samples in the temperature range 10-300 K. This corroborates the formation of the ferromagnetic moments in the nanocrystallites.

  19. Charge ordering phenomena and superconductivity in underdoped cuprates

    Tassini, Leonardo [Bayerische Akademie der Wissenschaften, Muenchen (Germany). Lehrstuhl E23 fuer Technische Physik

    2008-01-16

    In this thesis electronic properties of two prototypical copper-oxygen superconductors were studied with Raman scattering. The underdoped regime including the onset point of superconductivity p{sub sc1} was investigated. Evidence of quasi one-dimensional (1D) dynamical stripes was found. The 1D structures have a universal preferential orientation along the diagonals of the CuO{sub 2} planes below p{sub sc1}. At p{sub sc1}, lattice and electron dynamics change discontinuously. The results show that charge ordering drives the transition at p{sub sc1} and that the maximal transition temperature to superconductivity at optimal doping T{sub c}{sup MAX} depends on the type of ordering at p{sub sc1}. (orig.)

  20. Interface reconstruction with emerging charge ordering in hexagonal manganite

    Xu, Changsong; Han, Myung-Geun; Bao, Shanyong; Nan, Cewen; Bellaiche, Laurent

    2018-01-01

    Multiferroic materials, which simultaneously have multiple orderings, hold promise for use in the next generation of memory devices. We report a novel self-assembled MnO double layer forming at the interface between a multiferroic YMnO3 film and a c-Al2O3 substrate. The crystal structures and the valence states of this MnO double layer were studied by atomically resolved scanning transmission electron microscopy and spectroscopy, as well as density functional theory (DFT) calculations. A new type of charge ordering has been identified within this MnO layer, which also contributes to a polarization along the [001] direction. DFT calculations further establish the occurrence of multiple couplings between charge and lattice in this novel double layer, in addition to the polarization in nearby YMnO3 single layer. The interface reconstruction reported here creates a new playground for emergent physics, such as giant ferroelectricity and strong magnetoelectric coupling, in manganite systems. PMID:29795782

  1. High-order space charge effects using automatic differentiation

    Reusch, Michael F.; Bruhwiler, David L.

    1997-01-01

    The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of a Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach

  2. High-order space charge effects using automatic differentiation

    Reusch, M.F.; Bruhwiler, D.L.; Computer Accelerator Physics Conference Williamsburg, Virginia 1996)

    1997-01-01

    The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of a Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach. copyright 1997 American Institute of Physics

  3. Microscopic theory of longitudinal sound velocity in charge ordered manganites

    Rout, G C; Panda, S

    2009-01-01

    A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e g band, an exchange interaction between spins of the itinerant e g band electrons and the core t 2g electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.

  4. Microscopic theory of longitudinal sound velocity in charge ordered manganites

    Rout, G C [Condensed Matter Physics Group, PG Department of Applied Physics and Ballistics, FM University, Balasore 756 019 (India); Panda, S, E-mail: gcr@iopb.res.i [Trident Academy of Technology, F2/A, Chandaka Industrial Estate, Bhubaneswar 751 024 (India)

    2009-10-14

    A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e{sub g} band, an exchange interaction between spins of the itinerant e{sub g} band electrons and the core t{sub 2g} electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.

  5. Charge dynamics of the antiferromagnetically ordered Mott insulator

    Han, Xing-Jie; Li, Xin; Chen, Jing; Liao, Hai-Jun; Xiang, Tao; Liu, Yu; Liu, Zhi-Yuan; Xie, Zhi-Yuan; Normand, B

    2016-01-01

    We introduce a slave-fermion formulation in which to study the charge dynamics of the half-filled Hubbard model on the square lattice. In this description, the charge degrees of freedom are represented by fermionic holons and doublons and the Mott-insulating characteristics of the ground state are the consequence of holon–doublon bound-state formation. The bosonic spin degrees of freedom are described by the antiferromagnetic Heisenberg model, yielding long-ranged (Néel) magnetic order at zero temperature. Within this framework and in the self-consistent Born approximation, we perform systematic calculations of the average double occupancy, the electronic density of states, the spectral function and the optical conductivity. Qualitatively, our method reproduces the lower and upper Hubbard bands, the spectral-weight transfer into a coherent quasiparticle band at their lower edges and the renormalisation of the Mott gap, which is associated with holon–doublon binding, due to the interactions of both quasiparticle species with the magnons. The zeros of the Green function at the chemical potential give the Luttinger volume, the poles of the self-energy reflect the underlying quasiparticle dispersion with a spin-renormalised hopping parameter and the optical gap is directly related to the Mott gap. Quantitatively, the square-lattice Hubbard model is one of the best-characterised problems in correlated condensed matter and many numerical calculations, all with different strengths and weaknesses, exist with which to benchmark our approach. From the semi-quantitative accuracy of our results for all but the weakest interaction strengths, we conclude that a self-consistent treatment of the spin-fluctuation effects on the charge degrees of freedom captures all the essential physics of the antiferromagnetic Mott–Hubbard insulator. We remark in addition that an analytical approximation with these properties serves a vital function in developing a full understanding of

  6. Charge dynamics of the antiferromagnetically ordered Mott insulator

    Han, Xing-Jie; Liu, Yu; Liu, Zhi-Yuan; Li, Xin; Chen, Jing; Liao, Hai-Jun; Xie, Zhi-Yuan; Normand, B.; Xiang, Tao

    2016-10-01

    We introduce a slave-fermion formulation in which to study the charge dynamics of the half-filled Hubbard model on the square lattice. In this description, the charge degrees of freedom are represented by fermionic holons and doublons and the Mott-insulating characteristics of the ground state are the consequence of holon-doublon bound-state formation. The bosonic spin degrees of freedom are described by the antiferromagnetic Heisenberg model, yielding long-ranged (Néel) magnetic order at zero temperature. Within this framework and in the self-consistent Born approximation, we perform systematic calculations of the average double occupancy, the electronic density of states, the spectral function and the optical conductivity. Qualitatively, our method reproduces the lower and upper Hubbard bands, the spectral-weight transfer into a coherent quasiparticle band at their lower edges and the renormalisation of the Mott gap, which is associated with holon-doublon binding, due to the interactions of both quasiparticle species with the magnons. The zeros of the Green function at the chemical potential give the Luttinger volume, the poles of the self-energy reflect the underlying quasiparticle dispersion with a spin-renormalised hopping parameter and the optical gap is directly related to the Mott gap. Quantitatively, the square-lattice Hubbard model is one of the best-characterised problems in correlated condensed matter and many numerical calculations, all with different strengths and weaknesses, exist with which to benchmark our approach. From the semi-quantitative accuracy of our results for all but the weakest interaction strengths, we conclude that a self-consistent treatment of the spin-fluctuation effects on the charge degrees of freedom captures all the essential physics of the antiferromagnetic Mott-Hubbard insulator. We remark in addition that an analytical approximation with these properties serves a vital function in developing a full understanding of the

  7. Ferromagnetic ordering in ThSi{sub 2} type CeAu{sub 0.28}Ge{sub 1.72}

    Sebastian, C. Peter, E-mail: s-peter@northwestern.ed [Department of Chemistry, Northwestern University, 2145 N. Sheridan Road, Evanston, IL 60208-3113 (United States); Kanatzidis, Mercouri G., E-mail: m-kanatzidis@northwestern.ed [Department of Chemistry, Northwestern University, 2145 N. Sheridan Road, Evanston, IL 60208-3113 (United States)

    2010-04-15

    The compound CeAu{sub 0.28}Ge{sub 1.72} crystallizes in the ThSi{sub 2} structure type in the tetragonal space group I4{sub 1}/amd with lattice parameters a=b=4.2415(6) A c=14.640(3) A. CeAu{sub 0.28}Ge{sub 1.72} is a polar intermetallic compound having a three-dimensional Ge/Au polyanion sub-network filled with Ce atoms. The magnetic susceptibility data show Curie-Weiss law behavior above 50 K. The compound orders ferromagnetically at {approx}8 K with estimated magnetic moment of 2.48 mu{sub B}/Ce. The ferromagnetic ordering is confirmed by the heat capacity data which show a rise at {approx}8 K. The electronic specific heat coefficient (gamma) value obtained from the paramagnetic temperature range 15-25 K is {approx}124(5) mJ/ mol K{sup 2}. The entropy change due to the ferromagnetic transition is {approx}4.2 J/mol K which is appreciably reduced compared to the value of R ln(2) expected for a crystal-field-split doublet ground state and/or Kondo exchange interactions. - Graphical abstract: CeAu{sub 0.28}Ge{sub 1.72} crystallizes in the ThSi{sub 2} structure type in the tetragonal space group I4{sub 1}/amd and orders ferromagnetically at {approx}8 K.

  8. Room-temperature ferromagnetism in cerium dioxide powders

    Rakhmatullin, R. M., E-mail: rrakhmat@kpfu.ru; Pavlov, V. V.; Semashko, V. V.; Korableva, S. L. [Kazan Federal University, Institute of Physics (Russian Federation)

    2015-08-15

    Room-temperature ferromagnetism is detected in a CeO{sub 2} powder with a grain size of about 35 nm and a low (<0.1 at %) manganese and iron content. The ferromagnetism in a CeO{sub 2} sample with a submicron crystallite size and the same manganese and iron impurity content is lower than in the nanocrystalline sample by an order of magnitude. Apart from ferromagnetism, both samples exhibit EPR spectra of localized paramagnetic centers, the concentration of which is lower than 0.01 at %. A comparative analysis of these results shows that the F-center exchange (FCE) mechanism cannot cause ferromagnetism. This conclusion agrees with the charge-transfer ferromagnetism model proposed recently.

  9. First order and second order fermi acceleration of energetic charged particles by shock waves

    Webb, G.M.

    1983-01-01

    Steady state solutions of the cosmic ray transport equation describing first order Fermi acceleration of energetic charged particles at a plane shock (without losses) and second order Fermi acceleration in the downstream region of the shock are derived. The solutions for the isotropic part of the phase space distribution function are expressible as eigenfunction expansions, being superpositions of series of power law momentum spectra, with the power law indices being the roots of an eigenvalue equation. The above exact analytic solutions are for the case where the spatial diffusion coefficient kappa is independent of momentum. The solutions in general depend on the shock compression ratio, the modulation parameters V 1 L/kappa 1 , V 2 L/kappa 2 (V is the plasma velocity, kappa is the energetic particle diffusion coefficient, and L a characteristic length over which second order Fermi acceleration is effective) in the upstream and downstream regions of the shock, respectively, and also on a further dimensionless parameter, zeta, characterizing second order Fermi acceleration. In the limit as zeta→0 (no second order Fermi acceleration) the power law momentum spectrum characteristic of first order Fermi acceleration (depending only on the shock compression ratio) obtained previously is recovered. Perturbation solutions for the case where second order Fermi effects are small, and for realistic diffusion coefficients (kappainfinityp/sup a/, a>0, p = particle momentum), applicable at high momenta, are also obtained

  10. Novel effect of spin dynamics with suppression of charge and orbital ordering in Nd0.5Ca0.5MnO3 under the influence of ac electric field

    Sarwar, T.; Qamar, A.; Nadeem, M.

    2017-07-01

    Dynamics of spin ordering in the manganite Nd0.5Ca0.5MnO3 have been investigated in this paper. It was observed that the complex mixed magnetic ordering in pellets is comprised of antiferromagnetic ordering at 160 K (TN) and complete charge ordering at 250 K (TCO). Under ac field, appearance of unstable ferromagnetic correlations is observed above TCO, which is badly frustrated due to strong spin disorder induced by Jahn Teller distortions. Impedance measurements reveal the spin glass like scenario, suppressing the strong antiferromagnetic and charge ordering states below TN.

  11. Jahn-Teller effect and ferromagnetic ordering in La0.875Sr0.125MnO3: A reentrant behaviour

    Pinsard, L.; Revcolevschi, A.; Anane, A.; Dupas, C.

    1997-01-01

    The compound La 0.875 Sr 0.125 MnO 3 undergoes a series of structural phase transitions in which different physical effects are involved. The compound is rhombohedral above T RO ∝400 K. On cooling, a phase transition to an orthorhombic Pbnm O-phase takes place at T RO , no significant orbital ordering is observed. At T OO' ∝270 K a structural phase transition to another orthorhombic (O') form takes place, and an orbital ordering appears due to a cooperative JT effect. For this temperature range the compound is a paramagnetic semiconductor. Upon cooling it becomes ferromagnetic at T C ∝180 K and the orbital ordering is partially suppressed. Below a temperature T O'O '' ∝150 K at which the average Mn magnetic moment is about 2μ B the orbital ordering is completely suppressed by a first order structural transition to another orthorhombic phase (O '' ) similar to the O-phase. Between T C and T O'O '' the compound is metallic and becomes a ferromagnetic insulator below T O'O '' where a canting of the ferromagnetic order appears. (orig.)

  12. Ising-like spin anisotropy and competing antiferromagnetic-ferromagnetic orders in GdBaCo2O5.5 single crystals.

    Taskin, A A; Lavrov, A N; Ando, Yoichi

    2003-06-06

    In RBaCo2O5+x compounds (R is rare earth), a ferromagnetic-antiferromagnetic competition is accompanied by a giant magnetoresistance. We study the magnetization of detwinned GdBaCo2O5.5 single crystals and find a remarkable uniaxial anisotropy of Co3+ spins which is tightly linked with the chain oxygen ordering in GdO0.5 planes. Reflecting the underlying oxygen order, CoO2 planes also develop a spin-state order consisting of Co3+ ions in alternating rows of S=1 and S=0 states. The magnetic structure appears to be composed of weakly coupled ferromagnetic ladders with Ising-like moments, which gives a simple picture for magnetotransport phenomena.

  13. Novel room temperature ferromagnetic semiconductors

    Gupta, Amita [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2004-06-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous

  14. Unexpected ferromagnetic ordering enhancement with crystallite size growth observed in La0.5Ca0.5MnO3 nanoparticles

    Iniama, G.; Ita, B. I.; Presa, P. de la; Hernando, A.; Alonso, J. M.; Multigner, M.; Cortés-Gil, R.; Ruiz-González, M. L.; Gonzalez-Calbet, J. M.

    2014-01-01

    In this paper, the physical properties of half-doped manganite La 0.5 Ca 0.5 MnO 3 with crystallite sizes ranging from 15 to 40 nm are investigated. As expected, ferromagnetic order strengthens at expense of antiferromagnetic one as crystallite size is reduced to 15 nm. However, contrary to previously reported works, an enhancement of saturation magnetization is observed as crystallite size increases from 15 to 22 nm. This unexpected behavior is accompanied by an unusual cell volume variation that seems to induce ferromagnetic-like behavior at expense of antiferromagnetic one. Besides, field cooled hysteresis loops show exchange bias field and coercivity enhancement for increasing cooling fields, which suggest a kind of core-shell structure with AFM-FM coupling for crystallite sizes as small as 15 nm. It is expected that inner core orders antiferromagnetically, whereas uncompensated surface spins behave as spin glass with ferromagnetic-like ordering.

  15. On the relation between Jahn-Teller ordering and charge ordering

    Eijndhoven, J.C.M van.

    1978-01-01

    This thesis compares the structures of KCusup(II)F 3 and Cs 2 Ausup(I)Ausup(III)Cl 6 . Both compounds have a structure that can be thought to result from a deformation of the cubic perovskite structure. The deformation of KCusup(II)F 3 is a result of a cooperative Jahn-Teller effect and the deformation of Cs 2 Ausup(I)Ausup(III)Cl 6 results in two sublattices. The structures of both compounds result from a continuous phase transition from the cubic pervskite structure due to a deformation of symmetry. Using local coordinates and a calculation of the electron-lattice interaction in a static approximation, four structure types were derived. One is the structure of Cs 2 AuAuCl 6 at ambient temperature and pressure and the second contains a group of structures corresponding to the structures found for KCuF 3 . The third structure type was recently suggested for Cs 2 AuAuCl 6 under pressure and the fourth has not been found experimentally. Two types show a Jahn-Teller ordering and the other two charge ordering (Auth./C.F.)

  16. Penetration of charged particles through ordered isotropic matter

    Sigmund, P.

    1977-01-01

    A brief summary of some new results on fluctuation phenomena in particle penetration is presented. The results include collision statistics, positive and negative correlations and a framework for the treatment of cumulative effects in particle penetration. Incorporation of projectile and target states in the description and energy-loss straggling are discussed. Small-angle multiple scattering is considered and a comment made on ionic charge states. (B.R.H.)

  17. Suppression of the ferromagnetic order in the Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 15} by hydrostatic pressure

    Salazar Mejía, C., E-mail: Catalina.Salazar@cpfs.mpg.de; Mydeen, K.; Naumov, P.; Medvedev, S. A.; Wang, C.; Schwarz, U.; Felser, C.; Nicklas, M., E-mail: nicklas@cpfs.mpg.de [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Hanfland, M. [ESRF, BP220, 38043 Grenoble (France); Nayak, A. K. [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany)

    2016-06-27

    We report on the effect of hydrostatic pressure on the magnetic and structural properties of the shape-memory Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 15}. Magnetization and x-ray diffraction experiments were performed at hydrostatic pressures up to 5 GPa using diamond anvil cells. Pressure stabilizes the martensitic phase, shifting the martensitic transition to higher temperatures, and suppresses the ferromagnetic austenitic phase. Above 3 GPa, where the martensitic-transition temperature approaches the Curie temperature in the austenite, the magnetization shows no longer indications of ferromagnetic ordering. We further find an extended temperature region with a mixture of martensite and austenite phases, which directly relates to the magnetic properties.

  18. Proximity Band Structure and Spin Textures on Both Sides of Topological-Insulator/Ferromagnetic-Metal Interface and Their Charge Transport Probes.

    Marmolejo-Tejada, Juan Manuel; Dolui, Kapildeb; Lazić, Predrag; Chang, Po-Hao; Smidstrup, Søren; Stradi, Daniele; Stokbro, Kurt; Nikolić, Branislav K

    2017-09-13

    The control of recently observed spintronic effects in topological-insulator/ferromagnetic-metal (TI/FM) heterostructures is thwarted by the lack of understanding of band structure and spin textures around their interfaces. Here we combine density functional theory with Green's function techniques to obtain the spectral function at any plane passing through atoms of Bi 2 Se 3 and Co or Cu layers comprising the interface. Instead of naively assumed Dirac cone gapped by the proximity exchange field spectral function, we find that the Rashba ferromagnetic model describes the spectral function on the surface of Bi 2 Se 3 in contact with Co near the Fermi level E F 0 , where circular and snowflake-like constant energy contours coexist around which spin locks to momentum. The remnant of the Dirac cone is hybridized with evanescent wave functions from metallic layers and pushed, due to charge transfer from Co or Cu layers, a few tenths of an electron-volt below E F 0 for both Bi 2 Se 3 /Co and Bi 2 Se 3 /Cu interfaces while hosting distorted helical spin texture wounding around a single circle. These features explain recent observation of sensitivity of spin-to-charge conversion signal at TI/Cu interface to tuning of E F 0 . Crucially for spin-orbit torque in TI/FM heterostructures, few monolayers of Co adjacent to Bi 2 Se 3 host spectral functions very different from the bulk metal, as well as in-plane spin textures (despite Co magnetization being out-of-plane) due to proximity spin-orbit coupling in Co induced by Bi 2 Se 3 . We predict that out-of-plane tunneling anisotropic magnetoresistance in Cu/Bi 2 Se 3 /Co vertical heterostructure can serve as a sensitive probe of the type of spin texture residing at E F 0 .

  19. Stress Induced Charge-Ordering Process in LiMn_2O_4

    Chen, Yan; Yu, Dunji; An, Ke

    2016-01-01

    In this letter we report the stress-induced Mn charge-ordering process in the LiMn_2O_4 spinel, evidenced by the lattice strain evolutions due to the Jahn–Teller effects. In situ neutron diffraction reveals the initial stage of this process at low stress, indicating the eg electron localization at the preferential Mn sites during the early phase transition as an underlying charge-ordering mechanism in the charge-frustrated LiMn_2O_4. The initial stage of this transition exhibits as a progressive lattice and charge evolution, without showing a first-order behavior.

  20. Interplay of charge, orbital and magnetic order in Pr1-xCaxMnO3

    Zimmermann V, M.; Hill, J.P.; Gibbs, D.; Blume, M.; Casa, D.; Keimer, B.; Murakami, Y.; Tomioka, Y.; Tokura, Y.

    1999-01-01

    The authors report resonant x-ray scattering studies of charge and orbital order in Pr 1-x Ca x MnO 3 with x = 0.4 and 0.5. Below the ordering temperature, T O = 245 K, the charge and orbital order intensities follow the same temperature dependence, including an increase at the antiferromagnetic ordering temperature, T N . High resolution measurements reveal, however, that long range orbital order is never achieved. Rather, an orbital domain state is formed. Above T O , the charge order fluctuations are more highly correlated than the orbital fluctuations. Similar phenomenology is observed in a magnetic field. They conclude that the charge order drives the orbital order at the transition

  1. Short range charge/orbital ordering in La1-xSrxMn1-zBzO3 (B Cu,Zn) manganites

    Popovic, Z V; Cantarero, A; Thijssen, W H A; Paunovic, N; Dohcevic-Mitrovic, Z; Sapina, F

    2005-01-01

    We have measured the reflectivity spectra of La 1-x Sr x Mn 1-z B z O 3 (B = Cu, Zn; 0.17 ≤ x ≤ 0.30; 0 ≤ z ≤ 0.10) manganites over wide frequency (100-4000 cm -1 ) and temperature (80-300 K) ranges. Besides the previously observed infrared active modes or mode pairs at about 160 cm -1 (external mode), 350 cm -1 (bond bending mode) and 590 cm -1 (bond stretching mode), we have clearly observed two additional phonon modes at about 645 and 720 cm -1 below the temperature T 1 (T 1 C ), which coincides with the phase transition temperature when the system transforms from ferromagnetic metallic into a ferromagnetic insulator state. This transition is related to the formation of short range charge/orbitally ordered domains. The temperature T 1 of the phase transition is dependent on the doping concentration and for optimally doped samples we have found that T 1 ∼(0.93 ± 0.02) T C . Electrical resistivity and magnetization measurements versus temperature and magnetic field support the short range charge/orbital ordering scenario

  2. Distinguishing Patterns of Charge Order: Stripes or Checkerboards

    Robertson, J.A.

    2010-04-06

    In two dimensions, quenched disorder always rounds transitions involving the breaking of spatial symmetries so, in practice, it can often be difficult to infer what form the symmetry breaking would take in the 'ideal,' zero disorder limit. We discuss methods of data analysis which can be useful for making such inferences, and apply them to the problem of determining whether the preferred order in the cuprates is 'stripes' or 'checkerboards.' In many cases we show that the experiments clearly indicate stripe order, while in others (where the observed correlation length is short), the answer is presently uncertain.

  3. Charge-order driven multiferroic and magneto-dielectric properties of rare earth manganates

    Serrao, Claudy Rayan; Sahu, Jyoti Ranjan; Ghosh, Anirban

    2010-01-01

    Charge-order driven magnetic ferroelectricity is shown to occur in several rare earth manganates of the general formula, Ln 1-x A x MnO 3 (Ln rare earth, A = alkaline earth). Charge-ordered manganates exhibit dielectric constant anomalies around the charge-ordering or the antiferromagnetic transition temperature. Magnetic fields have a marked effect on the dielectric properties of these compounds, indicating the presence of coupling between the magnetic and electrical order parameters. Magneto-dielectric properties are retained in small particles of the manganates. The observation of magneto-ferroelectricity in these manganates is in accordance with theoretical predictions. (author)

  4. Bond index: relation to second-order density matrix and charge fluctuations

    Giambiagi, M.S. de; Giambiagi, M.; Jorge, F.E.

    1985-01-01

    It is shown that, in the same way as the atomic charge is an invariant built from the first-order density matrix, the closed-shell generalized bond index is an invariant associated with the second-order reduced density matrix. The active charge of an atom (sum of bond indices) is shown to be the sum of all density correlation functions between it and the other atoms in the molecule; similarly, the self-charge is the fluctuation of its total charge. (Author) [pt

  5. Isolation of a new two-dimensional honeycomb carbonato-bridged copper(II) complex exhibiting long-range ferromagnetic ordering.

    Majumder, Arpi; Choudhury, Chirantan Roy; Mitra, Samiran; Rosair, Georgina M; El Fallah, M Salah; Ribas, Joan

    2005-04-28

    Atmospheric CO2 fixation by an aqueous solution containing Cu(ClO4)2.6H2O and 4-aminopyridine (4-apy) yields a novel example of a two-dimensional mu3-CO3 bridged copper(II) complex {[Cu(4-apy)2]3(mu3-CO3)2(ClO4)2.(1/2)CH3OH}n that has been characterized by IR, UV and X-ray crystallography; preliminary magnetic measurements show that complex exhibits long-range ordered ferromagnetic coupling.

  6. Molecular ferromagnetism

    Epstein, A.J.

    1990-01-01

    This past year has been one of substantial advancement in both the physics and chemistry of molecular and polymeric ferromagnets. The specific heat studies of (DMeFc)(TCNE) have revealed a cusp at the three-dimensional ferromagnetic transition temperature with a crossover to primarily 1-D behavior at higher temperatures. This paper discusses these studies

  7. Doping dependence of charge order in electron-doped cuprate superconductors

    Mou, Yingping; Feng, Shiping

    2017-12-01

    In the recent studies of the unconventional physics in cuprate superconductors, one of the central issues is the interplay between charge order and superconductivity. Here the mechanism of the charge-order formation in the electron-doped cuprate superconductors is investigated based on the t-J model. The experimentally observed momentum dependence of the electron quasiparticle scattering rate is qualitatively reproduced, where the scattering rate is highly anisotropic in momentum space, and is intriguingly related to the charge-order gap. Although the scattering strength appears to be weakest at the hot spots, the scattering in the antinodal region is stronger than that in the nodal region, which leads to the original electron Fermi surface is broken up into the Fermi pockets and their coexistence with the Fermi arcs located around the nodal region. In particular, this electron Fermi surface instability drives the charge-order correlation, with the charge-order wave vector that matches well with the wave vector connecting the hot spots, as the charge-order correlation in the hole-doped counterparts. However, in a striking contrast to the hole-doped case, the charge-order wave vector in the electron-doped side increases in magnitude with the electron doping. The theory also shows the existence of a quantitative link between the single-electron fermiology and the collective response of the electron density.

  8. Absence of magnetic long-range order in Y2CrSbO7 : Bond-disorder-induced magnetic frustration in a ferromagnetic pyrochlore

    Shen, L.; Greaves, C.; Riyat, R.; Hansen, T. C.; Blackburn, E.

    2017-09-01

    The consequences of random nonmagnetic-ion dilution for the pyrochlore family Y2(M 1 -xN x)2O7 (M = magnetic ion, N = nonmagnetic ion) have been investigated. As a first step, we experimentally examine the magnetic properties of Y2CrSbO7 (x =0.5 ), in which the magnetic sites (Cr3 +) are percolative. Although the effective Cr-Cr spin exchange is ferromagnetic, as evidenced by a positive Curie-Weiss temperature, ΘCW ≃19.5 K , our high-resolution neutron powder diffraction measurements detect no sign of magnetic long-range order down to 2 K. In order to understand our observations, we construct a lattice model to numerically study the bond disorder introduced by the ionic size mismatch between M and N , which reveals that the bond disorder percolates at xb ≃0.23 , explaining the absence of magnetic long-range order. This model could be applied to a series of frustrated magnets with a pyrochlore sublattice, for example, the spinel compound Zn (Cr1 -xGax )2O4 , wherein a Néel to spin glass phase transition occurs between x =0.2 and 0.25 [Lee et al., Phys. Rev. B 77, 014405 (2008), 10.1103/PhysRevB.77.014405]. Our study stresses the non-negligible role of bond disorder on magnetic frustration, even in ferromagnets.

  9. Charge Order in (TMTTF)2TaF6 by Infrared Spectroscopy

    Oka, Yuki; Matsunaga, Noriaki; Nomura, Kazushige; Kawamoto, Atsuhi; Yamamoto, Kaoru; Yakushi, Kyuya

    2015-11-01

    We have performed infrared spectroscopy in (TMTTF)2TaF6 (TMTTF: tetramethyltetrathiafulvalene) to investigate the relationship between the charge order (CO) state and the antiferromagnetic (AF) insulating ground state. A clear peak splitting corresponding to the charge disproportionation was observed below the CO transition temperature. We estimated the degree of charge disproportionation, Δρ = ρrich - ρpoor, as 0.28e from the peak splitting and found that the CO state coexists with the AF state and there is no charge redistribution below the AF transition.

  10. Ferroelectric ferrimagnetic LiFe2F6 : Charge-ordering-mediated magnetoelectricity

    Lin, Ling-Fang; Xu, Qiao-Ru; Zhang, Yang; Zhang, Jun-Jie; Liang, Yan-Ping; Dong, Shuai

    2017-12-01

    Trirutile-type LiFe2F6 is a charge-ordered material with an Fe2 +/Fe3 + configuration. Here, its physical properties, including magnetism, electronic structure, phase transition, and charge ordering, are studied theoretically. On one hand, the charge ordering leads to improper ferroelectricity with a large polarization. On the other hand, its magnetic ground state can be tuned from the antiferromagnetic to ferrimagnetic by moderate compressive strain. Thus, LiFe2F6 can be a rare multiferroic with both large magnetization and polarization. Most importantly, since the charge ordering is the common ingredient for both ferroelectricity and magnetization, the net magnetization may be fully switched by flipping the polarization, rendering intrinsically strong magnetoelectric effects and desirable functions.

  11. The influence of atomic order on the magnetic and structural properties of the ferromagnetic shape memory compound Ni sub 2 MnGa

    Kreissl, M; Stephens, T; Ziebeck, K R A

    2003-01-01

    The effect of atomic order on the martensitic phase transition and magnetic properties of stoichiometric Ni sub 2 MnGa has been investigated in a sample quenched from 1000 deg C. Magnetization, resistivity and x-ray diffraction measurements indicate that the structural phase transition occurs at approx 103 K, substantially lower than the value reported for samples quenched from 800 deg C and ordered in the Heusler L2 sub 1 structure. A small reduction in the ferromagnetic moment was also observed, although the Curie temperature remained largely unaffected. The electronic Sommerfeld coefficient obtained from heat capacity measurements is enhanced but smaller than that observed for the 800 deg C quenched sample. The results are consistent with band structure calculations and the electronic changes brought about by atomic disorder.

  12. The tight binding model study of the role of anisotropic AFM spin ordering in the charge ordered CMR manganites

    Kar, J. K.; Panda, Saswati; Rout, G. C.

    2017-05-01

    We propose here a tight binding model study of the interplay between charge and spin orderings in the CMR manganites taking anisotropic effect due to electron hoppings and spin exchanges. The Hamiltonian consists of the kinetic energies of eg and t2g electrons of manganese ion. It further includes double exchange and Heisenberg interactions. The charge density wave interaction (CDW) describes an extra mechanism for the insulating character of the system. The CDW gap and spin parameters are calculated using Zubarev's Green's function technique and computed self-consistently. The results are reported in this communication.

  13. Long-range ferromagnetic order induced by a donor impurity band exchange in SnO{sub 2}:Er{sup 3+} nanoparticles

    Aragón, F. H.; Coaquira, J. A. H. [Núcleo de Física Aplicada, Institute of Physics, University of Brasília, Brasília DF 70910-900 (Brazil); Chitta, V. A. [Instituto de Física, Universidade de São Paulo, São Paulo, SP 05508-000 (Brazil); Hidalgo, P. [Faculdade Gama-FGA, Sector Central Gama, Universidade de Brasília, Brasília, DF72405-610 (Brazil); Brito, H. F. [Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000 (Brazil)

    2013-11-28

    In this work, the structural and magnetic properties of Er-doped SnO{sub 2} (SnO{sub 2}:Er) nanoparticles are reported. The SnO{sub 2}:Er nanoparticles have been synthesized by a polymer precursor method with Er content from 1.0% to 10.0%. X-ray diffraction results indicate the formation of only the rutile-type structure in all samples. The estimated mean crystallite size shows a decrease from ∼10 to ∼4 nm when the Er content is increased from 1.0% to 10.0%. The particle size values have been corroborated by transmission electron microscopy technique. The thermal dependence of the magnetization is consistent with the 3+ oxidation state of erbium ions for all samples. A strong paramagnetic-like behavior coexisting with a ferromagnetic phase has been determined for samples with Er content below 5.0%. Above this concentration, only a paramagnetic behavior has been determined. Isothermal magnetization curves are consistent with the occurrence of long-range ferromagnetic order mediated by donor electrons forming bound magnetic polarons which overlap to produce a spin-split impurity band.

  14. Effect of asymmetric interface on charge and spin transport across two dimensional electron gas with Dresselhaus spin-orbit coupling/ferromagnet junction

    Srisongmuang, B.; Pasanai, K.

    2018-04-01

    We theoretically studied the effect of interfacial scattering on the transport of charge and spin across the junction of a two-dimensional electron gas with Dresselhaus spin-orbit coupling and ferromagnetic material junction, via the conductance (G) and the spin-polarization of the conductance spectra (P) using the scattering method. At the interface, not only were the effects of spin-conserving (Z0) and spin-flip scattering (Zf) considered, but also the interfacial Rashba spin-orbit coupling scattering (ZRSOC) , which was caused by the asymmetry of the interface, was taken into account, and all of them were modeled by the delta potential. It was found that G was suppressed with increasing Z0 , as expected. Interestingly, a particular value of Zf can cause G and P to reach a maximum value. In particular, ZRSOC plays a crucial role to reduce G and P in the metallic limit, but its influence on the tunneling limit was quite weak. On the other hand, the effect of ZRSOC was diminished in the tunneling limit of the magnetic junction.

  15. Charge ordering transition in GdBaCo2O5: Evidence of reentrant behavior

    Allieta, M.; Scavini, M.; Lo Presti, L.; Coduri, M.; Loconte, L.; Cappelli, S.; Oliva, C.; Ghigna, P.; Pattison, P.; Scagnoli, V.

    2013-12-01

    We present a detailed study on the charge ordering transition in a GdBaCo2O5.0 system by combining high-resolution synchrotron powder/single-crystal diffraction with electron paramagnetic resonance experiments as a function of temperature. We found a second-order structural phase transition at TCO = 247 K (Pmmm to Pmma) associated with the onset of long-range charge ordering. At Tmin ≈ 1.2TCO, the electron paramagnetic resonance linewidth rapidly broadens, providing evidence of antiferromagnetic spin fluctuations. This likely indicates that, analogously to manganites, the long-range antiferromagnetic order in GdBaCo2O5.0 sets in at ≈TCO. Pair distribution function analysis of diffraction data revealed signatures of structural inhomogeneities at low temperature. By comparing the average and local bond valences, we found that above TCO the local structure is consistent with a fully random occupation of Co2+ and Co3+ in a 1:1 ratio and with a complete charge ordering below TCO. Below T ≈ 100 K the charge localization is partially melted at the local scale, suggesting a reentrant behavior of charge ordering. This result is supported by the weakening of superstructure reflections and the temperature evolution of electron paramagnetic resonance linewidth that is consistent with paramagnetic reentrant behavior reported in the GdBaCo2O5.5 parent compound.

  16. Spin-polarized charge transport in HgTe/CdTe quantum well topological insulator under a ferromagnetic metal strip

    Wu, Zhenhua; Luo, Kun; Yu, Jiahan; Wu, Xiaobo; Lin, Liangzhong

    2018-02-01

    Electron tunneling through a single magnetic barrier in a HgTe topological insulator has been theoretically investigated. We find that the perpendicular magnetic field would not lead to spin-flip of the edge states due to the conservation of the angular moment. By tuning the magnetic field and the Fermi energy, the edge channels can be transited from switch-on states to switch-off states and the current from unpolarized states can be filtered to fully spin polarized states. These features offer us an efficient way to control charge/spin transport in a HgTe/CdTe quantum well, and pave a way to construct the nanoelectronic devices utilizing the topological edge states.

  17. Neutron scattering study of charge-ordering in R1/3Sr2/3FeO3 (R=La, Pr, Nd, Sm, and Y)

    Ma, Jie

    2010-01-01

    The complicated physical phenomena in complex transition-metal oxides (TMO), such as high Tc superconductivity, colossal magnetoresistivity, metal-insulator transitions, etc., have long been the focus of intense inquiry and debate in condensed matter science, since they are related to strong electronic correlations and cannot be explained within the 'standard model' of solid state physics. These novel functionalities of the correlated electron systems have a wide range of potential for applications in industry, such as information storage, energy transportation, and so on. The charge-ordering (CO) transition is very common in TMO and there is a specific CO transition temperature, TCO. Above TCO, the charge is not ordered, which means that the electrons in a compound are itinerant and the positions of the electrons are not fixed. Below TCO, the charge is ordered, which means that the electrons are localized and the positions of the electrons are settled. Hence, the electrical conductivity of a material is changed at TCO and this transition is classified as metal-insulator transition. Usually the CO with commensurate hole doping in TMO is thought to play an important role in various cases, including the superconducting cuprates, where the spin/charge stripe formation competes with superconducting states, colossal magnetoresistive manganites, where CO competes with ferromagnetic metallic state stabilized by an external magnetic field, layered nickelates, where CO takes the form of the small polaron lattices, and layered manganites, where CO could be bothered by the correlated dynamics of spins and charges. Therefore understanding the causes and implications of CO phenomena is significantly important.

  18. Neutron scattering study of charge-ordering in R1/3Sr2/3FeO3 (R=La, Pr, Nd, Sm, and Y)

    Ma, Jie [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The complicated physical phenomena in complex transition-metal oxides (TMO), such as high Tc superconductivity, colossal magnetoresistivity, metal-insulator transitions, etc., have long been the focus of intense inquiry and debate in condensed matter science, since they are related to strong electronic correlations and cannot be explained within the 'standard model' of solid state physics. These novel functionalities of the correlated electron systems have a wide range of potential for applications in industry, such as information storage, energy transportation, and so on. The charge-ordering (CO) transition is very common in TMO and there is a specific CO transition temperature, TCO. Above TCO, the charge is not ordered, which means that the electrons in a compound are itinerant and the positions of the electrons are not fixed. Below TCO, the charge is ordered, which means that the electrons are localized and the positions of the electrons are settled. Hence, the electrical conductivity of a material is changed at TCO and this transition is classified as metal-insulator transition. Usually the CO with commensurate hole doping in TMO is thought to play an important role in various cases, including the superconducting cuprates, where the spin/charge stripe formation competes with superconducting states, colossal magnetoresistive manganites, where CO competes with ferromagnetic metallic state stabilized by an external magnetic field, layered nickelates, where CO takes the form of the small polaron lattices, and layered manganites, where CO could be bothered by the correlated dynamics of spins and charges. Therefore understanding the causes and implications of CO phenomena is significantly important.

  19. A triple-bridged azido-Cu(II) chain compound fine-tuned by mixed carboxylate/ethanol linkers displays slow-relaxation and ferromagnetic order: synthesis, crystal structure, magnetic properties and DFT calculations.

    Liu, Xiangyu; Chen, Sanping; Grancha, Thais; Pardo, Emilio; Ke, Hongshan; Yin, Bing; Wei, Qing; Xie, Gang; Gao, Shengli

    2014-11-07

    A new azido-Cu(II) compound, [Cu(4-fba)(N3)(C2H5OH)] (4-fba = 4-fluorobenzoic acid) (1), has been synthesized and characterized. The X-ray crystal structure analysis demonstrates that only one crystallographically independent Cu(II) ion in the asymmetric unit of 1 exhibits a stretched octahedral geometry in which two azido N atoms and two carboxylic O atoms locate in the equatorial square, while two ethanol O atoms occupy the apical positions, forming a 1D Cu(II) chain with an alternating triple-bridge of EO-azido, syn,syn-carboxylate, and μ2-ethanol. The title compound consists of ferromagnetically interacting ferromagnetic chains, which exhibit ferromagnetic order (T(c) = 7.0 K). The strong ferromagnetic coupling between adjacent Cu(II) ions within each chain is due to the countercomplementarity of the super-exchange pathways, whereas the ferromagnetic interchain interactions--responsible for the long-range magnetic ordering--are most likely due to the presence of coordinated ethanol molecules establishing hydrogen bonds with neighboring chains. DFT calculations have been performed on compound 1 to offer a qualitative theoretical explanation of the magnetic behavior.

  20. Higher-order geodesic deviation for charged particles and resonance induced by gravitational waves

    Heydari-Fard, M.; Hasani, S. N.

    We generalize the higher-order geodesic deviation for the structure-less test particles to the higher-order geodesic deviation equations of the charged particles [R. Kerner, J. W. van Holten and R. Colistete Jr., Class. Quantum Grav. 18 (2001) 4725]. By solving these equations for charged particles moving in a constant magnetic field in the spacetime of a gravitational wave, we show for both cases when the gravitational wave is parallel and perpendicular to the constant magnetic field, a magnetic resonance appears at wg = Ω. This feature might be useful to detect the gravitational wave with high frequencies.

  1. Phase Fluctuations and the Absence of Topological Defects in Photo-excited Charge Ordered Nickelate

    Lee, W.S.; Chuang, Y.D.; Moore, R.G.; Zhu, Y.; Patthey, L.; Trigo, M.; Lu, D.H.; Kirchmann, P.S.; Krupin, O.; Yi, M.; Langner, M.; Huse, N.; Robinson, J.S.; Chen, Y.; Zhou, S.Y.; Coslovich, G.; Huber, B.; Reis, D.A.; Kaindl, R.A.; Schoenlein, R.W.; Doering, D.

    2012-05-15

    The dynamics of an order parameter's amplitude and phase determines the collective behaviour of novel states emerging in complex materials. Time- and momentum-resolved pump-probe spectroscopy, by virtue of measuring material properties at atomic and electronic time scales out of equilibrium, can decouple entangled degrees of freedom by visualizing their corresponding dynamics in the time domain. Here we combine time-resolved femotosecond optical and resonant X-ray diffraction measurements on charge ordered La{sub 1.75}Sr{sub 0.25}NiO{sub 4} to reveal unforeseen photoinduced phase fluctuations of the charge order parameter. Such fluctuations preserve long-range order without creating topological defects, distinct from thermal phase fluctuations near the critical temperature in equilibrium. Importantly, relaxation of the phase fluctuations is found to be an order of magnitude slower than that of the order parameter's amplitude fluctuations, and thus limits charge order recovery. This new aspect of phase fluctuations provides a more holistic view of the phase's importance in ordering phenomena of quantum matter.

  2. Element-specific observation of the ferromagnetic ordering process in UCoAl via soft x-ray magnetic circular dichroism

    Takeda, Yukiharu; Saitoh, Yuji; Okane, Tetsuo; Yamagami, Hiroshi; Matsuda, Tatsuma D.; Yamamoto, Etsuji; Haga, Yoshinori; Ōnuki, Yoshichika

    2018-05-01

    We have performed soft x-ray magnetic circular dichroism (XMCD) experiments on the itinerant-electron metamagnet UCoAl at the U 4 d -5 f (N4 ,5) and Co 2 p -3 d (L2 ,3) absorption edges in order to investigate the magnetic properties of the U 5 f and Co 3 d electrons separately. From the line shape of the XMCD spectrum, it is deduced that the orbital magnetic moment of the Co 3 d electrons is unusually large. Through the systematic temperature (T )- and magnetic field (H )-dependent XMCD measurements, we have obtained two types of the magnetization curve as a function of H and T (M-H curve and M-T curve, respectively). The metamagnetic transition from a paramagnetic state to a field-induced ferromagnetic state was clearly observed under 15 K at HM. The value of the HM and its T dependence agree well between the U and Co sites, and the bulk magnetization. Whereas, we have discovered the remarkable differences in the M-H and M-T curves between the U and Co sites. The present findings clearly show that the role of the Co 3 d electrons should be considered more carefully in order to understand the origin of the magnetic ordering in UCoAl.

  3. Novel effect of spin dynamics with suppression of charge and orbital ordering in Nd{sub 0.5}Ca{sub 0.5}MnO{sub 3} under the influence of ac electric field

    Sarwar, T., E-mail: sarwartuba@gmail.com [EMMG, Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Qamar, A., E-mail: afzaal.qamar@griffithuni.edu.au [Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Nadeem, M. [EMMG, Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2017-07-15

    Highlights: • Electronic & magnetic behavior of Nd{sub 0.5}Ca{sub 0.5}MnO{sub 3} is explored using impedance spectroscopy. • Under ac field, possible signature of suppression of robust CO/OO antiferromagnetism is studied. • We propose the existence of spin glass state at low temperature. • A novel tactic is used to estimate the existence of weak ferromagnetism at high temperature. - Abstract: Dynamics of spin ordering in the manganite Nd{sub 0.5}Ca{sub 0.5}MnO{sub 3} have been investigated in this paper. It was observed that the complex mixed magnetic ordering in pellets is comprised of antiferromagnetic ordering at 160 K (T{sub N}) and complete charge ordering at 250 K (T{sub CO}). Under ac field, appearance of unstable ferromagnetic correlations is observed above T{sub CO}, which is badly frustrated due to strong spin disorder induced by Jahn Teller distortions. Impedance measurements reveal the spin glass like scenario, suppressing the strong antiferromagnetic and charge ordering states below T{sub N}.

  4. Fragile charge order in the nonsuperconducting ground state of the underdoped high-temperature superconductors.

    Tan, B S; Harrison, N; Zhu, Z; Balakirev, F; Ramshaw, B J; Srivastava, A; Sabok-Sayr, S A; Sabok, S A; Dabrowski, B; Lonzarich, G G; Sebastian, Suchitra E

    2015-08-04

    The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic fields, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket from charge order in YBa2Cu3(6+δ). Here, we report quantum oscillation measurements in the closely related stoichiometric material YBa2Cu4O8, which reveals similar Fermi surface properties to YBa2Cu3(6+δ), despite the nonobservation of charge order signatures in the same spectroscopic techniques, such as X-ray diffraction, that revealed signatures of charge order in YBa2Cu3(6+δ). Fermi surface reconstruction in YBa2Cu4O8 is suggested to occur from magnetic field enhancement of charge order that is rendered fragile in zero magnetic fields because of its potential unconventional nature and/or its occurrence as a subsidiary to more robust underlying electronic correlations.

  5. Charge ordering and opening of spin gap in NaV2O5

    Mostovoy, M.V.; Khomskii, D.I.

    1999-01-01

    We argue that the origin of the phase transition in quasi-one-dimensional antiferromagnet NaV2O5 is not the spin-Peierls (SP) instability, but a charge ordering. The opening of the spin gap and the lattice dimerization, characteristic for the spin-Peierls systems, in NaV2O5 result from the interplay

  6. Magnetic and electrical studies on La{sub 0.4}Sm{sub 0.1}Ca{sub 0.5}MnO{sub 3} charge ordered manganite

    Krichene, A., E-mail: akramkri@hotmail.fr [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3000 Sfax (Tunisia); Solanki, P.S. [Department of Physics, Saurashtra University, Rajkot 360005 (India); Venkateshwarlu, D. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India); Rayaprol, S. [UGC-DAE Consortium for Scientific Research, Mumbai Centre, B.A.R.C. Campus, Mumbai 400085 (India); Ganesan, V. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India); Boujelben, W. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3000 Sfax (Tunisia); Kuberkar, D.G. [Department of Physics, Saurashtra University, Rajkot 360005 (India)

    2015-05-01

    We have reported in this work the effect of the partial substitution of lanthanum by samarium on the structural, electrical and magnetic properties of La{sub 0.5}Ca{sub 0.5}MnO{sub 3}. The magnetic study indicated that substitution promotes charge ordering and weakens ferromagnetism. Below T{sub C}=123 K, the compound La{sub 0.4}Sm{sub 0.1}Ca{sub 0.5}MnO{sub 3} is a mixture of ferromagnetic and charge ordered antiferromagnetic domains. Between T{sub C} and T{sub CO}=215 K, the structure is paramagnetic with the presence of antiferromagnetic domains. The fractions of the coexisting magnetic phases are highly dependent on the applied magnetic field value. Resistivity measurements reveal the presence of an insulating-metal transition at T{sub ρ}=123 K. The equality between T{sub C} and T{sub ρ} indicates the presence of a correlation between magnetization and resistivity. For only 1 T applied field, we have reported a colossal value of magnetoresistance reaching 73% around T{sub C}. The origin of this high value is attributed to phase separation phenomenon. - Highlights: • Sm doping enhances charge ordering and weakens ferromagnetism in La{sub 0.5}Ca{sub 0.5}MnO{sub 3.} • Colossal magnetoresistance (73%) is recorded at 123 K for only 1 T applied field. • Phase separation is responsible for the magnetic and the magnetoresistive behavior.

  7. The effect of partial order on galvanomagnetic transport properties of ferromagnetic PdFe and PdCo alloys

    Kudrnovský, Josef; Drchal, Václav; Turek, Ilja

    2015-01-01

    Roč. 92, č. 22 (2015), "224421-1"-"224421-8" ISSN 1098-0121 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68378271 ; RVO:68081723 Keywords : anomalous Hall effect * anisotropis magnetoresistance * first-principles * effect of ordering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  8. Coupling between Spin and Charge Order Driven by Magnetic Field in Triangular Ising System LuFe2O4+δ

    Lei Ding

    2018-02-01

    Full Text Available We present a study of the magnetic-field effect on spin correlations in the charge ordered triangular Ising system LuFe2O4+δ through single crystal neutron diffraction. In the absence of a magnetic field, the strong diffuse neutron scattering observed below the Neel temperature (TN = 240 K indicates that LuFe2O4+δ shows short-range, two-dimensional (2D correlations in the FeO5 triangular layers, characterized by the development of a magnetic scattering rod along the 1/3 1/3 L direction, persisting down to 5 K. We also found that on top of the 2D correlations, a long range ferromagnetic component associated with the propagation vector k1 = 0 sets in at around 240 K. On the other hand, an external magnetic field applied along the c-axis effectively favours a three-dimensional (3D spin correlation between the FeO5 bilayers evidenced by the increase of the intensity of satellite reflections with propagation vector k2 = (1/3, 1/3, 3/2. This magnetic modulation is identical to the charge ordered superstructure, highlighting the field-promoted coupling between the spin and charge degrees of freedom. Formation of the 3D spin correlations suppresses both the rod-type diffuse scattering and the k1 component. Simple symmetry-based arguments provide a natural explanation of the observed phenomenon and put forward a possible charge redistribution in the applied magnetic field.

  9. Radiation-reaction force on a small charged body to second order

    Moxon, Jordan; Flanagan, Éanna

    2018-05-01

    In classical electrodynamics, an accelerating charged body emits radiation and experiences a corresponding radiation-reaction force, or self-force. We extend to higher order in the total charge a previous rigorous derivation of the electromagnetic self-force in flat spacetime by Gralla, Harte, and Wald. The method introduced by Gralla, Harte, and Wald computes the self-force from the Maxwell field equations and conservation of stress-energy in a limit where the charge, size, and mass of the body go to zero, and it does not require regularization of a singular self-field. For our higher-order computation, an adjustment of the definition of the mass of the body is necessary to avoid including self-energy from the electromagnetic field sourced by the body in the distant past. We derive the evolution equations for the mass, spin, and center-of-mass position of the body through second order. We derive, for the first time, the second-order acceleration dependence of the evolution of the spin (self-torque), as well as a mixing between the extended body effects and the acceleration-dependent effects on the overall body motion.

  10. Superconducting Ferromagnetic Nanodiamond.

    Zhang, Gufei; Samuely, Tomas; Xu, Zheng; Jochum, Johanna K; Volodin, Alexander; Zhou, Shengqiang; May, Paul W; Onufriienko, Oleksandr; Kačmarčík, Jozef; Steele, Julian A; Li, Jun; Vanacken, Johan; Vacík, Jiri; Szabó, Pavol; Yuan, Haifeng; Roeffaers, Maarten B J; Cerbu, Dorin; Samuely, Peter; Hofkens, Johan; Moshchalkov, Victor V

    2017-06-27

    Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature T c ∼ 3 K and a Curie temperature T Curie > 400 K. In spite of the high T Curie , our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

  11. Synergy of exchange bias with superconductivity in ferromagnetic-superconducting layered hybrids: the influence of in-plane and out-of-plane magnetic order on superconductivity

    Stamopoulos, D; Manios, E; Pissas, M

    2007-01-01

    It is generally believed that superconductivity and magnetism are two antagonistic long-range phenomena. However, as was preliminarily highlighted in Stamopoulos et al (2007 Phys. Rev. B 75 014501), and extensively studied in this work, under specific circumstances these phenomena instead of being detrimental to each other may even become cooperative so that their synergy may promote the superconducting properties of a hybrid structure. Here, we have studied systematically the magnetic and transport behavior of such exchange biased hybrids that are comprised of ferromagnetic (FM) Ni 80 Fe 20 and low-T c superconducting (SC) Nb for the case where the magnetic field is applied parallel to the specimens. Two structures have been studied: FM-SC-FM trilayers (TLs) and FM-SC bilayers (BLs). Detailed magnetization data on the longitudinal and transverse magnetic components are presented for both the normal and superconducting states. These data are compared to systematic transport measurements including I-V characteristics. The comparison of the exchange biased BLs and TLs that are studied here with the plain ones studied in Stamopoulos et al (2007 Phys. Rev. B 75 184504) enable us to reveal an underlying parameter that may falsify the interpretation of the transport properties of relevant FM-SC-FM TLs and FM-SC BLs investigated in the recent literature: the underlying mechanism motivating the extreme magnetoresistance peaks in the TLs relates to the suppression of superconductivity mainly due to the magnetic coupling of the two FM layers as the out-of-plane rotation of their magnetizations takes place across the coercive field where stray fields emerge in their whole surface owing to the multidomain magnetic state that they acquire. The relative in-plane magnetization configuration of the outer FM layers exerts a secondary contribution on the SC interlayer. Since the exchange bias directly controls the in-plane magnetic order it also controls the out-of-plane rotation of

  12. Integrability and soliton solutions for an inhomogeneous generalized fourth-order nonlinear Schrödinger equation describing the inhomogeneous alpha helical proteins and Heisenberg ferromagnetic spin chains

    Wang, Pan; Tian, Bo; Jiang, Yan; Wang, Yu-Feng

    2013-01-01

    For describing the dynamics of alpha helical proteins with internal molecular excitations, nonlinear couplings between lattice vibrations and molecular excitations, and spin excitations in one-dimensional isotropic biquadratic Heisenberg ferromagnetic spin with the octupole–dipole interactions, we consider an inhomogeneous generalized fourth-order nonlinear Schrödinger equation. Based on the Ablowitz–Kaup–Newell–Segur system, infinitely many conservation laws for the equation are derived. Through the auxiliary function, bilinear forms and N-soliton solutions for the equation are obtained. Interactions of solitons are discussed by means of the asymptotic analysis. Effects of linear inhomogeneity on the interactions of solitons are also investigated graphically and analytically. Since the inhomogeneous coefficient of the equation h=α x+β, the soliton takes on the parabolic profile during the evolution. Soliton velocity is related to the parameter α, distance scale coefficient and biquadratic exchange coefficient, but has no relation with the parameter β. Soliton amplitude and width are only related to α. Soliton position is related to β

  13. Structural, optical and vibrational properties of Cr2O3 with ferromagnetic and antiferromagnetic order: A combined experimental and density functional theory study

    Larbi, T.; Ouni, B.; Gantassi, A.; Doll, K.; Amlouk, M.; Manoubi, T.

    2017-12-01

    Chromium oxide (Cr2O3) thin films have been synthesized on glass substrates by the spray pyrolysis technique. The structural, morphological and optical properties of the sample have been studied by X-ray diffraction (XRD), Raman spectroscopy, FTIR spectroscopy, scanning probe microscopy and UV-vis spectroscopy respectively. X-ray diffraction results reveal that as deposited film is polycrystalline with a rhombohedral corundum structure and a preferential orientation of the crystallites along the (1 0 4) direction. IR and Raman spectra were recorded in the 100-900 cm-1 range and the observed modes were analysed and assigned to different normal modes of vibration. The direct optical band gap energy value calculated from the transmittance spectra of as-deposited thin film is about 3.38 eV. We employ first principles calculations based on density functional theory (DFT) with the B3LYP hybrid functional and a coupled perturbed Hartree-Fock/Kohn-Sham approach (CPHF/KS). We study the electronic structure, optimum geometry, and IR and Raman spectra of ferromagnetically and antiferromagnetically ordered Cr2O3. The computed results are consistent with the experimental measurements, and provide complete vibrational assignment, for the characterization of Cr2O3 thin film materials which can be used in photocatalysis and gas sensors.

  14. Measurement of the azimuthal ordering of charged hadrons with the ATLAS detector

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imbault, Didier; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-01

    This paper presents a measurement of the ordering of charged hadrons in the azimuthal angle relative to the beam axis in high-energy proton-proton collisions at the Large Hadron Collider (LHC). A spectral analysis of correlations between longitudinal and transverse components of the momentum of the charged hadrons, driven by the search for phenomena related to the structure of the QCD field, is performed. Data were recorded with the ATLAS detector at centre-of-mass energies of $\\sqrt{s}$ = 900 GeV and $\\sqrt{s}$ = 7 TeV. The correlations measured in a phase space region dominated by low-pT particles are not well described by conventional models of hadron production. The measured spectra show features consistent with the fragmentation of a QCD string represented by a helix-like ordered gluon chain.

  15. Pressure-induced charge ordering of LiV2O4

    Takeda, K.; Hidaka, H.; Kotegawa, H.; Kobayashi, T.C.; Shimizu, K.; Harima, H.; Fujiwara, K.; Miyoshi, K.; Takeuchi, J.; Ohishi, Y.; Adachi, T.; Takata, M.; Nishibori, E.; Sakata, M.; Watanuki, T.; Shimomura, O.

    2005-01-01

    The powder X-ray diffraction experiments of LiV 2 O 4 have been performed at low temperature and high pressure using synchrotron radiation. In the isothermal experiment at 10K, the cubic-rhombohedral phase transition corresponding to the metal-insulator transition is found at around 13GPa. This transition seems to be due to charge ordering of V ions on the analogy of the metal-insulator transition in AlV 2 O 4

  16. On the Origin of Charge Order in RuCl3

    Berlijn, Tom

    RuCl3 has been proposed to be a spin-orbit assisted Mott insulator close to the Kitaev-spin-liquid ground state, an exotic state of matter that could protect information in quantum computers. Recent STM experiments [M. Ziatdinov et al, Nature Communications (in press)] however, show the presence of a puzzling short-range charge order in this quasi two dimensional material. Understanding the nature of this charge order may provide a pathway towards tuning RuCl3 into the Kitaev-spin-liquid ground state. Based on first principles calculations I investigate the possibility that the observed charge order is caused by a combination of short-range magnetic correlations and strong spin-orbit coupling. From a general perspective such a mechanism could offer the exciting possibility of probing local magnetic correlations with standard STM. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  17. Effective interactions between concentration fluctuations and charge transfer in chemically ordering liquid alloys

    Akdeniz, Z.; Tosi, M.P.

    1992-08-01

    The correlations between long-wavelength fluctuations of concentration in a liquid binary alloy are determined by a balance between an elastic strain free energy and an Ornstein-Zernike effective interaction. The latter is extracted from thermodynamic data in the case of the Li-Pb system, which is well known to chemically order with stoichiometric composition corresponding to Li 4 Pb. Strong attractive interactions between concentration fluctuations near the composition of chemical ordering originate from electronic charge transfer, which is estimated from the electron-ion partial structure factors as functions of composition in the liquid alloy. (author). 20 refs, 2 figs

  18. Devil's staircase of odd-number charge order modulations in divalent β -vanadium bronzes under pressure

    Yamauchi, Touru; Ueda, Hiroaki; Ohwada, Kenji; Nakao, Hironori; Ueda, Yutaka

    2018-03-01

    A common characteristic of quasi-one-dimensional (q1D) conductors β -A0.33V2O5 (A = Li, Na, and Ag) is that the charge ordering (CO), the ground state (GS) at ambient pressure, and the superconducting (SC) phases, the GS under high pressure, are competing with each other. We have explored high-pressure properties of divalent β -vanadium bronzes, β -A0.33V2O5 (A = Ca, Sr, and Pb), which are A -cation stoichiometry finely controlled single-crystal/powder samples, and found the absence of the SC phase. In these observations, however, we observed enormous and novel phase transitions, a kind of "devil's staircase"-type phase transitions in the charge ordering (CO) phases. The most surprising discovery in this devil's staircase, which was found mainly in β -Sr0.33V2O5 , is that all the charge modulation vectors of many kinds of CO phases can be represented as a primitive lattice translation vector along the b axis multiplied by several odd numbers. This discovery surely demonstrates interplay between the charge degree freedom and the crystallographic symmetry. We propose two possible mechanisms to explain this phenomenon: "self-charge transfer (carrier redistribution)" between the two subsystems in these compounds and "sequential symmetry reduction" that was discussed in Landau theory of phase transitions. In β -Ca0.33V2O5 we also found a P -T phase diagram similar in outlook but different in detail. The devil's staircase was also observed but it is an incomplete one. Furthermore, the charge modulation vectors in it are shorter than those in β -Sr0.33V2O5 . In β -Pb0.33V2O5 , which has no CO phase at ambient pressure, the pressure-induced antiferromagnetic ordering was observed at around 50 K above 0.5 GPa. Using these two kinds of mechanisms, we also explain the global high-pressure properties in all the stoichiometric divalent β -vanadium bronzes, which were observed as a wide variety of electromagnetic states. In addition, we also discuss a possible key for

  19. Improper ferroelectric polarization in a perovskite driven by intersite charge transfer and ordering

    Chen, Wei-Tin; Wang, Chin-Wei; Wu, Hung-Cheng; Chou, Fang-Cheng; Yang, Hung-Duen; Simonov, Arkadiy; Senn, M. S.

    2018-04-01

    It is of great interest to design and make materials in which ferroelectric polarization is coupled to other order parameters such as lattice, magnetic, and electronic instabilities. Such materials will be invaluable in next-generation data storage devices. Recently, remarkable progress has been made in understanding improper ferroelectric coupling mechanisms that arise from lattice and magnetic instabilities. However, although theoretically predicted, a compact lattice coupling between electronic and ferroelectric (polar) instabilities has yet to be realized. Here we report detailed crystallographic studies of a perovskite HgAMn3A'Mn4BO12 that is found to exhibit a polar ground state on account of such couplings that arise from charge and orbital ordering on both the A'- and B-sites, which are themselves driven by a highly unusual MnA '-MnB intersite charge transfer. The inherent coupling of polar, charge, orbital, and hence magnetic degrees of freedom make this a system of great fundamental interest, and demonstrating ferroelectric switching in this and a host of recently reported hybrid improper ferroelectrics remains a substantial challenge.

  20. Short range charge/orbital ordering in La{sub 1-x}Sr{sub x}Mn{sub 1-z}B{sub z}O{sub 3} (B Cu,Zn) manganites

    Popovic, Z V [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Cantarero, A [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Thijssen, W H A [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Paunovic, N [Centre for Solid State Physics and New Materials, Institute of Physics, PO Box 68, 11080 Belgrade/Zemun (Serbia and Montenegro); Dohcevic-Mitrovic, Z [Centre for Solid State Physics and New Materials, Institute of Physics, PO Box 68, 11080 Belgrade/Zemun (Serbia and Montenegro); Sapina, F [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain)

    2005-01-19

    We have measured the reflectivity spectra of La{sub 1-x}Sr{sub x}Mn{sub 1-z}B{sub z}O{sub 3} (B = Cu, Zn; 0.17 {<=} x {<=} 0.30; 0 {<=} z {<=} 0.10) manganites over wide frequency (100-4000 cm{sup -1}) and temperature (80-300 K) ranges. Besides the previously observed infrared active modes or mode pairs at about 160 cm{sup -1} (external mode), 350 cm{sup -1} (bond bending mode) and 590 cm{sup -1} (bond stretching mode), we have clearly observed two additional phonon modes at about 645 and 720 cm{sup -1} below the temperature T{sub 1} (T{sub 1}ferromagnetic metallic into a ferromagnetic insulator state. This transition is related to the formation of short range charge/orbitally ordered domains. The temperature T{sub 1} of the phase transition is dependent on the doping concentration and for optimally doped samples we have found that T{sub 1} {approx}(0.93 {+-} 0.02) T{sub C}. Electrical resistivity and magnetization measurements versus temperature and magnetic field support the short range charge/orbital ordering scenario.

  1. Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo

    2017-09-22

    Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.

  2. Persistent Charge-Density-Wave Order in Single-Layer TaSe2.

    Ryu, Hyejin; Chen, Yi; Kim, Heejung; Tsai, Hsin-Zon; Tang, Shujie; Jiang, Juan; Liou, Franklin; Kahn, Salman; Jia, Caihong; Omrani, Arash A; Shim, Ji Hoon; Hussain, Zahid; Shen, Zhi-Xun; Kim, Kyoo; Min, Byung Il; Hwang, Choongyu; Crommie, Michael F; Mo, Sung-Kwan

    2018-02-14

    We present the electronic characterization of single-layer 1H-TaSe 2 grown by molecular beam epitaxy using a combined angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and density functional theory calculations. We demonstrate that 3 × 3 charge-density-wave (CDW) order persists despite distinct changes in the low energy electronic structure highlighted by the reduction in the number of bands crossing the Fermi energy and the corresponding modification of Fermi surface topology. Enhanced spin-orbit coupling and lattice distortion in the single-layer play a crucial role in the formation of CDW order. Our findings provide a deeper understanding of the nature of CDW order in the two-dimensional limit.

  3. Monte Carlo studies of diamagnetism and charge density wave order in the cuprate pseudogap regime

    Hayward Sierens, Lauren; Achkar, Andrew; Hawthorn, David; Melko, Roger; Sachdev, Subir

    2015-03-01

    The pseudogap regime of the hole-doped cuprate superconductors is often characterized experimentally in terms of a substantial diamagnetic response and, from another point of view, in terms of strong charge density wave (CDW) order. We introduce a dimensionless ratio, R, that incorporates both diamagnetic susceptibility and the correlation length of CDW order, and therefore reconciles these two fundamental characteristics of the pseudogap. We perform Monte Carlo simulations on a classical model that considers angular fluctuations of a six-dimensional order parameter, and compare our Monte Carlo results for R with existing data from torque magnetometry and x-ray scattering experiments on YBa2Cu3O6+x. We achieve qualitative agreement, and also propose future experiments to further investigate the behaviour of this dimensionless ratio.

  4. RESONANT X-RAY SCATTERING AS A PROBE OF ORBITAL AND CHARGE ORDERING

    NELSON, C.S.; HILL, J.P.; GIBBS, D.

    2002-01-01

    Resonant x-ray scattering is a powerful experimental technique for probing orbital and charge ordering. It involves tuning the incident photon energy to an absorption edge of the relevant ion and observing scattering at previously 'forbidden' Bragg peaks, and it allows high-resolution, quantitative studies of orbital and charge order--even from small samples. Further, resonant x-ray scattering from orbitally ordered systems exhibits polarization- and azimuthal-dependent properties that provide additional information about the details of the orbital order that is difficult, or impossible, to obtain with any other technique. In the manganites, the sensitivity to charge and orbital ordering is enhanced when the incident photon energy is tuned near the Mn K absorption edge (6.539 keV), which is the lowest energy at which a 1s electron can be excited into an unoccupied state. In this process, the core electron is promoted to an intermediate excited state, which decays with the emission of a photon. The sensitivity to charge ordering is believed to be due to the small difference in K absorption edges of the Mn 3+ and Mn 4+ sites. For orbital ordering, the sensitivity arises from a splitting--or difference in the weight of the density of states [239]--of the orbitals occupied by the excited electron in the intermediate state. In the absence of such a splitting, there is no resonant enhancement of the scattering intensity. In principle, other absorption edges in which the intermediate state is anisotropic could be utilized, but the strong dipole transition to the Mn 4p levels--and their convenient energies for x-ray diffraction--make the K edge well-suited to studies of manganites. The Mn 4p levels are affected by the symmetry of the orbital ordering, which makes the technique sensitive to the orbital degree of freedom. Therefore resonant x-ray scattering can be used to obtain important quantitative information concerning the details of this electronic order. Two

  5. Robustness of the charge-ordered phases in IrTe2 against photoexcitation

    Monney, C.; Schuler, A.; Jaouen, T.; Mottas, M.-L.; Wolf, Th.; Merz, M.; Muntwiler, M.; Castiglioni, L.; Aebi, P.; Weber, F.; Hengsberger, M.

    2018-02-01

    We present a time-resolved angle-resolved photoelectron spectroscopy study of IrTe2, which undergoes two first-order structural and charge-ordered phase transitions on cooling below 270 K and below 180 K. The possibility of inducing a phase transition by photoexcitation with near-infrared femtosecond pulses is investigated in the charge-ordered phases. We observe changes of the spectral function occurring within a few hundreds of femtoseconds and persisting up to several picoseconds, which we interpret as a partial photoinduced phase transition (PIPT). The necessary time for photoinducing these spectral changes increases with increasing photoexcitation density and reaches time scales longer than the rise time of the transient electronic temperature. We conclude that the PIPT is driven by a transient increase of the lattice temperature following the energy transfer from the electrons. However, the photoinduced changes of the spectral function are small, which indicates that the low-temperature phase is particularly robust against photoexcitation. We suggest that the system might be trapped in an out-of-equilibrium state, for which only a partial structural transition is achieved.

  6. Photoemission perspective on pseudogap, superconducting fluctuations, and charge order in cuprates: a review of recent progress

    Vishik, I. M.

    2018-06-01

    In the course of seeking the microscopic mechanism of superconductivity in cuprate high temperature superconductors, the pseudogap phase— the very abnormal ‘normal’ state on the hole-doped side— has proven to be as big of a quandary as superconductivity itself. Angle-resolved photoemission spectroscopy (ARPES) is a powerful tool for assessing the momentum-dependent phenomenology of the pseudogap, and recent technological developments have permitted a more detailed understanding. This report reviews recent progress in understanding the relationship between superconductivity and the pseudogap, the Fermi arc phenomena, and the relationship between charge order and pseudogap from the perspective of ARPES measurements.

  7. Magnetic ordering and charge transport in electron-doped La1-yCeyMnO3 (0.1 ≤ y ≤ 0.3) films

    Prokhorov, V.G.; Kaminsky, G.G.; Flis, V.S.; Hyun, Y.H.; Park, S.Y.; Lee, Y.P.; Svetchnikov, V.L.

    2009-01-01

    The microstructure and the magnetic and transport properties of as-deposited La 10-y Ce y MnO 3 (0.1≤ y≤ 0.3) films prepared by pulsed laser deposition are investigated in a wide region of temperature and magnetic field. The microstructure analysis reveals that all films have a high c-oriented texture, an orthorhombic crystal lattice, and a negligible quantity of CeO 2 inclusions. The observed strip-domain phase with a periodic spacing of about 3c, the crystal lattice of which is the same as for the basic film phase, exhibits magnetic behavior typical for the Griffiths phase. Regions of the double-period modulated phase are found at room temperature in the y=0.1 film, which is interpreted as Mn 3+ /Mn 2+ ordering with a partial ferromagnetic → antiferromagnetic transition at T N ≤ 80 K. At the same time, the investigation reveals that the magnetic and transport properties of the electron-doped La 1-y Ce y MnO 3 films, driven by cation doping, are similar to those for the hole-doped La/Ca manganites. Therefore, one can conclude that there is no fundamental difference between the mechanisms of spin ordering and charge transport in the hole-doped and electron-doped manganites

  8. Positron study of negative charge states in order-disorder ferroelectrics

    Troev, T.; Berovsky, K.; Peneva, S. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. for Nuclear Research and Nuclear Energy

    2001-07-01

    The positive positron charge opens the possibility for determining the changes in charge states in technologically important order-disorder ferroelectrics. Here we show that dipole polarization disordering within domains affects the positron annihilation mechanism. The positron lifetime parameters in triglycine sulphate (TGS) (NH{sub 3}CH{sub 2}COOH){sub 3}H{sub 2}SO{sub 4}, Rochelle salt (RS) NaKC{sub 4}H{sub 4}O{sub 6}.4H{sub 2}O and Potassium dihydrogen phosphate (KDP) KH{sub 2}PO{sub 4}, at different temperatures and gamma-irradiation doses depend on the charge point defects. The increase of the positron long lifetime component {tau}{sub 2} is proportional to the temperature and gamma-irradiation dose. In gamma irradiated TGS positrons are trapped in defect electron states of oxigen ions of two radicals CH{sub 2}COO{sup -} and NH{sub 3}CHCOO{sup -}. In RS positrons are trapped also in defect electron states of oxygen ions and OH groups. (orig.)

  9. Charge and current orders in the spin-fermion model with overlapping hot spots

    Volkov, Pavel A.; Efetov, Konstantin B.

    2018-04-01

    Experiments carried over the last years on the underdoped cuprates have revealed a variety of symmetry-breaking phenomena in the pseudogap state. Charge-density waves, breaking of C4 rotational symmetry as well as time-reversal symmetry breaking have all been observed in several cuprate families. In this regard, theoretical models where multiple nonsuperconducting orders emerge are of particular interest. We consider the recently introduced [Volkov and Efetov, Phys. Rev. B 93, 085131 (2016), 10.1103/PhysRevB.93.085131] spin-fermion model with overlapping `hot spots' on the Fermi surface. Focusing on the particle-hole instabilities we obtain a rich phase diagram with the chemical potential relative to the dispersion at (0 ,π );(π ,0 ) and the Fermi surface curvature in the antinodal regions being the control parameters. We find evidence for d-wave Pomeranchuk instability, d-form factor charge density waves, as well as commensurate and incommensurate staggered bond current phases similar to the d-density wave state. The current orders are found to be promoted by the curvature. Considering the appropriate parameter range for the hole-doped cuprates, we discuss the relation of our results to the pseudogap state and incommensurate magnetic phases of the cuprates.

  10. Anisotropic magnetoresistance across Verwey transition in charge ordered Fe3O4 epitaxial films

    Liu, Xiang

    2017-12-26

    The anisotropic magnetoresistance (AMR) near the Verwey temperature (T-V) is investigated in charge ordered Fe3O4 epitaxial films. When the temperature continuously decreases below T-V, the symmetry of AMR in Fe3O4(100) film evolves from twofold to fourfold at a magnetic field of 50 kOe, where the magnetic field is parallel to the film surface, whereas AMR in Fe3O4(111) film maintains twofold symmetry. By analyzing AMR below T-V, it is found that the Verwey transition contains two steps, including a fast charge ordering process and a continuous formation process of trimeron, which is comfirmed by the temperature-dependent Raman spectra. Just below T-V, the twofold AMR in Fe3O4(100) film originates from uniaxial magnetic anisotropy. The fourfold AMR at a lower temperature can be ascribed to the in-plane trimerons. By comparing the AMR in the films with two orientations, it is found that the trimeron shows a smaller resistivity in a parallel magnetic field. The field-dependent AMR results show that the trimeron-sensitive field has a minimum threshold of about 2 kOe.

  11. Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering

    Shi, Dong

    2016-04-15

    We report the crystal structure and hole-transport mechanism in spiro-OMeTAD [2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene], the dominant hole-transporting material in perovskite and solid-state dye-sensitized solar cells. Despite spiro-OMeTAD’s paramount role in such devices, its crystal structure was unknown because of highly disordered solution-processed films; the hole-transport pathways remained ill-defined and the charge carrier mobilities were low, posing a major bottleneck for advancing cell efficiencies. We devised an antisolvent crystallization strategy to grow single crystals of spiro-OMeTAD, which allowed us to experimentally elucidate its molecular packing and transport properties. Electronic structure calculations enabled us to map spiro-OMeTAD’s intermolecular charge-hopping pathways. Promisingly, single-crystal mobilities were found to exceed their thin-film counterparts by three orders of magnitude. Our findings underscore mesoscale ordering as a key strategy to achieving breakthroughs in hole-transport material engineering of solar cells.

  12. Design study of beam position monitors for measuring second-order moments of charged particle beams

    Yanagida, Kenichi; Suzuki, Shinsuke; Hanaki, Hirofumi

    2012-01-01

    This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM) that detects higher-order (multipole) moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420μm (circular) and ≧550μm (elliptical).

  13. Design study of beam position monitors for measuring second-order moments of charged particle beams

    Kenichi Yanagida

    2012-01-01

    Full Text Available This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM that detects higher-order (multipole moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420  μm (circular and ≧550  μm (elliptical.

  14. Charge-Orbital Ordering and Verwey Transition in Magnetite Measured by Resonant Soft X-Ray Scattering

    Huang, D.J.; Lin, H.-J.; Okamoto, J.; Hsu, C.-H.; Huang, C.-M.; Yang, C.S.; Chao, K.S.; Wu, W.B.; Jeng, H.-T.; Guo, G.Y.; Ling, D.C.; Chen, C.T.

    2006-01-01

    We report experimental evidence for the charge-orbital ordering in magnetite below the Verwey transition temperature T V . Measurements of O K-edge resonant x-ray scattering on magnetite reveal that the O 2p states in the vicinity of the Fermi level exhibit a charge-orbital ordering along the c axis with a spatial periodicity of the doubled lattice parameter of the undistorted cubic phase. Such a charge-orbital ordering vanishes abruptly above T V and exhibits a thermal hysteresis, correlating closely with the Verwey transition in magnetite

  15. Third-order QCD corrections to the charged-current structure function F3

    Moch, S.; Vermaseren, J.A.M.; Vogt, A.

    2008-12-01

    We compute the coefficient function for the charge-averaged W ± -exchange structure function F 3 in deep-inelastic scattering (DIS) to the third order in massless perturbative QCD. Our new three-loop contribution to this quantity forms, at not too small values of the Bjorken variable x, the dominant part of the next-to-next-to-next-to-leading order corrections. It thus facilitates improved determinations of the strong coupling α s and of 1/Q 2 power corrections from scaling violations measured in neutrino-nucleon DIS. The expansion of F 3 in powers of α s is stable at all values of x relevant to measurements at high scales Q 2 . At small x the third-order coefficient function is dominated by diagrams with the colour structure d abc d abc not present at lower orders. At large x the coefficient function for F 3 is identical to that of F 1 up to terms vanishing for x→1. (orig.)

  16. Charge and finite size corrections for virtual photon spectra in second order Born approximation

    Durgapal, P.

    1982-01-01

    The purpose of this work is to investigate the effects of finite nuclear size and charge on the spectrum of virtual photons emitted when a relativistic electron is scattered in the field of an atomic nucleus. The method consisted in expanding the scattering cross section in terms of integrals over the nuclear inelastic form factor with a kernel which was evaluated in second order Born approximation and was derived from the elastic-electron scattering form factor. The kernel could be evaluated analytically provided the elastic form factor contained only poles. For this reason the author used a Yukawa form factor. Before calculating the second order term the author studied the first order term containing finite size effects in the inelastic form factor. The author observed that the virtual photon spectrum is insensitive to the details of the inelastic distribution over a large range of energies and depends only on the transition radius. This gave the author the freedom of choosing an inelastic distribution for which the form factor has only poles and the author chose a modified form of the exponential distribution, which enabled the author to evaluate the matrix element analytically. The remaining integral over the physical momentum transfer was performed numerically. The author evaluated the virtual photon spectra for E1 and M1 transitions for a variety of electron energies using several nuclei and compared the results with the distorted wave calculations. Except for low energy and high Z, the second order results compared well with the distorted wave calculations

  17. Third-order QCD corrections to the charged-current structure function F{sub 3}

    Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Vermaseren, J.A.M. [NIKHEF, Amsterdam (Netherlands); Vogt, A. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences

    2008-12-15

    We compute the coefficient function for the charge-averaged W{sup {+-}}-exchange structure function F{sub 3} in deep-inelastic scattering (DIS) to the third order in massless perturbative QCD. Our new three-loop contribution to this quantity forms, at not too small values of the Bjorken variable x, the dominant part of the next-to-next-to-next-to-leading order corrections. It thus facilitates improved determinations of the strong coupling {alpha}{sub s} and of 1/Q{sup 2} power corrections from scaling violations measured in neutrino-nucleon DIS. The expansion of F{sub 3} in powers of {alpha}{sub s} is stable at all values of x relevant to measurements at high scales Q{sup 2}. At small x the third-order coefficient function is dominated by diagrams with the colour structure d{sup abc}d{sub abc} not present at lower orders. At large x the coefficient function for F{sub 3} is identical to that of F{sub 1} up to terms vanishing for x{yields}1. (orig.)

  18. Charge/orbital ordering structure in ordered perovskite Sm sub 1 sub / sub 2 Ba sub 1 sub / sub 2 MnO sub 3

    Uchida, M; Akahoshi, D; Kumai, R; Tomioka, Y; Tokura, Y; Arima, T H

    2002-01-01

    In an A-site ordered perovskite manganite Sm sub 1 sub / sub 2 Ba sub 1 sub / sub 2 MnO sub 3 , a new charge/orbital ordering pattern was found at room temperature. Electron diffraction studies revealed a series of superlattice reflections with modulation vectors at q sub 2 =(1/2, 1/2, 1/2) as well as at q sub 1 =(1/4, 1/4, 0) in the tetragonal setting (a sub p x a sub p x 2a sub p , a sub p being the cubic perovskite lattice parameter). Together with the results of the resonant X-ray scattering and the charge-transport and magnetization measurements, a new model for the three-dimensional charge/orbital ordering in the ordered perovskite is proposed. (author)

  19. Ferromagnetic nanorings

    Vaz, C A F; Hayward, T J; Llandro, J; Schackert, F; Morecroft, D; Bland, J A C; Klaeui, M; Laufenberg, M; Backes, D; Ruediger, U; Castano, F J; Ross, C A; Heyderman, L J; Nolting, F; Locatelli, A; Faini, G; Cherifi, S; Wernsdorfer, W

    2007-01-01

    Ferromagnetic metal rings of nanometre range widths and thicknesses exhibit fundamentally new spin states, switching behaviour and spin dynamics, which can be precisely controlled via geometry, material composition and applied field. Following the discovery of the 'onion state', which mediates the switching to and between vortex states, a range of fascinating phenomena has been found in these structures. In this overview of our work on ring elements, we first show how the geometric parameters of ring elements determine the exact equilibrium spin configuration of the domain walls of rings in the onion state, and we show how such behaviour can be understood as the result of the competition between the exchange and magnetostatic energy terms. Electron transport provides an extremely sensitive probe of the presence, spatial location and motion of domain walls, which determine the magnetic state in individual rings, while magneto-optical measurements with high spatial resolution can be used to probe the switching behaviour of ring structures with very high sensitivity. We illustrate how the ring geometry has been used for the study of a wide variety of magnetic phenomena, including the displacement of domain walls by electric currents, magnetoresistance, the strength of the pinning potential introduced by nanometre size constrictions, the effect of thermal excitations on the equilibrium state and the stochastic nature of switching events

  20. Charge, spin and orbital order in the candidate multiferroic material LuFe2O4

    Groot, Joost de

    2012-01-01

    This thesis is a detailed study of the magnetic, structural and orbital order parameters of the candidate multiferroic material LuFe 2 O 4 . Multiferroic oxides with a strong magnetoelectric coupling are of high interest for potential information technology applications, but they are rare because the traditional mechanism of ferroelectricity is incompatible with magnetism. Consequently, much attention is focused on various unconventional mechanisms of ferroelectricity. Of these, ferroelectricity originating from charge ordering (CO) is particularly intriguing because it potentially combines large electric polarizations with strong magneto-electric coupling. However, examples of oxides where this mechanism occurs are exceedingly rare and none is really well understood. LuFe 2 O 4 is often cited as the prototypical example of CO-based ferroelectricity. In this material, the order of Fe valences has been proposed to render the triangular Fe/O bilayers polar by making one of the two layers rich in Fe 2+ and the other rich in Fe 3+ , allowing for a possible ferroelectric stacking of the individual bilayers. Because of this new mechanism for ferroelectricity, and also because of the high transition temperatures of charge order (T CO ∝320K) and ferro magnetism (T N ∝240 K) LuFe 2 O 4 has recently attracted increasing attention. Although these polar bilayers are generally accepted in the literature for LuFe 2 O 4 , direct proof is lacking. An assumption-free experimental determination of whether or not the CO in the Fe/O bilayers is polar would be crucial, given the dependence of the proposed mechanism of ferroelectricity from CO in LuFe 2 O 4 on polar bilayers. This thesis starts with a detailed characterization of the macroscopic magnetic properties, where growing ferrimagnetic contributions observed in magnetization could be ascribed to increasing oxygen off-stoichiometry. The main focus is on samples exhibiting a sharp magnetic transition to long-range spin order

  1. Effect of quenched disorder on charge-orbital-spin ordering in single-layer manganites

    Uchida, Masaya; Mathieu, Roland; He, Jinping; Kaneko, Yoshio; Tokura, Yoshinori; Asamitsu, Atsushi; Kumai, Reiji; Tomioka, Yasuhide; Matsui, Yoshio

    2006-01-01

    Structural and magnetic properties have been investigated for half-doped single-layer manganites RE 0.5 Sr 1.5 MnO 4 [RE=La, (La, Pr), Pr, Nd, Sm, and Eu]. Analyses of electron diffraction and ac susceptibility measurements have revealed that the long-range charge-orbital ordering (CO-OO) state as observed in La 0.5 Sr 1.5 MnO 4 is suppressed for the other materials: the CO-OO transition temperature, as well as the correlation length decreases with a decrease in the cation size of RE. Such a short-range CO-OO state shows a spin-glass behavior at low temperatures. A new electronic phase diagram is established with quenched disorder as the control parameter. (author)

  2. Microscopic theoretical study of Raman spectra in charge and spin ordered cuprate systems

    Raj, B.K.; Panda, S.K.; Rout, G.C.

    2013-01-01

    Highlights: • The model calculation treats CDW interaction as pseudogap for cuprates. • The interplay of Raman active CDW-SDW mixed modes are investigated. • Independent CDW and SDW gap values can be determined from experimental data. -- Abstract: Raman scattering is one of the most powerful methods to investigate the electron as well as the phonon excitations in the systems. In this communication, we present a theoretical study of Raman scattering in the normal state of the high-T C systems in the under-doped region displaying the interplay of the spin-density-wave (SDW) and charge-density-wave (CDW) interactions. The SDW order arises from the repulsive Coulomb interaction of electrons, while the CDW order arises due to strong electron–phonon interaction giving rise to Fermi surface instability. We calculate phonon response function in order to examine the possibility of observing the SDW excitation mode in presence of the CDW interaction present in the same conduction band. The Raman scattering intensity is calculated from the imaginary part of the phonon Green’s function assigning an arbitrary spectral width. The spectral density function displays two mixed modes of excitation peaks at energies 2(Δ c ± Δ s ). The evolution of excitation peaks are investigated by varying CDW coupling, SDW coupling and the phonon momentum transfer energy

  3. Microscopic theoretical study of Raman spectra in charge and spin ordered cuprate systems

    Raj, B. K. [Dept. of Physics, Govt. Autonomous College, Angul, Orissa (India); Panda, S. K. [KD Science College, Pochilima, Hinjilicut, 761 101 Ganjam, Orissa (India); Rout, G.C., E-mail: gcr@iopb.res.in [Condensed Matter Physics Group, PG Dept. of Applied Physics and Ballistics, FM University, Balasore 756 019 (India)

    2013-09-15

    Highlights: • The model calculation treats CDW interaction as pseudogap for cuprates. • The interplay of Raman active CDW-SDW mixed modes are investigated. • Independent CDW and SDW gap values can be determined from experimental data. -- Abstract: Raman scattering is one of the most powerful methods to investigate the electron as well as the phonon excitations in the systems. In this communication, we present a theoretical study of Raman scattering in the normal state of the high-T{sub C} systems in the under-doped region displaying the interplay of the spin-density-wave (SDW) and charge-density-wave (CDW) interactions. The SDW order arises from the repulsive Coulomb interaction of electrons, while the CDW order arises due to strong electron–phonon interaction giving rise to Fermi surface instability. We calculate phonon response function in order to examine the possibility of observing the SDW excitation mode in presence of the CDW interaction present in the same conduction band. The Raman scattering intensity is calculated from the imaginary part of the phonon Green’s function assigning an arbitrary spectral width. The spectral density function displays two mixed modes of excitation peaks at energies 2(Δ{sub c} ± Δ{sub s}). The evolution of excitation peaks are investigated by varying CDW coupling, SDW coupling and the phonon momentum transfer energy.

  4. Probing electronic phase transitions with phonons via inelastic neutron scattering: superconductivity in borocarbides, charge and magnetic order in manganites

    Weber, F.

    2007-11-02

    the intrinsic phonon linewidth near the order wave vector of the short-range charge and orbital order present above T{sub C}. In an neutron powder diffraction measurement at the Hahn-Meitner Institut in Berlin, we investigated the temperature dependence of the anisotropic Debye-Waller factors of the oxygen atoms in La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. According to the present point of view, the sudden increase of the Debye-Waller factors at T{sub C} should be proportional to the strength of the colossal magnetoresistance effect. However, we found experimental values for La{sub 0.7}Sr{sub 0.3}MnO{sub 3}, which are in close vicinity or even bigger than values of compounds with a much stronger magnetoresistance effect. (orig.)

  5. Probing electronic phase transitions with phonons via inelastic neutron scattering: superconductivity in borocarbides, charge and magnetic order in manganites

    Weber, F.

    2007-01-01

    The present thesis concentrates on the signatures of strong electron-phonon coupling in phonon properties measured by inelastic neutron scattering. The inelastic neutron scattering experiments were performed on the triple-axis spectrometers 1T and DAS PUMA at the research reactors in Saclay (France) and Munich (Germany), respectively. The work is subdivided into two separate chapters: In the first part, we report measurements of the lattice dynamical properties, i.e. phonon frequency, linewidth and intensity, of the conventional, i.e. phonon-mediated, superconductor YNi 2 B 2 C of the rare-earth-borocarbide family. The detailed check of theoretical predictions for these properties, which were calculated in the theory group of our institute, was one major goal of this work. We measured phonons in the normal state, i.e. T>T c , for several high symmetry directions up to 70 meV. We were able to extract the full temperature dependence of the superconducting energy gap 2Δ(T) from our phonon scans with such accuracy that even deviations from the weak coupling BCS behaviour could be clearly observed. By measuring phonons at different wave vectors we demonstrated that phonons are sensitive to the gap anisotropy under the precondition, that different phonons get their coupling strength from different parts of the Fermi surface. In the second part, we investigated the properties of Mn-O bond-stretching phonons in the bilayer manganite La 2-2x Sr 1+2x Mn 2 O 7 . At the doping level x=0.38 this compound has an ferromagnetic groundstate and exhibits the so-called colossal magnetoresistance effect in the vicinity of the Curie temperature T C . The atomic displacement patterns of the investigated phonons closely resemble possible Jahn-Teller distortions of the MnO 6 octahedra, which are introduced in this compound by the Jahn-Teller active Mn 3+ ions. We observed strong renormalizations of the phonon frequencies and clear peaks of the intrinsic phonon linewidth near the order

  6. Temperature-dependent vibrational spectroscopy to study order-disorder transitions in charge transfer complexes

    Rohan Isaac

    2018-02-01

    Full Text Available Charge-transfer (CT complexes are a promising class of materials for the semiconductor industry because of their versatile properties. This class of compounds shows a variety of phase transitions, which are of interest because of their potential impact on the electronic characteristics. Here temperature-dependent vibrational spectroscopy is used to study structural phase transitions in a set of organic CT complexes. Splitting and broadening of infrared-active phonons in the complex formed between pyrene and pyromellitic dianhydride (PMDA confirm the structural transition is of the order-disorder type and complement previous x-ray diffraction (XRD results. We show that this technique is a powerful tool to characterize transitions, and apply it to a range of binary CT complexes composed of polyaromatic hyrdocarbons (anthracene, perylene, phenanthrene, pyrene, and stilbene and PMDA. We extend the understanding of transitions in perylene-PMDA and pyrene-PMDA, and show that there are no order-disorder transitions present in anthracene-PMDA, stilbene-PMDA and phenanthrene-PMDA in the temperature range investigated here.

  7. Temperature-dependent vibrational spectroscopy to study order-disorder transitions in charge transfer complexes

    Isaac, Rohan; Goetz, Katelyn P.; Roberts, Drew; Jurchescu, Oana D.; McNeil, L. E.

    2018-02-01

    Charge-transfer (CT) complexes are a promising class of materials for the semiconductor industry because of their versatile properties. This class of compounds shows a variety of phase transitions, which are of interest because of their potential impact on the electronic characteristics. Here temperature-dependent vibrational spectroscopy is used to study structural phase transitions in a set of organic CT complexes. Splitting and broadening of infrared-active phonons in the complex formed between pyrene and pyromellitic dianhydride (PMDA) confirm the structural transition is of the order-disorder type and complement previous x-ray diffraction (XRD) results. We show that this technique is a powerful tool to characterize transitions, and apply it to a range of binary CT complexes composed of polyaromatic hyrdocarbons (anthracene, perylene, phenanthrene, pyrene, and stilbene) and PMDA. We extend the understanding of transitions in perylene-PMDA and pyrene-PMDA, and show that there are no order-disorder transitions present in anthracene-PMDA, stilbene-PMDA and phenanthrene-PMDA in the temperature range investigated here.

  8. Structural studies of charge disproportionation and magnetic order in CaFeO3

    Woodward, P.M.; Cox, D.E.; Moshopoulou, E.; Sleight, A.W.; Morimoto, S.

    2000-01-01

    The crystal and magnetic structures of CaFeO 3 have been determined at 300 and 15 K using synchrotron x-ray and neutron powder-diffraction techniques. At 300 K, CaFeO 3 adopts the GdFeO 3 structure, space group Pbnm with unit-cell dimensions a=5.326 30(4), b=5.352 70(4), and c=7.539 86(6) A. This structure is distorted from the ideal perovskite structure by tilting of the FeO 6 octahedra about [110] and [001]. The average Fe-O distance is 1.922(2) A, and the Fe-O-Fe angles are 158.4(2) deg. and 158.1(1) deg. . At 15 K the crystal structure belongs to space group P2 1 /n with a=5.311 82(3), b=5.347 75(4), c=7.520 58(5) A and β=90.065(1) deg. , and contains two distinct Fe sites. The average Fe-O bond length is 1.872(6) A about the one iron site, and 1.974(6) A about the second site, with bond valence sums of 4.58 and 3.48, respectively. This provides quantitative evidence for charge disproportionation, 2Fe 4+ →Fe 3+ +Fe 5+ , at low temperature. The temperature evolution of the lattice parameters indicates a second- (or higher-) order phase transition from the orthorhombic charge-delocalized state to the monoclinic charge-disproportionated state, beginning just below room temperature. The magnetic structure at 15 K is incommensurate, having a modulation vector [δ,0,δ] with δ ∼0.322, corresponding to one of the directions in the pseudocubic cell. A reasonable fit to the magnetic intensities is obtained with the recently proposed screw spiral structure [S. Kawasaki et al., J. Phys. Soc. Jpn. 67, 1529 (1998)], with Fe moments of 3.5 and 2.5μ B , respectively. However, a comparable fit is given by a sinusoidal amplitude-modulated model in which the Fe moments are directed along [010], which leaves open the possibility that the true magnetic structure may be intermediate between the spiral and sinusoidal models (a fan structure)

  9. STM observations of ferromagnetic clusters

    Wawro, A.; Kasuya, A.

    1998-01-01

    Co, Fe and Ni clusters of nanometer size, deposited on silicon and graphite (highly oriented pyrolytic graphite), were observed by a scanning tunneling microscope. Deposition as well as the scanning tunneling microscope measurements were carried out in an ultrahigh vacuum system at room temperature. Detailed analysis of Co cluster height was done with the scanning tunneling microscope equipped with a ferromagnetic tip in a magnetic field up to 70 Oe. It is found that bigger clusters (few nanometers in height) exhibit a dependence of their apparent height on applied magnetic field. We propose that such behaviour originates from the ferromagnetic ordering of cluster and associate this effect to spin polarized tunneling. (author)

  10. Fluctuating Charge-Order in Optimally Doped Bi- 2212 Revealed by Momentum-resolved Electron Energy Loss Spectroscopy

    Husain, Ali; Vig, Sean; Kogar, Anshul; Mishra, Vivek; Rak, Melinda; Mitrano, Matteo; Johnson, Peter; Gu, Genda; Fradkin, Eduardo; Norman, Michael; Abbamonte, Peter

    Static charge order is a ubiquitous feature of the underdoped cuprates. However, at optimal doping, charge-order has been thought to be completely suppressed, suggesting an interplay between the charge-ordering and superconducting order parameters. Using Momentum-resolved Electron Energy Loss Spectroscopy (M-EELS) we show the existence of diffuse fluctuating charge-order in the optimally doped cuprate Bi2Sr2CaCu2O8+δ (Bi-2212) at low-temperature. We present full momentum-space maps of both elastic and inelastic scattering at room temperature and below the superconducting transition with 4meV resolution. We show that the ``rods'' of diffuse scattering indicate nematic-like fluctuations, and the energy width defines a fluctuation timescale of 160 fs. We discuss the implications of fluctuating charge-order on the dynamics at optimal doping. This work was supported by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF-4542. An early prototype of the M-EELS instrument was supported by the DOE Center for Emergent Superconductivity under Award No. DE-AC02-98CH10886.

  11. Diffusive Spin Dynamics in Ferromagnetic Thin Films with a Rashba Interaction

    Wang, Xuhui; Manchon, Aurelien

    2012-01-01

    In a ferromagnetic metal layer, the coupled charge and spin diffusion equations are obtained in the presence of both Rashba spin-orbit interaction and magnetism. The misalignment between the magnetization and the nonequilibrium spin density induced by the Rashba field gives rise to Rashba spin torque acting on the ferromagnetic order parameter. In a general form, we find that the Rashba torque consists of both in-plane and out-of-plane components, i.e., T=T Sy×m+T Sm×(y×m). Numerical simulations on a two-dimensional nanowire consider the impact of diffusion on the Rashba torque and reveal a large enhancement to the ratio T/T S for thin wires. Our theory provides an explanation for the mechanism driving the magnetization switching in a single ferromagnet as observed in the recent experiments. © 2012 American Physical Society.

  12. Diffusive Spin Dynamics in Ferromagnetic Thin Films with a Rashba Interaction

    Wang, Xuhui

    2012-03-13

    In a ferromagnetic metal layer, the coupled charge and spin diffusion equations are obtained in the presence of both Rashba spin-orbit interaction and magnetism. The misalignment between the magnetization and the nonequilibrium spin density induced by the Rashba field gives rise to Rashba spin torque acting on the ferromagnetic order parameter. In a general form, we find that the Rashba torque consists of both in-plane and out-of-plane components, i.e., T=T Sy×m+T Sm×(y×m). Numerical simulations on a two-dimensional nanowire consider the impact of diffusion on the Rashba torque and reveal a large enhancement to the ratio T/T S for thin wires. Our theory provides an explanation for the mechanism driving the magnetization switching in a single ferromagnet as observed in the recent experiments. © 2012 American Physical Society.

  13. Ferromagnetism in Cr-doped passivated AlN nanowires

    Kanoun, Mohammed; Goumri-Said, Souraya; Schwingenschlö gl, Udo

    2014-01-01

    We apply first principles calculations to predict the effect of Cr doping on the electronic and magnetic properties of passivated AlN nanowires. We compare the energetics of the possible dopant sites and demonstrate the favorable configuration ferromagnetic ordering. The charge density of the pristine passivated AlN nanowires is used to elucidate the bonding character. Spin density maps demonstrate an induced spin polarization for N atoms next to dopant atoms, though most of the magnetism is carried by the Cr atoms. Cr-doped AlN nanowires turn out to be interesting for spintronic devices. © 2014 the Partner Organisations.

  14. Rapid Estimation Method for State of Charge of Lithium-Ion Battery Based on Fractional Continual Variable Order Model

    Xin Lu

    2018-03-01

    Full Text Available In recent years, the fractional order model has been employed to state of charge (SOC estimation. The non integer differentiation order being expressed as a function of recursive factors defining the fractality of charge distribution on porous electrodes. The battery SOC affects the fractal dimension of charge distribution, therefore the order of the fractional order model varies with the SOC at the same condition. This paper proposes a new method to estimate the SOC. A fractional continuous variable order model is used to characterize the fractal morphology of charge distribution. The order identification results showed that there is a stable monotonic relationship between the fractional order and the SOC after the battery inner electrochemical reaction reaches balanced. This feature makes the proposed model particularly suitable for SOC estimation when the battery is in the resting state. Moreover, a fast iterative method based on the proposed model is introduced for SOC estimation. The experimental results showed that the proposed iterative method can quickly estimate the SOC by several iterations while maintaining high estimation accuracy.

  15. Photoinduced charge-order melting dynamics in a one-dimensional interacting Holstein model

    Hashimoto, Hiroshi; Ishihara, Sumio

    2017-07-01

    Transient quantum dynamics in an interacting fermion-phonon system are investigated with a focus on a charge order (CO) melting after a short optical-pulse irradiation and the roles of the quantum phonons in the transient dynamics. A spinless-fermion model in a one-dimensional chain coupled with local phonons is analyzed numerically. The infinite time-evolving block decimation algorithm is adopted as a reliable numerical method for one-dimensional quantum many-body systems. Numerical results for the photoinduced CO melting dynamics without phonons are well interpreted by the soliton picture for the CO domains. This interpretation is confirmed by numerical simulation of an artificial local excitation and the classical soliton model. In the case of large phonon frequencies corresponding to the antiadiabatic condition, CO melting is induced by propagations of the polaronic solitons with the renormalized soliton velocity. On the other hand, in the case of small phonon frequencies corresponding to the adiabatic condition, the first stage of the CO melting dynamics occurs due to the energy transfer from the fermionic to phononic systems, and the second stage is brought about by the soliton motions around the bottom of the soliton band. The analyses provide a standard reference for photoinduced CO melting dynamics in one-dimensional many-body quantum systems.

  16. Spin Solid versus Magnetic Charge Ordered State in Artificial Honeycomb Lattice of Connected Elements

    Glavic, Artur; Summers, Brock; Dahal, Ashutosh; Kline, Joseph; Van Herck, Walter; Sukhov, Alexander; Ernst, Arthur

    2018-01-01

    Abstract The nature of magnetic correlation at low temperature in two‐dimensional artificial magnetic honeycomb lattice is a strongly debated issue. While theoretical researches suggest that the system will develop a novel zero entropy spin solid state as T → 0 K, a confirmation to this effect in artificial honeycomb lattice of connected elements is lacking. This study reports on the investigation of magnetic correlation in newly designed artificial permalloy honeycomb lattice of ultrasmall elements, with a typical length of ≈12 nm, using neutron scattering measurements and temperature‐dependent micromagnetic simulations. Numerical modeling of the polarized neutron reflectometry data elucidates the temperature‐dependent evolution of spin correlation in this system. As temperature reduces to ≈7 K, the system tends to develop novel spin solid state, manifested by the alternating distribution of magnetic vortex loops of opposite chiralities. Experimental results are complemented by temperature‐dependent micromagnetic simulations that confirm the dominance of spin solid state over local magnetic charge ordered state in the artificial honeycomb lattice with connected elements. These results enable a direct investigation of novel spin solid correlation in the connected honeycomb geometry of 2D artificial structure. PMID:29721429

  17. Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer

    Huang, Chengxi; Du, Yongping; Wu, Haiping; Xiang, Hongjun; Deng, Kaiming; Kan, Erjun

    2018-04-01

    The realization of multiferroics in nanostructures, combined with a large electric dipole and ferromagnetic ordering, could lead to new applications, such as high-density multistate data storage. Although multiferroics have been broadly studied for decades, ferromagnetic ferroelectricity is rarely explored, especially in two-dimensional (2D) systems. Here we report the discovery of 2D ferromagnetic ferroelectricity in layered transition-metal halide systems. On the basis of first-principles calculations, we reveal that a charged CrBr3 monolayer exhibits in-plane multiferroicity, which is ensured by the combination of orbital and charge ordering as realized by the asymmetric Jahn-Teller distortions of octahedral Cr - Br6 units. As an example, we further show that (CrBr3)2Li is a ferromagnetic ferroelectric multiferroic. The explored phenomena and mechanism of multiferroics in this 2D system not only are useful for fundamental research in multiferroics but also enable a wide range of applications in nanodevices.

  18. Surface charges for gravity and electromagnetism in the first order formalism

    Frodden, Ernesto; Hidalgo, Diego

    2018-02-01

    A new derivation of surface charges for 3  +  1 gravity coupled to electromagnetism is obtained. Gravity theory is written in the tetrad-connection variables. The general derivation starts from the Lagrangian, and uses the covariant symplectic formalism in the language of forms. For gauge theories, surface charges disentangle physical from gauge symmetries through the use of Noether identities and the exactness symmetry condition. The surface charges are quasilocal, explicitly coordinate independent, gauge invariant and background independent. For a black hole family solution, the surface charge conservation implies the first law of black hole mechanics. As a check, we show the first law for an electrically charged, rotating black hole with an asymptotically constant curvature (the Kerr–Newman (anti-)de Sitter family). The charges, including the would-be mass term appearing in the first law, are quasilocal. No reference to the asymptotic structure of the spacetime nor the boundary conditions is required and therefore topological terms do not play a rôle. Finally, surface charge formulae for Lovelock gravity coupled to electromagnetism are exhibited, generalizing the one derived in a recent work by Barnich et al Proc. Workshop ‘ About Various Kinds of Interactions’ in honour of Philippe Spindel (4–5 June 2015, Mons, Belgium) C15-06-04 (2016 (arXiv:1611.01777 [gr-qc])). The two different symplectic methods to define surface charges are compared and shown equivalent.

  19. Ferromagnet / superconductor oxide superlattices

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  20. Charge ordering in reactive sputtered (1 0 0) and (1 1 1) oriented epitaxial Fe3O4 films

    Mi, Wenbo

    2013-06-01

    Epitaxial Fe3O4 films with (1 0 0) and (1 1 1) orientations fabricated by reactive sputtering present simultaneous magnetic and electrical transitions at 120 and 124 K, respectively. The symmetry decreases from face-centered cubic to monoclinic structure across the Verwey transition. Extra spots with different brightness at different positions appear in selected-area diffraction patterns at 95 K. The extra spots come from the charge ordering of outer-layer electrons of Fe atoms, and should be related to the charge ordering of octahedral B-site Fe atoms. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Charge ordering in reactive sputtered (1 0 0) and (1 1 1) oriented epitaxial Fe3O4 films

    Mi, Wenbo; Guo, Zaibing; Wang, Qingxiao; Yang, Yang; Bai, Haili

    2013-01-01

    Epitaxial Fe3O4 films with (1 0 0) and (1 1 1) orientations fabricated by reactive sputtering present simultaneous magnetic and electrical transitions at 120 and 124 K, respectively. The symmetry decreases from face-centered cubic to monoclinic structure across the Verwey transition. Extra spots with different brightness at different positions appear in selected-area diffraction patterns at 95 K. The extra spots come from the charge ordering of outer-layer electrons of Fe atoms, and should be related to the charge ordering of octahedral B-site Fe atoms. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Phase fluctuations and the absence of topological defects in a photo-excited charge-ordered nickelate

    Lee, W. S.; Chuang, Y. D.; Moore, R. G.; Zhu, Y.; Patthey, L.; Trigo, M.; Lu, D. H.; Kirchmann, P. S.; Krupin, O.; Yi, M.; Langner, M.; Huse, N.; Robinson, J. S.; Chen, Y.; Zhou, S. Y.; Coslovich, G.; Huber, B.; Reis, D. A.; Kaindl, R. A.; Schoenlein, R. W.; Doering, D.; Denes, P.; Schlotter, W. F.; Turner, J. J.; Johnson, S. L.; Först, M.; Sasagawa, T.; Kung, Y. F.; Sorini, A. P.; Kemper, A. F.; Moritz, B.; Devereaux, T. P.; Lee, D. -H.; Shen, Z. X.; Hussain, Z.

    2012-05-15

    The dynamics of an order parameter's amplitude and phase determines the collective behaviour of novel states emerging in complex materials. Time- and momentum-resolved pump-probe spectroscopy, by virtue of measuring material properties at atomic and electronic time scales out of equilibrium, can decouple entangled degrees of freedom by visualizing their corresponding dynamics in the time domain. Here we combine time-resolved femotosecond optical and resonant X-ray diffraction measurements on charge ordered La1.75Sr0.25NiO4 to reveal unforeseen photoinduced phase fluctuations of the charge order parameter. Such fluctuations preserve long-range order without creating topological defects, distinct from thermal phase fluctuations near the critical temperature in equilibrium. Importantly, relaxation of the phase fluctuations is found to be an order of magnitude slower than that of the order parameter's amplitude fluctuations, and thus limits charge order recovery. This new aspect of phase fluctuations provides a more holistic view of the phase's importance in ordering phenomena of quantum matter.

  3. Comparisons of Modeling and State of Charge Estimation for Lithium-Ion Battery Based on Fractional Order and Integral Order Methods

    Renxin Xiao

    2016-03-01

    Full Text Available In order to properly manage lithium-ion batteries of electric vehicles (EVs, it is essential to build the battery model and estimate the state of charge (SOC. In this paper, the fractional order forms of Thevenin and partnership for a new generation of vehicles (PNGV models are built, of which the model parameters including the fractional orders and the corresponding resistance and capacitance values are simultaneously identified based on genetic algorithm (GA. The relationships between different model parameters and SOC are established and analyzed. The calculation precisions of the fractional order model (FOM and integral order model (IOM are validated and compared under hybrid test cycles. Finally, extended Kalman filter (EKF is employed to estimate the SOC based on different models. The results prove that the FOMs can simulate the output voltage more accurately and the fractional order EKF (FOEKF can estimate the SOC more precisely under dynamic conditions.

  4. Theory of strain-controlled magnetotransport and stabilization of the ferromagnetic insulating phase in manganite thin films.

    Mukherjee, Anamitra; Cole, William S; Woodward, Patrick; Randeria, Mohit; Trivedi, Nandini

    2013-04-12

    We show that applying strain on half-doped manganites makes it possible to tune the system to the proximity of a metal-insulator transition and thereby generate a colossal magnetoresistance (CMR) response. This phase competition not only allows control of CMR in ferromagnetic metallic manganites but can be used to generate CMR response in otherwise robust insulators at half-doping. Further, from our realistic microscopic model of strain and magnetotransport calculations within the Kubo formalism, we demonstrate a striking result of strain engineering that, under tensile strain, a ferromagnetic charge-ordered insulator, previously inaccessible to experiments, becomes stable.

  5. Coexistence of short- and long-range ferromagnetic order in nanocrystalline Fe2Mn1−xCuxAl (x=0.0, 0.1 and 0.3) synthesized by high-energy ball milling

    Thanh, Tran Dang; Nanto, Dwi; Tuyen, Ngo Thi Uyen; Nan, Wen-Zhe; Yu, YiKyung; Tartakovsky, Daniel M.; Yu, S.C.

    2015-01-01

    In this work, we prepared nanocrystalline Fe 2 Mn 1−x Cu x Al (x=0.0, 0.1 and 0.3) powders by the high energy ball milling technique, and then studied their critical properties. Our analysis reveals that the increase of Cu-doping concentration (up to x=0.3) in these powders leads to a gradual increase of the ferromagnetic–paramagnetic transition temperature from 406 to 452 K. The Banerjee criterion suggests that all the samples considered undergo a second-order phase transition. A modified Arrott plot and scaling analysis indicate that the critical exponents (β=0.419 and 0.442, γ=1.082 and 1.116 for x=0.0 and 0.1, respectively) are located in between those expected for the 3D-Heisenberg and the mean-field models; the values of β=0.495 and γ=1.046 for x=0.3 sample are very close to those of the mean-field model. These features reveal the coexistence of the short- and long-range ferromagnetic order in the nanocrystalline Fe 2 Mn 1−x Cu x Al powders. Particularly, as the concentration of Cu increases, values of the critical exponent shift towards those of the mean-field model. Such results prove the Cu doping favors establishing a long-range ferromagnetic order. - Highlights: • Fe 2 Mn 1−x Cu x Al nanocrystals were prepared by a high energy ball milling method. • A coexistence of the short- and long-range FM order in the nanocrystals. • Cu doping favors establishing a long-range FM order in the nanocrystals. • All the ΔS m (T, H) data are followed a universal master curve

  6. Non-singlet coefficient functions for charged-current deep-inelastic scattering to the third order in QCD

    Davies, J.; Vogt, A.

    2016-06-01

    We have calculated the coefficient functions for the structure functions F_2, F_L and F_3 in ν- anti ν charged-current deep-inelastic scattering (DIS) at the third order in the strong coupling α_s, thus completing the description of unpolarized inclusive W"±-exchange DIS to this order of massless perturbative QCD. In this brief note, our new results are presented in terms of compact approximate expressions that are sufficiently accurate for phenomenological analyses. For the benefit of such analyses we also collect, in a unified notation, the corresponding lower-order contributions and the flavour non-singlet coefficient functions for ν+ anti ν charged-current DIS. The behaviour of all six third-order coefficient functions at small Bjorken-x is briefly discussed.

  7. Low to High Spin-State Transition Induced by Charge Ordering in Antiferromagnetic YBaCo2O5

    Vogt, T.; Woodward, P. M.; Karen, P.; Hunter, B. A.; Henning, P.; Moodenbaugh, A. R.

    2000-01-01

    The oxygen-deficient double perovskite YBaCo 2 O 5 , containing corner-linked CoO 5 square pyramids as principal building units, undergoes a paramagnetic to antiferromagnetic spin ordering at 330 K. This is accompanied by a tetragonal to orthorhombic distortion. Below 220 K orbital ordering and long-range Co 2+ /Co 3+ charge ordering occur as well as a change in the Co 2+ spin state from low to high spin. This transition is shown to be very sensitive to the oxygen content of the sample. To our knowledge this is the first observation of a spin-state transition induced by long-range orbital and charge ordering. (c) 2000 The American Physical Society

  8. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67

    Chang, J.; Blackburn, E.; Holmes, A. T.

    2012-01-01

    Superconductivity often emerges in the proximity of, or in competition with, symmetry-breaking ground states such as antiferromagnetism or charge density waves (CDW). A number of materials in the cuprate family, which includes the high transition-temperature (high-Tc) superconductors, show spin...... and charge density wave order. Thus a fundamental question is to what extent do these ordered states exist for compositions close to optimal for superconductivity. Here we use high-energy X-ray diffraction to show that a CDW develops at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc= 67 K......). This sample has a hole doping of 0.12 per copper and a well-ordered oxygen chain superstructure. Below Tc, the application of a magnetic field suppresses superconductivity and enhances the CDW. Hence, the CDW and superconductivity in this typical high-Tc material are competing orders with similar energy...

  9. Approaching Pomeranchuk instabilities from ordered phase: A crossing-symmetric equation method

    Reidy, Kelly; Quader, Khandker; Bedell, Kevin

    2014-01-01

    We explore features of a 3D Fermi liquid near generalized Pomeranchuk instabilities using a tractable crossing-symmetric equation method. We approach the instabilities from the ordered ferromagnetic phase. We find “quantum multi-criticality” as approach to the ferromagnetic instability drives instability in other channel(s). It is found that a charge nematic instability precedes and is driven by Pomeranchuk instabilities in both the ℓ=0 spin and density channels

  10. Charge order-superfluidity transition in a two-dimensional system of hard-core bosons and emerging domain structures

    Moskvin, A. S.; Panov, Yu. D.; Rybakov, F. N.; Borisov, A. B.

    2017-11-01

    We have used high-performance parallel computations by NVIDIA graphics cards applying the method of nonlinear conjugate gradients and Monte Carlo method to observe directly the developing ground state configuration of a two-dimensional hard-core boson system with decrease in temperature, and its evolution with deviation from a half-filling. This has allowed us to explore unconventional features of a charge order—superfluidity phase transition, specifically, formation of an irregular domain structure, emergence of a filamentary superfluid structure that condenses within of the charge-ordered phase domain antiphase boundaries, and formation and evolution of various topological structures.

  11. Local structural changes in paramagnetic and charge-ordered phases of Sm0.2Pr0.3Sr0.5MnO3: an EXAFS study

    Priolkar, K R; Kulkarni, Vishwajeet; Sarode, P R; Emura, S

    2008-01-01

    Sm 0.5-x Pr x Sr 0.5 MnO 3 exhibits a variety of ground states as x is varied from 0 to 0.5. At an intermediate doping of x = 0.3 a charge-ordered CE-type antiferromagnetic insulating (AFI) ground state is seen. The transition to this ground state is from a paramagnetic-insulating (PMI) phase through a ferromagnetic-metallic phase (FMM). Local structures in PMI and AFI phases of the x = 0.3 sample have been investigated using Pr K-edge and Sm K-edge extended x-ray absorption fine structure (EXAFS). It can be seen that the tilting and rotation of the MnO 6 octahedra about the b-axis are responsible for the charge-ordered CE-type antiferromagnetic ground state at low temperatures. In addition a shift in the position of the rare-earth ion along the c-axis has to be considered to account for observed distribution of bond distances around the rare-earth ion

  12. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Yushen [Jiangsu Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500 (China); Deng, Xiaohui [Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008 (China); Zhang, G. P. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States)

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  13. Nonequilibrium response of an electron-mediated charge density wave ordered material to a large dc electric field

    Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.

    2016-01-01

    Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for the nonlinear response of an electron-mediated charge-density-wave-ordered material. We examine both the dc current and the order parameter of the conduction electrons as the ordered system is driven by the electric field. Although the formalism we develop applies to all models, for concreteness, we examine the charge-density-wave phase of the Falicov-Kimball model, which displays a number of anomalous behaviors including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field.

  14. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    Pasanai, K.

    2017-01-01

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed.

  15. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    Pasanai, K., E-mail: krisakronmsu@gmail.com

    2017-01-15

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed. - Highlights: • The conductance spectra of a FM/FM/FM junction were calculated. • The conductance spectra were suppressed by the exchange energy. • The exchange energy and the potential strength play similar roles in the junctions.

  16. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    Pasanai, K.

    2017-01-01

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed. - Highlights: • The conductance spectra of a FM/FM/FM junction were calculated. • The conductance spectra were suppressed by the exchange energy. • The exchange energy and the potential strength play similar roles in the junctions.

  17. Competing charge, spin, and superconducting orders in underdoped YBa2Cu3Oy

    Hücker, M.; Christensen, Niels Bech; Holmes, A. T.

    2014-01-01

    order decreases with underdoping to TCDW~90 K in YBa2Cu3O6.44. Together with a weakened order parameter this suggests a competition between CDW and SDW orders. In addition, the CDW order in YBa2Cu3O6.44 shows the same type of competition with superconductivity as a function of temperature and magnetic...

  18. The Physics of Ferromagnetism

    Miyazaki, Terunobu

    2012-01-01

    This book covers both basic physics of ferromagnetism such as magnetic moment, exchange coupling, magnetic anisotropy and recent progress in advanced ferromagnetic materials. Special interests are focused on NdFeB permanent magnets and the materials studied in the field of spintronics. In the latter, development of tunnel magnetoresistance effect through so called giant magnetoresistance effect is explained.

  19. Spin ordering in three-leg ladders in Ludwigite systems

    Vallejo, E.; Avignon, M.

    2007-01-01

    We study the spin ordering in a three-leg ladder present in Ludwigite systems formed of localized spins interacting with an extra electron per rung. We also consider the competition with super exchange interactions resulting in a very rich phase diagram. Among the phases we find the possibility of ferromagnetic rungs ordered antiferromagnetically and a zigzag spin ordering linked to the formation of a charge ordering as observed

  20. Higgs-mode radiance and charge-density-wave order in 2 H -NbSe2

    Grasset, Romain; Cea, Tommaso; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Cario, Laurent; Benfatto, Lara; Méasson, Marie-Aude

    2018-03-01

    Despite being usually considered two competing phenomena, charge-density wave and superconductivity coexist in few systems, the most emblematic one being the transition-metal dichalcogenide 2 H -NbSe2 . This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp subgap mode emerging below the superconducting temperature is still under debate. In this work we use external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique, we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge-density-wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density wave and superconductivity in 2 H -NbSe2 involve mutual electronic degrees of freedom. These findings fill the knowledge gap on the electronic mechanisms at play in transition-metal dichalcogenides, a crucial step to fully exploit their properties in few-layer systems optimized for device applications.

  1. Phase diagram of the restricted primitive model: charge-ordering instability

    O.V.Patsahan

    2004-01-01

    Full Text Available We study the phase behaviour of the restricted primitive model (RPM using a microscopic approach based on the method of collective variables with a reference system. Starting from the Hamiltonian of the RPM we derive the functional of the grand partition function given in terms of the two collective variables: the collective variables ρk and ck describing fluctuations of the total number density and charge density, respectively. Within the framework of the Gaussian approximation we found the boundary of stability with respect to fluctuations of the charge density. It is shown that due to the approximated character of the theory the boundary of stability is very sensitive to the particular choice of the long-range part of potential inside the hard core. This point is discussed in more detail.

  2. Ba2NiOsO6 : A Dirac-Mott insulator with ferromagnetism near 100 K

    Feng, Hai L.; Calder, Stuart

    2016-01-01

    In this study, the ferromagnetic semiconductor Ba 2 NiOsO 6 (T mag ~ 100 K) was synthesized at 6 GPa and 1500 °C. It crystallizes into a double perovskite structure [Fm - 3m; a = 8.0428 (1) Å], where the Ni 2+ and Os 6+ ions are perfectly ordered at the perovskite B site. We show that the spin-orbit coupling of Os 6+ plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a > 21 kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te (T mag < 180 K), the spin-gapless semiconductor Mn 2 CoAl (T mag ~ 720 K), and the ferromagnetic insulators EuO (T mag ~ 70 K) and Bi 3 Cr 3 O 11 (T mag ~ 220 K). It is also qualitatively different from known ferrimagnetic insulators and semiconductors, which are characterized by an antiparallel spin arrangement. Our finding of the ferromagnetic semiconductivity of Ba 2 NiOsO 6 should increase interest in the platinum group oxides, because this alternative class of materials should be useful in the development of spintronic, quantum magnetic, and related devices.

  3. Voltage control of ferromagnetic resonance

    Ziyao Zhou

    2016-06-01

    Full Text Available Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME coupling mechanism: strain/stress, interfacial charge, spin–electromagnetic (EM coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin–EM coupling and exchange coupling.

  4. Melting of Domain Wall in Charge Ordered Dirac Electron of Organic Conductor α-(BEDT-TTF)2I3

    Ohki, Daigo; Matsuno, Genki; Omori, Yukiko; Kobayashi, Akito

    2018-05-01

    The origin of charge order melting is identified by using the real space dependent mean-field theory in the extended Hubbard model describing an organic Dirac electron system α-(BEDT-TTF)2I3. In this model, the width of a domain wall which arises between different types of the charge ordered phase exhibits a divergent increase with decreasing the strength of electron-electron correlations. By analyzing the finite-size effect carefully, it is shown that the divergence coincides with a topological transition where a pair of Dirac cones merges in keeping with a finite gap. It is also clarified that the gap opening point and the topological transition point are different, which leads to the existence of an exotic massive Dirac electron phase with melted-type domain wall and gapless edge states. The present result also indicated that multiple metastable states are emerged in massive Dirac Electron phase. In the trivial charge ordered phase, the gapless domain-wall bound state takes place instead of the gapless edge states, accompanying with a form change of the domain wall from melted-type into hyperbolic-tangent-type.

  5. Josephson tunnel junctions with ferromagnetic interlayer

    Weides, M.P.

    2006-01-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al 2 O 3 tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or π coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, π) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-π Josephson junction. At a certain temperature this 0-π junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum Φ 0 . Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T → 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  6. Josephson tunnel junctions with ferromagnetic interlayer

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  7. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-07-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.

  8. Entropy of a rotating and charged black string to all orders in the Planck length

    Ren, Zhao; Yue-Qin, Wu; Li-Chun, Zhang

    2009-01-01

    By using the entanglement entropy method, this paper calculates the statistical entropy of the Bose and Fermi fields in thin films, and derives the Bekenstein–Hawking entropy and its correction term on the background of a rotating and charged black string. Here, the quantum field is entangled with quantum states in the black string and thin film to the event horizon from outside the rotating and charged black string. Taking into account the effect of the generalized uncertainty principle on quantum state density, it removes the difficulty of the divergence of state density near the event horizon in the brick-wall model. These calculations and discussions imply that high density quantum states near the event horizon of a black string are strongly correlated with the quantum states in a black string and that black string entropy is a quantum effect. The ultraviolet cut-off in the brick-wall model is not reasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. From the viewpoint of quantum statistical mechanics, the correction value of Bekenstein–Hawking entropy is obtained. This allows the fundamental recognition of the correction value of black string entropy at nonspherical coordinates

  9. Molecular Dynamics Simulations of Collisional Cooling and Ordering of Multiply Charged Ions in a Penning Trap

    Holder, J.P.; Church, D.A.; Gruber, L.; DeWitt, H.E.; Beck, B.R.; Schneider, D.

    2000-01-01

    Molecular dynamics simulations are used to help design new experiments by modeling the cooling of small numbers of trapped multiply charged ions by Coulomb interactions with laser-cooled Be + ions. A Verlet algorithm is used to integrate the equations of motion of two species of point ions interacting in an ideal Penning trap. We use a time step short enough to follow the cyclotron motion of the ions. Axial and radial temperatures for each species are saved periodically. Direct heating and cooling of each species in the simulation can be performed by periodically rescaling velocities. Of interest are Fe 11+ due to a EUV-optical double resonance for imaging and manipulating the ions, and Ca 14+ since a ground state fine structure transition has a convenient wavelength in the tunable laser range

  10. Next-to-leading-order electroweak corrections to the production of three charged leptons plus missing energy at the LHC

    Biedermann, Benedikt; Denner, Ansgar; Hofer, Lars

    2017-10-01

    The production of a neutral and a charged vector boson with subsequent decays into three charged leptons and a neutrino is a very important process for precision tests of the Standard Model of elementary particles and in searches for anomalous triple-gauge-boson couplings. In this article, the first computation of next-to-leading-order electroweak corrections to the production of the four-lepton final states μ + μ -e+ ν e, {μ}+{μ}-{e}-{\\overline{ν}}e , μ + μ - μ + ν μ , and {μ}+{μ}-{μ}-{\\overline{ν}}_{μ } at the Large Hadron Collider is presented. We use the complete matrix elements at leading and next-to-leading order, including all off-shell effects of intermediate massive vector bosons and virtual photons. The relative electroweak corrections to the fiducial cross sections from quark-induced partonic processes vary between -3% and -6%, depending significantly on the event selection. At the level of differential distributions, we observe large negative corrections of up to -30% in the high-energy tails of distributions originating from electroweak Sudakov logarithms. Photon-induced contributions at next-to-leading order raise the leading-order fiducial cross section by +2%. Interference effects in final states with equal-flavour leptons are at the permille level for the fiducial cross section, but can lead to sizeable effects in off-shell sensitive phase-space regions.

  11. Ultracold Atoms in a Square Lattice with Spin-Orbit Coupling: Charge Order, Superfluidity, and Topological Signatures

    Rosenberg, Peter; Shi, Hao; Zhang, Shiwei

    2017-12-01

    We present an ab initio, numerically exact study of attractive fermions in square lattices with Rashba spin-orbit coupling. The ground state of this system is a supersolid, with coexisting charge and superfluid order. The superfluid is composed of both singlet and triplet pairs induced by spin-orbit coupling. We perform large-scale calculations using the auxiliary-field quantum Monte Carlo method to provide the first full, quantitative description of the charge, spin, and pairing properties of the system. In addition to characterizing the exotic physics, our results will serve as essential high-accuracy benchmarks for the intense theoretical and especially experimental efforts in ultracold atoms to realize and understand an expanding variety of quantum Hall and topological superconductor systems.

  12. Pressure-temperature phase diagram of a charge-ordered organic conductor studied by C13 NMR

    Itou, T.; Miyagawa, K.; Nakamura, J.; Kanoda, K.; Hiraki, K.; Takahashi, T.

    2014-07-01

    We performed C13 NMR measurements on the quasi-one-dimensional (Q1D) charge-ordered system (DI-DCNQI)2Ag under ambient and applied pressure to clarify the pressure-temperature phase diagram. For pressures up to 15 kbar, the NMR spectra exhibit complicated splitting at low temperatures, indicating a "generalized 3D Wigner crystal" state. In this pressure region, we find that increased pressure causes a decrease in the charge disproportionation ratio, along with a decrease in the transition temperature of the generalized 3D Wigner crystal. In the high-pressure region, near 20 kbar, where a 1D confined liquid crosses over to a 3D Fermi liquid at high temperatures, the ground state is replaced by a nonmagnetic insulating state that is qualitatively different from the generalized 3D Wigner crystal.

  13. Coexistence of charge order and antiferromagnetism in (TMTTF){sub 2}SbF{sub 6}: NMR study

    Nomura, K., E-mail: knmr@phys.sci.hokudai.ac.jp; Yamamoto, M.; Matsunaga, N.; Hirose, S.; Shimohara, N.; Satoh, T.; Isome, T.; Liu, Y.; Kawamoto, A.

    2015-03-01

    The electronic state of (TMTTF){sub 2}SbF{sub 6} was investigated by the {sup 1}H and {sup 13}C NMR measurements. The temperature dependence of T{sub 1}{sup −1} in {sup 1}H NMR shows a sharp peak associated with the antiferromagnetic transition at T{sub AF}=6 K. The temperature dependence of T{sub 1}{sup −1} is described by the power law T{sup 2.4} below T{sub AF}. This suggests the nodal gapless spin wave excitation in antiferromagnetic phase. In {sup 13}C NMR, two sharp peaks at high temperature region, associated with the inner and the outer carbon sites in TMTTF dimer, split into four peaks below 150 K. It indicates that the charge disproportionation occurs. The degree of charge disproportionation Δρ is estimated as (0.25±0.09)e from the chemical shift difference. This value of Δρ is consistent with that obtained from the infrared spectroscopy. In the antiferromagnetic state (AFI), the observed line shape is well fitted by eight Lorentzian peaks. This suggests that the charge order with the same degree still remains in the AF state. From the line assignment, the AF staggered spin amplitude is obtained as 0.70 μ{sub B} and 0.24 μ{sub B} at the charge rich and the poor sites, respectively. These values corresponding to almost 1 μ{sub B} per dimer are quite different from 0.11 μ{sub B} of another AF (AFII) state in (TMTTF){sub 2}Br with effective higher pressure. As a result, it is understood that the antiferromagnetic staggered spin order is stabilized on the CO state in the AFI phase of (TMTTF){sub 2}SbF{sub 6}.

  14. Modeling of second order space charge driven coherent sum and difference instabilities

    Yao-Shuo Yuan

    2017-10-01

    Full Text Available Second order coherent oscillation modes in intense particle beams play an important role for beam stability in linear or circular accelerators. In addition to the well-known second order even envelope modes and their instability, coupled even envelope modes and odd (skew modes have recently been shown in [Phys. Plasmas 23, 090705 (2016PHPAEN1070-664X10.1063/1.4963851] to lead to parametric instabilities in periodic focusing lattices with sufficiently different tunes. While this work was partly using the usual envelope equations, partly also particle-in-cell (PIC simulation, we revisit these modes here and show that the complete set of second order even and odd mode phenomena can be obtained in a unifying approach by using a single set of linearized rms moment equations based on “Chernin’s equations.” This has the advantage that accurate information on growth rates can be obtained and gathered in a “tune diagram.” In periodic focusing we retrieve the parametric sum instabilities of coupled even and of odd modes. The stop bands obtained from these equations are compared with results from PIC simulations for waterbag beams and found to show very good agreement. The “tilting instability” obtained in constant focusing confirms the equivalence of this method with the linearized Vlasov-Poisson system evaluated in second order.

  15. Analysis and development of fourth order LCLC resonant based capacitor charging power supply for pulse power applications.

    Naresh, P; Hitesh, C; Patel, A; Kolge, T; Sharma, Archana; Mittal, K C

    2013-08-01

    A fourth order (LCLC) resonant converter based capacitor charging power supply (CCPS) is designed and developed for pulse power applications. Resonant converters are preferred t utilize soft switching techniques such as zero current switching (ZCS) and zero voltage switching (ZVS). An attempt has been made to overcome the disadvantages in 2nd and 3rd resonant converter topologies; hence a fourth order resonant topology is used in this paper for CCPS application. In this paper a novel fourth order LCLC based resonant converter has been explored and mathematical analysis carried out to calculate load independent constant current. This topology provides load independent constant current at switching frequency (fs) equal to resonant frequency (fr). By changing switching condition (on time and dead time) this topology has both soft switching techniques such as ZCS and ZVS for better switching action to improve the converter efficiency. This novel technique has special features such as low peak current through switches, DC blocking for transformer, utilizing transformer leakage inductance as resonant component. A prototype has been developed and tested successfully to charge a 100 μF capacitor to 200 V.

  16. Bilinear forms and soliton solutions for a fourth-order variable-coefficient nonlinear Schrödinger equation in an inhomogeneous Heisenberg ferromagnetic spin chain or an alpha helical protein

    Yang, Jin-Wei; Gao, Yi-Tian, E-mail: gaoyt163@163.com; Wang, Qi-Min; Su, Chuan-Qi; Feng, Yu-Jie; Yu, Xin

    2016-01-15

    In this paper, a fourth-order variable-coefficient nonlinear Schrödinger equation is studied, which might describe a one-dimensional continuum anisotropic Heisenberg ferromagnetic spin chain with the octuple–dipole interaction or an alpha helical protein with higher-order excitations and interactions under continuum approximation. With the aid of auxiliary function, we derive the bilinear forms and corresponding constraints on the variable coefficients. Via the symbolic computation, we obtain the Lax pair, infinitely many conservation laws, one-, two- and three-soliton solutions. We discuss the influence of the variable coefficients on the solitons. With different choices of the variable coefficients, we obtain the parabolic, cubic, and periodic solitons, respectively. We analyse the head-on and overtaking interactions between/among the two and three solitons. Interactions between a bound state and a single soliton are displayed with different choices of variable coefficients. We also derive the quasi-periodic formulae for the three cases of the bound states.

  17. Itinerant Ferromagnetism in Ultracold Fermi Gases

    Heiselberg, Henning

    2012-01-01

    Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC. Thermodyna......Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC...

  18. Third-order TRANSPORT: A computer program for designing charged particle beam transport systems

    Carey, D.C.; Brown, K.L.; Rothacker, F.

    1995-05-01

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command

  19. Searching Room Temperature Ferromagnetism in Wide Gap Semiconductors Fe-doped Strontium Titanate and Zinc Oxide

    Pereira, LMC; Wahl, U

    Scientific findings in the very beginning of the millennium are taking us a step further in the new paradigm of technology: spintronics. Upgrading charge-based electronics with the additional degree of freedom of the carriers spin-state, spintronics opens a path to the birth of a new generation of devices with the potential advantages of non-volatility and higher processing speed, integration densities and power efficiency. A decisive step towards this new age lies on the attribution of magnetic properties to semiconductors, the building block of today's electronics, that is, the realization of ferromagnetic semiconductors (FS) with critical temperatures above room temperature. Unfruitful search for intrinsic RT FS lead to the concept of Dilute(d) Magnetic Semiconductors (DMS): ordinary semiconductor materials where 3 d transition metals randomly substitute a few percent of the matrix cations and, by some long-range mechanism, order ferromagnetically. The times are of intense research activity and the last fe...

  20. Spin Orbit Torque in Ferromagnetic Semiconductors

    Li, Hang

    2016-06-21

    Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read\\' and `write\\' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall

  1. 139La and 63Cu NMR investigation of charge order in La2CuO4 +y (Tc=42 K)

    Imai, T.; Lee, Y. S.

    2018-03-01

    We report 139La and 63Cu NMR investigation of the successive charge order, spin order, and superconducting transitions in superoxygenated La2CuO4 +y single crystal with stage-4 excess oxygen order at Tstage≃290 K. We show that the stage-4 order induces tilting of CuO6 octahedra below Tstage, which in turn causes 139La NMR line broadening. The structural distortion continues to develop far below Tstage, and completes at Tcharge≃60 K, where charge order sets in. This sequence is reminiscent of the the charge-order transition in Nd codoped La1.88Sr0.12CuO4 that sets in once the low-temperature tetragonal phase is established. We also show that the paramagnetic 63Cu NMR signals are progressively wiped out below Tcharge due to enhanced low-frequency spin fluctuations in charge-ordered domains, but the residual 63Cu NMR signals continue to exhibit the characteristics expected for optimally doped superconducting CuO2 planes. This indicates that charge order in La2CuO4 +y does not take place uniformly in space. In addition, unlike the typical second-order magnetic phase transitions, low-frequency Cu spin fluctuations as probed by 139La nuclear spin-lattice relaxation rate do not exhibit critical divergence at Tspin(≃Tc ) =42 K. These findings, including the spatially inhomogeneous nature of the charge-ordered state, are qualitatively similar to the case of La1.885Sr0.115CuO4 [Imai et al., Phys. Rev. B 96, 224508 (2017), 10.1103/PhysRevB.96.224508 and Arsenault et al., Phys. Rev. B 97, 064511 (2018), 10.1103/PhysRevB.97.064511], but both charge and spin order take place more sharply in the present case.

  2. Proximity effects in ferromagnet/superconductor structures

    Yu, H.L.; Sun, G.Y.; Yang, L.Y.; Xing, D.Y.

    2004-01-01

    The Nambu spinor Green's function approach is applied to study proximity effects in ferromagnet/superconductor (FM/SC) structures. They include the induced superconducting order parameter and density of states (DOS) with superconducting feature on the FM side, and spin-dependent DOS within the energy gap on the SC side. The latter indicates an appearance of gapless superconductivity and a coexistence of ferromagnetism and superconductivity in a small regime near the interface. The influence of exchange energy in FM and barrier strength at interface on the proximity effects is discussed

  3. Charge density wave behavior and order-disorder in the antiferromagnetic metallic series Eu (Ga1 -xAlx)4

    Stavinoha, Macy; Cooley, Joya A.; Minasian, Stefan G.; McQueen, Tyrel M.; Kauzlarich, Susan M.; Huang, C.-L.; Morosan, E.

    2018-05-01

    The solid solution Eu (Ga1-xAlx) 4 was grown in single crystal form to reveal a rich variety of crystallographic, magnetic, and electronic properties that differ from the isostructural end compounds EuGa4 and EuAl4, despite the similar covalent radii and electronic configurations of Ga and Al. Here we report the onset of magnetic spin reorientation and metamagnetic transitions for x =0 -1 evidenced by magnetization and temperature-dependent specific heat measurements. TN changes nonmonotonously with x , and it reaches a maximum around 20 K for x =0.50 , where the a lattice parameter also shows an extreme (minimum) value. Anomalies in the temperature-dependent resistivity consistent with charge density wave behavior exist only for x =0.50 and 1. Density functional theory calculations show increased polarization between the Ga-Al covalent bonds in the x =0.50 structure compared to the end compounds, such that crystallographic order and chemical pressure are proposed as the causes of the charge density wave behavior.

  4. Charge, spin and orbital order in the candidate multiferroic material LuFe{sub 2}O{sub 4}

    Groot, Joost de

    2012-06-28

    This thesis is a detailed study of the magnetic, structural and orbital order parameters of the candidate multiferroic material LuFe{sub 2}O{sub 4}. Multiferroic oxides with a strong magnetoelectric coupling are of high interest for potential information technology applications, but they are rare because the traditional mechanism of ferroelectricity is incompatible with magnetism. Consequently, much attention is focused on various unconventional mechanisms of ferroelectricity. Of these, ferroelectricity originating from charge ordering (CO) is particularly intriguing because it potentially combines large electric polarizations with strong magneto-electric coupling. However, examples of oxides where this mechanism occurs are exceedingly rare and none is really well understood. LuFe{sub 2}O{sub 4} is often cited as the prototypical example of CO-based ferroelectricity. In this material, the order of Fe valences has been proposed to render the triangular Fe/O bilayers polar by making one of the two layers rich in Fe{sup 2+} and the other rich in Fe{sup 3+}, allowing for a possible ferroelectric stacking of the individual bilayers. Because of this new mechanism for ferroelectricity, and also because of the high transition temperatures of charge order (T{sub CO} {proportional_to}320K) and ferro magnetism (T{sub N}{proportional_to}240 K) LuFe{sub 2}O{sub 4} has recently attracted increasing attention. Although these polar bilayers are generally accepted in the literature for LuFe{sub 2}O{sub 4}, direct proof is lacking. An assumption-free experimental determination of whether or not the CO in the Fe/O bilayers is polar would be crucial, given the dependence of the proposed mechanism of ferroelectricity from CO in LuFe{sub 2}O{sub 4} on polar bilayers. This thesis starts with a detailed characterization of the macroscopic magnetic properties, where growing ferrimagnetic contributions observed in magnetization could be ascribed to increasing oxygen off-stoichiometry. The

  5. Quasiparticle Scattering off Defects and Possible Bound States in Charge-Ordered YBa_{2}Cu_{3}O_{y}.

    Zhou, R; Hirata, M; Wu, T; Vinograd, I; Mayaffre, H; Krämer, S; Horvatić, M; Berthier, C; Reyes, A P; Kuhns, P L; Liang, R; Hardy, W N; Bonn, D A; Julien, M-H

    2017-01-06

    We report the NMR observation of a skewed distribution of ^{17}O Knight shifts when a magnetic field quenches superconductivity and induces long-range charge-density-wave (CDW) order in YBa_{2}Cu_{3}O_{y}. This distribution is explained by an inhomogeneous pattern of the local density of states N(E_{F}) arising from quasiparticle scattering off, yet unidentified, defects in the CDW state. We argue that the effect is most likely related to the formation of quasiparticle bound states, as is known to occur, under specific circumstances, in some metals and superconductors (but not in the CDW state, in general, except for very few cases in 1D materials). These observations should provide insight into the microscopic nature of the CDW, especially regarding the reconstructed band structure and the sensitivity to disorder.

  6. Investigation of the charge-orbital ordering mechanism in single-layered Pr0.5Ca1.5MnO4

    Rangkuti, C. N.; Majidi, M. A.

    2018-04-01

    Motivated by the experimental study of half-doped single-layered Pr0.5Ca1.5MnO4 showing charge, orbital, and spin orderings [1], we propose a model to theoretically study the system to explain such ordering phenomena. The ground state electron configuration reveals that the charges form a checkerboard pattern with alternating Mn3+/Mn4+ sites, while the orbitals are aligned in zigzag chains [1, 2]. We calculate the ground state energy of this system to find the most preferable configuration by comparing three types of configurations (charge-unordered, charge-ordered, and charge-orbital-ordered states). The calculations are based on a tight-binding model representing effective electron hoppings among Mn ions in MnO2-plane. We take into account the horizontally- and vertically-oriented orbital and spin degrees of freedom at Mn sites. We assume that the hopping integral values depend on the relative orientation between the corresponding orbitals of adjacent Mn ions. The interaction terms we incorporate into our effective Hamiltonian include inter-orbital, intra-orbital Hubbard repulsions, and Jahn-Teller distortion [2]. We absorb the exchange interaction between spins into local self-energy that we calculate within dynamical mean field algorithm [2]. Within our model we show a circumstance in which the charge-orbital ordered configuration has the lowest energy, consistent with the ground state ordering revealed by the experimental data.

  7. Charge ordering and exchange bias behaviors in Co{sub 3}O{sub 4} porous nanoplatelets and nanorings

    Debnath, J.C., E-mail: jcd341@uowmail.edu.au [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Wang, Jianli [Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia); Zeng, R. [Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia); School of Materials Science and Engineering, Faculty of Science, UNSW, Sydney NSW 2052 (Australia)

    2017-01-01

    We present the synthesis of α-Co{sub 3}O{sub 4} porous nanoplatelets and hexagonal nanorings using microwave-assisted hydrothermal and conventional chemical reaction methods. The x-ray diffraction (XRD) and refinement analyses indicate the α-Co{sub 3}O{sub 4} crystal structure, and the x-ray photoelectron spectrum (XPS) indicates the high purity of the samples. The M–T (including 1/χ–T) curves indicate an antiferromagnetic transition at about 35 K in both kind of samples but the interesting finding was made that a charge-ordered (CO) state appears at 250 K for the nanoplatelets sample whereas it is inattentive for the nanorings. The antiferromagnetic transition temperature T{sub N} is lower than that of the bulk α-Co{sub 3}O{sub 4} single crystal due to the nanosized structures. We observed quite significant exchange bias for nanorings. The exchange bias behavior of the α-Co{sub 3}O{sub 4} hexagonal nanorings is consistent with an antiferromagnetic (AFM) Co{sub 3}O{sub 4} core and spin-glass like shell. - Highlights: ●Charge-ordered state appears for the Co{sub 3}O{sub 4} nanoplatelets but absent for the nanorings. ●Quite significant exchange bias is only observed for Co{sub 3}O{sub 4} nanorings. ●Exchange bias behavior of Co{sub 3}O{sub 4} nanorings is consistent with spin-glass like shell. ●Potential for ultrahigh-density magnetic recording and spin valve devices.

  8. Spin-current diode with a ferromagnetic semiconductor

    Sun, Qing-Feng; Xie, X. C.

    2015-01-01

    Diode is a key device in electronics: the charge current can flow through the device under a forward bias, while almost no current flows under a reverse bias. Here, we propose a corresponding device in spintronics: the spin-current diode, in which the forward spin current is large but the reversed one is negligible. We show that the lead/ferromagnetic quantum dot/lead system and the lead/ferromagnetic semiconductor/lead junction can work as spin-current diodes. The spin-current diode, a low dissipation device, may have important applications in spintronics, as the conventional charge-current diode does in electronics

  9. Magnetic profiles in ferromagnetic/superconducting superlattices.

    te Velthuis, S. G. E.; Hoffmann, A.; Santamaria, J.; Materials Science Division; Univ. Complutense de Madrid

    2007-02-28

    The interplay between ferromagnetism and superconductivity has been of longstanding fundamental research interest to scientists, as the competition between these generally mutually exclusive types of long-range order gives rise to a rich variety of physical phenomena. A method of studying these exciting effects is by investigating artificially layered systems, i.e. alternating deposition of superconducting and ferromagnetic thin films on a substrate, which enables a straight-forward combination of the two types of long-range order and allows the study of how they compete at the interface over nanometer length scales. While originally studies focused on low temperature superconductors interchanged with metallic ferromagnets, in recent years the scope has broadened to include superlattices of high T{sub c} superconductors and colossal magnetoresistance oxides. Creating films where both the superconducting as well as the ferromagnetic layers are complex oxide materials with similar crystal structures (Figure 1), allows the creation of epitaxial superlattices, with potentially atomically flat and ordered interfaces.

  10. The slave-fermion approach of spin fluctuations in ferromagnet metals

    Hu, C. D.

    2015-11-01

    In this work we propose a method to treat the spin fluctuations in itinerant ferromagnets. It is able to do calculation with a convergent series. The slave fermion method is applied to separate the charge (denoted by fermions) and spin (denoted by bosons) degrees of freedom. The spin operators are then replaced by the Schwinger boson fields. This way, the interaction term in the model can be reduced to a very simple form and can be teated without difficulty. Finally the equations of motion are derived in order to obtain the forms of Green's functions of fermions and bosons. The result is applied to the calculation of resistivity as a function temperature.

  11. Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet

    P. A. Bhobe

    2015-10-01

    Full Text Available Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K_{2}Cr_{8}O_{16}, which exhibits a temperature-dependent (T-dependent paramagnetic-to-ferromagnetic-metal transition at T_{C}=180  K and transforms into a ferromagnetic insulator below T_{MI}=95  K. We observe clear T-dependent dynamic valence (charge fluctuations from above T_{C} to T_{MI}, which effectively get pinned to an average nominal valence of Cr^{+3.75} (Cr^{4+}∶Cr^{3+} states in a 3∶1 ratio in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0∼3.5(k_{B}T_{MI}∼35  meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U∼4  eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr and the half-metallic ferromagnetism in the t_{2g} up-spin band favor a low-energy Peierls metal-insulator transition.

  12. Possible mechanism for d0 ferromagnetism mediated by intrinsic defects

    Zhang, Zhenkui

    2014-01-01

    We examine the effects of several intrinsic defects on the magnetic behavior of ZnS nanostructures using hybrid density functional theory to gain insights into d0 ferromagnetism. Previous studies have predicted that the magnetism is due to a coupling between partially filled defect states. By taking into account the electronic correlations, we find an additional splitting of the defect states in Zn vacancies and thus the possibility of gaining energy by preferential filling of hole states, establishing ferromagnetism between spin polarized S 3p holes. We demonstrate a crucial role of neutral S vacancies in promoting ferromagnetism between positively charged S vacancies. S dangling bonds on the nanoparticle surface also induce ferromagnetism. This journal is

  13. Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb₂Ti₂O₇.

    Chang, Lieh-Jeng; Onoda, Shigeki; Su, Yixi; Kao, Ying-Jer; Tsuei, Ku-Ding; Yasui, Yukio; Kakurai, Kazuhisa; Lees, Martin Richard

    2012-01-01

    In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which can undergo Bose-Einstein condensation through a first-order transition via the Higgs mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid to a ferromagnet in single-crystal Yb(2)Ti(2)O(7). Polarized neutron scattering experiments show that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are suddenly suppressed below T(C)~0.21 K, where magnetic Bragg peaks and a full depolarization of the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic transition. Our results are explained on the basis of a quantum spin-ice model, whose high-temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground state shows a nearly collinear ferromagnetism with gapped spin excitations.

  14. Levitation properties of maglev systems using soft ferromagnets

    Huang, Chen-Guang; Zhou, You-He

    2015-03-01

    Soft ferromagnets are widely used as flux-concentration materials in the design of guideways for superconducting magnetic levitation transport systems. In order to fully understand the influence of soft ferromagnets on the levitation performance, in this work we apply a numerical model based on the functional minimization method and the Bean’s critical state model to study the levitation properties of an infinitely long superconductor immersed in the magnetic field created by a guideway of different sets of infinitely long parallel permanent magnets with soft ferromagnets between them. The levitation force, guidance force, magnetic stiffness and magnetic pole density are calculated considering the coupling between the superconductor and soft ferromagnets. The results show that the levitation performance is closely associated with the permanent magnet configuration and with the location and dimension of the soft ferromagnets. Introducing the soft ferromagnet with a certain width in a few configurations always decreases the levitation force. However, for most configurations, the soft ferromagnets contribute to improve the levitation performance only when they have particular locations and dimensions in which the optimized location and thickness exist to increase the levitation force the most. Moreover, if the superconductor is laterally disturbed, the presence of soft ferromagnets can effectively improve the lateral stability for small lateral displacement and reduce the degradation of levitation force.

  15. Inhomogeneous superconductivity in a ferromagnet

    Kontos, T.; Aprili, M.; Lesueur, J.; Genet, F.; Boursier, R.; Grison, X.

    2003-01-01

    We have studied a new superconducting state where the condensate wave function resulting from conventional pairing, is modified by an exchange field. Superconductivity is induced into a ferromagnetic thin film (F) by the proximity effect with a superconducting reservoir (S). We observed oscillations of the superconducting order parameter induced in F as a function of the distance from the S/F interface. They originate from the finite momentum transfer provided to Cooper pairs by the splitting of the spin up and down bands. We measured the superconducting density of states in F by tunneling spectroscopy and the Josephson critical current when F is coupled with a superconducting counter-electrode. Negative values of the superconducting order parameter are revealed by capsized tunneling spectra in F and a negative Josephson coupling (π-junction)

  16. Orbital occupancy evolution across spin- and charge-ordering transitions in YBaFe2O5

    Lindén, J.; Lindroos, F.; Karen, P.

    2017-08-01

    Thermal evolution of the Fe2+-Fe3+ valence mixing in YBaFe2O5 is investigated using Mössbauer spectroscopy. In this high-spin double-cell perovskite, the d6 and d5 Fe states differ by the single minority-spin electron which then controls all the spin- and charge-ordering transitions. Orbital occupancies can be extracted from the spectra in terms of the dxz , dz2 and either dx2-y2 (Main Article) or dxy (Supplement) populations of this electron upon conserving its angular momentum. At low temperatures, the minority-spin electrons fill up the ordered dxz orbitals of Fe2+, in agreement with the considerable orthorhombic distortion of the structure. Heating through the Verwey transition supplies 93% of the mixing entropy, at which point the predominantly mixing electron occupies mainly the dx2-y2 /dxy orbitals weakly bonding the two Fe atoms that face each other across the bases of their coordination pyramids. This might stabilize a weak coulombic checkerboard order suggested by McQueeney et alii in Phys. Rev. B 87(2013)045127. When the remaining 7% of entropy is supplied at a subsequent transition, the mixing electron couples the two Fe atoms predominantly via their dz2 orbitals. The valence mixing concerns more than 95% of the Fe atoms present in the crystalline solid; the rest is semi-quantitatively interpreted as domain walls and antiphase boundaries formed upon cooling through the Néel and Verwey-transition temperatures, respectively.

  17. Research of Charging(Discharging Orderly and Optimizing Load Curve for Electric Vehicles Based on Dynamic Electric Price and V2G

    Yang Shuai

    2016-01-01

    Full Text Available Firstly, using the Monte Carlo method and simulation analysis, this paper builds models for the behaviour of electric vehicles, the conventional charging model and the fast charging model. Secondly, this paper studies the impact that the number of electric vehicles which get access to power grid has on the daily load curve. Then, the paper put forwards a dynamic pricing mechanism of electricity, and studies how this dynamic pricing mechanism guides the electric vehicles to charge orderly. Last but not the least, the paper presents a V2G mechanism. Under this mechanism, electric vehicles can charge orderly and take part in the peak shaving. Research finds that massive electric vehicles’ access to the power grid will increase the peak-valley difference of daily load curve. Dynamic pricing mechanism and V2G mechanism can effectively lead the electric vehicles to take part in peak-shaving, and optimize the daily load curve.

  18. Transforming from paramagnetism to room temperature ferromagnetism in CuO by ball milling

    Daqiang Gao

    2011-12-01

    Full Text Available In this work, we experimentally demonstrate that it is possible to induce ferromagnetism in CuO by ball milling without any ferromagnetic dopant. The magnetic measurements indicate that paramagnetic CuO is driven to the ferromagnetic state at room temperature by ball milling gradually. The saturation magnetization of the milled powders is found to increase with expanding the milling time and then decrease by annealing under atmosphere. The fitted X-ray photoelectron spectroscopy results indicate that the observed induction and weaken of the ferromagnetism shows close relationship with the valence charged oxygen vacancies (Cu1+-VO in CuO.

  19. The half-metallic ferromagnetism character in Be1−xVxY (Y=Se and Te) alloys: An ab-initio study

    Sajjad, M.; Manzoor, Sadia; Zhang, H.X.; Noor, N.A.; Alay-e-Abbas, S.M.; Shaukat, A.; Khenata, R.

    2015-01-01

    Ab-initio calculations for V-doped BeSe and BeTe semiconductors are performed by means of all-electrons full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method. The structural properties are optimized using the Wu-Cohen generalized gradient approximation functional, whereas modified Becke and Jhonson local density approximation functional has been employed for evaluating the spin-polarized electronic and magnetic properties. Magnetic stability at various doping concentrations in ferromagnetic (FM) and anti-ferromagnetic (AFM) ordering is investigated by comparing the minimum total energies and enthalpies of formation (ΔH). Studied band structures, density of states, total energy, exchange interactions and magnetic moments manifest both alloys with half-metallic ferromagnetic behavior. Moreover, their valance bands are found to be paired ferromagnetically with V atoms. Furthermore, it was observed that the magnetic moment of vanadium atom reduces from free space charge value due to p–d hybridization which yields small magnetic moments on the Be, Se and Te sites. - Highlights: • Density functional calculations for V-doped BeSe and BeTe are performed. • V-doped BeSe and BeTe are found to be stable half-metallic ferromagnetism. • Improved electronic properties are achieved using mBJLDA which confirm HMF. • The half-metallic gaps show non-linear variation with increasing dopant concentration

  20. Superconducting Ferromagnetic Nanodiamond

    Zhang, G.; Samuely, T.; Xu, Z.; Jochum, J. K.; Volodin, A.; Zhou, S. Q.; May, P. W.; Onufriienko, O.; Kacmarik, J.; Steele, J. A.; Li, J.; Vanacken, J.; Vacík, Jiří; Szabo, P.; Yuan, H. F.; Roeffaers, M. B. J.; Cerbu, D.; Samuely, P.; Hofkens, J.; Moshchalkov, V.V.

    2017-01-01

    Roč. 11, č. 6 (2017), s. 5358-5366 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : nanodiamond * superconductivity and ferromagnetism * spin fluctuations * giant positive magnetoresistance * anamalous Hall effect Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nano-materials (production and properties ) Impact factor: 13.942, year: 2016

  1. Microwave spectroscopy and electronic transport properties of ferromagnetic Josephson junctions and superconducting spin-valves

    Thalmann, Marcel; Rudolf, Marcel; Pietsch, Torsten [Zukunftskolleg and Department of Physics, University of Konstanz, Universitaetsstrasse 10, 78464 Konstanz (Germany)

    2016-07-01

    Hybrid superconducting nanostructures recently attracted tremendous interest, due to their great potential in dissipation-less spin-electronics with unprecedented switching rates. The practical realisation of such devices, however, requires a complete understanding of the transfer and dynamics of spin- and charge currents between superconducting (S) and ferromagnetic (F) circuit elements, as well as the coupling between spin- and charge degrees of freedom in these systems. We investigate novel transport phenomena in superconductor-ferromagnet hybrid nanostructures under non-equilibrium conditions. Microwave spectroscopy is used to elucidate fundamental questions related to the complex interplay of competing order parameters and the question of relaxation mechanisms of non-equilibrium distributions with respect to spin, charge and energy. Recent experiments on two complimentary device structures are discussed: (I) in diffusive S/F/S Josephson junctions with non-sinusoidal current-phase relationship and (II) local and non-local transport measurements and microwave spectroscopy in F/S/F lateral spin-valves.

  2. Semimetallic and charge-ordered α -(BEDT-TTF)2I3: On the role of disorder in dc transport and dielectric properties

    Ivek, Tomislav; Čulo, Matija; Kuveždić, Marko; Tutiš, Eduard; Basletić, Mario; Mihaljević, Branimir; Tafra, Emil; Tomić, Silvia; Löhle, Anja; Dressel, Martin; Schweitzer, Dieter; Korin-Hamzić, Bojana

    2017-08-01

    α -(BEDT-TTF)2I3 is a prominent example of charge ordering among organic conductors. In this work, we explore the details of transport within the charge-ordered as well as semimetallic phase at ambient pressure. In the high-temperature semimetallic phase, the mobilities and concentrations of both electrons and holes conspire in such a way to create an almost temperature-independent conductivity as well as a low Hall effect. We explain these phenomena as a consequence of a predominantly interpocket scattering which equalizes mobilities of the two types of charge carriers. At low temperatures, within the insulating charge-ordered phase two channels of conduction can be discerned: a temperature-dependent activation, which follows the mean-field behavior, and a nearest-neighbor-hopping contribution. Together with negative magnetoresistance, the latter relies on the presence of disorder. The charge-ordered phase also features a prominent dielectric peak which bears a similarity to relaxor ferroelectrics. Its dispersion is determined by free-electron screening and pushed by disorder well below the transition temperature. The source of this disorder can be found in the anion layers which randomly perturb BEDT-TTF molecules through hydrogen bonds.

  3. Critical end point of the first-order ferromagnetic transition in a Sm{sub 0.55}(Sr{sub 0.5}Ca{sub 0.5}){sub 0.45}MnO{sub 3} single crystal

    Radheep, D. Mohan [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirappalli 620 024 (India); Sarkar, P. [Department of Physics, Serampore College, Serampore 712 201 (India); Arumugam, S. [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirappalli 620 024 (India); Suryanarayanan, R. [Laboratoire de Physico-Chimie de l' Etat Solide, ICMMO, CNRS, UMR8182, Universite Paris-Sud, 91405 Orsay (France); Mandal, P., E-mail: prabhat.mandal@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India)

    2014-09-01

    We report on the magnetic field (H) and hydrostatic pressure (P) dependence of the order of the ferromagnetic (FM) to paramagnetic phase transition in a Sm{sub 0.55}(Sr{sub 0.5}Ca{sub 0.5}){sub 0.45}MnO{sub 3} single crystal. At ambient condition, the system exhibits a first-order FM transition at T{sub C}≈82K (in heating cycle) with strong thermal hysteresis (∼13 K). The application of external H and P increases T{sub C}, suppresses the hysteresis width, and thus weakens the first-order nature of the transition. Our analysis reveals that the hysteresis vanishes and the first-order FM transition becomes a crossover above a critical magnetic field H{sub cr}≈11.5T. The value of H{sub cr} is highest among the manganite family, although the first-order nature of the FM transition is believed to be strongest in Eu{sub 1−x}Sr{sub x}MnO{sub 3}(x≈0.45). - Highlights: • System shows a strong first-order ferromagnetic to paramagnetic phase transition. • Extremely sharp metal–insulator transition at around 82 K. • The value of critical magnetic field at which first-order transition becomes a crossover is highest among manganites. • The nature of transition is sensitive to external perturbations such as magnetic field and pressure.

  4. Revisiting 63Cu NMR evidence for charge order in superconducting La1.885Sr0.115CuO4

    Imai, T.; Takahashi, S. K.; Arsenault, A.; Acton, A. W.; Lee, D.; He, W.; Lee, Y. S.; Fujita, M.

    2017-12-01

    The presence of charge and spin stripe order in the La2CuO4 -based family of superconductors continues to lead to new insight on the unusual ground-state properties of high-Tc cuprates. Soon after the discovery of charge stripe order at Tcharge≃65 K in Nd3 + co-doped La1.48Nd0.4Sr0.12CuO4 (Tc≃6 K) [Tranquada et al., Nature (London) 375, 561 (1995), 10.1038/375561a0], Hunt et al. demonstrated that La1.48Nd0.4Sr0.12CuO4 and superconducting La2 -xSrxCuO4 with x ˜1 /8 (Tc≃30 K) share nearly identical NMR anomalies near Tcharge of the former [Phys. Rev. Lett. 82, 4300 (1999), 10.1103/PhysRevLett.82.4300]. Their inevitable conclusion that La1.885Sr0.115CuO4 also undergoes charge order at a comparable temperature became controversial, because diffraction measurements at the time were unable to detect Bragg peaks associated with charge order. Recent advances in x-ray diffraction techniques finally led to definitive confirmations of the charge order Bragg peaks in La1.885Sr0.115CuO4 with an onset at as high as Tcharge≃80 K. Meanwhile, improved instrumental technology has enabled routine NMR measurements that were not feasible two decades ago. Motivated by these new developments, we revisit the charge order transition of a La1.885Sr0.115CuO4 single crystal based on 63Cu NMR techniques. We demonstrate that 63Cu NMR properties of the nuclear spin Iz=-1/2 to +1/2 central transition below Tcharge exhibit unprecedentedly strong dependence on the measurement time scale set by the separation time τ between the 90∘ and 180∘ radio-frequency pulses; a new kind of anomalous, very broad winglike 63Cu NMR signals gradually emerge below Tcharge only for extremely short τ ≲4 μ s , while the spectral weight INormal of the normal NMR signals is progressively wiped out. The NMR linewidth and relaxation rates depend strongly on τ below Tcharge, and their enhancement in the charge ordered state indicates that charge order turns on strong but inhomogeneous growth of Cu spin

  5. Tunable Magnon Weyl Points in Ferromagnetic Pyrochlores.

    Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2016-10-07

    The dispersion relations of magnons in ferromagnetic pyrochlores with Dzyaloshinskii-Moriya interaction are shown to possess Weyl points, i. e., pairs of topologically nontrivial crossings of two magnon branches with opposite topological charge. As a consequence of their topological nature, their projections onto a surface are connected by magnon arcs, thereby resembling closely Fermi arcs of electronic Weyl semimetals. On top of this, the positions of the Weyl points in reciprocal space can be tuned widely by an external magnetic field: rotated within the surface plane, the Weyl points and magnon arcs are rotated as well; tilting the magnetic field out of plane shifts the Weyl points toward the center Γ[over ¯] of the surface Brillouin zone. The theory is valid for the class of ferromagnetic pyrochlores, i. e., three-dimensional extensions of topological magnon insulators on kagome lattices. In this Letter, we focus on the (111) surface, identify candidates of established ferromagnetic pyrochlores which apply to the considered spin model, and suggest experiments for the detection of the topological features.

  6. Remote field eddy current testing of ferromagnetic tubes

    David, B.

    1990-01-01

    In order to test ferromagnetic tubes using internal probes, Intercontrole and the CEA have carried out theoretical and experimental works and developed a method to adapt the Remote Field Eddy Current technique which has been known and used for 30 years now. This document briefly recalls the basic principles of the Remote Field Eddy Current technique, the various steps of the works carried out and mainly describes examples of field inspection of ferromagnetic tubes and pipes [fr

  7. Twinning microstructure and charge ordering in the colossal magnetoresistive manganite Nd1/2Sr1/2MnO3

    Luo, Z.P.; Miller, D.J.; Mitchell, J.F.

    2000-01-01

    Charge ordering (C.O.) in the colossal magnetoresistive (CMR) manganites gives rise to an insulating, high-resistance state. This charge ordered state can be melted into a low-resistance metallic-like state by the application of magnetic field. Thus, the potential to attain high values of magnetoresistance with the application of small magnetic fields may be aided by a better understanding of the charge-ordering phenomenon. This study focused on microstructural characterization in Nd 1/2 Sr 1/2 MnO 3 . In Nd 1/2 Sr 1/2 MnO 3 , the nominal valence of Mn is 3.5+. On cooling, charge can localize and lead to a charge ordering between Mn 3+ and Mn 4+. The ordering of charge results in a superlattice structure and a reduction in symmetry. Thin foil specimens were prepared from bulk samples by conventional thinning and ion milling (at LiqN 2 temperature) methods. The room temperature TEM observation of Nd 1/2 Sr 1/2 MnO 3 reveals that it contains a highly twinned microstructure, together with a small number of stacking faults (SFS). A figure shows the same area of the specimen at different zone axes obtained by tilting around two perpendicular directions as indicated. Three grains A, B and C are labeled for each of the zone axes. The room temperature EDPs from the matrix and twins shows an approximate 90degree rotation suggesting a 90degree twin orientation. These results are further confirmed by C.O. at low temperatures. The twinning planes can be determined by tilting with large angles

  8. Colossal thermoelectric power in charge ordered lanthanum calcium manganites (La{sub 0.5}Ca{sub 0.5}MnO{sub 3})

    Joy, Lija K.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022 (India); Shanmukharao Samatham, S.; Ganesan, V. [Low temperature division, UGC-DAE Consortium for Scientific Research, Indore (India); Thomas, Senoy [Material Science and Technology Division, National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram–695019 (India); Al-Harthi, Salim [Department of Physics, Sultan Qaboos University, Muscat PC 123, Sultanate of Oman (Oman); Liebig, A.; Albrecht, M. [Institute of Physics, University of Augsburg, Augsburg 86135 (Germany)

    2014-12-07

    Lanthanum calcium manganites (La{sub 0.5}Ca{sub 0.5}MnO{sub 3}) with a composition close to charge ordering, synthesized by high energy ball milling, was found to exhibit colossal thermoelectric power. Thermoelectric power (TEP) data was systematically analyzed by dividing the entire temperature range (5 K–300 K) into three different regimes to explore different scattering mechanisms involved. Mandal's model has been applied to explain TEP data in the region below the Curie temperature (T{sub C}). It has been found that the variation of thermoelectric power with temperature is pronounced when the system enters the charge ordered region at T < 200 K. For temperatures lower than 120 K, due to the co-existence of charge ordered state with a spin-glass state, the variation of thermoelectric power is maximum and exhibited a peak value of −80 mV/K at 58 K. This has been explained by incorporating Kondo properties of the spin-glass along with magnon scattering. FC-ZFC magnetization measurements indicate the existence of a glassy state in the region corresponding to a maximum value of thermoelectric power. Phonon drag contribution instead of spin-glass contribution is taken into account to explain TEP in the region 120 K < T < T{sub C}. Mott's polaronic contribution of charge carriers are considered to interpret TEP in the high temperature region (T > T{sub C}). The optimal Mn{sup 4+}-Mn{sup 3+} concentration in charge ordered La{sub 0.5}Ca{sub 0.5}MnO{sub 3} was examined by X-ray Photoelectron Spectroscopy analysis which confirms the charge ordered nature of this compound.

  9. X-ray absorption measurements of charge-ordered La{sub 0.5}Sr{sub 1.5}MnO{sub 4}

    Saitoh, T.; Villella, P.M.; Dessau, D.S. [Univ. of Colorado, Boulder, CO (United States)] [and others

    1997-04-01

    Perovskite and {open_quotes}layered perovskite{close_quotes}-type manganese oxides show a variety of electronic and magnetic properties such as the colossal magnetoresistance (CMR) or the charge ordering. Among them, La{sub 0.5}Sr{sub 1.5}MnO{sub 4} (K{sub 2}NiF{sub 4} structure) which has 0.5 holes per Mn site (d{sup 3.5}) shows the charge-order transition at {approximately}220 K below which Mn{sup 3+} and Mn{sup 4+} sites are believed to order in the CE-type. Although the charge ordering phenomenon has also been observed in the perovskite manganites Pr{sub 0.5}Sr{sub 1.5}MnO{sub 3} or Pr{sub 0.5}Ca{sub 1.5}MnO{sub 3}, the present system has another advantage that it has a layered structure. This enables the authors to address the issue of the orbital symmetry which should be directly related to the charge ordering. In this report, they present the results of x-ray absorption spectroscopy (XAS) on La{sub 0.5}Sr{sub 1.5}MnO{sub 4}, for two polarization angles and two (above and below the transition temperature T{sub CO}) temperatures.

  10. Possible charge analogues of spin transfer torques in bulk superconductors

    Garate, Ion

    2014-03-01

    Spin transfer torques (STT) occur when electric currents travel through inhomogeneously magnetized systems and are important for the motion of magnetic textures such as domain walls. Since superconductors are easy-plane ferromagnets in particle-hole (charge) space, it is natural to ask whether any charge duals of STT phenomena exist therein. We find that the superconducting analogue of the adiabatic STT vanishes in a bulk superconductor with a momentum-independent order parameter, while the superconducting counterpart of the nonadiabatic STT does not vanish. This nonvanishing superconducting torque is induced by heat (rather than charge) currents and acts on the charge (rather than spin) degree of freedom. It can become significant in the vicinity of the superconducting transition temperature, where it generates a net quasiparticle charge and alters the dispersion and linewidth of low-frequency collective modes. This work has been financially supported by Canada's NSERC.

  11. Hysteresis in conducting ferromagnets

    Schneider, Carl S.; Winchell, Stephen D.

    2006-01-01

    Maxwell's magnetic diffusion equation is solved for conducting ferromagnetic cylinders to predict a magnetic wave velocity, a time delay for flux penetration and an eddy current field, one of five fields in the linear unified field model of hysteresis. Measured Faraday voltages for a thin steel toroid are shown to be proportional to magnetic field step amplitude and decrease exponentially in time due to maximum rather than average permeability. Dynamic permeabilities are a field convolution of quasistatic permeability and the delay function from which we derive and observe square root dependence of coercivity on rate of field change

  12. Spin excitations in the quasi-two-dimensional charge-ordered insulator α -(BEDT-TTF ) 2I3 probed via 13C NMR

    Ishikawa, Kyohei; Hirata, Michihiro; Liu, Dong; Miyagawa, Kazuya; Tamura, Masafumi; Kanoda, Kazushi

    2016-08-01

    The spin excitations from the nonmagnetic charge-ordered insulating state of α -(BEDT-TTF ) 2I3 at ambient pressure have been investigated by probing the static and low-frequency dynamic spin susceptibilities via site-selective nuclear magnetic resonance at 13C sites. The site-dependent values of the shift and the spin-lattice relaxation rate 1 /T1 below the charge-ordering transition temperature (TCO≈135 K ) demonstrate a spin density imbalance in the unit cell, in accord with the charge-density ratio reported earlier. The shift and 1 /T1 show activated temperature dependence with a static (shift) gap ΔS≈47 -52 meV and a dynamic (1 /T1 ) gap ΔR≈40 meV . The sizes of the gaps are well described in terms of a localized spin model, where spin-1/2 antiferromagnetic dimer chains are weakly coupled with each other.

  13. Perfect GMR effect in gapped graphene-based ferromagnetic normal ferromagnetic junctions

    Hossein Karbaschi; Gholam Reza Rashedi

    2015-01-01

    We investigate the quantum transport property in gapped graphene-based ferromagnetic/normal/ferromagnetic (FG/NG/FG) junctions by using the Dirac–Bogoliubov–de Gennes equation. The graphene is fabricated on SiC and BN substrates separately, so carriers in FG/NG/FG structures are considered as massive relativistic particles. Transmission prob-ability, charge, and spin conductances are studied as a function of exchange energy of ferromagnets (h), size of graphene gap, and thickness of normal graphene region (L) respectively. Using the experimental values of Fermi energy in the normal graphene part (EFN∼400 meV) and energy gap in graphene (260 meV for SiC and 50 meV for BN substrate), it is shown that this structure can be used for both spin-up and spin-down polarized current. The latter case has different behavior of gapped FG/NG/FG from that of gapless FG/NG/FG structures. Also perfect charge giant magnetoresistance is observed in a range of EFN−mv2F

  14. Large anisotropy in colossal magnetoresistance of charge orbital ordered epitaxial Sm0.5Ca0.5MnO3 films

    Chen, Yunzhong; Sun, J.R.; Zhao, J.L.

    2009-01-01

    We investigated the structure and magnetotransport properties of Sm0.5Ca0.5MnO3 (SCMO) films epitaxially grown on (011)-oriented SrTiO3 substrates, which exhibited clear charge/orbital ordering transition. A significant anisotropy of ~1000 in the colossal magnetoresistance (CMR) effect was observ...

  15. Orthorhombic versus monoclinic symmetry of the charge-ordered state of NaV.sub.2./sub.O.sub.5./sub..

    van Smaalen, S.; Daniels, P.; Palatinus, Lukáš; Kremer, R. K.

    2002-01-01

    Roč. 65, č. 6 (2002), 060101/1-060101/4 ISSN 0163-1829 Grant - others:DFG and FCI(DE) XX Institutional research plan: CEZ:AV0Z1010914 Keywords : charge ordering * sodium vanadate * spin-ladder compound Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  16. Collective Dynamics and Strong Pinning near the Onset of Charge Order in La1.48Nd0.4Sr0.12CuO4

    Baity, P. G.; Sasagawa, T.; Popović, Dragana

    2018-04-01

    The dynamics of charge-ordered states is one of the key issues in underdoped cuprate high-temperature superconductors, but static short-range charge-order (CO) domains have been detected in almost all cuprates. We probe the dynamics across the CO (and structural) transition in La1.48Nd0.4Sr0.12CuO4 by measuring nonequilibrium charge transport, or resistance R as the system responds to a change in temperature and to an applied magnetic field. We find evidence for metastable states, collective behavior, and criticality. The collective dynamics in the critical regime indicates strong pinning by disorder. Surprisingly, nonequilibrium effects, such as avalanches in R , are revealed only when the critical region is approached from the charge-ordered phase. Our results on La1.48Nd0.4Sr0.12CuO4 provide the long-sought evidence for the fluctuating order across the CO transition, and also set important constraints on theories of dynamic stripes.

  17. Ferromagnetism in the two-dimensional periodic Anderson model

    Batista, C. D.; Bonca, J.; Gubernatis, J. E.

    2001-01-01

    Using the constrained-path Monte Carlo method, we studied the magnetic properties of the two-dimensional periodic Anderson model for electron fillings between 1/4 and 1/2. We also derived two effective low-energy theories to assist in interpreting the numerical results. For 1/4 filling, we found that the system can be a Mott or a charge-transfer insulator, depending on the relative values of the Coulomb interaction and the charge-transfer gap between the two noninteracting bands. The insulator may be a paramagnet or antiferromagnet. We concentrated on the effect of electron doping on these insulating phases. Upon doping we obtained a partially saturated ferromagnetic phase for low concentrations of conduction electrons. If the system were a charge-transfer insulator, we would find that the ferromagnetism is induced by the well-known Ruderman-Kittel-Kasuya-Yosida interaction. However, we found a novel correlated hopping mechanism inducing the ferromagnetism in the region where the nondoped system is a Mott insulator. Our regions of ferromagnetism spanned a much smaller doping range than suggested by recent slave boson and dynamical mean-field theory calculations, but they were consistent with that obtained by density-matrix renormalization group calculations of the one-dimensional periodic Anderson model

  18. Frequency effects on charge ordering in Y{sub 0.5}Ca{sub 0.5}MnO{sub 3} by impedance spectroscopy

    Sarwar, Tuba, E-mail: sarwartuba@gmail.com [EMMG, Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); DPAM, PIEAS, P. O. Nilore, Islamabad (Pakistan); Qamar, Afzaal [Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Nadeem, Muhammad [EMMG, Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan)

    2015-02-01

    In this work, structural and electrical properties of Y{sub 0.5}Ca{sub 0.5}MnO{sub 3} are investigated by employing X-ray diffraction and impedance spectroscopy, respectively. Applied ac electric field showed the charge ordering transition temperature around 265 K and below this temperature the heteromorphic behavior of the sample is discussed in the proximity of T{sub CO}. With frequency effects the volume of robust charge orbital ordering (COO) domains diminishes due to different competing phases along with Jahn Teller distortions. Comprehensive melting and collapse of charge orbital ordering occurs below T{sub N}(125 K), where a colossal drop in the value of impedance is observed. The change in profile of modulus plane plots determines the spreading of relaxation time of intermingled phases. Hopping mechanism is elaborated in terms of strong electron phonon coupling. Variable range hopping model and Arrhenius model are used to discuss the short and long range hopping between Mn{sup 3+} and Mn{sup 4+} channels assessing the activation energy E{sub a}. - Highlights: • Present study contains a detailed investigation over the electrical and structural properties of Y{sub 0.5}Ca{sub 0.5}MnO{sub 3} especially its behavior across the charge ordering transition. • Impedance measurements illustrate the comprehensive melting and collapse of robust charge orbital ordering with colossal drop in impedance. • In T{sub N}

  19. Micromagnetic simulation of exchange coupled ferri-/ferromagnetic heterostructures

    Oezelt, Harald, E-mail: harald.oezelt@fhstp.ac.at [Industrial Simulation, St. Pölten University of Applied Sciences, Matthias Corvinus-Straße 15, A-3100 St. Pölten (Austria); Kovacs, Alexander; Reichel, Franz; Fischbacher, Johann; Bance, Simon [Industrial Simulation, St. Pölten University of Applied Sciences, Matthias Corvinus-Straße 15, A-3100 St. Pölten (Austria); Gusenbauer, Markus [Center for Integrated Sensor Systems, Danube University Krems, Viktor Kaplan-Straße 2, A-2700 Wiener Neustadt (Austria); Schubert, Christian; Albrecht, Manfred [Institute of Physics, Chemnitz University of Technology, Reichenhainer Straße 70, D-09126 Chemnitz (Germany); Institute of Physics, University of Augsburg, Universitätsstraße 1, D-86159 Augsburg (Germany); Schrefl, Thomas [Industrial Simulation, St. Pölten University of Applied Sciences, Matthias Corvinus-Straße 15, A-3100 St. Pölten (Austria); Center for Integrated Sensor Systems, Danube University Krems, Viktor Kaplan-Straße 2, A-2700 Wiener Neustadt (Austria)

    2015-05-01

    Exchange coupled ferri-/ferromagnetic heterostructures are a possible material composition for future magnetic storage and sensor applications. In order to understand the driving mechanisms in the demagnetization process, we perform micromagnetic simulations by employing the Landau–Lifshitz–Gilbert equation. The magnetization reversal is dominated by pinning events within the amorphous ferrimagnetic layer and at the interface between the ferrimagnetic and the ferromagnetic layer. The shape of the computed magnetization reversal loop corresponds well with experimental data, if a spatial variation of the exchange coupling across the ferri-/ferromagnetic interface is assumed. - Highlights: • We present a model for exchange coupled ferri-/ferromagnetic heterostructures. • We incorporate the microstructural features of the amorphous ferrimagnet. • A distribution of interface exchange coupling is assumed to fit experimental data. • The reversal is dominated by pinning within the ferrimagnet and at the interface.

  20. Nature of the magnetic order in the charge-ordered cuprate La1.48Nd0.4Sr0.12CuO4

    Christensen, Niels Bech; Rønnow, H.M.; Mesot, J.

    2007-01-01

    Using polarized neutron scattering we establish that the magnetic order in La1.48Nd0.4Sr0.12CuO4 is either (i) one dimensionally modulated and collinear, consistent with the stripe model or (ii) two dimensionally modulated with a novel noncollinear structure. The measurements rule out a number...... of alternative models characterized by 2D electronic order or 1D helical spin order. The low-energy spin excitations are found to be primarily transversely polarized relative to the stripe ordered state, consistent with conventional spin waves....

  1. Distinct charge orders in the planes and chains of ortho-III-ordered YBa2Cu3O(6+δ) superconductors identified by resonant elastic x-ray scattering.

    Achkar, A J; Sutarto, R; Mao, X; He, F; Frano, A; Blanco-Canosa, S; Le Tacon, M; Ghiringhelli, G; Braicovich, L; Minola, M; Sala, M Moretti; Mazzoli, C; Liang, Ruixing; Bonn, D A; Hardy, W N; Keimer, B; Sawatzky, G A; Hawthorn, D G

    2012-10-19

    Recently, charge density wave (CDW) order in the CuO(2) planes of underdoped YBa(2)Cu(3)O(6+δ) was detected using resonant soft x-ray scattering. An important question remains: is the chain layer responsible for this charge ordering? Here, we explore the energy and polarization dependence of the resonant scattering intensity in a detwinned sample of YBa(2)Cu(3)O(6.75) with ortho-III oxygen ordering in the chain layer. We show that the ortho-III CDW order in the chains is distinct from the CDW order in the planes. The ortho-III structure gives rise to a commensurate superlattice reflection at Q=[0.33 0 L] whose energy and polarization dependence agrees with expectations for oxygen ordering and a spatial modulation of the Cu valence in the chains. Incommensurate peaks at [0.30 0 L] and [0 0.30 L] from the CDW order in the planes are shown to be distinct in Q as well as their temperature, energy, and polarization dependence, and are thus unrelated to the structure of the chain layer. Moreover, the energy dependence of the CDW order in the planes is shown to result from a spatial modulation of energies of the Cu 2p to 3d(x(2)-y(2)) transition, similar to stripe-ordered 214 cuprates.

  2. Ferroelectricity with Ferromagnetic Moment in Orthoferrites

    Tokunaga, Yusuke

    2010-03-01

    Exotic multiferroics with gigantic magnetoelectric (ME) coupling have recently been attracting broad interests from the viewpoints of both fundamental physics and possible technological application to next-generation spintronic devices. To attain a strong ME coupling, it would be preferable that the ferroelectric order is induced by the magnetic order. Nevertheless, the magnetically induced ferroelectric state with the spontaneous ferromagnetic moment is still quite rare apart from a few conical-spin multiferroics. To further explore multiferroic materials with both the strong ME coupling and spontaneous magnetization, we focused on materials with magnetic structures other than conical structure. In this talk we present that the most orthodox perovskite ferrite systems DyFeO3 and GdFeO3 have ``ferromagnetic-ferroelectric,'' i.e., genuinely multiferroic states in which weak ferromagnetic moment is induced by Dzyaloshinskii-Moriya interaction working on Fe spins and electric polarization originates from the striction due to symmetric exchange interaction between Fe and Dy (Gd) spins [1] [2]. Both materials showed large electric polarization (>0.1 μC/cm^2) and strong ME coupling. In addition, we succeeded in mutual control of magnetization and polarization with electric- and magnetic-fields in GdFeO3, and attributed the controllability to novel, composite domain wall structure. [4pt] [1] Y. Tokunaga et al., Phys. Rev. Lett. 101, 097205 (2008). [0pt] [2] Y. Tokunaga et al., Nature Mater. 8, 558 (2009).

  3. Magnetic impurity effect on charge and magnetic order in doped La1.5Ca0.5CoO4

    Horigane, K.; Hiraka, H.; Tomiyasu, K.; Ohoyama, K.; Louca, D.; Yamada, K.

    2012-02-01

    Neutron scattering experiments were performed on single crystals of magnetic impurity doped cobalt oxides La1.5Ca0.5CoO4 to characterize the charge and spin orders. We newly found contrasting impurity effects. Two types of magnetic peaks are observed at q = (0.5,0,L) with L = half-integer and integer in La1.5Ca0.5CoO4, while magnetic peak at L = half-integer (integer) was only observed in Mn (Fe)-substituted sample. Although Mn and Fe impurities degrade charge and magnetic order, Cr impurity stabilizes the ordering at x = 0.5. Based on the crystal structural analysis of Cr doped sample, we found that the excess oxygen and change of octahedron around Co3+ were realized in Cr doped sample.

  4. Phase separation, effects of magnetic field and high pressure on charge ordering in γ-Na0.5CoO2

    Yang, H.X.; Shi, Y.G.; Nie, C.J.; Wu, D.; Yang, L.X.; Dong, C.; Yu, H.C.; Zhang, H.R.; Jin, C.Q.; Li, J.Q.

    2005-01-01

    Transmission electron microscopy (TEM) observations reveal the presence of complex superstructures and remarkable phase separation in association with Na-ordering phenomenon in γ-Na 0.5 CoO 2 . Resistivity and magnetization measurements indicate that three phase transitions at the temperatures of 25, 53 and 90 K, respectively, appear commonly in γ-Na 0.5 CoO 2 samples. Under a high pressure up to 10 kbar, the low-temperature transport properties show certain changes below the charge order transition; under an applied magnetic field of 7 T, phase transitions at around 25 and 53 K, proposed fundamentally in connection with alternations of magnetic structure and charge ordering maintain almost unchanged

  5. Ferromagnetic shape memory materials

    Tickle, Robert Jay

    Ferromagnetic shape memory materials are a new class of active materials which combine the properties of ferromagnetism with those of a diffusionless, reversible martensitic transformation. These materials have been the subject of recent study due to the unusually large magnetostriction exhibited in the martensitic phase. In this thesis we report the results of experiments which characterize the magnetic and magnetomechanical properties of both austenitic and martensitic phases of ferromagnetic shape memory material Ni2MnGa. In the high temperature cubic phase, anisotropy and magnetostriction constants are determined for a range of temperatures from 50°C down to the transformation temperature, with room temperature values of K1 = 2.7 +/- 104 ergs/cm3 and lambda100 = -145 muepsilon. In the low temperature tetragonal phase, the phenomenon of field-induced variant rearrangement is shown to produce anomalous results when traditional techniques for determining anisotropy and magnetostriction properties are employed. The requirement of single variant specimen microstructure is explained, and experiments performed on such a specimen confirm a uniaxial anisotropy within each martensitic variant with anisotropy constant Ku = 2.45 x 106 ergs/cm3 and a magnetostriction constant of lambdasv = -288 +/- 73 muepsilon. A series of magnetomechanical experiments investigate the effects of microstructure bias, repeated field cycling, varying field ramp rate, applied load, and specimen geometry on the variant rearrangement phenomenon in the martensitic phase. In general, the field-induced strain is found to be a function of the variant microstructure. Experiments in which the initial microstructure is biased towards a single variant state with an applied load generate one-time strains of 4.3%, while those performed with a constant bias stress of 5 MPa generate reversible strains of 0.5% over a period of 50 cycles. An increase in the applied field ramp rate is shown to reduce the

  6. Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7

    Chang, Lieh-Jeng; Onoda, Shigeki; Su, Yixi; Kao, Ying-Jer; Tsuei, Ku-Ding; Yasui, Yukio; Kakurai, Kazuhisa; Lees, Martin Richard

    2012-01-01

    In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which can undergo Bose–Einstein condensation through a first-order transition via the Higgs mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid to a ferromagnet in single-crystal Yb2Ti2O7. Polarized neutron scattering experiments show that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are suddenly suppressed below TC~0.21 K, where magnetic Bragg peaks and a full depolarization of the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic transition. Our results are explained on the basis of a quantum spin-ice model, whose high-temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground state shows a nearly collinear ferromagnetism with gapped spin excitations. PMID:22871811

  7. The Roles of Structural Order and Intermolecular Interactions in Determining Ionization Energies and Charge-Transfer State Energies in Organic Semiconductors

    Graham, Kenneth

    2016-08-17

    The energy landscape in organic semiconducting materials greatly influences charge and exciton behavior, which are both critical to the operation of organic electronic devices. These energy landscapes can change dramatically depending on the phases of material present, including pure phases of one molecule or polymer and mixed phases exhibiting different degrees of order and composition. In this work, ultraviolet photoelectron spectroscopy measurements of ionization energies (IEs) and external quantum efficiency measurements of charge-transfer (CT) state energies (ECT) are applied to molecular photovoltaic material systems to characterize energy landscapes. The results show that IEs and ECT values are highly dependent on structural order and phase composition. In the sexithiophene:C60 system both the IEs of sexithiophene and C60 shift by over 0.4 eV while ECT shifts by 0.5 eV depending on molecular composition. By contrast, in the rubrene:C60 system the IE of rubrene and C60 vary by ≤0.11 eV and ECT varies by ≤0.04 eV as the material composition varies. These results suggest that energy landscapes can exist whereby the binding energies of the CT states are overcome by energy offsets between charges in CT states in mixed regions and free charges in pure phases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Tunability of Open-Shell Character, Charge Asymmetry, and Third-Order Nonlinear Optical Properties of Covalently Linked (Hetero)Phenalenyl Dimers.

    Minamida, Yuka; Kishi, Ryohei; Fukuda, Kotaro; Matsui, Hiroshi; Takamuku, Shota; Yamane, Masaki; Tonami, Takayoshi; Nakano, Masayoshi

    2018-02-06

    Tunability of the open-shell character, charge asymmetry, and third-order nonlinear optical (NLO) properties of covalently linked (hetero)phenalenyl dimers are investigated by using the density functional theory method. By changing the molecular species X and substitution position (i, j) for the linker part, a variety of intermonomer distances R and relative alignments between the phenalenyl dimers can be realized from the geometry optimizations, resulting in a wide-range tuning of diradical character y and charge asymmetry. It is found that the static second hyperpolarizabilities along the stacking direction, γ yyyy , are one-order enhanced for phenalenyl dimer systems exhibiting intermediate y, a feature that is in good agreement with the "y-γ correlation". By replacing the central carbon atoms of the phenalenyl rings with a boron or a nitrogen, we have also designed covalently linked heterophenalenyl dimers. The introduction of such a charge asymmetry to the open-shell systems, which leads to closed-shell ionic ground states, is found to further enhance the γ yyyy values of the systems having longer intermonomer distance R with intermediate ionic character, that is, charge asymmetry. The present results demonstrate a promising potential of covalently linked NLO dimers with intermediate open-shell/ionic characters as a new building block of highly efficient NLO systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Itinerant ferromagnetism in the narrow band limit

    Liu, S H

    2000-01-01

    It is shown that in the narrow band, strong interaction limit the paramagnetic state of an itinerant ferromagnet is described by the disordered local moment state. As a result, the Curie temperature is orders of magnitude lower than what is expected from the large exchange splitting of the spin bands. An approximate analysis has also been carried out for the partially ordered state, and the result explains the temperature evolvement of the magnetic contributions to the resistivity and low-energy optical conductivity of CrO sub 2.

  10. Charged Randall-Sundrum Braneworld Type II with Higher Order Curvature Corrections from Superstring Arguments and Dominated by Quintessence

    Rami, El-nabulsi Ahmad

    2010-01-01

    We discuss a new class of RSII braneworld cosmology exhibiting accelerated expansion and dominated by quintessence. It is explicitly demonstrated that the universe expansion history (transition from inflation to deceleration epoch to acceleration and effective quintessence era) may naturally occur in such unified theory for some classes of inverse scalar potentials. Besides a decaying effective cosmological constant, the model incorporates an increasing black hole mass, an increasing Maxwellian electrical charge with cosmic time and a time-dependent brane tension. The cosmological model exhibits several features of cosmological and astrophysical interest for both the early and late universe consistent with recent observations, in particular the ones concerned with the gravitational constants, black holes masses and charges and variation of the gauge coupling parameters with cosmic time. One interesting mark of the constructed model concerns the fact that a black hole mass surrounded by quintessence energy may increase with time even if the horizon disappears. (general)

  11. Study of coexistence of ferromagnetism and superconductivity in single-crystal ErRh4B4

    Sinha, S.K.; Crabtree, G.W.; Hinks, D.G.; Mook, H.

    1981-01-01

    Neutron diffraction and resistivity measurements on single crystals of ErRh 4 B 4 have revealed that both superconductivity and ferromagnetic order coexist in this material between 0.71 and 1.2 0 K. In this intermediate phase, a linear polarized modulated structure with a wavelength of approximately 100 A is observed. The modulated moment increases faster than the ferromagnetic moment down to 0.71 K and then disappears suddenly, with loss of superconductivity and a transition to a normal ferromagnetic state. This transition is accompanied by temperature hysteresis of about 60 mK. The same hysteresis, in the inverse sense, is exhibited by the ferromagnetic component. We interpret the intermediate phase as being one of coexisting normal ferromagnetic domains and superconducting sinusoidally ordered domains. Evidence of a small percentage of small ferromagnetic regions of size approx. 100 A is also seen in both the intermediate and ferromagnetic phases. 3 figures

  12. Optical orientation in ferromagnet/semiconductor hybrids

    Korenev, V L

    2008-01-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin–spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism

  13. Optical orientation in ferromagnet/semiconductor hybrids

    Korenev, V. L.

    2008-11-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin-spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism.

  14. Optical Orientation in Ferromagnet/Semiconductor Hybrids

    Korenev, V. L.

    2008-01-01

    The physics of optical pumping of semiconductor electrons in the ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of the ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of the semiconductor. Spin-spin interactions near the interface ferromagnet/semiconductor play crucial role in the optical readout and the manipulation of ferromagnetism.

  15. A more than six orders of magnitude UV-responsive organic field-effect transistor utilizing a benzothiophene semiconductor and Disperse Red 1 for enhanced charge separation.

    Smithson, Chad S; Wu, Yiliang; Wigglesworth, Tony; Zhu, Shiping

    2015-01-14

    A more than six orders of magnitude UV-responsive organic field-effect transistor is developed using a benzothiophene (BTBT) semiconductor and strong donor-acceptor Disperse Red 1 as the traps to enhance charge separation. The device can be returned to its low drain current state by applying a short gate bias, and is completely reversible with excellent stability under ambient conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Photoemission spectroscopy of the charge-ordering transition in Pr0.5Sr0.5MnO3

    Chainani, A.; Kumigashira, H.; Takahashi, T.; Tomioka, Y.; Kuwahara, H.; Tokura, Y.

    1996-01-01

    In this paper, the electronic structure of the magnetite Pr 0.5 Sr 0.5 MnO 3 across the charge ordering transition is studied using temperature-dependent photoemission spectroscopy. Ultra-violet photoemission spectroscopy have been performed as a function of temperature (25-300K) to investigate the changes in the single-particle density of states across the metal-nonmetal and the para-ferro transitions

  17. Energetics of charged order transition in Bi.sub.1-x./sub.Sr.sub.x./sub.MnO.sub.3./sub..

    Sedmidubský, D.; Strejc, A.; Beneš, O.; Růžička, K.; Hejtmánek, Jiří; Javorský, P.; Nevřiva, M.; Martin, C.

    2006-01-01

    Roč. 179, - (2006), s. 3764-3770 ISSN 0022-4596 R&D Projects: GA ČR(CZ) GA203/03/0924 EU Projects: European Commission(XE) HPRN-CT-2002-00293 - SCOOTMO Institutional research plan: CEZ:AV0Z10100521 Keywords : manganites * charge order * heat capacity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.107, year: 2006

  18. Ferromagnetic Objects Magnetovision Detection System.

    Nowicki, Michał; Szewczyk, Roman

    2013-12-02

    This paper presents the application of a weak magnetic fields magnetovision scanning system for detection of dangerous ferromagnetic objects. A measurement system was developed and built to study the magnetic field vector distributions. The measurements of the Earth's field distortions caused by various ferromagnetic objects were carried out. The ability for passive detection of hidden or buried dangerous objects and the determination of their location was demonstrated.

  19. Ferromagnetic Objects Magnetovision Detection System

    Michał Nowicki

    2013-12-01

    Full Text Available This paper presents the application of a weak magnetic fields magnetovision scanning system for detection of dangerous ferromagnetic objects. A measurement system was developed and built to study the magnetic field vector distributions. The measurements of the Earth’s field distortions caused by various ferromagnetic objects were carried out. The ability for passive detection of hidden or buried dangerous objects and the determination of their location was demonstrated.

  20. Non-ferromagnetic overburden casing

    Vinegar, Harold J.; Harris, Christopher Kelvin; Mason, Stanley Leroy

    2010-09-14

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for electrically insulating an overburden portion of a heater wellbore is described. The system may include a heater wellbore located in a subsurface formation and an electrically insulating casing located in the overburden portion of the heater wellbore. The casing may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the casing.

  1. The half-metallic ferromagnetism character in Be{sub 1−x}V{sub x}Y (Y=Se and Te) alloys: An ab-initio study

    Sajjad, M. [School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Manzoor, Sadia [Department of Physics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore (Pakistan); Zhang, H.X. [School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Noor, N.A. [Department of Physics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore (Pakistan); Alay-e-Abbas, S.M. [Department of Physics, GC University Faisalabad, Allama Iqbal Road, Faisalabad 38000 (Pakistan); Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan); Shaukat, A. [Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de Technologie, Université de Mascara, Mascara 29000 (Algeria)

    2015-04-01

    Ab-initio calculations for V-doped BeSe and BeTe semiconductors are performed by means of all-electrons full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method. The structural properties are optimized using the Wu-Cohen generalized gradient approximation functional, whereas modified Becke and Jhonson local density approximation functional has been employed for evaluating the spin-polarized electronic and magnetic properties. Magnetic stability at various doping concentrations in ferromagnetic (FM) and anti-ferromagnetic (AFM) ordering is investigated by comparing the minimum total energies and enthalpies of formation (ΔH). Studied band structures, density of states, total energy, exchange interactions and magnetic moments manifest both alloys with half-metallic ferromagnetic behavior. Moreover, their valance bands are found to be paired ferromagnetically with V atoms. Furthermore, it was observed that the magnetic moment of vanadium atom reduces from free space charge value due to p–d hybridization which yields small magnetic moments on the Be, Se and Te sites. - Highlights: • Density functional calculations for V-doped BeSe and BeTe are performed. • V-doped BeSe and BeTe are found to be stable half-metallic ferromagnetism. • Improved electronic properties are achieved using mBJLDA which confirm HMF. • The half-metallic gaps show non-linear variation with increasing dopant concentration.

  2. Charge ordering, ferroelectric, and magnetic domains in LuFe{sub 2}O{sub 4} observed by scanning probe microscopy

    Yang, I. K.; Jeong, Y. H., E-mail: yhj@postech.ac.kr [Department of Physics, POSTECH, 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); Kim, Jeehoon [Department of Physics, POSTECH, 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); CALDES, Institute of Basic Science, 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); Lee, S. H. [YE Team, Samsung Electronics, 1 Samsungjeonja-Ro, Hwaseong 445-330 (Korea, Republic of); Cheong, S.-W. [Laboratory of Pohang Emergent Materials, POSTECH, 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-04-13

    LuFe{sub 2}O{sub 4} is a multiferroic system which exhibits charge order, ferroelectricity, and ferrimagnetism simultaneously below ∼230 K. The ferroelectric/charge order domains of LuFe{sub 2}O{sub 4} are imaged with both piezoresponse force microscopy (PFM) and electrostatic force microscopy (EFM), while the magnetic domains are characterized by magnetic force microscopy (MFM). Comparison of PFM and EFM results suggests that the proposed ferroelectricity in LuFe{sub 2}O{sub 4} is not of usual displacive type but of electronic origin. Simultaneous characterization of ferroelectric/charge order and magnetic domains by EFM and MFM, respectively, on the same surface of LuFe{sub 2}O{sub 4} reveals that both domains have irregular patterns of similar shape, but the length scales are quite different. The domain size is approximately 100 nm for the ferroelectric domains, while the magnetic domain size is much larger and gets as large as 1 μm. We also demonstrate that the origin of the formation of irregular domains in LuFe{sub 2}O{sub 4} is not extrinsic but intrinsic.

  3. Frequency effects on charge ordering in Y0.5Ca0.5MnO3 by impedance spectroscopy

    Sarwar, Tuba; Qamar, Afzaal; Nadeem, Muhammad

    2015-02-01

    In this work, structural and electrical properties of Y0.5Ca0.5MnO3 are investigated by employing X-ray diffraction and impedance spectroscopy, respectively. Applied ac electric field showed the charge ordering transition temperature around 265 K and below this temperature the heteromorphic behavior of the sample is discussed in the proximity of TCO. With frequency effects the volume of robust charge orbital ordering (COO) domains diminishes due to different competing phases along with Jahn Teller distortions. Comprehensive melting and collapse of charge orbital ordering occurs below TN(125 K), where a colossal drop in the value of impedance is observed. The change in profile of modulus plane plots determines the spreading of relaxation time of intermingled phases. Hopping mechanism is elaborated in terms of strong electron phonon coupling. Variable range hopping model and Arrhenius model are used to discuss the short and long range hopping between Mn3+ and Mn4+ channels assessing the activation energy Ea.

  4. The half-metallic ferromagnetism character in Be1-xVxY (Y=Se and Te) alloys: An ab-initio study

    Sajjad, M.; Manzoor, Sadia; Zhang, H. X.; Noor, N. A.; Alay-e-Abbas, S. M.; Shaukat, A.; Khenata, R.

    2015-04-01

    Ab-initio calculations for V-doped BeSe and BeTe semiconductors are performed by means of all-electrons full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method. The structural properties are optimized using the Wu-Cohen generalized gradient approximation functional, whereas modified Becke and Jhonson local density approximation functional has been employed for evaluating the spin-polarized electronic and magnetic properties. Magnetic stability at various doping concentrations in ferromagnetic (FM) and anti-ferromagnetic (AFM) ordering is investigated by comparing the minimum total energies and enthalpies of formation (ΔH). Studied band structures, density of states, total energy, exchange interactions and magnetic moments manifest both alloys with half-metallic ferromagnetic behavior. Moreover, their valance bands are found to be paired ferromagnetically with V atoms. Furthermore, it was observed that the magnetic moment of vanadium atom reduces from free space charge value due to p-d hybridization which yields small magnetic moments on the Be, Se and Te sites.

  5. In-field X-ray and neutron diffraction studies of re-entrant charge-ordering and field induced metastability in La0.175Pr0.45Ca0.375MnO3-δ

    Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.

    2017-11-01

    Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been

  6. Inductive measurements of ferromagnetic resonance

    Woodward, R.C.; Kennewell, K.; Crew, D.C.; Stamps, R.L.

    2004-01-01

    Full text: The rapid advance in magnetic data storage has driven groundbreaking work in the science that underpins the properties of ferromagnetic materials at high frequencies. Recent work in this area has included the use of precession in order to produce ultra-high speed switching of magnetic elements, the generation of excited dynamical structures by application of inhomogeneous field pulses, and examination of the propagation of localized spin waves. This paper describes explorations of ultra-fast magnetization dynamics being undertaken at The University of Western Australia. We have studied the differences in magnetization dynamics in simple permalloy films when a sample is excited with sharp pulse compared to the to the dynamics generated by the application of a small amplitude continuous wave signal. We have observed a difference in the resonant frequency determined from these two excitations and will propose reasons for the different resonance responses of the system. Using the ultra-fast techniques described above we have measured dynamical properties that are significantly different to the static properties. These results are explained by the dynamical measurements being made on time scales smaller than the characteristic relaxation time. Future applications of these devices will be to examine broadening of line widths and frequency shifts associated with the excitation of magnetostatic modes, factors limiting quasiballistic reversal and differences between the dynamic and static properties of magnetic materials

  7. Effect of degree of order of silicon dioxide on localization processes of non-equilibrium charge carriers under the influence of gamma-radiation

    Garibov, A A; Agaev, T N

    1999-01-01

    The effect of the degree of order of SiO sub 2 on the localization process of non-equilibrium charge carriers (NCC) when exposed to gamma-quanta at 77 K has been investigated. It has been found that with decreasing SiO sub 2 structure degree of order, a localization probability of NCC increases. A contribution of surface defect states in SiO sub 2 to localization, migration and recombination annihilation processes of NCC induced by ionizing radiation has been determined.

  8. Flocking ferromagnetic colloids.

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S

    2017-02-01

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks).

  9. PREFACE: Half Metallic Ferromagnets

    Dowben, Peter

    2007-08-01

    Since its introduction by de Groot and colleagues in the early 1980s [1], the concept of half metallic ferromagnetism has attracted great interest. Idealized, half-metals have only one spin channel for conduction: the spin-polarized band structure exhibits metallic behavior for one spin channel, while the other spin band structure exhibits a gap at the Fermi level. Due to the gap for one spin direction, the density of states at the Fermi level has, theoretically, 100 & spin polarization. This gap in the density of states in one spin at the Fermi level, for example ↓ so N↓ (EF) = 0, also causes the resistance of that channel to go to infinity. At zero or low temperatures, the nonquasiparticle density of states (electron correlation effects), magnons and spin disorder reduce the polarization from the idealized 100 & polarization. At higher temperatures magnon-phonon coupling and irreversible compositional changes affect polarization further. Strategies for assessing and reducing the effects of finite temperatures on the polarization are now gaining attention. The controversies surrounding the polarization stability of half metallic ferromagnets are not, however, limited to the consideration of finite temperature effects alone. While many novel half metallic materials have been predicted, materials fabrication can be challenging. Defects, surface and interface segregation, and structural stability can lead to profound decreases in polarization, but can also suppress long period magnons. There is a 'delicate balance of energies required to obtain half metallic behaviour: to avoid spin flip scattering, tiny adjustments in atomic positions might occur so that a gap opens up in the other spin channel' [2]. When considering 'spintronics' devices, a common alibi for the study of half metallic systems, surfaces and interfaces become important. Free enthalpy differences between the surface and the bulk will lead to spin minority surface and interface states, as well as

  10. Spin waves in two-dimensional ferromagnet with large easy-plane anisotropy

    Fridman, Yu.A.; Spirin, D.V.

    2002-01-01

    Spin waves in easy-plane two-dimensional ferromagnet when anisotropy is much stronger than exchange are investigated. The spectra of magnons, the spin-spin and quadrupolar correlation functions have been derived. It is shown that in such a system there exist spin waves at low temperatures. Some properties of the quadrupolar ordering in ferromagnets are discussed

  11. Anomalous spin distribution in the superconducting ferromagnet UCoGe studied by polarized neutron diffraction

    Prokeš, K.; de Visser, A.; Huang, Y.K.; Fåk, B.; Ressouche, E.

    2010-01-01

    We report a polarized neutron-diffraction study conducted to reveal the nature of the weak ferromagnetic moment in the superconducting ferromagnet UCoGe. We find that the ordered moment in the normal phase in low magnetic fields (B∥c) is predominantly located at the U atom and has a magnitude of

  12. Coexistence of short- and long-range ferromagnetic order in nanocrystalline Fe{sub 2}Mn{sub 1−x}Cu{sub x}Al (x=0.0, 0.1 and 0.3) synthesized by high-energy ball milling

    Thanh, Tran Dang, E-mail: thanhxraylab@yahoo.com [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi (Viet Nam); Nanto, Dwi [Physics Education, Syarif Hidayatullah States Islamic University, Jakarta 15412 (Indonesia); Tuyen, Ngo Thi Uyen [Department of Natural Science, Nha Trang Pedagogic College, Nguyen Chanh, Nha Trang, Khanh Hoa (Viet Nam); Nan, Wen-Zhe [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Yu, YiKyung [Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093-0411 (United States); Tartakovsky, Daniel M., E-mail: dmt@ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093-0411 (United States); Yu, S.C., E-mail: scyu@cbnu.ac.kr [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi (Viet Nam)

    2015-11-15

    In this work, we prepared nanocrystalline Fe{sub 2}Mn{sub 1−x}Cu{sub x}Al (x=0.0, 0.1 and 0.3) powders by the high energy ball milling technique, and then studied their critical properties. Our analysis reveals that the increase of Cu-doping concentration (up to x=0.3) in these powders leads to a gradual increase of the ferromagnetic–paramagnetic transition temperature from 406 to 452 K. The Banerjee criterion suggests that all the samples considered undergo a second-order phase transition. A modified Arrott plot and scaling analysis indicate that the critical exponents (β=0.419 and 0.442, γ=1.082 and 1.116 for x=0.0 and 0.1, respectively) are located in between those expected for the 3D-Heisenberg and the mean-field models; the values of β=0.495 and γ=1.046 for x=0.3 sample are very close to those of the mean-field model. These features reveal the coexistence of the short- and long-range ferromagnetic order in the nanocrystalline Fe{sub 2}Mn{sub 1−x}Cu{sub x}Al powders. Particularly, as the concentration of Cu increases, values of the critical exponent shift towards those of the mean-field model. Such results prove the Cu doping favors establishing a long-range ferromagnetic order. - Highlights: • Fe{sub 2}Mn{sub 1−x}Cu{sub x}Al nanocrystals were prepared by a high energy ball milling method. • A coexistence of the short- and long-range FM order in the nanocrystals. • Cu doping favors establishing a long-range FM order in the nanocrystals. • All the ΔS{sub m}(T, H) data are followed a universal master curve.

  13. Nearest-neighbor Kitaev exchange blocked by charge order in electron-doped α -RuCl3

    Koitzsch, A.; Habenicht, C.; Müller, E.; Knupfer, M.; Büchner, B.; Kretschmer, S.; Richter, M.; van den Brink, J.; Börrnert, F.; Nowak, D.; Isaeva, A.; Doert, Th.

    2017-10-01

    A quantum spin liquid might be realized in α -RuCl3 , a honeycomb-lattice magnetic material with substantial spin-orbit coupling. Moreover, α -RuCl3 is a Mott insulator, which implies the possibility that novel exotic phases occur upon doping. Here, we study the electronic structure of this material when intercalated with potassium by photoemission spectroscopy, electron energy loss spectroscopy, and density functional theory calculations. We obtain a stable stoichiometry at K0.5RuCl3 . This gives rise to a peculiar charge disproportionation into formally Ru2 + (4 d6 ) and Ru3 + (4 d5 ). Every Ru 4 d5 site with one hole in the t2 g shell is surrounded by nearest neighbors of 4 d6 character, where the t2 g level is full and magnetically inert. Thus, each type of Ru site forms a triangular lattice, and nearest-neighbor interactions of the original honeycomb are blocked.

  14. Third-Order Transport with MAD Input: A Computer Program for Designing Charged Particle Beam Transport Systems

    Brown, Karl

    1998-10-28

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems.

  15. Giant proximity effect in ferromagnetic bilayers

    Ramos, Silvia; Charlton, Tim; Quintanilla, Jorge; Suter, Andreas; Moodera, Jagadeesh; Prokscha, Thomas; Salman, Zaher; Forgan, Ted

    2013-03-01

    The proximity effect is a phenomenon where an ordered state leaks from a material into an adjacent one over some finite distance, ξ. For superconductors, this distance is ~ the coherence length. Nevertheless much longer-range, ``giant'' proximity effects have been observed in cuprate junctions. This surprising effect can be understood as a consequence of critical opalescence. Since this occurs near all second order phase transitions, giant proximity effects should be very general and, in particular, they should be present in magnetic systems. The ferromagnetic proximity effect has the advantage that its order parameter (magnetization) can be observed directly. We investigate the above phenomenon in Co/EuS bilayer films, where both materials undergo ferromagnetic transitions but at rather different temperatures (bulk TC of 1400K for Co and 16.6K for EuS). A dramatic increase in the range of the proximity effect is expected near the TC of EuS. We present the results of our measurements of the magnetization profiles as a function of temperature, carried out using the complementary techniques of low energy muon rotation and polarized neutron reflectivity. Work supported by EPSRC, STFC and ONR grant N00014-09-1-0177 and NSF grant DMR 0504158.

  16. Dynamical response of vibrating ferromagnets

    Gaganidze, E; Ziese, M

    2000-01-01

    The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of t...

  17. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit.

    Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén; Klein, Dahlia R; Cheng, Ran; Seyler, Kyle L; Zhong, Ding; Schmidgall, Emma; McGuire, Michael A; Cobden, David H; Yao, Wang; Xiao, Di; Jarillo-Herrero, Pablo; Xu, Xiaodong

    2017-06-07

    Since the discovery of graphene, the family of two-dimensional materials has grown, displaying a broad range of electronic properties. Recent additions include semiconductors with spin-valley coupling, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semimetals with edge transport. However, no two-dimensional crystal with intrinsic magnetism has yet been discovered; such a crystal would be useful in many technologies from sensing to data storage. Theoretically, magnetic order is prohibited in the two-dimensional isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. Magnetic anisotropy removes this restriction, however, and enables, for instance, the occurrence of two-dimensional Ising ferromagnetism. Here we use magneto-optical Kerr effect microscopy to demonstrate that monolayer chromium triiodide (CrI 3 ) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 kelvin is only slightly lower than that of the bulk crystal, 61 kelvin, which is consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase, highlighting thickness-dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI 3 displays suppressed magnetization with a metamagnetic effect, whereas in trilayer CrI 3 the interlayer ferromagnetism observed in the bulk crystal is restored. This work creates opportunities for studying magnetism by harnessing the unusual features of atomically thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering to produce interface phenomena.

  18. Magnetic memory signals variation induced by applied magnetic field and static tensile stress in ferromagnetic steel

    Huang, Haihong; Yang, Cheng; Qian, Zhengchun; Han, Gang; Liu, Zhifeng

    2016-01-01

    Stress can induce a spontaneous magnetic field in ferromagnetic steel under the excitation of geomagnetic field. In order to investigate the impact of applied magnetic field and tensile stress on variation of the residual magnetic signals on the surface of ferromagnetic materials, static tensile tests of Q235 structural steel were carried out, with the normal component of the residual magnetic signals, H p (y), induced by applied magnetic fields with different intensities measured through the tensile tests. The H p (y), its slope coefficient K S and maximum gradient K max changing with the applied magnetic field H and tensile stress were observed. Results show that the magnitude of H p (y) and its slope coefficient K S increase linearly with the increase of stress in the elastic deformation stage. Under yield stress, H p (y) and K S reach its maximum, and then decrease slightly with further increase of stress. Applied magnetic field affects the magnitude of H p (y) instead of changing the signal curve′s profile; and the magnitude of H p (y), K S , K max and the change rate of K S increase with the increase of applied magnetic field. The phenomenon is also discussed from the viewpoint of magnetic charge in ferromagnetic materials. - Highlights: • We investigated how applied magnetic field and tensile stress impact H p (y) signals. • Magnitude of H p (y), K S and K max increase with the increase of applied magnetic field. • Both applied magnetic field and tensile stress impact material magnetic permeability. • Applied magnetic field can help to evaluate the stress distribution of components.

  19. Magnetic memory signals variation induced by applied magnetic field and static tensile stress in ferromagnetic steel

    Huang, Haihong, E-mail: huanghaihong@hfut.edu.cn; Yang, Cheng; Qian, Zhengchun; Han, Gang; Liu, Zhifeng

    2016-10-15

    Stress can induce a spontaneous magnetic field in ferromagnetic steel under the excitation of geomagnetic field. In order to investigate the impact of applied magnetic field and tensile stress on variation of the residual magnetic signals on the surface of ferromagnetic materials, static tensile tests of Q235 structural steel were carried out, with the normal component of the residual magnetic signals, H{sub p}(y), induced by applied magnetic fields with different intensities measured through the tensile tests. The H{sub p}(y), its slope coefficient K{sub S} and maximum gradient K{sub max} changing with the applied magnetic field H and tensile stress were observed. Results show that the magnitude of H{sub p}(y) and its slope coefficient K{sub S} increase linearly with the increase of stress in the elastic deformation stage. Under yield stress, H{sub p}(y) and K{sub S} reach its maximum, and then decrease slightly with further increase of stress. Applied magnetic field affects the magnitude of H{sub p}(y) instead of changing the signal curve′s profile; and the magnitude of H{sub p}(y), K{sub S}, K{sub max} and the change rate of K{sub S} increase with the increase of applied magnetic field. The phenomenon is also discussed from the viewpoint of magnetic charge in ferromagnetic materials. - Highlights: • We investigated how applied magnetic field and tensile stress impact H{sub p}(y) signals. • Magnitude of H{sub p}(y), K{sub S} and K{sub max} increase with the increase of applied magnetic field. • Both applied magnetic field and tensile stress impact material magnetic permeability. • Applied magnetic field can help to evaluate the stress distribution of components.

  20. Extension of the self-consistent-charge density-functional tight-binding method: third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction.

    Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus

    2007-10-25

    The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.

  1. The ferromagnetic-spin glass transition in PdMn alloys: symmetry breaking of ferromagnetism and spin glass studied by a multicanonical method.

    Kato, Tomohiko; Saita, Takahiro

    2011-03-16

    The magnetism of Pd(1-x)Mn(x) is investigated theoretically. A localized spin model for Mn spins that interact with short-range antiferromagnetic interactions and long-range ferromagnetic interactions via itinerant d electrons is set up, with no adjustable parameters. A multicanonical Monte Carlo simulation, combined with a procedure of symmetry breaking, is employed to discriminate between the ferromagnetic and spin glass orders. The transition temperature and the low-temperature phase are determined from the temperature variation of the specific heat and the probability distributions of the ferromagnetic order parameter and the spin glass order parameter at different concentrations. The calculation results reveal that only the ferromagnetic phase exists at x glass phase exists at x > 0.04, and that the two phases coexist at intermediate concentrations. This result agrees semi-quantitatively with experimental results.

  2. Magnetic excitations in ferromagnetic semiconductors

    Furdyna, J.K.; Liu, X.; Zhou, Y.Y.

    2009-01-01

    Magnetic excitations in a series of GaMnAs ferromagnetic semiconductor films were studied by ferromagnetic resonance (FMR). Using the FMR approach, multi-mode spin wave resonance spectra have been observed, whose analysis provides information on magnetic anisotropy (including surface anisotropy), distribution of magnetization precession within the GaMnAs film, dynamic surface spin pinning (derived from surface anisotropy), and the value of exchange stiffness constant D. These studies illustrate a combination of magnetism and semiconductor physics that is unique to magnetic semiconductors

  3. Reorientation of magnetization with temperature in 2D ferromagnets

    Fridman, Yu. A.; Spirin, D.V.; Klevets, Ph. N.

    2002-01-01

    We investigated 2D Heisenberg ferromagnet (monolayer) with the account of dipolar forces and uniaxial anisotropy and found a reorientation phase transition in temperature from out-of-plane to in-plane phase. This phase transition is of the first order with hysteresis. We estimated the temperatures of switching both analytically and numerically

  4. Anomalous Hall effect and Nernst effect in itinerant ferromagnets

    Asamitsu, A.; Miyasato, T.; Abe, N.; Fujii, T.; Onose, Y.; Onoda, S.; Nagaosa, N.; Tokura, Y.

    2007-01-01

    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in many ferromagnetic metals including pure metals, oxides, and calcogenides, are studied to obtain unified understandings of their origins. We show the universal behavior of anomalous Hall conductivity σ xy as a function of longitudinal conductivity σ xx over six orders of magnitude, which is well reproduced by rigorous unified theory assuming both intrinsic and extrinsic contributions to the AHE. ANE is closely related with AHE and gives us further information about the electronic state in the ground state of ferromagnets. The temperature dependence of transverse Peltier coefficient α xy shows almost similar behavior among various ferromagnets and this behavior is expected from a conventional Boltzmann transport theory

  5. Development of an engineering model for ferromagnetic shape memory alloys

    Tani, Yoshiaki; Todaka, Takashi; Enokizono, Masato

    2008-01-01

    This paper presents a relationship among stress, temperature and magnetic properties of a ferromagnetic shape memory alloy. In order to derive an engineering model of ferromagnetic shape memory alloys, we have developed a measuring system of the relationship among stress, temperature and magnetic properties. The samples used in this measurement are Fe68-Ni10-Cr9-Mn7-Si6 wt% ferromagnetic shape memory alloy. They are thin ribbons made by rapid cooling in air. In the measurement, the ribbon sample is inserted into a sample holder winding consisting of the B-coil and compensation coils, and magnetized in an open solenoid coil. The ribbon is stressed with attachment weights and heated with a heating wire. The specific susceptibility was increased by applying tension, and slightly increased by heating below the Curie temperature

  6. Anomalous Hall effect and Nernst effect in itinerant ferromagnets

    Miyasato, T.; Abe, N.; Fujii, T.; Asamitsu, A.; Onose, Y.; Onoda, S.; Nagaosa, N.; Tokura, Y.

    2007-01-01

    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in many ferromagnetic metals including pure metals, oxides, and chalcogenides, are studied to obtain unified understandings of their origins. We show the universal behavior of anomalous Hall conductivity σ xy as a function of longitudinal conductivity σ xx over six orders of magnitude, which is well reproduced by a recent theory assuming both the intrinsic and extrinsic contributions to the AHE. ANE is closely related with AHE and gives us further information about the electronic state in the ground state of ferromagnets. The temperature dependence of transverse Peltier coefficient α xy shows almost similar behavior among various ferromagnets, and this behavior is expected from a conventional Boltzmann transport theory

  7. 1D ferromagnetic edge contacts to 2D graphene/h-BN heterostructures

    Karpiak, Bogdan; Dankert, André; Cummings, Aron W.; Power, Stephen R.; Roche, Stephan; Dash, Saroj P.

    2018-03-01

    We report the fabrication of one-dimensional (1D) ferromagnetic edge contacts to two-dimensional (2D) graphene/h-BN heterostructures. While aiming to study spin injection/detection with 1D edge contacts, a spurious magnetoresistance signal was observed, which is found to originate from the local Hall effect in graphene due to fringe fields from ferromagnetic edge contacts and in the presence of charge current spreading in the nonlocal measurement configuration. Such behavior has been confirmed by the absence of a Hanle signal and gate-dependent magnetoresistance measurements that reveal a change in sign of the signal for the electron- and hole-doped regimes, which is in contrast to the expected behavior of the spin signal. Calculations show that the contact-induced fringe fields are typically on the order of hundreds of mT, but can be reduced below 100 mT with careful optimization of the contact geometry. There may be an additional contribution from magnetoresistance effects due to tunneling anisotropy in the contacts, which needs further investigation. These studies are useful for optimization of spin injection and detection in 2D material heterostructures through 1D edge contacts.

  8. Changes in charge density vs changes in formal oxidation states: The case of Sn halide perovskites and their ordered vacancy analogues

    Dalpian, Gustavo M.; Liu, Qihang; Stoumpos, Constantinos C.; Douvalis, Alexios P.; Balasubramanian, Mahalingam; Kanatzidis, Mercouri G.; Zunger, Alex

    2017-07-01

    Shifting the Fermi energy in solids by doping, defect formation, or gating generally results in changes in the charge density distribution, which reflect the ability of the bonding pattern in solids to adjust to such external perturbations. In the traditional chemistry textbook, such changes are often described by the formal oxidation states (FOS) whereby a single atom type is presumed to absorb the full burden of the perturbation (change in charge) of the whole compound. In the present paper, we analyze the changes in the position-dependence charge density due to shifts of the Fermi energy on a general physical basis, comparing with the view of the FOS picture. We use the halide perovskites CsSnX3 (X = F, Cl, Br, I) as examples for studying the general principle. When the solar absorber CsSnI3 (termed 113) loses 50% of its Sn atoms, thereby forming the ordered vacancy compound Cs2SnI6 (termed 216), the Sn is said in the FOS picture to change from Sn(II) to Sn(IV). To understand the electronic properties of these two groups we studied the 113 and 216 compound pairs CsSnCl3 and Cs2SnCl6, CsSnBr3 and Cs2SnBr6, and CsSnI3 and Cs2SnI6, complementing them by CsSnF3 and Cs2SnF6 in the hypothetical cubic structure for completing the chemical trends. These materials were also synthesized by chemical routes and characterized by x-ray diffraction, 119Sn-Mössbauer spectroscopy, and K-edge x-ray absorption spectroscopy. We find that indeed in going from 113 to 216 (equivalent to the introduction of two holes per unit) there is a decrease in the s charge on Sn, in agreement with the FOS picture. However, at the same time, we observe an increase of the p charge via downshift of the otherwise unoccupied p level, an effect that tends to replenish much of the lost s charge. At the end, the change in the charge on the Sn site as a result of adding two holes to the unit cell is rather small. This effect is theoretically explained as a “self-regulating response” [Raebiger, Lany

  9. Ab initio calculations of half-metallic ferromagnetism in Cr-doped MgSe and MgTe semiconductors

    Noor, N.A. [Department of Physics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore (Pakistan); Alay-e-Abbas, S.M. [Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan); Department of Physics, GC University Faisalabad, Allama Iqbal Road, Faisalabad 38000 (Pakistan); Sohaib, M.U. [Lahore Development Authority, 54590 Lahore (Pakistan); Ghulam Abbas, S.M. [Department of Chemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Shaukat, A., E-mail: schaukat@gmail.com [Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan)

    2015-01-15

    The full-potential linear-augmented-plane-waves plus local-orbitals (FP-LAPW+lo) method has been employed for investigation of half-metallic ferromagnetism in Cr-doped ordered zinc-blende MgSe and MgTe semiconductors. Calculations of exchange and correlation (XC) effects have been carried out using generalized gradient approximation (GGA) and orbital independent modified Becke–Johnson potential coupled with local (spin) density approximation (mBJLDA). The thermodynamic stability of the compounds and their preferred magnetic orders have been analyzed in terms of the heat of formation and minimum total energy difference in ferromagnetic (FM) and anti-ferromagnetic (AFM) ordering, respectively. Calculated electronic properties reveal that the Cr-doping induces ferromagnetism in MgSe and MgTe which gives rise to a half-metallic (HM) gap at Fermi level (E{sub F}). Further, the electronic band structure is discussed in terms of s (p)–d exchange constants that are consistent with typical magneto-optical experiment and the behavior of charge spin densities is presented for understanding the bonding nature. Our results demonstrate that the higher effective potential for the spin-down case is responsible for p–d exchange splitting. Total magnetic moment (mainly due to Cr-d states) of these compounds is 4µ{sub B}. Importantly, the electronic properties and HM gap obtained using mBJLDA show remarkable improvement as compared to the results obtained using standard GGA functional. - Highlights: • Spin effect theoretical study on Cr-doped MgSe and MgTe is performed. • Half-metallic ferromagnetism in Cr{sub x}Mg{sub 1−x}Se and Cr{sub x}Mg{sub 1−x}Te is established. • Results of WC-GGA and mBJLDA are compared for performance. • HM gaps for Cr{sub x}Mg{sub 1−x}Se and Cr{sub x}Mg{sub 1−x}Te show nonlinear variation with x. • Important values of exchange splitting/constants and moments are reported.

  10. Charge and structural ordering in the brownmillerite phases: La1-xSrxMnO2.5 (0.2

    Casey, Peter S.; Barker, Daniel; Hayward, Michael A.

    2006-01-01

    The topotactic reduction of La 1-x Sr x MnO 3 (0.2 1-x Sr x MnO 2.5 brownmillerite phases with NaH is described. Neutron and electron diffraction data show the x=0.25 and 0.2 phases adopt structures with an unusual ordered L-R-L-R alternation of twisted chains of Mn(II) tetrahedra within each anion-deficient layer. This is accompanied by Mn(II)/(III) charge ordering within the remaining MnO 6 octahedral layers. In contrast, the x=0.4 phase adopts a structure in which the twisted chains of tetrahedra are disordered

  11. On the relations among the pseudogap, electronic charge order and Fermi-arc superconductivity in Bi2Sr2CaCu2O8+δ

    Oda, M; Liu, Y H; Kurosawa, T; Takeyama, K; Ido, M; Momono, N

    2008-01-01

    On the basis of STM/STS, break-junction tunneling and electronic Raman scattering experiments on Bi 2 Sr 2 CaCu 2 O 8+δ reported so far, we suggest that the static, electronic charge order is associated with inhomogeneous electronic states on antinodal parts of the Fermi surface that are outside the Fermi-arc around the node and responsible for the pseudogap, and coexists with the homogeneous superconductivity caused by the pairing of coherent quasiparticles on the Fermi-arc, the so-called 'Fermi-arc superconductivity', in the real space, although the two electronic orders or the corresponding energy gaps compete with each other in the k-space

  12. Next-to-leading-order electroweak corrections to the production of four charged leptons at the LHC

    Biedermann, Benedikt; Denner, Ansgar [Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, 97074 Würzburg (Germany); Dittmaier, Stefan [Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg (Germany); Hofer, Lars [Institut de Ciències del Cosmo (ICCUB), Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona - UB, 08028 Barcelona (Spain); Jäger, Barbara [Institut für Theoretische Physik, Eberhard Karls Universität Tübingen, 72076 Tübingen (Germany)

    2017-01-09

    We present a state-of-the-art calculation of the next-to-leading-order electroweak corrections to ZZ production, including the leptonic decays of the Z bosons into μ{sup +}μ{sup −}e{sup +}e{sup −} or μ{sup +}μ{sup −}μ{sup +}μ{sup −} final states. We use complete leading-order and next-to-leading-order matrix elements for four-lepton production, including contributions of virtual photons and all off-shell effects of Z bosons, where the finite Z-boson width is taken into account using the complex-mass scheme. The matrix elements are implemented into Monte Carlo programs allowing for the evaluation of arbitrary differential distributions. We present integrated and differential cross sections for the LHC at 13 TeV both for an inclusive setup where only lepton identification cuts are applied, and for a setup motivated by Higgs-boson analyses in the four-lepton decay channel. The electroweak corrections are divided into photonic and purely weak contributions. The former show the well-known pronounced tails near kinematical thresholds and resonances; the latter are generically at the level of ∼−5% and reach several −10% in the high-energy tails of distributions. Comparing the results for μ{sup +}μ{sup −}e{sup +}e{sup −} and μ{sup +}μ{sup −}μ{sup +}μ{sup −} final states, we find significant differences mainly in distributions that are sensitive to the μ{sup +}μ{sup −} pairing in the μ{sup +}μ{sup −}μ{sup +}μ{sup −} final state. Differences between μ{sup +}μ{sup −}e{sup +}e{sup −} and μ{sup +}μ{sup −}μ{sup +}μ{sup −} channels due to interferences of equal-flavour leptons in the final state can reach up to 10% in off-shell-sensitive regions. Contributions induced by incoming photons, i.e. photon-photon and quark-photon channels, are included, but turn out to be phenomenologically unimportant.

  13. f-electron-nuclear hyperfine-coupled multiplets in the unconventional charge order phase of filled skutterudite PrRu4P12

    Aoki, Yuji; Namiki, Takahiro; Saha, Shanta R.; Sato, Hideyuki; Tayama, Takashi; Sakakibara, Toshiro; Shiina, Ryousuke; Shiba, Hiroyuki; Sugawara, Hitoshi

    2011-01-01

    The filled skutterudite PrRu 4 P 12 is known to undergo an unconventional charge order phase transition at 63 K, below which two sublattices with distinct f-electron crystalline-electric-field ground states are formed. In this paper, we study experimentally and theoretically the properties of the charge order phase at very low temperature, particularly focusing on the nature of the degenerate triplet ground state on one of the sublattices. First, we present experimental results of specific heat and magnetization measured with high quality single crystals. In spite of the absence of any symmetry breaking, the specific heat shows a peak structure at T p =0.30 K in zero field; it shifts to higher temperatures as the magnetic field is applied. In addition, the magnetization curve has a remarkable rounding below 1 T. Then, we study the origin of these experimental findings by considering the hyperfine interaction between 4f electron and nuclear spin. We demonstrate that the puzzling behaviors at low temperatures can be well accounted for by the formation of 4f-electron-nuclear hyperfine-coupled multiplets, the first thermodynamical observation of its kind. (author)

  14. Room Temperature Ferromagnetic Mn:Ge(001

    George Adrian Lungu

    2013-12-01

    Full Text Available We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001, heated at relatively high temperature (starting with 250 °C. The samples were characterized by low energy electron diffraction (LEED, scanning tunneling microscopy (STM, high resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, superconducting quantum interference device (SQUID, and magneto-optical Kerr effect (MOKE. Samples deposited at relatively elevated temperature (350 °C exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001 crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001. The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  15. Itinerant ferromagnetism in fermionic systems with SP (2 N) symmetry

    Yang, Wang; Wu, Congjun

    The Ginzburg-Landau free energy of systems with SP (2 N) symmetry describes a second order phase transition on the mean field level, since the Casimir invariants of the SP (2 N) group can be only of even order combinations of the generators of the SP (2 N) group. This is in contrast with systems having the SU (N) symmetry, where the allowance of cubic term generally makes the phase transition into first order. In this work, we consider the Hertz-Millis type itinerant ferromagnetism in an interacting fermionic system with SP (2 N) symmetry, where the ferromagnetic orders are enriched by the multi-component nature of the system. The quantum criticality is discussed near the second order phase transition point.

  16. Ferromagnetic Swimmers - Devices and Applications

    Hamilton, Joshua; Petrov, Peter; Winlove, C. Peter; Gilbert, Andrew; Bryan, Matthew; Ogrin, Feodor

    2017-11-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. We propose a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. Experimentally, these devices (3.6 mm) are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters and demonstrate stable propulsion over a wide range of Reynolds numbers. Manipulation of the external magnetic field resulted in robust control over the speed and direction of propulsion. We also demonstrate our ferromagnetic swimmer working as a macroscopic prototype of a microfluidic pump. By physically tethering the swimmer, instead of swimming, the swimmer generates a directional flow of liquid around itself.

  17. Ferromagnetic resonance in low interacting permalloy nanowire arrays

    Raposo, V.; Zazo, M.; Flores, A. G.; Iñiguez, J. [Departamento de Física Aplicada, University of Salamanca, E-37071 Salamanca (Spain); Garcia, J.; Vega, V.; Prida, V. M. [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain)

    2016-04-14

    Dipolar interactions on magnetic nanowire arrays have been investigated by various techniques. One of the most powerful techniques is the ferromagnetic resonance spectroscopy, because the resonance field depends directly on the anisotropy field strength and its frequency dependence. In order to evaluate the influence of magnetostatic dipolar interactions among ferromagnetic nanowire arrays, several densely packed hexagonal arrays of NiFe nanowires have been prepared by electrochemical deposition filling self-ordered nanopores of alumina membranes with different pore sizes but keeping the same interpore distance. Nanowires’ diameter was changed from 90 to 160 nm, while the lattice parameter was fixed to 300 nm, which was achieved by carefully reducing the pore diameter by means of Atomic Layer Deposition of conformal Al{sub 2}O{sub 3} layers on the nanoporous alumina templates. Field and frequency dependence of ferromagnetic resonance have been studied in order to obtain the dispersion diagram which gives information about anisotropy, damping factor, and gyromagnetic ratio. The relationship between resonance frequency and magnetic field can be explained by the roles played by the shape anisotropy and dipolar interactions among the ferromagnetic nanowires.

  18. Charge ordering and multiferroicity in Fe{sub 3}BO{sub 5} and Fe{sub 2}MnBO{sub 5} oxyborates

    Maignan, A., E-mail: antoine.maignan@ensicaen.fr [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN/UNICAEN, 6 bd du Maréchal Juin, 14050 CAEN Cedex 4 (France); Lainé, F.; Guesdon, A.; Malo, S. [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN/UNICAEN, 6 bd du Maréchal Juin, 14050 CAEN Cedex 4 (France); Damay, F. [Laboratoire Léon Brillouin, UMR 12, LLB-Saclay, 91191 GIF-SUR-YVETTE Cedex (France); Martin, C. [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN/UNICAEN, 6 bd du Maréchal Juin, 14050 CAEN Cedex 4 (France)

    2017-02-15

    The comparison of Fe{sub 3}BO{sub 5} and Fe{sub 2}MnBO{sub 5} reveals that the 2Fe{sup 2+}: Fe{sup 3+} charge ordering of the former is suppressed in the latter. Spin dynamics probed by ac susceptibility are strongly affected by the substitution, inducing superparamagnetism at low temperature in Fe{sub 2}MnBO{sub 5}. Interestingly, for both oxyborates, glassiness is observed in the dielectric properties at low temperature, but only Fe{sub 3}BO{sub 5} shows a magnetodielectric effect close to its lower magnetic transition. A change in the electrical polarization, measured by pyroelectric current integration, is observed in Fe{sub 3}BO{sub 5} and is even more pronounced in Fe{sub 2}MnBO{sub 5}. Such results suggest that these oxyborates behave like antiferromagnetic relaxor ferroelectrics. These features are proposed to be related to the distribution of the species (Fe{sup 3+}, Fe{sup 2+} and Mn{sup 2+}) over the four transition metal sites forming the ludwigite structure. - Graphical abstract: 90 K [010] electron diffraction patterns of Fe{sub 3}BO{sub 5}. The yellow arrows in the pattern indicate the extra-spots corresponding to the superstructure induced by the charge ordering. - Highlights: • The TEM (ED) study of the Fe{sub 3}BO{sub 5} oxyborate at 90 K reveals a superstructure related to a Fe{sup 2+}/Fe{sup 3+} ordering. • The Fe{sub 2}MnBO{sub 5}, Mn-substituted counterpart, does not show such ordering. • Our magnetic and electric measurements demonstrate that these magnetic ferrites exhibit glassiness in their charges (relaxor-type) with additional superparamagnetism at low T for Fe{sub 2}MnBO{sub 5} and magnetodielectric coupling near T{sub N2}=72 K in Fe{sub 3}BO{sub 5}. • The pyroelectric measurements confirm the existence of a ferroelectric behavior in these antiferromagnets. Accordingly, our results open the route to the study of other large class of the M{sub 2}{sup 2+}M’{sup 3+}BO{sub 5} ludwigites and to their complex magnetism and its

  19. Strain-Induced Ferromagnetism in Antiferromagnetic LuMnO3 Thin Films

    White, J. S.; Bator, M.; Hu, Y.; Luetkens, H.; Stahn, J.; Capelli, S.; Das, S.; Döbeli, M.; Lippert, Th.; Malik, V. K.; Martynczuk, J.; Wokaun, A.; Kenzelmann, M.; Niedermayer, Ch.; Schneider, C. W.

    2013-07-01

    Single phase and strained LuMnO3 thin films are discovered to display coexisting ferromagnetic and antiferromagnetic orders. A large moment ferromagnetism (≈1μB), which is absent in bulk samples, is shown to display a magnetic moment distribution that is peaked at the highly strained substrate-film interface. We further show that the strain-induced ferromagnetism and the antiferromagnetic order are coupled via an exchange field, therefore demonstrating strained rare-earth manganite thin films as promising candidate systems for new multifunctional devices.

  20. Josephson junctions with ferromagnetic interlayer

    Wild, Georg Hermann

    2012-01-01

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO x /Pd 0.82 Ni 0.18 /Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to π-coupling is observed for a thickness d F =6 nm of the ferromagnetic Pd 0.82 Ni 0.18 interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd 0.82 Ni 0.18 has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  1. Josephson junctions with ferromagnetic interlayer

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  2. Ferromagnetic behavior in linear charge-transfer complexes. Structural and magnetic characterization of octamethylferrocene salts: (Fe(C sub 5 Me sub 4 H) sub 2 ) sup sm bullet + (A) sup sm bullet minus (A = TCNE, TCNQ)

    Miller, J.S.; Glatzhofer, D.T.; O' Hare, D.M. (E.I. de Pont de Nemours and Co., Inc., Wilmington, DE (USA)); Reiff, W.M. (Northeastern Univ., Boston, MA (USA)); Chakraborty, A.; Epstein, A.J. (Ohio Sate Univ., Columbus (USA))

    1989-07-26

    The reaction of Fe{sup II}({eta}{sup 5}-C{sub 5}Me{sub 4}H){sub 2} with cyano acceptors A (A = TCNE (tetracyanoethylene), TCNQ (7,7,8,8-tetracyano-p-quanodimethane), n-C{sub 4}(CN){sub 6} (n-hexacyanobutadiene), C{sub 6}(CN){sub 6} (tris(dicyanomethylene)cyclopropane), DDQ (2,3-dichloro-5,6-dicyanobenzoquinone), TCNQF{sub 4} (perfluoro-7,7,8,8-tetracyano-p-quinodimethane) results in formation of 1:1 charge-transfer salts of (Fe{sup III})(C{sub 5}Me{sub 4}H){sub 2}){sup {sm bullet}+}(A){sup {sm bullet}{minus}} composition. The TCNE and TCNQ complexes have been structurally characterized. The high-temperature magnetic susceptibility for polycrystalline samples of these complexes can be fit by the Curie-Qeiss law, {chi} = C(T-{theta}){sup {minus}1}, with {theta} = +0.5 {plus minus} 2.2 K, and {mu}{sub eff} ranges from 2.71 to 3.97 {mu}{sub B}, suggesting that the polycrystalline samples measured had varying degrees of orientation. The 7.0 K EPR spectrum of the radical cation exhibits an axially symmetric powder pattern with g{sub {parallel}} = 4.11 and g{sub {perpendicular}} = 1.42, and the EPR parameters are essentially identical with those reported for ferrocenium and decamethylferrocenium. No EPR spectrum is observed at 78 K. Akin to the (Fe(C{sub 5}Me{sub 5}){sub 2}){sup {sm bullet}+} salts, these salts have {sup 57}Fe Moessbauer spectra consistent with complete charge transfer; however, unlike the case for the former complexes, quadrupole splittings of 0.30 and 0.220 mm/s are observed at 4.8 and 298 K, respectively. The absence of strong interionic magnetic coupling for the (Fe(C{sub 5}Me{sub 4}H){sub 2}){sup {sm bullet}+} salts contrasts with the behavior of the (Fe(C{sub 5}Me{sub 5}){sub 2}){sup {sm bullet}+} salts. 26 refs., 13 figs., 8 tabs.

  3. Energy gap of ferromagnet-superconductor bilayers

    Halterman, Klaus; Valls, Oriol T

    2003-10-15

    The excitation spectrum of clean ferromagnet-superconductor bilayers is calculated within the framework of the self-consistent Bogoliubov-de Gennes theory. Because of the proximity effect, the superconductor induces a gap in the ferromagnet spectrum, for thin ferromagnetic layers. The effect depends strongly on the exchange field in the ferromagnet. We find that as the thickness of the ferromagnetic layer increases, the gap disappears, and that its destruction arises from those quasiparticle excitations with wave vectors mainly along the interface. We discuss the influence that the interface quality and Fermi energy mismatch between the ferromagnet and superconductor have on the calculated energy gap. We also evaluate the density of states in the ferromagnet, and we find it in all cases consistent with the gap results.

  4. ''Soft'' Anharmonic Vortex Glass in Ferromagnetic Superconductors

    Radzihovsky, Leo; Ettouhami, A. M.; Saunders, Karl; Toner, John

    2001-01-01

    Ferromagnetic order in superconductors can induce a spontaneous vortex (SV) state. For external field H=0 , rotational symmetry guarantees a vanishing tilt modulus of the SV solid, leading to drastically different behavior than that of a conventional, external-field-induced vortex solid. We show that quenched disorder and anharmoinc effects lead to elastic moduli that are wave-vector dependent out to arbitrarily long length scales, and non-Hookean elasticity. The latter implies that for weak external fields H , the magnetic induction scales universally like B(H)∼B(0)+cH α , with α∼0.72 . For weak disorder, we predict the SV solid is a topologically ordered glass, in the ''columnar elastic glass'' universality class

  5. Surface effects in the Potts ferromagnet

    Tsallis, C.; Sarmento, E.F.

    1984-01-01

    Within a real space renormalisation group framework, the phase diagram of a semi-infinite cubic-lattice q-state Potts ferromagnet is studied, in which the free surface coupling constant J sub(S) = (1+Δ)J sub(B) might be different from the bulk one J sub(B). The starting value Δ sub(c) (q) is calculated above which surface order is possible even if bulk order is absent. Our results can be alternatively seen as approximate for the simple cubic lattice (as a matter of fact, the Ising value Δ sub(c) (2) obtained approaches the series result better than any other theory known consequently Δ sub(c) (q) is expected to be quite satisfactory even for q not= 2) or as exact for a well defined diamond-like hierarchical lattice. In the q →0 limit, Δ sub(c) diverges as 1/√q. (Author) [pt

  6. Heat exchanges in a quenched ferromagnet

    Corberi, Federico; Zannetti, Marco [Dipartimento di Fisica ' E.R. Caianiello' , and CNISM, Unita di Salerno, Universita di Salerno, via Ponte don Melillo, I-84084 Fisciano, SA (Italy); Gonnella, Giuseppe; Piscitelli, Antonio [Dipartimento di Fisica, Universita di Bari and INFN, Sezione di Bari, via Amendola 173, I-70126 Bari (Italy)

    2013-02-01

    The off-equilibrium probability distribution of the heat exchanged by a ferromagnet in a time interval after a quench below the critical point is calculated analytically in the large-N limit. The distribution is characterized by a singular threshold Q{sub C} < 0, below which a macroscopic fraction of heat is released by the k = 0 Fourier component of the order parameter. The mathematical structure producing this phenomenon is the same responsible for the order parameter condensation in the equilibrium low temperature phase. The heat exchanged by the individual Fourier modes follows a non-trivial pattern, with the unstable modes at small wave vectors warming up the modes around a characteristic finite wave vector k{sub M}. Two internal temperatures, associated with the k = 0 and k = k{sub M} modes, rule the heat currents through a fluctuation relation similar to the one for stationary systems in contact with two thermal reservoirs. (fast track communication)

  7. Vortex precession in thin elliptical ferromagnetic nanodisks

    Zaspel, C.E., E-mail: craig.zaspel@umwestern.edu

    2017-07-01

    Highlights: • A general form for the magnetostatic energy is calculated for the vortex state in a ferromagnetic ellipse. • The ellipse magnetostatic energy is minimized by conformal mapping the circular disk onto the ellipse. • The gyrotropic precession frequency is obtained in general for a range of ellipticities. - Abstract: The magnetostatic energy is calculated for a magnetic vortex in a noncircular elliptical nanodisk. It is well-known that the energy of a vortex in the circular disk is minimized though an ansatz that eliminates the magnetostatic charge at the disk edge. Beginning with this ansatz for the circular disk, a conformal mapping of a circle interior onto the interior of an ellipse results in the magnetization of the elliptical disk. This magnetization in the interior of an ellipse also has no magnetostatic charge at the disk edge also minimizing the magnetostatic energy. As expected the energy has a quadratic dependence on the displacement of the vortex core from the ellipse center, but reflecting the lower symmetry of the ellipse. Through numerical integration of the magnetostatic integral a general expression for the energy is obtained for ellipticity values from 1.0 to about 0.3. Finally a general expression for the gyrotropic frequency as described by the Thiele equation is obtained.

  8. Valley and spin thermoelectric transport in ferromagnetic silicene junctions

    Ping Niu, Zhi; Dong, Shihao

    2014-01-01

    We have investigated the valley and spin resolved thermoelectric transport in a normal/ferromagnetic/normal silicene junction. Due to the coupling between the valley and spin degrees of freedom, thermally induced pure valley and spin currents can be demonstrated. The magnitude and sign of these currents can be manipulated by adjusting the ferromagnetic exchange field and local external electric field, thus the currents are controllable. We also find fully valley and/or spin polarized currents. Similar to the currents, owing to the band structure symmetry, tunable pure spin and/or valley thermopowers with zero charge counterpart are generated. The results obtained here suggest a feasible way of generating a pure valley (spin) current and thermopower in silicene

  9. Spin Hall and spin swapping torques in diffusive ferromagnets

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  10. Spin Hall and spin swapping torques in diffusive ferromagnets

    Pauyac, C. O.; Chshiev, M.; Manchon, Aurelien; Nikolaev, S. A.

    2017-01-01

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  11. Titanium nitride room-temperature ferromagnetic nanoparticles

    Morozov, Iu.G., E-mail: morozov@ism.ac.ru [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 8 Academician Osipyan Street, Chernogolovka, Moscow Region, 142432 (Russian Federation); Belousova, O.V. [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 8 Academician Osipyan Street, Chernogolovka, Moscow Region, 142432 (Russian Federation); Belyakov, O.A. [Ogarev Mordovia State University, Saransk, 68 Bol' shevistskaya Street, 430005 (Russian Federation); Parkin, I.P., E-mail: i.p.parkin@ucl.ac.uk [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Sathasivam, S. [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Kuznetcov, M.V., E-mail: maxim1968@mail.ru [All-Russian Research Institute on Problems of Civil Defense and Emergencies of Emergency Control Ministry of Russia (EMERCOM), 7 Davidkovskaya Street, Moscow, 121352 (Russian Federation)

    2016-08-05

    Cubic and near-spherical TiN nanoparticles ranging in average size from 20 to 125 nm were prepared by levitation-jet aerosol synthesis through condensation of titanium vapor in an inert gas flow with gaseous nitrogen injection. The nanoparticles were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), BET measurements, UV–Vis, FT-IR, Raman spectroscopy, XPS, and vibrating-sample magnetometry. Room-temperature ferromagnetism with maximum magnetization up to 2.5 emu/g was recorded for the nanoparticles. The results indicate that the observed ferromagnetic ordering was related to the defect Ti–N structures on the surface of nanoparticles. This suggestion is in good correlation with the measured spectroscopical data. - Highlights: • Levitation-jet aerosol synthesis of TiN nanoparticles (NPs). • SEM, XRD, BET, UV–vis, FT-IR, Raman, XPS and magnetic characterization of the NPs. • Correlation between optical and XPS measurements data and maximum magnetization of the NPs.

  12. Uniaxial-Strain-Orientation Dependence of the Competition between Mott and Charge Ordered Phases and their Corresponding Superconductivity of β-(BDA-TTP)2I3

    Nuruzzaman, Md.; Yokogawa, Keiichi; Yoshino, Harukazu; Yoshimoto, Haruo; Kikuchi, Koichi; Kaihatsu, Takayuki; Yamada, Jun-ichi; Murata, Keizo

    2012-12-01

    We studied the electronic transport properties of the charge transfer salt β-(BDA-TTP)2I3 [BDA-TTP: 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene] by applying uniaxial strains along the three crystallographic axes, and obtained three corresponding temperature-pressure phase diagrams. Three phase diagrams were quite dependent on the direction of compression. Following the preceding paper by Kikuchi et al., we speculate that the insulating states are of 1/2-filled Mott insulators for the a- and b-axes compressions, and of 1/4-filled charge ordered states for the c-axis compression as well as hydrostatic pressure. The superconducting phase under uniaxial strain was realized with Tc = 5 K at 1.9 GPa along the a-axis and with Tc = 5.6 K at 1.75 GPa along the b-axis. Superconductivity was also reproduced with a Tc of 9.5 K at 1.0 GPa for the c-axis compressions in the range of 0.85 to 1.53 GPa as previously reported. We studied tentative measurement on upper critical fields, Bc2's of these superconductivities and found that the extrapolated values, Bc2(0)'s, exceeded Pauli-limit by about 2--3 times. However, at least in terms of Bc2, the difference in superconductivity associated with two different insulating states was not clear.

  13. Heisenberg and Ferromagnetism

    how Heisenberg identified the quantum mechan- ical exchange ... condensed matter physics from the Indian ... electrons per atom and 'm,' is the electronic mass. Dia- magnetism is .... what is the origin of this ordering field Hint = aM, that gives rise to a ... the case with magnetism, where the fundamental Inech- anism for the ...

  14. Dirac Magnons in Honeycomb Ferromagnets

    Sergey S. Pershoguba

    2018-01-01

    Full Text Available The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009RMPHAT0034-686110.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014ADPHAH0001-873210.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX_{3} (X=F, Cl, Br and I, that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956PHRVAO0031-899X10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956PHRVAO0031-899X10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr_{3} [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in

  15. Dirac Magnons in Honeycomb Ferromagnets

    Pershoguba, Sergey S.; Banerjee, Saikat; Lashley, J. C.; Park, Jihwey; Ågren, Hans; Aeppli, Gabriel; Balatsky, Alexander V.

    2018-01-01

    The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009), 10.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014), 10.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX3 (X =F , Cl, Br and I), that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956), 10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956), 10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr3 [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering: Spin-Wave Correlation

  16. X-ray diffraction observations of a charge-density-wave order in superconducting ortho-II YBa2Cu3O6.54 single crystals in zero magnetic field

    Blackburn, E.; Chang, J.; Hücker, M.

    2013-01-01

    X-ray diffraction measurements show that the high-temperature superconductor YBa2Cu3O6.54, with ortho-II oxygen order, has charge-density-wave order in the absence of an applied magnetic field. The dominant wave vector of the charge density wave is qCDW=(0,0.328(2),0.5), with the in-plane component...

  17. Exchange bias in nearly perpendicularly coupled ferromagnetic/ferromagnetic system

    Bu, K.M.; Kwon, H.Y.; Oh, S.W.; Won, C.

    2012-01-01

    Exchange bias phenomena appear not only in ferromagnetic/antiferromagnetic systems but also in ferromagnetic/ferromagnetic systems in which two layers are nearly perpendicularly coupled. We investigated the origin of the symmetry-breaking mechanism and the relationship between the exchange bias and the system's energy parameters. We compared the results of computational Monte Carlo simulations with those of theoretical model calculation. We found that the exchange bias exhibited nonlinear behaviors, including sign reversal and singularities. These complicated behaviors were caused by two distinct magnetization processes depending on the interlayer coupling strength. The exchange bias reached a maximum at the transition between the two magnetization processes. - Highlights: ► Exchange bias phenomena are found in perpendicularly coupled F/F systems. ► Exchange bias exhibits nonlinear behaviors, including sign reversal and singularities. ► These complicated behaviors were caused by two distinct magnetization processes. ► Exchange bias reached a maximum at the transition between the two magnetization processes. ► We established an equation to maximize the exchange bias in perpendicularly coupled F/F system.

  18. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers.

    Stamopoulos, D; Aristomenopoulou, E

    2015-08-26

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent 'on' and 'off', thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.

  19. Model for the high-temperature oxygen-ordering thermodynamics in YBa2Cu3O6+x - inclusion of electron spin and charge degrees of freedom

    Schleger, P.; Hardy, W.N.; Casalta, H.

    1994-01-01

    A lattice-gas model for the high temperature oxygen-ordering thermodynamics in YBa2Cu3O6+x is presented, which assumes constant effective pair interactions between oxygen atoms and includes in a simple fashion the effect of the electron spin and charge degrees of freedom. This is done using...... a commonly utilized picture relating the creation of mobile electron holes and unpaired spins to the insertion of oxygen into the basal plane. The model is solved using the nearest-neighbor square approximation of the cluster-variation method. In addition, preliminary Monte Carlo results using next......-nearest-neighbor interactions are presented. The model is compared to experimental results for the thermodynamic response function, kT (partial derivative x/partial derivative mu)T (mu is the chemical potential), the number of monovalent copper atoms, and the fractional site occupancies. The model drastically improves...

  20. Large anisotropy in colossal magnetoresistance of charge orbital ordered epitaxial Sm(0.5)Ca(0.5)MnO(3) films.

    Chen, Y Z; Sun, J R; Zhao, J L; Wang, J; Shen, B G; Pryds, N

    2009-11-04

    We investigated the structure and magnetotransport properties of Sm(0.5)Ca(0.5)MnO(3) (SCMO) films epitaxially grown on (011)-oriented SrTiO(3) substrates, which exhibited clear charge/orbital ordering transition. A significant anisotropy of ∼1000 in the colossal magnetoresistance (CMR) effect was observed in the films with a thickness between 50 and 80 nm, which was distinctly different from the basically isotropic CMR effect in bulk SCMO. The large anisotropy in the CMR can be ascribed to the intrinsic asymmetric strain in the film, which plays an important role in tuning the spin-orbit coupling in manganite films. The origin of the peculiar CMR effect is discussed.

  1. Vacancy complexes induce long-range ferromagnetism in GaN

    Zhang, Zhenkui; Schwingenschlögl, Udo, E-mail: Udo.Schwingenschlogl@kaust.edu.sa, E-mail: Iman.Roqan@kaust.edu.sa; Roqan, Iman S., E-mail: Udo.Schwingenschlogl@kaust.edu.sa, E-mail: Iman.Roqan@kaust.edu.sa [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia)

    2014-11-14

    By means of density functional theory, we argue that ferromagnetism in GaN can be induced by vacancy complexes. Spin polarization originates from the charge compensation between neutral N and Ga vacancies. Defect formation energy calculations predict that a vacancy complex of two positively charged N vacancies and one doubly negative Ga vacancy is likely to form. This defect complex induces a net moment of 1 μ{sub B}, which is localized around the negative Ga center and exhibits pronounced in-plane ferromagnetic coupling. In contrast to simple Ga vacancy induced ferromagnetism, the proposed picture is in line with the fact that N vacancies have a low formation energy. Formation energies indicate mutual stabilization of the intrinsic defects in GaN.

  2. Vacancy complexes induce long-range ferromagnetism in GaN

    Zhang, Zhenkui; Schwingenschlö gl, Udo; Roqan, Iman S.

    2014-01-01

    By means of density functional theory, we argue that ferromagnetism in GaN can be induced by vacancy complexes. Spin polarization originates from the charge compensation between neutral N and Ga vacancies. Defect formation energy calculations predict that a vacancy complex of two positively charged N vacancies and one doubly negative Ga vacancy is likely to form. This defect complex induces a net moment of 1 μB, which is localized around the negative Ga center and exhibits pronounced in-plane ferromagnetic coupling. In contrast to simple Ga vacancy induced ferromagnetism, the proposed picture is in line with the fact that N vacancies have a low formation energy. Formation energies indicate mutual stabilization of the intrinsic defects in GaN.

  3. Vacancy complexes induce long-range ferromagnetism in GaN

    Zhang, Zhenkui

    2014-11-14

    By means of density functional theory, we argue that ferromagnetism in GaN can be induced by vacancy complexes. Spin polarization originates from the charge compensation between neutral N and Ga vacancies. Defect formation energy calculations predict that a vacancy complex of two positively charged N vacancies and one doubly negative Ga vacancy is likely to form. This defect complex induces a net moment of 1 μB, which is localized around the negative Ga center and exhibits pronounced in-plane ferromagnetic coupling. In contrast to simple Ga vacancy induced ferromagnetism, the proposed picture is in line with the fact that N vacancies have a low formation energy. Formation energies indicate mutual stabilization of the intrinsic defects in GaN.

  4. Scaling behavior of the spin pumping effect in conductive ferromagnet/platinum bilayers

    Czeschka, Franz D.; Althammer, Matthias; Huebl, Hans; Gross, Rudolf; Goennenwein, Sebastian T.B. [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Dreher, Lukas; Brandt, Martin S. [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany); Imort, Inga-Mareen; Reiss, Guenter; Thomas, Andy [Fakultaet fuer Physik, Universitaet Bielefeld (Germany); Schoch, Wladimir; Limmer, Wolfgang [Abteilung Halbleiterphysik, Universitaet Ulm (Germany)

    2011-07-01

    Spin pumping experiments allow to measure spin currents or the spin Hall angle. We have systematically studied the spin pumping DC voltage occurring in conjunction with ferromagnetic resonance in a series of conductive ferromagnet/platinum bilayers, made from elemental 3d transition metals, Heusler compounds, ferrite spinel oxides, and magnetic semiconductors. In all bilayers, we invariably observe the same DC voltage polarity. Moreover, we find that the voltage magnitude scales with the magnetization precession cone angle with a universal prefactor, irrespective of the magnetic properties, the charge carrier transport mechanism, and the charge carrier type in a given ferromagnet. These findings quantitatively corroborate the present theoretical understanding of spin pumping in combination with the inverse spin Hall effect, and establish spin pumping as a generic phenomenon.

  5. Magnetic excitations in amorphous ferromagnets

    Continentino, M.A.

    The propagation of magnetic excitations in amorphous ferromagnets is studied from the point of view of the theory of random frequency modulation. It is shown that the spin waves in the hydrodynamic limit are well described by perturbation theory while the roton-like magnetic excitations with wavevector about the peak in the structure factor are not. A criterion of validity of perturbation theory is found which is identical to a narrowing condition in magnetic resonance. (author) [pt

  6. Intrinsic and spatially nonuniform ferromagnetism in Co-doped ZnO films

    Tseng, L. T.; Suter, A.; Wang, Y. R.; Xiang, F. X.; Bian, P.; Ding, X.; Tseng, A.; Hu, H. L.; Fan, H. M.; Zheng, R. K.; Wang, X. L.; Salman, Z.; Prokscha, T.; Suzuki, K.; Liu, R.; Li, S.; Morenzoni, E.; Yi, J. B.

    2017-09-01

    Co doped ZnO films have been deposited by a laser-molecular beam epitaxy system. X-ray diffraction and UV spectra analysis show that Co effectively substitutes the Zn site. Transmission electron microscopy (TEM) and secondary ion mass spectroscopy analysis indicate that there are no clusters. Co dopants are uniformly distributed in ZnO film. Ferromagnetic ordering is observed in all samples deposited under an oxygen partial pressure, PO2=10-3 , 10-5, and 10-7 torr, respectively. However, the magnetization of PO2=10-3 and 10-5 is very small at room temperature. At low temperature, the ferromagnetic ordering is enhanced. Muon spin relaxation (μ SR ) measurements confirm the ferromagnetism in all samples, and the results are consistent with magnetization measurements. From μ SR and TEM analysis, the film deposited under PO2=10-7 torr shows intrinsic ferromagnetism. However, the volume fraction of the ferromagnetism phase is approximately 70%, suggesting that the ferromagnetism is not carrier mediated. Resistivity versus temperature measurements indicate Efros variable range hopping dominates the conductivity. From the above results, we can confirm that a bound magnetic polaron is the origin of the ferromagnetism.

  7. Normal modes and possibility of spatially inhomogeneous phases for a 2D ferromagnet with biquadratic and magnetoelastic interactions

    Fridman, Yu.A.; Klevets, Ph.N.; Matyunin, D.A.

    2006-01-01

    Influence of the magnetodipolar interaction on the phase states of a 2D non-Heisenberg ferromagnet is investigated. It is shown that in the system considered both the homogeneous states (ferromagnetic or quadrupolar) and the spatially inhomogeneous ones can be realized. At this the spatial inhomogeneity is related with the distribution of the quadrupolar order parameters

  8. Muon spin relaxation in ferromagnets. Pt. 1

    Lovesey, S.W.; Karlsson, E.B.

    1991-04-01

    Expressions for the dipolar and hyperfine contributions to the relaxation rate of muons implanted in a ferromagnet are presented and analysed using the Heisenberg model of spin-waves including dipolar and Zeeman energies. Calculations for EuO indicate that relaxation is likely to be dominated by the hyperfine mechanism, even if the ratio of the hyperfine and dipolar coupling constants is small. The hyperfine mechanism is sensitive to the dipolar energy of the atomic spins, whereas the dipolar mechanisms depend essentially on the exchange energy. For both mechanisms there is an almost quadratic dependence on temperature, throughout much of the ordered magnetic phase, which reflects two-spin-wave difference events from the Raman-type relaxation processes. (author)

  9. Quantum stability for the Heisenberg ferromagnet

    Bargheer, Till; Beisert, Niklas; Gromov, Nikolay

    2008-01-01

    Highly spinning classical strings on RxS 3 are described by the Landau-Lifshitz model or equivalently by the Heisenberg ferromagnet in the thermodynamic limit. The spectrum of this model can be given in terms of spectral curves. However, it is a priori not clear whether any given admissible spectral curve can actually be realized as a solution to the discrete Bethe equations, a property which can be referred to as stability. In order to study the issue of stability, we find and explore the general two-cut solution or elliptic curve. It turns out that the moduli space of this elliptic curve shows a surprisingly rich structure. We present the various cases with illustrations and thus gain some insight into the features of multi-cut solutions. It appears that all admissible spectral curves are indeed stable if the branch cuts are positioned in a suitable, non-trivial fashion.

  10. Critical behavior of ferromagnetic Ising thin films

    Cossio, P.; Mazo-Zuluaga, J.; Restrepo, J.

    2006-01-01

    In the present work, we study the magnetic properties and critical behavior of simple cubic ferromagnetic thin films. We simulate LxLxd films with semifree boundary conditions on the basis of the Monte Carlo method and the Ising model with nearest neighbor interactions. A Metropolis dynamics was implemented to carry out the energy minimization process. For different film thickness, in the nanometer range, we compute the temperature dependence of the magnetization, the magnetic susceptibility and the fourth order Binder's cumulant. Bulk and surface contributions of these quantities are computed in a differentiated fashion. Additionally, according to finite size scaling theory, we estimate the critical exponents for the correlation length, magnetic susceptibility, and magnetization. Results reveal a strong dependence of critical temperature and critical exponents on the film thickness. The obtained critical exponents are finally compared to those reported in literature for thin films

  11. Defects induced ferromagnetism in Mn doped ZnO

    Chattopadhyay, S.; Neogi, S.K. [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India); Sarkar, A. [Department of Physics, Bangabasi Morning College, Kolkata 700009 (India); Mukadam, M.D.; Yusuf, S.M. [Solid State Physics Division, Bhaba Atomic Research Centre, Mumbai 400085 (India); Banerjee, A. [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.i [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India)

    2011-02-15

    Single phase Mn doped (2 at%) ZnO samples have been synthesized by the solid-state reaction technique. Before the final sintering at 500 {sup o}C, the mixed powders have been milled for different milling periods (6, 24, 48 and 96 h). The grain sizes of the samples are very close to each other ({approx}32{+-}4 nm). However, the defective state of the samples is different from each other as manifested from the variation of magnetic properties and electrical resistivity with milling time. All the samples have been found to be ferromagnetic with clear hysteresis loops at room temperature. The maximum value for saturation magnetization (0.11 {mu}{sub B}/Mn atom) was achieved for 96 h milled sample. Electrical resistivity has been found to increase with increase in milling time. The most resistive sample bears the largest saturation magnetization. Variation of average positron lifetime with milling time bears a close similarity with that of the saturation magnetization. This indicates the key role played by open volume vacancy defects, presumably zinc vacancies near grain surfaces, in inducing ferromagnetic order in Mn doped ZnO. To attain optimum defect configuration favorable for ferromagnetism in this kind of samples proper choice of milling period and annealing conditions is required. - Research highlights: 2 at% Mn doped ZnO samples are single phase. All the samples exhibit ferromagnetism at room temperature. Correlation between saturation magnetization and positron annihilation lifetime established.

  12. Defects induced ferromagnetism in Mn doped ZnO

    Chattopadhyay, S.; Neogi, S.K.; Sarkar, A.; Mukadam, M.D.; Yusuf, S.M.; Banerjee, A.; Bandyopadhyay, S.

    2011-01-01

    Single phase Mn doped (2 at%) ZnO samples have been synthesized by the solid-state reaction technique. Before the final sintering at 500 o C, the mixed powders have been milled for different milling periods (6, 24, 48 and 96 h). The grain sizes of the samples are very close to each other (∼32±4 nm). However, the defective state of the samples is different from each other as manifested from the variation of magnetic properties and electrical resistivity with milling time. All the samples have been found to be ferromagnetic with clear hysteresis loops at room temperature. The maximum value for saturation magnetization (0.11 μ B /Mn atom) was achieved for 96 h milled sample. Electrical resistivity has been found to increase with increase in milling time. The most resistive sample bears the largest saturation magnetization. Variation of average positron lifetime with milling time bears a close similarity with that of the saturation magnetization. This indicates the key role played by open volume vacancy defects, presumably zinc vacancies near grain surfaces, in inducing ferromagnetic order in Mn doped ZnO. To attain optimum defect configuration favorable for ferromagnetism in this kind of samples proper choice of milling period and annealing conditions is required. - Research highlights: → 2 at% Mn doped ZnO samples are single phase. → All the samples exhibit ferromagnetism at room temperature. → Correlation between saturation magnetization and positron annihilation lifetime established.

  13. Charge ordered insulating phases of DODHT salts with octahedral anions and a new radical salt, β''-(DODHT)2TaF6

    Nishikawa, H.; Oshio, H.; Higa, M.; Kondo, R.; Kagoshima, S.; Nakao, A.; Sawa, H.; Yasuzuka, S.; Murata, K.

    2008-10-01

    Physical properties of isostructural β''-(DODHT)2X [DODHT = (l,4-dioxane-2,3-diyldithio)dihydrotetrathiafulvalene; X = PF6, AsF6, and SbF6] at ambient pressure have been compared. The insulating phase of β''-(DODHT)2PF6 salt has already been revealed to be a charge ordering (CO) state by X-ray diffraction study and magnetic behavior. CO in this salt was also confirmed by the observation of satellite reflections in oscillation photograph using synchrotron radiation. Transport property of β''-(DODHT)2SbF6 salt was reinvestigated up to the pressure of 3.7 GPa applied by a cubic anvil apparatus. Although the SbF6 salt turned to be metallic above 2.0 GPa, no superconductivity was observed. In order to examine the anion size dependence of DODHT salts with octahedral anions, we prepared a new DODHT salt, β''-(DODHT)2TaF6, which has the larger counter anion compared with the previous salts. Crystal structure of this salt was isostructural to the other DODHT salts. The electrical and magnetic properties of this salt were similar to those of β''-(DODHT)2SbF6 salt.

  14. Charge ordered insulating phases of DODHT salts with octahedral anions and a new radical salt, {beta}''-(DODHT){sub 2}TaF{sub 6}

    Nishikawa, H; Oshio, H; Yasuzuka, S [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Higa, M; Kondo, R; Kagoshima, S [Department of Basic Science, University of Tokyo, Tokyo 153-8902 (Japan); Nakao, A; Sawa, H [Photon Factory, Institute of Material Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Murata, K [Graduate School of Science, Osaka City University, Osaka 558-8585 (Japan)], E-mail: nishikaw@chem.tsukuba.ac.jp

    2008-10-15

    Physical properties of isostructural {beta}''-(DODHT){sub 2}X [DODHT = (l,4-dioxane-2,3-diyldithio)dihydrotetrathiafulvalene; X = PF{sub 6}, AsF{sub 6}, and SbF{sub 6}] at ambient pressure have been compared. The insulating phase of {beta}''-(DODHT){sub 2}PF{sub 6} salt has already been revealed to be a charge ordering (CO) state by X-ray diffraction study and magnetic behavior. CO in this salt was also confirmed by the observation of satellite reflections in oscillation photograph using synchrotron radiation. Transport property of {beta}''-(DODHT){sub 2}SbF{sub 6} salt was reinvestigated up to the pressure of 3.7 GPa applied by a cubic anvil apparatus. Although the SbF{sub 6} salt turned to be metallic above 2.0 GPa, no superconductivity was observed. In order to examine the anion size dependence of DODHT salts with octahedral anions, we prepared a new DODHT salt, {beta}''-(DODHT){sub 2}TaF{sub 6}, which has the larger counter anion compared with the previous salts. Crystal structure of this salt was isostructural to the other DODHT salts. The electrical and magnetic properties of this salt were similar to those of {beta}''-(DODHT){sub 2}SbF{sub 6} salt.

  15. Acute administration of nicotine into the higher order auditory Te2 cortex specifically decreases the fear-related charge of remote emotional memories.

    Cambiaghi, Marco; Grosso, Anna; Renna, Annamaria; Concina, Giulia; Sacchetti, Benedetto

    2015-12-01

    Nicotine elicits several behavioural effects on mood as well as on stress and anxiety processes. Recently, it was found that the higher order components of the sensory cortex, such as the secondary auditory cortex Te2, are essential for the long-term storage of remote fear memories. Therefore, in the present study, we examined the effects of acute nicotine injection into the higher order auditory cortex Te2, on the remote emotional memories of either threat or incentive experiences in rats. We found that intra-Te2 nicotine injection decreased the fear-evoked responses to a tone previously paired with footshock. This effect was cue- and dose-specific and was not due to any interference with auditory stimuli processing, innate anxiety and fear processes, or with motor responses. Nicotine acts acutely in the presence of threat stimuli but it did not determine the permanent degradation of the fear-memory trace, since memories tested one week after nicotine injection were unaffected. Remarkably, nicotine did not affect the memory of a similar tone that was paired to incentive stimuli. We conclude from our results that nicotine, when acting acutely in the auditory cortex, relieves the fear charge embedded by learned stimuli. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Theory of itinarant ferromagnetism in superconducting semimetals. Theorie du ferromagnetisme itinerant dans des semimetaux supraconducteurs

    Do Tran, C; Nguyen Van, C [Groupe de Physique Theorique, Inst. National Polytechnique de Hanoi (Viet Nam); Nguyen Manh, D [Groupe de Physique Theorique, Inst. National Polytechnique de Hanoi (Viet Nam) Centre National de la Recherche Scientifique, Lab. d' Etudes des Proprietes Electroniques des Solides, 38 - Grenoble (France)

    1991-11-01

    A theory of itinerant ferromagnetism in superconducting semimetals is proposed. A nonzero mean magnetisation appears in the superconducting state due to the interaction (interference) of spin density wave (SDW), charge density wave (CDW) and Cooper pair wave. Phase diagram and physical properties of the states considered are investigated analytically and numerically. (orig.).

  17. Sources of negative tunneling magnetoresistance in multilevel quantum dots with ferromagnetic contacts

    Koller, Sonja; Grifoni, Milena; Paaske, Jens

    2012-01-01

    We analyze distinct sources of spin-dependent energy level shifts and their impact on the tunneling magnetoresistance (TMR) of interacting quantum dots coupled to collinearly polarized ferromagnetic leads. Level shifts due to virtual charge fluctuations can be quantitatively evaluated within...

  18. Absence of Long-Ranged Charge Order in NaxCa2-xCuO2Cl2 (x=0.08)

    Smadici,S.; Abbamonte, P.; Taguchi, M.; Kohsaka, Y.; Sasagawa, T.; Azuma, M.; Takano, M.; Takagi, H.

    2007-01-01

    Recent scanning-tunneling spectroscopy (STS) studies of the cupric oxychloride Na{sub x}Ca{sub 2-x}CuO{sub 2}Cl{sub 2} (NCCOC) have uncovered a periodic 4a x 4a density of states (DOS) modulation, termed a 'checkerboard' (T. Hanaguri et al., Nature (London) 430, 1001 (2004)). The periodicity of this phase is the same as that of the 'stripe' charge order observed with neutron scattering in the very similar systems La{sub 1.48}Nd{sub 0.4}Sr{sub 0.12}CuO{sub 4} (LNSCO). This raises the question of whether the stripes are, in fact, actually checkerboards. Unfortunately, NCCOC samples are very small and LBCO and LNSCO samples do not cleave, so neutron and STS measurements cannot be carried out on the same system. To determine the relationship between stripes and checkers, we used resonant soft-x-ray scattering, previously applied to LBCO, to study single crystals of NCCOC. No evidence was seen for a 4a x 4a DOS modulation, indicating that the checkerboard effect is not directly related to the stripe modulation in LBCO. We place an upper bound on the product of the charge amplitude and the square of the in-plane correlation length of 2.3 x 10{sup 3} hole {angstrom}{sup 2}. Our measurements suggest that the checkers in NCCOC are either glassy or are nucleated by the surface, as suggested by Brown et al.

  19. Spin supercurrent in Josephson contacts with noncollinear ferromagnets

    Shomali, Zahra; Zareyan, Malek; Belzig, Wolfgang

    2011-01-01

    We present a theoretical study of the Josephson coupling of two superconductors that are connected through a diffusive contact consisting of noncollinear ferromagnetic domains. The leads are conventional s-wave superconductors with a phase difference of ψ. Firstly, we consider a contact with two domains with magnetization vectors misoriented by an angle θ. Using the quantum circuit theory, we found that in addition to the charge supercurrent, which shows a 0-π transition relative to the angle θ, a spin supercurrent with a spin polarization normal to the magnetization vectors flows between the domains. While the charge supercurrent is odd in ψ and even in θ, the spin supercurrent is even in ψ and odd in θ. Furthermore, with asymmetric insulating barriers at the interfaces of the junction, the system may experience an antiferromagnetic-ferromagnetic phase transition for ψ=π. Secondly, we discuss the spin supercurrent in an extended magnetic texture with multiple domain walls. We find the position-dependent spin supercurrent. While the direction of the spin supercurrent is always perpendicular to the plane of the magnetization vectors, the magnitude of the spin supercurrent strongly depends on the phase difference between the superconductors and the number of domain walls. In particular, our results reveal the high sensitivity of spin- and charge-transport in the junction to the number of domain walls in the ferromagnet. We show that superconductivity in coexistence with noncollinear magnetism can be used in a Josephson nanodevice to create a controllable spin supercurrent acting as a spin transfer torque on a system. Our results demonstrate the possibility of coupling the superconducting phase to the magnetization dynamics and, hence, constituting a quantum interface, for example between the magnetization and a superconducting qubit.

  20. Efficiency of homopolar generators without ferromagnetic circuit

    Kharitonov, V.V.

    1982-01-01

    E.m.f. and weights of homopolar generators (HG) without a ferromagnetic circuit and of similar generator with a ferromagnetic circuit are compared at equal armature diameters and armature rotative speed. HG without ferromagnetic cuircuit of disk and cylinder types with hot and superconducting excitation winding are considered. Areas of the most reasonable removal of a ferromagnetic circuit in the HG layout are found. The plots of relationships between the e.m.f. and HG weight that permit to estimate the efficiency of ''nonferrite'' HG constructions are presented

  1. Magnetization reversal in ferromagnetic film through solitons by electromagnetic field

    Veerakumar, V.; Daniel, M.

    2001-07-01

    We study the reversal of magnetization in an isotopic ferromagnetic film free from charges by exposing it to a circularly polarized electromagnetic (EM) field. The magnetization excitations are obtained in the form of line and lump solitons of the completely integrable modified KP-II equation which is derived using a reductive perturbation method from the set of coupled Landau-Lifschitz and Maxwell equations. It is observed that when the polarization of the EM-field is reversed followed by a rotation, for every (π)/2-degrees, the magnetization is reversed. (author)

  2. Optimization of a superconducting linear levitation system using a soft ferromagnet

    Agramunt-Puig, Sebastia; Del-Valle, Nuria; Navau, Carles; Sanchez, Alvaro

    2013-01-01

    Highlights: ► Study of the levitation of a superconducting bar over different magnetic guideways. ► A soft ferromagnet within permanent magnets improves levitation stability. ► We study the best geometry for large levitation force with full stability. -- Abstract: The use of guideways that combine permanent magnets and soft ferromagnetic materials is a common practice in magnetic levitation transport systems (maglevs) with bulk high-temperature superconductors. Theoretical tools to simulate in a realistic way both the behavior of all elements (permanent magnets, soft ferromagnet and superconductor) and their mutual effects are helpful to optimize the designs of real systems. Here we present a systematic study of the levitation of a maglev with translational symmetry consisting of a superconducting bar and a guideway with two identic permanent magnets and a soft ferromagnetic material between them. The system is simulated with a numerical model based on the energy minimization method that allows to analyze the mutual interaction of the superconductor, assumed to be in the critical state, and a soft ferromagnet with infinite susceptibility. Results indicate that introducing a soft ferromagnet within the permanent magnets not only increases the levitation force but also improves the stability. Besides, an estimation of the relative sizes and shapes of the soft ferromagnet, permanent magnets and the superconductor in order to obtain large levitation force with full stability is provided

  3. Optimization of a superconducting linear levitation system using a soft ferromagnet

    Agramunt-Puig, Sebastia; Del-Valle, Nuria; Navau, Carles, E-mail: carles.navau@uab.cat; Sanchez, Alvaro

    2013-04-15

    Highlights: ► Study of the levitation of a superconducting bar over different magnetic guideways. ► A soft ferromagnet within permanent magnets improves levitation stability. ► We study the best geometry for large levitation force with full stability. -- Abstract: The use of guideways that combine permanent magnets and soft ferromagnetic materials is a common practice in magnetic levitation transport systems (maglevs) with bulk high-temperature superconductors. Theoretical tools to simulate in a realistic way both the behavior of all elements (permanent magnets, soft ferromagnet and superconductor) and their mutual effects are helpful to optimize the designs of real systems. Here we present a systematic study of the levitation of a maglev with translational symmetry consisting of a superconducting bar and a guideway with two identic permanent magnets and a soft ferromagnetic material between them. The system is simulated with a numerical model based on the energy minimization method that allows to analyze the mutual interaction of the superconductor, assumed to be in the critical state, and a soft ferromagnet with infinite susceptibility. Results indicate that introducing a soft ferromagnet within the permanent magnets not only increases the levitation force but also improves the stability. Besides, an estimation of the relative sizes and shapes of the soft ferromagnet, permanent magnets and the superconductor in order to obtain large levitation force with full stability is provided.

  4. Room temperature ferromagnetism in liquid-phase pulsed laser ablation synthesized nanoparticles of nonmagnetic oxides

    Singh, S. C.; Gopal, R.; Kotnala, R. K.

    2015-01-01

    Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, related to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects

  5. Passive high-frequency devices based on superlattice ferromagnetic nanowires

    Ye, B.; Li, F.; Cimpoesu, D.; Wiley, J.B.; Jung, J.-S.; Stancu, A.; Spinu, L.

    2007-01-01

    In this paper we propose to tailor the bandwidth of a microwave filter by exploitation of shape anisotropy of nanowires. In order to achieve this control of shape anisotropy, we considered superlattice wires containing varying-sized ferromagnetic regions separated by nonferromagnetic regions. Superlattice wires of Ni and Au with a nominal diameter of 200 nm were grown using standard electrodeposition techniques. The microwave properties were probed using X-band (9.8 GHz) ferromagnetic resonance (FMR) experiments performed at room temperature. In order to investigate the effectiveness of the shape anisotropy on the superlattice nanowire based filter the FMR spectrum of superlattice structure is compared to the FMR spectra of nanowires samples with constant length

  6. Helimagnetism and weak ferromagnetism in edge-shared chain cuprates

    Drechsler, S.-L.; Richter, J.; Kuzian, R.; Malek, J.; Tristan, N.; Buechner, B.; Moskvin, A.S.; Gippius, A.A.; Vasiliev, A.; Volkova, O.; Prokofiev, A.; Rakoto, H.; Broto, J.-M.; Schnelle, W.; Schmitt, M.; Ormeci, A.; Loison, C.; Rosner, H.

    2007-01-01

    The present understanding of a novel growing class of chain cuprates with intriguing magnetic properties is reviewed. Among them, several undoped edge-shared CuO 2 chain compounds show at low temperature a clear tendency to helicoidal magnetical ordering with acute pitch angles and sometimes also to weak ferromagnetism. Our analysis is based on the isotropic 1D frustrated J 1 -J 2 Heisenberg model with ferromagnetic (FM) 1st neighbor and antiferromagnetic 2nd neighbor exchange. The achieved assignment is supported by microscopic calculations of the electronic and magnetic structure. We consider Na(Li)Cu 2 O 2 , LiVCuO 4 as the best studied helimagnets, Li 2 ZrCuO 4 and other systems close to a FM quantum critical point, as well as Li 2 CuO 2 with FM inchain ordering. The interplay of frustrated inchain couplings, anisotropy and interchain exchange is discussed

  7. Comparative study of magnetic ordering in bulk and nanoparticles of Sm0.65Ca0.35MnO3: Magnetization and electron magnetic resonance measurements

    Goveas, Lora Rita; Anuradha, K. N.; Bhagyashree, K. S.; Bhat, S. V.

    2015-01-01

    To explore the effect of size reduction to nanoscale on the hole doped Sm 0.65 Ca 0.35 MnO 3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario

  8. Comparative study of magnetic ordering in bulk and nanoparticles of Sm0.65Ca0.35MnO3: Magnetization and electron magnetic resonance measurements

    Goveas, Lora Rita; Anuradha, K. N.; Bhagyashree, K. S.; Bhat, S. V.

    2015-05-01

    To explore the effect of size reduction to nanoscale on the hole doped Sm0.65Ca0.35MnO3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario.

  9. Two-fold origin of the deformation-induced ferromagnetism in bulk Fe60Al40 (at.%) alloys

    Menendez, E; Surinach, S; Baro, M D; Sort, J; Liedke, M O; Fassbender, J; Nogues, J

    2008-01-01

    The transition from the atomically ordered B2-phase to the chemically disordered A2-phase and the concomitant deformation-induced ferromagnetism have been investigated in bulk polycrystalline Fe 60 Al 40 (at.%) alloys subjected to compression processes. A detailed correlation between structural, magnetic and mechanical properties reveals that the generated ferromagnetism depends on the stress level but is virtually independent of the loading rate. The mechanisms governing the induced ferromagnetism also vary as the stress level is increased. Namely, in the low-stress regime both lattice cell expansion and atomic intermixing play a role in the induced ferromagnetic behavior. Conversely, lattice expansion seems to become the main mechanism contributing to the generated ferromagnetism in the high-stress regime. Furthermore, a correlation is also observed between the order-disorder transition and the mechanical hardness. Hence, a combination of magnetic and mechanical measurements can be used, in synergetic manner, to investigate this deformation-induced phase transition.

  10. Radioactive Probes on Ferromagnetic Surfaces

    2002-01-01

    On the (broad) basis of our studies of nonmagnetic radioactive probe atoms on magnetic surfaces and at interfaces, we propose to investigate the magnetic interaction of magnetic probe atoms with their immediate environment, in particular of rare earth (RE) elements positioned on and in ferromagnetic surfaces. The preparation and analysis of the structural properties of such samples will be performed in the UHV chamber HYDRA at the HMI/Berlin. For the investigations of the magnetic properties of RE atoms on surfaces Perturbed Angular Correlation (PAC) measurements and Mössbauer Spectroscopy (MS) in the UHV chamber ASPIC (Apparatus for Surface Physics and Interfaces at CERN) are proposed.

  11. Magneto-optic dynamics in a ferromagnetic nematic liquid crystal

    Potisk, Tilen; Mertelj, Alenka; Sebastian, Nerea; Osterman, Natan; Lisjak, Darja; Brand, Helmut R.; Pleiner, Harald; Svenšek, Daniel

    2018-01-01

    We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M, and the director field, n, associated with the liquid crystalline orientational order. We demonstrate that the experimentally studied macroscopic dynamic behavior reveals t...

  12. Analysis of ultra-narrow ferromagnetic domain walls

    Jenkins, Catherine; Paul, David

    2012-01-10

    New materials with high magnetic anisotropy will have domains separated by ultra-narrow ferromagnetic walls with widths on the order of a few unit cells, approaching the limit where the elastic continuum approximation often used in micromagnetic simulations is accurate. The limits of this approximation are explored, and the static and dynamic interactions with intrinsic crystalline defects and external driving elds are modeled. The results developed here will be important when considering the stability of ultra-high-density storage media.

  13. Phase transitions of ferromagnetic Ising films with amorphous surfaces

    Saber, M.; Ainane, A.; Dujardin, F.; Stebe, B.

    1997-08-01

    The critical behavior of a ferromagnetic Ising film with amorphous surfaces is studied within the framework of the effective field theory. The dependence of the critical temperature on exchange interaction strength ratio, film thickness, and structural fluctuation parameter is presented. It is found that an order-disorder magnetic transition occurs by varying the thickness of the film. Such a result is in agreement with experiments performed recently on Fe-films. (author). 39 refs, 4 figs

  14. Anisotropy of the Seebeck Coefficient in the Cuprate Superconductor YBa_{2}Cu_{3}O_{y}: Fermi-Surface Reconstruction by Bidirectional Charge Order

    O. Cyr-Choinière

    2017-09-01

    Full Text Available The Seebeck coefficient S of the cuprate YBa_{2}Cu_{3}O_{y} is measured in magnetic fields large enough to suppress superconductivity, at hole dopings p=0.11 and p=0.12, for heat currents along the a and b directions of the orthorhombic crystal structure. For both directions, S/T decreases and becomes negative at low temperature, a signature that the Fermi surface undergoes a reconstruction due to broken translational symmetry. Above a clear threshold field, a strong new feature appears in S_{b}, for conduction along the b axis only. We attribute this feature to the onset of 3D-coherent unidirectional charge-density-wave modulations seen by x-ray diffraction, also along the b axis only. Because these modulations have a sharp onset temperature well below the temperature where S/T starts to drop towards negative values, we infer that they are not the cause of Fermi-surface reconstruction. Instead, the reconstruction must be caused by the quasi-2D bidirectional modulations that develop at significantly higher temperature. The unidirectional order only confers an additional anisotropy to the already reconstructed Fermi surface, also manifest as an in-plane anisotropy of the resistivity.

  15. A Novel Observer for Lithium-Ion Battery State of Charge Estimation in Electric Vehicles Based on a Second-Order Equivalent Circuit Model

    Bizhong Xia

    2017-08-01

    Full Text Available Accurate state of charge (SOC estimation can prolong lithium-ion battery life and improve its performance in practice. This paper proposes a new method for SOC estimation. The second-order resistor-capacitor (2RC equivalent circuit model (ECM is applied to describe the dynamic behavior of lithium-ion battery on deriving state space equations. A novel method for SOC estimation is then presented. This method does not require any matrix calculation, so the computation cost can be very low, making it more suitable for hardware implementation. The Federal Urban Driving Schedule (FUDS, The New European Driving Cycle (NEDC, and the West Virginia Suburban Driving Schedule (WVUSUB experiments are carried to evaluate the performance of the proposed method. Experimental results show that the SOC estimation error can converge to 3% error boundary within 30 seconds when the initial SOC estimation error is 20%, and the proposed method can maintain an estimation error less than 3% with 1% voltage noise and 5% current noise. Further, the proposed method has excellent robustness against parameter disturbance. Also, it has higher estimation accuracy than the extended Kalman filter (EKF, but with decreased hardware requirements and faster convergence rate.

  16. Spatial distribution of superconducting and charge-density-wave order parameters in cuprates and its influence on the quasiparticle tunnel current (Review Article)

    Gabovich, Alexander M.; Voitenko, Alexander I.

    2016-10-01

    The state of the art concerning tunnel measurements of energy gaps in cuprate oxides has been analyzed. A detailed review of the relevant literature is made, and original results calculated for the quasiparticle tunnel current J(V) between a metallic tip and a disordered d-wave superconductor partially gapped by charge density waves (CDWs) are reported, because it is this model of high-temperature superconductors that becomes popular owing to recent experiments in which CDWs were observed directly. The current was calculated suggesting the scatter of both the superconducting and CDW order parameters due to the samples' intrinsic inhomogeneity. It was shown that peculiarities in the current-voltage characteristics inherent to the case of homogeneous superconducting material are severely smeared, and the CDW-related features transform into experimentally observed peak-dip-hump structures. Theoretical results were used to fit data measured for YBa2Cu3O7-δ and Bi2Sr2CaCu2O8+δ. The fitting demonstrated a good qualitative agreement between the experiment and model calculations. The analysis of the energy gaps in high-Tc superconductors is important both per se and as a tool to uncover the nature of superconductivity in cuprates not elucidated so far despite of much theoretical effort and experimental progress.

  17. Spatial distribution of superconducting and charge-density-wave order parameters in cuprates and its influence on the quasiparticle tunnel current (Review Article)

    Cabovich, Alexander M.; Voitenko, Alexander I.

    2016-01-01

    The state of the art concerning tunnel measurements of energy gaps in cuprate oxides has been analyzed. A detailed review of the relevant literature is made, and original results calculated for the quasiparticle tunnel current J(V) between a metallic tip and a disordered d-wave superconductor partially gapped by charge density waves (CDWs) are reported, because it is this model of high-temperature superconductors that becomes popular owing to recent experiments in which CDWs were observed directly. The current was calculated suggesting the scatter of both the superconducting and CDW order parameters due to the samples intrinsic inhomogeneity. It was shown that peculiarities in the current-voltage characteristics inherent to the case of homogeneous super-conducting material are severely smeared, and the CDW-related features transform into experimentally observed peak-dip-hump structures. Theoretical results were used to fit data measured for YBa_2Cu_3O_7_-_d_e_l_t_a and Bi_2Sr_2CaCu_2O_8_+_d_e_l_t_a. The fitting demonstrated a good qualitative agreement between the experiment and model calculations. The analysis of the energy gaps in high-Tc superconductors is important both per se and as a tool to uncover the nature of superconductivity in cuprates not elucidated so far despite of much theoretical effort and experimental progress.

  18. Onset of itinerant ferromagnetism associated with semiconductor ...

    In this paper, the magnetic and transport properties of the TiNb1−CoSn solid solution compounds with half Heusler cubic MgAgAs-type structure have been studied. This work shows the onset of ferromagnetism associated with a semiconductor to metal transition. The transition occurs directly from ferromagnetic metal to ...

  19. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems

    Manchon, Aurelien

    2018-01-29

    Spin-orbit coupling in inversion-asymmetric magnetic crystals and structures has emerged as a powerful tool to generate complex magnetic textures, interconvert charge and spin under applied current, and control magnetization dynamics. Current-induced spin-orbit torques mediate the transfer of angular momentum from the lattice to the spin system, leading to sustained magnetic oscillations or switching of ferromagnetic as well as antiferromagnetic structures. The manipulation of magnetic order, domain walls and skyrmions by spin-orbit torques provides evidence of the microscopic interactions between charge and spin in a variety of materials and opens novel strategies to design spintronic devices with potentially high impact in data storage, nonvolatile logic, and magnonic applications. This paper reviews recent progress in the field of spin-orbitronics, focusing on theoretical models, material properties, and experimental results obtained on bulk noncentrosymmetric conductors and multilayer heterostructures, including metals, semiconductors, and topological insulator systems. Relevant aspects for improving the understanding and optimizing the efficiency of nonequilibrium spin-orbit phenomena in future nanoscale devices are also discussed.

  20. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems

    Manchon, Aurelien; Miron, I. M.; Jungwirth, T.; Sinova, J.; Zelezný , J.; Thiaville, A.; Garello, K.; Gambardella, P.

    2018-01-01

    Spin-orbit coupling in inversion-asymmetric magnetic crystals and structures has emerged as a powerful tool to generate complex magnetic textures, interconvert charge and spin under applied current, and control magnetization dynamics. Current-induced spin-orbit torques mediate the transfer of angular momentum from the lattice to the spin system, leading to sustained magnetic oscillations or switching of ferromagnetic as well as antiferromagnetic structures. The manipulation of magnetic order, domain walls and skyrmions by spin-orbit torques provides evidence of the microscopic interactions between charge and spin in a variety of materials and opens novel strategies to design spintronic devices with potentially high impact in data storage, nonvolatile logic, and magnonic applications. This paper reviews recent progress in the field of spin-orbitronics, focusing on theoretical models, material properties, and experimental results obtained on bulk noncentrosymmetric conductors and multilayer heterostructures, including metals, semiconductors, and topological insulator systems. Relevant aspects for improving the understanding and optimizing the efficiency of nonequilibrium spin-orbit phenomena in future nanoscale devices are also discussed.

  1. Ionized zinc vacancy mediated ferromagnetism in copper doped ZnO thin films

    Shi-Yi Zhuo

    2012-03-01

    Full Text Available This paper reports the origin of ferromagnetism in Cu-doped ZnO thin films. Room-temperature ferromagnetism is obtained in all the thin films when deposited at different oxygen partial pressure. An obviously enhanced peak corresponding to zinc vacancy is observed in the photoluminescence spectra, while the electrical spin resonance measurement implies the zinc vacancy is negative charged. After excluding the possibility of direct exchange mechanisms (via free carriers, we tentatively propose a quasi-indirect exchange model (via ionized zinc vacancy for Cu-doped ZnO system.

  2. Modulation of Metal and Insulator States in 2D Ferromagnetic VS2 by van der Waals Interaction Engineering.

    Guo, Yuqiao; Deng, Haitao; Sun, Xu; Li, Xiuling; Zhao, Jiyin; Wu, Junchi; Chu, Wangsheng; Zhang, Sijia; Pan, Haibin; Zheng, Xusheng; Wu, Xiaojun; Jin, Changqing; Wu, Changzheng; Xie, Yi

    2017-08-01

    2D transition-metal dichalcogenides (TMDCs) are currently the key to the development of nanoelectronics. However, TMDCs are predominantly nonmagnetic, greatly hindering the advancement of their spintronic applications. Here, an experimental realization of intrinsic magnetic ordering in a pristine TMDC lattice is reported, bringing a new class of ferromagnetic semiconductors among TMDCs. Through van der Waals (vdW) interaction engineering of 2D vanadium disulfide (VS 2 ), dual regulation of spin properties and bandgap brings about intrinsic ferromagnetism along with a small bandgap, unravelling the decisive role of vdW gaps in determining the electronic states in 2D VS 2 . An overall control of the electronic states of VS 2 is also demonstrated: bond-enlarging triggering a metal-to-semiconductor electronic transition and bond-compression inducing metallization in 2D VS 2 . The pristine VS 2 lattice thus provides a new platform for precise manipulation of both charge and spin degrees of freedom in 2D TMDCs availing spintronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Evidence of spin transition and charge order in cobalt substituted La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 3

    Srivastava, C M; Gundurao, T K; Nigam, A K; Bahadur, D

    2003-01-01

    The transport and magnetic studies of a series of compounds having the general formula La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 Mn sub 1 sub - sub x Co sub x O sub 3 (0.1 = 0.25 there is a clear spin transition at low temperature from the high to the low spin state of trivalent cobalt and this leads to change in ferromagnetic (FM) and antiferromagnetic (AFM) phases. For x >= 0.25 there are two transitions for each value of x: the upper one gives the FM and AFM spin arrangement depending upon whether the DE or the SE dominates; the lower one is obtained due to the transition from the high to the low spin state of the trivalent cobalt ion.

  4. Inhomogeneity in the spin channel of ferromagnetic CMR manganites

    Heffner, R.H.; Sonier, J.E.; MacLaughlin, D.E.; Nieuwenhuys, G.J.; Mezei, F.; Ehlers, G.; Mitchell, J.F.; Cheong, S.-W

    2003-02-01

    Colossal magnetoresistance manganites are archetypes in which to study the strong coupling between spin, charge and lattice degrees of freedom in materials. We present muon spin-lattice relaxation data in ferromagnetic (FM) ground state materials from the manganite series La{sub 1-x}Ca{sub x}MnO{sub 3} and La{sub 1-x-y}Pr{sub y}Ca{sub x}MnO{sub 3}. These measurements reveal several characteristic relaxation modes arising from the strong spin-charge-lattice interactions. We also present results from neutron-spin-echo spectroscopy, which directly measures the spin-spin correlation function in a time domain comparable to {mu}SR. A qualitative model for the FM transition in the manganites involving microscopic phase separation is suggested by these data.

  5. Skyrmion clusters from Bloch lines in ferromagnetic films

    Garanin, Dmitry A.

    2017-12-29

    Conditions under which various skyrmion objects emerge in experiments on thin magnetic films remain largely unexplained. We investigate numerically centrosymmetric spin lattices in films of finite thickness with ferromagnetic exchange, magnetic anisotropy, and dipole-dipole interaction. Evolution of labyrinth domains into compact topological structures on application of the magnetic field is found to be governed by the configuration of Bloch lines inside domain walls. Depending on the combination of Bloch lines, the magnetic domains evolve into individual skyrmions, biskyrmions, or more complex topological objects. While the geometry of such objects is sensitive to the parameters, their topological charge is uniquely determined by the topological charge of Bloch lines inside the magnetic domain from which the object emerges.

  6. Investigation of ferromagnetism in oxygen deficient hafnium oxide thin films

    Hildebrandt, Erwin; Kurian, Jose; Krockenberger, Yoshiharu; Alff, Lambert [Institut fuer Materialwissenschaft, TU Darmstadt (Germany); Suter, Andreas [PSI, Villingen (Switzerland); Wilhelm, Fabrice; Rogalev, Andrei [ESRF, Grenoble (France)

    2008-07-01

    Oxygen deficient thin films of hafnium oxide were grown on single crystal r-cut and c-cut sapphire by reactive molecular beam epitaxy. RF-activated oxygen was used for the in situ oxidation of hafnium oxide thin films. Oxidation conditions were varied substantially in order to create oxygen deficiency in hafnium oxide films intentionally. The films were characterized by X-ray and magnetic measurements. X-ray diffraction studies show an increase in lattice parameter with increasing oxygen deficiency. Oxygen deficient hafnium oxide thin films also showed a decreasing bandgap with increase in oxygen deficiency. The magnetisation studies carried out with SQUID did not show any sign of ferromagnetism in the whole oxygen deficiency range. X-ray magnetic circular dichroism measurements also confirmed the absence of ferromagnetism in oxygen deficient hafnium oxide thin films.

  7. Design and installation of a ferromagnetic wall in tokamak geometry

    Hughes, P. E.; Levesque, J. P.; Rivera, N.; Mauel, M. E.; Navratil, G. A.

    2015-01-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak–Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics and overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability

  8. Design and installation of a ferromagnetic wall in tokamak geometry

    Hughes, P. E., E-mail: peh2109@columbia.edu; Levesque, J. P.; Rivera, N.; Mauel, M. E.; Navratil, G. A. [Columbia University Plasma Physics Laboratory, Columbia University, 102 S.W. Mudd, 500 W. 120th St., New York, New York 10027 (United States)

    2015-10-15

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak–Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics and overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability.

  9. Defect-impurity complex induced long-range ferromagnetism in GaN nanowires

    Assa Aravindh, S

    2015-12-14

    Present work investigates the structural, electronic and magnetic properties of Gd doped wurtzite GaN nanowires (NWs) oriented along the [0001] direction in presence of intrinsic defects by employing the GGA + U approximation. We find that Ga vacancy (VGa) exhibits lower formation energy compared to N vacancy. Further stabilization of point defects occurs due to the presence of Gd. The strength of ferromagnetism (FM) increases by additional positive charge induced by the VGa. Electronic structure analysis shows that VGa introduces defect levels in the band gap leading to ferromagnetic coupling due to the hybridization of the p states of the Ga and N atoms with the Gd d and f states. Ferromagnetic exchange coupling energy of 76.4 meV is obtained in presence of Gd-VGa complex; hence, the FM is largely determined by the cation vacancy-rare earth complex defects in GaN NWs.

  10. Defect-impurity complex induced long-range ferromagnetism in GaN nanowires

    Assa Aravindh, S; Roqan, Iman S.

    2015-01-01

    Present work investigates the structural, electronic and magnetic properties of Gd doped wurtzite GaN nanowires (NWs) oriented along the [0001] direction in presence of intrinsic defects by employing the GGA + U approximation. We find that Ga vacancy (VGa) exhibits lower formation energy compared to N vacancy. Further stabilization of point defects occurs due to the presence of Gd. The strength of ferromagnetism (FM) increases by additional positive charge induced by the VGa. Electronic structure analysis shows that VGa introduces defect levels in the band gap leading to ferromagnetic coupling due to the hybridization of the p states of the Ga and N atoms with the Gd d and f states. Ferromagnetic exchange coupling energy of 76.4 meV is obtained in presence of Gd-VGa complex; hence, the FM is largely determined by the cation vacancy-rare earth complex defects in GaN NWs.

  11. Blue shift of the plasma edge of a ferromagnetic semimetal

    Wachter, P.; Bommeli, F.; Degiorgi, L.; Burlet, P.; Bourdarot, F.

    1998-01-01

    Full text: In general rare earth pnictides are semimetals and antiferromagnets. Only some nitrides are quoted as ferri or ferromagnetic. However, it has been shown when prepared stoichiometrically and in single crystalline form the free carrier concentration is only in the percent per cation range, thus they are typical low carrier systems. Under these conditions the nitrides are all canted antiferromagnets and metamagnets, i.e. they show Abstract only. The full magnetic moment only with an applied magnetic field. However, when prepared as single crystals but with excess of the rare earths they become spontaneously ferromagnets due to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in addition to the superexchange mechanisms. On such ferromagnetic compositions of TbN and GdN and also in EuB 6 a new magneto-optic effect has been discovered, a spontaneous blue shift of the plasma edge upon magnetic order. The plasma edge is measured with optical reflectivity and it depends on the free carrier concentration. In other words the free carrier concentration increases upon ferromagnetic order. This effect can be understood with the spontaneous exchange splitting of mainly the 5d conduction band, lowering the bottom of the spin up 5d band, thus increasing the indirect overlap with the valence p band of the anions and thus enhancing the carrier concentration. This blue shift of the plasma edge follows a spin correlation function. An external magnetic field applied near TC enhances the blue shift since the magnetization is not yet saturated. For T→0 a magnetic field has no effect since the magnetization is spontaneously saturated

  12. Spin-dependent Goos–Hänchen shift and spin beam splitter in gate-controllable ferromagnetic graphene

    Wang, Y.; Liu, Y.; Wang, B.

    2014-01-01

    The transmission and Goos–Hänchen (GH) shift for charge carriers in gate-controllable ferromagnetic graphene induced by ferromagnetic insulator are investigated theoretically. Numerical results demonstrate that spin-up and spin-down electrons exhibit remarkably different transmission and GH shifts. The spin-dependent GH shifts directly demonstrate the spin beam splitting effect, which can be controlled by the voltage of gate. We attribute the spin beam splitting effect to the combination of tunneling through potential barrier and Zeeman interaction from the magnetic field and the exchange proximity interaction between the ferromagnetic insulator and graphene. In view of the spin beam splitting effect and the spin-dependent GH shifts, the gate-controllable ferromagnetic graphene might be utilized to design spin beam splitter

  13. Spin-dependent Goos–Hänchen shift and spin beam splitter in gate-controllable ferromagnetic graphene

    Wang, Y. [School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Y., E-mail: stslyl@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Wang, B., E-mail: wangbiao@mail.sysu.edu.cn [School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2014-03-15

    The transmission and Goos–Hänchen (GH) shift for charge carriers in gate-controllable ferromagnetic graphene induced by ferromagnetic insulator are investigated theoretically. Numerical results demonstrate that spin-up and spin-down electrons exhibit remarkably different transmission and GH shifts. The spin-dependent GH shifts directly demonstrate the spin beam splitting effect, which can be controlled by the voltage of gate. We attribute the spin beam splitting effect to the combination of tunneling through potential barrier and Zeeman interaction from the magnetic field and the exchange proximity interaction between the ferromagnetic insulator and graphene. In view of the spin beam splitting effect and the spin-dependent GH shifts, the gate-controllable ferromagnetic graphene might be utilized to design spin beam splitter.

  14. The Roles of Structural Order and Intermolecular Interactions in Determining Ionization Energies and Charge-Transfer State Energies in Organic Semiconductors

    Graham, Kenneth; Ngongang Ndjawa, Guy Olivier; Conron, Sarah M.; Munir, Rahim; Vandewal, Koen; Chen, John J.; Sweetnam, Sean; Thompson, Mark E.; Salleo, Alberto; Mcgehee, Michael D.; Amassian, Aram

    2016-01-01

    The energy landscape in organic semiconducting materials greatly influences charge and exciton behavior, which are both critical to the operation of organic electronic devices. These energy landscapes can change dramatically depending on the phases

  15. Dipolar ferromagnets and glasses (invited)

    Rosenbaum, T.F.; Wu, W.; Ellman, B.; Yang, J.; Aeppli, G.; Reich, D.H.

    1991-01-01

    What is the ground state and what are the dynamics of 10 23 randomly distributed Ising spins? We have attempted to answer these questions through magnetic susceptibility, calorimetric, and neutron scattering studies of the randomly diluted dipolar-coupled Ising magnet LiHo x Y 1-x F 4 . The material is ferromagnetic for dipole concentrations at least as low as x=0.46, with a Curie temperature obeying mean-field scaling relative to that of pure LiHoF 4 . In the dilute spin limit, an x=0.045 crystal shows very unusual glassy properties characterized by decreasing barriers to relaxation as T→0. Its properties are consistent with a single low degeneracy ground state with a large gap for excitations. A slightly more concentrated x=0.167 sample, however, supports a complex ground state with no appreciable gap, in accordance with prevailing theories of spin glasses. The underlying causes of such disparate behavior are discussed in terms of random clusters as probed by neutron studies of the x=0.167 sample. In addition to tracing the evolution of the glassy and ferromagnetic states with dipole concentration, we investigate the effects of a transverse magnetic field on the Ising spin glass, LiHo 0.167 Y 0.833 F 4 . The transverse field mixes the eigenfunctions of the ground-state Ising doublet with the otherwise inaccessible excited-state levels. We observe a rapid decrease in the characteristic relaxation times, large changes in the spectral form of the relaxation, and a depression of the spin-glass transition temperature with the addition of quantum fluctuations

  16. Evidence of a splitting of the Mn-O distance and of a large lattice disorder in the charge-ordered phase of LiMn2O4 obtained by EXAFS

    Paolone, A.; Castellano, C.; Cantelli, R.; Rousse, G.; Masquelier, C.

    2003-01-01

    We measured the extended x-ray-absorption fine-structure (EXAFS) spectrum of LiMn 2 O 4 below room temperature in the charge-ordered phase and for comparison at room temperature in the cubic phase. By means of a standard fit procedure we verified that, as reported by neutron-scattering experiments, also at the local level there are two different Mn-O distances below room temperature, which correspond to the surroundings of well-defined Mn 3+ and Mn 4+ ions. This result is different from the ones obtained from previous EXAFS measurements and confirms the physical picture of the phase transition caused by the ordering of charges in contrast to a cooperative Jahn-Teller phenomenon. Moreover a large lattice disorder in the charge-ordered state, which determines a significant static contribution to the EXAFS Debye-Waller factor, has been found. This last result can be considered as the EXAFS spectral mark of charge-order transitions, even in those materials in which there is no clear evidence of the splitting of bond lengths

  17. Defect induced ferromagnetism in MgO and its exceptional enhancement upon thermal annealing: a case of transformation of various defect states.

    Pathak, Nimai; Gupta, Santosh Kumar; Prajapat, C L; Sharma, S K; Ghosh, P S; Kanrar, Buddhadev; Pujari, P K; Kadam, R M

    2017-05-17

    MgO particles of few micron size are synthesized through a sol-gel method at different annealing temperatures such as 600 °C (MgO-600), 800 °C (MgO-800) and 1000 °C (MgO-1000). EDX and ICP-AES studies confirmed a near total purity of the sample with respect to paramagnetic metal ion impurities. Magnetic measurements showed a low temperature weak ferromagnetic ordering with a T C (Curie temperature) around 65 K (±5 K). Unexpectedly, the saturation magnetization (M s ) was found to be increased with increasing annealing temperature during synthesis. It was observed that with J = 1 or 3/2 or S = 1 or 3/2, the experimental points are fitted well with the Brillouin function of weak ferromagnetic ordering. A positron annihilation lifetime measurement study indicated the presence of a divacancy (2V Mg + 2V O ) cluster in the case of the low temperature annealed compound, which underwent dissociations into isolated monovacancies of Mg and O at higher annealing temperatures. An EPR study showed that both singly charged Mg vacancies and oxygen vacancies are responsible for ferromagnetic ordering. It also showed that at lower annealing temperatures the contribution from was very low while at higher annealing temperatures, it increased significantly. A PL study showed that most of the F + centers were present in their dimer form, i.e. as centers. DFT calculation implied that this dimer form has a higher magnetic moment than the monomer. After a careful consideration of all these observations, which have been reported for the first time, this thermally tunable unusual magnetism phenomenon was attributed to a transformation mechanism of one kind of cluster vacancy to another.

  18. Ferromagnetic Long Range Ordering in Copper(2) Maleate Monohydrate.

    1988-11-20

    thanks the Consejo Nacional de Ciencia y Tecnologia for a partial fellowship. 10 References 1a) SYNTHECO, Inc., 1920 Industrial Pike, Gastonia, N.C...Philadelphia, 1966; Chapter 3. 14) D. B. Losee and W. E. Hatfield, Phs e.i Q 1122 (1974). 15) y . Yamamoto, M. Matsuura, and T. Haseda, J. Phys.-Soc...Mal in the solid state recorded at room temperature. 12 (0 Vj) N 4W +C +~ 13 4P4 CYC CS) (SG) CS + 0 (0 + C, S+ + 06 + + + 3 CC, (( Y ) uo p1 3ubA 00 CL

  19. First-order phase transitions in a quantum Hall ferromagnet

    Piazza, V.; Pellegrini, V.; Beltram, F.; Wegscheider, W.; Jungwirth, Tomáš; MacDonald, A.

    1999-01-01

    Roč. 402, č. 9 (1999), s. 638-641 ISSN 0028-0836 R&D Projects: GA AV ČR KSK1010601 Institutional research plan: CEZ:AV0Z1010914 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 29.491, year: 1999

  20. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates

    Bonilla, Manuel; Kolekar, Sadhu; Ma, Yujing; Diaz, Horacio Coy; Kalappattil, Vijaysankar; Das, Raja; Eggers, Tatiana; Gutierrez, Humberto R.; Phan, Manh-Huong; Batzill, Matthias

    2018-04-01

    Reduced dimensionality and interlayer coupling in van der Waals materials gives rise to fundamentally different electronic1, optical2 and many-body quantum3-5 properties in monolayers compared with the bulk. This layer-dependence permits the discovery of novel material properties in the monolayer regime. Ferromagnetic order in two-dimensional materials is a coveted property that would allow fundamental studies of spin behaviour in low dimensions and enable new spintronics applications6-8. Recent studies have shown that for the bulk-ferromagnetic layered materials CrI3 (ref. 9) and Cr2Ge2Te6 (ref. 10), ferromagnetic order is maintained down to the ultrathin limit at low temperatures. Contrary to these observations, we report the emergence of strong ferromagnetic ordering for monolayer VSe2, a material that is paramagnetic in the bulk11,12. Importantly, the ferromagnetic ordering with a large magnetic moment persists to above room temperature, making VSe2 an attractive material for van der Waals spintronics applications.

  1. Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices

    Takamura, Y.; Biegalski, M.B.; Christen, H.M.

    2009-10-22

    Soft x-ray magnetic dichroism, magnetization, and magnetotransport measurements demonstrate that the competition between different magnetic interactions (exchange coupling, electronic reconstruction, and long-range interactions) in La{sub 0.7}Sr{sub 0.3}FeO{sub 3}(LSFO)/La{sub 0.7}Sr{sub 0.3}MnO{sub 3}(LSMO) perovskite oxide superlattices leads to unexpected functional properties. The antiferromagnetic order parameter in LSFO and ferromagnetic order parameter in LSMO show a dissimilar dependence on sublayer thickness and temperature, illustrating the high degree of tunability in these artificially layered materials.

  2. Phase transition of the FCC Ising ferromagnet with competing interactions

    Oh, J.H.; Lee, J.Y.; Kim, D.C.

    1984-01-01

    A molecular field theory with correlation and Monte Carlo simulations are utilized to determine the zero field phase diagram of a fcc Ising model with ferromagnetic nearest neighbor(-J) and antiferromagnetic next neighbor (*aJ) interactions. The correlated molecular field theory predicts a fluctuation induced first order phase transition for 0.87<*a<1.31. Monte Carlo analysis indicates that the first order transition occurs for a somewhat wider range of *a. The transition temperatures obtained by the two methods are in good agreement especially near *a=1 where the fluctuation effect is expected to be large. (Author)

  3. Optimization of a superconducting linear levitation system using a soft ferromagnet

    Agramunt-Puig, Sebastia; Del-Valle, Nuria; Navau, Carles; Sanchez, Alvaro

    2013-04-01

    The use of guideways that combine permanent magnets and soft ferromagnetic materials is a common practice in magnetic levitation transport systems (maglevs) with bulk high-temperature superconductors. Theoretical tools to simulate in a realistic way both the behavior of all elements (permanent magnets, soft ferromagnet and superconductor) and their mutual effects are helpful to optimize the designs of real systems. Here we present a systematic study of the levitation of a maglev with translational symmetry consisting of a superconducting bar and a guideway with two identic permanent magnets and a soft ferromagnetic material between them. The system is simulated with a numerical model based on the energy minimization method that allows to analyze the mutual interaction of the superconductor, assumed to be in the critical state, and a soft ferromagnet with infinite susceptibility. Results indicate that introducing a soft ferromagnet within the permanent magnets not only increases the levitation force but also improves the stability. Besides, an estimation of the relative sizes and shapes of the soft ferromagnet, permanent magnets and the superconductor in order to obtain large levitation force with full stability is provided.

  4. Heat dissipation due to ferromagnetic resonance in a ferromagnetic metal monitored by electrical resistance measurement

    Yamanoi, Kazuto; Yokotani, Yuki; Kimura, Takashi

    2015-01-01

    The heat dissipation due to the resonant precessional motion of the magnetization in a ferromagnetic metal has been investigated. We demonstrated that the temperature during the ferromagnetic resonance can be simply detected by the electrical resistance measurement of the Cu strip line in contact with the ferromagnetic metal. The temperature change of the Cu strip due to the ferromagnetic resonance was found to exceed 10 K, which significantly affects the spin-current transport. The influence of the thermal conductivity of the substrate on the heating was also investigated

  5. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb

    Tu, Nguyen Thanh; Hai, Pham Nam; Anh, Le Duc; Tanaka, Masaaki

    2016-01-01

    We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga_1_−_x,Fe_x)Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.

  6. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb

    Tu, Nguyen Thanh [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physics, Ho Chi Minh City University of Pedagogy, 280, An Duong Vuong Street, District 5, Ho Chi Minh City 748242 (Viet Nam); Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-0033 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Anh, Le Duc [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-05-09

    We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.

  7. Oscillating electromagnetic soliton in an anisotropic ferromagnetic medium

    Sathishkumar, P., E-mail: perumal_sathish@yahoo.co.in [Department of Physics, K.S.R. College of Engineering (Autonomous), Tiruchengode 637215, Tamilnadu (India); Senjudarvannan, R. [Department of Physics, Jansons Institute of Technology, Karumathampatty, Coimbatore 641659 (India)

    2017-05-01

    We investigate theoretically the propagation of electromagnetic oscillating soliton in the form of breather in an anisotropic ferromagnetic medium. The interaction of magnetization with the magnetic field component of the electromagnetic (EM) wave has been studied by solving Maxwell's equations coupled with a Landau–Lifshitz equation for the magnetization of the medium. We made a small perturbation on the magnetization and magnetic field along the direction of propagation of EM wave in the framework of reductive perturbation method and the associated nonlinear magnetization dynamics is governed by a generalized derivative nonlinear Schrödinger (DNLS) equation. In order to understand the dynamics of the concerned system, we employ the Jacobi elliptic function method to solve the DNLS equation and deduce breatherlike soliton modes for the EM wave in the medium. - Highlights: • The propagation of electromagnetic oscillating soliton in an anisotropic ferromagnetic medium is investigated in the presence of varying external magnetic field. • The magnetization and electromagnetic wave modulates in the form of breathing like oscillating solitons. • The governing nonlinear spin dynamical equation is studied through a reductive perturbation method. • The magnetization components of the ferromagnetic medium are derived using Jacobi elliptic functions method with the aid of symbolic computation.

  8. Dimensionality Driven Enhancement of Ferromagnetic Superconductivity in URhGe

    Braithwaite, Daniel; Aoki, Dai; Brison, Jean-Pascal; Flouquet, Jacques; Knebel, Georg; Nakamura, Ai; Pourret, Alexandre

    2018-01-01

    In most unconventional superconductors, like the high-Tc cuprates, iron pnictides, or heavy-fermion systems, superconductivity emerges in the proximity of an electronic instability. Identifying unambiguously the pairing mechanism remains nevertheless an enormous challenge. Among these systems, the orthorhombic uranium ferromagnetic superconductors have a unique position, notably because magnetic fields couple directly to ferromagnetic order, leading to the fascinating discovery of the reemergence of superconductivity in URhGe at a high field. Here we show that uniaxial stress is a remarkable tool allowing the fine-tuning of the pairing strength. With a relatively small stress, the superconducting phase diagram is spectacularly modified, with a merging of the low- and high-field superconducting states and a significant enhancement of the superconductivity. The superconducting critical temperature increases both at zero field and under a field, reaching 1 K, more than twice higher than at ambient pressure. This enhancement of superconductivity is shown to be directly related to a change of the magnetic dimensionality detected from an increase of the transverse magnetic susceptibility: In addition to the Ising-type longitudinal ferromagnetic fluctuations, transverse magnetic fluctuations also play an important role in the superconducting pairing.

  9. (Ga,Fe)Sb: A p-type ferromagnetic semiconductor

    Tu, Nguyen Thanh; Anh, Le Duc; Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-0033 (Japan)

    2014-09-29

    A p-type ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 3.9%–13.7%) has been grown by low-temperature molecular beam epitaxy (MBE) on GaAs(001) substrates. Reflection high energy electron diffraction patterns during the MBE growth and X-ray diffraction spectra indicate that (Ga,Fe)Sb layers have the zinc-blende crystal structure without any other crystallographic phase of precipitates. Magnetic circular dichroism (MCD) spectroscopy characterizations indicate that (Ga,Fe)Sb has the zinc-blende band structure with spin-splitting induced by s,p-d exchange interactions. The magnetic field dependence of the MCD intensity and anomalous Hall resistance of (Ga,Fe)Sb show clear hysteresis, demonstrating the presence of ferromagnetic order. The Curie temperature (T{sub C}) increases with increasing x and reaches 140 K at x = 13.7%. The crystal structure analyses, magneto-transport, and magneto-optical properties indicate that (Ga,Fe)Sb is an intrinsic ferromagnetic semiconductor.

  10. Comparative study of magnetic ordering in bulk and nanoparticles of Sm{sub 0.65}Ca{sub 0.35}MnO{sub 3}: Magnetization and electron magnetic resonance measurements

    Goveas, Lora Rita, E-mail: loragoveas@gmail.com [Department of Physics, Dr. Ambedkar Institute of Technology, Bangalore 560056 (India); St. Joseph' s College of Arts and Science, Bangalore 560027 (India); Anuradha, K. N. [Department of Physics, Dr. Ambedkar Institute of Technology, Bangalore 560056 (India); Bhagyashree, K. S.; Bhat, S. V. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2015-05-07

    To explore the effect of size reduction to nanoscale on the hole doped Sm{sub 0.65}Ca{sub 0.35}MnO{sub 3} compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario.

  11. Coexistence of Superconductivity and Ferromagnetism in ...

    KBHEEMA

    Ferromagnetic alignment can be expected to be strongly opposed by superconductivity. .... To obtain temperature dependent of energy gap of equation (23), we used the same techniques to solve the integral .... band metal ZrZn2. Nature, 412: ...

  12. Ferromagnetic and twin domains in LCMO manganites

    Jung, G.; Markovich, V.; Mogilyanski, D.; Beek, C. van der; Mukovskii, Y.M.

    2005-01-01

    Ferromagnetic and twin domains in lightly Ca-doped La 1-x Ca x MnO 3 single crystals have been visualized and investigated by means of the magneto-optical technique. Both types of domains became visible below the Curie temperature. The dominant structures seen in applied magnetic field are associated with magneto-crystalline anisotropy and twin domains. In a marked difference to the twin domains which appear only in applied magnetic field, ferromagnetic domains show up in zero applied field and are characterized by oppositely oriented spontaneous magnetization in adjacent domains. Ferromagnetic domains take form of almost periodic, corrugated strip-like structures. The corrugation of the ferromagnetic domain pattern is enforced by the underlying twin domains

  13. Transport through hybrid superconducting/ferromagnetic double-path junction

    Facio, T.J.S. [Departamento de Física e Química, Universidade Estadual Paulista – UNESP, 15385-000, Ilha Solteira, SP (Brazil); Orellana, P.A. [Departamento de Física, Universidad Técnica Federico Santa Maria, Av. Vicuña Mackenna, 3939, Santiago (Chile); Jurelo, A.R. [Departamento de Física, Universidade Estadual de Ponta Grossa – UEPG, 84030-000, Ponta Grossa, PR (Brazil); Figueira, M.S. [Instituto de Física, Universidade Federal Fluminense, 24210-340, Niterói, RJ (Brazil); Cabrera, G.G. [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas – UNICAMP, 13083-859, Campinas, SP (Brazil); Siqueira, E.C., E-mail: ecosta@utfpr.edu.br [Departamento de Física, Universidade Tecnológica Federal do Paraná – UTFPR, 84016-210, Ponta Grossa, PR (Brazil)

    2017-02-05

    In this paper we study a double-path junction formed by a ferromagnetic and a superconductor lead. The first path connects the superconductor and ferromagnet directly while the second path connects these metals through a quantum dot. The whole system works as an Aharonov–Bohm interferometer allowing the study of the interference between these two paths under the presence of spin imbalance and Andreev bound states. We considered the effect of Fano interference on the electronic transmittance through the quantum dot and observed two regimes of conduction depending on the strength of the direct coupling. For the weak coupling regime, the transmittance presented the usual four resonances due to the Andreev bound states whereas for the strong coupling regime the profile was inverted and resonances became anti-resonances. However, even in the strong coupling regime it was possible to observe a central resonance due to the interference between the Andreev bound states. We have also studied the signatures of Fano interference on the average occupation within the quantum dot. The spin accumulation was analyzed and how it depends on the direct coupling and an external magnetic field applied to the system. The results obtained may be used in a possible experimental implementation of this system in order to probe spin related effects in ferromagnetic superconductor nanostructures. - Highlights: • An Aharonov–Bohm interferometer composed by a quantum-dot coupled to a superconductor and ferromagnetic lead is studied. • The transmittance through the QD is determined by the interplay between Andreev and Fano interference. • Spin accumulation within the quantum dot is studied as a function of bias/gate voltages and an external magnetic flux.

  14. Competition between superconductivity and magnetism in ferromagnet/superconductor heterostructures

    Izyumov, Yurii A; Proshin, Yurii N; Khusainov, Mensur G

    2002-01-01

    The mutual influence of superconductivity and magnetism in F/S systems, i.e. systems of alternating ferromagnetic (F) and superconducting (S) layers, is comprehensively reviewed. For systems with ferromagnetic metal (FM) layers, a theory of the proximity effect in the dirty limit is constructed based on the Usadel equations. For an FM/S bilayer and an FM/S superlattice, a boundary-value problem involving finite FM/S boundary transparency and the diffusion and wave modes of quasi-particle motion is formulated; and the critical temperature T c is calculated as a function of FM- and S-layer thicknesses. A detailed analysis of a large amount of experimental data amply confirms the proposed theory. It is shown that the superconducting state of an FM/S system is a superposition of two pairing mechanisms, Bardin - Cooper - Schrieffer's in S layers and Larkin - Ovchinnikov - Fulde - Ferrell's in FM ones. The competition between ferromagnetic and antiferromagnetic spontaneous moment orientations in FM layers is explored for the 0- and π-phase superconductivity in FM/S systems. For FI/S structures, where FI is a ferromagnetic insulator, a model for exchange interactions is proposed, which, along with direct exchange inside FI layers, includes indirect Ruderman - Kittel - Kasuya - Yosida exchange between localized spins via S-layer conduction electrons. Within this framework, possible mutual accommodation scenarios for superconducting and magnetic order parameters are found, the corresponding phase diagrams are plotted, and experimental results are explained. The results of the theory of the Josephson effect for S/F/S junctions are presented and the application of the theory of spin-dependent transport to F/S/F junctions is discussed. Application aspects of the subject are examined. (reviews of topical problems)

  15. Mikhailov's experiments on detection of magnetic charge

    Akers, D.

    1988-01-01

    In a reanalysis of Mikhailov's experiments, it is argued that observations of magnetic charge g = (1/2)(1/137)(1/3)e on ferromagnetic aerosols are incorrect. Future experiments of the type conducted by Mikhailov must take into an account the component of particle velocity orthogonal to E and H. It is shown that Mikhailov's data are consistent with the existence of a Dirac unit of magnetic charge g = (137/2)e found in meson spectroscopy

  16. Ferromagnetic quantum critical fluctuations and anomalous coexistence of ferromagnetism and superconductivity in UCoGe revealed by Co-NMR and NQR studies

    Ohta, Tetsuya; Nakai, Yusuke; Ihara, Yoshihiko; Ishida, Kenji; Deguchi, Kazuhiko; Sato, Noriaki K.; Satoh, Isamu

    2008-01-01

    Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies were carried out for the recently discovered UCoGe, in which the ferromagnetic and superconducting (SC) transitions are reported to occur at T Curie - 3 K and T S - 0.8 K, in order to investigate the coexistence of ferromagnetism and superconductivity as well as the normal-state and SC properties from a microscopic point of view. From the nuclear spin-lattice relaxation rate 1/T 1 and Knight-shift measurements, we confirm that ferromagnetic fluctuations that possess a quantum critical character are present above T Curie and also the occurrence of a ferromagnetic transition at 2.5 K in our polycrystalline sample. The magnetic fluctuations in the normal state show that UCoGe is an itinerant ferromagnet similar to ZrZn 2 and YCo 2 . The onset SC transition is identified at T S - 0.7 K, below which 1/T 1 arising from 30% of the volume fraction starts to decrease due to the opening of the SC gap. This component of 1/T 1 , which follows a T 3 dependence in the temperature range 0.3-0.1 K, coexists with the magnetic components of 1/T 1 showing a √T dependence below T S . From the NQR measurements in the SC state, we suggest that the self-induced vortex state is realized in UCoGe. (author)

  17. Ferromagnetism and interlayer exchange coupling in thin metallic films

    Kienert, Jochen

    2008-07-15

    This thesis is concerned with the ferromagnetic Kondo lattice (s-d,s-f) model for film geometry. The spin-fermion interaction of this model refers to substances in which localized spins interact with mobile charge carriers like in (dilute) magnetic semiconductors, manganites, or rare-earth compounds. The carrier-mediated, indirect interaction between the localized spins comprises the long-range, oscillatory RKKY exchange interaction in the weak-coupling case and the short-range doubleexchange interaction for strong spin-fermion coupling. Both limits are recovered in this work by mapping the problem onto an effective Heisenberg model. The influence of reduced translational symmetry on the effective exchange interaction and on the magnetic properties of the ferromagnetic Kondo lattice model is investigated. Curie temperatures are obtained for different parameter constellations. The consequences of charge transfer and of lattice relaxation on the magnetic stability at the surface are considered. Since the effective exchange integrals are closely related to the electronic structure in terms of the density of states and of the kinetic energy, the discussion is based on the modifications of these quantities in the dimensionally-reduced case. The important role of spin waves for thin film and surface magnetism is demonstrated. Interlayer exchange coupling represents a particularly interesting and important manifestation of the indirect interaction among localized magnetic moments. The coupling between monatomic layers in thin films is studied in the framework of an RKKY approach. It is decisively determined by the type of in-plane and perpendicular dispersion of the charge carriers and is strongly suppressed above a critical value of the Fermi energy. Finally, the temperature-dependent magnetic stability of thin interlayer-coupled films is addressed and the conditions for a temperature-driven magnetic reorientation transition are discussed. (orig.)

  18. Topological magnon bands in ferromagnetic star lattice

    Owerre, S A

    2017-01-01

    The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1–3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii–Moriya (DM) spin–orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases. (paper)

  19. Topological magnon bands in ferromagnetic star lattice.

    Owerre, S A

    2017-05-10

    The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1-3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii-Moriya (DM) spin-orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases.

  20. Electron-emission processes in highly charged Ar and Xe ions impinging on highly ordered pyrolytic graphite at energies just above the kinetic threshold

    Bodewits, E.; Hoekstra, R.; Dobes, K.; Aumayr, F.

    2014-01-01

    At keV energies, many electronic processes contribute to the emission of secondary electrons in the interaction of highly charged ions on surfaces. To unravel contributions resulting from isolated hollow atoms in front of the surface or embedded in the electron gas of the target, heavy highly

  1. Quasi-four-body treatment of charge transfer in the collision of protons with atomic helium: II. Second-order non-Thomas mechanisms and the cross sections

    Safarzade, Zohre; Akbarabadi, Farideh Shojaei; Fathi, Reza; Brunger, Michael J.; Bolorizadeh, Mohammad A.

    2018-05-01

    A fully quantum mechanical four-body treatment of charge transfer collisions between energetic protons and atomic helium is developed here. The Pauli exclusion principle is applied to both the wave function of the initial and final states as well as the operators involved in the interaction. Prior to the collision, the helium atom is assumed as a two-body system composed of the nucleus, He2+, and an electron cloud composed of two electrons. Nonetheless, four particles are assumed in the final state. As the double interactions contribute extensively in single charge transfer collisions, the Faddeev-Lovelace-Watson scattering formalism describes it best physically. The treatment of the charge transfer cross section, under this quasi-four-body treatment within the FWL formalism, showed that other mechanisms leading to an effect similar to the Thomas one occur at the same scattering angle. Here, we study the two-body interactions which are not classically described but which lead to an effect similar to the Thomas mechanism and finally we calculate the total singlet and triplet amplitudes as well as the angular distributions of the charge transfer cross sections. As the incoming projectiles are assumed to be plane waves, the present results are calculated for high energies; specifically a projectile energy of 7.42 MeV was assumed as this is where experimental results are available in the literature for comparison. Finally, when possible we compare the present results with the other available theoretical data.

  2. Determining Energies and Cross Sections of Individual Ions Using Higher-Order Harmonics in Fourier Transform Charge Detection Mass Spectrometry (FT-CDMS).

    Harper, Conner C; Elliott, Andrew G; Lin, Haw-Wei; Williams, Evan R

    2018-06-02

    A general method for in situ measurements of the energy of individual ions trapped and weighed using charge detection mass spectrometry (CDMS) is described. Highly charged (> 300 e), individual polyethylene glycol (PEG) ions are trapped and oscillate within an electrostatic trap, producing a time domain signal. A segmented Fourier transform (FT) of this signal yields the temporal evolution of the fundamental and harmonic frequencies of ion motion throughout the 500-ms trap time. The ratio of the fundamental frequency and second harmonic (HAR) depends on the ion energy, which is an essential parameter for measuring ion mass in CDMS. This relationship is calibrated using simulated ion signals, and the calibration is compared to the HAR values measured for PEG ion signals where the ion energy was also determined using an independent method that requires that the ions be highly charged (> 300 e). The mean error of 0.6% between the two measurements indicates that the HAR method is an accurate means of ion energy determination that does not depend on ion size or charge. The HAR is determined dynamically over the entire trapping period, making it possible to observe the change in ion energy that takes place as solvent evaporates from the ion and collisions with background gas occur. This method makes it possible to measure mass changes, either from solvent evaporation or from molecular fragmentation (MS n ), as well as the cross sections of ions measured using CDMS. Graphical Abstract.

  3. Carrier concentration induced ferromagnetism in semiconductors

    Story, T.

    2007-01-01

    In semiconductor spintronics the key materials issue concerns ferromagnetic semiconductors that would, in particular, permit an integration (in a single multilayer heterostructure) of standard electronic functions of semiconductors with magnetic memory function. Although classical semiconductor materials, such as Si or GaAs, are nonmagnetic, upon substitutional incorporation of magnetic ions (typically of a few atomic percents of Mn 2+ ions) and very heavy doping with conducting carriers (at the level of 10 20 - 10 21 cm -3 ) a ferromagnetic transition can be induced in such diluted magnetic semiconductors (also known as semimagnetic semiconductors). In the lecture the spectacular experimental observations of carrier concentration induced ferromagnetism will be discussed for three model semiconductor crystals. p - Ga 1-x Mn x As currently the most actively studied and most perspective ferromagnetic semiconductor of III-V group, in which ferromagnetism appears due to Mn ions providing both local magnetic moments and acting as acceptor centers. p - Sn 1-x Mn x Te and p - Ge 1-x Mn x Te classical diluted magnetic semiconductors of IV-VI group, in which paramagnet-ferromagnet and ferromagnet-spin glass transitions are found for very high hole concentration. n - Eu 1-x Gd x Te mixed magnetic crystals, in which the substitution of Gd 3+ ions for Eu 2+ ions creates very high electron concentration and transforms antiferromagnetic EuTe (insulating compound) into ferromagnetic n-type semiconductor alloy. For each of these materials systems the key physical features will be discussed concerning: local magnetic moments formation, magnetic phase diagram as a function of magnetic ions and carrier concentration as well as Curie temperature and magnetic anisotropy engineering. Various theoretical models proposed to explain the effect of carrier concentration induced ferromagnetism in semiconductors will be briefly discussed involving mean field approaches based on Zener and RKKY

  4. Interface currents in topological superconductor–ferromagnet heterostructures

    Brydon, P M R; Timm, Carsten; Schnyder, Andreas P

    2013-01-01

    We propose the existence of a substantial charge current parallel to the interface between a noncentrosymmetric superconductor and a metallic ferromagnet. Our analysis focuses upon two complementary orbital-angular-momentum pairing states of the superconductor, exemplifying topologically nontrivial states which are gapped and gapless in the bulk, respectively. Utilizing a quasiclassical scattering theory, we derive an expression for the interface current in terms of Andreev reflection coefficients. Performing a systematic study of the current, we find stark qualitative differences between the gapped and gapless superconductors, which reflect the very different underlying topological properties. For the fully gapped superconductor, there is a sharp drop in the zero-temperature current as the system is tuned from a topologically nontrivial to a trivial phase. We explain this in terms of the sudden disappearance of the contribution to the current from the subgap edge states at the topological transition. The current in the gapless superconductor is characterized by a dramatic enhancement at low temperatures, and exhibits a singular dependence on the exchange-field strength in the ferromagnetic metal at zero temperature. This is caused by the energy shift of the strongly spin-polarized nondegenerate zero-energy flat bands due to their coupling to the exchange field. We argue that the interface current provides a novel test of the topology of the superconductor, and discuss prospects for the experimental verification of our predictions. (paper)

  5. Spin transport in diffusive ferromagnetic Josephson junctions with noncollinear magnetization

    Shomali, Zahra; Zareyan, Malek [Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45195 (Iran, Islamic Republic of); Belzig, Wolfgang [Fachbereich Physik, Universitaet Konstanz, D-78457 Konstanz (Germany)

    2011-07-01

    We numerically study the Josephson coupling of two s-wave superconductors which are connected through a diffusive contact made of two ferromagnetic domains with the magnetization vectors misoriented by an angle {theta}. The assumed superconducting leads are conventional s-wave type with the phase difference of {phi}. Using the quantum circuit theory, we find that in addition to the charge supercurrent, which shows a 0-{pi} transition relative to the angle {theta}, the spin supercurrent with a spin polarization normal to the magnetization vectors will flow through the contact. Our results present a 0-{pi} quantum phase transition as a function of the wave vector, Q{xi}. Finally, we investigate the spin supercurrent in an extended magnetic texture with multiple domain walls. We find the behavior of spin supercurrent is highly sensitive to the barrier. When asymmetric barriers don't change the value of the spin supercurrent, the symmetric ones decrease the value of it notably. We also investigate some other interesting effects for these systems. In addition, we present when Q{xi} is the even multiple of {pi}, the spin-current which is penetrated into the nonhomogeneous ferromagnets is nearly zero, how ever the odd ones show the large amount of penetrated spin supercurrent.

  6. Transport coefficients of Dirac ferromagnet: Effects of vertex corrections

    Fujimoto, Junji

    2018-03-01

    As a strongly spin-orbit-coupled metallic model with ferromagnetism, we have considered an extended Stoner model to the relativistic regime, named Dirac ferromagnet in three dimensions. In a previous paper [J. Fujimoto and H. Kohno, Phys. Rev. B 90, 214418 (2014), 10.1103/PhysRevB.90.214418], we studied the transport properties giving rise to the anisotropic magnetoresistance (AMR) and the anomalous Hall effect (AHE) with the impurity potential being taken into account only as the self-energy. The effects of the vertex corrections (VCs) to AMR and AHE are reported in this paper. AMR is found not to change quantitatively when the VCs are considered, although the transport lifetime is different from the one-electron lifetime and the charge current includes additional contributions from the correlation with spin currents. The side-jump and the skew-scattering contributions to AHE are also calculated. The skew-scattering contribution is dominant in the clean case as can be seen in the spin Hall effect in the nonmagnetic Dirac electron system.

  7. Microscopic coexistence of ferromagnetism and superconductivity in single-crystal UCoGe

    Ohta, Tetsuya; Hattori, Taisuke; Ishida, Kenji; Nakai, Yusuke; Osaki, Eisuke; Deguchi, Kazuhiko; Sato, Noriaki K.; Satoh, Isamu

    2010-01-01

    Unambiguous evidence for the microscopic coexistence of ferromagnetism and superconductivity in UCoGe (T Curie -2.5 K and T SC -0.6 K) is reported from 59 Co nuclear quadrupole resonance (NQR). The 59 Co-NQR signal below 1 K indicates ferromagnetism throughout the sample volume, while the nuclear spin-lattice relaxation rate 1/T 1 in the ferromagnetic (FM) phase decreases below T SC due to the opening of the superconducting (SC) gap. The SC state is found to be inhomogeneous, suggestive of a self-induced vortex state, potentially realizable in a FM superconductor. In addition, the 59 Co-NQR spectrum around T Curie shows that the FM transition in UCoGe possesses a first-order character, which is consistent with the theoretical prediction that the low-temperature FM transition in itinerant magnets is generically of first-order. (author)

  8. Local magnetic susceptibility, spin dynamics, and charge order in the quasi-one-dimensional conductor β -Li0.33V2O5 investigated by site-selective 51V NMR

    Yamauchi, Ichihiro; Itoh, Masayuki; Yamauchi, Touru; Yamaura, Jun-Ichi; Ueda, Yutaka

    2017-11-01

    51V NMR measurements have been conducted on a single crystal of the quasi-one-dimensional conductor β -Li0.33V2O5 which undergoes a metal-insulator (MI) transition at TMI˜170 K. In the metallic phase, we obtain 51V Knight shift and electric field gradient tensors. From the analysis of the 51V Knight shifts, we find that the charge disproportionation appears even in the metallic state and the electronic structure is represented within a model of weakly coupled ladders containing two types of ladders with distinct carrier densities. Based on the 51V nuclear spin-lattice relaxation rate, we discuss the spin dynamics within the one-dimensional electron gas model. From the analysis of several nonmagnetic V5 + spectra observed in the insulating phase, we propose a possible charge-order pattern which has a superlattice modulation larger than those in other family members of β -A0.33V2O5 (A =Na and Ag). Finally, we discuss the A -ion dependence of the electronic structure, the charge disproportionation, and the charge order in β -A0.33V2O5 .

  9. Experiment of enhancing critical current in Bi-2223/Ag tape by means of ferromagnetic shielding

    Alamgir, A.K.M. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China)]. E-mail: alam643@hotmail.com; Gu, C. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China); Han, Z. [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China)

    2005-11-15

    Critical current in multifilamentary Ag-sheath Bi-2223 tape is enhanced to some extent by means of thin and narrow coating of pure nickel. The concept of enhancing critical current is based on the magnetic shielding effect resulting in redirection of self-field flux lines. The Ni coating was introduced at the edge regime of the tape in order to redirect the perpendicular component of self-field lines which is severe at the edges. Critical current in a typical Ag-sheath Bi-2223 tape was enhanced up to {approx}11% by 50 {mu}m thick and 0.4 mm long Ni coating without any change of self-field loss. This fact reveals that additional ferromagnetic loss could be compensated by the shielding effect and increased critical current of the tape. The degree of enhancement in critical current as well as ferromagnetic impact on ac losses depend on the length and thickness of ferromagnetic coating introduced. Therefore, it is very important to control the geometry of ferromagnetic coating in order to balance the critical current and ac loss for optimum superconductor performance. Introduction of ferromagnetic coating and its effect on electromagnetic properties in multifilamentary Bi-2223/Ag tape will be reported in this article.

  10. Experiment of enhancing critical current in Bi-2223/Ag tape by means of ferromagnetic shielding

    Alamgir, A.K.M.; Gu, C.; Han, Z.

    2005-01-01

    Critical current in multifilamentary Ag-sheath Bi-2223 tape is enhanced to some extent by means of thin and narrow coating of pure nickel. The concept of enhancing critical current is based on the magnetic shielding effect resulting in redirection of self-field flux lines. The Ni coating was introduced at the edge regime of the tape in order to redirect the perpendicular component of self-field lines which is severe at the edges. Critical current in a typical Ag-sheath Bi-2223 tape was enhanced up to ∼11% by 50 μm thick and 0.4 mm long Ni coating without any change of self-field loss. This fact reveals that additional ferromagnetic loss could be compensated by the shielding effect and increased critical current of the tape. The degree of enhancement in critical current as well as ferromagnetic impact on ac losses depend on the length and thickness of ferromagnetic coating introduced. Therefore, it is very important to control the geometry of ferromagnetic coating in order to balance the critical current and ac loss for optimum superconductor performance. Introduction of ferromagnetic coating and its effect on electromagnetic properties in multifilamentary Bi-2223/Ag tape will be reported in this article

  11. Model for a Ferromagnetic Quantum Critical Point in a 1D Kondo Lattice

    Komijani, Yashar; Coleman, Piers

    2018-04-01

    Motivated by recent experiments, we study a quasi-one-dimensional model of a Kondo lattice with ferromagnetic coupling between the spins. Using bosonization and dynamical large-N techniques, we establish the presence of a Fermi liquid and a magnetic phase separated by a local quantum critical point, governed by the Kondo breakdown picture. Thermodynamic properties are studied and a gapless charged mode at the quantum critical point is highlighted.

  12. Simulation of the tunnelling transport in ferromagnetic GaAs/ZnO heterojunctions

    Comesana, E; Aldegunde, M; Garcia-Loureiro, A J [Department de Electronica e Computacion, Universidade de Santiago de Compostela, 15782 Spain (Spain); Gehring, G A, E-mail: enrique.comesana@usc.e [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2010-07-01

    In this work we have implemented a numerical simulator and analytical model to study the dependence of the tunnelling current on the polarization ratio of the carrier spin for a degenerate and ferromagnetic heterojunction. We have applied these models to study the behaviour of a magnetically doped GaAs/ZnO PN junction and the current transport in a PN heterojunction where the polarization of the spin of the charge carriers is also a control variable.

  13. Ferromagnetism in the Hubbard model: a modified perturbation theory

    Gangadhar Reddy, G.; Ramakanth, A.; Nolting, W.

    2005-01-01

    We study the possibility of ferromagnetism in the Hubbard model using the modified perturbation theory. In this approach an Ansatz is made for the self-energy of the electron which contains the second order contribution developed around the Hartree-Fock solution and two parameters. The parameters are fixed by using a moment method. This self energy satisfies several known exact limiting cases. Using this self energy, the Curie temperature T c as a function of band filling n is investigated. It is found that T c falls off abruptly as n approaches half filling. The results are in qualitative agreement with earlier calculations using other approximation schemes. (author)

  14. Potts ferromagnet correlation length in hypercubic lattices: Renormalization - group approach

    Curado, E.M.F.; Hauser, P.R.

    1984-01-01

    Through a real space renormalization group approach, the q-state Potts ferromagnet correlation length on hierarchical lattices is calculated. These hierarchical lattices are build in order to simulate hypercubic lattices. The high-and-low temperature correlation length asymptotic behaviours tend (in the Ising case) to the Bravais lattice correlation length ones when the size of the hierarchical lattice cells tends to infinity. It is conjectured that the asymptotic behaviours several values of q and d (dimensionality) so obtained are correct. Numerical results are obtained for the full temperature range of the correlation length. (Author) [pt

  15. Switching behaviour of coupled antiferro- and ferromagnetic systems: exchange bias

    Lindgaard, Per-Anker [Materials Research Division, Risoe National Laboratory for Sustainable Energy, Danish Technical University, DK-4000 Roskilde (Denmark)

    2009-11-25

    The switching behaviour, under reversal of an external field, of a simple, ideal magnetic nanoparticle is studied and the interplay between antiferromagnets and ferromagnets elucidated. It is found that the switching between various multi- q ordering in fcc antiferromagnets (as found theoretically in NiO nanoparticles (Kodama and Berkowitz 1999 Phys. Rev. B 59 6321 and Lindgaard 2003 J. Magn. Magn. Mater. 266 88)) in a field severely limits the exchange biasing potential. The interface between the different magnets is found to be that originally assumed by Meiklejohn and Bean (1956 Phys. Rev. 102 1413).

  16. Coupled magnetoelastic waves in ferromagnetic shape-memory alloys

    Bar'Yakhtar, V. G.; Danilevich, A. G.; L'Vov, V. A.

    2011-10-01

    The theory of the spectra of coupled magnetoelastic waves in ferromagnetic shape-memory alloys (FSMA) is developed. The possibility of an abnormally strong coupling of spin waves with the soft elastic mode at approaching the martensitic transformation (MT) temperature is disclosed. In particular the magnetoelastic waves in Ni-Mn-Ga single crystals are considered. A considerable (by an order of magnitude) reduction of the shear elastic modulus and an appropriate lowering of the transversal velocity of sound in the applied magnetic field are predicted. Optimum conditions for the experimental observation of the predicted effects are specified.

  17. Ferromagnetic semiconductor-metal transition in europium monoxide

    Arnold, M.

    2007-10-01

    We present a microscopical model to describe the simultaneous para-to-ferromagnetic and semiconductor-to-metal transition in electron-doped EuO. The physical properties of the model are systematically studied, whereas the main remark is on the interplay between magnetic order and the transport properties. The theory correctly describes detailed experimental features of the conductivity and of the magnetization, obtained for EuO 1-x or Gd-doped Gd x Eu 1-x 0. In particular the doping dependence of the Curie temperature is reproduced The existence of correlation-induced local moments on the impurity sites is essential for this description. (orig.)

  18. Training effects induced by cycling of magnetic field in ferromagnetic rich phase-separated nanocomposite manganites

    Das, Kalipada, E-mail: kalipada.das@saha.ac.in; Das, I.

    2015-12-01

    We have carried out an experimental investigation of magneto-transport and magnetic properties of charge-ordered Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3} (PCMO) and ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) nanoparticles along with a nanocomposite consisting of those two types of nanoparticles. From the magneto-transport measurements, clear irreversibility is observed in the field dependence of resistance due to magnetic field cycling in the case of PCMO nanoparticles. The value of resistance increases during such a field cycling. However such an irreversibility is absent in the case of LSMO nanoparticles as well as nanocomposites. On the other hand, the magnetic measurements indicate the gradual growth of antiferromagnetic phases in all samples leading to a decrease in magnetization. These inconsistencies between magneto-transport and magnetic behaviors are attributed to the magnetic training effects. - Highlights: • The resistance value in Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3} nanoparticles is found to increase owing to the magnetic field cycling. • No anomaly in resistance was found in Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3}–La{sub 0.67}Sr{sub 0.33}MnO{sub 3} nanocomposite. • Magnetic measurements indicate the training effect in nanostructure compounds.

  19. Reentrant Superspin Glass Phase in a La_{0.82}Ca_{0.18}MnO_{3} Ferromagnetic Insulator

    P. Anil Kumar

    2014-03-01

    Full Text Available We report results of the magnetization and ac susceptibility measurements down to very low fields on a single crystal of the perovskite manganite, La_{0.82}Ca_{0.18}MnO_{3}. This composition falls in the intriguing ferromagnetic insulator region of the manganite phase diagram. In contrast to earlier beliefs, our investigations reveal that magnetically (and in every other sense, this is a single-phase system with a ferromagnetic ordering temperature of around 170 K. However, this ferromagnetic state is magnetically frustrated, and the system exhibits pronounced glassy dynamics below 90 K. Based on measured dynamical properties, we propose that this quasi-long-ranged ferromagnetic phase, and the associated superspin glass behavior, is the true magnetic state of the system, rather than being a macroscopic mixture of ferromagnetic and antiferromagnetic phases, as often suggested. Our results provide an understanding of the quantum phase transition from an antiferromagnetic insulator to a ferromagnetic metal via this ferromagnetic insulating state as a function of x in La_{1−x}Ca_{x}MnO_{3}, in terms of the possible formation of magnetic polarons.

  20. Singular ferromagnetic susceptibility of the transverse-field Ising antiferromagnet on the triangular lattice

    Biswas, Sounak; Damle, Kedar

    2018-02-01

    A transverse magnetic field Γ is known to induce antiferromagnetic three-sublattice order of the Ising spins σz in the triangular lattice Ising antiferromagnet at low enough temperature. This low-temperature order is known to melt on heating in a two-step manner, with a power-law ordered intermediate temperature phase characterized by power-law correlations at the three-sublattice wave vector Q : ˜cos(Q .R ⃗) /|R⃗| η (T ) with the temperature-dependent power-law exponent η (T )∈(1 /9 ,1 /4 ) . Here, we use a quantum cluster algorithm to study the ferromagnetic easy-axis susceptibility χu(L ) of an L ×L sample in this power-law ordered phase. Our numerical results are consistent with a recent prediction of a singular L dependence χu(L ) ˜L2 -9 η when η (T ) is in the range (1 /9 ,2 /9 ) . This finite-size result implies, via standard scaling arguments, that the ferromagnetic susceptibility χu(B ) to a uniform field B along the easy axis is singular at intermediate temperatures in the small B limit, χu(B ) ˜|B| -4/-18 η 4 -9 η for η (T )∈(1 /9 ,2 /9 ) , although there is no ferromagnetic long-range order in the low temperature state. Additionally we establish similar two-step melting behavior (via a study of the order parameter susceptibility χQ) in the case of the ferrimagnetic three-sublattice ordered phase which is stabilized by ferromagnetic next-neighbor couplings (J2) and confirm that the ferromagnetic susceptibility obeys the predicted singular form in the associated power-law ordered phase.

  1. Ultrasonic study of the charge mismatch effect in charge-ordered (Nd{sub 0.75}Na{sub 0.25}){sub x}(Nd{sub 0.5}Ca{sub 0.5}){sub 1-x}MnO{sub 3}

    Jiang Liang; Su Jinrui; Kong Hui; Liu Yi; Zheng Shiyuan; Zhu Changfei [Laboratory of Advanced Functional Materials and Devices, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2006-09-20

    The resistivity, magnetization and ultrasonic properties of charge-ordered polycrystalline (Nd{sub 0.75}Na{sub 0.25}){sub x}(Nd{sub 0.5}Ca{sub 0.5}){sub 1-x}MnO{sub 3} have been investigated from 50 to 300 K. A considerable velocity softening accompanied by an attenuation peak was observed around the charge-ordering transition temperature (T{sub CO}) upon cooling. The simultaneous occurrence of the charge ordering (CO) and the ultrasonic anomaly implies strong electron-phonon coupling, which originates from the cooperative Jahn-Teller effect. At very low temperature, another broad attenuation peak was observed, which is attributed to the phase separation (PS) and gives a direct evidence of spin-phonon coupling in the compound. With increasing x, T{sub CO} shifts to lower temperature, the magnetization of the system is strengthened and the PS is enhanced. The temperature dependence of the longitudinal modulus shows that the Jahn-Teller coupling energy E{sub JT} decreases with increasing Na content. The analysis suggests that the charge mismatch effect may be the main reason for the suppression of the CO and enhancement of the PS.

  2. Magnetism and Pressure-Induced Superconductivity of Checkerboard-Type Charge-Ordered Molecular Conductor β-(meso-DMBEDT-TTF2X (X = PF6 and AsF6

    Yutaka Nishio

    2012-11-01

    Full Text Available The metallic state of the molecular conductor β-(meso-DMBEDT-TTF2X (DMBEDT-TTF = 2-(5,6-dihydro-1,3-dithiolo[4,5-b][1,4]dithiin-2-ylidene-5,6-dihydro-5,6-dimethyl-1,3-dithiolo[4,5-b][1,4]dithiin, X = PF6, AsF6 is transformed into the checkerboard-type charge-ordered state at around 75–80 K with accompanying metal-insulator (MI transition on the anisotropic triangular lattice. With lowering temperatures, the magnetic susceptibility decreases gradually and reveals a sudden drop at the MI transition. By applying pressure, the charge-ordered state is suppressed and superconductivity appears in β-(meso-DMBEDT-TTF2AsF6 as well as in the reported β-(meso-DMBEDT-TTF2PF6. The charge-ordered spin-gapped state and the pressure-induced superconducting state are discussed through the paired-electron crystal (PEC model, where the spin-bonded electron pairs stay and become mobile in the crystal, namely the valence-bond solid (VBS and the resonant valence bonded (RVB state in the quarter-filled band structure.

  3. Transport and magnetism correlations in thin-film ferromagnetic oxides

    Hundley, M.F.; Neumeier, J.J.; Heffner, R.H.; Jia, Q.X.; Wu, X.D.; Thompson, J.D.

    1995-01-01

    In order to determine the T c -dependence of the colossal magnetoresistance (MR) exhibited by the ferromagnetic La 0.7 M 0.3 MnO 3+σ (M = Ba, Ca, Sr) system, the authors examine the magnetic-field and temperature dependent resistivity and magnetization of a series of thin films that were grown via pulsed-laser deposition. The films had magnetic ordering temperatures (T C ) ranging from 150 to 350 K; all samples displayed a large negative MR that is largest near T c . The magnitude of a given sample's MR at T c inversely correlates with T c ; samples with a low T c display significantly larger MR values than do samples with large T c 's. The quantity ρ(T c )/ρ(4 K), the amount by which the resistivity is reduced by full ferromagnetic order, is an activated function of T c with an activation energy E a = 0.1 eV. These results indicate that the magnitude of the CMR effect in a given specimen is controlled not by ρ(T c ), but by T c via the ratio ρ(T c )/ρ(4 K). Phenomenological scaling relationships are also reported that link ρ(H,T) to both H and M(H, T)

  4. Spin-dependent current in resonant tunneling diode with ferromagnetic GaMnN layers

    Tang, N.Y.

    2009-01-01

    The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) with ferromagnetic GaMnN emitter/collector is investigated theoretically. Two distinct spin splitting peaks can be observed at current-voltage (I-V) characteristics at low temperature. The spin polarization decreases with the temperature due to the thermal effect of electron density of states. When charge polarization effect is considered at the heterostructure, the spin polarization is enhanced significantly. A highly spin-polarized current can be obtained depending on the polarization charge density.

  5. Spectrum of ferromagnetic transition metal magnetic excitations and neutron scattering

    Kuzemskij, A.L.

    1979-01-01

    Quantum statistical models of ferromagnetic transition metals as well as methods of their solutions are reviewed. The correspondence of results on solving these models and the data on scattering thermal neutrons in ferromagnetic is discussed

  6. Absence of field anisotropy in the intrinsic ferromagnetic signals of highly oriented pyrolytic graphite

    Ballestar, A.; Setzer, A.; Esquinazi, P.; Garcia, N.

    2011-01-01

    We have measured the magnetization of bulk samples of highly oriented pyrolytic graphite (HOPG) at magnetic fields applied parallel and perpendicular to the graphene layers. Within experimental error the intrinsic ferromagnetic signals of the samples show similar magnetic moments at saturation for the two magnetic field directions, in contrast to recently published data (J. Cervenka et al., Nat. Phys. 5 (2009) 840). To check that the SQUID device provides correctly the small ferromagnetic signals obtained after subtracting the 100 times larger diamagnetic background, we have prepared a sample with a superconducting Pb-film deposited on one of the HOPG surfaces. We show that the field dependence of the measured magnetic moment and after the background subtraction is highly reliable even in the sub-μ emu range providing the real magnetic properties of the embedded small ferromagnetic and superconducting signals. - Research Highlights: → We have measured the magnetization of bulk samples of highly oriented pyrolytic graphite (HOPG) at magnetic fields applied parallel and perpendicular to the graphene layers.→ Within experimental error the intrinsic ferromagnetic signals of the samples show similar magnetic moments at saturation for the two magnetic field directions.→ The absence of magnetic anisotropy of the intrinsic ferromagnetic order found in HOPG samples contrasts recently published data by Cervenka et al., Nat Phys 5, 840 (2009).

  7. Ferromagnetic Instability in AFe4Sb12 (A = Ca, Sr, and Ba)

    Matsuoka, E.; Hayashi, K.; Ikeda, A.; Tanaka, K.; Takabatake, T.; Higemoto, W.; Matsumura, M.

    2004-01-01

    Magnetic, transport and thermal properties of AFe4Sb12 (A = Ca, Sr, Ba) are reported. All three compounds show a maximum in both the magnetic susceptibility and thermopower at 50 K, and a large electronic specific heat coefficient of 100 mJ/mol K2. These properties are the characteristics of a nearly ferromagnetic metal. Furthermore, a remanent moment of the order of 10-3muB/Fe was observed below 54, 48, and 40 K for A = Ca, Sr, and Ba, respectively. The volume fraction of the ferromagnetic c...

  8. Critical behaviors of half-metallic ferromagnet Co3Sn2S2

    Yan, Weinian; Zhang, Xiao; Shi, Qi; Yu, Xiaoyun; Zhang, Zhiqing; Wang, Qi; Li, Si; Lei, Hechang

    2018-01-01

    We have investigated the critical behavior of a shandite-type half-metal ferromagnet Co3Sn2S2. It exhibits a second-order paramagnetic-ferromagnetic phase transition with TC = 174 K. To investigate the nature of the magnetic phase transition, a detailed critical exponent study has been performed. The critical components beta, gamma, and delta determined using the modified Arrott plot, the Kouvel-Fisher method as well as the critical isotherm analysis are match reasonably well and follow the s...

  9. Thermal and particle size distribution effects on the ferromagnetic resonance in magnetic fluids

    Marin, C.N.

    2006-01-01

    Thermal and particle size distribution effects on the ferromagnetic resonance of magnetic fluids were theoretically investigated, assuming negligible interparticle interactions and neglecting the viscosity of the carrier liquid. The model is based on the usual approach for the ferromagnetic resonance description of single-domain magnetic particle systems, which was amended in order to take into account the finite particle size effect, the particle size distribution and the orientation mobility of the particles within the magnetic fluid. Under these circumstances the shape of the resonance line, the resonance field and the line width are found to be strongly affected by the temperature and by the particle size distribution of magnetic fluids

  10. Ferromagnetic Josephson Junctions for Cryogenic Memory

    Niedzielski, Bethany M.; Gingrich, Eric C.; Khasawneh, Mazin A.; Loloee, Reza; Pratt, William P., Jr.; Birge, Norman O.

    2015-03-01

    Josephson junctions containing ferromagnetic materials are of interest for both scientific and technological purposes. In principle, either the amplitude of the critical current or superconducting phase shift across the junction can be controlled by the relative magnetization directions of the ferromagnetic layers in the junction. Our approach concentrates on phase control utilizing two junctions in a SQUID geometry. We will report on efforts to control the phase of junctions carrying either spin-singlet or spin-triplet supercurrent for cryogenic memory applications. Supported by Northorp Grumman Corporation and by IARPA under SPAWAR Contract N66001-12-C-2017.

  11. Giant magnetotransmission and magnetoreflection in ferromagnetic materials

    Telegin, A.V.; Sukhorukov, Yu.P.; Loshkareva, N.N.; Mostovshchikova, E.V.; Bebenin, N.G.; Gan'shina, E.A.; Granovsky, A.B.

    2015-01-01

    We present a brief review on magnetotransmission (magnetoabsorption) and magnetoreflection of natural (unpolarized) light in ferromagnetic chromium chalcogenide spinel, manganites with perovskite structure and thin-film metallic nanostructures in the middle infrared spectral range. The magnetooptical effects under discussion are of high interest for numerous and promising applications in the infrared optoelectronics. - Highlights: • Magnetotransmission and magnetoreflection of light in ferromagnetic are presented. • The effects are greater than common magnetooptical phenomena in the infrared. • The effects may have a different origin depending on a material or spectral range. • Possible applications of the magnetotransmission and magnetoreflection are discussed

  12. Giant magnetotransmission and magnetoreflection in ferromagnetic materials

    Telegin, A.V., E-mail: telegin@imp.uran.ru [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620137 Yekaterinburg (Russian Federation); Sukhorukov, Yu.P.; Loshkareva, N.N.; Mostovshchikova, E.V.; Bebenin, N.G. [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620137 Yekaterinburg (Russian Federation); Gan' shina, E.A.; Granovsky, A.B. [Moscow State University, 119991 Moscow (Russian Federation)

    2015-06-01

    We present a brief review on magnetotransmission (magnetoabsorption) and magnetoreflection of natural (unpolarized) light in ferromagnetic chromium chalcogenide spinel, manganites with perovskite structure and thin-film metallic nanostructures in the middle infrared spectral range. The magnetooptical effects under discussion are of high interest for numerous and promising applications in the infrared optoelectronics. - Highlights: • Magnetotransmission and magnetoreflection of light in ferromagnetic are presented. • The effects are greater than common magnetooptical phenomena in the infrared. • The effects may have a different origin depending on a material or spectral range. • Possible applications of the magnetotransmission and magnetoreflection are discussed.

  13. Nonlinear nuclear magnetic resonance in ferromagnets

    Nurgaliev, T.

    1988-01-01

    The properties of nonlinear nuclear magnetic resonance (NMR) have been studied theoretically by taking into account the interaction between NMR and FMR in the ferromagnets. The Landau-Lifshitz-Bloch equations, describing the electron and nuclear magnetization behaviour in ferromagnets are presented in an integral form for a weakly excited electronic system. The stationary solution of these equations has been analysed in the case of equal NMR and FMR frequencies: the criteria for the appearance of two stable dynamic states is found and the high-frequency magnetic susceptibility for these systems is investigated. 2 figs., 8 refs

  14. Magnetic pinning in superconductor-ferromagnet multilayers

    Bulaevskii, L. N.; Chudnovsky, E. M.; Maley, M. P.

    2000-01-01

    We argue that superconductor/ferromagnet multilayers of nanoscale period should exhibit strong pinning of vortices by the magnetic domain structure in magnetic fields below the coercive field when ferromagnetic layers exhibit strong perpendicular magnetic anisotropy. The estimated maximum magnetic pinning energy for single vortex in such a system is about 100 times larger than the pinning energy by columnar defects. This pinning energy may provide critical currents as high as 10 6 -10 7 A/cm 2 at high temperatures (but not very close to T c ) at least in magnetic fields below 0.1 T. (c) 2000 American Institute of Physics

  15. Magnetic pinning in superconductor-ferromagnet multilayers

    Bulaevskii, L. N. [Department of Physics and Astronomy, CUNY Lehman College 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Chudnovsky, E. M. [Department of Physics and Astronomy, CUNY Lehman College, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Maley, M. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2000-05-01

    We argue that superconductor/ferromagnet multilayers of nanoscale period should exhibit strong pinning of vortices by the magnetic domain structure in magnetic fields below the coercive field when ferromagnetic layers exhibit strong perpendicular magnetic anisotropy. The estimated maximum magnetic pinning energy for single vortex in such a system is about 100 times larger than the pinning energy by columnar defects. This pinning energy may provide critical currents as high as 10{sup 6}-10{sup 7} A/cm{sup 2} at high temperatures (but not very close to T{sub c}) at least in magnetic fields below 0.1 T. (c) 2000 American Institute of Physics.

  16. Magnon-photon interaction in ferromagnets

    Shrivastava, K.N.

    1980-01-01

    A magnon-photon interaction for the magnetic vector of the electromagnetic wave perpendicular to the direction of magnetization in a ferromagnet is constructed with the use of Bogoliubov transformation. The resulting magnon-photon interaction is found to contain several interesting new radiation effects. The self-energy of the magnon is calculated and life times arising from the radiation scattering are predicted. The magnon frequency shift due to the radiation field is found. One of the terms arising from the one-magnon one-photon scattering gives a line width that is in reasonable agreement with the experimentally measured value of ferromagnetic resonance line width in yttrium iron garnet. (orig.)

  17. Wellhead with non-ferromagnetic materials

    Hinson, Richard A [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2009-05-19

    Wellheads for coupling to a heater located in a wellbore in a subsurface formation are described herein. At least one wellhead may include a heater located in a wellbore in a subsurface formation; and a wellhead coupled to the heater. The wellhead may be configured to electrically couple the heater to one or more surface electrical components. The wellhead may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the wellhead. Systems and methods for using such wellheads for treating a subsurface formation are described herein.

  18. Vortex dynamics in ferromagnetic/superconducting bilayers

    Cieplak, M.Z.; Adamus, Z. [Polish Acad Sci, Inst Phys, PL-02668 Warsaw, (Poland); Konczykowski, M. [CEA, DSM, DRECAM, Lab Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642, F-91128 Palaiseau (France); Zhu, L.Y.; Chien, C.L. [Johns Hopkins Univ, Dept Phys and Astron, Baltimore, MD 21218 (United States)

    2008-07-01

    The dependence of vortex dynamics on the geometry of magnetic domain pattern is studied in the superconducting/ferromagnetic bilayers, in which niobium is a superconductor, and Co/Pt multilayer with perpendicular magnetic anisotropy serves as a ferromagnetic layer. Magnetic domain patterns with different density of domains per surface area and different domain size, w, are obtained for Co/Pt with different thickness of Pt. The dense patterns of domains with the size comparable to the magnetic penetration depth (w {>=} {lambda}) produce large vortex pinning and smooth vortex penetration, while less dense patterns with larger domains (w {>=}{>=} {lambda}) enhance pinning less effectively and result in flux jumps during flux motion. (authors)

  19. The role of specific features of the electronic structure in electrical resistivity of band ferromagnets Co2Fe Z ( Z = Al, Si, Ga, Ge, In, Sn, Sb)

    Kourov, N. I.; Marchenkov, V. V.; Perevozchikova, Yu. A.; Weber, H. W.

    2017-05-01

    The electrical resistivity ρ( T) of the band ferromagnets Co2FeZ (where Z = Al, Si, Ga, Ge, In, Sn, and Sb are s- and p-elements of Mendeleev's Periodic Table) has been investigated in the temperature range 4.2 K < T < 1100 K. It has been shown that the dependences ρ( T) of these alloys in a magnetically ordered state at temperatures T < T C are predominantly determined by the specific features of the electronic spectrum in the vicinity of the Fermi level. The processes of charge carrier scattering affect the behavior of the electrical resistivity ρ( T) only in the vicinity of the Curie temperature T C and above, as well as in the low-temperature range (at T ≪ T C).

  20. Measuring the momentum distribution of the unpaired spin electrons in ferromagnets using synchrotron radiation

    Mills, D.M.

    1988-12-01

    The dominant term in the x-ray Compton cross-section of an electron is the interaction of the photon and the electron's charge. Platzman and Tsoar many years ago pointed out that there is also an interaction between an x-ray and the electron's spin and in principle this interaction can give information on the momentum distribution of the unpaired spin electrons in the solid. Unfortunately, the spin sensitive term is not only small compared to the charge term, but in addition couples to the photons in first order only with that components of the x-ray beam that is circularly polarized. A lack of intense sources of circularly polarized x-rays combined with the relative small size of the spin sensitive term makes measurements of the momentum distributions of unpaired spin electrons difficult, resulting in little experiment progress initially made in spin or magnetic Compton scattering. In the past several years, interest in spin sensitive Compton scattering has been revived due in large part to the availability of intense beams of high energy photons from synchrotron radiation sources. The radiation from storage ring sources has well defined polarization states; highly linearly polarized in the orbital plane and elliptically polarized above and below the plane of the orbit of the circulating particles. The high flux and unique polarization properties of synchrotron radiation sources have greatly facilitated measurements of the momentum distributions of the unpaired spin electrons in ferromagnetic solids. Recent results of the work of several groups will be presented, along with some thoughts on the impact that the next generation of storage rings, such as the Advanced Photon Source, and insertion devices specifically designed to produce circularly polarized x-ray beams will have on the field of magnetic Compton scattering. 21 refs., 6 figs

  1. Electron density distribution in ferromagnetic nickel: A γ -ray diffraction study

    Jauch, W.; Reehuis, M.

    2008-12-01

    High-accuracy single-crystal structure factors, complete up to sinθ/λ=1.9Å-1 , have been measured from ferromagnetic nickel at 295 K using 316.5-keV gamma radiation. The experimental uncertainty of the structure factors is of the order of 10 millielectrons per atom for all data. A detailed description of the electron density distribution is presented in terms of a multipolar atomic deformation model. Achievement of a reliable Debye-Waller factor is of vital importance in this context. The charge asphericity is due to an excess eg orbital occupancy of 43.4(2)%. The 3d shell in the metal is contracted by 2.07(5)% relative to the free atom. The results are discussed and compared with earlier experimental and theoretical works. In contrast to bcc Cr and Fe, solid-state effects are less pronounced in fcc Ni. Clear disentanglement between the 3d and 4s valence electrons could be accomplished for the first time. The general expectation that the number of 3d electrons in the metal should be increased as compared to the atom was confirmed in the case of iron by combining spin and charge-density data. In the case of nickel, it is rejected as revealed by the γ -ray data alone. Only with the d8 configuration, consistency is achieved between observed and refined mosaic widths of the sample crystal. A 3d8 configuration implies that the majority-spin d band cannot be full. Strong support is lent to a localized atomic character of the valence electrons.

  2. Magneto-elastic resonant phenomena at the motion of the domain wall in weak ferromagnets

    Kuz'menko, A.P.; Zhukov, E.A.; Dobromyslov, M.B.; Kaminsky, A.V.

    2007-01-01

    Dynamics of domain walls (DWs) in transparent thin orthoferrite samples with weak ferromagnetic ordering is investigated at sub- and supersonic velocities. A resonant increase of Lamb waves and the formation of magnetoelastic solitons under resonant conditions in both an elastic and between a spin and elastic subsystems were observed

  3. Critical behavior of the magnetic susceptibility of the uniaxial ferromagnet LiHoF4

    Beauvillain, P.; Renard, J. P.; Laursen, Ib

    1978-01-01

    The magnetic susceptibility of two LiHoF4 single crystals has been measured in the range 1.2-4.2 K. Ferromagnetic order occurs at Tc=1.527 K. Above 2.5 K, the susceptibilities parallel and perpendicular to the fourfold c axis are well interpreted by the molecular-field approximation, taking...

  4. Neutron Scattering from Heisenberg Ferromagnets EuO and EuS

    Als-Nielsen, Jens Aage; Dietrich, O. W.; Passell, L.

    1976-01-01

    Neutron scattering has been used to study the magnetic ordering process in the isotropic exchange coupled ferromagnets EuO and EuS. Quantities investigated include the critical coefficients B and F+ and the critical exponents β, ν, and γ describing respectively the temperature dependence...

  5. Local Weak Ferromagnetism in Single-Crystalline Ferroelectric BiFeO3

    Ramazanoglu, M.; Laver, Mark; Ratcliff, W.

    2011-01-01

    Polarized small-angle neutron scattering studies of single-crystalline multiferroic BiFeO3 reveal a long-wavelength spin density wave generated by ∼1° spin canting of the spins out of the rotation plane of the antiferromagnetic cycloidal order. This signifies weak ferromagnetism within mesoscopic...

  6. Temperature limited heater utilizing non-ferromagnetic conductor

    Vinegar,; Harold J. , Harris; Kelvin, Christopher [Houston, TX

    2012-07-17

    A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

  7. Effect of thermodynamic fluctuations of magnetization on the bound magnetic polaron state in ferromagnetic semiconductors

    Bednarski, Henryk; Spałek, Józef

    2014-01-01

    We extend the theory of the bound magnetic polaron (BMP) in diluted paramagnetic semiconductors to the situation with a ferromagnetic phase transition. This is achieved by including the classical Gaussian fluctuations of magnetization from the quartic (non-Gaussian) term in the effective Ginzburg–Landau Hamiltonian for the spins. Within this approach, we find a ferromagnetically ordered state within the BMP in the temperature range well above the Curie temperature for the host magnetic semiconductor. Numerical results are compared directly with the recently available experimental data for the ferromagnetic semiconductor GdN. The agreement is excellent, given the simplicity of our model, and is because the polaron size (≃1.4 nm) encompasses a relatively large but finite number (N≈400) of quasiclassical spins S=7/2 coming from Gd 3+ ions. The presence of BMP invalidates the notion of critical temperature and thus makes the incorporation of classical Gaussian fluctuations sufficient to realistically describe the situation. (paper)

  8. SrFe1‑xMoxO2+δ : parasitic ferromagnetism in an infinite-layer iron oxide with defect structures induced by interlayer oxygen

    Guo, Jianhui; Shi, Lei; Zhao, Jiyin; Wang, Yang; Yuan, Xueyou; Li, Yang; Wu, Liang

    2018-04-01

    The recent discovered compound SrFeO2 is an infinite-layer-structure iron oxide with unusual square-planar coordination of Fe2+ ions. In this study, SrFe1‑xMoxO2+δ (x parasitic ferromagnetism of the compound and its relationship to the defect structures are investigated. It is found that substitution of high-valent Mo6+ for Fe2+ results in excess oxygen anions O2‑ inserted at the interlayer sites for charge compensation, which further causes large atomic displacements along the c-axis. Due to the robust but flexible Fe-O-Fe framework, the samples are well crystallized within the ab-plane, but are significantly poorer crystallized along the c-axis. Defect structures including local lattice distortions and edge dislocations responsible for the lowered crystallinity are observed by high resolution transmission electron microscopy. Both the magnetic measurements and electron spin resonance spectra provide the evidence of a parasitic ferromagnetism (FM). The week FM interaction originated from the imperfect antiferromagnetic (AFM) ordering could be ascribed to the introduction of uncompensated magnetic moments due to substitution of Mo6+ (S = 0) for Fe2+ (S = 2) and the canted/frustrated spins resulted from defect structures.

  9. Estimation of error fields from ferromagnetic parts in ITER

    Oliva, A. Bonito [Fusion for Energy (Spain); Chiariello, A.G.; Formisano, A.; Martone, R. [Ass. EURATOM/ENEA/CREATE, Dip. di Ing. Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, I-81031 Napoli (Italy); Portone, A., E-mail: alfredo.portone@f4e.europa.eu [Fusion for Energy (Spain); Testoni, P. [Fusion for Energy (Spain)

    2013-10-15

    Highlights: ► The paper deals with error fields generated in ITER by magnetic masses. ► Magnetization state is computed from simplified FEM models. ► Closed form expressions adopted for the flux density of magnetized parts are given. ► Such expressions allow to simplify the estimation of the effect of iron pieces (or lack of) on error field. -- Abstract: Error fields in tokamaks are small departures from the exact axisymmetry of the ideal magnetic field configuration. Their reduction below a threshold value by the error field correction coils is essential since sufficiently large static error fields lead to discharge disruption. The error fields are originated not only by magnets fabrication and installation tolerances, by the joints and by the busbars, but also by the presence of ferromagnetic elements. It was shown that superconducting joints, feeders and busbars play a secondary effect; however in order to estimate of the importance of each possible error field source, rough evaluations can be very useful because it can provide an order of magnitude of the correspondent effect and, therefore, a ranking in the request for in depth analysis. The paper proposes a two steps procedure. The first step aims to get the approximate magnetization state of ferromagnetic parts; the second aims to estimate the full 3D error field over the whole volume using equivalent sources for magnetic masses and taking advantage from well assessed approximate closed form expressions, well suited for the far distance effects.

  10. Ferromagnets as pure spin current generators and detectors

    Qu, Danru; Miao, Bingfeng; Chien, Chia -Ling; Huang, Ssu -Yen

    2015-09-08

    Provided is a spintronics device. The spintronics can include a ferromagnetic metal layer, a positive electrode disposed on a first surface portion of the ferromagnetic metal layer, and a negative electrode disposed on a second surface portion of the ferromagnetic metal.

  11. Towards ferromagnet/superconductor junctions on graphene

    Pakkayil, Shijin Babu

    2015-01-01

    Ever since A. Aspect et al. performed the famous 1982 experiment to prove the violation of Bell's inequality, there have been suggestions to conduct the same experiment in a solid state system. Some of those proposals involve superconductors as the source of entangled electron pair and spin depended interfaces as the optical analogue of polariser/filter. Semiconductors can serve as the best medium for such an experiment due to their long relaxation lengths. So far there are no reports on a ferromagnet/superconductor junctions on a semiconductor even though such junctions has been successfully realised in metallic systems. This thesis reports the successful fabrication of ferromagnet/superconductor junction along with characterising measurements in a perfectly two dimensional zero-gap semiconductor known as graphene. Since it's discovery in 2004, graphene has attracted prodigious interest from both academia and industry due to it's inimitable physical properties: very high mobility, high thermal and electrical conductivity, a high Young's modulus and impermeability. Graphene is also expected to have very long spin relaxation length and high spin life time because of it's low spin orbit coupling. For this reason and since researchers are always looking for novel materials and devices to comply with the high demands for better and faster data storage devices, graphene has emanated as a brand new material system for spin based devices. The very first spin injection and detection in graphene was realised in 2007 and ever since, the focal point of the research has been to improve the spin transport properties. A part of this thesis discusses a new fabrication recipe which has a high yield for successfully contacting graphene with a ferromagnet. A high starting yield for ferromagnetic contacts is a irremissible condition for combining superconducting contacts to the device to fabricate ferromagnet/superconductor junctions. Any fabrication recipe

  12. Towards ferromagnet/superconductor junctions on graphene

    Pakkayil, Shijin Babu

    2015-07-01

    Ever since A. Aspect et al. performed the famous 1982 experiment to prove the violation of Bell's inequality, there have been suggestions to conduct the same experiment in a solid state system. Some of those proposals involve superconductors as the source of entangled electron pair and spin depended interfaces as the optical analogue of polariser/filter. Semiconductors can serve as the best medium for such an experiment due to their long relaxation lengths. So far there are no reports on a ferromagnet/superconductor junctions on a semiconductor even though such junctions has been successfully realised in metallic systems. This thesis reports the successful fabrication of ferromagnet/superconductor junction along with characterising measurements in a perfectly two dimensional zero-gap semiconductor known as graphene. Since it's discovery in 2004, graphene has attracted prodigious interest from both academia and industry due to it's inimitable physical properties: very high mobility, high thermal and electrical conductivity, a high Young's modulus and impermeability. Graphene is also expected to have very long spin relaxation length and high spin life time because of it's low spin orbit coupling. For this reason and since researchers are always looking for novel materials and devices to comply with the high demands for better and faster data storage devices, graphene has emanated as a brand new material system for spin based devices. The very first spin injection and detection in graphene was realised in 2007 and ever since, the focal point of the research has been to improve the spin transport properties. A part of this thesis discusses a new fabrication recipe which has a high yield for successfully contacting graphene with a ferromagnet. A high starting yield for ferromagnetic contacts is a irremissible condition for combining superconducting contacts to the device to fabricate ferromagnet/superconductor junctions. Any fabrication recipe

  13. Phase Sensitive Measurements of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications

    Niedzielski, Bethany Maria

    A Josephson junction is made up of two superconducting layers separated by a barrier. The original Josephson junctions, studied in the early 1960's, contained an insulating barrier. Soon thereafter, junctions with normal-metal barriers were also studied. Ferromagnetic materials were not even theoretically considered as a barrier layer until around 1980, due to the competing order between ferromagnetic and superconducting systems. However, many exciting physical phenomena arise in hybrid superconductor/ferromagnetic devices, including devices where the ground state phase difference between the two superconductors is shifted by pi. Since their experimental debut in 2001, so-called pi junctions have been demonstrated by many groups, including my own, in systems with a single ferromagnetic layer. In this type of system, the phase of the junction can be set to either 0 or pi depending on the thickness of the ferromagnetic layer. Of interest, however, is the ability to control the phase of a single junction between the 0 and pi states. This was theoretically shown to be possible in a system containing two ferromagnetic layers (spin-valve junctions). If the materials and their thicknesses are properly chosen to manipulate the electron pair correlation function, then the phase state of a spin-valve Josephson junction should be capable of switching between the 0 and ? phase states when the magnetization directions of the two ferromagnetic layers are oriented in the antiparallel and parallel configurations, respectively. Such a phase-controllable junction would have immediate applications in cryogenic memory, which is a necessary component to an ultra-low power superconducting computer. A fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. The goal of this work was to experimentally verify this prediction for a phase-controllable ferromagnetic Josephson junction. To address this

  14. Tunneling Conductance in Ferromagnetic Metal/Normal Metal/Spin-Singlet -Wave Ferromagnetic Superconductor Junctions

    Hamidreza Emamipour

    2013-01-01

    Full Text Available In the framework of scattering theory, we study the tunneling conductance in a system including two junctions, ferromagnetic metal/normal metal/ferromagnetic superconductor, where ferromagnetic superconductor is in spin-singlet -wave pairing state. The non-magnetic normal metal is placed in the intermediate layer with the thickness ( which varies from 1 nm to 10000 nm. The interesting result which we have found is the existence of oscillations in conductance curves. The period of oscillations is independent of FS and FN exchange field while it depends on . The obtained results can serve as a useful tool to determine the kind of pairing symmetry in ferromagnetic superconductors.

  15. Evidence for Crossed Andreev Reflections in (100)YBa2Cu3O7+δ-SrRuO3 superconductor-ferromagnet bilayers

    Asulin, I.; Yuli, O.; Millo, O.; Koren, G.

    2005-01-01

    Full Text:Since the ferromagnetic side of a superconductor-ferromagnet junction is spin polarized, Andreev reflections are suppressed. Consequently, the proximity induced superconductor order parameter in the ferromagnet is expected to decay rapidly, on the order of a nm, the typical coherence length in a ferromagnet. Our scanning tunneling spectroscopy measurements on thin epitaxial (100)YBa 2 Cu 3 O 7+ δ-SrRuO 3 (YBaCuO-SrO) bilayers, where SrO is a ferromagnet, indeed show that on most of the junction area the superconductor order parameter vanishes in the SrO layers thicker than 8 nm. However, we find localized regions, arranged along narrow (< 10 nm) stripes, where the order parameter (superconductor-like gap structure) penetrates the ferromagnet over more than 20 nm. This is attributed to 'Crossed Andreev Reflections,' taking place at domain boundaries, where an electron from one magnetic domain is retro reflected as a hole with opposite spin in an adjacent domain. Our observation may account for the (not abundant) cases where a long-range proximity effect was found in superconductor-ferromagnet proximity systems

  16. Ferromagnetism in poly(N-perfluorophenylpyrrole)

    Čík, G., E-mail: gabriel.cik@stuba.sk [Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Šeršeň, F. [Institute of Chemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava (Slovakia); Dlháň, L. [Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Zálupský, P. [Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Rapta, P. [Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Hrnčariková, K. [Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Plecenik, T. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava (Slovakia)

    2015-10-01

    Magnetic properties of the synthesized poly(N-perfluorophenylpyrrole) were studied. The synthesized polymer dissolves in common organic solvents. By the zero-field cooling-field cooling method (ZFC–FC) we found that at low temperatures (T{sub b}<50 K) the synthetic polymer reaches a state with prevailing ferromagnetism. The synthesized polymer retained ferromagnetism even at 300 K. The anomalous magnetic behavior was explained in terms of spin–spin interaction of triplet polarons. As can be seen from the calculated spin density of SOMO and SOMO 1 such a state arise as a consequence of 1-D spin interactions of polarons. Based on the calculated and visualized spin density (SOMO) on the polymer chain such interactions can be explained by the theory of flat-band-ferromagnetism. - Highlights: • We synthesized a new conducting polymer poly(N-perfluorophenylpyrrole). • By the ZFC–FC and EPR methods we measured magnetic properties of the prepared polymer. • We discussed stability and interactions of the polarons in triplet states. • At low temperatures the synthesized polymer reached ferromagnetism.

  17. On piezomagnetism at viscoplasticity of ferromagnetics

    Micunovic, M.

    2001-01-01

    The paper deals with viscoplasticity of ferromagnetic materials. Tensor representation is applied to a set of evolution equations comprising the plastic stretching and residual magnetization tensors. Small magnetoelastic strains of isotropic insulators are considered in detail in two special cases of finite as well as small plastic strain. A special emphasis is given to piezomagnetism effects in the case of uniaxial cycling strain (author)

  18. Angular and linear momentum of excited ferromagnets

    Yan, P.; Kamra, A.; Cao, Y.; Bauer, G.E.W.

    2013-01-01

    The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist

  19. Ferromagnetic hysteresis and the effective field

    Naus, H.W.L.

    2002-01-01

    The Jiles-Atherton model of the behavior of ferromagnetic materials determines the irreversible magnetization from the effective field by using a differential equation. This paper presents an exact, analytical solution to the equation, one displaying hysteresis. The inclusion of magnetomechanical

  20. Ferromagnetism in diluted magnetic semiconductor heterojunction systems

    Lee, B.; Jungwirth, Tomáš; MacDonald, A. H.

    2002-01-01

    Roč. 17, - (2002), s. 393-403 ISSN 0268-1242 R&D Projects: GA ČR GA202/98/0085; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * heterostructures Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.241, year: 2002

  1. Pseudospin anisotropy classification of quantum Hall ferromagnets

    Jungwirth, Tomáš; MacDonald, A. H.

    2000-01-01

    Roč. 63, č. 3 (2000), s. 035305-1 - 035305-9 ISSN 0163-1829 R&D Projects: GA ČR GA202/98/0085 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum Hall ferromagnets * anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.065, year: 2000

  2. Skyrmion physics in Bose-Einstein ferromagnets

    Al Khawaja, U.; Stoof, H.T.C.

    2001-01-01

    We show that a ferromagnetic Bose-Einstein condensate has not only line-like vortex excitations, but in general, also allows for pointlike topological excitations, i.e., skyrmions. We discuss the thermodynamic stability and the dynamic properties of these skyrmions for both spin-1/2 and

  3. Nonmonotonic critical temperature in superconductor ferromagnet bilayers

    Fominov, Ya. V.; Fominov, I.V.; Chtchelkatchev, N.M.; Golubov, Alexandre Avraamovitch

    2002-01-01

    The critical temperature Tc of a superconductor/ferromagnet (SF) bilayer can exhibit nonmonotonic dependence on the thickness df of the F layer. SF systems have been studied for a long time; according to the experimental situation, a ¿dirty¿ limit is often considered which implies that the mean free

  4. Magnetization dissipation in ferromagnets from scattering theory

    Brataas, A.; Tserkovnyak, Y.; Bauer, G.E.W.

    2011-01-01

    The magnetization dynamics of ferromagnets is often formulated in terms of the Landau-Lifshitz-Gilbert (LLG) equation. The reactive part of this equation describes the response of the magnetization in terms of effective fields, whereas the dissipative part is parametrized by the Gilbert damping

  5. Room-temperature ferromagnetic and photoluminescence ...

    the ferromagnetic nature of ITO and the strength of magnetization is superior to those of In2O3 and SnO2. However, ... ties in the spintronic devices, the materials suitable for such devices ... into suitable quartz test tubes (10mm) whose interior was enclosed in .... related to metal indium In0 with binding energy 443.6 eV was.

  6. Neutron Depolarization in Submicron Ferromagnetic Materials

    Rekveldt, M.Th.

    1989-01-01

    The neutron depolarization technique is based on the loss of polarization of a polarized neutron beam after transmission through ferromagnetic substances. This loss, caused by Larmor precession in individual domains, determines the mean domain size, the mean square direction cosines of the domains

  7. Lattice effects on ferromagnetism in perovskite ruthenates

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, John B.

    2013-01-01

    Ferromagnetism and its evolution in the orthorhombic perovskite system Sr1–xCaxRuO3 have been widely believed to correlate with structural distortion. The recent development of high-pressure synthesis of the Ba-substituted Sr1–yBayRuO3 makes it possible to study ferromagnetism over a broader phase diagram, which includes the orthorhombic Imma and the cubic phases. However, the chemical substitutions introduce the A-site disorder effect on Tc, which complicates determination of the relationship between ferromagnetism and structural distortion. By clarifying the site disorder effect on Tc in several unique series of ruthenates in which the average bond length 〈A–O〉 remains the same but the bond-length variance varies, we are able to demonstrate a parabolic curve of Tc versus mean bond length 〈A–O〉. A much higher Tc ∼ 177 K than that found in orthorhombic SrRuO3 can be obtained from the curve at a bond length 〈A–O〉, which makes the geometric factor t = 〈A–O〉/(√2〈Ru–O〉) ∼ 1. This result reveals not only that the ferromagnetism in the ruthenates is extremely sensitive to the lattice strain, but also that it has an important implication for exploring the structure–property relationship in a broad range of oxides with perovskite or a perovskite-related structure. PMID:23904477

  8. Interplay between charge and antiferromagnetic ordering in Bi0.6-xPrxCa0.4MnO3 (0≤x≤0.6) perovskite manganite

    Yadav, Kamlesh; Singh, H.K.; Varma, G.D.

    2012-01-01

    Structure, magnetic and transport properties of polycrystalline Bi 0.6-x Pr x Ca 0.4 MnO 3 (x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) have been studied. Systematic substitution of Pr at Bi site induces an interesting interplay between the charge ordering and antiferromagnetism. The charge ordering temperature (T CO ) decreases with increasing x. The antiferromagnetic (AFM) ordering temperature (T N ) increases sharply at both the extremes but remains nearly constant from x=0.2 to 0.4. At temperatures lower than T N a transition to the glassy state is observed. The nature of this glass like state appears to be controlled by the Pr content, and at lower values of x this is akin to a spin glass, while at higher x it has a characteristic of cluster glass. The Pr doping also leads to enhancement in the magnetic moment. In the present work it has been proposed that the local lattice distortion induced due to size mismatch between the A-site cations and 6s 2 character of Bi 3+ lone pair electron is responsible for the observed magnetic and electrical properties.

  9. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  10. Anomalous second ferromagnetic phase transition in Co{sub 0.08}Bi{sub 1.92}Se{sub 3} topological insulator

    Zhang, Min, E-mail: zmzmi1987@163.com; Liu, Ligang; Yang, Hui

    2016-09-05

    We report the observation of ferromagnetism in topological insulator Co{sub 0.08}Bi{sub 1.92}Se{sub 3} single crystal. The structural, magnetic, and microstructure properties of Co{sub 0.08}Bi{sub 1.92}Se{sub 3} are investigated. The existence of complicated ferromagnetic ordering, indicates the anomalous second ferromagnetic phase transition below 30 K. Well-defined ferromagnetic hysteresis in the magnetization was found in the sample. The origin of bulk ferromagnetism in Co{sub 0.08}Bi{sub 1.92}Se{sub 3} is concerned with three aspects: Co cluster, RKKY interactions, and the spin texture of Co impurities. - Highlights: • The bulk ferromagnetism have been found in the C{sub o0.08}Bi{sub 1.92}Se{sub 3} single crystal. • The anomalous second ferromagnetic phase transition is found below 30 K. • The origin of bulk ferromagnetism in Co{sub 0.08}Bi{sub 1.92}Se{sub 3} is concerned with three aspects.

  11. Charge imbalance

    Clarke, J.

    1981-01-01

    This article provides a long theoretical development of the main ideas of charge imbalance in superconductors. Concepts of charge imbalance and quasiparticle charge are introduced, especially in regards to the use of tunnel injection in producing and detecting charge imbalance. Various mechanisms of charge relaxation are discussed, including inelastic scattering processes, elastic scattering in the presence of energy-gap anisotropy, and various pair-breaking mechanisms. In each case, present theories are reviewed in comparison with experimental data

  12. Neutron scattering studies on magnetic excitations in complex ordered manganites

    Senff, D

    2007-09-15

    This thesis deals with magnetic excitations in three different Manganese oxides, single-layered LaSrMnO{sub 4}, charge- and orbital-ordered La{sub 1/2}Sr{sub 3/2}MnO{sub 4}, and multiferroic TbMnO{sub 3}, which are studied by means of inelastic neutron scattering. The properties of the first system, LaSrMnO{sub 4}, are governed by the complex interplay of orbital, spin, and lattice degrees of freedom typical for the physics of manganites. The magnetic low-temperature behavior is quite unusual, and the comprehensive analysis of the spin-wave spectrum of LaSrMnO{sub 4} suggests a heterogenous ground state with ferromagnetic orbital polarons embedded in an antiferromagnetic background. The doped system La{sub 1/2}Sr{sub 3/2}MnO{sub 4} exhibits a stable charge- and orbital-ordered state, which today is discussed very controversially, as it is of great relevance for the colossal increase of electric conductivity at the metal-insulator transition in perovskite manganites. Analyzing the spin-wave dispersion of the ordered state, we find an excellent agreement with classical predictions by Goodenough and reject a recent alternative proposal. The different strength of the ferromagnetic and antiferromagnetic exchange in the CE-type ordering leads to the conclusion that the magnetic state has to be considered as a weak AFM coupling of stable FM elements. This thesis is further supported by the thermal evolution of the ordered state, revealing anisotropic correlations and the close competition of FM and AFM correlations above the Neel transition, as well as by the doping dependence of the charge- and orbital-ordered state, which is interpreted on the basis of a different response of the magnetic system with respect to additional electrons or holes. In the orthorhombic perovskite TbMnO{sub 3} the electric polarization is closely coupled to the magnetic degrees of freedom via a complex, non-collinear magnetic ordering. Precisely characterizing the different magnon excitations

  13. Neutron scattering studies on magnetic excitations in complex ordered manganites

    Senff, D.

    2007-09-01

    This thesis deals with magnetic excitations in three different Manganese oxides, single-layered LaSrMnO 4 , charge- and orbital-ordered La 1/2 Sr 3/2 MnO 4 , and multiferroic TbMnO 3 , which are studied by means of inelastic neutron scattering. The properties of the first system, LaSrMnO 4 , are governed by the complex interplay of orbital, spin, and lattice degrees of freedom typical for the physics of manganites. The magnetic low-temperature behavior is quite unusual, and the comprehensive analysis of the spin-wave spectrum of LaSrMnO 4 suggests a heterogenous ground state with ferromagnetic orbital polarons embedded in an antiferromagnetic background. The doped system La 1/2 Sr 3/2 MnO 4 exhibits a stable charge- and orbital-ordered state, which today is discussed very controversially, as it is of great relevance for the colossal increase of electric conductivity at the metal-insulator transition in perovskite manganites. Analyzing the spin-wave dispersion of the ordered state, we find an excellent agreement with classical predictions by Goodenough and reject a recent alternative proposal. The different strength of the ferromagnetic and antiferromagnetic exchange in the CE-type ordering leads to the conclusion that the magnetic state has to be considered as a weak AFM coupling of stable FM elements. This thesis is further supported by the thermal evolution of the ordered state, revealing anisotropic correlations and the close competition of FM and AFM correlations above the Neel transition, as well as by the doping dependence of the charge- and orbital-ordered state, which is interpreted on the basis of a different response of the magnetic system with respect to additional electrons or holes. In the orthorhombic perovskite TbMnO 3 the electric polarization is closely coupled to the magnetic degrees of freedom via a complex, non-collinear magnetic ordering. Precisely characterizing the different magnon excitations allows to identify all relevant modes of the

  14. Tricritical point of a ferromagnetic transition in UGe2

    Kabeya, N; Iijima, R; Osaki, E; Ban, S; Imura, K; Deguchi, K; Sato, N K; Aso, N; Homma, Y; Shiokawa, Y

    2010-01-01

    Thermal expansion and magnetostriction measurements of the superconducting ferromagnet UGe 2 under pressure were carried out. The temperature dependence of the thermal expansion coefficient shows a peak at the Curie temperature. When pressure is varied, the peak exhibits a maximum in the vicinity of a tricritical point (TCP), which separates the second-order phase transition from the first-order transition. From results of these measurements, we first construct the magnetic phase diagram including the TCP (P TCP ∼ 12.5 kbar). We also show that two lines characterizing the metamagnetism and the magnetic susceptibility emerge from the TCP. We argue that these magnetic properties in the vicinity of the TCP can be understood within a phenomenological frame of spin fluctuations.

  15. Ferromagnetic Behaviors in Fe-Doped NiO Nanofibers Synthesized by Electrospinning Method

    Yi-Dong Luo

    2013-01-01

    Full Text Available Ni1−xFexO nanofibers with different Fe doping concentration have been synthesized by electrospinning method. An analysis of the phase composition and microstructure shows that Fe doping has no influence on the crystal structure and morphology of NiO nanofibers, which reveals that the doped Fe ions have been incorporated into the NiO host lattice. Pure NiO without Fe doping is antiferromagnetic, yet all the Fe-doped NiO nanofiber samples show obvious room-temperature ferromagnetic properties. The saturation magnetization of the nanofibers can be enhanced with increasing Fe doping concentration, which can be ascribed to the double exchange mechanism through the doped Fe ions and free charge carriers. In addition, it was found that the diameter of nanofibers has significant impact on the ferromagnetic properties, which was discussed in detail.

  16. Formation of spin-polarons in the ferromagnetic Kondo lattice model away from half-filling

    Arredondo, Y; Navarro, O; Vallejo, E; Avignon, M

    2012-01-01

    Even though realistic one-dimensional experiments in the field of half-metallic semiconductors are not at hand yet, we are interested in the underlying fundamental physics. In this regard we study a one-dimensional ferromagnetic Kondo lattice model, a model in which a conduction band is coupled ferromagnetically to a background of localized d moments with coupling constant J H , and investigate the T = 0 phase diagram as a function of the antiferromagnetic interaction J between the localized moments and the band-filling n, since it has been observed that doping of the compounds has led to formation of magnetic domains. We explore the spin-polaron formation by looking at the nearest-neighbour correlation functions in the spin and charge regimes for which we use the density matrix renormalization group method, which is a highly efficient method to investigate quasi-one-dimensional strongly correlated systems. (paper)

  17. Magnetization reversal in ferromagnetic spirals via domain wall motion

    Schumm, Ryan D.; Kunz, Andrew

    2016-11-01

    Domain wall dynamics have been investigated in a variety of ferromagnetic nanostructures for potential applications in logic, sensing, and recording. We present a combination of analytic and simulated results describing the reliable field driven motion of a domain wall through the arms of a ferromagnetic spiral nanowire. The spiral geometry is capable of taking advantage of the benefits of both straight and circular wires. Measurements of the in-plane components of the spirals' magnetization can be used to determine the angular location of the domain wall, impacting the magnetoresistive applications dependent on the domain wall location. The spirals' magnetization components are found to depend on the spiral parameters: the initial radius and spacing between spiral arms, along with the domain wall location. The magnetization is independent of the parameters of the rotating field used to move the domain wall, and therefore the model is valid for current induced domain wall motion as well. The speed of the domain wall is found to depend on the frequency of the rotating driving field, and the domain wall speeds can be reliably varied over several orders of magnitude. We further demonstrate a technique capable of injecting multiple domain walls and show the reliable and unidirectional motion of domain walls through the arms of the spiral.

  18. Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal

    Konno, R; Hatayama, N; Takahashi, Y; Nakano, H

    2009-01-01

    Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal is investigated according to the recent theoretical development of magneto-volume effect for the three-dimensional weak ferromagnets. We particularly focus on the T 2 -linear thermal expansion of magnetic origin at low temperatures, so far disregarded by conventional theories. As the effect of thermal spin fluctuations we have found that the T-linear thermal expansion coefficient shows strong enhancement by assuming the double Lorentzian form of the non-interacting dynamical susceptibility justified in the small wave-number and low frequency region. It grows faster in proportional to y -1/2 as we approach the magnetic instability point than two-dimensional nearly antiferromagnetic metals with ln(1/y s ) dependence, where y and y s are the inverses of the reduced uniform and staggered magnetic susceptibilities, respectively. Our result is consistent with the Grueneisen's relation between the thermal expansion coefficient and the specific heat at low temperatures. In 2-dimensional electron gas we find that the thermal expansion coefficient is divergent with a finite y when the higher order term of non-interacting dynamical susceptibility is taken into account.

  19. Magneto-optic dynamics in a ferromagnetic nematic liquid crystal

    Potisk, Tilen; Mertelj, Alenka; Sebastián, Nerea; Osterman, Natan; Lisjak, Darja; Brand, Helmut R.; Pleiner, Harald; Svenšek, Daniel

    2018-01-01

    We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M , and the director field, n , associated with the liquid crystalline orientational order. We demonstrate that the experimentally studied macroscopic dynamic behavior reveals the importance of a dynamic cross-coupling between M and n . The experimental data are used to extract the value of the dissipative cross-coupling coefficient. We also make concrete predictions about how reversible cross-coupling terms between the magnetization and the director could be detected experimentally by measurements of the transmitted light intensity as well as by analyzing the azimuthal angle of the magnetization and the director out of the plane spanned by the anchoring axis and the external magnetic field. We derive the eigenmodes of the coupled system and study their relaxation rates. We show that in the usual experimental setup used for measuring the relaxation rates of the splay-bend or twist-bend eigenmodes of a nematic liquid crystal one expects for a ferromagnetic nematic liquid crystal a mixture of at least two eigenmodes.

  20. Possibility of a ferromagnetic and conducting metal-organic network

    Mabrouk, Manel; Hayn, Roland; Denawi, Hassan; Ben Chaabane, Rafik

    2018-05-01

    In this paper, we present first principles calculations based on the spin-polarized generalized gradient approximation with on-site Coulomb repulsion term (SGGA + U), to explore the electronic and magnetic properties of the novel planar metal-organic networks TM-Pc and TM-TCNB (where TM means a transition metal of the 3d series: Ti, V, Cr, …, or Zn, Pc - Phthalocyanine, and TCNB - Tetracyanobenzene) as free-standing sheets. This work is an extension of two earlier research works dealing with the Mn (Mabrouk et al., 2015) and Fe (Mabrouk et al., 2017) cases. Our theoretical investigations demonstrate that TM-Pc are more stable than TM-TCNB. Our results unveil that all the TM-Pc frameworks have an insulating behavior with the exception of Mn-Pc which is half-metallic and favor antiferromagnetic order in the case of our magnetic systems except for V-Pc which is ferromagnetic. In contrast, the TM-TCNB networks are metallic at least in one spin direction and exhibit long-range ferromagnetic coupling in case for magnetic structures, which represent ideal candidates and an interesting prospect of unprecedented applications in spintronics. In addition, these results may shed light to achieve a new pathway on further experimental research in molecular spintronics.

  1. pi-phase magnetism in ferromagnetic-superconductor superlattices

    Khusainov, M G; Proshin, Y N

    2001-01-01

    The Larkin-Ovchinnikov-Fylde-Ferrel new 0 pi- and pi pi-states are forecasted for the ferromagnetic metal/superconductor superlattices with antiferromagnetic magnetization orientation in the neighbouring layers. The above-mentioned states are characterized under certain conditions by higher critical temperature T sub c as compared to the earlier known LOFF 00- and pi 0-states with the FM-layers ferromagnetic ordering. It is shown that the nonmonotonous behavior of the T sub c of the FM/S superlattices by the thickness of the S-layers lower than the d sub s suppi value is connected with the cascades of the 0 pi-pi pi-0 pi phase transitions. The character of the T sub c oscillations by the d sub s > d sub s suppi is related to the 00-pi 0-00 transitions. The logical elements of the new type, combining the advantages of the superconducting and magnetic information recording in one sample are proposed on the basis of the FM/S superlattices

  2. Magnetostatic modes in ferromagnetic samples with inhomogeneous internal fields

    Arias, Rodrigo

    2015-03-01

    Magnetostatic modes in ferromagnetic samples are very well characterized and understood in samples with uniform internal magnetic fields. More recently interest has shifted to the study of magnetization modes in ferromagnetic samples with inhomogeneous internal fields. The present work shows that under the magnetostatic approximation and for samples of arbitrary shape and/or arbitrary inhomogeneous internal magnetic fields the modes can be classified as elliptic or hyperbolic, and their associated frequency spectrum can be delimited. This results from the analysis of the character of the second order partial differential equation for the magnetostatic potential under these general conditions. In general, a sample with an inhomogeneous internal field and at a given frequency, may have regions of elliptic and hyperbolic character separated by a boundary. In the elliptic regions the magnetostatic modes have a smooth monotonic character (generally decaying form the surfaces (a ``tunneling'' behavior)) and in hyperbolic regions an oscillatory wave-like character. A simple local criterion distinguishes hyperbolic from elliptic regions: the sign of a susceptibility parameter. This study shows that one may control to some extent magnetostatic modes via external fields or geometry. R.E.A. acknowledges Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia under Project No. FB 0807 (Chile), Grant No. ICM P10-061-F by Fondo de Innovacion para la Competitividad-MINECON, and Proyecto Fondecyt 1130192.

  3. Coulombic charge ice

    McClarty, P. A.; O'Brien, A.; Pollmann, F.

    2014-05-01

    We consider a classical model of charges ±q on a pyrochlore lattice in the presence of long-range Coulomb interactions. This model first appeared in the early literature on charge order in magnetite [P. W. Anderson, Phys. Rev. 102, 1008 (1956), 10.1103/PhysRev.102.1008]. In the limit where the interactions become short ranged, the model has a ground state with an extensive entropy and dipolar charge-charge correlations. When long-range interactions are introduced, the exact degeneracy is broken. We study the thermodynamics of the model and show the presence of a correlated charge liquid within a temperature window in which the physics is well described as a liquid of screened charged defects. The structure factor in this phase, which has smeared pinch points at the reciprocal lattice points, may be used to detect charge ice experimentally. In addition, the model exhibits fractionally charged excitations ±q/2 which are shown to interact via a 1/r potential. At lower temperatures, the model exhibits a transition to a long-range ordered phase. We are able to treat the Coulombic charge ice model and the dipolar spin ice model on an equal footing by mapping both to a constrained charge model on the diamond lattice. We find that states of the two ice models are related by a staggering field which is reflected in the energetics of these two models. From this perspective, we can understand the origin of the spin ice and charge ice ground states as coming from a dipolar model on a diamond lattice. We study the properties of charge ice in an external electric field, finding that the correlated liquid is robust to the presence of a field in contrast to the case of spin ice in a magnetic field. Finally, we comment on the transport properties of Coulombic charge ice in the correlated liquid phase.

  4. Room temperature d (0) ferromagnetism in hole doped Y2O3: widening the choice of host to tailor DMS.

    Chakraborty, Brahmananda; Ramaniah, Lavanya M

    2016-08-24

    Transition metal-free-ferromagnetism in diluted magnetic semiconductors (DMS) is of much current interest in view of the search for more efficient DMS materials for spintronics applications. Our DFT results predict for the first time, that impurities from group1A (Li(+), Na(+), K(+)) doped on Y2O3 can induce a magnetic signature with a magnetic moment around 2.0 μ B per defect at hole concentrations around 1.63  ×  10(21) cm(-3), which is one order less than the critical hole density of ZnO with ferromagnetic coupling large enough to promote room temperature ferromagnetism. The induction of room temperature ferromagnetism by hole doping with an impurity atom from group 1A, which injects two holes per defect in the system, implies that the recommendation of three holes per defect given in the literature, which puts a restriction on the choice of host material and the impurity, is not a necessary criterion for hole induced room temperature ferromagnetism. DFT simulations with the generalized gradient approximation (GGA), confirmed by the more sophisticated hybrid functional, Heyd-Scuseria-Ernzerhof (HSE06), predict that the magnetic moment is mostly contributed by O atoms surrounding the impurity atom and the magnetic moment scale up with impurity concentration which is a positive indicator for practical applications. We quantitatively and extensively demonstrate through the analysis of the density of states and ferromagnetic coupling that the Stoner criterion is satisfied by pushing the Fermi level inside the valence band to activate room temperature ferromagnetism. The stability of the structure and the persistence of ferromagnetism at room temperature were demonstrated by ab initio MD simulations and computation of Curie temperature through the mean field approximation. This study widens the choice of host oxides to tailor DMS for spintronics applications.

  5. Measurement of magnetization of Ga1−xMnxAs by ferromagnetic resonance

    Hagmann, J.A.; Traudt, K.; Zhou, Y.Y.; Liu, X.; Dobrowolska, M.; Furdyna, J.K.

    2014-01-01

    In this paper, we extend ferromagnetic resonance (FMR) studies of thin layers of the ferromagnetic semiconductor Ga 1−x Mn x As to the analysis of the integrated intensity of the resonance in order to obtain information on the total spin in the sample directly involved in ferromagnetically-ordered magnetization. A theoretical model is proposed for the dependences of the FMR integrated intensity and linewidth on the orientation of the applied magnetic field as the field direction is varied from in-plane to normal-to-the-plane of the Ga 1−x Mn x As layer. The strain-induced magnetic anisotropy of Ga 1−x Mn x As presents a significant challenge to conventional FMR linewidth and integrated intensity models. The new model predicts that the integrated FMR intensity is proportional to the saturation magnetization M S of the sample, with the constant of proportionality varying as a function of the polar and azimuthal angles of the applied magnetic field. The angular and temperature behaviors of the integrated intensity and linewidth of the FMR predicted by the proposed model are in good qualitative agreement with measurements. - Highlights: • We extend ferromagnetic resonance to the analysis of total magnetization of thin film Ga 1−x Mn x As. • We formulate a theoretical model for FMR integrated intensity and linewidth. • The model predicts that integrated FMR intensity is proportional to magnetization. • Predictions made by the model are in good qualitative agreement with measurements

  6. Itinerant ferromagnetism in an atomic Fermi gas: Influence of population imbalance

    Conduit, G. J.; Simons, B. D.

    2009-01-01

    We investigate ferromagnetic ordering in an itinerant ultracold atomic Fermi gas with repulsive interactions and population imbalance. In a spatially uniform system, we show that at zero temperature the transition to the itinerant magnetic phase transforms from first to second order with increasing population imbalance. Drawing on these results, we elucidate the phases present in a trapped geometry, finding three characteristic types of behavior with changing population imbalance. Finally, we outline the potential experimental implications of the findings.

  7. Modeling the fields of magneto-optical devices, including fringe field effects and higher order multipole contributions, with application to charged particle optics

    R. M. G. M. Trines

    2001-06-01

    Full Text Available A new method for the calculation of the magnetic field of beam guiding elements is presented. The method relates the calculation to measurement data of the magnetic field in a direct way. It can be applied to single beam guiding elements as well as to clusters of elements. The presented description of the magnetic field differs from the classical approach in that it does not rely on power series approximations. It is also both divergence free and curl free, and takes fringe field effects up to any desired order into account. In the field description, pseudodifferential operators described by Bessel functions are used to obtain the various multipole contributions. Magnetic field data on a two-dimensional surface, e.g., a cylindrical surface or median plane, serve as input for the calculation of the three-dimensional magnetic field. A boundary element method is presented to fit the fields to a discrete set of field data, obtained, for instance, from field measurements, on the two-dimensional surface. Relative errors in the field approximation do not exceed the maximal relative errors in the input data. Methods for incorporating the obtained field in both analytical and numerical computation of transfer functions are outlined. Applications include easy calculation of the transfer functions of clusters of beam guiding elements and of generalized field gradients for any multipole contribution up to any order.

  8. Charge disproportionation of mixed-valent Cr triggered by Bi lone-pair effect in the A -site-ordered perovskite BiC u3C r4O12

    Etter, Martin; Isobe, Masahiko; Sakurai, Hiroya; Yaresko, Alexander; Dinnebier, Robert E.; Takagi, Hidenori

    2018-05-01

    A new A -site-ordered perovskite BiC u3C r4O12 is synthesized under a high pressure of 7.7 GPa. A phase transition from a paramagnetic metal to a ferrimagnetic metal is observed at Tc=190 K accompanied with a structural change from cubic to monoclinic. Structural analysis of the low-temperature monoclinic phase reveals that this transition represents a charge disproportionation of C r3.75 + into C r4 + and C r3.5 + . We argue that the asymmetric displacement of Bi caused by a lone-pair effect triggers the formation of a dimeric Cr4+2O5 unit and leads to an ordering of C r4 + and C r3.5 + below the transition.

  9. Magnetic and charge ordering properties of Bi0.6−xEuxCa0.4MnO3 (0.0≤x≤0.6)

    Yadav, Kamlesh; Singh, M.P.; Razavi, F.S.; Varma, G.D.

    2012-01-01

    We have studied structure, magnetic and transport properties of polycrystalline Bi 0.6−x Eu x Ca 0.4 MnO 3 (x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) perovskite manganites. Magnetic measurements show that the charge-ordering temperature (T CO ) decreases with increasing x up to x=0.4 and then slightly increases with further increasing x up to x=0.6. Further, the antiferromagnetic (AFM) ordering temperature (T N ) decreases with increasing x. At T N a transition to metamagnetic glass like state is also seen. Eu doping also leads to enhancement in the magnetic moment and a concomitant decrease in resistivity up to x=0.2 and then an increase in resistivity up to x=0.5. We propose that the local lattice distortion induced by the size mismatch between the A-site cations and 6s 2 character of Bi 3+ lone pair electron are responsible for the observed variation in physical properties. - Highlights: ► We have studied structure, magnetic and transport properties of Bi 0.6−x Eu x Ca 0.4 MnO 3 (0.0≤x≤0.6). ► Substitution of Eu at Bi-site induces a strong interplay between the magnetic and charge-ordering properties. ► T CO decreases with increasing x up to x=0.4 and then slightly increases with further increasing x up to x=0.6. ► The antiferromagnetic ordering temperature (T N ) decreases with increasing x. ► The A-site cations size mismatch and 6s 2 character of Bi 3+ lone pair electron explain variation in physical properties.

  10. Topological Aspects of Solitons in Ferromagnets

    Ren Jirong; Wang Jibiao; Li Ran; Xu Donghui; Duan Yishi

    2008-01-01

    Two kinds of topological soliton (skyrmion and magnetic vortex ring) in ferromagnets are studied. They have the common topological origin, a tensor H αβ = n-vector · (∂ α n-vector x ∂ β n-vector ), which describes the non-trivial distribution of local orientation of magnetization n-vector at large distances in space. The topological stability of skyrmion is protected by the winding number. Knot-like topological defect as magnetic vortex rings is also studied. On the assumption that magnetic vortex rings are geometric lines, we present their δ-function distribution in ferromagnetic materials. Furthermore, it is briefly shown that Hopf invariant is a proper topological invariant to describe the topology of magnetic vortex rings

  11. Ferromagnetism of Magnesium Oxide

    Jitendra Pal Singh

    2017-11-01

    Full Text Available Magnetism without d-orbital electrons seems to be unrealistic; however, recent observations of magnetism in non-magnetic oxides, such as ZnO, HfO2, and MgO, have opened new avenues in the field of magnetism. Magnetism exhibited by these oxides is known as d° ferromagnetism, as these oxides either have completely filled or unfilled d-/f-orbitals. This magnetism is believed to occur due to polarization induced by p-orbitals. Magnetic polarization in these oxides arises due to vacancies, the excitation of trapped spin in the triplet state. The presence of vacancies at the surface and subsurface also affects the magnetic behavior of these oxides. In the present review, origins of magnetism in magnesium oxide are discussed to obtain understanding of d° ferromagnetism.

  12. Ising ferromagnet: zero-temperature dynamic evolution

    Oliveira, P M C de; Newman, C M; Sidoravicious, V; Stein, D L

    2006-01-01

    The dynamic evolution at zero temperature of a uniform Ising ferromagnet on a square lattice is followed by Monte Carlo computer simulations. The system always eventually reaches a final, absorbing state, which sometimes coincides with a ground state (all spins parallel), and sometimes does not (parallel stripes of spins up and down). We initiate here the numerical study of 'chaotic time dependence' (CTD) by seeing how much information about the final state is predictable from the randomly generated quenched initial state. CTD was originally proposed to explain how nonequilibrium spin glasses could manifest an equilibrium pure state structure, but in simpler systems such as homogeneous ferromagnets it is closely related to long-term predictability and our results suggest that CTD might indeed occur in the infinite volume limit

  13. Silicon spintronics with ferromagnetic tunnel devices

    Jansen, R; Sharma, S; Dash, S P; Min, B C

    2012-01-01

    In silicon spintronics, the unique qualities of ferromagnetic materials are combined with those of silicon, aiming at creating an alternative, energy-efficient information technology in which digital data are represented by the orientation of the electron spin. Here we review the cornerstones of silicon spintronics, namely the creation, detection and manipulation of spin polarization in silicon. Ferromagnetic tunnel contacts are the key elements and provide a robust and viable approach to induce and probe spins in silicon, at room temperature. We describe the basic physics of spin tunneling into silicon, the spin-transport devices, the materials aspects and engineering of the magnetic tunnel contacts, and discuss important quantities such as the magnitude of the spin accumulation and the spin lifetime in the silicon. We highlight key experimental achievements and recent progress in the development of a spin-based information technology. (topical review)

  14. On the critical frontiers of Potts ferromagnets

    Magalhaes, A.C.N. de; Tsallis, C.

    1981-01-01

    A conjecture concerning the critical frontiers of q- state Potts ferromagnets on d- dimensional lattices (d > 1) which generalize a recent one stated for planar lattices is formulated. The present conjecture is verified within satisfactory accuracy (exactly in some cases) for all the lattices or arrays whose critical points are known. Its use leads to the prediction of: a) a considerable amount of new approximate critical points (26 on non-planar regular lattices, some others on Husimi trees and cacti); b) approximate critical frontiers for some 3- dimensional lattices; c) the possibly asymptotically exact critical point on regular lattices in the limit d→infinite for all q>=1; d) the possibly exact critical frontier for the pure Potts model on fully anisotropic Bethe lattices; e) the possibly exact critical frontier for the general quenched random-bond Potts ferromagnet (any P(J)) on isotropic Bethe lattices. (Author) [pt

  15. Ferromagnetism in doped or undoped spintronics nanomaterials

    Qiang, You

    2010-10-01

    Much interest has been sparked by the discovery of ferromagnetism in a range of oxide doped and undoped semiconductors. The development of ferromagnetic oxide semiconductor materials with giant magnetoresistance (GMR) offers many advantages in spintronics devices for future miniaturization of computers. Among them, TM-doped ZnO is an extensively studied n-type wide-band-gap (3.36 eV) semiconductor with a tremendous interest as future mini-computer, blue light emitting, and solar cells. In this talk, Co-doped ZnO and Co-doped Cu2O semiconductor nanoclusters are successfully synthesized by a third generation sputtering-gas-aggregation cluster technique. The Co-doped nanoclusters are ferromagnetic with Curie temperature above room temperature. Both of Co-doped nanoclusters show positive magnetoresistance (PMR) at low temperature, but the amplitude of the PMRs shows an anomalous difference. For similar Co doping concentration at 5 K, PMR is greater than 800% for Co-doped ZnO but only 5% for Co-doped Cu2O nanoclusters. Giant PMR in Co-doped ZnO which is attributed to large Zeeman splitting effect has a linear dependence on applied magnetic field with very high sensitivity, which makes it convenient for the future spintronics applications. The small PMR in Co-doped Cu2O is related to its vanishing density of states at Fermi level. Undoped Zn/ZnO core-shell nanoparticle gives high ferromagnetic properties above room temperature due to the defect induced magnetization at the interface.

  16. Fractal effects on excitations in diluted ferromagnets

    Kumar, D.

    1981-08-01

    The low energy spin-wave like excitations in diluted ferromagnets near percolation threshold are studied. For this purpose an explicit use of the fractal model for the backbone of the infinite percolating cluster due to Kirkpatrick is made. Three physical effects are identified, which cause the softening of spin-waves as the percolation point is approached. The importance of fractal effects in the calculation of density of states and the low temperature thermodynamics is pointed out. (author)

  17. Raman characterization of bulk ferromagnetic nanostructured graphite

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F.M.; Fernández-Werner, Luciana

    2012-01-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm -1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  18. Anomalous hall effect in ferromagnetic semiconductors

    Jungwirth, Tomáš; Niu, Q.; MacDonald, A. H.

    2002-01-01

    Roč. 88, č. 20 (2002), s. 207208-1-207208-4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * anomalous Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.323, year: 2002

  19. Magnon squeezing states in a ferromagnet

    Wang Junfeng; Cheng Ze; Ping Yunxia; Wan Jinyin; Zhang Yanmin

    2006-01-01

    In this Letter we discuss squeezing state of magnon in ferromagnet, which permits a reduction in the quantum fluctuation of the spin component to below the zero-point quantum noise level of coherent magnon states. We investigate the generation of squeezed magnon state through calculating the expectation values of spin component fluctuation. The mean field theory is introduced in dealing with the nonlinear interaction terms of Hamiltonian of magnon system

  20. The Kondo effect in ferromagnetic atomic contacts.

    Calvo, M Reyes; Fernández-Rossier, Joaquín; Palacios, Juan José; Jacob, David; Natelson, Douglas; Untiedt, Carlos

    2009-04-30

    Iron, cobalt and nickel are archetypal ferromagnetic metals. In bulk, electronic conduction in these materials takes place mainly through the s and p electrons, whereas the magnetic moments are mostly in the narrow d-electron bands, where they tend to align. This general picture may change at the nanoscale because electrons at the surfaces of materials experience interactions that differ from those in the bulk. Here we show direct evidence for such changes: electronic transport in atomic-scale contacts of pure ferromagnets (iron, cobalt and nickel), despite their strong bulk ferromagnetism, unexpectedly reveal Kondo physics, that is, the screening of local magnetic moments by the conduction electrons below a characteristic temperature. The Kondo effect creates a sharp resonance at the Fermi energy, affecting the electrical properties of the system; this appears as a Fano-Kondo resonance in the conductance characteristics as observed in other artificial nanostructures. The study of hundreds of contacts shows material-dependent log-normal distributions of the resonance width that arise naturally from Kondo theory. These resonances broaden and disappear with increasing temperature, also as in standard Kondo systems. Our observations, supported by calculations, imply that coordination changes can significantly modify magnetism at the nanoscale. Therefore, in addition to standard micromagnetic physics, strong electronic correlations along with atomic-scale geometry need to be considered when investigating the magnetic properties of magnetic nanostructures.