WorldWideScience

Sample records for ferroelectric domain structure

  1. Theoretical Methods of Domain Structures in Ultrathin Ferroelectric Films: A Review

    Directory of Open Access Journals (Sweden)

    Jianyi Liu

    2014-09-01

    Full Text Available This review covers methods and recent developments of the theoretical study of domain structures in ultrathin ferroelectric films. The review begins with an introduction to some basic concepts and theories (e.g., polarization and its modern theory, ferroelectric phase transition, domain formation, and finite size effects, etc. that are relevant to the study of domain structures in ultrathin ferroelectric films. Basic techniques and recent progress of a variety of important approaches for domain structure simulation, including first-principles calculation, molecular dynamics, Monte Carlo simulation, effective Hamiltonian approach and phase field modeling, as well as multiscale simulation are then elaborated. For each approach, its important features and relative merits over other approaches for modeling domain structures in ultrathin ferroelectric films are discussed. Finally, we review recent theoretical studies on some important issues of domain structures in ultrathin ferroelectric films, with an emphasis on the effects of interfacial electrostatics, boundary conditions and external loads.

  2. A Review of Domain Modelling and Domain Imaging Techniques in Ferroelectric Crystals

    Directory of Open Access Journals (Sweden)

    John E. Huber

    2011-02-01

    Full Text Available The present paper reviews models of domain structure in ferroelectric crystals, thin films and bulk materials. Common crystal structures in ferroelectric materials are described and the theory of compatible domain patterns is introduced. Applications to multi-rank laminates are presented. Alternative models employing phase-field and related techniques are reviewed. The paper then presents methods of observing ferroelectric domain structure, including optical, polarized light, scanning electron microscopy, X-ray and neutron diffraction, atomic force microscopy and piezo-force microscopy. Use of more than one technique for unambiguous identification of the domain structure is also described.

  3. Monte Carlo Simulation of Ferroelectric Domain Structure and Applied Field Response in Two Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Jr., B.G.; Tikare, V.; Tuttle, B.A.

    1999-06-30

    A 2-D, lattice-Monte Carlo approach was developed to simulate ferroelectric domain structure. The model currently utilizes a Hamiltonian for the total energy based only upon electrostatic terms involving dipole-dipole interactions, local polarization gradients and the influence of applied electric fields. The impact of boundary conditions on the domain configurations obtained was also examined. In general, the model exhibits domain structure characteristics consistent with those observed in a tetragonally distorted ferroelectric. The model was also extended to enable the simulation of ferroelectric hysteresis behavior. Simulated hysteresis loops were found to be very similar in appearance to those observed experimentally in actual materials. This qualitative agreement between the simulated hysteresis loop characteristics and real ferroelectric behavior was also confirmed in simulations run over a range of simulation temperatures and applied field frequencies.

  4. Ferroelectric domain continuity over grain boundaries

    DEFF Research Database (Denmark)

    Mantri, Sukriti; Oddershede, Jette; Damjanovic, Dragan

    2017-01-01

    Formation and mobility of domain walls in ferroelectric materials is responsible for many of their electrical and mechanical properties. Domain wall continuity across grain boundaries has been observed since the 1950's and is speculated to affect the grain boundary-domain interactions, thereby...... impacting macroscopic ferroelectric properties in polycrystalline systems. However detailed studies of such correlated domain structures across grain boundaries are limited. In this work, we have developed the mathematical requirements for domain wall plane matching at grain boundaries of any given...... orientation. We have also incorporated the effect of grain boundary ferroelectric polarization charge created when any two domains meet at the grain boundary plane. The probability of domain wall continuity for three specific grain misorientations is studied. Use of this knowledge to optimize processing...

  5. Effect of domains configuration on crystal structure in ferroelectric ...

    Indian Academy of Sciences (India)

    2017-09-09

    Sep 9, 2017 ... It is well known that domains and crystal structure control the physical properties of ferroelectrics. ... The as-prepared ceramics were crushed to fine pow- ders. ..... [1] Gao J, Xue D, Wang Y, Wang D, Zhang L, Wu H et al 2011.

  6. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    CERN Document Server

    Topolov, Vitaly

    2012-01-01

    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  7. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    Energy Technology Data Exchange (ETDEWEB)

    Seyedhosseini, E., E-mail: Seyedhosseini@ua.pt; Ivanov, M. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Bdikin, I. [TEMA and Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Vasileva, D. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Kudryavtsev, A. [Moscow State Institute of Radioengineering, Electronics and Automation, 119454 Moscow (Russian Federation); Rodriguez, B. J. [Conway Institute of Biomolecular and Biomedical Research and School of Physics, University College Dublin, Dublin (Ireland); Kholkin, A. L. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-08-21

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  8. Ferroelectric negative capacitance domain dynamics

    Science.gov (United States)

    Hoffmann, Michael; Khan, Asif Islam; Serrao, Claudy; Lu, Zhongyuan; Salahuddin, Sayeef; Pešić, Milan; Slesazeck, Stefan; Schroeder, Uwe; Mikolajick, Thomas

    2018-05-01

    Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transient negative capacitance is shown to originate from reverse domain nucleation and unrestricted domain growth. However, with the onset of domain coalescence, the capacitance becomes positive again. The persistence of the negative capacitance state is therefore limited by the speed of domain wall motion. By changing the applied electric field, capacitor area or external resistance, this domain wall velocity can be varied predictably over several orders of magnitude. Additionally, detailed insights into the intrinsic material properties of the ferroelectric are obtainable through these measurements. A new method for reliable extraction of the average negative capacitance of the ferroelectric is presented. Furthermore, a simple analytical model is developed, which accurately describes the negative capacitance transient time as a function of the material properties and the experimental boundary conditions.

  9. Radiation-damage-assisted ferroelectric domain structuring in magnesium-doped lithium niobate

    Science.gov (United States)

    Jentjens, L.; Peithmann, K.; Maier, K.; Steigerwald, H.; Jungk, T.

    2009-06-01

    Irradiation of 5% magnesium-doped lithium niobate crystals (LiNbO3:Mg) with high-energy, low-mass 3He ions, which are transmitted through the crystal, changes the domain reversal properties of the material. This enables easier domain engineering compared to non-irradiated material and assists the formation of small-sized periodically poled domains in LiNbO3:Mg. Periodic domain structures exhibiting a width of ≈520 nm are obtained in radiation-damaged sections of the crystals. The ferroelectric poling behavior between irradiated and non-treated material is compared.

  10. Ferroelectric and ferroelastic domain structures in piezoelectric ceramics

    International Nuclear Information System (INIS)

    Bursill, L.A.; Julin Peng.

    1990-01-01

    A discussion of the results of conventional and high-resolution high-voltage electron microscopic studies of two ferroelectrics, barium sodium niobate and lead zirconium titanate is presented. It is shown that a rich variety of information such as ferroelectric and/or ferroelastic domains discommensurations versus antiphase boundaries, extended versus localized chemical defects and multiphase versus grain boundaries, become accessible in both single crystal and polycrystalline piezoelectrics, when a combination of high-resolution and conventional electron optical techniques is used. 15 refs., 8 figs

  11. Ferroelectric Negative Capacitance Domain Dynamics

    OpenAIRE

    Hoffmann, Michael; Khan, Asif Islam; Serrao, Claudy; Lu, Zhongyuan; Salahuddin, Sayeef; Pešić, Milan; Slesazeck, Stefan; Schroeder, Uwe; Mikolajick, Thomas

    2017-01-01

    Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr$_{0.2}$Ti$_{0.8}$)O$_3$ capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transien...

  12. Light-Activated Gigahertz Ferroelectric Domain Dynamics

    Science.gov (United States)

    Akamatsu, Hirofumi; Yuan, Yakun; Stoica, Vladimir A.; Stone, Greg; Yang, Tiannan; Hong, Zijian; Lei, Shiming; Zhu, Yi; Haislmaier, Ryan C.; Freeland, John W.; Chen, Long-Qing; Wen, Haidan; Gopalan, Venkatraman

    2018-03-01

    Using time- and spatially resolved hard x-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO3 are simultaneously captured on subnanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photoinduced electric field of up to 20 ×106 V /m is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling method is developed that reveals the microscopic origin of these dynamics, leading to gigahertz polarization and elastic waves traveling in the crystal with sonic speeds and spatially varying frequencies. The advances in spatiotemporal imaging and dynamical modeling tools open up opportunities for disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains.

  13. Ferroelectric domain structures in -oriented K0.15Na0.85NbO3 lead-free single crystal

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2015-03-01

    Full Text Available In this work, ferroelectric domain structures of -oriented K0.15Na0.85NbO3 single crystal are characterized. Transmission electron microscopy (TEM observation revealed high-density of laminate domain structures in the crystal and the lattices of the neighboring domains are found to be twisted in a small angle. Superlattice diffraction spots of 1 2 { eeo } and 1 2 { ooe } in electron diffraction patterns are observed in the crystal, revealing the a+a+c− tilting of oxygen octahedral in the perovskite structure. The piezoresponse of domains and in-situ poling responses of K0.15Na0.85NbO3 crystal are observed by piezoresponse force microscopy (PFM, and the results assure its good ferroelectric properties.

  14. Domain shape instabilities and dendrite domain growth in uniaxial ferroelectrics

    Science.gov (United States)

    Shur, Vladimir Ya.; Akhmatkhanov, Andrey R.

    2018-01-01

    The effects of domain wall shape instabilities and the formation of nanodomains in front of moving walls obtained in various uniaxial ferroelectrics are discussed. Special attention is paid to the formation of self-assembled nanoscale and dendrite domain structures under highly non-equilibrium switching conditions. All obtained results are considered in the framework of the unified kinetic approach to domain structure evolution based on the analogy with first-order phase transformation. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  15. Ferroelectric domain engineering by focused infrared femtosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin; Shvedov, Vladlen; Sheng, Yan, E-mail: yan.sheng@anu.edu.au [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Karpinski, Pawel [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Wroclaw University of Technology, Wybrzeze Wyspianskiego, Wroclaw (Poland); Koynov, Kaloian [Max-Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany); Wang, Bingxia; Trull, Jose; Cojocaru, Crina [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Rambla Sant Nebridi, 08222 Terrassa, Barcelona (Spain); Krolikowski, Wieslaw [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Texas A& M University at Qatar, Doha (Qatar)

    2015-10-05

    We demonstrate infrared femtosecond laser-induced inversion of ferroelectric domains. This process can be realised solely by using tightly focused laser pulses without application of any electric field prior to, in conjunction with, or subsequent to the laser irradiation. As most ferroelectric crystals like LiNbO{sub 3}, LiTaO{sub 3}, and KTiOPO{sub 4} are transparent in the infrared, this optical poling method allows one to form ferroelectric domain patterns much deeper inside a ferroelectric crystal than by using ultraviolet light and hence can be used to fabricate practical devices. We also propose in situ diagnostics of the ferroelectric domain inversion process by monitoring the Čerenkov second harmonic signal, which is sensitive to the appearance of ferroelectric domain walls.

  16. Molecular dynamics simulations of ferroelectric domain formation by oxygen vacancy

    Science.gov (United States)

    Zhu, Lin; You, Jeong Ho; Chen, Jinghong; Yeo, Changdong

    2018-05-01

    An oxygen vacancy, known to be detrimental to ferroelectric properties, has been investigated numerically for the potential uses to control ferroelectric domains in films using molecular dynamics simulations based on the first-principles effective Hamiltonian. As an electron donor, an oxygen vacancy generates inhomogeneous electrostatic and displacement fields which impose preferred polarization directions near the oxygen vacancy. When the oxygen vacancies are placed at the top and bottom interfaces, the out-of-plane polarizations are locally developed near the interfaces in the directions away from the interfaces. These polarizations from the interfaces are in opposite directions so that the overall out-of-plane polarization becomes significantly reduced. In the middle of the films, the in-plane domains are formed with containing 90° a 1/a 2 domain walls and the films are polarized along the [1 1 0] direction even when no electric field is applied. With oxygen vacancies placed at the top interface only, the films exhibit asymmetric hysteresis loops, confirming that the oxygen vacancies are one of the possible sources of ferroelectric imprint. It has been qualitatively demonstrated that the domain structures in the imprint films can be turned on and off by controlling an external field along the thickness direction. This study shows qualitatively that the oxygen vacancies can be utilized for tuning ferroelectric domain structures in films.

  17. Structure and switching of in-plane ferroelectric nano-domains in strained PbxSr1-xTiO3 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, Sylivia [University of Groningen, The Netherlands; Nesterov, Okeksiy [ORNL; Rispens, Gregory [University of Groningen, The Netherlands; Heuver, J. A. [University of Groningen, The Netherlands; Bark, C [University of Wisconsin, Madison; Biegalski, Michael D [ORNL; Christen, Hans M [ORNL; Noheda, Beatriz [University of Groningen, The Netherlands

    2014-01-01

    Nanoscale ferroelectrics, the active elements of a variety of nanoelectronic devices, develop denser and richer domain structures than the bulk counterparts. With shrinking device sizes understanding and controlling domain formation in nanoferroelectrics is being intensely studied. Here we show that a precise control of the epitaxy and the strain allows stabilizing a hierarchical domain architecture in PbxSr1-xTiO3 thin films, showing periodic, purely in-plane polarized, ferroelectric nano-domains that can be switched by a scanning probe.

  18. Polarization reversal and ferroelectric domain structure observed in electroded cesium dihydrogen phosphate crystals using an X-ray anomalous dispersion effect

    International Nuclear Information System (INIS)

    Ozaki, Toru; Amau, Toshirou; Kawata, Hiroshi; Mizuno, Kaoru; Mori, Koichi.

    1997-01-01

    We have carried out an X-ray intensity measurement and X-ray topography on electroded b plates of ferroelectric cesium dihydrogen phosphate, CsH 2 PO 4 (CDP), using a synchrotron radiation with a wavelength of 2.482 A above the Cs L 3 -absorption edge. We have found that integrated intensities I(150) and I(1-bar5-bar0) show an anomalously large breakdown of Friedel's law, I(150)/I(1-bar5-bar0)=10.4 at 125 K, and display a ferroelectric hysteresis loop. The hysteresis loop determines that spontaneous polarization is antiparallel to the b axes set in both ferroelectric crystal structures related by inversions. The (150) diffraction topography shows that a single domain turns into a lamellar domain structure without fractal aspects after short-circuiting the b plate. The atomic displacement associated with polarization reversal is shown in a crystal structure model of 180deg domains observed in the X-ray topography. (author)

  19. Structural Consequences of Ferroelectric Nanolithography

    Energy Technology Data Exchange (ETDEWEB)

    J Young Jo; P Chen; R Sichel; S Bake; R Smith; N Balke; S Kalinin; M Holt; J Maser; et al.

    2011-12-31

    Domains of remnant polarization can be written into ferroelectrics with nanoscale precision using scanning probe nanolithography techniques such as piezoresponse force microscopy (PFM). Understanding the structural effects accompanying this process has been challenging due to the lack of appropriate structural characterization tools. Synchrotron X-ray nanodiffraction provides images of the domain structure written by PFM into an epitaxial Pb(Zr,Ti)O{sub 3} thin film and simultaneously reveals structural effects arising from the writing process. A coherent scattering simulation including the superposition of the beams simultaneously diffracted by multiple mosaic blocks provides an excellent fit to the observed diffraction patterns. Domains in which the polarization is reversed from the as-grown state have a strain of up to 0.1% representing the piezoelectric response to unscreened surface charges. An additional X-ray microdiffraction study of the photon-energy dependence of the difference in diffracted intensity between opposite polarization states shows that this contrast has a crystallographic origin. The sign and magnitude of the intensity contrast between domains of opposite polarization are consistent with the polarization expected from PFM images and with the writing of domains through the entire thickness of the ferroelectric layer. The strain induced by writing provides a significant additional contribution to the increased free energy of the written domain state with respect to a uniformly polarized state.

  20. Domain wall conductivity in semiconducting hexagonal ferroelectric TbMnO3 thin films

    International Nuclear Information System (INIS)

    Kim, D J; Gruverman, A; Connell, J G; Seo, S S A

    2016-01-01

    Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO 3 and Pb(Zr,Ti)O 3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO 3 thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO 3 films is governed by a single conduction mechanism, namely, the back-to-back Schottky diodes tuned by the segregation of defects. (paper)

  1. Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors

    Science.gov (United States)

    Buragohain, P.; Richter, C.; Schenk, T.; Lu, H.; Mikolajick, T.; Schroeder, U.; Gruverman, A.

    2018-05-01

    Visualization of domain structure evolution under an electrical bias has been carried out in ferroelectric La:HfO2 capacitors by a combination of Piezoresponse Force Microscopy (PFM) and pulse switching techniques to study the nanoscopic mechanism of polarization reversal and the wake-up process. It has been directly shown that the main mechanism behind the transformation of the polarization hysteretic behavior and an increase in the remanent polarization value upon the alternating current cycling is electrically induced domain de-pinning. PFM imaging and local spectroscopy revealed asymmetric switching in the La:HfO2 capacitors due to a significant imprint likely caused by the different boundary conditions at the top and bottom interfaces. Domain switching kinetics can be well-described by the nucleation limited switching model characterized by a broad distribution of the local switching times. It has been found that the domain velocity varies significantly throughout the switching process indicating strong interaction with structural defects.

  2. Structural matching of ferroelectric domains and associated distortion in potassium titanyl phosphate crystals

    CERN Document Server

    Pernot-Rejmankova, P; Cloetens, P; Lyford, T; Baruchel, J

    2003-01-01

    The surface deformation and atomic-level distortions associated with crystal structural matching at ferroelectric inversion domain walls are investigated in periodically poled potassium titanyl phosphate (KTP) crystals. A deformation, of the order of 10 sup - sup 8 m in scale and having the periodicity of the domains, is observed at the surfaces by optical interferometry. It is discussed in terms of the piezoelectric effect. The matching of the crystal structures at the domain walls is studied by combining the hard x-ray Fresnel phase-imaging technique with Bragg diffraction imaging methods ('Bragg-Fresnel imaging') and using synchrotron radiation. Quantitative analysis of the contrast of the Bragg-Fresnel images recorded as a function of the propagation distance is demonstrated to allow the determination of how the domains are matched at the atomic (unit cell) level, even though the spatial resolution of the images is on the scale of micrometres. The atom P(1) is determined as the linking atom for connecting...

  3. Observation of domain patterns on a ferroelectric ceramic

    International Nuclear Information System (INIS)

    Ibrahim, R.C.; Zavaglia, C.A.C.

    1992-01-01

    In this work ferroelectric domain patterns are observed on a PZT-like ceramic material produced in Brazil. This material has tetragonal unit cell composing a perovskite type structure. The samples, after grinding and polishing, were chemically etched and observed on optical microscope and scanning electron microscope. (author)

  4. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.; Morozovska, Anna N.

    2018-01-25

    For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomena in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical-electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this.

  5. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures

    Science.gov (United States)

    Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.; Morozovska, Anna N.

    2018-03-01

    For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomena in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical–electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this. ).

  6. Thickness-dependent a_1/a_2 domain evolution in ferroelectric PbTiO_3 films

    International Nuclear Information System (INIS)

    Li, S.; Zhu, Y.L.; Tang, Y.L.; Liu, Y.; Zhang, S.R.; Wang, Y.J.; Ma, X.L.

    2017-01-01

    Ferroelectric a_1/a_2 domain structure has great potentials in high dielectric capacitors and tunable microwave devices. Understanding its structure is crucial to better control the domain configurations for future applications. In this paper, PbTiO_3 thin films with variant thicknesses are deposited on (110)-oriented GdScO_3 substrates by Pulsed Laser Deposition (PLD) and investigated by using conventional transmission electron microscopy (TEM) and Cs-corrected Scanning TEM. Contrast analysis and electron diffractions reveal that PbTiO_3 films are domain oriented consisting of a_1/a_2 and a/c domain structure. The a_1/a_2 domains are found to distribute periodically and its width increases with increasing film thickness following square root rule. Cs-corrected STEM imaging demonstrates that the domain walls of a_1/a_2 domain structure have the rotation characteristic of 90° ferroelastic domain wall. The interchange of a_1/a_2 domains induces the formation of vertex domains composed of two 90° and one 180° domain walls. Strains are mainly concentrated on the domain walls. The formation of this complex domain configuration is discussed in terms of the effect of the misfit strain, film thickness and cooling rate. These results provide novel information about a_1/a_2 domain structures and are expected to shed some light on modulating a_1/a_2 ferroelectric domain patterns in the design of ferroelectric-based devices.

  7. Resonant tunneling across a ferroelectric domain wall

    Science.gov (United States)

    Li, M.; Tao, L. L.; Velev, J. P.; Tsymbal, E. Y.

    2018-04-01

    Motivated by recent experimental observations, we explore electron transport properties of a ferroelectric tunnel junction (FTJ) with an embedded head-to-head ferroelectric domain wall, using first-principles density-functional theory calculations. We consider a FTJ with L a0.5S r0.5Mn O3 electrodes separated by a BaTi O3 barrier layer and show that an in-plane charged domain wall in the ferroelectric BaTi O3 can be induced by polar interfaces. The resulting V -shaped electrostatic potential profile across the BaTi O3 layer creates a quantum well and leads to the formation of a two-dimensional electron gas, which stabilizes the domain wall. The confined electronic states in the barrier are responsible for resonant tunneling as is evident from our quantum-transport calculations. We find that the resonant tunneling is an orbital selective process, which leads to sharp spikes in the momentum- and energy-resolved transmission spectra. Our results indicate that domain walls embedded in FTJs can be used to control the electron transport.

  8. Acoustic Imaging Frequency Dynamics of Ferroelectric Domains by Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Kun-Yu, Zhao; Hua-Rong, Zeng; Hong-Zhang, Song; Sen-Xing, Hui; Guo-Rong, Li; Qing-Rui, Yin; Shimamura, Kiyoshi; Kannan, Chinna Venkadasamy; Villora, Encarnacion Antonia Garcia; Takekawa, Shunji; Kitamura, Kenji

    2008-01-01

    We report the acoustic imaging frequency dynamics of ferroelectric domains by low-frequency acoustic probe microscopy based on the commercial atomic force microscopy It is found that ferroelectric domain could be firstly visualized at lower frequency down to 0.5 kHz by AFM-based acoustic microscopy The frequency-dependent acoustic signal revealed a strong acoustic response in the frequency range from 7kHz to 10kHz, and reached maximum at 8.1kHz. The acoustic contrast mechanism can be ascribed to the different elastic response of ferroelectric microstructures to local elastic stress fields, which is induced by the acoustic wave transmitting in the sample when the piezoelectric transducer is vibrating and exciting acoustic wave under ac electric fields due to normal piezoelectric effects. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Domain switching of fatigued ferroelectric thin films

    Science.gov (United States)

    Tak Lim, Yun; Yeog Son, Jong; Shin, Young-Han

    2014-05-01

    We investigate the domain wall speed of a ferroelectric PbZr0.48Ti0.52O3 (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue.

  10. Domain switching of fatigued ferroelectric thin films

    International Nuclear Information System (INIS)

    Tak Lim, Yun; Yeog Son, Jong; Shin, Young-Han

    2014-01-01

    We investigate the domain wall speed of a ferroelectric PbZr 0.48 Ti 0.52 O 3 (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue

  11. Atomic resolution imaging of ferroelectric domains

    International Nuclear Information System (INIS)

    Bursill, L.A.

    1997-01-01

    Electron optical principles involved in obtaining atomic resolution images of ferroelectric domains are reviewed, including the methods available to obtain meaningful interpretation and analysis of the image detail in terms of the atomic structures. Recent work is concerned with establishing the relationship between the essentially static chemical nanodomains and the spatial and temporal fluctuations of the nanoscale polar domains present in the relaxor class of materials, including lead scandium tantalate (PST) and lead magnesium niobate (PMN). Correct interpretation of the images required use of Next Nearest Neighbour Ising model simulations for the chemical domain textures upon which we must superimpose the polar domain textures; an introduction to this work is presented. A thorough analysis of the atomic scale chemical inhomogeneities, based upon the HRTEM results, has lead to an improved formulation of the theory of the dielectric response of PMN and PST, which is capable to predict the observed temperature and frequency dependence. HRTEM may be combined with solid state and statistical physics principles to provide a deeper understanding of structure/property relationships. 15 refs., 6 figs

  12. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories

    Science.gov (United States)

    Jiang, Jun; Bai, Zi Long; Chen, Zhi Hui; He, Long; Zhang, David Wei; Zhang, Qing Hua; Shi, Jin An; Park, Min Hyuk; Scott, James F.; Hwang, Cheol Seong; Jiang, An Quan

    2018-01-01

    Erasable conductive domain walls in insulating ferroelectric thin films can be used for non-destructive electrical read-out of the polarization states in ferroelectric memories. Still, the domain-wall currents extracted by these devices have not yet reached the intensity and stability required to drive read-out circuits operating at high speeds. This study demonstrated non-destructive read-out of digital data stored using specific domain-wall configurations in epitaxial BiFeO3 thin films formed in mesa-geometry structures. Partially switched domains, which enable the formation of conductive walls during the read operation, spontaneously retract when the read voltage is removed, reducing the accumulation of mobile defects at the domain walls and potentially improving the device stability. Three-terminal memory devices produced 14 nA read currents at an operating voltage of 5 V, and operated up to T = 85 °C. The gap length can also be smaller than the film thickness, allowing the realization of ferroelectric memories with device dimensions far below 100 nm.

  13. Surface topography and crystal and domain structures of films of ferroelectric copolymer of vinylidene difluoride and trifluoroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Kochervinskii, V. V., E-mail: kochval@mail.ru [Karpov Institute of Physical Chemistry, Branch (Russian Federation); Kiselev, D. A.; Malinkovich, M. D. [National University of Science and Technology MISiS (Russian Federation); Korlyukov, A. A.; Lokshin, B. V. [Russian Academy of Sciences, Nesmeyanov Institute of Organoelement Compounds (Russian Federation); Volkov, V. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Kirakosyan, G. A. [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation); Pavlov, A. S. [Karpov Institute of Physical Chemistry, Branch (Russian Federation)

    2017-03-15

    The crystallization of a copolymer from a solution at room temperature is found to lead to the formation of a metastable structure, characterized by the coexistence of ferroelectric and paraelectric phases. The fraction of the latter decreases after annealing above the Curie point. Atomic force microscopy (AFM) has revealed a difference in the surface topographies between the films contacting with air and the films contacting with a glass substrate. The microstructure of copolymer chains has been investigated by {sup 19}F NMR spectroscopy. The chain fragments with “defect” attached monomeric units are ejected to the surface. The character of the ferroelectric domains formed during crystallization and their size distribution are analyzed.

  14. Strain Engineering of Ferroelectric Domains in KxNa1−xNbO3 Epitaxial Layers

    Directory of Open Access Journals (Sweden)

    Jutta Schwarzkopf

    2017-08-01

    Full Text Available The application of lattice strain through epitaxial growth of oxide films on lattice mismatched perovskite-like substrates strongly influences the structural properties of ferroelectric domains and their corresponding piezoelectric behavior. The formation of different ferroelectric phases can be understood by a strain-phase diagram, which is calculated within the framework of the Landau–Ginzburg–Devonshire theory. In this paper, we illustrate the opportunity of ferroelectric domain engineering in the KxNa1−xNbO3 lead-free material system. In particular, the following examples are discussed in detail: (i Different substrates (NdGaO3, SrTiO3, DyScO3, TbScO3, and GdScO3 are used to systematically tune the incorporated epitaxial strain from compressive to tensile. This can be exploited to adjust the NaNbO3 thin film surface orientation and, concomitantly, the vector of electrical polarization, which rotates from mainly vertical to exclusive in-plane orientation. (ii In ferroelectric NaNbO3, thin films grown on rare-earth scandate substrates, highly regular stripe domain patterns are observed. By using different film thicknesses, these can be tailored with regard to domain periodicity and vertical polarization component. (iii A featured potassium concentration of x = 0.9 of KxNa1−xNbO3 thin films grown on (110 NdScO3 substrates favors the coexistence of two equivalent, monoclinic, but differently oriented ferroelectric phases. A complicated herringbone domain pattern is experimentally observed which consists of alternating MC and a1a2 domains. The coexistence of different types of ferroelectric domains leads to polarization discontinuities at the domain walls, potentially enabling high piezoelectric responses. In each of these examples, the experimental results are in excellent agreement with predictions based on the linear elasticity theory.

  15. Structural domain walls in polar hexagonal manganites

    Science.gov (United States)

    Kumagai, Yu

    2014-03-01

    The domain structure in the multiferroic hexagonal manganites is currently intensely investigated, motivated by the observation of intriguing sixfold topological defects at their meeting points [Choi, T. et al,. Nature Mater. 9, 253 (2010).] and nanoscale electrical conductivity at the domain walls [Wu, W. et al., Phys. Rev. Lett. 108, 077203 (2012).; Meier, D. et al., Nature Mater. 11, 284 (2012).], as well as reports of coupling between ferroelectricity, magnetism and structural antiphase domains [Geng, Y. et al., Nano Lett. 12, 6055 (2012).]. The detailed structure of the domain walls, as well as the origin of such couplings, however, was previously not fully understood. In the present study, we have used first-principles density functional theory to calculate the structure and properties of the low-energy structural domain walls in the hexagonal manganites [Kumagai, Y. and Spaldin, N. A., Nature Commun. 4, 1540 (2013).]. We find that the lowest energy domain walls are atomically sharp, with {210}orientation, explaining the orientation of recently observed stripe domains and suggesting their topological protection [Chae, S. C. et al., Phys. Rev. Lett. 108, 167603 (2012).]. We also explain why ferroelectric domain walls are always simultaneously antiphase walls, propose a mechanism for ferroelectric switching through domain-wall motion, and suggest an atomistic structure for the cores of the sixfold topological defects. This work was supported by ETH Zurich, the European Research Council FP7 Advanced Grants program me (grant number 291151), the JSPS Postdoctoral Fellowships for Research Abroad, and the MEXT Elements Strategy Initiative to Form Core Research Center TIES.

  16. Ferroelectric Polarization Switching Dynamics and Domain Growth of Triglycine Sulfate and Imidazolium Perchlorate

    KAUST Repository

    Ma, He

    2016-04-10

    The weak bond energy and large anisotropic domain wall energy induce many special characteristics of the domain nucleation, growth, and polarization switch in triglycine sulfate (TGS) and imidazolium perchlorate (IM), two typical molecular ferroelectrics. Their domain nucleation and polarization switch are rather slower than those of conventional oxide ferroelectrics, which may be due to the weaker bond energy of hydrogen bond or van der Waals bond than that of ionic bond. These chemical bonds dominate the elastic energy, with the latter being an important component of domain wall energy and playing an important role in domain nucleation and domain growth. The ratio of anisotropic domain wall energy to Gibbs free energy is large in TGS and IM, which allows a favorable domain shape and a special domain evolution under a certain electric field. Therefore, this study not only sheds light on the physical nature but also indicates the application direction for molecular ferroelectrics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  17. Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films

    Science.gov (United States)

    Heon Kim, Tae; Yoon, Jong-Gul; Hyub Baek, Seung; Park, Woong-Kyu; Mo Yang, Sang; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Won Noh, Tae

    2015-07-01

    Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields.

  18. Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films.

    Science.gov (United States)

    Kim, Tae Heon; Yoon, Jong-Gul; Baek, Seung Hyub; Park, Woong-kyu; Yang, Sang Mo; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Noh, Tae Won

    2015-07-01

    Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields.

  19. Investigation of Ferroelectric Domain Walls by Raman Spectroscopy

    Science.gov (United States)

    Stone, Gregory A.

    Ferroelectric materials are characterized by an intrinsic spontaneous electric dipole moment that can be manipulated by the application of an electric field. Regions inside the crystal, known as domains, can have the spontaneous dipole moments oriented in a different direction than the surrounding crystal. Due to favorable piezoelectric, pyroelectric, electro-optic, and nonlinear optical properties, ferroelectric materials are attractive for commercial applications. Many devices, such as nonlinear frequency converters, require precisely engineered domain patterns. The properties of domains and their boundaries, known as domain walls, are vital to the performance and limitations of these devices. As a result, ferroelectric domains and the domain walls have been the focus of many scientific studies. Despite all this work, questions remain regarding their properties. This work is aimed at developing a better understanding of the properties of the domain wall using confocal Raman spectroscopy. Raman spectra taken from domain walls in Lithium Niobate and Lithium Tantalate reveal two distinct changes in the Raman spectra: (1) Shifts in frequency of the bulk Raman modes, which persists over a range of 0.2-0.5 mu m from the domain wall. The absence of this effect in defect free stoichiometric Lithium Tantalate indicates that the shifts are related to defects inside the crystal. (2) The presence of Raman modes corresponding to phonons propagating orthogonal to the laser beam axis, which are not collected in the bulk crystal. The phonons also preferential propagate normal to the domain wall. These modes are detected up to 0.35 mum from the domain wall. The observation and separation of these effects was made possible by the optimized spatial resolution (0.23 mum) of a home-built scanning confocal microscope and the fact that degeneracy of the transverse and longitudinal phonon polarization is lifted by polar phonons in Lithium Niobate and Lithium Tantalate. Raman

  20. Kinetics of Domain Switching by Mechanical and Electrical Stimulation in Relaxor-Based Ferroelectrics

    Science.gov (United States)

    Chen, Zibin; Hong, Liang; Wang, Feifei; An, Xianghai; Wang, Xiaolin; Ringer, Simon; Chen, Long-Qing; Luo, Haosu; Liao, Xiaozhou

    2017-12-01

    Ferroelectric materials have been extensively explored for applications in high-density nonvolatile memory devices because of their ferroelectric-ferroelastic domain-switching behavior under electric loading or mechanical stress. However, the existence of ferroelectric and ferroelastic backswitching would cause significant data loss, which affects the reliability of data storage. Here, we apply in situ transmission electron microscopy and phase-field modeling to explore the unique ferroelastic domain-switching kinetics and the origin of this in relaxor-based Pb (Mg1 /3Nb2 /3)O3-33 % PbTiO3 single-crystal pillars under electrical and mechanical stimulations. Results showed that the electric-mechanical hysteresis loop shifted for relaxor-based single-crystal pillars because of the low energy levels of domains in the material and the constraint on the pillars, resulting in various mechanically reversible and irreversible domain-switching states. The phenomenon can potentially be used for advanced bit writing and reading in nonvolatile memories, which effectively overcomes the backswitching problem and broadens the types of ferroelectric materials for nonvolatile memory applications.

  1. Evolution of defect signatures at ferroelectric domain walls in Mg-doped LiNbO3

    International Nuclear Information System (INIS)

    Nataf, Guillaume F.; Guennou, Mael; Haussmann, Alexander; Barrett, Nick; Kreisel, Jens

    2016-01-01

    The domain structure of uniaxial ferroelectric lithium niobate single crystals is investigated using Raman spectroscopy mapping. The influence of doping with magnesium and poling at room temperature is studied by analysing frequency shifts at domain walls and their variations with dopant concentration and annealing conditions. It is shown that defects are stabilized at domain walls and that changes in the defect structures with Mg concentration can be probed by the shift of Raman modes. We show that the signatures of polar defects in the bulk and at the domain walls differ. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Functional Properties of Polydomain Ferroelectric Oxide Thin Films

    NARCIS (Netherlands)

    Houwman, Evert Pieter; Vergeer, Kurt; Koster, Gertjan; Rijnders, Augustinus J.H.M.; Nishikawa, H.; Iwata, N.; Endo, T.; Takamura, Y.; Lee, G-H.; Mele, P.

    2017-01-01

    The properties of a ferroelectric, (001)-oriented, thin film clamped to a substrate are investigated analytically and numerically. The emphasis is on the tetragonal, polydomain, ferroelectric phase, using a three domain structure, as is observed experimentally, instead of the two-domain structure

  3. Hierarchy and scaling behavior of multi-rank domain patterns in ferroelectric K0.9Na0.1NbO3 strained films

    Science.gov (United States)

    Braun, Dorothee; Schmidbauer, Martin; Hanke, Michael; Schwarzkopf, Jutta

    2018-01-01

    The formation process of a ferroelectric multi-rank domain pattern in the thickness range of 7-52 nm is investigated for monoclinic K0.9Na0.1NbO3 strained epitaxial films on (110) NdScO3 substrates. Although the elastic strain energy density is degenerated for two pseudocubic orientations, a distinctive hierarchy of domain evolution is observed with exclusive in-plane a1a2 domains for very thin films and the retarded onset of a ferroelectric MC phase at larger film thickness. This is accompanied by a thickness dependent transformation from stripe domains to a herringbone pattern and, eventually, for the thickest film, to a checkerboard-like structure. These transformations in the domain arrangement and width are correlated to energetic aspects as depolarization field and anisotropic strain relaxation in the film. While for the MC domains plastic strain relaxation is throughout observed, the a1a2 domains show a two-step strain relaxation mechanism starting with an in-plane elastic shearing, which is followed by plastic lattice relaxation. Our results highlight a pathway for engineering and patterning of periodic ferroelectric domain structures.

  4. Ferroelectric domains and phase evolution in (Fe:) KTa{sub 1−x}Nb{sub x}O{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hongyang; Cai, Kang; Fan, Ziran; Huang, Zhideng [Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Department of Materials Science and Engineering, Wuhan Institute of Technology, 693 Xiongchu Road, Wuhan 430073 (China); Ma, Zhibin, E-mail: mazb@wit.edu.cn [Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Department of Materials Science and Engineering, Wuhan Institute of Technology, 693 Xiongchu Road, Wuhan 430073 (China); Jia, Tingting; Kimura, Hideo [National Institute for Materials Science, Sengen 1-2-1, Tsukuba 305-0047 (Japan); Yang, Yuguo [New Materials Research Institute, Shandong Academy of Sciences, No. 19, Keyuan Road, Jinan 250014 (China); Matsumoto, Takao; Tohei, Tetsuya; Shibata, Naoya; Ikuhara, Yuichi [Institute of Engineering Innovation, School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2017-08-15

    Highlights: • Three phase transitions were observed: the R–O, O–T, T–C evolutions. • KTN ferroelectric domain switching is because of the nano-polar-regions. • The domain evolution showed KTN has triangle shape, but Fe: KTN has straight line. - Abstract: The domain structures and phase evolution in mixed ferroelectric (Fe): KTa{sub 1−x}Nb{sub x}O{sub 3} (KTN) crystals were investigated. Temperature dependent Raman spectra show that Curie temperatures of KTN and Fe: KTN are far below room temperature, but the ferroelectric domain switching was still visualized by scanning probe microscopy at room temperature. These observed domains origin from the nano-regions near the grain boundaries. In addition, the intrinsic domains (triangle for KTN and straight line/stripe for Fe: KTN) could only be observed at low temperature by transmission electron microscopy. Three phase transitions in Fe: KTN crystals were found by Raman spectroscopy and dielectric testing: 175 K for Rhombohedral-to-Orthorhombic (R–O), 210 K for Orthorhombic-to-Tetragonal (O–T) and 250 K for Tetragonal-to-Cubic (T–C), which is consistent with the domain behavior.

  5. Evolution of defect signatures at ferroelectric domain walls in Mg-doped LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nataf, Guillaume F. [Materials, Research and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, 4422, Belvaux (Luxembourg); Service de Physique de l' Etat Condense, DSM/IRAMIS/SPEC, CNRS UMR 3680, CEA Saclay, 91191, Gif sur Yvette cedex (France); Guennou, Mael [Materials, Research and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, 4422, Belvaux (Luxembourg); Haussmann, Alexander [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden, George-Baehr-Str. 1, 01069, Dresden (Germany); Barrett, Nick [Service de Physique de l' Etat Condense, DSM/IRAMIS/SPEC, CNRS UMR 3680, CEA Saclay, 91191, Gif sur Yvette cedex (France); Kreisel, Jens [Materials, Research and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, 4422, Belvaux (Luxembourg); Physics and Materials Science Research Unit, University of Luxembourg, 41 Rue du Brill, 4422, Belvaux (Luxembourg)

    2016-03-15

    The domain structure of uniaxial ferroelectric lithium niobate single crystals is investigated using Raman spectroscopy mapping. The influence of doping with magnesium and poling at room temperature is studied by analysing frequency shifts at domain walls and their variations with dopant concentration and annealing conditions. It is shown that defects are stabilized at domain walls and that changes in the defect structures with Mg concentration can be probed by the shift of Raman modes. We show that the signatures of polar defects in the bulk and at the domain walls differ. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Piezoelectric properties of twinned ferroelectric perovskites with head-to-head and tail-to-tail domain walls

    Czech Academy of Sciences Publication Activity Database

    Ondrejkovič, Petr; Márton, Pavel; Guennou, Mael; Setter, N.; Hlinka, Jiří

    2013-01-01

    Roč. 88, č. 2 (2013), "024114-1"-"024114-9" ISSN 1098-0121 Grant - others:7th Framework Programme(XE) 268058 Institutional support: RVO:68378271 Keywords : piezoelectric properties * charged domain walls * domain structure * twinned ferroelectric Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013 http://link. aps .org/doi/10.1103/PhysRevB.88.024114

  7. Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates

    KAUST Repository

    Chao, Chunying

    2012-08-15

    Free-standing single-crystal PbTiO 3 nanoplates (see picture) were synthesized by a facile hydrothermal method. A "self-templated" crystal growth is presumed to lead to the formation of the PbTiO 3 nanoplates, which have ferroelectric single-domain structures, whose polarization areas can be manipulated by writing and reading. The nanoplates are also effective catalysts for the oxidation of carbon monoxide. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Phase transitions and domain structures in multiferroics

    Science.gov (United States)

    Vlahos, Eftihia

    2011-12-01

    Thin film ferroelectrics and multiferroics are two important classes of materials interesting both from a scientific and a technological prospective. The volatility of lead and bismuth as well as environmental issues regarding the toxicity of lead are two disadvantages of the most commonly used ferroelectric random access memory (FeRAM) materials such as Pb(Zr,Ti)O3 and SrBi2Ta2O9. Therefore lead-free thin film ferroelectrics are promising substitutes as long as (a) they can be grown on technologically important substrates such as silicon, and (b) their T c and Pr become comparable to that of well established ferroelectrics. On the other hand, the development of functional room temperature ferroelectric ferromagnetic multiferroics could lead to very interesting phenomena such as control of magnetism with electric fields and control of electrical polarization with magnetic fields. This thesis focuses on the understanding of material structure-property relations using nonlinear optical spectroscopy. Nonlinear spectroscopy is an excellent tool for probing the onset of ferroelectricity, and domain dynamics in strained ferroelectrics and multiferroics. Second harmonic generation was used to detect ferroelectricity and the antiferrodistortive phase transition in thin film SrTiO3. Incipient ferroelectric CaTiO3 has been shown to become ferroelectric when strained with a combination of SHG and dielectric measurements. The tensorial nature of the induced nonlinear polarization allows for probing of the BaTiO3 and SrTiO3 polarization contributions in nanoscale BaTiO3/SrTiO3 superlattices. In addition, nonlinear optics was used to demonstrate ferroelectricity in multiferroic EuTiO3. Finally, confocal SHG and Raman microscopy were utilized to visualize polar domains in incipient ferroelectric and ferroelastic CaTiO3.

  9. Visualization of ferroelectric domain structures in lithium niobate by means of confocal nonlinear microscopy; Visualisierung ferroelektrischer Domaenenstrukturen in Lithiumniobat mittels konfokaler nichtlinearer Mikroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Berth, Gerhard

    2010-07-01

    In the field of integrated optics nonlinear-optical effects play a central role. A typical example for the commercial use of such phenomena is the frequency conversion. A deciding parameter is here the phase matching, which determines the quantity of the constructive interaction range of contributing optical fields. In view of a high efficiency of such processes the dispersion of a crystal must be balanced for the contributing frequencies. In nonlinear components on the base of optical waveguides the principle of the ''quasi-phase matching'' is applied, which uses the microdomain inversion. Phase jumps occuring at the domain boundaries compensate in the mean the different phase velocities. The application range of such periodical structures depends essentially on sharpness, homogeneity, depth extent, and period of the domain structure. The nonlinear confocal laser scanning microscopy makes a mapping of this transferred ferroelectric domain structure possible. Primary aim of this thesis is the characterization and mapping of the transferred ferroelectric domain structure in lithium niobate. A modularly kept confocal microscope makes here a nonlinear analysis in reflection and transmission geometry possible. In both geometries systematic studies as function of important process parameters were performed. It was shown that because of the larger nonlinear coherence length in the transmission modus the SHG ensues above all in forward direction. By depth-resolved studies at Z-cut PPLN structured between the surface region and the volume crystal a flippling of the SHG contrast could be observed. In samples with circular pole structure additionally in the crystal a transition to a hexagonal structure took place. In the Ti:PPLN strip waveguide a strong and specific increasement of the nonlinear signal of the domain walls was discovered. Here also the usual SHG surface contrast between dhe domains and the boundaries is inverted. Also differently processed

  10. Photoinduced Domain Pattern Transformation in Ferroelectric-Dielectric Superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Youngjun; Park, Joonkyu; Pateras, Anastasios; Rich, Matthew B.; Zhang, Qingteng; Chen, Pice; Yusuf, Mohammed H.; Wen, Haidan; Dawber, Matthew; Evans, Paul G.

    2017-07-01

    The nanodomain pattern in ferroelectric/dielectric superlattices transforms to a uniform polarization state under above-bandgap optical excitation. X-ray scattering reveals a disappearance of domain diffuse scattering and an expansion of the lattice. The reappearance of the domain pattern occurs over a period of seconds at room temperature, suggesting a transformation mechanism in which charge carriers in long-lived trap states screen the depolarization field. A Landau-Ginzburg-Devonshire model predicts changes in lattice parameter and a critical carrier concentration for the transformation.

  11. Charge ordering, ferroelectric, and magnetic domains in LuFe{sub 2}O{sub 4} observed by scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, I. K.; Jeong, Y. H., E-mail: yhj@postech.ac.kr [Department of Physics, POSTECH, 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); Kim, Jeehoon [Department of Physics, POSTECH, 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); CALDES, Institute of Basic Science, 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); Lee, S. H. [YE Team, Samsung Electronics, 1 Samsungjeonja-Ro, Hwaseong 445-330 (Korea, Republic of); Cheong, S.-W. [Laboratory of Pohang Emergent Materials, POSTECH, 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-04-13

    LuFe{sub 2}O{sub 4} is a multiferroic system which exhibits charge order, ferroelectricity, and ferrimagnetism simultaneously below ∼230 K. The ferroelectric/charge order domains of LuFe{sub 2}O{sub 4} are imaged with both piezoresponse force microscopy (PFM) and electrostatic force microscopy (EFM), while the magnetic domains are characterized by magnetic force microscopy (MFM). Comparison of PFM and EFM results suggests that the proposed ferroelectricity in LuFe{sub 2}O{sub 4} is not of usual displacive type but of electronic origin. Simultaneous characterization of ferroelectric/charge order and magnetic domains by EFM and MFM, respectively, on the same surface of LuFe{sub 2}O{sub 4} reveals that both domains have irregular patterns of similar shape, but the length scales are quite different. The domain size is approximately 100 nm for the ferroelectric domains, while the magnetic domain size is much larger and gets as large as 1 μm. We also demonstrate that the origin of the formation of irregular domains in LuFe{sub 2}O{sub 4} is not extrinsic but intrinsic.

  12. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guang-hao; Bai, Yu-hang; Cui, Guo-xin; Li, Chen; Qiu, Xiang-biao; Wu, Di; Lu, Yan-qing, E-mail: yqlu@nju.edu.cn [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Geng, De-qiang [Jinan Jingzheng Electronics Co., Ltd., Jinan 250100 (China)

    2016-07-15

    Ferroelectric domain inversion and its effect on the stability of lithium niobate thin films on insulator (LNOI) are experimentally characterized. Two sets of specimens with different thicknesses varying from submicron to microns are selected. For micron thick samples (∼28 μm), domain structures are achieved by pulsed electric field poling with electrodes patterned via photolithography. No domain structure deterioration has been observed for a month as inspected using polarizing optical microscopy and etching. As for submicron (540 nm) films, large-area domain inversion is realized by scanning a biased conductive tip in a piezoelectric force microscope. A graphic processing method is taken to evaluate the domain retention. A domain life time of 25.0 h is obtained and possible mechanisms are discussed. Our study gives a direct reference for domain structure-related applications of LNOI, including guiding wave nonlinear frequency conversion, nonlinear wavefront tailoring, electro-optic modulation, and piezoelectric devices.

  13. Three-dimensional, time-resolved profiling of ferroelectric domain wall dynamics by spectral-domain optical coherence tomography

    International Nuclear Information System (INIS)

    Haussmann, Alexander; Schmidt, Sebastian; Wehmeier, Lukas; Eng, Lukas M.; Kirsten, Lars; Cimalla, Peter; Koch, Edmund

    2017-01-01

    We apply here spectral-domain optical coherence tomography (SD-OCT) for the precise detection and temporal tracking of ferroelectric domain walls (DWs) in magnesium-doped periodically poled lithium niobate (Mg:PPLN). We reproducibly map static DWs at an axial (depth) resolution down to ∝ 0.6 μm, being located up to 0.5 mm well inside the single crystalline Mg:PPLN sample. We show that a full 3-dimensional (3D) reconstruction of the DW geometry is possible from the collected data, when applying a special algorithm that accounts for the nonlinear optical dispersion of the material. Our OCT investigation provides valuable reference information on the DWs' polarization charge distribution, which is known to be the key to the electrical conductivity of ferroelectric DWs in such systems. Hence, we carefully analyze the SD-OCT signal dependence both when varying the direction of incident polarization, and when applying electrical fields along the polar axis. Surprisingly, the large backreflection intensities recorded under extraordinary polarization are not affected by any electrical field, at least for field strengths below the switching threshold, while no significant signals above noise floor are detected under ordinary polarization. Finally, we employed the high-speed SD-OCT setup for the real-time DW tracking upon ferroelectric domain switching under high external fields. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Three-dimensional, time-resolved profiling of ferroelectric domain wall dynamics by spectral-domain optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haussmann, Alexander; Schmidt, Sebastian; Wehmeier, Lukas; Eng, Lukas M. [Technische Universitaet Dresden, Institute of Applied Physics and Center for Advancing Electronics Dresden (cfaed), Dresden (Germany); Kirsten, Lars; Cimalla, Peter; Koch, Edmund [Technische Universitaet Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden (Germany)

    2017-08-15

    We apply here spectral-domain optical coherence tomography (SD-OCT) for the precise detection and temporal tracking of ferroelectric domain walls (DWs) in magnesium-doped periodically poled lithium niobate (Mg:PPLN). We reproducibly map static DWs at an axial (depth) resolution down to ∝ 0.6 μm, being located up to 0.5 mm well inside the single crystalline Mg:PPLN sample. We show that a full 3-dimensional (3D) reconstruction of the DW geometry is possible from the collected data, when applying a special algorithm that accounts for the nonlinear optical dispersion of the material. Our OCT investigation provides valuable reference information on the DWs' polarization charge distribution, which is known to be the key to the electrical conductivity of ferroelectric DWs in such systems. Hence, we carefully analyze the SD-OCT signal dependence both when varying the direction of incident polarization, and when applying electrical fields along the polar axis. Surprisingly, the large backreflection intensities recorded under extraordinary polarization are not affected by any electrical field, at least for field strengths below the switching threshold, while no significant signals above noise floor are detected under ordinary polarization. Finally, we employed the high-speed SD-OCT setup for the real-time DW tracking upon ferroelectric domain switching under high external fields. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Microscopic observation of ferroelectric domains in SrTiO3 using birefringence imaging techniques under high electric fields

    International Nuclear Information System (INIS)

    Manaka, Hirotaka; Nozaki, Hirofumi; Miura, Yoko

    2017-01-01

    Phase transitions in SrTiO 3 between quantum paraelectric, coherent paraelectric, and electric-field-induced ferroelectric states are governed by tetragonal domains with quantum fluctuations. However, their characteristics are still unclear. To observe the electric-field-induced ferroelectric state using birefringence imaging techniques, we developed a suitable sample holder to apply high electric fields of up to E ≃ 5 kV/cm and temperatures down to T = 20 K. From birefringence imaging measurements of the ferroelectric LiNbO 3 with varying electric field, distributions of the electric field in the sample stage were found to be negligible. In SrTiO 3 , a huge-retardance area corresponding to the ferroelectric domains appears at E > 2 kV/cm and T ≤ 60 K even though the paraelectric domains partially remain. Furthermore, the fast-axis direction rotates by 90° at the ferroelectric phase transition because of an electrostrictive effect in ferroelectrics. The phase diagram of the critical electric field and temperature agrees with previous reports obtained from dielectric and neutron scattering measurements. (author)

  16. Far- and near-field second-harmonic imaging of ferroelectric domain walls

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Pedersen, K.; Skettrup, Torben

    1998-01-01

    Domain walls in periodically poled ferroelectric LiNbO3 crystals are observed with both far- and near-field imaging techniques that make use of second harmonic generation in the transition regions between neighbouring domains. Second harmonic images of domain walls represent bright lines of about.......5 micrometers in width (as measured with the near-field microscope) for the polarization of the second harmonic radiation perpendicular to the domain walls. Origin and selection rules for the constrast in second harmonic images of domain walls are discussed....

  17. Phase-Field Simulations of Topological Structures and Topological Phase Transitions in Ferroelectric Oxide Heterostructures

    Science.gov (United States)

    Zijian Hong

    Ferroelectrics are materials that exhibit spontaneous electric polarization which can be switched between energy-degenerated states by external stimuli (e.g., mechanical force and electric field) that exceeds a critical value. They have wide potential applications in memories, capacitors, piezoelectric and pyroelectric sensors, and nanomechanical systems. Topological structures and topological phase transitions have been introduced to the condensed matter physics in the past few decades and have attracted broad attentions in various disciplines due to the rich physical insights and broad potential applications. Ferromagnetic topological structures such as vortex and skyrmion are known to be stabilized by the antisymmetric chiral interaction (e.g., Dzyaloshinskii-Moriya interaction). Without such interaction, ferroelectric topological structures (i.e., vortex, flux-closure, skyrmions, and merons) have been studied only recently with other designing strategies, such as reducing the dimension of the ferroelectrics. The overarching goal of this dissertation is to investigate the topological structures in ferroelectric oxide perovskites as well as the topological phase transitions under external applied forces. Pb(Zr,Ti)O3 (PZT) with morphotropic phase boundary is widely explored for high piezoelectric and dielectric properties. The domain structure of PZT tetragonal/rhombohedral (T/R) bilayer is investigated. Strong interfacial coupling is shown, with large polarization rotation to a lower symmetry phase near the T/R interface. Interlayer domain growth can also be captured, with T-domains in the R layer and R-domains in the T layer. For thin PZT bilayer with 5nm of T-layer and 20 nm of R-layer, the a1/a 2 twin domain structure is formed in the top T layer, which could be fully switched to R domains under applied bias. While a unique flux-closure pattern is observed both theoretically and experimentally in the thick bilayer film with 50 nm of thickness for both T and R

  18. Voltage Drop in a Ferroelectric Single Layer Capacitor by Retarded Domain Nucleation.

    Science.gov (United States)

    Kim, Yu Jin; Park, Hyeon Woo; Hyun, Seung Dam; Kim, Han Joon; Kim, Keum Do; Lee, Young Hwan; Moon, Taehwan; Lee, Yong Bin; Park, Min Hyuk; Hwang, Cheol Seong

    2017-12-13

    Ferroelectric (FE) capacitor is a critical electric component in microelectronic devices. Among many of its intriguing properties, the recent finding of voltage drop (V-drop) across the FE capacitor while the positive charges flow in is especially eye-catching. This finding was claimed to be direct evidence that the FE capacitor is in negative capacitance (NC) state, which must be useful for (infinitely) high capacitance and ultralow voltage operation of field-effect transistors. Nonetheless, the NC state corresponds to the maximum energy state of the FE material, so it has been widely accepted in the community that the material alleviates that state by forming ferroelectric domains. This work reports a similar V-drop effect from the 150 nm thick epitaxial BaTiO 3 ferroelectric thin film, but the interpretation was completely disparate; the V-drop can be precisely simulated by the reverse domain nucleation and propagation of which charge effect cannot be fully compensated for by the supplied charge from the external charge source. The disappearance of the V-drop effect was also observed by repeated FE switching only up to 10 cycles, which can hardly be explained by the involvement of the NC effect. The retained reverse domain nuclei even after the subsequent poling can explain such behavior.

  19. Nanodomain Engineering in Ferroelectric Capacitors with Graphene Electrodes.

    Science.gov (United States)

    Lu, Haidong; Wang, Bo; Li, Tao; Lipatov, Alexey; Lee, Hyungwoo; Rajapitamahuni, Anil; Xu, Ruijuan; Hong, Xia; Farokhipoor, Saeedeh; Martin, Lane W; Eom, Chang-Beom; Chen, Long-Qing; Sinitskii, Alexander; Gruverman, Alexei

    2016-10-12

    Polarization switching in ferroelectric capacitors is typically realized by application of an electrical bias to the capacitor electrodes and occurs via a complex process of domain structure reorganization. As the domain evolution in real devices is governed by the distribution of the nucleation centers, obtaining a domain structure of a desired configuration by electrical pulsing is challenging, if not impossible. Recent discovery of polarization reversal via the flexoelectric effect has opened a possibility for deterministic control of polarization in ferroelectric capacitors. In this paper, we demonstrate mechanical writing of arbitrary-shaped nanoscale domains in thin-film ferroelectric capacitors with graphene electrodes facilitated by a strain gradient induced by a tip of an atomic force microscope (AFM). A phase-field modeling prediction of a strong effect of graphene thickness on the threshold load required to initiate mechanical switching has been confirmed experimentally. Deliberate voltage-free domain writing represents a viable approach for development of functional devices based on domain topology and electronic properties of the domains and domain walls.

  20. Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field.

    Science.gov (United States)

    Karpov, D; Liu, Z; Rolo, T Dos Santos; Harder, R; Balachandran, P V; Xue, D; Lookman, T; Fohtung, E

    2017-08-17

    Topological defects of spontaneous polarization are extensively studied as templates for unique physical phenomena and in the design of reconfigurable electronic devices. Experimental investigations of the complex topologies of polarization have been limited to surface phenomena, which has restricted the probing of the dynamic volumetric domain morphology in operando. Here, we utilize Bragg coherent diffractive imaging of a single BaTiO 3 nanoparticle in a composite polymer/ferroelectric capacitor to study the behavior of a three-dimensional vortex formed due to competing interactions involving ferroelectric domains. Our investigation of the structural phase transitions under the influence of an external electric field shows a mobile vortex core exhibiting a reversible hysteretic transformation path. We also study the toroidal moment of the vortex under the action of the field. Our results open avenues for the study of the structure and evolution of polar vortices and other topological structures in operando in functional materials under cross field configurations.Imaging of topological states of matter such as vortex configurations has generally been limited to 2D surface effects. Here Karpov et al. study the volumetric structure and dynamics of a vortex core mediated by electric-field induced structural phase transition in a ferroelectric BaTiO 3 nanoparticle.

  1. Losses in Ferroelectric Materials

    Science.gov (United States)

    Liu, Gang; Zhang, Shujun; Jiang, Wenhua; Cao, Wenwu

    2015-01-01

    loss mechanisms are discussed in terms of compositions, crystal structures, temperature, domain configurations, domain sizes and grain boundaries. The intrinsic and extrinsic contributions to the total energy dissipation are quantified. In domain engineered ferroelectric single crystals and ceramics, polarization rotations, domain wall motions and mechanical wave scatterings at grain boundaries are believed to control the mechanical quality factors of piezoelectric resonators. We show that a thorough understanding on the kinetic processes is critical in analyzing energy loss behavior and other time-dependent properties in ferroelectric materials. At the end of the review, existing challenges in the study and control of losses in ferroelectric materials are analyzed, and future perspective in resolving these issues is discussed. PMID:25814784

  2. Losses in Ferroelectric Materials.

    Science.gov (United States)

    Liu, Gang; Zhang, Shujun; Jiang, Wenhua; Cao, Wenwu

    2015-03-01

    loss mechanisms are discussed in terms of compositions, crystal structures, temperature, domain configurations, domain sizes and grain boundaries. The intrinsic and extrinsic contributions to the total energy dissipation are quantified. In domain engineered ferroelectric single crystals and ceramics, polarization rotations, domain wall motions and mechanical wave scatterings at grain boundaries are believed to control the mechanical quality factors of piezoelectric resonators. We show that a thorough understanding on the kinetic processes is critical in analyzing energy loss behavior and other time-dependent properties in ferroelectric materials. At the end of the review, existing challenges in the study and control of losses in ferroelectric materials are analyzed, and future perspective in resolving these issues is discussed.

  3. Correlation of electron backscatter diffraction and piezoresponse force microscopy for the nanoscale characterization of ferroelectric domains in polycrystalline lead zirconate titanate

    Science.gov (United States)

    Burnett, T. L.; Weaver, P. M.; Blackburn, J. F.; Stewart, M.; Cain, M. G.

    2010-08-01

    The functional properties of ferroelectric ceramic bulk or thin film materials are strongly influenced by their nanostructure, crystallographic orientation, and structural geometry. In this paper, we show how, by combining textural analysis, through electron backscattered diffraction, with piezoresponse force microscopy, quantitative measurements of the piezoelectric properties can be made at a scale of 25 nm, smaller than the domain size. The combined technique is used to obtain data on the domain-resolved effective single crystal piezoelectric response of individual crystallites in Pb(Zr0.4Ti0.6)O3 ceramics. The results offer insight into the science of domain engineering and provide a tool for the future development of new nanostructured ferroelectric materials for memory, nanoactuators, and sensors based on magnetoelectric multiferroics.

  4. Ferroelectric domain switching dynamics and memristive behaviors in BiFeO3-based magnetoelectric heterojunctions

    Science.gov (United States)

    Huang, Weichuan; Liu, Yukuai; Luo, Zhen; Hou, Chuangming; Zhao, Wenbo; Yin, Yuewei; Li, Xiaoguang

    2018-06-01

    The ferroelectric domain reversal dynamics and the corresponding resistance switching as well as the memristive behaviors in epitaxial BiFeO3 (BFO, ~150 nm) based multiferroic heterojunctions were systematically investigated. The ferroelectric domain reversal dynamics could be described by the nucleation-limited-switching model with the Lorentzian distribution of logarithmic domain-switching times. By engineering the domain states, multi and even continuously tunable resistances states, i.e. memristive states, could be non-volatilely achieved. The resistance switching speed can be as fast as 30 ns in the BFO-based multiferroic heterojunctions with a write voltage of ~20 V. By reducing the thickness of BFO, the La0.6Sr0.4MnO3/BFO (~5 nm)/La0.6Sr0.4MnO3 multiferroic tunnel junction (MFTJ) shows an even a quicker switching speed (20 ns) with a much lower operation voltage (~4 V). Importantly, the MFTJ exhibits a tunable interfacial magnetoelectric coupling related to the ferroelectric domain switching dynamics. These findings enrich the potential applications of multiferroic BFO based devices in high-speed, low-power, and high-density memories as well as future neuromorphic computational architectures.

  5. Interrelation between domain structures and polarization switching in hybrid improper ferroelectric Ca3(Mn,Ti)2O7

    Science.gov (United States)

    Gao, Bin; Huang, Fei-Ting; Wang, Yazhong; Kim, Jae-Wook; Wang, Lihai; Lim, Seong-Joon; Cheong, Sang-Wook

    2017-05-01

    Ca3Mn2O7 and Ca3Ti2O7 have been proposed as the prototypical hybrid improper ferroelectrics (HIFs), and a significant magnetoelectric (ME) coupling in magnetic Ca3Mn2O7 is, in fact, reported theoretically and experimentally. Although the switchability of polarization is confirmed in Ca3Ti2O7 and other non-magnetic HIFs, there is no report of switchable polarization in the isostructural Ca3Mn2O7. We constructed the phase diagram of Ca3Mn2-xTixO7 through our systematic study of a series of single crystalline Ca3Mn2-xTixO7 (x = 0, 0.1, 1, 1.5, and 2). Using transmission electron microscopy, we have unveiled the unique domain structure of Ca3Mn2O7: the high-density 90° stacking of a- and b-domains along the c-axis due to the phase transition through an intermediate Acca phase and the in-plane irregular wavy ferroelastic twin domains. The interrelation between domain structures and physical properties is unprecedented: the stacking along the c-axis prevents the switching of polarization and causes the irregular in-plane ferroelastic domain pattern. In addition, we have determined the magnetic phase diagram and found complex magnetism of Ca3Mn2O7 with isotropic canted moments. These results lead to negligible observable ME coupling in Ca3Mn2O7 and guide us to explore multiferroics with large ME coupling.

  6. Orientation control and domain structure analysis of {100}-oriented epitaxial ferroelectric orthorhombic HfO{sub 2}-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Kiliha [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Shimizu, Takao [Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Sakata, Osami [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Shiraishi, Takahisa; Nakamura, Shogo; Kiguchi, Takanori; Akama, Akihiro; Konno, Toyohiko J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Uchida, Hiroshi [Department of Materials and Life Sciences, Sophia University, Chiyoda, Tokyo 102-8554 (Japan); Funakubo, Hiroshi, E-mail: funakubo.h.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2016-04-07

    Orientation control of {100}-oriented epitaxial orthorhombic 0.07YO{sub 1.5}-0.93HfO{sub 2} films grown by pulsed laser deposition was investigated. To achieve in-plane lattice matching, indium tin oxide (ITO) and yttria-stabilized zirconia (YSZ) were selected as underlying layers. We obtained (100)- and (001)/(010)-oriented films on ITO and YSZ, respectively. Ferroelastic domain formation was confirmed for both films by X-ray diffraction using the superlattice diffraction that appeared only for the orthorhombic symmetry. The formation of ferroelastic domains is believed to be induced by the tetragonal–orthorhombic phase transition upon cooling the films after deposition. The present results demonstrate that the orientation of HfO{sub 2}-based ferroelectric films can be controlled in the same manner as that of ferroelectric films composed of conventional perovskite-type material such as Pb(Zr, Ti)O{sub 3} and BiFeO{sub 3}.

  7. Magnetic field effect on Gd2(MoO4)3 domain structure formation in the phase transformation range

    International Nuclear Information System (INIS)

    Flerova, S.A.; Tsinman, I.L.

    1987-01-01

    The behaviour of ferroelastic-ferroelectric domain structure of gadolinium molybdate crystal (GMO)during its formation in the magnetic field in the vicinity of phase transformation is studied.It is shown that the formation of domain structure in the presence of a temperature gradient occurs in the field of mechanical stresses whose mainly stretching effect is concentrated near phase boundaries.The magnetic field intensifies summary mechanical stresses where a domain structure in a ferroelectric phase is formed due to interaction with the elements of inhomogeneous and differently oriented currents near phase boundaries

  8. Structure-Function Relationships of Ferroelectric Polymers.

    Science.gov (United States)

    Pavlopoulou, Eleni; Maiz, Jon; Spampinato, Nicoletta; Maglione, Mario; Hadziioannou, Georges

    Poly(vinylidene fluoride), PVDF, and its copolymers with trifluoroethylene, P(VDF-co-TrFE) have been long appreciated for their excellent ferroelectric properties. Although they have been mainly studied in the 80s and 90s, understanding their performance is still lacking. Yet the increasing use of P(VDF-co-TrFE) thin films in organic electronic devices during the last ten years revives the need for apprehending the function of these materials. In this work we investigate the structure of P(VDF-co-TrFE) films and correlate it to their ferroelectric properties. Our results show that ferroelectric performance is solely driven by the fraction of polymer that has been crystallized in the ferroelectric phases of PVDF. The relations between remnant polarization, coercive field and dipole switching rate of P(VDF-co-TrFE) with the ferroelectric crystallinity are demonstrated. The French Research Agency (ANR), the Aquitaine Region, Arkema and STMicroelectronics are kindly acknowledged for financial support.

  9. Photoinduced effects of ferroelectric domains in PbZr1-xTixO3 thin films as obtained by using piezoresponse force microscopy

    International Nuclear Information System (INIS)

    Jang, Y. H.; Kim, C. H.; Hwang, H. J.; Cho, J. H.; Moon, H. B.; Bhang, S. H.

    2011-01-01

    Piezoresponse force microscopy (PFM) has been used to investigate the photoinduced effect of ferroelectric domains in PbZr 1-x Ti x O 3 (PZT) thin films. In order to perform nondestructive visualization of the high-resolution domain structure, we optimized the imaging condition, such as applying a lower voltage than 1.0 Vpp (peak-to-peak voltage). In this study, domain changes were measured before and after illumination on the surface of PZT films by using an UV light emitting diode (LED) source (λ = 310 nm) with a focusing lens to investigate the influence of the photoinduced carriers on the ferroelectric polarization. In addition, to investigate the photoinduced effects on the domain distribution, we performed histogram of positive and negative domains before and after UV-light illumination. The illumination with UV light resulted in an increase of the positive domain of the out-of-plane mode. Also, a change in the out-of-plane domain distribution was observed before and after UV illumination. The relaxation of photoinduced changes was monitored by repeated scans within a time range of 20 ∼ 60 minutes.

  10. On the persistence of polar domains in ultrathin ferroelectric capacitors

    Czech Academy of Sciences Publication Activity Database

    Zubko, P.; Lu, H.; Bark, C.-W.; Martí, Xavier; Santiso, J.; Eom, C.-B.; Catalan, G.; Gruverman, A.

    2017-01-01

    Roč. 29, č. 28 (2017), s. 1-8, č. článku 284001. ISSN 1361-648X R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : ultrathin barium titanate * tunnel junctions * ferroelectric domains * polarization screening * retention * negative capacitance Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.)

  11. Nano and micro reoriented domains and their relation with the crystal structure in the new ferroelectric boracite Zn3B7O13Br

    International Nuclear Information System (INIS)

    Campa-Molina, J; Ulloa-Godinez, S; Barrera, A; Bucio, L; Mata, J

    2006-01-01

    A new zinc brome boracite Zn 3 B 7 O 13 Br has been grown by a chemical transport reaction in closed quartz ampoules at 920 K. The crystal structure was characterized by Rietveld refinement. Ferroelectric nano and micro reorientable domains were found in this material using polarizing optical microscopy (PLM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Chemical analysis was performed with x-ray energy dispersive spectroscopy (EDX). In the crystal, a new structure transition at 586 K from orthorhombic (Pca 2 1 ) to cubic cell (F4-bar3c) has been found. This transition was corroborated by differential scanning calorimetry (DSC)

  12. Nano and micro reoriented domains and their relation with the crystal structure in the new ferroelectric boracite Zn3B7O13Br

    Science.gov (United States)

    Campa-Molina, J.; Ulloa-Godínez, S.; Barrera, A.; Bucio, L.; Mata, J.

    2006-05-01

    A new zinc brome boracite Zn3B7O13Br has been grown by a chemical transport reaction in closed quartz ampoules at 920 K. The crystal structure was characterized by Rietveld refinement. Ferroelectric nano and micro reorientable domains were found in this material using polarizing optical microscopy (PLM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Chemical analysis was performed with x-ray energy dispersive spectroscopy (EDX). In the crystal, a new structure transition at 586 K from orthorhombic (Pca 21) to cubic cell (F\\overline 4 3c ) has been found. This transition was corroborated by differential scanning calorimetry (DSC).

  13. The Rayleigh law in silicon doped hafnium oxide ferroelectric thin films

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Yan; Liu, Xiaohua [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian (China); Zhou, Dayu [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian (China); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu (China); Xu, Jin [Department of Electronic Engineering, Dalian Neusoft University of Information, Dalian (China); Cao, Fei; Dong, Xianlin [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai (China); Mueller, Johannes [Fraunhofer IPMS-CNT, Dresden (Germany); Schenk, Tony; Schroeder, Uwe [NaMLab gGmbH/TU Dresden (Germany)

    2015-10-15

    A wealth of studies have confirmed that the low-field hysteresis behaviour of ferroelectric bulk ceramics and thin films can be described using Rayleigh relations, and irreversible domain wall motion across the array of pining defects has been commonly accepted as the underlying micro-mechanism. Recently, HfO{sub 2} thin films incorporated with various dopants were reported to show pronounced ferroelectricity, however, their microscopic domain structure remains unclear till now. In this work, the effects of the applied electric field amplitude, frequency and temperature on the sub-coercive polarization reversal properties were investigated for 10 nm thick Si-doped HfO{sub 2} thin films. The applicability of the Rayleigh law to ultra-thin ferroelectric films was first confirmed, indicating the existence of a multi-domain structure. Since the grain size is about 20-30 nm, a direct observation of domain walls within the grains is rather challenging and this indirect method is a feasible approach to resolve the domain structure. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. The Rayleigh law in silicon doped hafnium oxide ferroelectric thin films

    International Nuclear Information System (INIS)

    Guan, Yan; Liu, Xiaohua; Zhou, Dayu; Xu, Jin; Cao, Fei; Dong, Xianlin; Mueller, Johannes; Schenk, Tony; Schroeder, Uwe

    2015-01-01

    A wealth of studies have confirmed that the low-field hysteresis behaviour of ferroelectric bulk ceramics and thin films can be described using Rayleigh relations, and irreversible domain wall motion across the array of pining defects has been commonly accepted as the underlying micro-mechanism. Recently, HfO 2 thin films incorporated with various dopants were reported to show pronounced ferroelectricity, however, their microscopic domain structure remains unclear till now. In this work, the effects of the applied electric field amplitude, frequency and temperature on the sub-coercive polarization reversal properties were investigated for 10 nm thick Si-doped HfO 2 thin films. The applicability of the Rayleigh law to ultra-thin ferroelectric films was first confirmed, indicating the existence of a multi-domain structure. Since the grain size is about 20-30 nm, a direct observation of domain walls within the grains is rather challenging and this indirect method is a feasible approach to resolve the domain structure. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Ferroelectric InMnO{sub 3}: Growth of single crystals, structure and high-temperature phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Bekheet, Maged F., E-mail: maged.bekheet@ceramics.tu-berlin.de [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Fachgebiet Keramische Werkstoffe / Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin (Germany); Svoboda, Ingrid; Liu, Na [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Bayarjargal, Lkhamsuren [Institut für Geowissenschaften, Goethe-Universität, Altenhöferallee 1, d-60438 Frankfurt a.M. (Germany); Irran, Elisabeth [Institut für Chemie, Technische Universität Berlin, Straße des 17, Juni 135, 10623 Berlin (Germany); Dietz, Christian; Stark, Robert W.; Riedel, Ralf [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Gurlo, Aleksander [Fachgebiet Keramische Werkstoffe / Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin (Germany)

    2016-09-15

    To understand the origin of the ferroelectricity in InMnO{sub 3}, single crystals with average size of 1 mm were grown in PbF{sub 2} flux at 950 °C. The results of single crystal X-ray diffraction, second harmonic generation and piezoresponse force microscopy studies of high-quality InMnO{sub 3} single crystals reveal that the room-temperature state in this material is ferroelectric with P6{sub 3}cm symmetry. The polar InMnO{sub 3} specimen undergoes a reversible phase transition from non-centrosymmetric P6{sub 3}cm structure to a centrosymmetric P6{sub 3}/mmc structure at 700 °C as confirmed by the in situ high-temperature Raman spectroscopic and synchrotron X-ray diffraction experiments. - Graphical abstract: Piezoresponse fore microscopy (PFM) studies of high quality InMnO{sub 3} single crystal revealed that the room-temperature state of this material is ferroelectric with a clear cloverleaf pattern corresponding to six antiphase ferroelectric domains with alternating polarization ±P{sub z}. Display Omitted - Highlights: • InMnO{sub 3} single crystals with average size of 1 mm were grown in PbF{sub 2} flux at 950 °C. • The room-temperature state of InMnO{sub 3} is ferroelectric with polar P6{sub 3}cm structure. • PolarInMnO{sub 3} reversibly transforms to a centrosymmetric P6{sub 3}/mmc structure above 700 °C.

  16. The effect of the ferroelectric domain walls in the scanning near field optical microscopy response of periodically poled Ba2NaNb5O15 and LiNbO3 crystals

    International Nuclear Information System (INIS)

    Han, T P J; Jaque, F; Lamela, J; Jaque, D; Lifante, G; Cusso, F; Kamiskii, A A

    2009-01-01

    A study of Ba 2 NaNb 5 O 15 and LiNbO 3 crystals with periodic ferroelectric domain structures using the scanning near field optical microscopy technique is reported. Optical contrast is observed in the regions of ferroelectric domain boundaries and it is analysed using beam propagation method modelling. This reveals that the optical contrast, a consequence of changes in the refractive index, is not due to variation of the waveguide-coupling efficiency, and supports the hypothesis that it is associated with the domain array, which is related to the size of the domain. (fast track communication)

  17. Self-assembled domain structures: From micro- to nanoscale

    Directory of Open Access Journals (Sweden)

    Vladimir Shur

    2015-06-01

    Full Text Available The recent achievements in studying the self-assembled evolution of micro- and nanoscale domain structures in uniaxial single crystalline ferroelectrics lithium niobate and lithium tantalate have been reviewed. The results obtained by visualization of static domain patterns and kinetics of the domain structure by different methods from common optical microscopy to more sophisticated scanning probe microscopy, scanning electron microscopy and confocal Raman microscopy, have been discussed. The kinetic approach based on various nucleation processes similar to the first-order phase transition was used for explanation of the domain structure evolution scenarios. The main mechanisms of self-assembling for nonequilibrium switching conditions caused by screening ineffectiveness including correlated nucleation, domain growth anisotropy, and domain–domain interaction have been considered. The formation of variety of self-assembled domain patterns such as fractal-type, finger and web structures, broad domain boundaries, and dendrites have been revealed at each of all five stages of domain structure evolution during polarization reversal. The possible applications of self-assembling for micro- and nanodomain engineering were reviewed briefly. The review covers mostly the results published by our research group.

  18. The effect of phase assemblages, grain boundaries and domain structure on the local switching behavior of rare-earth modified bismuth ferrite ceramics

    International Nuclear Information System (INIS)

    Alikin, Denis O.; Turygin, Anton P.; Walker, Julian; Bencan, Andreja; Malic, Barbara; Rojac, Tadej; Shur, Vladimir Ya.; Kholkin, Andrei L.

    2017-01-01

    Piezoelectric properties and ferroelectric/ferroelastic domain switching behavior of polycrystalline ceramics are strongly influenced by local scale (i.e. <100 nm) phenomena, such as, the phase assemblages, domain structure, and defects. The method of ceramic synthesis strongly effects the local properties and thus plays a critical role in determining the macroscopic ferroelectric and piezoelectric performance. The link between synthesis and local scale properties of ferroelectrics is, however, rarely reported, especially for the emerging lead-free materials systems. In this work, we focus on samarium modified bismuth ferrite ceramics (Bi_0_._8_8Sm_0_._1_2FeO_3, BSFO) prepared by two methods: standard solid state reaction (SSR) and mechanochemi≿ally assisted synthesis (MAS). Each ceramic possesses different properties at the local scale and we used the piezoresponse force microscopy (PFM) complemented by transmission electron microscopy (TEM) to evaluate phase distribution, domain structure and polarization switching to show that an increase in the anti-polar phase assemblages within the polar matrix leads to notable changes in the local polarization switching. SSR ceramics exhibit larger internal bias fields relative to the MAS ceramics, and the grain boundaries produce a stronger effect on the local switching response. MAS ceramics were able to nucleate domains at lower electric-fields and grow them at faster rates, reaching larger final domain sizes than the SSR ceramics. Local evidence of the electric-field induced phase transition from the anti-ferroelectric Pbam to ferroelectric R3c phase was observed together with likely evidence of the existence of head-to-head/tail-to-tail charged domain walls and domain vortex core structures. By comparing the domain structure and local switching behavior of ceramics prepared by two different methods this work brings new insights the synthesis-structure-property relationship in lead-free piezoceramics.

  19. In situ transmission electron microscopy study of the microstructural origins for the electric field-induced phenomena in ferroelectric perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hanzheng [Iowa State Univ., Ames, IA (United States)

    2014-12-15

    Ferroelectrics are important materials due to their extensive technological applications, such as non-volatile memories, field-effect transistors, ferroelectric tunneling junctions, dielectric capacitors, piezoelectric transducers, sensors and actuators. As is well known, the outstanding dielectric, piezoelectric, and ferroelectric properties of these functional oxides originate from their ferroelectric domain arrangements and the corresponding evolution under external stimuli (e.g. electric field, stress, and temperature). Electric field has been known as the most efficient stimulus to manipulate the ferroelectric domains through polarization switching and alignment. Therefore, direct observation of the dynamic process of electric field-induced domain evolution and crystal structure transformation is of significant importance to understand the microstructural mechanisms for the functional properties of ferroelectrics. In this dissertation, electric field in situ transmission electron microscopy (TEM) technique was employed to monitor the real-time evolution of the domain morphology and crystal structure during various electrical processes: (1) the initial poling process, (2) the electric field reversal process, and (3) the electrical cycling process. Two types of perovskite-structured ceramics, normal ferroelectrics and relaxor ferroelectrics, were used for this investigation. In addition to providing the microscopic insight for some wellaccepted phase transformation rules, discoveries of some new or even unexpected physical phenomena were also demonstrated.

  20. Modeling of Structure Effect for Ferroelectric Capacitor Based on Poly(vinylidene fluoride-trifluoroethylene Ultrathin Films

    Directory of Open Access Journals (Sweden)

    Long Li

    2017-12-01

    Full Text Available The characteristics of ferroelectric capacitors with poly(vinylidene fluoride-trifluoroethlene (P(VDF-TrFE films have been studied at different structures of cell electrodes. It is suggested that the effect of electrode structures could induce changes of performance. Remarkably, cells with line electrodes display a better polarization and fatigue resistance than those with flat electrodes. For P(VDF-TrFE ultrathin films with different electrode structures, the models of charge compensation mechanism for depolarization field and domain fatigue decomposition are used to explain the effect of electrode structure. Furthermore, the driving voltage based on normal speed-functionality is designed, and the testing results show that the line electrode structure could induce a robust switching, which is determined by the free charges concentration in active layer. These findings provide an effective route to design the optimum structure for a ferroelectric capacitor based on P(VDF-TrFE copolymer ultrathin film.

  1. Fractal model of polarization switching kinetics in ferroelectrics under nonequilibrium conditions of electron irradiation

    Science.gov (United States)

    Maslovskaya, A. G.; Barabash, T. K.

    2018-03-01

    The paper presents the results of the fractal and multifractal analysis of polarization switching current in ferroelectrics under electron irradiation, which allows statistical memory effects to be estimated at dynamics of domain structure. The mathematical model of formation of electron beam-induced polarization current in ferroelectrics was suggested taking into account the fractal nature of domain structure dynamics. In order to realize the model the computational scheme was constructed using the numerical solution approximation of fractional differential equation. Evidences of electron beam-induced polarization switching process in ferroelectrics were specified at a variation of control model parameters.

  2. Influence of UV light and heat on the ferroelectric properties of lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Steigerwald, Hendrik

    2011-08-15

    One of the most important non-linear-optical materials is lithium niobate, due to its ease of fabrication, robustness, transparency in the visible-to-infrared and excellent nonlinear properties. In this thesis the issue of tailoring ferroelectric domain structures in lithium niobate crystals is approached from two sides: interaction of defect structures inside the crystal with growing ferroelectric domains is investigated and also actual domain patterning on all crystal faces by different methods is performed. Special emphasis is given to the Mg-doped material. The fundamental understanding and the methods of domain patterning developed in this thesis are then used to obtain tailored domain structures that meet the requirements of their intended application in non-linear optics. (orig.)

  3. Ferroelectric tunnel junctions with multi-quantum well structures

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhijun; Zhang, Tianjin, E-mail: zhangtj@hubu.edu.cn [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); Liang, Kun; Qi, Yajun; Wang, Duofa; Wang, Jinzhao; Jiang, Juan [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China)

    2014-06-02

    Ferroelectric tunnel junctions (FTJs) with multi-quantum well structures are proposed and the tunneling electroresistance (TER) effect is investigated theoretically. Compared with conventional FTJs with monolayer ferroelectric barriers, FTJs with single-well structures provide TER ratio improvements of one order of magnitude, while FTJs with optimized multi-well structures can enhance this improvement by another order of magnitude. It is believed that the increased resonant tunneling strength combined with appropriate asymmetry in these FTJs contributes to the improvement. These studies may help to fabricate FTJs with large TER ratio experimentally and put them into practice.

  4. Ferroelectrics principles, structure and applications

    CERN Document Server

    Merchant, Serena

    2014-01-01

    Ferroelectric physics is a theory on ferroelectric phase transition for explaining various related phenomena, which is different from dielectric physics. Ferroelectric materials are important functional materials for various applications such as NVRAMs, high energy density capacitors, actuators, MEMs, sonar sensors, microphones and scanning electron microscopes (SEM). This book investigates the dielectric, ferroelectric and energy storage properties of barium zirconate-titanate/barium calcium-titanate (BZT-BCT) based ceramic for high energy density capacitors. It also compares the energy storage capabilities of ceramic powders with polymer-ceramic nanocomposites; and discusses dielectric properties of ferroelectricity in composition distributions.

  5. Stress effects in ferroelectric perovskite thin-films

    Science.gov (United States)

    Zednik, Ricardo Johann

    The exciting class of ferroelectric materials presents the engineer with an array of unique properties that offer promise in a variety of applications; these applications include infra-red detectors ("night-vision imaging", pyroelectricity), micro-electro-mechanical-systems (MEMS, piezoelectricity), and non-volatile memory (NVM, ferroelectricity). Realizing these modern devices often requires perovskite-based ferroelectric films thinner than 100 nm. Two such technologically important material systems are (Ba,Sr)TiO3 (BST), for tunable dielectric devices employed in wireless communications, and Pb(Zr,Ti)O3 (PZT), for ferroelectric non-volatile memory (FeRAM). In general, the material behavior is strongly influenced by the mechanical boundary conditions imposed by the substrate and surrounding layers and may vary considerably from the known bulk behavior. A better mechanistic understanding of these effects is essential for harnessing the full potential of ferroelectric thin-films and further optimizing existing devices. Both materials share a common crystal structure and similar properties, but face unique challenges due to the design parameters of these different applications. Tunable devices often require very low dielectric loss as well as large dielectric tunability. Present results show that the dielectric response of BST thin-films can either resemble a dipole-relaxor or follow the accepted empirical Universal Relaxation Law (Curie-von Schweidler), depending on temperature. These behaviors in a single ferroelectric thin-film system are often thought to be mutually exclusive. In state-of-the-art high density FeRAM, the ferroelectric polarization is at least as important as the dielectric response. It was found that these properties are significantly affected by moderate biaxial tensile and compressive stresses which reversibly alter the ferroelastic domain populations of PZT at room temperature. The 90-degree domain wall motion observed by high resolution

  6. Room temperature ferroelectricity in continuous croconic acid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei; Ahmadi, Zahra; Costa, Paulo S. [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Zhang, Xiaozhe [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Department of Physics, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Xiao; Yu, Le; Cheng, Xuemei [Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010 (United States); DiChiara, Anthony D. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Gruverman, Alexei, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu; Enders, Axel, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu; Xu, Xiaoshan, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States)

    2016-09-05

    Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages ≥20 nm, quasi 2D and polycrystalline films, with an average grain size of 50–100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.

  7. Ferroelectric nanoparticle-embedded sponge structure triboelectric generators

    Science.gov (United States)

    Park, Daehoon; Shin, Sung-Ho; Yoon, Ick-Jae; Nah, Junghyo

    2018-05-01

    We report high-performance triboelectric nanogenerators (TENGs) employing ferroelectric nanoparticles (NPs) embedded in a sponge structure. The ferroelectric BaTiO3 NPs inside the sponge structure play an important role in increasing surface charge density by polarized spontaneous dipoles, enabling the packaging of TENGs even with a minimal separation gap. Since the friction surfaces are encapsulated in the packaged device structure, it suffers negligible performance degradation even at a high relative humidity of 80%. The TENGs also demonstrated excellent mechanical durability due to the elasticity and flexibility of the sponge structure. Consequently, the TENGs can reliably harvest energy even under harsh conditions. The approach introduced here is a simple, effective, and reliable way to fabricate compact and packaged TENGs for potential applications in wearable energy-harvesting devices.

  8. Morphology-dependent photo-induced polarization recovery in ferroelectric thin films

    Science.gov (United States)

    Wang, J. Y.; Liu, G.; Sando, D.; Nagarajan, V.; Seidel, J.

    2017-08-01

    We investigate photo-induced ferroelectric domain switching in a series of Pb(Zr0.2Ti0.8)O3/La0.7Sr0.3MnO3 (PZT/LSMO) bilayer thin films with varying surface morphologies by piezoresponse force microscopy under light illumination. We demonstrate that reverse poled ferroelectric regions can be almost fully recovered under laser irradiation of the PZT layer and that the recovery process is dependent on the surface morphology on the nanometer scale. The recovery process is well described by the Kolmogorov-Avrami-Ishibashi model, and the evolution speed is controlled by light intensity, sample thickness, and initial write voltage. Our findings shed light on optical control of the domain structure in ferroelectric thin films with different surface morphologies.

  9. Ferroelectricity in high-density H{sub 2}O ice

    Energy Technology Data Exchange (ETDEWEB)

    Caracas, Razvan, E-mail: razvan.caracas@ens-lyon.fr, E-mail: rhemley@ciw.edu [CNRS, Laboratoire de Géologie de Lyon UMR5276, Ecole Normale Supérieure de Lyon, 46, alleé d’Italie, Université Claude-Bernard Lyon 1, Université de Lyon, 69364 Lyon cedex 07 (France); Hemley, Russell J., E-mail: razvan.caracas@ens-lyon.fr, E-mail: rhemley@ciw.edu [Geophysical Laboratory, 5251 Broad Branch Road NW, Carnegie Institution of Washington, Washington, DC 20015 (United States)

    2015-04-07

    The origin of longstanding anomalies in experimental studies of the dense solid phases of H{sub 2}O ices VII, VIII, and X is examined using a combination of first-principles theoretical methods. We find that a ferroelectric variant of ice VIII is energetically competitive with the established antiferroelectric form under pressure. The existence of domains of the ferroelectric form within anti-ferroelectric ice can explain previously observed splittings in x-ray diffraction data. The ferroelectric form is stabilized by density and is accompanied by the onset of spontaneous polarization. The presence of local electric fields triggers the preferential parallel orientation of the water molecules in the structure, which could be stabilized in bulk using new high-pressure techniques.

  10. p-n Junction Dynamics Induced in a Graphene Channel by Ferroelectric-Domain Motion in the Substrate

    International Nuclear Information System (INIS)

    Kurchak, Anatolii I.; Eliseev, Eugene A.; Kalinin, Sergei V.; Strikha, Maksym V.; Morozovska, Anna N.

    2017-01-01

    The p - n junction dynamics induced in a graphene channel by stripe-domain nucleation, motion, and reversal in a ferroelectric substrate is explored using a self-consistent approach based on Landau-Ginzburg-Devonshire phenomenology combined with classical electrostatics. Relatively low gate voltages are required to induce the hysteresis of ferroelectric polarization and graphene charge in response to the periodic gate voltage. Pronounced nonlinear hysteresis of graphene conductance with a wide memory window corresponds to high amplitudes of gate voltage. Also, we reveal the extrinsic size effect in the dependence of the graphene-channel conductivity on its length. We predict that the top-gate–dielectric-layer–graphene-channel–ferroelectric-substrate nanostructure considered here can be a promising candidate for the fabrication of the next generation of modulators and rectifiers based on the graphene p - n junctions.

  11. Fatigue effect in ferroelectric crystals: Growth of the frozen domains

    Science.gov (United States)

    Shur, V. Ya.; Akhmatkhanov, A. R.; Baturin, I. S.

    2012-06-01

    The model of the fatigue effect during cyclic switching caused by growth of the frozen domain area with charged domain walls has been proposed. It was claimed on the basis of the previous experimental results that for switching in increasing field the frozen domain area started to grow at the given sub-threshold field value and stopped at the threshold field. The influence of the shape and frequency of the field pulses used for cyclic switching has been considered. The uniaxial ferroelectric stoichiometric lithium tantalate single crystals produced by vapor transport equilibration with record low value of coercive field have been chosen as a model material for experimental verification of the model. The formation of the charged domain walls as a result of cyclic switching has been revealed by analysis of the domain images obtained by optical and Raman confocal microscopy. It has been shown that the fatigue degree is equal to the fraction of the frozen domain area. The experimental dependence of the switched charge on the cycle number has been successfully fitted by modified Kolmogorov-Avrami formula. The experimentally observed frequency independence of fatigue profile for rectangular pulses and frequency dependence for triangular pulses has been explained by proposed model.

  12. Magnetic enhancement of ferroelectric polarization in a self-grown ferroelectric-ferromagnetic composite

    Science.gov (United States)

    Kumar, Amit; Narayan, Bastola; Pachat, Rohit; Ranjan, Rajeev

    2018-02-01

    Ferroelectric-ferromagnetic multiferroic composites are of great interest both from the scientific and technological standpoints. The extent of coupling between polarization and magnetization in such two-phase systems depends on how efficiently the magnetostrictive and electrostrictive/piezoelectric strain gets transferred from one phase to the other. This challenge is most profound in the easy to make 0-3 ferroelectric-ferromagnetic particulate composites. Here we report a self-grown ferroelectric-ferromagnetic 0-3 particulate composite through controlled spontaneous precipitation of ferrimagnetic barium hexaferrite phase (BaF e12O19 ) amid ferroelectric grains in the multiferroic alloy system BiFe O3-BaTi O3 . We demonstrate that a composite specimen exhibiting merely ˜1% hexaferrite phase exhibits ˜34% increase in saturation polarization in a dc magnetic field of ˜10 kOe. Using modified Rayleigh analysis of the polarization field loop in the subcoercive field region we argue that the substantial enhancement in the ferroelectric switching is associated with the reduction in the barrier heights of the pinning centers of the ferroelectric-ferroelastic domain walls in the stress field generated by magnetostriction in the hexaferrite grains when the magnetic field is turned on. Our study proves that controlled precipitation of the magnetic phase is a good strategy for synthesis of 0-3 ferroelectric-ferromagnetic particulate multiferroic composite as it not only helps in ensuring a good electrical insulating character of the composite, enabling it to sustain high enough electric field for ferroelectric switching, but also the factors associated with the spontaneity of the precipitation process ensure efficient transfer of the magnetostrictive strain/stress to the surrounding ferroelectric matrix making domain wall motion easy.

  13. Geometric shape control of thin film ferroelectrics and resulting structures

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    2000-01-01

    A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

  14. Ferroelectricity driven magnetism at domain walls in LaAlO3/PbTiO3 superlattices

    Science.gov (United States)

    Zhou, P. X.; Dong, S.; Liu, H. M.; Ma, C. Y.; Yan, Z. B.; Zhong, C. G.; Liu, J. -M.

    2015-01-01

    Charge dipole moment and spin moment rarely coexist in single-phase bulk materials except in some multiferroics. Despite the progress in the past decade, for most multiferroics their magnetoelectric performance remains poor due to the intrinsic exclusion between charge dipole and spin moment. As an alternative approach, the oxide heterostructures may evade the intrinsic limits in bulk materials and provide more attractive potential to realize the magnetoelectric functions. Here we perform a first-principles study on LaAlO3/PbTiO3 superlattices. Although neither of the components is magnetic, magnetic moments emerge at the ferroelectric domain walls of PbTiO3 in these superlattices. Such a twist between ferroelectric domain and local magnetic moment, not only manifests an interesting type of multiferroicity, but also is possible useful to pursuit the electrical-control of magnetism in nanoscale heterostructures. PMID:26269322

  15. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R.; Chen, Long-Qing (Penn); (Xian Jiaotong); (CIW); (Simon); (TRS Techn); (Wollongong)

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

  16. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals.

    Science.gov (United States)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R; Chen, Long-Qing

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50-80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

  17. Reversible optical control of macroscopic polarization in ferroelectrics

    Science.gov (United States)

    Rubio-Marcos, Fernando; Ochoa, Diego A.; Del Campo, Adolfo; García, Miguel A.; Castro, Germán R.; Fernández, José F.; García, José E.

    2018-01-01

    The optical control of ferroic properties is a subject of fascination for the scientific community, because it involves the establishment of new paradigms for technology1-9. Domains and domain walls are known to have a great impact on the properties of ferroic materials1-24. Progress is currently being made in understanding the behaviour of the ferroelectric domain wall, especially regarding its dynamic control10-12,17,19. New research is being conducted to find effective methodologies capable of modulating ferroelectric domain motion for future electronics. However, the practical use of ferroelectric domain wall motion should be both stable and reversible (rewritable) and, in particular, be able to produce a macroscopic response that can be monitored easily12,17. Here, we show that it is possible to achieve a reversible optical change of ferroelectric domains configuration. This effect leads to the tuning of macroscopic polarization and its related properties by means of polarized light, a non-contact external control. Although this is only the first step, it nevertheless constitutes the most crucial one in the long and complex process of developing the next generation of photo-stimulated ferroelectric devices.

  18. Free-carrier-compensated charged domain walls produced with super-bandgap illumination in insulating ferroelectrics

    Czech Academy of Sciences Publication Activity Database

    Bednyakov, Petr; Sluka, T.; Tagantsev, A.; Damjanovic, D.; Setter, N.

    2016-01-01

    Roč. 28, č. 43 (2016), s. 9498-9503 ISSN 0935-9648 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : super-bandgap illumination * charged domain walls * ferroelectric BaTiO 3 * free-carrier generation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 19.791, year: 2016

  19. Raman analysis of ferroelectric switching in niobium-doped lead zirconate titanate thin films

    International Nuclear Information System (INIS)

    Ferrari, P.; Ramos-Moore, E.; Guitar, M.A.; Cabrera, A.L.

    2014-01-01

    Characteristic Raman vibration modes of niobium-doped lead zirconate titanate (PNZT) are studied as a function of ferroelectric domain switching. The microstructure of PNZT is characterized by scanning electron microscopy and X-ray diffraction. Ferroelectric switching is achieved by applying voltages between the top (Au) and bottom (Pt) electrodes, while acquiring the Raman spectra in situ. Vibrational active modes associated with paraelectric and ferroelectric phases are identified after measuring above and below the ferroelectric Curie temperature, respectively. Changes in the relative intensities of the Raman peaks are observed as a function of the switching voltage. The peak area associated with the ferroelectric modes is analyzed as a function of the applied voltage within one ferroelectric polarization loop, showing local maxima around the coercive voltage. This behavior can be understood in terms of the correlation between vibrational and structural properties, since ferroelectric switching modifies the interaction between the body-centered atom (Zr, Ti or Nb) and the Pb–O lattice. - Highlights: • Electric fields induce structural distortions on ferroelectric perovskites. • Ferroelectric capacitor was fabricated to perform hysteresis loops. • Raman analysis was performed in situ during ferroelectric switching. • Raman modes show hysteresis and inflections around the coercive voltages. • Data can be understood in terms of vibrational–structural correlations

  20. Flexoelectricity: strain gradient effects in ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Ma Wenhui [Department of Physics, Shantou Unversity, Shantou, Guangdong 515063 (China)

    2007-12-15

    Mechanical strain gradient induced polarization effect or flexoelectricity in perovskite-type ferroelectric and relaxor ferroelectric ceramics was investigated. The flexoelectric coefficients measured at room temperature ranged from about 1 {mu} C m{sup -1} for lead zirconate titanate to 100 {mu} C m{sup -1} for barium strontium titanate. Flexoelectric effects were discovered to be sensitive to chemical makeup, phase symmetry, and domain structures. Based on phenomenological discussion and experimental data on flexoelectricity, the present study proposed that mechanical strain gradient field could influence polarization responses in a way analogous to electric field. Flexoelectric coefficients were found to be nonlinearly enhanced by dielectric permittivity and strain gradient. Interfacial mismatch in epitaxial thin films can give rise to high strain gradients, enabling flexoelectric effects to make a significant impact in properly engineered ferroelectric heterostructure systems.

  1. CuInP₂S₆ Room Temperature Layered Ferroelectric.

    Science.gov (United States)

    Belianinov, A; He, Q; Dziaugys, A; Maksymovych, P; Eliseev, E; Borisevich, A; Morozovska, A; Banys, J; Vysochanskii, Y; Kalinin, S V

    2015-06-10

    We explore ferroelectric properties of cleaved 2-D flakes of copper indium thiophosphate, CuInP2S6 (CITP), and probe size effects along with limits of ferroelectric phase stability, by ambient and ultra high vacuum scanning probe microscopy. CITP belongs to the only material family known to display ferroelectric polarization in a van der Waals, layered crystal at room temperature and above. Our measurements directly reveal stable, ferroelectric polarization as evidenced by domain structures, switchable polarization, and hysteresis loops. We found that at room temperature the domain structure of flakes thicker than 100 nm is similar to the cleaved bulk surfaces, whereas below 50 nm polarization disappears. We ascribe this behavior to a well-known instability of polarization due to depolarization field. Furthermore, polarization switching at high bias is also associated with ionic mobility, as evidenced both by macroscopic measurements and by formation of surface damage under the tip at a bias of 4 V-likely due to copper reduction. Mobile Cu ions may therefore also contribute to internal screening mechanisms. The existence of stable polarization in a van-der-Waals crystal naturally points toward new strategies for ultimate scaling of polar materials, quasi-2D, and single-layer materials with advanced and nonlinear dielectric properties that are presently not found in any members of the growing "graphene family".

  2. Direct evidence of strong local ferroelectric ordering in a thermoelectric semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Leena; Sekhon, Jagmeet S.; Arora, Ashima; Sheet, Goutam, E-mail: goutam@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research Mohali (IISER M), Sector 81, S. A. S. Nagar, Manauli PO-140306 (India); Guin, Satya N.; Negi, Devendra S.; Datta, Ranjan; Biswas, Kanishka, E-mail: kanishka@jncasr.ac.in [New Chemistry Unit and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064 (India)

    2014-09-15

    It is thought that the proposed new family of multi-functional materials, namely, the ferroelectric thermoelectrics may exhibit enhanced functionalities due to the coupling of the thermoelectric parameters with ferroelectric polarization in solids. Therefore, the ferroelectric thermoelectrics are expected to be of immense technological and fundamental significance. As a first step towards this direction, it is most important to identify the existing high performance thermoelectric materials exhibiting ferroelectricity. Herein, through the direct measurement of local polarization switching, we show that the recently discovered thermoelectric semiconductor AgSbSe{sub 2} has local ferroelectric ordering. Using piezo-response force microscopy, we demonstrate the existence of nanometer scale ferroelectric domains that can be switched by external electric field. These observations are intriguing as AgSbSe{sub 2} crystalizes in cubic rock-salt structure with centro-symmetric space group (Fm–3m), and therefore, no ferroelectricity is expected. However, from high resolution transmission electron microscopy measurement, we found the evidence of local superstructure formation which, we believe, leads to local distortion of the centro-symmetric arrangement in AgSbSe{sub 2} and gives rise to the observed ferroelectricity. Stereochemically active 5S{sup 2} lone-pair of Sb may also give rise to local structural distortion thereby creating ferroelectricity in AgSbSe{sub 2}.

  3. III-nitride integration on ferroelectric materials of lithium niobate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Namkoong, Gon; Lee, Kyoung-Keun; Madison, Shannon M.; Henderson, Walter; Ralph, Stephen E.; Doolittle, W. Alan

    2005-01-01

    Integration of III-nitride electrical devices on the ferroelectric material lithium niobate (LiNbO 3 ) has been demonstrated. As a ferroelectric material, lithium niobate has a polarization which may provide excellent control of the polarity of III-nitrides. However, while high temperature, 1000 deg. C, thermal treatments produce atomically smooth surfaces, improving adhesion of GaN epitaxial layers on lithium niobate, repolarization of the substrate in local domains occurs. These effects result in multi domains of mixed polarization in LiNbO 3 , producing inversion domains in subsequent GaN epilayers. However, it is found that AlN buffer layers suppress inversion domains of III-nitrides. Therefore, two-dimensional electron gases in AlGaN/GaN heterojunction structures are obtained. Herein, the demonstration of the monolithic integration of high power devices with ferroelectric materials presents possibilities to control LiNbO 3 modulators on compact optoelectronic/electronic chips

  4. Self-ordering of nontrivial topological polarization structures in nanoporous ferroelectrics.

    Science.gov (United States)

    Van Lich, Le; Shimada, Takahiro; Wang, Jie; Kitamura, Takayuki

    2017-10-19

    Topological field structures, such as skyrmions, merons, and vortices, are important features found in ordered systems with spontaneously broken symmetry. A plethora of topological field structures have been discovered in magnetic and ordered soft matter systems due to the presence of inherent chiral interactions, and this has provided a fruitful platform for unearthing additional groundbreaking functionalities. However, despite being one of the most important classes of ordered systems, ferroelectrics scarcely form topological polarization structures due to their lack of intrinsic chiral interactions. In the present study, we demonstrate using multiphysics phase-field modelling based on the Ginzburg-Landau theory that a rich assortment of nontrivial topological polarization structures, including hedgehogs, antivortices, multidirectional vortices, and vortex arrays, can be spontaneously formed in three-dimensional nanoporous ferroelectric structures. We realize that confining ferroelectrics to trivial geometries that are incompatible with the orientation symmetry may impose extrinsic frustration to the polarization field through the enhancement of depolarization fields at free porous surfaces. This frustration gives rise to symmetry breaking, resulting in the formation of nontrivial topological polarization structures as the ground state. We further topologically characterize the local accommodation of polarization structures by viewing them in a new perspective, in which polarization ordering can be mapped on the order parameter space, according to the topological theory of defects and homotopy theory. The results indicate that the nanoporous structures contain composite topological objects composed of two or more elementary topological polarization structures. The present study therefore offers a playground for exploring novel physical phenomena in ferroelectric systems as well as a novel nanoelectronics characterization platform for future topology

  5. Ferroelectric properties of Pb(Zr,Ti)O3 films under ion-beam induced strain

    Science.gov (United States)

    Lee, Jung-Kun; Nastasi, Michael

    2012-11-01

    The influence of an ion-beam induced biaxial stress on the ferroelectric and dielectric properties of Pb(Zr,Ti)O3 (PZT) films is investigated using the ion beam process as a novel approach to control external stress. Tensile stress is observed to decrease the polarization, permittivity, and ferroelectric fatigue resistance of the PZT films whose structure is monoclinic. However, a compressive stress increases all of them in monoclinic PZT films. The dependence of the permittivity on stress is found not to follow the phenomenological theory relating external forces to intrinsic properties of ferroelectric materials. Changes in the ferroelectric and dielectric properties indicate that the application of a biaxial stress modulates both extrinsic and intrinsic properties of PZT films. Different degrees of dielectric non-linearity suggests the density and mobility of non-180o domain walls, and the domain switching can be controlled by an applied biaxial stress and thereby influence the ferroelectric and dielectric properties.

  6. Dependence of the ferroelectric domain shape on the electric field of the microscope tip

    International Nuclear Information System (INIS)

    Starkov, Alexander S.; Starkov, Ivan A.

    2015-01-01

    A theory of an equilibrium shape of the domain formed in an electric field of a scanning force microscope (SFM) tip is proposed. We do not assume a priori that the domain has a fixed form. The shape of the domain is defined by the minimum of the free energy of the ferroelectric. This energy includes the energy of the depolarization field, the energy of the domain wall, and the energy of the interaction between the domain and the electric field of the SFM tip. The contributions of the apex and conical part of the tip are examined. Moreover, in the proposed approach, any narrow tip can be considered. The surface energy is determined on the basis of the Ginzburg-Landau-Devonshire theory and takes into account the curvature of the domain wall. The variation of the free energy with respect to the domain shape leads to an integro-differential equation, which must be solved numerically. Model results are illustrated for lithium tantalate ceramics

  7. Anelastic deformation of Pb(Zr,Ti)O3 thin films by non-180 deg. ferroelectric domain wall movements during nanoindentation

    International Nuclear Information System (INIS)

    Alguero, M.; Bushby, A.J.; Reece, M.J.; Seifert, A.

    2002-01-01

    Lead zirconate titanate Pb(Zr,Ti)O 3 ferroelectric thin films show significant anelastic deformation when indented with spherical tipped indenters. Experiments on films with different Zr/Ti ratio and a mixed , preferred crystallographic orientation have shown that there is a good agreement between the anelastic deformation and the maximum strain achievable by non-180 deg. domain wall movement. An expected increase of the indentation stiffness of the films also accompanies the anelastic deformation because of the single crystal elastic anisotropy. All these observations seem to indicate that non-180 deg. ferroelectric domain wall movements occur under indentation stresses and cause anelasticity. Stresses for maximum anelastic deformation are compared with those for recently reported stress-induced depolarization

  8. Simulation of fatigue damage in ferroelectric polycrystals under mechanical/electrical loading

    Science.gov (United States)

    Kozinov, S.; Kuna, M.

    2018-07-01

    The reliability of smart-structures made of ferroelectric ceramics is essentially reduced by the formation of cracks under the action of external electrical and/or mechanical loading. In the current research a numerical model for low-cycle fatigue in ferroelectric mesostructures is proposed. In the finite element simulations a combination of two user element routines is utilized. The first one is used to model a micromechanical ferroelectric domain switching behavior inside the grains. The second one is used to simulate fatigue damage of grain boundaries by a cohesive zone model (EMCCZM) based on an electromechanical cyclic traction-separation law (TSL). For numerical simulations a scanning electron microscope image of the ceramic's grain structure was digitalized and meshed. The response of this mesostructure to cyclic electrical or mechanical loading is systematically analyzed. As a result of the simulations, the distribution of electric potential, field, displacement and polarization as well as mechanical stresses and deformations inside the grains are obtained. At the grain boundaries, the formation and evolution of damage are analyzed until final failure and induced degradation of electric permittivity. It is found that the proposed model correctly mimics polycrystalline behavior during poling processes and progressive damage under cyclic electromechanical loading. To the authors' knowledge, it is the first model and numerical analysis of ferroelectric polycrystals taking into account both domain reorientation and cohesive modeling of intergranular fracture. It can help to understand failure mechanisms taking place in ferroelectrics during fatigue processes.

  9. Control of analog ferroelectric states by small dc-bias in conjunction with fluctuating waveforms

    International Nuclear Information System (INIS)

    Ricinschi, Dan; Okuyama, Masanori

    2009-01-01

    In this paper we demonstrate several possibilities to create and control partially switched analog states of ferroelectric materials, from measurements on PZT capacitors. By employing various types of fluctuating waveforms and controlling the domain dynamics with dc bias of small intensities, we have shown that it is possible to generate sequences of analog ferroelectric states that may appear identical from macroscopic measurements, yet they are unique at the local level. The experimental results have been analyzed theoretically by a simple microscopic model of switching. According to the model simulations, each analog state can be associated with a domain structure that captures subtle variations of the previously applied electric field as well as structural information about the inhomogeneities at the local level. The generation and control of such partially switched analog states may be important for new applications of ferroelectric materials to multi-value memories or in the field of artificial intelligence.

  10. Ferroelectric BaTiO3 thin films on Ti substrate fabricated using pulsed-laser deposition.

    Science.gov (United States)

    He, J; Jiang, J C; Liu, J; Collins, G; Chen, C L; Lin, B; Giurgiutiu, V; Guo, R Y; Bhalla, A; Meletis, E I

    2010-09-01

    We report on the fabrication of ferroelectric BaTiO3 thin films on titanium substrates using pulsed laser deposition and their microstructures and properties. Electron microscopy studies reveal that BaTiO3 films are composed of crystalline assemblage of nanopillars with average cross sections from 100 nm to 200 nm. The BaTiO3 films have good interface structures and strong adhesion with respect to Ti substrates by forming a rutile TiO2 intermediate layer with a gradient microstructure. The room temperature ferroelectric polarization measurements show that the as-deposited BTO films possess nearly the same spontaneous polarization as the bulk BTO ceramics indicating formation of ferroelectric domains in the films. Successful fabrication of such ferroelectric films on Ti has significant importance for the development of new applications such as structural health monitoring spanning from aerospace to civil infrastructure. The work can be extended to integrate other ferroelectric oxide films with various promising properties to monitor the structural health of materials.

  11. Ferroelectric domain pattern in barium titanate single crystals studied by means of digital holographic microscopy

    Czech Academy of Sciences Publication Activity Database

    Mokrý, Pavel; Psota, Pavel; Steiger, Kateřina; Václavík, Jan; Doleček, Roman; Vápenka, David; Lédl, Vít

    2016-01-01

    Roč. 49, č. 25 (2016), č. článku 255307. ISSN 0022-3727 R&D Projects: GA ČR(CZ) GA14-32228S Institutional support: RVO:61389021 Keywords : ferroelectric domain patterns * electro-optical materials * digital holographic microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/25/255307

  12. Interrelationship between flexoelectricity and strain gradient elasticity in ferroelectric nanofilms: A phase field study

    Science.gov (United States)

    Jiang, Limei; Xu, Xiaofei; Zhou, Yichun

    2016-12-01

    With the development of the integrated circuit technology and decreasing of the device size, ferroelectric films used in nano ferroelectric devices become thinner and thinner. Along with the downscaling of the ferroelectric film, there is an increasing influence of two strain gradient related terms. One is the strain gradient elasticity and the other one is flexoelectricity. To investigate the interrelationship between flexoelectricity and strain gradient elasticity and their combined effect on the domain structure in ferroelectric nanofilms, a phase field model of flexoelectricity and strain gradient elasticity on the ferroelectric domain evolution is developed based on Mindlin's theory of strain-gradient elasticity. Weak form is derived and implemented in finite element formulations for numerically solving the model equations. The simulation results show that upper bounds for flexoelectric coefficients can be enhanced by increasing strain gradient elasticity coefficients. While a large flexoelectricity that exceeds the upper bound can induce a transition from a ferroelectric state to a modulated/incommensurate state, a large enough strain gradient elasticity may lead to a conversion from an incommensurate state to a ferroelectric state. Strain gradient elasticity and the flexoelectricity have entirely opposite effects on polarization. The observed interrelationship between the strain gradient elasticity and flexoelectricity is rationalized by an analytical solution of the proposed theoretical model. The model proposed in this paper could help us understand the mechanism of phenomena observed in ferroelectric nanofilms under complex electromechanical loads and provide some guides on the practical application of ferroelectric nanofilms.

  13. Transmission electron and optical microscopy of the domain structure of Ni3B7O13Br ferroic boracite

    International Nuclear Information System (INIS)

    Castellanos-Guzman, A.G.; Trujillo-Torrez, M.; Czank, M.

    2005-01-01

    The study investigated the domain structure of nickel bromine boracite single crystals, by means of polarised-light in conjunction with transmission electron microscopy. Single crystals of Ni 3 B 7 O 13 Br were grown by chemical transport reactions in closed quartz ampoules, in the temperature range of 1130 K and were examined by polarising optical microscopy (PLM), and transmission electron microscopy (TEM). PLM was also used in order to study the behaviour of birefringence as a function of temperature. For TEM the single crystals were crushed and mounted on holey carbon films. Comparative electron microscope images were useful for revealing the domain structure of this fully ferroelectric/fully ferroelastic material previously observed between the crossed polars of an optical microscope. X-ray diffraction analysis of the crystal under study was performed at room temperature

  14. Ferroelectric control of magnetization in BiFeO3/CoFe heterostructures.

    Science.gov (United States)

    Gajek, Martin; Martin, Lane; Heron, John; Seidel, Jan; Ramesh, Ramamoorthy

    2009-03-01

    The cross coupling between ferroic order parameters in multiferroics opens an alternative for the control of magnetism in magnetoelectric devices by purely electrical means. We first report on the exchange coupling between BiFeO3, an antiferromagnetic ferroelectric , and CoFe. We then show that the domain structure of the ferromagnet can be changed by poling the ferroelectric layer. Finally, we will discuss the implementation of our findings into possible device schemes.

  15. Functional Properties at Domain Walls in BiFeO3: Electrical, Magnetic, and Structural investigations

    Science.gov (United States)

    He, Qing; Yang, C.-H.; Yu, P.; Gajek, M.; Seidel, J.; Ramesh, R.; Wang, F.; Chu, Y.-H.; Martin, L. W.; Spaldin, N.; Rother, A.

    2009-03-01

    BiFeO3 (BFO) is a widely studied robust ferroelectric, antiferromagnetic multiferroic. Conducting-atomic force microscopy studies reveal the presence of enhanced conductivity at certain types of domain walls in BFO. We have completed detailed TEM studies of the physical structure at these domain walls as well as in-depth DFT calculations of the evolution of electronic structure at these domain walls. These studies reveal two major contributions to the observed conduction: the formation of an electrostatic potential at the domain walls as well as a structurally-driven change in the electronic structure (i.e., a lower band gap locally) at the domain walls. We will discuss the use of optical characterization techniques as a way of probing this change in electronic structure at domain walls as well as detailed IV characterization both in atmospheric and UHV environments. Finally, the evolution of magnetism at these domain walls has been studied through the use of photoemission measurements. Initial findings point to a significant change in the magnetic order at these domain walls in BFO.

  16. Rewritable ferroelectric vortex pairs in BiFeO3

    Science.gov (United States)

    Li, Yang; Jin, Yaming; Lu, Xiaomei; Yang, Jan-Chi; Chu, Ying-Hao; Huang, Fengzhen; Zhu, Jinsong; Cheong, Sang-Wook

    2017-08-01

    Ferroelectric vortex in multiferroic materials has been considered as a promising alternative to current memory cells for the merit of high storage density. However, the formation of regular natural ferroelectric vortex is difficult, restricting the achievement of vortex memory device. Here, we demonstrated the creation of ferroelectric vortex-antivortex pairs in BiFeO3 thin films by using local electric field. The evolution of the polar vortex structure is studied by piezoresponse force microscopy at nanoscale. The results reveal that the patterns and stability of vortex structures are sensitive to the poling position. Consecutive writing and erasing processes cause no influence on the original domain configuration. The Z4 proper coloring vortex-antivortex network is then analyzed by graph theory, which verifies the rationality of artificial vortex-antivortex pairs. This study paves a foundation for artificial regulation of vortex, which provides a possible pathway for the design and realization of non-volatile vortex memory devices and logical devices.

  17. Control of magnetic relaxation by electric-field-induced ferroelectric phase transition and inhomogeneous domain switching

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Tianxiang; Emori, Satoru; Wang, Xinjun; Hu, Zhongqiang; Xie, Li; Gao, Yuan; Lin, Hwaider; Sun, Nian, E-mail: n.sun@neu.edu [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States); Peng, Bin; Liu, Ming, E-mail: mingliu@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, Xi' an Jiaotong University, Xi' an 710049 (China); Jiao, Jie; Luo, Haosu [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China); Budil, David [Department of Chemistry, Northeastern University, Boston, Massachusetts 02115 (United States); Jones, John G.; Howe, Brandon M.; Brown, Gail J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States)

    2016-01-04

    Electric-field modulation of magnetism in strain-mediated multiferroic heterostructures is considered a promising scheme for enabling memory and magnetic microwave devices with ultralow power consumption. However, it is not well understood how electric-field-induced strain influences magnetic relaxation, an important physical process for device applications. Here, we investigate resonant magnetization dynamics in ferromagnet/ferroelectric multiferroic heterostructures, FeGaB/PMN-PT and NiFe/PMN-PT, in two distinct strain states provided by electric-field-induced ferroelectric phase transition. The strain not only modifies magnetic anisotropy but also magnetic relaxation. In FeGaB/PMN-PT, we observe a nearly two-fold change in intrinsic Gilbert damping by electric field, which is attributed to strain-induced tuning of spin-orbit coupling. By contrast, a small but measurable change in extrinsic linewidth broadening is attributed to inhomogeneous ferroelastic domain switching during the phase transition of the PMN-PT substrate.

  18. Giant electrocaloric effect in a cracked ferroelectrics

    Science.gov (United States)

    Huang, Cheng; Yang, Hai-Bing; Gao, Cun-Fa

    2018-04-01

    The electrocaloric effect (ECE) is the temperature change in a material induced by electrical field variation under adiabatic condition. Considering an external electric load applied on a cracked ferroelectric solid, a non-uniform electric field would be induced at the crack tip, and thus, incompatible strain field and local stress concentration would be generated around it. Furthermore, the enormous strain energy and the electrostatic energy would affect the polarization switching of the ferroelectric solid, important for the electrocaloric response. In this paper, the large negative and positive ECEs in a ferroelectric sheet with a conducting crack are investigated by the phase field method with the consideration of time-dependent Ginzburg-Landau equation. The numerical calculations indicated that the polarization field generates a sharp rise during the domain transition from polydomain to monodomain under a certain electric load. Large negative ECEs, about -10.21 K and -7.55 K, are obtained at 135 °C and 85 °C, respectively. The domain transition temperature is much lower than the Curie temperature, which enlarges the existence scope of the large ECE in ferroelectrics. The results also imply that the domain transition from a multi-domain state to a single domain takes place with the minimization of total free energy, which involves the courses of the electric field, stress field, temperature, and polarization interaction. Therefore, the non-uniform distributions of the stress-electric fields induced by the crack play an important role in ECE.

  19. Elasticity Imaging of Ferroelectric Domain Structure in PZT by Ultrasonic Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Tsuji, T.; Ogiso, H.; Fukuda, K.; Yamanaka, K.

    2004-01-01

    UAFM was applied to the observation of the domain structure in lead zirconate titanate (PZT). It imaged the change of elasticity due to grain and domain boundary (DB). For the quantitative evaluation of the contact stiffness, the lateral contact stiffness was taken into account. The stiffness of DB was 10% lower than that within the domain and the width of the DB was about 30 nm. The implication of this work is the understanding of the fatigue mechanism in a PZT memory and the high resolution imaging for a high-density memory

  20. Cross-sectional analysis of ferroelectric domains in PZT capacitors via piezoresponse force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J S [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang City (China); Zeng, H Z [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Kholkin, A L [Department of Ceramic and Glass Engineering and CICECO, University of Aveiro, Aveiro 3810-193 (Portugal)

    2007-11-21

    Ferroelectric domains have been investigated on the cross-section of Pb(Zr{sub 0.55}Ti{sub 0.45})O{sub 3} (PZT) thin film capacitors by scanning probe microscopy. The static domain images on the cross-section were obtained by the lateral piezoresponse force microscopy (LPFM) method, in which the ac voltage used to induce the converse piezoelectric effect was applied between the conductive tip and the bottom electrode. The polarization component normal to the substrate could be characterized via both d{sub 33} and d{sub 15} piezoelectric coefficients, which resulted in a high resolution of LPFM images. After a variable dc bias was applied between the top and the bottom electrodes, the variations of domain image on the cross-section were recorded by the LPFM immediately. Upon the application of low bias, new domain sites appeared near the PZT/Pt interface opposite to the initial polarization. Forward stretch of new domains was facilitated under the dc field approaching the coercive field E{sub c}. Under a very high field (about three times of the E{sub c}), the sidewise expansion of columnar domains was observed. However, the domains were only partially switched even though a very high field was applied. The observed domain growth process indicated a lower energy barrier for nucleation compared with that of domain wall motion. Possible reasons for the incomplete switching are the substantial influences of the interface and depolarization in thin film capacitors.

  1. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors.

    Science.gov (United States)

    Jie, Wenjing; Hao, Jianhua

    2014-06-21

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  2. Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles

    Science.gov (United States)

    Horiuchi, Sachio; Kagawa, Fumitaka; Hatahara, Kensuke; Kobayashi, Kensuke; Kumai, Reiji; Murakami, Youichi; Tokura, Yoshinori

    2012-12-01

    The imidazole unit is chemically stable and ubiquitous in biological systems; its proton donor and acceptor moieties easily bind molecules into a dipolar chain. Here we demonstrate that chains of these amphoteric molecules can often be bistable in electric polarity and electrically switchable, even in the crystalline state, through proton tautomerization. Polarization-electric field (P-E) hysteresis experiments reveal a high electric polarization ranging from 5 to 10 μC cm-2 at room temperature. Of these molecules, 2-methylbenzimidazole allows ferroelectric switching in two dimensions due to its pseudo-tetragonal crystal symmetry. The ferroelectricity is also thermally robust up to 400 K, as is that of 5,6-dichloro-2-methylbenzimidazole (up to ~373 K). In contrast, three other benzimidazoles exhibit double P-E hysteresis curves characteristic of antiferroelectricity. The diversity of imidazole substituents is likely to stimulate a systematic exploration of various structure-property relationships and domain engineering in the quest for lead- and rare-metal-free ferroelectric devices.

  3. Ferroelectricity with Ferromagnetic Moment in Orthoferrites

    Science.gov (United States)

    Tokunaga, Yusuke

    2010-03-01

    Exotic multiferroics with gigantic magnetoelectric (ME) coupling have recently been attracting broad interests from the viewpoints of both fundamental physics and possible technological application to next-generation spintronic devices. To attain a strong ME coupling, it would be preferable that the ferroelectric order is induced by the magnetic order. Nevertheless, the magnetically induced ferroelectric state with the spontaneous ferromagnetic moment is still quite rare apart from a few conical-spin multiferroics. To further explore multiferroic materials with both the strong ME coupling and spontaneous magnetization, we focused on materials with magnetic structures other than conical structure. In this talk we present that the most orthodox perovskite ferrite systems DyFeO3 and GdFeO3 have ``ferromagnetic-ferroelectric,'' i.e., genuinely multiferroic states in which weak ferromagnetic moment is induced by Dzyaloshinskii-Moriya interaction working on Fe spins and electric polarization originates from the striction due to symmetric exchange interaction between Fe and Dy (Gd) spins [1] [2]. Both materials showed large electric polarization (>0.1 μC/cm^2) and strong ME coupling. In addition, we succeeded in mutual control of magnetization and polarization with electric- and magnetic-fields in GdFeO3, and attributed the controllability to novel, composite domain wall structure. [4pt] [1] Y. Tokunaga et al., Phys. Rev. Lett. 101, 097205 (2008). [0pt] [2] Y. Tokunaga et al., Nature Mater. 8, 558 (2009).

  4. Ferroelectrics under the Synchrotron Light: A Review

    Directory of Open Access Journals (Sweden)

    Luis E. Fuentes-Cobas

    2015-12-01

    Full Text Available Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS and X-ray absorption fine structure (XAFS experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.

  5. Ferroelectrics under the Synchrotron Light: A Review

    Science.gov (United States)

    Fuentes-Cobas, Luis E.; Montero-Cabrera, María E.; Pardo, Lorena; Fuentes-Montero, Luis

    2015-01-01

    Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described. PMID:28787814

  6. Study of the mapping mechanism of ferroelectric domains with the scanning force microscope

    International Nuclear Information System (INIS)

    Jungk, T.

    2006-12-01

    The piezo-force microscopy (PFM) allows the mapping of ferroelectric domains until the nanometer range. In spite of its simple function principle it was hitherto not completely understood. In ordser to develop the PFM further to a quantitative analysis method its methodical aspects were analyzed. It was shown that the fundamental mapping mechanism is based on the inverse piezo-effect. Different artefacts to be found in the literature could therefore be reduced to a measurement background. Furthermore the influence of the electrode geometry was analyzed. The width of doamin walls was systematically measured and simulated with a mode, whereby a maximal resolution of 17 nm was reached. By the development of a correction procedure for the exact detection of the forces acting on the spring-beam the lateral signals measured on domain walls could by newly interpreted. So the ''Lateral Electrostatic Force Microscopy'' was developed

  7. Determination of the Steady State Leakage Current in Structures with Ferroelectric Ceramic Films

    Science.gov (United States)

    Podgornyi, Yu. V.; Vorotilov, K. A.; Sigov, A. S.

    2018-03-01

    Steady state leakage currents have been investigated in capacitor structures with ferroelectric solgel films of lead zirconate titanate (PZT) formed on silicon substrates with a lower Pt electrode. It is established that Pt/PZT/Hg structures, regardless of the PZT film thickness, are characterized by the presence of a rectifying contact similar to p-n junction. The steady state leakage current in the forward direction increases with a decrease in the film thickness and is determined by the ferroelectric bulk conductivity.

  8. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Frost, Jarvist M.; Butler, Keith T.; Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2014-08-01

    We report a model describing the molecular orientation disorder in CH{sub 3}NH{sub 3}PbI{sub 3}, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab initio molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular) domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current-voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.

  9. Superdomain dynamics in ferroelectric-ferroelastic films: Switching, jamming, and relaxation

    Science.gov (United States)

    Scott, J. F.; Hershkovitz, A.; Ivry, Y.; Lu, H.; Gruverman, A.; Gregg, J. M.

    2017-12-01

    Recent experimental work shows that ferroelectric switching can occur in large jumps in which ferroelastic superdomains switch together, rather than having the numerous smaller ferroelectric domains switch within them. In this sense, the superdomains play a role analogous to that of Abrikosov vortices in thin superconducting films under the Kosterlitz-Thouless framework, which control the dynamics more than individual Cooper pairs within them do. Here, we examine the dynamics of ferroelastic superdomains in ferroelastic ferroelectrics and their role in switching devices such as memories. Jamming of ferroelectric domains in thin films has revealed an unexpected time dependence of t-1/4 at long times (hours), but it is difficult to discriminate between power-law and exponential relaxation. Other aspects of this work, including spatial period doubling of domains, led to a description of ferroelastic domains as nonlinear processes in a viscoelastic medium, which produce folding and metastable kinetically limited states. This ¼ exponent is a surprising agreement with the well-known value of ¼ for coarsening dynamics in viscoelastic media. We try to establish a link between these two processes, hitherto considered unrelated, and with superdomains and domain bundles. We note also that high-Tc superconductors share many of the ferroelastic domain properties discussed here and that several new solar cell materials and metal-insulator transition systems are ferroelastic.

  10. In situ transmission electron microscopy study of the microstructural origins for the electric field-induced phenomena in ferroelectric perovskites

    Science.gov (United States)

    Guo, Hanzheng

    Ferroelectrics are important materials due to their extensive technological applications, such as non-volatile memories, field-effect transistors, ferroelectric tunneling junctions, dielectric capacitors, piezoelectric transducers, sensors and actuators. As is well known, the outstanding dielectric, piezoelectric, and ferroelectric properties of these functional oxides originate from their ferroelectric domain arrangements and the corresponding evolution under external stimuli (e.g. electric field, stress, and temperature). Electric field has been known as the most efficient stimulus to manipulate the ferroelectric domains through polarization switching and alignment. Therefore, direct observation of the dynamic process of electric field-induced domain evolution and crystal structure transformation is of significant importance to understand the microstructural mechanisms for the functional properties of ferroelectrics. In this dissertation, electric field in situ transmission electron microscopy (TEM) technique was employed to monitor the real-time evolution of the domain morphology and crystal structure during various electrical processes: (1) the initial poling process, (2) the electric field reversal process, and (3) the electrical cycling process. Two types of perovskite-structured ceramics, normal ferroelectrics and relaxor ferroelectrics, were used for this investigation. In addition to providing the microscopic insight for some well-accepted phase transformation rules, discoveries of some new or even unexpected physical phenomena were also demonstrated. For the initial poling process, microstructural origins for the piezoelectricity development in the three most promising lead-free piezoceramic systems were investigated. For the non-ergodic relaxor ferroelectric compositions ( x = 6% - 9%) in the (1-x)(Bi1/2Na 1/2)TiO3-xBaTiO3 system, well-developed piezoelectricity was realized at poling fields far below the coercive field and phase transition field. Such

  11. Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films

    KAUST Repository

    Hu, Weijin

    2014-04-24

    In this work, switching dynamics of poly(vinylidene fluoride- trifluoroethylene) [P(VDF-TrFE)] copolymer films are investigated over unprecedentedly wide ranges of temperature and electric field. Remarkably, domain switching of copolymer films obeys well the classical domain nucleation and growth model although the origin of ferroelectricity in organic ferroelectric materials inherently differs from the inorganic counterparts. A lower coercivity limit of 50 ...MV/m and 180 domain wall energy of 60 ...mJ/m 2 are determined for P(VDF-TrFE) films. Furthermore, we discover in copolymer films an anomalous temperature-dependent crossover behavior between two power-law scaling regimes of frequency-dependent coercivity, which is attributed to the transition between flow and creep motions of domain walls. Our observations shed new light on the switching dynamics of semi-crystalline ferroelectric polymers, and such understandings are critical for realizing their reliable applications.

  12. Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films

    KAUST Repository

    Hu, Weijin; Juo, Deng-Ming; You, Lu; Wang, Junling; Chen, Yi-Chun; Chu, Ying-Hao; Wu, Tao

    2014-01-01

    In this work, switching dynamics of poly(vinylidene fluoride- trifluoroethylene) [P(VDF-TrFE)] copolymer films are investigated over unprecedentedly wide ranges of temperature and electric field. Remarkably, domain switching of copolymer films obeys well the classical domain nucleation and growth model although the origin of ferroelectricity in organic ferroelectric materials inherently differs from the inorganic counterparts. A lower coercivity limit of 50 ...MV/m and 180 domain wall energy of 60 ...mJ/m 2 are determined for P(VDF-TrFE) films. Furthermore, we discover in copolymer films an anomalous temperature-dependent crossover behavior between two power-law scaling regimes of frequency-dependent coercivity, which is attributed to the transition between flow and creep motions of domain walls. Our observations shed new light on the switching dynamics of semi-crystalline ferroelectric polymers, and such understandings are critical for realizing their reliable applications.

  13. Influence of Bias on the Friction Imaging of Ferroelectric Domains in Single Crystal Barium Titanate Energy Storage Materials

    Directory of Open Access Journals (Sweden)

    Lan Chen

    2014-01-01

    Full Text Available The friction imaging of newlycleaved surface domains of single crystal BaTiO3 energy storage materials under both positive and negative voltage bias is investigated by scanning force microscope. When the bias was applied and reversed, three regions with different brightness and contrast in friction image indicated different response to the biases: the friction image of domain A displayed a great change in brightness while domains B and C displayed only a very small change. Possible mechanisms of the interesting phenomena originating from different static force between different charged tip and the periodical array of surface charges inside the inplane domains were proposed. These results provide a new method for the determination of the polarization direction for the domain parallel to the surface and may be useful in the investigation of ferroelectric energy storage materials, especially the relationship between the polarization direction of domain and the bias.

  14. Subcritical switching dynamics and humidity effects in nanoscale studies of domain growth in ferroelectric thin films

    International Nuclear Information System (INIS)

    Blaser, Cédric; Paruch, Patrycja

    2015-01-01

    Ferroelectric domain switching in c-axis-oriented epitaxial Pb(Zr 0.2 Ti 0.8 )O 3 thin films was studied using biased scanning probe microscopy tips. While linear and logarithmic dependence of domain size on tip bias and writing time, respectively, are well known, we report an additional linear dependence on relative humidity in the 28–65% range. We map out the switched domain size as a function of both the tip bias and the applied pulse time and describe a growth-limited regime for very short pulses and a nucleation-limited regime for very low tip bias. Using ‘interrupted-switching’ measurements, we probe the nucleation regime with subcritical pulses and identify a surprisingly long relaxation time on the order of 100 ms, which we relate to ionic redistribution both on the surface and within the thin film itself. (paper)

  15. Hot plate annealing at a low temperature of a thin ferroelectric P(VDF-TrFE) film with an improved crystalline structure for sensors and actuators.

    Science.gov (United States)

    Mahdi, Rahman Ismael; Gan, W C; Abd Majid, W H

    2014-10-14

    Ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE) thin films are measured as a function of different annealing temperatures (80 to 140 °C). It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc) has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE) thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method.

  16. Acoustic emission mechanism at switching of ferroelectric crystals

    International Nuclear Information System (INIS)

    Belov, V.V.; Morozova, G.P.; Serdobol'skaya, O.Yu.

    1986-01-01

    Process of acoustic emission (AE) in lead germanate (PGO) representing pure ferroelectric, and gadolinium molybdate (GMO) representing ferroelectric-ferroelastic, for which switching may be conducted both by the field and pressure, were studied. A conclusion has been drawn that piezoelectric excitation of a crystal from the surface by pulses of overpolarization current in the process of domain coalescence is the main AE source in PGO. Not only piezoresponse, but also direct sound generation in the moment of domain penetration and collapse is considered as AE mechanism in GMO

  17. Acoustic emission mechanism at switching of ferroelectric crystals

    Energy Technology Data Exchange (ETDEWEB)

    Belov, V V; Morozova, G P; Serdobol' skaya, O Yu

    1986-01-01

    Process of acoustic emission (AE) in lead germanate (PGO) representing pure ferroelectric, and gadolinium molybdate (GMO) representing ferroelectric-ferroelastic, for which switching may be conducted both by the field and pressure, were studied. A conclusion has been drawn that piezoelectric excitation of a crystal from the surface by pulses of overpolarization current in the process of domain coalescence is the main AE source in PGO. Not only piezoresponse, but also direct sound generation in the moment of domain penetration and collapse is considered as AE mechanism in GMO.

  18. Indentation plasticity of barium titanate single crystals: Dislocation influence on ferroelectric domain walls

    International Nuclear Information System (INIS)

    Liu, D.; Chelf, M.; White, K.W.

    2006-01-01

    The plastic behaviors of barium titanate (001) and (110) single crystals are studied with atomic force microscopy and piezoresponse force microscopy (PFM) following nanoindendation damage. Plastic deformation mechanisms of ferroelectric barium titanate single crystals are discussed with a focus on the interaction between PFM response and dislocation activities. Nanoindentation tests indicate that the theoretical strength is approached prior to the first pop-in event, consistent with the creation of dislocation nucleation sites required for the onset of plasticity. Surface topographic and piezoelectric analyses indicate that pile-ups around indents result from dislocation activities on the primary slip system, {110} pc pc . The more complex indentation-induced domain patterns observed on (110) barium titanate are also discussed

  19. Characteristics and controllability of vortices in ferromagnetics, ferroelectrics, and multiferroics.

    Science.gov (United States)

    Zheng, Yue; Chen, W J

    2017-08-01

    Topological defects in condensed matter are attracting e significant attention due to their important role in phase transition and their fascinating characteristics. Among the various types of matter, ferroics which possess a switchable physical characteristic and form domain structure are ideal systems to form topological defects. In particular, a special class of topological defects-vortices-have been found to commonly exist in ferroics. They often manifest themselves as singular regions where domains merge in large systems, or stabilize as novel order states instead of forming domain structures in small enough systems. Understanding the characteristics and controllability of vortices in ferroics can provide us with deeper insight into the phase transition of condensed matter and also exciting opportunities in designing novel functional devices such as nano-memories, sensors, and transducers based on topological defects. In this review, we summarize the recent experimental and theoretical progress in ferroic vortices, with emphasis on those spin/dipole vortices formed in nanoscale ferromagnetics and ferroelectrics, and those structural domain vortices formed in multiferroic hexagonal manganites. We begin with an overview of this field. The fundamental concepts of ferroic vortices, followed by the theoretical simulation and experimental methods to explore ferroic vortices, are then introduced. The various characteristics of vortices (e.g. formation mechanisms, static/dynamic features, and electronic properties) and their controllability (e.g. by size, geometry, external thermal, electrical, magnetic, or mechanical fields) in ferromagnetics, ferroelectrics, and multiferroics are discussed in detail in individual sections. Finally, we conclude this review with an outlook on this rapidly developing field.

  20. Crystallization behavior and domain structure in textured Pb(Zr0.52Ti0.48)O3 thin films by different annealing processes

    International Nuclear Information System (INIS)

    Huang, W.; Jiang, S.W.; Li, Y.R.; Zhu, J.; Zhang, Y.; Wei, X.H.; Zeng, H.Z.

    2006-01-01

    Amorphous Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) thin films were prepared on the Pt/Ti/SiO 2 /Si substrates by radio-frequency magnetron sputtering at room temperature. After rapid thermal annealing (RTA) and conventional furnace annealing (CFA) at different temperatures, the films were transformed into polycrystalline PZT thin films with (111) and (100) orientation, respectively. The phase formation and ferroelectric domains correlated with different orientation were systematically investigated by X-ray diffraction and piezoresponse force microscopy. The results showed that the perovskite PZT crystal with [111] orientation hetero-nucleated preferentially on top of the PtPb intermetallic phase at the PZT/Pt interface during RTA process. It is of interest to find that the domain self-organized into a structure with rounded shape at the early stage of crystallization. While the nucleation of the films treated by CFA dominantly homo-nucleated, thus the (100) orientation grains with minimum surface energy were easy to grow. The texture effects on ferroelectric properties of PZT films were also discussed in relation to the domain structure

  1. Photoelectron spectroscopy and spectro-microscopy of Pb(Zr,Ti)O{sub 3} (1 1 1) thin layers: Imaging ferroelectric domains with binding energy contrast

    Energy Technology Data Exchange (ETDEWEB)

    Huşanu, Marius A.; Popescu, Dana G.; Tache, Cristian A. [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele-Ilfov (Romania); Apostol, Nicoleta G. [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele-Ilfov (Romania); Elettra Sincrotrone Trieste, S.S. 14 – km 163,5, Area Science Park, 34169 Basovizza-Trieste (Italy); Barinov, Alexei; Lizzit, Silvano; Lacovig, Paolo [Elettra Sincrotrone Trieste, S.S. 14 – km 163,5, Area Science Park, 34169 Basovizza-Trieste (Italy); Teodorescu, Cristian M., E-mail: teodorescu@infim.ro [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele-Ilfov (Romania)

    2015-10-15

    Graphical abstract: - Highlights: • Achievement of well ordered PZT(1 1 1) surfaces with reasonable low energy electron diffraction patterns and good stoichiometry. • Ability of photoelectron spectromicroscopy to visualize ferroelectric domains with contrast of binding energy. • Model taking into account the influence of photogenerated carriers on the depolarization field and its torque on the polarization vector. • Evidence of domain wall migration induced by photogenerated carriers. • Segregation of metal Pb only on areas with out-of-plane component of the polarization pointing outwards. - Abstract: The ability of photoelectron spectro-microscopy with sub-micrometer lateral resolution to identify ferroelectric domains by analysis of surface band bendings is demonstrated on lead zirco-titanate PZT(1 1 1) thin films grown by pulsed laser deposition. Conventional synchrotron radiation X-ray photoelectron spectroscopy allowed one to derive the surface composition of the sample and evidenced shifts toward higher binding energy when the sample is subject to intense soft X-ray beam. A basic model is developed which supposes that photogenerated carriers reduce the depolarization field, yielding a lower torque applied to the ferroelectric polarization. As a consequence, the out-of-plane component of the polarization increases. Domain migration during irradiation with soft X-ray is inferred from the relative amplitude of the components with different binding energy. When the flux density of soft X-ray is on the order of 10{sup 11} photons/(s μm{sup 2}), metal Pb clusters are formed at the surface on areas with the out-of-plane component of the polarization pointing outwards only.

  2. Aperiodic topological order in the domain configurations of functional materials

    Science.gov (United States)

    Huang, Fei-Ting; Cheong, Sang-Wook

    2017-03-01

    In numerous functional materials, such as steels, ferroelectrics and magnets, new functionalities can be achieved through the engineering of the domain structures, which are associated with the ordering of certain parameters within the material. The recent progress in technologies that enable imaging at atomic-scale spatial resolution has transformed our understanding of domain topology, revealing that, along with simple stripe-like or irregularly shaped domains, intriguing vortex-type topological domain configurations also exist. In this Review, we present a new classification scheme of 'Zm Zn domains with Zl vortices' for 2D macroscopic domain structures with m directional variants and n translational antiphases. This classification, together with the concepts of topological protection and topological charge conservation, can be applied to a wide range of materials, such as multiferroics, improper ferroelectrics, layered transition metal dichalcogenides and magnetic superconductors, as we discuss using selected examples. The resulting topological considerations provide a new basis for the understanding of the formation, kinetics, manipulation and property optimization of domains and domain boundaries in functional materials.

  3. Identification of defect distribution at ferroelectric domain walls from evolution of nonlinear dielectric response during the aging process

    Czech Academy of Sciences Publication Activity Database

    Mokrý, Pavel; Sluka, T.

    2016-01-01

    Roč. 93, č. 6 (2016), č. článku 064114. ISSN 2469-9950 R&D Projects: GA ČR(CZ) GA14-32228S Institutional support: RVO:61389021 Keywords : Nonlinear dielectric response * ferroelectric domain walls * aging process * phase field simulations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016 http://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.064114

  4. Alignment structures in ferroelectric liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N.U

    1998-07-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S{sub C} phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes

  5. Alignment structures in ferroelectric liquid crystals

    International Nuclear Information System (INIS)

    Islam, N.U.

    1998-01-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S C phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes an

  6. Effect of amino acid doping on the growth and ferroelectric properties of triglycine sulphate single crystals

    International Nuclear Information System (INIS)

    Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.; Jayavel, R.

    2008-01-01

    Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresis measurements reveal an increase of coercive field due to the formation of single domain pattern

  7. Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field

    Science.gov (United States)

    Park, Sung Min; Wang, Bo; Das, Saikat; Chae, Seung Chul; Chung, Jin-Seok; Yoon, Jong-Gul; Chen, Long-Qing; Yang, Sang Mo; Noh, Tae Won

    2018-05-01

    Flexoelectricity is an electromechanical coupling between electrical polarization and a strain gradient1 that enables mechanical manipulation of polarization without applying an electrical bias2,3. Recently, flexoelectricity was directly demonstrated by mechanically switching the out-of-plane polarization of a uniaxial system with a scanning probe microscope tip3,4. However, the successful application of flexoelectricity in low-symmetry multiaxial ferroelectrics and therefore active manipulation of multiple domains via flexoelectricity have not yet been achieved. Here, we demonstrate that the symmetry-breaking flexoelectricity offers a powerful route for the selective control of multiple domain switching pathways in multiaxial ferroelectric materials. Specifically, we use a trailing flexoelectric field that is created by the motion of a mechanically loaded scanning probe microscope tip. By controlling the SPM scan direction, we can deterministically select either stable 71° ferroelastic switching or 180° ferroelectric switching in a multiferroic magnetoelectric BiFeO3 thin film. Phase-field simulations reveal that the amplified in-plane trailing flexoelectric field is essential for this domain engineering. Moreover, we show that mechanically switched domains have a good retention property. This work opens a new avenue for the deterministic selection of nanoscale ferroelectric domains in low-symmetry materials for non-volatile magnetoelectric devices and multilevel data storage.

  8. Nonequilibrium ferroelectric-ferroelastic 10 nm nanodomains: wrinkles, period-doubling, and power-law relaxation.

    Science.gov (United States)

    Scott, James F; Evans, Donald M; Katiyar, Ram S; McQuaid, Raymond G P; Gregg, J Marty

    2017-08-02

    Since the 1935 work of Landau-Lifshitz and of Kittel in 1946 all ferromagnetic, ferroelectric, and ferroelastic domains have been thought to be straight-sided with domain widths proportional to the square root of the sample thickness. We show in the present work that this is not true. We also discover period doubling domains predicted by Metaxas et al (2008 Phys. Rev. Lett. 99 217208) and modeled by Wang and Zhao (2015 Sci. Rep. 5 8887). We examine non-equilibrium ferroic domain structures in perovskite oxides with respect to folding, wrinkling, and relaxation and suggest that structures are kinetically limited and in the viscous flow regime predicted by Metaxas et al in 2008 but never observed experimentally. Comparisons are made with liquid crystals and hydrodynamic instabilities, including chevrons, and fractional power-law relaxation. As Shin et al (2016 Soft Matter 12 3502) recently emphasized: 'An understanding of how these folds initiate, propagate, and interact with each other is still lacking'. Inside each ferroelastic domain are ferroelectric 90° nano-domains with 10 nm widths and periodicity in agreement with the 10 nm theoretical minima predicted by Feigl et al (2014 Nat. Commun. 5 4677). Evidence is presented for domain-width period doubling, which is common in polymer films but unknown in ferroic domains. A discussion of the folding-to-period doubling phase transition model of Wang and Zhao is included.

  9. Indentation plasticity of barium titanate single crystals: Dislocation influence on ferroelectric domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D. [Department of Mechanical Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States)]. E-mail: duo.liu@mail.uh.edu; Chelf, M. [Department of Mechanical Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States); White, K.W. [Department of Mechanical Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States)

    2006-10-15

    The plastic behaviors of barium titanate (001) and (110) single crystals are studied with atomic force microscopy and piezoresponse force microscopy (PFM) following nanoindendation damage. Plastic deformation mechanisms of ferroelectric barium titanate single crystals are discussed with a focus on the interaction between PFM response and dislocation activities. Nanoindentation tests indicate that the theoretical strength is approached prior to the first pop-in event, consistent with the creation of dislocation nucleation sites required for the onset of plasticity. Surface topographic and piezoelectric analyses indicate that pile-ups around indents result from dislocation activities on the primary slip system, {l_brace}110{r_brace}{sub pc}<11-bar 0>{sub pc}. The more complex indentation-induced domain patterns observed on (110) barium titanate are also discussed.

  10. Study of mechanically stimulated ferroelectric domain formation using scanning probe microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J H; Baek, J; Khim, Z G [School of Physics and Nano-Systems Institute, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2007-03-15

    The stress-related ferroelectric properties have been studied on the Triglycine sulfate (TGS) by scanning probe microscope (SPM). Together with normal stress of the tip, the lateral stress is applied to the sample with piezoelectric transducers. With this study, we characterized the way the ferroelectricity of TGS responds to the axis-specific stress. Specially, the b-directional stress applicable to the surface can amount to several GPa such that the polarization switching by mechanical stress is observable. Although the lateral stress is not strong enough to view such phenomena, a-axis(c-axis) stress still affects the polarization value so as to fortify (lessen) the electric field inside, respectively. These contrasting results can be explained by the sign relation of piezo-coefficients about the individual axis. This work can be a touchstone of future researches in characterizing the electromechanical properties of more popular ferroelectrics such as PZT or BTO.

  11. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials.

    Science.gov (United States)

    Grinberg, Ilya; West, D Vincent; Torres, Maria; Gou, Gaoyang; Stein, David M; Wu, Liyan; Chen, Guannan; Gallo, Eric M; Akbashev, Andrew R; Davies, Peter K; Spanier, Jonathan E; Rappe, Andrew M

    2013-11-28

    Ferroelectrics have recently attracted attention as a candidate class of materials for use in photovoltaic devices, and for the coupling of light absorption with other functional properties. In these materials, the strong inversion symmetry breaking that is due to spontaneous electric polarization promotes the desirable separation of photo-excited carriers and allows voltages higher than the bandgap, which may enable efficiencies beyond the maximum possible in a conventional p-n junction solar cell. Ferroelectric oxides are also stable in a wide range of mechanical, chemical and thermal conditions and can be fabricated using low-cost methods such as sol-gel thin-film deposition and sputtering. Recent work has shown how a decrease in ferroelectric layer thickness and judicious engineering of domain structures and ferroelectric-electrode interfaces can greatly increase the current harvested from ferroelectric absorber materials, increasing the power conversion efficiency from about 10(-4) to about 0.5 per cent. Further improvements in photovoltaic efficiency have been inhibited by the wide bandgaps (2.7-4 electronvolts) of ferroelectric oxides, which allow the use of only 8-20 per cent of the solar spectrum. Here we describe a family of single-phase solid oxide solutions made from low-cost and non-toxic elements using conventional solid-state methods: [KNbO3]1 - x[BaNi1/2Nb1/2O3 - δ]x (KBNNO). These oxides exhibit both ferroelectricity and a wide variation of direct bandgaps in the range 1.1-3.8 electronvolts. In particular, the x = 0.1 composition is polar at room temperature, has a direct bandgap of 1.39 electronvolts and has a photocurrent density approximately 50 times larger than that of the classic ferroelectric (Pb,La)(Zr,Ti)O3 material. The ability of KBNNO to absorb three to six times more solar energy than the current ferroelectric materials suggests a route to viable ferroelectric semiconductor-based cells for solar energy conversion and

  12. Structural contribution to the ferroelectric fatigue in lead zirconate titanate ceramics

    Science.gov (United States)

    Hinterstein, M.; Rouquette, J.; Haines, J.; Papet, Ph.; Glaum, J.; Knapp, M.; Eckert, J.; Hoffman, M.

    2014-09-01

    Many ferroelectric devices are based on doped lead zirconate titanate (PZT) ceramics with compositions near the morphotropic phase boundary (MPB), at which the relevant material's properties approach their maximum. Based on a synchrotron x-ray diffraction study of MPB PZT, bulk fatigue is unambiguously found to arise from a less effective field induced tetragonal-to-monoclinic transformation, at which the degradation of the polarization flipping is detected by a less intense and more diffuse anomaly in the atomic displacement parameter of lead. The time dependence of the ferroelectric response on a structural level down to 250 μs confirms this interpretation in the time scale of the piezolectric strain response.

  13. Observation of ferroelastic domains in layered magnetic compounds using birefringence imaging

    Science.gov (United States)

    Miura, Yoko; Okumura, Kazuya; Manaka, Hirotaka

    2018-03-01

    The two-dimensional Heisenberg antiferromagnet (C2H5NH3)2CuCl4 is a candidate compound for the coexistence of ferroelectricity and ferroelasticity; however, the microscopic observations of multiferroic domains may still be unclear. In-plane birefringence imaging measurements were performed to observe the manner in which the ferroelectric and the ferroelastic domains change during phase transitions between 15 K and 300 K. It was found that 90° ferroelastic domains appeared in the ab-plane at 300 K. As the temperature decreased toward 15 K, each domain inverted at a certain temperature (T a) without structural or magnetic phase transitions. The value of T a was found to be significantly influenced by external stresses; therefore, birefringence imaging techniques are useful for investigating variations in ferroelastic domains with temperature. Furthermore, a structural phase transition from orthorhombic to monoclinic or triclinic occurred at 230 ~ 240 K; however, no spontaneous polarization appeared in the ab-plane over the entire investigated range.

  14. Characterization Of Graphene-Ferroelectric Superlattice Hybrid Devices

    Science.gov (United States)

    Yusuf, Mohammed; Du, Xu; Dawber, Matthew

    2013-03-01

    Ferroelectric materials possess a spontaneous electrical polarization, which can be controlled by an electric field. A good interface between ferroelectric surface and graphene sheets can introduce a new generation of multifunctional devices, in which the ferroelectric material can be used to control the properties of graphene. In our approach, problems encountered in previous efforts to combine ferroelectric/carbon systems are overcome by the use of artificially layered superlattice materials grown in the form of epitaxial thin films. In these materials the phase transition temperature and dielectric response of the material can be tailored, allowing us to avoid polarization screening by surface absorbates, whilst maintaining an atomically smooth surface and optimal charge doping properties. Using ferroelectric PbTiO3/SrTiO3 superlattices, we have shown ultra-low-voltage operation of graphene field effect devices within +/- 1 V at room temperature. The switching of the graphene field effect transistors is characterized by pronounced resistance hysteresis, suitable for ultra-fast non-volatile electronics. Low temperature characterization confirmed that the coercive field required for the ferroelectric domain switching increases significantly with decreasing temperatures. National Science Foundation (NSF) (grant number 1105202)

  15. Non-Resonant Magnetoelectric Energy Harvesting Utilizing Phase Transformation in Relaxor Ferroelectric Single Crystals

    Directory of Open Access Journals (Sweden)

    Peter Finkel

    2015-12-01

    Full Text Available Recent advances in phase transition transduction enabled the design of a non-resonant broadband mechanical energy harvester that is capable of delivering an energy density per cycle up to two orders of magnitude larger than resonant cantilever piezoelectric type generators. This was achieved in a [011] oriented and poled domain engineered relaxor ferroelectric single crystal, mechanically biased to a state just below the ferroelectric rhombohedral (FR-ferroelectric orthorhombic (FO phase transformation. Therefore, a small variation in an input parameter, e.g., electrical, mechanical, or thermal will generate a large output due to the significant polarization change associated with the transition. This idea was extended in the present work to design a non-resonant, multi-domain magnetoelectric composite hybrid harvester comprised of highly magnetostrictive alloy, [Fe81.4Ga18.6 (Galfenol or TbxDy1-xFe2 (Terfenol-D], and lead indium niobate–lead magnesium niobate–lead titanate (PIN-PMN-PT domain engineered relaxor ferroelectric single crystal. A small magnetic field applied to the coupled device causes the magnetostrictive element to expand, and the resulting stress forces the phase change in the relaxor ferroelectric single crystal. We have demonstrated high energy conversion in this magnetoelectric device by triggering the FR-FO transition in the single crystal by a small ac magnetic field in a broad frequency range that is important for multi-domain hybrid energy harvesting devices.

  16. Critical dynamics and domain motion from permittivity of the electronic ferroelectric (TMTTF){sub 2}AsF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Brazovskii, Serguei, E-mail: brazov@lptms.u-psud.fr [LPTMS, UMR8626, CNRS & University Paris-Sud, Bat. 100, Orsay F-91405 (France); International Institute of Physics, 59078-400 Natal, Rio Grande do Norte (Brazil); Monceau, Pierre [CNRS & University Grenoble Alpes, Institute NEEL, F-38042 Grenoble (France); Nad, Felix Ya.

    2015-03-01

    The quasi one-dimensional organic conductor (TMTTF){sub 2}AsF{sub 6} shows the charge ordering transition at T{sub CO}=101 K to a state of the ferroelectric Mott insulator which is still well conducting. We present and interpret the experimental data on the gigantic dielectric response in the vicinity of T{sub CO}, concentrating on the frequency dependence of the inverse 1/ε of the complex permittivity ε=ε′+iε′′. Surprisingly for a ferroelectric, we could closely approach the 2nd order phase transition and to deeply reach the critical dynamics of the polarization. We could analyze the critical slowing-down when approaching T{sub CO} from both sides and to extract the anomalous power law for the frequency dependence of the order parameter viscosity. Moreover, below T{sub CO} we could extract a sharp absorption feature coming from a motion of domain walls which shows up at a frequency well below the relaxation rate.

  17. Ferroelectric materials and their applications

    CERN Document Server

    Xu, Y

    2013-01-01

    This book presents the basic physical properties, structure, fabrication methods and applications of ferroelectric materials. These are widely used in various devices, such as piezoelectric/electrostrictive transducers and actuators, pyroelectric infrared detectors, optical integrated circuits, optical data storage, display devices, etc. The ferroelectric materials described in this book include a relatively complete list of practical and promising ferroelectric single crystals, bulk ceramics and thin films. Included are perovskite-type, lithium niobate, tungsten-bronze-type, water-soluable

  18. Structural, dielectric and ferroelectric characterization of PZT thin films

    Directory of Open Access Journals (Sweden)

    Araújo E.B.

    1999-01-01

    Full Text Available In this work ferroelectric thin films of PZT were prepared by the oxide precursor method, deposited on Pt/Si substrate. Films of 0.5 mm average thickness were obtained. Electrical and ferroelectric characterization were carried out in these films. The measured value of the dielectric constant for films was 455. Ferroelectricity was confirmed by Capacitance-Voltage (C-V characteristics and P-E hysteresis loops. Remanent polarization for films presented value around 5.0 µC/cm2 and a coercive field of 88.8 kV/cm.

  19. Nucleation of domains under the influence of temperature in ...

    Indian Academy of Sciences (India)

    Abstract. It is found that the nucleation of domains can take place in Ba5Ti2O7Cl4 under the influence of temperature unlike in many other ferroelectrics. The nucleated domain can also be removed from the structure under the randomizing effect of tem- perature. These observations have been explained on the basis of a ...

  20. Phase diagrams of ferroelectric nanocrystals strained by an elastic matrix

    Science.gov (United States)

    Nikitchenko, A. I.; Azovtsev, A. V.; Pertsev, N. A.

    2018-01-01

    Ferroelectric crystallites embedded into a dielectric matrix experience temperature-dependent elastic strains caused by differences in the thermal expansion of the crystallites and the matrix. Owing to the electrostriction, these lattice strains may affect polarization states of ferroelectric inclusions significantly, making them different from those of a stress-free bulk crystal. Here, using a nonlinear thermodynamic theory, we study the mechanical effect of elastic matrix on the phase states of embedded single-domain ferroelectric nanocrystals. Their equilibrium polarization states are determined by minimizing a special thermodynamic potential that describes the energetics of an ellipsoidal ferroelectric inclusion surrounded by a linear elastic medium. To demonstrate the stability ranges of such states for a given material combination, we construct a phase diagram, where the inclusion’s shape anisotropy and temperature are used as two parameters. The ‘shape-temperature’ phase diagrams are calculated numerically for PbTiO3 and BaTiO3 nanocrystals embedded into representative dielectric matrices generating tensile (silica glass) or compressive (potassium silicate glass) thermal stresses inside ferroelectric inclusions. The developed phase maps demonstrate that the joint effect of thermal stresses and matrix-induced elastic clamping of ferroelectric inclusions gives rise to several important features in the polarization behavior of PbTiO3 and BaTiO3 nanocrystals. In particular, the Curie temperature displays a nonmonotonic variation with the ellipsoid’s aspect ratio, being minimal for spherical inclusions. Furthermore, the diagrams show that the polarization orientation with respect to the ellipsoid’s symmetry axis is controlled by the shape anisotropy and the sign of thermal stresses. Under certain conditions, the mechanical inclusion-matrix interaction qualitatively alters the evolution of ferroelectric states on cooling, inducing a structural transition

  1. Composition driven structural instability in perovskite ferroelectrics

    Directory of Open Access Journals (Sweden)

    Chao Xu

    2017-04-01

    Full Text Available Ferroelectric solid solutions usually exhibit enhanced functional properties at the morphotropic phase boundary separating two ferroelectric phases with different orientations of polarization. The underlying mechanism is generally associated with polarization rotational instability and the flattened free energy profile. In this work we show that the polarization extensional instability can also be induced at the morphotropic phase boundary beyond the reported polar-nonpolar phase boundary. The piezoelectricity enhanced by this mechanism exhibits excellent thermal stability, which helps to develop high performance piezoelectric materials with good temperature stability.

  2. Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions.

    Science.gov (United States)

    Yamada, Hiroyuki; Garcia, Vincent; Fusil, Stéphane; Boyn, Sören; Marinova, Maya; Gloter, Alexandre; Xavier, Stéphane; Grollier, Julie; Jacquet, Eric; Carrétéro, Cécile; Deranlot, Cyrile; Bibes, Manuel; Barthélémy, Agnès

    2013-06-25

    Ferroelectric tunnel junctions enable a nondestructive readout of the ferroelectric state via a change of resistance induced by switching the ferroelectric polarization. We fabricated submicrometer solid-state ferroelectric tunnel junctions based on a recently discovered polymorph of BiFeO3 with giant axial ratio ("T-phase"). Applying voltage pulses to the junctions leads to the highest resistance changes (OFF/ON ratio >10,000) ever reported with ferroelectric tunnel junctions. Along with the good retention properties, this giant effect reinforces the interest in nonvolatile memories based on ferroelectric tunnel junctions. We also show that the changes in resistance scale with the nucleation and growth of ferroelectric domains in the ultrathin BiFeO3 (imaged by piezoresponse force microscopy), thereby suggesting potential as multilevel memory cells and memristors.

  3. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals

    Science.gov (United States)

    Alikin, D. O.; Ievlev, A. V.; Turygin, A. P.; Lobov, A. I.; Kalinin, S. V.; Shur, V. Ya.

    2015-05-01

    Currently, ferroelectric materials with designed domain structures are considered as a perspective material for new generation of photonic, data storage, and data processing devices. Application of external electric field is the most convenient way of the domain structure formation. Lots of papers are devoted to the investigation of domain kinetics on polar surface of crystals while the forward growth remains one of the most mysterious stages due to lack of experimental methods allowing to study it. Here, we performed tip-induced polarization reversal on X- and Y-non-polar cuts in single-crystal of congruent lithium niobate which allows us to study the forward growth with high spatial resolution. The revealed difference in the shape and length of domains induced on X- and Y-cuts is beyond previously developed theoretical approaches used for the theoretical consideration of the domains growth at non-polar ferroelectric surfaces. To explain experimental results, we used kinetic approach with anisotropy of screening efficiency along different crystallographic directions.

  4. Crystal Structure and Ferroelectric Properties of ε-Ga2O3 Films Grown on (0001)-Sapphire.

    Science.gov (United States)

    Mezzadri, Francesco; Calestani, Gianluca; Boschi, Francesco; Delmonte, Davide; Bosi, Matteo; Fornari, Roberto

    2016-11-21

    The crystal structure and ferroelectric properties of ε-Ga 2 O 3 deposited by low-temperature MOCVD on (0001)-sapphire were investigated by single-crystal X-ray diffraction and the dynamic hysteresis measurement technique. A thorough investigation of this relatively unknown polymorph of Ga 2 O 3 showed that it is composed of layers of both octahedrally and tetrahedrally coordinated Ga 3+ sites, which appear to be occupied with a 66% probability. The refinement of the crystal structure in the noncentrosymmetric space group P6 3 mc pointed out the presence of uncompensated electrical dipoles suggesting ferroelectric properties, which were finally demonstrated by independent measurements of the ferroelectric hysteresis. A clear epitaxial relation is observed with respect to the c-oriented sapphire substrate, with the Ga 2 O 3 [10-10] direction being parallel to the Al 2 O 3 direction [11-20], yielding a lattice mismatch of about 4.1%.

  5. Synthesis and ferroelectric properties of rare earth compounds with tungsten bronze-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, M., E-mail: bouzianemeryem@yahoo.fr [Laboratoire de Chimie du Solide Appliquee, Faculte des Sciences, Avenue Ibn Batouta, BP 1014, Rabat (Morocco); Taibi, M. [Laboratoire de Physico-Chimie des Materiaux, LAF 502, Ecole Normale Superieure, BP 5118, Rabat (Morocco); Boukhari, A. [Laboratoire de Chimie du Solide Appliquee, Faculte des Sciences, Avenue Ibn Batouta, BP 1014, Rabat (Morocco)

    2011-10-03

    Highlights: {center_dot} Polycrystalline materials with the tungsten bronze-type structure have been synthesized and characterized. {center_dot} Effect of the incorporation of rare earth ions and paramagnetic cations (Fe{sup 3+}) into a matrix ferroelectrically active was studied. {center_dot} Ferroelectric transition is pronounced by a large thermal hysteresis during the heating and cooling cycles. {center_dot} Phase transitions around T{sub c} were confirmed by differential scanning calorimetry (DSC) measurements. - Abstract: Polycrystalline materials with a general formula Pb{sub 2}Na{sub 0.8}R{sub 0.2}Nb{sub 4.8}Fe{sub 0.2}O{sub 15} (R = Dy, Eu, Sm, Nd, La) have been synthesized, in air by a high temperature solid state reaction method. X-ray diffraction study, at room temperature, revealed that they crystallize in the tungsten bronze-type structure. Dielectric properties were performed, in the temperature range 25-500 deg. C, at three different frequencies 10, 100 and 1000 kHz. The ferroelectric transition is pronounced by a large thermal hysteresis during the heating and cooling cycles. The determined Curie temperature values T{sub c} were discussed as a function of rare earth size. Phase transitions around T{sub c} for the investigated compounds were confirmed by differential scanning calorimetry (DSC) measurements.

  6. Lithium niobate. Defects, photorefraction and ferroelectric switching

    Energy Technology Data Exchange (ETDEWEB)

    Volk, Tatyana [Russian Academy of Sciences, Inst. for Crystallography, Moscow (Russian Federation); Woehlecke, Manfred [Osnabrueck Univ. (Germany). Fachbereich Physik

    2008-07-01

    The book presents the current state of studies of point defects, both intrinsic and extrinsic (impurities, radiation centers, etc.), in LiNbO{sub 3}. The contribution of intrinsic defects to photoinduced charge transport, i.e. to the photorefraction, is explained. The photorefractive and optical properties of LiNbO{sub 3} crystals with different stoichiometry and of those doped with so-called ''optical-damage resistant'' impurities controlling the intrinsic defect structure are described in detail. Applications included are to the problem of non-erasable recording of photorefractive holograms in LiNbO{sub 3} and the current situation of studies in the ferroelectric switching and domain structure of LiNbO{sub 3}, as well as the creation of periodically-poled structures for the optical frequency conversion. (orig.)

  7. Domain switching in single-phase multiferroics

    Science.gov (United States)

    Jia, Tingting; Cheng, Zhenxiang; Zhao, Hongyang; Kimura, Hideo

    2018-06-01

    Multiferroics are a time-honoured research subject by reason for their tremendous application potential in the information industry, such as in multi-state information storage devices and new types of sensors. An outburst of studies on multiferroicity has been witnessed in the 21st century, although this field has a long research history since the 19th century. Multiferroicity has now become one of the hottest research topics in condensed matter physics and materials science. Numerous efforts have been made to investigate the cross-coupling phenomena among ferroic orders such as ferroelectricity, (anti-)ferromagnetism, and ferroelasticity, especially the coupling between electric and magnetic orderings that would account for the magnetoelectric (ME) effect in multiferroic materials. The magnetoelectric properties and coupling behavior of single phase multiferroics are dominated by their domain structures. It was also noted that, however, the multiferroic materials exhibit very complicated domain structures. Studies on domain structure characterization and domain switching are a crucial step in the exploration of approaches to the control and manipulation of magnetic (electric) properties using an electric (magnetic) field or other means. In this review, following a concise outline of our current basic knowledge on the magnetoelectric (ME) effect, we summarize some important research activities on domain switching in single-phase multiferroic materials in the form of single crystals and thin films, especially domain switching behavior involving strain and the related physics in the last decade. We also introduce recent developments in characterization techniques for domain structures of ferroelectric or multiferroic materials, which have significantly advanced our understanding of domain switching dynamics and interactions. The effects of a series of issues such as electric field, magnetic field, and stress effects on domain switching are been discussed as well. It

  8. Non-volatile polarization switch of magnetic domain wall velocity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.; Stolichnov, I.; Setter, N. [Ceramics Laboratory, EPFL-Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland); Bernand-Mantel, A.; Schott, Marine; Pizzini, S.; Ranno, L. [University of Grenoble Alpes, Institut Néel, F-38042 Grenoble (France); CNRS, Institut Néel, F-38042 Grenoble (France); Auffret, S.; Gaudin, G. [SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble (France)

    2015-12-21

    Controlled propagation speed of individual magnetic domains in metal channels at the room temperature is obtained via the non-volatile field effect associated with the switchable polarization of P(VDF-TrFE) (polyvinylidene fluoride-trifluoroethylene) ferroelectric polymer. Polarization domains directly written using conducting atomic force microscope probe locally accelerate/decelerate the magnetic domains in the 0.6 nm thick Co film. The change of the magnetic domain wall velocity is consistent with the magnetic anisotropy energy modulation through the polarization upward/downward orientation. Excellent retention is observed. The demonstrated local non-destructive and reversible change of magnetic properties via rewritable patterning of ferroelectric domains could be attractive for exploring the ultimate limit of miniaturization in devices based on ferromagnetic/ferroelectric bilayers.

  9. An Automated Ab Initio Framework for Identifying New Ferroelectrics

    Science.gov (United States)

    Smidt, Tess; Reyes-Lillo, Sebastian E.; Jain, Anubhav; Neaton, Jeffrey B.

    Ferroelectric materials have a wide-range of technological applications including non-volatile RAM and optoelectronics. In this work, we present an automated first-principles search for ferroelectrics. We integrate density functional theory, crystal structure databases, symmetry tools, workflow software, and a custom analysis toolkit to build a library of known and proposed ferroelectrics. We screen thousands of candidates using symmetry relations between nonpolar and polar structure pairs. We use two search strategies 1) polar-nonpolar pairs with the same composition and 2) polar-nonpolar structure type pairs. Results are automatically parsed, stored in a database, and accessible via a web interface showing distortion animations and plots of polarization and total energy as a function of distortion. We benchmark our results against experimental data, present new ferroelectric candidates found through our search, and discuss future work on expanding this search methodology to other material classes such as anti-ferroelectrics and multiferroics.

  10. Static negative capacitance of a ferroelectric nano-domain nucleus.

    Czech Academy of Sciences Publication Activity Database

    Sluka, T.; Mokrý, Pavel; Setter, N.

    2017-01-01

    Roč. 111, č. 15 (2017), č. článku 152902. ISSN 0003-6951 R&D Projects: GA ČR(CZ) GA14-32228S Institutional support: RVO:61389021 Keywords : Ferroelectric materials * Capacitors * Bipolar transistors * Electrodes * Dielectrics Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.411, year: 2016

  11. Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes.

    Science.gov (United States)

    Zhou, Yu; Wu, Di; Zhu, Yihan; Cho, Yujin; He, Qing; Yang, Xiao; Herrera, Kevin; Chu, Zhaodong; Han, Yu; Downer, Michael C; Peng, Hailin; Lai, Keji

    2017-09-13

    Piezoelectric and ferroelectric properties in the two-dimensional (2D) limit are highly desired for nanoelectronic, electromechanical, and optoelectronic applications. Here we report the first experimental evidence of out-of-plane piezoelectricity and ferroelectricity in van der Waals layered α-In 2 Se 3 nanoflakes. The noncentrosymmetric R3m symmetry of the α-In 2 Se 3 samples is confirmed by scanning transmission electron microscopy, second-harmonic generation, and Raman spectroscopy measurements. Domains with opposite polarizations are visualized by piezo-response force microscopy. Single-point poling experiments suggest that the polarization is potentially switchable for α-In 2 Se 3 nanoflakes with thicknesses down to ∼10 nm. The piezotronic effect is demonstrated in two-terminal devices, where the Schottky barrier can be modulated by the strain-induced piezopotential. Our work on polar α-In 2 Se 3 , one of the model 2D piezoelectrics and ferroelectrics with simple crystal structures, shows its great potential in electronic and photonic applications.

  12. Polarization-coupled tunable resistive behavior in oxide ferroelectric heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gruverman, Alexei [Univ. of Nebraska, Lincoln, NE (United States); Tsymbal, Evgeny Y. [Univ. of Nebraska, Lincoln, NE (United States); Eom, Chang-Beom [Univ. of Wisconsin, Madison, WI (United States)

    2017-05-03

    This research focuses on investigation of the physical mechanism of the electrically and mechanically tunable resistive behavior in oxide ferroelectric heterostructures with engineered interfaces realized via a strong coupling of ferroelectric polarization with tunneling electroresistance and metal-insulator (M-I) transitions. This report describes observation of electrically conductive domain walls in semiconducting ferroelectrics, voltage-free control of resistive switching and demonstration of a new mechanism of electrical control of 2D electron gas (2DEG) at oxide interfaces. The research goals are achieved by creating strong synergy between cutting-edge fabrication of epitaxial single-crystalline complex oxides, nanoscale electrical characterization by scanning probe microscopy and theoretical modeling of the observed phenomena. The concept of the ferroelectric devices with electrically and mechanically tunable nonvolatile resistance represents a new paradigm shift in realization of the next-generation of non-volatile memory devices and low-power logic switches.

  13. Structural sensitivity of x-ray Bragg projection ptychography to domain patterns in epitaxial thin films

    International Nuclear Information System (INIS)

    Hruszkewycz, S. O.; Zhang, Q.; Holt, M. V.; Highland, M. J.

    2016-01-01

    Bragg projection ptychography (BPP) is a coherent diffraction imaging technique capable of mapping the spatial distribution of the Bragg structure factor in nanostructured thin films. Here, we show that, because these images are projections, the structural sensitivity of the resulting images depends on the film thickness and the aspect ratio and orientation of the features of interest and that image interpretation depends on these factors. Lastly, we model changes in contrast in the BPP reconstructions of simulated PbTiO_3 ferroelectric thin films with meandering 180° stripe domains as a function of film thickness, discuss their origin, and comment on the implication of these factors on the design of BPP experiments of general nanostructured films.

  14. Spin-driven ferroelectricity and magneto-electric effects in frustrated magnetic systems

    International Nuclear Information System (INIS)

    Arima, Taka-hisa

    2011-01-01

    The interplay between magnetism and electricity in matter has become a central issue of condensed-matter physics. This review focuses on the ferroelectricity induced by magnetic order mostly in frustrated magnets, which is nowadays referred to as magneto-electric (ME) multiferroic, or often only as multiferroic. Some distinct types of microscopic origins relevant to the spin-driven ferroelectricity are discussed in detail. Then one sees that the frustration-based spin-driven ferroelectrics can exhibit nonlinear and giant ME responses of phase-transition type and of domain-control type, in contrast to the conventional magnetoelectrics hosting linear ME effects. (author)

  15. Wall thickness dependence of the scaling law for ferroic stripe domains

    International Nuclear Information System (INIS)

    Catalan, G; Scott, J F; Schilling, A; Gregg, J M

    2007-01-01

    The periodicity of 180 0 stripe domains as a function of crystal thickness scales with the width of the domain walls, both for ferroelectric and for ferromagnetic materials. Here we derive an analytical expression for the generalized ferroic scaling factor and use this to calculate the domain wall thickness and gradient coefficients (exchange constants) in some ferroelectric and ferromagnetic materials. We then use these to discuss some of the wider implications for the physics of ferroelectric nanodevices and periodically poled photonic crystals. (fast track communication)

  16. Structural studies of different types of ferroelectric liquid crystalline substances

    Czech Academy of Sciences Publication Activity Database

    Obadović, D.Ž.; Stojanović, M.; Bubnov, Alexej; Éber, N.; Cvetinov, M.; Vajda, A.

    2011-01-01

    Roč. 35, č. 1 (2011), s. 3-13 ISSN 1450-7404 R&D Projects: GA AV ČR IAA100100911; GA AV ČR(CZ) GA202/09/0047; GA ČR(CZ) GAP204/11/0723 Grant - others:RFASI(RU) 02.740.11.5166 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric liquid crystals * phase transition * structure of liquid crystalline phases * molecular parameters Subject RIV: BM - Solid Matter Physics ; Magnetism

  17. Proceedings of the 8th International Symposium on Applications of Ferroelectrics

    Science.gov (United States)

    Liu, M.; Safari, A.; Kingon, A.; Haertling, G.

    1993-02-01

    The eighth International Symposium on the Applications of Ferroelectrics was held in Greenville, SC, on August 30 to Sept 2, 1992. It was attended by approximately 260 scientists and engineers who presented nearly 200 oral and poster papers. The three plenary presentations covered ferroelectric materials which are currently moving into commercial exploitation or have strong potential to do so. These were (1) pyroelectric imaging, (2) ferroelectric materials integrated with silicon for use as micromotors and microsensors and (3) research activity in Japan on high permittivity materials for DRAM's. Invited papers covered such subjects as pyroelectric and electrooptic properties of thin films, photorefractive effects, ferroelectric polymers, piezoelectric transducers, processing of ferroelectrics, domain switching in ferroelectrics, thin film memories, thin film vacuum deposition techniques and the fabrication of chemically prepared PZT and PLZT thin films. The papers continued to reflect the large interest in ferroelectric thin films. It was encouraging that there have been substantial strides made in both the processing and understanding of the films in the last two years. It was equally clear, however, that much still remains to be done before reliable thin film devices will be available in the marketplace.

  18. Highly polarized single-c-domain single-crystal Pb(Mn,Nb)O(3)-PZT thin films.

    Science.gov (United States)

    Wasa, Kiyotaka; Adachi, Hideaki; Nishida, Ken; Yamamoto, Takashi; Matsushima, Tomoaki; Kanno, Isaku; Kotera, Hidetoshi

    2012-01-01

    In-plane unstrained single-c-domain/single-crystal thin films of PZT-based ternary ferroelectric perovskite, ξPb(Mn,Nb)O3-(1 - ξ)PZT, were grown on SrRuO(3)/Pt/MgO substrates using magnetron sputtering followed by quenching. The sputtered unstrained thin films exhibit unique ferroelectric properties: high coercive field, Ec > 180 kV/cm, large remanent polarization, P(r) = 100 μC/cm(2), small relative dielectric constants, ε* = 100 to 150, high Curie temperature, Tc = ~600 °C, and bulk-like large transverse piezoelectric constants, e31,f = -12.0 C/m(2) for PZT(48/52) at ξ = 0.06. The unstrained thin films are an ideal structure to extract the bulk ferroelectric properties. Their micro-structures and ferroelectric properties are discussed in relation to the potential applications for piezoelectric MEMS. © 2012 IEEE

  19. Ferroelectric Electron Emission Principles and Technology

    CERN Document Server

    Riege, H

    1997-01-01

    The spontaneous electrical polarization of ferroelectric materials can be changed either by reversal or by phase transition from a ferroelectric into a non-ferroelectric state or vice versa. If spontaneous polarization changes are induced with fast heat, mechanical pressure, laser or electric field pulses on a submicrosecond time scale, strong uncompensated surface charge densities and related polarization fields are generated, which may lead to the intense self-emission of electrons from the negatively charged free surface areas of the ferroelectric sample. Hence, electron guns can be built with extraction-field-free ferroelectric cathodes, which may be easily separated from the high-field regions of post-accelerating gap structures. The intensity, the energy, the temporal and spatial distribution, and the repetitition rate of the emitted electron beams can be controlled within wide limits via the excitation pulses and external focusing and accelerating electromagnetic fields. The technological advantages an...

  20. Photorefractive effects in ferroelectrics as manifestation of structural violations on mesoscales

    CERN Document Server

    Kanaev, I F

    1998-01-01

    The nature of violations in ferroelectric structures that lead to the emergence of direct photocurrents without application of external fields is discussed. We suppose that the main role in transfer processes and photovoltaic effect $9 emergence belongs to macro- and meso-scopic inhomogeneities of the crystal. The boundaries between fairly perfect crystallites have the size of several constants of the crystal lattice and strongly changes the group (pyro-, piezo-, $9 and ferroelectric) properties of the crystal. The presence of inhomogeneities and local electric fields in them determines the charge transfer mechanism: affected by light, the electrons are generated in discretely distributed defect $9 regions and transported from one inhomogeneity to another taking into account the magnitude and sign of the held. In the framework of new concepts, experimental data on recording of the shifted and nonshifted holograms in LiNbO /sub $9 3/ crystals are analyzed. (8 refs).

  1. Ferroelectric nanostructure having switchable multi-stable vortex states

    Science.gov (United States)

    Naumov, Ivan I [Fayetteville, AR; Bellaiche, Laurent M [Fayetteville, AR; Prosandeev, Sergey A [Fayetteville, AR; Ponomareva, Inna V [Fayetteville, AR; Kornev, Igor A [Fayetteville, AR

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  2. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers

    Energy Technology Data Exchange (ETDEWEB)

    Daranciang, Dan

    2012-02-15

    We show that light drives large-amplitude structural changes in thin films of the prototypical ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on femtosecond timescales, photoinduced changes in the unit-cell tetragonality are observed. These are driven by the motion of photogenerated free charges within the ferroelectric and can be simply explained by a model including both shift and screening currents, associated with the displacement of electrons first antiparallel to and then parallel to the ferroelectric polarization direction.

  3. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers

    International Nuclear Information System (INIS)

    Daranciang, Dan

    2012-01-01

    We show that light drives large-amplitude structural changes in thin films of the prototypical ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on femtosecond timescales, photoinduced changes in the unit-cell tetragonality are observed. These are driven by the motion of photogenerated free charges within the ferroelectric and can be simply explained by a model including both shift and screening currents, associated with the displacement of electrons first antiparallel to and then parallel to the ferroelectric polarization direction.

  4. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications

    Science.gov (United States)

    Sun, Enwei; Cao, Wenwu

    2014-01-01

    In the past decade, domain engineered relaxor-PT ferroelectric single crystals, including (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-PT) and (1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3 (PIN-PMN-PT), with compositions near the morphotropic phase boundary (MPB) have triggered a revolution in electromechanical devices owing to their giant piezoelectric properties and ultra-high electromechanical coupling factors. Compared to traditional PbZr1-xTixO3 (PZT) ceramics, the piezoelectric coefficient d33 is increased by a factor of 5 and the electromechanical coupling factor k33 is increased from 90%. Many emerging rich physical phenomena, such as charged domain walls, multi-phase coexistence, domain pattern symmetries, etc., have posed challenging fundamental questions for scientists. The superior electromechanical properties of these domain engineered single crystals have prompted the design of a new generation electromechanical devices, including sensors, transducers, actuators and other electromechanical devices, with greatly improved performance. It took less than 7 years from the discovery of larger size PMN-PT single crystals to the commercial production of the high-end ultrasonic imaging probe “PureWave”. The speed of development is unprecedented, and the research collaboration between academia and industrial engineers on this topic is truly intriguing. It is also exciting to see that these relaxor-PT single crystals are being used to replace traditional PZT piezoceramics in many new fields outside of medical imaging. The new ternary PIN-PMN-PT single crystals, particularly the ones with Mn-doping, have laid a solid foundation for innovations in high power acoustic projectors and ultrasonic motors, hinting another revolution in underwater SONARs and miniature actuation devices. This article intends to provide a comprehensive review on the development of relaxor-PT single crystals, spanning material discovery, crystal growth

  5. Out-of-plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nano-flakes

    KAUST Repository

    Zhou, Yu

    2017-08-25

    Piezoelectric and ferroelectric properties in the two dimensional (2D) limit are highly desired for nanoelectronic, electromechanical, and optoelectronic applications. Here we report the first experimental evidence of out-of-plane piezoelectricity and ferroelectricity in van der Waals layered α-In2Se3 nano-flakes. The non-centrosymmetric R3m symmetry of the α-In2Se3 samples is confirmed by scanning transmission electron microscopy, second-harmonic generation, and Raman spectroscopy measurements. Domains with opposite polarizations are visualized by piezo-response force microscopy. Single-point poling experiments suggest that the polarization is potentially switchable for α-In2Se3 nano-flakes with thicknesses down to ~ 10 nm. The piezotronic effect is demonstrated in two-terminal devices, where the Schottky barrier can be modulated by the strain-induced piezopotential. Our work on polar α-In2Se3, one of the model 2D piezoelectrics and ferroelectrics with simple crystal structures, shows its great potential in electronic and photonic applications.

  6. Out-of-plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nano-flakes

    KAUST Repository

    Zhou, Yu; Wu, Di; Zhu, Yihan; Cho, Yujin; He, Qing; Yang, Xiao; Herrera, Kevin; Chu, Zhaodong; Han, Yu; Downer, Mike; Peng, Hailin; Lai, Keji

    2017-01-01

    Piezoelectric and ferroelectric properties in the two dimensional (2D) limit are highly desired for nanoelectronic, electromechanical, and optoelectronic applications. Here we report the first experimental evidence of out-of-plane piezoelectricity and ferroelectricity in van der Waals layered α-In2Se3 nano-flakes. The non-centrosymmetric R3m symmetry of the α-In2Se3 samples is confirmed by scanning transmission electron microscopy, second-harmonic generation, and Raman spectroscopy measurements. Domains with opposite polarizations are visualized by piezo-response force microscopy. Single-point poling experiments suggest that the polarization is potentially switchable for α-In2Se3 nano-flakes with thicknesses down to ~ 10 nm. The piezotronic effect is demonstrated in two-terminal devices, where the Schottky barrier can be modulated by the strain-induced piezopotential. Our work on polar α-In2Se3, one of the model 2D piezoelectrics and ferroelectrics with simple crystal structures, shows its great potential in electronic and photonic applications.

  7. Experimental studies on the nonlinear dynamics of ferroelectric thin films and layered ferroelectricum/semiconductor structures in oscillating systems

    International Nuclear Information System (INIS)

    Barz, Kay

    2010-01-01

    In this work experimental techniques for characterization of ferroelectric nm-thin films and ferroelectric/semiconductor structures by means of nonlinear phenomena are discussed. The thin film sample is applied in a series resonant circuit. By recording time series data and amplitude-frequency-characteristics (resonance frequency shift), the nonlinear behavior can be analyzed with respect to the theoretical aspects of these effects in the framework of nonlinear dynamics. The evolving ferroelectric hysteresis is represented by the amplitude-frequency-characteristic in a very detailed form. Interpretations are presented on how transient alterations like fatigue or retention loss, affect the amplitude-frequency-characteristics. Time series analysis allows to separate the specific influence of the nonlinear components and their corresponding time constants. The work closes with suggestions for a systematic application of the presented techniques for an extended characterization of ferroelectric thin films. (orig.)

  8. The relative contribution of ferroelastic and ferroelectric texture to the character of a hard PZT ceramic

    Science.gov (United States)

    Key, Thomas Stallings

    The development of ferroelastic (90°) texture in addition to ferroelectric (180°) texture is essential to maximizing the piezoelectric properties of many hard tetragonal PZTs, including Piezoetechnologies K270. Ferroelastic texture results from motion of domain walls that is dependent on an individual crystals orientation. Increases in ferroelastic texture raises the maximum net polarization that can be achieved by changes in ferroelectric texture. By studying a hard PZT poled under various temperature conditions, insight was gained into factors affecting the development of ferroelastic texture and how ferroelastic texture contributes to piezoelectric properties. Depinning proved to be the major barrier to preventing ferroelastic domain wall motion where strain based domain interactions and polar defect complexes on the domain level appear to be the dominant factors. Insight into the affect of increased domain texture on the relationship between the increasing magnitude of the remnant polarization (|Pr|) and the magnitude of the coercive field (|EC|) was gained by plotting |EC| vs. |Pr| as a function of poling time for a variety of poling temperatures. At low |Pr| values, |EC| increased rapidly as a function of increases in |Pr| regardless of the poling temperature. This relationship was characteristic of samples poled at 25 °C where increases in ferroelastic texture were largely suppressed. Because increases in polarization were still observable changes in ferroelectric texture most responsible for the polarization increase and like play a strong role in the initial |EC| vs. |Pr| relationship. As |Pr| increased beyond 5 to 8 iC/cm2, the slope of |EC| vs. |Pr| decreased where the reduction in slope increased with poling temperature. This only occurred in samples poled at elevated temperatures where ferroelastic texture was know to ultimately develop during the poling process, leading to the suggestion that the change in slope was due to increases in combined

  9. Polarization enhancement and ferroelectric switching enabled by interacting magnetic structures in DyMnO3 thin films

    KAUST Repository

    Lu, Chengliang

    2013-12-02

    The mutual controls of ferroelectricity and magnetism are stepping towards practical applications proposed for quite a few promising devices in which multiferroic thin films are involved. Although ferroelectricity stemming from specific spiral spin ordering has been reported in highly distorted bulk perovskite manganites, the existence of magnetically induced ferroelectricity in the corresponding thin films remains an unresolved issue, which unfortunately halts this step. In this work, we report magnetically induced electric polarization and its remarkable response to magnetic field (an enhancement of ?800% upon a field of 2 Tesla at 2 K) in DyMnO3 thin films grown on Nb-SrTiO3 substrates. Accompanying with the large polarization enhancement, the ferroelectric coercivity corresponding to the magnetic chirality switching field is significantly increased. A picture based on coupled multicomponent magnetic structures is proposed to understand these features. Moreover, different magnetic anisotropy related to strain-suppressed GdFeO 3-type distortion and Jahn-Teller effect is identified in the films.

  10. Structural, magnetic and electrical properties of ferromagnetic/ferroelectric multilayers

    International Nuclear Information System (INIS)

    Sirena, M.; Kaul, E.; Guimpel, J.; Steren, L. B.; Pedreros, M. B.; Rodriguez, C. A.

    2011-01-01

    The La 0.75 Sr 0.25 MnO 3 (LSMO)/Ba 0.7 Sr 0.3 TiO 3 (BSTO) superlattices and bilayers, where LSMO is ferromagnetic and BSTO is ferroelectric, were grown by dc sputtering. X-ray diffraction indicates that the samples present a textured growth with the c axis perpendicular to the substrate. Magnetization measurements show a decrease of the sample's magnetization for decreasing ferromagnetic thickness. This effect could be related to the presence of biaxial strain and a magnetic dead layer in the samples. Conductive atomic force microscopy indicates that the samples present a total covering of the ferromagnetic layer for a ferroelectric thickness higher than four unit cells. Transport tunneling of the carriers seems to be the preferred conduction mechanism through the ferroelectric layer. These are promising results for the development of multiferroic tunnel junctions.

  11. p-n Junction Dynamics Induced in a Graphene Channel by Ferroelectric-Domain Motion in the Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kurchak, Anatolii I. [National Academy of Sciences of Ukraine (NASU), Kiev (Ukraine); Eliseev, Eugene A. [National Academy of Sciences of Ukraine (NASU), Kiev (Ukraine); Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Strikha, Maksym V. [National Academy of Sciences of Ukraine (NASU), Kiev (Ukraine); Taras Shevchenko Kyiv National Univ., Kyiv (Ukraine); Morozovska, Anna N. [National Academy of Sciences of Ukraine (NASU), Kiev (Ukraine)

    2017-08-30

    The p - n junction dynamics induced in a graphene channel by stripe-domain nucleation, motion, and reversal in a ferroelectric substrate is explored using a self-consistent approach based on Landau-Ginzburg-Devonshire phenomenology combined with classical electrostatics. Relatively low gate voltages are required to induce the hysteresis of ferroelectric polarization and graphene charge in response to the periodic gate voltage. Pronounced nonlinear hysteresis of graphene conductance with a wide memory window corresponds to high amplitudes of gate voltage. Also, we reveal the extrinsic size effect in the dependence of the graphene-channel conductivity on its length. We predict that the top-gate–dielectric-layer–graphene-channel–ferroelectric-substrate nanostructure considered here can be a promising candidate for the fabrication of the next generation of modulators and rectifiers based on the graphene p - n junctions.

  12. Theoretical model for thin ferroelectric films and the multilayer structures based on them

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, A. S., E-mail: starkov@iue.tuwien.ac.at; Pakhomov, O. V. [St. Petersburg National Research Univeristy ITMO, Institute of Refrigeration and Biotechnologies (Russian Federation); Starkov, I. A. [Vienna University of Technology, Institute for Microelectronics (Austria)

    2013-06-15

    A modified Weiss mean-field theory is used to study the dependence of the properties of a thin ferroelectric film on its thickness. The possibility of introducing gradient terms into the thermodynamic potential is analyzed using the calculus of variations. An integral equation is introduced to generalize the well-known Langevin equation to the case of the boundaries of a ferroelectric. An analysis of this equation leads to the existence of a transition layer at the interface between ferroelectrics or a ferroelectric and a dielectric. The permittivity of this layer is shown to depend on the electric field direction even if the ferroelectrics in contact are homogeneous. The results obtained in terms of the Weiss model are compared with the results of the models based on the correlation effect and the presence of a dielectric layer at the boundary of a ferroelectric and with experimental data.

  13. Theoretical model for thin ferroelectric films and the multilayer structures based on them

    International Nuclear Information System (INIS)

    Starkov, A. S.; Pakhomov, O. V.; Starkov, I. A.

    2013-01-01

    A modified Weiss mean-field theory is used to study the dependence of the properties of a thin ferroelectric film on its thickness. The possibility of introducing gradient terms into the thermodynamic potential is analyzed using the calculus of variations. An integral equation is introduced to generalize the well-known Langevin equation to the case of the boundaries of a ferroelectric. An analysis of this equation leads to the existence of a transition layer at the interface between ferroelectrics or a ferroelectric and a dielectric. The permittivity of this layer is shown to depend on the electric field direction even if the ferroelectrics in contact are homogeneous. The results obtained in terms of the Weiss model are compared with the results of the models based on the correlation effect and the presence of a dielectric layer at the boundary of a ferroelectric and with experimental data

  14. Theoretical model for thin ferroelectric films and the multilayer structures based on them

    Science.gov (United States)

    Starkov, A. S.; Pakhomov, O. V.; Starkov, I. A.

    2013-06-01

    A modified Weiss mean-field theory is used to study the dependence of the properties of a thin ferroelectric film on its thickness. The possibility of introducing gradient terms into the thermodynamic potential is analyzed using the calculus of variations. An integral equation is introduced to generalize the well-known Langevin equation to the case of the boundaries of a ferroelectric. An analysis of this equation leads to the existence of a transition layer at the interface between ferroelectrics or a ferroelectric and a dielectric. The permittivity of this layer is shown to depend on the electric field direction even if the ferroelectrics in contact are homogeneous. The results obtained in terms of the Weiss model are compared with the results of the models based on the correlation effect and the presence of a dielectric layer at the boundary of a ferroelectric and with experimental data.

  15. Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates

    KAUST Repository

    Chao, Chunying; Ren, Zhaohui; Zhu, Yihan; Xiao, Zhen; Liu, Zhenya; Xú , Gang; Mai, Jiangquan; Li, Xiang; Shen, Ge; Han, Gaorong

    2012-01-01

    Free-standing single-crystal PbTiO 3 nanoplates (see picture) were synthesized by a facile hydrothermal method. A "self-templated" crystal growth is presumed to lead to the formation of the PbTiO 3 nanoplates, which have ferroelectric single

  16. Quantum switching of polarization in mesoscopic ferroelectrics

    International Nuclear Information System (INIS)

    Sa de Melo, C.A.

    1996-01-01

    A single domain of a uniaxial ferroelectric grain may be thought of as a classical permanent memory. At the mesoscopic level this system may experience considerable quantum fluctuations due to tunneling between two possible memory states, thus destroying the classical permanent memory effect. To study these quantum effects the concrete example of a mesoscopic uniaxial ferroelectric grain is discussed, where the orientation of the electric polarization determines two possible memory states. The possibility of quantum switching of the polarization in mesoscopic uniaxial ferroelectric grains is thus proposed. To determine the degree of memory loss, the tunneling rate between the two polarization states is calculated at zero temperature both in the absence and in the presence of an external static electric field. In addition, a discussion of crossover temperature between thermally activated behavior and quantum tunneling behavior is presented. And finally, environmental effects (phonons, defects, and surfaces) are also considered. copyright 1996 The American Physical Society

  17. Ferroelectric devices using lead zirconate titanate (PZT) nanoparticles.

    Science.gov (United States)

    Paik, Young Hun; Kojori, Hossein Shokri; Kim, Sung Jin

    2016-02-19

    We successfully demonstrate the synthesis of lead zirconate titanate nanoparticles (PZT NPs) and a ferroelectric device using the synthesized PZT NPs. The crystalline structure and the size of the nanocrystals are studied using x-ray diffraction and transmission electron microscopy, respectively. We observe PZT NPs and this result matches dynamic light scattering measurements. A solution-based low-temperature process is used to fabricate PZT NP-based devices on an indium tin oxide substrate. The fabricated ferroelectric devices are characterized using various optical and electrical measurements and we verify ferroelectric properties including ferroelectric hysteresis and the ferroelectric photovoltaic effect. Our approach enables low-temperature solution-based processes that could be used for various applications. To the best of our knowledge, this low-temperature solution processed ferroelectric device using PZT NPs is the first successful demonstration of its kind.

  18. Ferroelectricity in undoped hafnium oxide

    International Nuclear Information System (INIS)

    Polakowski, Patrick; Müller, Johannes

    2015-01-01

    We report the observation of ferroelectric characteristics in undoped hafnium oxide thin films in a thickness range of 4–20 nm. The undoped films were fabricated using atomic layer deposition (ALD) and embedded into titanium nitride based metal-insulator-metal (MIM) capacitors for electrical evaluation. Structural as well as electrical evidence for the appearance of a ferroelectric phase in pure hafnium oxide was collected with respect to film thickness and thermal budget applied during titanium nitride electrode formation. Using grazing incidence X-Ray diffraction (GIXRD) analysis, we observed an enhanced suppression of the monoclinic phase fraction in favor of an orthorhombic, potentially, ferroelectric phase with decreasing thickness/grain size and for a titanium nitride electrode formation below crystallization temperature. The electrical presence of ferroelectricity was confirmed using polarization measurements. A remanent polarization P r of up to 10 μC cm −2 as well as a read/write endurance of 1.6 × 10 5 cycles was measured for the pure oxide. The experimental results reported here strongly support the intrinsic nature of the ferroelectric phase in hafnium oxide and expand its applicability beyond the doped systems

  19. Low-temperature synthesis and structural properties of ferroelectric K 3WO 3F 3 elpasolite

    Science.gov (United States)

    Atuchin, V. V.; Gavrilova, T. A.; Kesler, V. G.; Molokeev, M. S.; Aleksandrov, K. S.

    2010-06-01

    Low-temperature ferroelectric G2 polymorph of K 3WO 3F 3 has been prepared by chemical synthesis. Structural and chemical properties of the final product have been evaluated with X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Structure parameters of G2-K 3WO 3F 3 are refined by the Rietveld method from XRD data measured at room temperature (space group Cm, Z = 2, a = 8.7350(3) Å, b = 8.6808(5) Å, c = 6.1581(3) Å, β = 135.124(3) Å, V = 329.46(3) Å 3; RB = 2.47%). Partial ordering of oxygen and fluorine atoms has been found over anion positions. Mechanism of ferroelectric phase transition in A 2BMO 3F 3 oxyfluorides is discussed.

  20. Ferroelectric capacitor with reduced imprint

    Science.gov (United States)

    Evans, Jr., Joseph T.; Warren, William L.; Tuttle, Bruce A.; Dimos, Duane B.; Pike, Gordon E.

    1997-01-01

    An improved ferroelectric capacitor exhibiting reduced imprint effects in comparison to prior art capacitors. A capacitor according to the present invention includes top and bottom electrodes and a ferroelectric layer sandwiched between the top and bottom electrodes, the ferroelectric layer comprising a perovskite structure of the chemical composition ABO.sub.3 wherein the B-site comprises first and second elements and a dopant element that has an oxidation state greater than +4. The concentration of the dopant is sufficient to reduce shifts in the coercive voltage of the capacitor with time. In the preferred embodiment of the present invention, the ferroelectric element comprises Pb in the A-site, and the first and second elements are Zr and Ti, respectively. The preferred dopant is chosen from the group consisting of Niobium, Tantalum, and Tungsten. In the preferred embodiment of the present invention, the dopant occupies between 1 and 8% of the B-sites.

  1. Tensile strain effect in ferroelectric perovskite oxide thin films on spinel magnesium aluminum oxide substrate

    Science.gov (United States)

    Zhou, Xiaolan

    Ferroelectrics are used in FeRAM (Ferroelectric random-access memory). Currently (Pb,Zr)TiO3 is the most common ferroelectric material. To get lead-free and high performance ferroelectric material, we investigated perovskite ferroelectric oxides (Ba,Sr)TiO3 and BiFeO3 films with strain. Compressive strain has been investigated intensively, but the effects of tensile strain on the perovskite films have yet to be explored. We have deposited (Ba,Sr)TiO3, BiFeO3 and related films by pulsed laser deposition (PLD) and analyzed the films by X-ray diffractometry (XRD), atomic force microscopy (AFM), etc. To obtain inherently fully strained films, the selection of the appropriate substrates is crucial. MgAl2O4 matches best with good quality and size, yet the spinel structure has an intrinsic incompatibility to that of perovskite. We introduced a rock-salt structure material (Ni 1-xAlxO1+delta) as a buffer layer to mediate the structural mismatch for (Ba,Sr)TiO3 films. With buffer layer Ni1-xAlxO1+delta, we show that the BST films have high quality crystallization and are coherently epitaxial. AFM images show that the films have smoother surfaces when including the buffer layer, indicating an inherent compatibility between BST-NAO and NAO-MAO. In-plane Ferroelectricity measurement shows double hysteresis loops, indicating an antiferroelectric-like behavior: pinned ferroelectric domains with antiparallel alignments of polarization. The Curie temperatures of the coherent fully strained BST films are also measured. It is higher than 900°C, at least 800°C higher than that of bulk. The improved Curie temperature makes the use of BST as FeRAM feasible. We found that the special behaviors of ferroelectricity including hysteresis loop and Curie temperature are due to inherent fully tensile strain. This might be a clue of physics inside ferroelectric stain engineering. An out-of-plane ferroelectricity measurement would provide a full whole story of the tensile strain. However, a

  2. Structural, magnetic, and ferroelectric properties of T-like cobalt-doped BiFeO3 thin films

    Science.gov (United States)

    Young, T.; Sharma, P.; Kim, D. H.; Ha, Thai Duy; Juang, Jenh-Yih; Chu, Y.-H.; Seidel, J.; Nagarajan, V.; Yasui, S.; Itoh, M.; Sando, D.

    2018-02-01

    We present a comprehensive study of the physical properties of epitaxial cobalt-doped BiFeO3 films ˜50 nm thick grown on (001) LaAlO3 substrates. X-ray diffraction and magnetic characterization demonstrate high quality purely tetragonal-like (T') phase films with no parasitic impurities. Remarkably, the step-and-terrace film surface morphology can be fully recovered following a local electric-field-induced rhombohedral-like to T' phase transformation. Local switching spectroscopy experiments confirm the ferroelectric switching to follow previously reported transition pathways. Critically, we show unequivocal evidence for conduction at domain walls between polarization variants in T'-like BFO, making this material system an attractive candidate for domain wall-based nanoelectronics.

  3. Studies of switching structures in ferroelectric liquid crystal devices

    International Nuclear Information System (INIS)

    Pabla, D.S.

    1998-01-01

    The fast, bistable electro-optic response of ferroelectric liquid crystal (FLC) devices has made them prime candidates for use in display applications. However, before these applications can become widely commercially viable a number of key issues relating to the switching within these devices need to be addressed. One of these is related to the fact that while there has been much work done on modelling the switching process in FLC devices, with some moderate success, in the main these models have not accurately accounted for the physical processes taking place. In order to rectify this situation we present a simple, multi-variable approach which includes important physical phenomenon such as stressed states, partial and domain switching. Through using this model we learn more about the dynamic molecular profiles which may exist in devices, and use this as a springboard to undertake a comprehensive theoretical and experimental study of the molecular profiles of chevron structures under different types of addressing pulses and voltages. This entails modelling the dynamic profiles using a simple non flow reorientation theory and comparing these simulations directly with experimental data obtained through the use of two different optical characterisation techniques. Our findings show quite conclusively that for monopolar addressing within low and high voltage regimes and for low voltage bipolar pulses during the early stages of switching, the dynamic reorientation near the surfaces and central regions of the device lags the reorientation within the bulk. The reverse however being true for the high voltage bipolar addressing case. These results for chevron structures differ from previous theoretical predictions made by others using equations derived from the flow coupled chiral smectic C continuum theory. These flow coupled simulations however, refer to reorientation in bookshelf structures rather than the chevron type structures thought to exist in FLC devices. As

  4. Studies of switching structures in ferroelectric liquid crystal devices

    Energy Technology Data Exchange (ETDEWEB)

    Pabla, D.S

    1998-07-01

    The fast, bistable electro-optic response of ferroelectric liquid crystal (FLC) devices has made them prime candidates for use in display applications. However, before these applications can become widely commercially viable a number of key issues relating to the switching within these devices need to be addressed. One of these is related to the fact that while there has been much work done on modelling the switching process in FLC devices, with some moderate success, in the main these models have not accurately accounted for the physical processes taking place. In order to rectify this situation we present a simple, multi-variable approach which includes important physical phenomenon such as stressed states, partial and domain switching. Through using this model we learn more about the dynamic molecular profiles which may exist in devices, and use this as a springboard to undertake a comprehensive theoretical and experimental study of the molecular profiles of chevron structures under different types of addressing pulses and voltages. This entails modelling the dynamic profiles using a simple non flow reorientation theory and comparing these simulations directly with experimental data obtained through the use of two different optical characterisation techniques. Our findings show quite conclusively that for monopolar addressing within low and high voltage regimes and for low voltage bipolar pulses during the early stages of switching, the dynamic reorientation near the surfaces and central regions of the device lags the reorientation within the bulk. The reverse however being true for the high voltage bipolar addressing case. These results for chevron structures differ from previous theoretical predictions made by others using equations derived from the flow coupled chiral smectic C continuum theory. These flow coupled simulations however, refer to reorientation in bookshelf structures rather than the chevron type structures thought to exist in FLC devices. As

  5. Conduction at domain walls in oxide multiferroics

    Science.gov (United States)

    Seidel, J.; Martin, L. W.; He, Q.; Zhan, Q.; Chu, Y.-H.; Rother, A.; Hawkridge, M. E.; Maksymovych, P.; Yu, P.; Gajek, M.; Balke, N.; Kalinin, S. V.; Gemming, S.; Wang, F.; Catalan, G.; Scott, J. F.; Spaldin, N. A.; Orenstein, J.; Ramesh, R.

    2009-03-01

    Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO3. The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features.

  6. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)

    2000-03-31

    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  7. The structure of new germanates, gallates, borates and silicates with laser, piezo, ferroelectric and ion conducting properties

    International Nuclear Information System (INIS)

    Belokonev, E.L.

    1994-01-01

    The results of structure investigation of more than 50 new crystalline germanates, gallates, borogermanates, borates, and silicates with laser, piezo, ferroelectric, and ion-conducting properties are described. The structure - properties relationship is examined. 71 refs.; 24 figs.; 10 tabs

  8. Removable polytetrafluoroethylene template based epitaxy of ferroelectric copolymer thin films

    Science.gov (United States)

    Xia, Wei; Chen, Qiusong; Zhang, Jian; Wang, Hui; Cheng, Qian; Jiang, Yulong; Zhu, Guodong

    2018-04-01

    In recent years ferroelectric polymers have shown their great potentials in organic and flexible electronics. To meet the requirements of high-performance and low energy consumption of novel electronic devices and systems, structural and electrical properties of ferroelectric polymer thin films are expected to be further optimized. One possible way is to realize epitaxial growth of ferroelectric thin films via removable high-ordered polytetrafluoroethylene (PTFE) templates. Here two key parameters in epitaxy process, annealing temperature and applied pressure, are systematically studied and thus optimized through structural and electrical measurements of ferroelectric copolymer thin films. Experimental results indicate that controlled epitaxial growth is realized via suitable combination of both parameters. Annealing temperature above the melting point of ferroelectric copolymer films is required, and simultaneously moderate pressure (around 2.0 MPa here) should be applied. Over-low pressure (around 1.0 MPa here) usually results in the failure of epitaxy process, while over-high pressure (around 3.0 MPa here) often results in residual of PTFE templates on ferroelectric thin films.

  9. X-ray investigation of lateral hetero-structures of inversion domains in LiNbO{sub 3}, KTiOPO{sub 4} and KTiOAsO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Lyford, Thomas S. [Panalytical Research, The Sussex Innovation Centre, Falmer, Brighton, BN1 9SB (United Kingdom); Collins, Stephen P., E-mail: steve.collins@diamond.ac.uk [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Fewster, Paul F. [Panalytical Research, The Sussex Innovation Centre, Falmer, Brighton, BN1 9SB (United Kingdom); Thomas, Pamela A. [Department of Physics, University of Warwick, CV4 7AL (United Kingdom); Panalytical Research, The Sussex Innovation Centre, Falmer, Brighton, BN1 9SB (United Kingdom)

    2015-05-01

    Periodically-poled ferroelectric crystals are studied by observing their superlattice (grating) diffraction profiles with high-resolution X-ray diffraction. In order to successfully model the data, the effects of strain, and sample and beam coherence, must be taken into account. In this paper periodically domain-inverted (PDI) ferroelectric crystals are studied using high-resolution X-ray diffraction. Rocking curves and reciprocal-space maps of the principal symmetric Bragg reflections in LiNbO{sub 3} (LN) (Λ = 5 µm), KTiOPO{sub 4} (KTP) (Λ = 9 µm) and KTiOAsO{sub 4} (KTA) (Λ = 39 µm) are presented. For all the samples strong satellite reflections were observed as a consequence of the PDI structure. Analysis of the satellites showed that they were caused by a combination of coherent and incoherent scattering between the adjacent domains. Whilst the satellites contained phase information regarding the structure of the domain wall, this information could not be rigorously extracted without a priori knowledge of the twinning mechanism. Analysis of the profiles reveals strain distributions of Δd/d = 1.6 × 10{sup −4} and 2.0 × 10{sup −4} perpendicular to domain walls in KTP and LN samples, respectively, and lateral correlation lengths of 63 µm (KTP), 194 µm (KTA) and 10 µm (LN). The decay of crystal truncation rods in LN and KTP was found to support the occurrence of surface corrugations.

  10. Monte Carlo simulations for describing the ferroelectric-relaxor crossover in BaTiO3-based solid solutions

    International Nuclear Information System (INIS)

    Padurariu, Leontin; Enachescu, Cristian; Mitoseriu, Liliana

    2011-01-01

    The properties induced by the M 4+ addition (M = Zr, Sn, Hf) in BaM x Ti 1-x O 3 solid solutions have been described on the basis of a 2D Ising-like network and Monte Carlo calculations, in which BaMO 3 randomly distributed unit cells were considered as being non-ferroelectric. The polarization versus temperature dependences when increasing the M 4+ concentration (x) showed a continuous reduction of the remanent polarization and of the critical temperature corresponding to the ferroelectric-paraelectric transition and a modification from a first-order to a second-order phase transition with a broad temperature range for which the transition takes place, as commonly reported for relaxors. The model also describes the system's tendency to reduce the polar clusters' average size while increasing their stability in time at higher temperatures above the Curie range, when a ferroelectric-relaxor crossover is induced by increasing the substitution (x). The equilibrium micropolar states during the polarization reversal process while describing the P(E) loops were comparatively monitored for the ferroelectric (x = 0) and relaxor (x = 0.3) states. Polarization reversal in relaxor compositions proceeds by the growth of several nucleated domains (the 'labyrinthine domain pattern') instead of the large scale domain formation typical for the ferroelectric state. The spatial and temporal evolution of the polar clusters in BaM x Ti 1-x O 3 solid solutions at various x has also been described by the correlation length and correlation time. As expected for the ferroelectric-relaxor crossover characterized by a progressive increasing degree of disorder, local fluctuations cause a reducing correlation time when the substitution degree increases, at a given temperature. The correlation time around the Curie temperature increases, reflecting the increasing stability in time of some polar nanoregions in relaxors in comparison with ferroelectrics, which was experimentally proved in

  11. Imaging Local Polarization in Ferroelectric Thin Films by Coherent X-Ray Bragg Projection Ptychography

    Science.gov (United States)

    Hruszkewycz, S. O.; Highland, M. J.; Holt, M. V.; Kim, Dongjin; Folkman, C. M.; Thompson, Carol; Tripathi, A.; Stephenson, G. B.; Hong, Seungbum; Fuoss, P. H.

    2013-04-01

    We used x-ray Bragg projection ptychography (BPP) to map spatial variations of ferroelectric polarization in thin film PbTiO3, which exhibited a striped nanoscale domain pattern on a high-miscut (001) SrTiO3 substrate. By converting the reconstructed BPP phase image to picometer-scale ionic displacements in the polar unit cell, a quantitative polarization map was made that was consistent with other characterization. The spatial resolution of 5.7 nm demonstrated here establishes BPP as an important tool for nanoscale ferroelectric domain imaging, especially in complex environments accessible with hard x rays.

  12. Retention of intermediate polarization states in ferroelectric materials enabling memories for multi-bit data storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dong; Asadi, Kamal; Blom, Paul W. M.; Leeuw, Dago M. de, E-mail: deleeuw@mpip-mainz.mpg.de [Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Katsouras, Ilias [Holst Centre, High Tech Campus 31, 5656AE Eindhoven (Netherlands); Groen, Wilhelm A. [Holst Centre, High Tech Campus 31, 5656AE Eindhoven (Netherlands); Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1 2629 HS, Delft (Netherlands)

    2016-06-06

    A homogeneous ferroelectric single crystal exhibits only two remanent polarization states that are stable over time, whereas intermediate, or unsaturated, polarization states are thermodynamically instable. Commonly used ferroelectric materials however, are inhomogeneous polycrystalline thin films or ceramics. To investigate the stability of intermediate polarization states, formed upon incomplete, or partial, switching, we have systematically studied their retention in capacitors comprising two classic ferroelectric materials, viz. random copolymer of vinylidene fluoride with trifluoroethylene, P(VDF-TrFE), and Pb(Zr,Ti)O{sub 3}. Each experiment started from a discharged and electrically depolarized ferroelectric capacitor. Voltage pulses were applied to set the given polarization states. The retention was measured as a function of time at various temperatures. The intermediate polarization states are stable over time, up to the Curie temperature. We argue that the remarkable stability originates from the coexistence of effectively independent domains, with different values of polarization and coercive field. A domain growth model is derived quantitatively describing deterministic switching between the intermediate polarization states. We show that by using well-defined voltage pulses, the polarization can be set to any arbitrary value, allowing arithmetic programming. The feasibility of arithmetic programming along with the inherent stability of intermediate polarization states makes ferroelectric materials ideal candidates for multibit data storage.

  13. Retention of intermediate polarization states in ferroelectric materials enabling memories for multi-bit data storage

    Science.gov (United States)

    Zhao, Dong; Katsouras, Ilias; Asadi, Kamal; Groen, Wilhelm A.; Blom, Paul W. M.; de Leeuw, Dago M.

    2016-06-01

    A homogeneous ferroelectric single crystal exhibits only two remanent polarization states that are stable over time, whereas intermediate, or unsaturated, polarization states are thermodynamically instable. Commonly used ferroelectric materials however, are inhomogeneous polycrystalline thin films or ceramics. To investigate the stability of intermediate polarization states, formed upon incomplete, or partial, switching, we have systematically studied their retention in capacitors comprising two classic ferroelectric materials, viz. random copolymer of vinylidene fluoride with trifluoroethylene, P(VDF-TrFE), and Pb(Zr,Ti)O3. Each experiment started from a discharged and electrically depolarized ferroelectric capacitor. Voltage pulses were applied to set the given polarization states. The retention was measured as a function of time at various temperatures. The intermediate polarization states are stable over time, up to the Curie temperature. We argue that the remarkable stability originates from the coexistence of effectively independent domains, with different values of polarization and coercive field. A domain growth model is derived quantitatively describing deterministic switching between the intermediate polarization states. We show that by using well-defined voltage pulses, the polarization can be set to any arbitrary value, allowing arithmetic programming. The feasibility of arithmetic programming along with the inherent stability of intermediate polarization states makes ferroelectric materials ideal candidates for multibit data storage.

  14. Texture and anisotropy in ferroelectric lead metaniobate

    Science.gov (United States)

    Iverson, Benjamin John

    Ferroelectric lead metaniobate, PbNb2O6, is a piezoelectric ceramic typically used because of its elevated Curie temperature and anisotropic properties. However, the piezoelectric constant, d33, is relatively low in randomly oriented ceramics when compared to other ferroelectrics. Crystallographic texturing is often employed to increase the piezoelectric constant because the spontaneous polarization axes of grains are better aligned. In this research, crystallographic textures induced through tape casting are distinguished from textures induced through electrical poling. Texture is described using multiple quantitative approaches utilizing X-ray and neutron time-of-flight diffraction. Tape casting lead metaniobate with an inclusion of acicular template particles induces an orthotropic texture distribution. Templated grain growth from seed particles oriented during casting results in anisotropic grain structures. The degree of preferred orientation is directly linked to the shear behavior of the tape cast slurry. Increases in template concentration, slurry viscosity, and casting velocity lead to larger textures by inducing more particle orientation in the tape casting plane. The maximum 010 texture distributions were two and a half multiples of a random distribution. Ferroelectric texture was induced by electrical poling. Electric poling increases the volume of material oriented with the spontaneous polarization direction in the material. Samples with an initial paraelectric texture exhibit a greater change in the domain volume fraction during electrical poling than randomly oriented ceramics. In tape cast samples, the resulting piezoelectric response is proportional to the 010 texture present prior to poling. This results in property anisotropy dependent on initial texture. Piezoelectric properties measured on the most textured ceramics were similar to those obtained with a commercial standard.

  15. Ferroelectric and magnetic properties in high-pressure synthesized BiFeO3 compound

    International Nuclear Information System (INIS)

    Zhai, L.; Shi, Y.G.; Gao, J.L.; Tang, S.L.; Du, Y.W.

    2011-01-01

    Highlights: → A high-density polycrystalline BiFeO 3 compound was synthesized by high-pressure annealing method. → The sample showed weak ferromagnetic at room temperature, which could be attributed to the lattice distortion induced by the high-pressure annealing. → Irregular domains were observed on the surface of the sample by piezoresponse force microscopy, and a typical hysteresis loop was obtained. - Abstract: High-density polycrystalline BiFeO 3 compound was synthesized by high-pressure annealing. Measurements of crystal structure, magnetic, and ferroelectric properties were made on the sample. It was found that the sample was almost single phase with a distorted R3c structure. The results of the X-ray photoelectron spectra demonstrate that the oxidation state of Fe in the sample is Fe 3+ . The room-temperature field dependence of magnetization for BiFeO 3 exhibits a hysteretic behavior. The observed weak ferromagnetism could be ascribed to the lattice distortion induced by the high-pressure annealing. In addition, the local ferroelectric performance of the sample was studied by piezoresponse force microscopy.

  16. Ferroelectric crystals for photonic applications including nanoscale fabrication and characterization techniques

    CERN Document Server

    Ferraro, Pietro; De Natale, Paolo

    2015-01-01

    This book details the latest achievements in ferroelectric domain engineering and characterization at micro- and nano-scale dimensions and periods. It combines basic research of magnetic materials with device and production orientation.

  17. Domain configuration changes under electric field-induced antiferroelectric-ferroelectric phase transitions in NaNbO3-based ceramics

    International Nuclear Information System (INIS)

    Guo, Hanzheng; Randall, Clive A.; Shimizu, Hiroyuki; Mizuno, Youichi

    2015-01-01

    We recently developed a feasible crystal chemistry strategy to stabilize the antiferroelectricity in NaNbO 3 through a chemical substitution to decrease the tolerance factor and increase the average electronegativity of the system [Shimizu et al., Dalton Trans. 44, 10763 (2015) and Guo et al., J. Appl. Phys. 117, 214103 (2015)]. Two novel lead-free antiferroelectric (AFE) solid solutions, (1-x)NaNbO 3 -xCaZrO 3 and (1-x)NaNbO 3 -xSrZrO 3 , have been found to exhibit the double polarization hysteresis typical of a reversible AFE ↔ ferroelectric (FE) phase transition. In this study, as demonstrated by (1-x)NaNbO 3 -xCaZrO 3 system, the influence of chemical modification and electrical poling on the AFE/FE phase stability was investigated, primarily focusing on the microstructural and crystallographic evolutions. Together with the macroscopic polarization hysteresis measurements, a well-demonstrated structure-property relationship was presented. It was found that the CaZrO 3 substitution into NaNbO 3 can effectively destabilize the FE Q phase and correspondingly lead to a spontaneous reverting to AFE P phase. In contrast to the reversible AFE ↔ FE phase transition, the domain morphology evolution exhibits irreversible nature with a growing process of the orientational domains after applying electric field. Moreover, a multiple-zone axes electron diffraction map of P and Q phases has been summarized and is believed to be an efficient diagram to determine the AFE/FE nature of the NaNbO 3 -based systems

  18. Fast Ferroelectric L-Band Tuner for Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2011-03-01

    Analysis and modeling is presented for a fast microwave tuner to operate at 700 MHz which incorporates ferroelectric elements whose dielectric permittivity can be rapidly altered by application of an external voltage. This tuner could be used to correct unavoidable fluctuations in the resonant frequency of superconducting cavities in accelerator structures, thereby greatly reducing the RF power needed to drive the cavities. A planar test version of the tuner has been tested at low levels of RF power, but at 1300 MHz to minimize the physical size of the test structure. This test version comprises one-third of the final version. The tests show performance in good agreement with simulations, but with losses in the ferroelectric elements that are too large for practical use, and with issues in bonding of ferroelectric elements to the metal walls of the tuner structure.

  19. Fast Ferroelectric L-Band Tuner for Superconducting Cavities

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2011-01-01

    Analysis and modeling is presented for a fast microwave tuner to operate at 700 MHz which incorporates ferroelectric elements whose dielectric permittivity can be rapidly altered by application of an external voltage. This tuner could be used to correct unavoidable fluctuations in the resonant frequency of superconducting cavities in accelerator structures, thereby greatly reducing the RF power needed to drive the cavities. A planar test version of the tuner has been tested at low levels of RF power, but at 1300 MHz to minimize the physical size of the test structure. This test version comprises one-third of the final version. The tests show performance in good agreement with simulations, but with losses in the ferroelectric elements that are too large for practical use, and with issues in bonding of ferroelectric elements to the metal walls of the tuner structure.

  20. Ferroelectric polymer gates for non-volatile field effect control of ferromagnetism in (Ga, Mn)As layers

    International Nuclear Information System (INIS)

    Stolichnov, I; Riester, S W E; Mikheev, E; Setter, N; Rushforth, A W; Edmonds, K W; Campion, R P; Foxon, C T; Gallagher, B L; Jungwirth, T; Trodahl, H J

    2011-01-01

    (Ga, Mn)As and other diluted magnetic semiconductors (DMS) attract a great deal of attention for potential spintronic applications because of the possibility of controlling the magnetic properties via electrical gating. Integration of a ferroelectric gate on the DMS channel adds to the system a non-volatile memory functionality and permits nanopatterning via the polarization domain engineering. This topical review is focused on the multiferroic system, where the ferromagnetism in the (Ga, Mn)As DMS channel is controlled by the non-volatile field effect of the spontaneous polarization. Use of ferroelectric polymer gates in such heterostructures offers a viable alternative to the traditional oxide ferroelectrics generally incompatible with DMS. Here we review the proof-of-concept experiments demonstrating the ferroelectric control of ferromagnetism, analyze the performance issues of the ferroelectric gates and discuss prospects for further development of the ferroelectric/DMS heterostructures toward the multiferroic field effect transistor. (topical review)

  1. Characteristics of 1–3-type ferroelectric ceramic/auxetic polymer composites

    International Nuclear Information System (INIS)

    Topolov, V Yu; Bowen, C R

    2008-01-01

    This paper presents modelling and simulation results on 1–3 piezoactive composites comprising a range of ferroelectric ceramics, which are assumed to have variable properties and an auxetic polymer (i.e. a material with a negative Poisson ratio) that improves the hydrostatic piezoelectric response of the composite. Dependences of the effective piezoelectric coefficients and related parameters of the 1–3 composites on the degree of poling, mobility of the 90° domain walls within ceramic grains, on the volume fraction of the ceramic component and on the Poisson ratio of the polymer component have been calculated and analysed. The role of the piezoelectric anisotropy and domain-orientation processes in improving and optimising the effective parameters, piezoelectric activity and sensitivity of 1–3 ferroelectric ceramic/auxetic composites is discussed

  2. Controlling the properties of ferroelectric-nickelate interfaces

    Science.gov (United States)

    Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit; Han, Myung-Geun; Zhu, Yimei; Ismail-Beigi, Sohrab; Walker, Frederick; Ahn, Charles

    2015-03-01

    Ferroelectrics are a class of materials that exhibit a stable, reversible polarization making them useful for non-volatile electronic devices. In devices consisting of thin film ferroelectric PZT acting as a gate and a thin film of the conductive oxide LaNiO3 grown on LaAlO3(001) acting as a channel, we have realized a large change in room temperature channel resistance by switching the ferroelectric polarization. The effect of switching the polarization of the ferroelectric is to modify the electronic structure of the interface between the gate and channel, resulting in conduction in the otherwise insulating ferroelectric. Here, we discuss how changing the epitaxial strain and interface termination of LaNiO3 can result in larger changes in resistivity. The epitaxial strain is varied by growing the devices on LaAlO3 for tensile strain and SrTiO3 for compressive strain. An interface termination of either an atomic layer of NiO2 or LaO is achieved via atomic layering using oxygen plasma assisted molecular beam epitaxy (MBE).

  3. Electronic and Structural Properties of ABO3: Role of the B-O Coulomb Repulsions for Ferroelectricity.

    Science.gov (United States)

    Miura, Kaoru; Azuma, Masaki; Funakubo, Hiroshi

    2011-01-17

    We have investigated the role of the Ti-O Coulomb repulsions in the appearance of the ferroelectric state in BaTiO3 as well as the role of the Zn-O Coulomb repulsions in BiZn0.5Ti0.5O3, using a first-principles calculation with optimized structures. In tetragonal BaTiO3, it is found that the Coulomb repulsions between Ti 3s and 3p states and O 2s and 2p states have an important role for the appearance of Ti ion displacement. In BiZn0.5Ti0.5O3, on the other hand, the stronger Zn-O Coulomb repulsions, which are due to the 3s, 3p, and 3d (d10) states of the Zn ion, have more important role than the Ti-O Coulomb repulsions for the appearance of the tetragonal structure. Our suggestion is consistent with the other ferroelectric perovskite oxides ABO3 in the appearance of tetragonal structures as well as rhombohedral structures.

  4. Fast Ferroelectric L-Band Tuner for ILC Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2010-03-15

    Design, analysis, and low-power tests are described on a 1.3 GHz ferroelectric tuner that could find application in the International Linear Collider or in Project X at Fermi National Accelerator Laboratory. The tuner configuration utilizes a three-deck sandwich imbedded in a WR-650 waveguide, in which ferroelectric bars are clamped between conducting plates that allow the tuning bias voltage to be applied. Use of a reduced one-third structure allowed tests of critical parameters of the configuration, including phase shift, loss, and switching speed. Issues that were revealed that require improvement include reducing loss tangent in the ferroelectric material, development of a reliable means of brazing ferroelectric elements to copper parts of the tuner, and simplification of the mechanical design of the configuration.

  5. Topological domain walls in helimagnets

    Science.gov (United States)

    Schoenherr, P.; Müller, J.; Köhler, L.; Rosch, A.; Kanazawa, N.; Tokura, Y.; Garst, M.; Meier, D.

    2018-05-01

    Domain walls naturally arise whenever a symmetry is spontaneously broken. They interconnect regions with different realizations of the broken symmetry, promoting structure formation from cosmological length scales to the atomic level1,2. In ferroelectric and ferromagnetic materials, domain walls with unique functionalities emerge, holding great promise for nanoelectronics and spintronics applications3-5. These walls are usually of Ising, Bloch or Néel type and separate homogeneously ordered domains. Here we demonstrate that a wide variety of new domain walls occurs in the presence of spatially modulated domain states. Using magnetic force microscopy and micromagnetic simulations, we show three fundamental classes of domain walls to arise in the near-room-temperature helimagnet iron germanium. In contrast to conventional ferroics, the domain walls exhibit a well-defined inner structure, which—analogous to cholesteric liquid crystals—consists of topological disclination and dislocation defects. Similar to the magnetic skyrmions that form in the same material6,7, the domain walls can carry a finite topological charge, permitting an efficient coupling to spin currents and contributions to a topological Hall effect. Our study establishes a new family of magnetic nano-objects with non-trivial topology, opening the door to innovative device concepts based on helimagnetic domain walls.

  6. Electronic ferroelectricity in carbon-based systems: from reality of organic conductors to promises of polymers and graphene nano-ribbons

    International Nuclear Information System (INIS)

    Kirova, Natasha; Brazovskii, Serguei

    2014-01-01

    Ferroelectricity is a rising demand in fundamental and applied solid state physics. Ferroelectrics are used in microelectronics as active gate materials, in capacitors, electro-optical-acoustic modulators, etc. There is a particular demand for plastic ferroelectrics, e.g. as a sensor for acoustic imaging in medicine and beyond, in shapeable capacitors, etc. Microscopic mechanisms of ferroelectric polarization in traditional materials are typically ionic. In this talk we discuss the electronic ferroelectrics – carbon-based materials: organic crystals, conducting polymers and graphene nano-ribbons. The motion of walls, separating domains with opposite electric polarisation, can be influenced and manipulated by terahertz and infra-red range optics

  7. Manipulating the ferroelectric polarization state of BaTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S.; Rioult, M.; Stanescu, D.; Magnan, H.; Barbier, A., E-mail: antoine.barbier@cea.fr

    2016-05-31

    Controlling the ferroelectric polarization at macroscopic or microscopic levels is crucial in the framework of the development of ferroelectric materials used in yet challenging photo-electrochemical (PEC) cells and spintronic applications. We report here on polarization methods allowing to electrically polarize prototypical samples of BaTiO{sub 3} (001) films. Epitaxial single crystalline layers were grown up to a thickness of 25 nm by atomic oxygen assisted molecular beam epitaxy on 1 at.% Nb doped SrTiO{sub 3} (001) single crystals. The samples were both microscopically and macroscopically polarized using Piezoresponse Force Microscopy and electrochemical poling in an electrolyte respectively. In addition we demonstrate the possibility to retrieve a quasi-native mixed ferroelectric polarization state after annealing. These polarization methods may be applied to many other ferroelectric thin films. - Highlights: • Ferroelectricity of BaTiO{sub 3} layers can be micro- and macroscopically controlled. • Microscopic ferroelectric domains are defined with piezoresponse force microscopy. • Poling in a LiClO{sub 4} electrolyte is a macroscopic poling method. • Air annealing above the Curie temperature “resets” the polarization state.

  8. On the relationship between field cycling and imprint in ferroelectric Hf0.5Zr0.5O2

    Science.gov (United States)

    Fengler, F. P. G.; Hoffmann, M.; Slesazeck, S.; Mikolajick, T.; Schroeder, U.

    2018-05-01

    Manifold research has been done to understand the detailed mechanisms behind the performance instabilities of ferroelectric capacitors based on hafnia. The wake-up together with the imprint might be the most controversially discussed phenomena so far. Among crystallographic phase change contributions and oxygen vacancy diffusion, electron trapping as the origin has been discussed recently. In this publication, we provide evidence that the imprint is indeed caused by electron trapping into deep states at oxygen vacancies. This impedes the ferroelectric switching and causes a shift of the hysteresis. Moreover, we show that the wake-up mechanism can be caused by a local imprint of the domains in the pristine state by the very same root cause. The various domain orientations together with an electron trapping can cause a constriction of the hysteresis and an internal bias field in the pristine state. Additionally, we show that this local imprint can even cause almost anti-ferroelectric like behavior in ferroelectric films.

  9. Fast Ferroelectric L-band Tuner

    International Nuclear Information System (INIS)

    Kazakov, S. Yu.; Yakovlev, V. P.; Hirshfield, J. L.; Kanareykin, A. D.; Nenasheva, E. A.

    2006-01-01

    Description is given of a preliminary conceptual design for a tuner that employs a new ferroelectric ceramic that allows fast changes in coupling between the SRF acceleration structure of a linac and the external RF feeding line. The switching time of this device is in the range of a few microseconds. Utilization of this tuner is predicted to decrease Ohmic losses in the acceleration structure and thereby to reduce the power consumption of the linac. Using parameters of the TESLA-800 collider as an example, it is shown that it may be possible to reduce the ac mains power consumption by 12 MW, or about by 10%. The design of the tuner that is described allows reduced pulsed and average heating of the ferroelectric ceramics

  10. Novel Photovoltaic Devices Using Ferroelectric Material and Colloidal Quantum Dots

    Science.gov (United States)

    Paik, Young Hun

    the two materials, this dissertation focused on material synthesis for low cost solution process for both materials, fabrication of various device structures and electrical/optical characterization to understand the underlying physics. We successfully demonstrated lead sulfide quantum dots (PbS QDs) and lead zirconate titanate nanoparticles (PZT NPs) in an aqueous solution and fabricated a photosensitive device. Solution based low-temperature process was used to fabricate a PbS QD and a PZT NP device. We exhibited a superior photoresponse and ferroelectric photovoltaic properties with the novel PZT NP device and studied the physics on domain wall effect and internal polarity effect. PZT NP was mainly investigated because PZT NP device is the first report as a photosensitive device with a successful property demonstration, as we know of. PZT's crystalline structure and the size of the nanocrystals were studied using X-ray diffraction and TEM (Transmission electron microscopy) respectively. We observed < 100 nm of PZT NPs and this result matched with DLS (dynamic light scattering) measurement. We fabricated ferroelectric devices using the PZT NPs for the various optical and electrical characterizations and verified ferroelectric properties including ferroelectric hysteresis loop. We also observed a typical ferroelectric photovoltaic effect from a PZT NP based device which was fabricated on an ITO substrate. We synthesized colloidal quantum dots (CQD) with the inexpensive soluble process. Fabricated PbS QD was used for the hybrid device with PZT thin films. J-V measured and the result shows superior open circuit voltage characteristics compared to conventional PbS QD PV devices, and resulting the improvement of the solar cell efficiency. This Ferroelectrics and Quantum Dots (FE-QDs) device also the first trial and the success as we know of.

  11. Quantum mechanical studies of complex ferroelectric perovskites

    Science.gov (United States)

    Ramer, Nicholas John

    In many electronic device applications, there is a need to interconvert electrical energy and other types of energy. Ferroelectric materials, which possess a voltage-dependent polarization, can enable this energy conversion process. Because of the broad interest in ferroelectric materials for these devices, there is a critical research effort, both experimental and theoretical, to understand these materials and aid in the development of materials with improved properties. This thesis presents detailed quantum mechanical investigations of the behavior of a complex ferroelectric perovskite under applied stress. In particular, we have chosen to study the solid solution PbZr1-xTix O3 (PZT). Since the study of ferroelectricity involves understanding both its structural and electronic signatures in materials, it has necessitated the development of a novel theoretical technique which improves the accuracy of the pseudopotentials used in our density functional theory calculations as well as a new method for constructing three-dimensional atomistic responses to small amounts of external stress. To examine the material's behavior under larger amounts of stress, we have studied the behavior of a composition of PZT lying near a structural phase boundary. On either side of the phase boundary, the material is characterized by a different polarization direction and may easily be switched between phases by applying external stress. In addition to stress-induced phase transitions, most ferroelectric materials also have composition dependent phase boundaries. Since different compositions of PZT would require increased computational effort, we have formulated an improved virtual crystal approach that makes tractable the study of the entire composition range. Using this method, we have been able to show for the first time via first-principles calculations, a composition dependent phase transition in a ferroelectric material. This thesis has accomplished three important goals: new

  12. Electric field and temperature scaling of polarization reversal in silicon doped hafnium oxide ferroelectric thin films

    International Nuclear Information System (INIS)

    Zhou, Dayu; Guan, Yan; Vopson, Melvin M.; Xu, Jin; Liang, Hailong; Cao, Fei; Dong, Xianlin; Mueller, Johannes; Schenk, Tony; Schroeder, Uwe

    2015-01-01

    HfO 2 -based binary lead-free ferroelectrics show promising properties for non-volatile memory applications, providing that their polarization reversal behavior is fully understood. In this work, temperature-dependent polarization hysteresis measured over a wide applied field range has been investigated for Si-doped HfO 2 ferroelectric thin films. Our study indicates that in the low and medium electric field regimes (E < twofold coercive field, 2E c ), the reversal process is dominated by the thermal activation on domain wall motion and domain nucleation; while in the high-field regime (E > 2E c ), a non-equilibrium nucleation-limited-switching mechanism dominates the reversal process. The optimum field for ferroelectric random access memory (FeRAM) applications was determined to be around 2.0 MV/cm, which translates into a 2.0 V potential applied across the 10 nm thick films

  13. Stability of polarization in organic ferroelectric metal-insulator-semiconductor (MIS) structures

    Energy Technology Data Exchange (ETDEWEB)

    Kalbitz, Rene; Fruebing, Peter; Gerhard, Reimund [Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam (Germany); Taylor, Martin [School of Electronic Engineering, Bangor University, Dean Street, Bangor Gwynedd, LL57 1UT (United Kingdom)

    2011-07-01

    Ferroelectric field effect transistors (FeFETs) offer the prospect of an organic-based memory device. Since the charge transport in such devices is confined to the interface between the insulator and the semiconductor, the focus of the present study was on the investigation of this region. Capacitance-voltage (C-V) measurements of all-organic MIS devices with poly(vinylidenefluoride- trifluoroethylene) (P(VDF-TrFE)) as gate insulator and poly(3-hexylthiophene)(P3HT) as semiconductor were carried out. When the structure was driven into depletion, a positive flat-band voltage shift was observed arising from the change in polarization state of the ferroelectric insulator. When driven into accumulation, the polarization was reversed. It is shown that both polarization states are stable. However, negative charge trapped at the interface during the depletion cycle masks the negative shift in flat-band voltage expected during the sweep to accumulation voltages. Measurements on P(VDF-TrFE)/P3HT based FeFETs yield further evidence for fixed charges at the interface. Output characteristics suggest the injection of negative charges into the interface region when a depletion voltage is applied between source and gate contact.

  14. Emergent Low-Symmetry Phases and Large Property Enhancements in Ferroelectric KNbO 3 Bulk Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lummen, Tom T. A. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 USA; Leung, J. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 USA; Kumar, Amit [School of Mathematics and Physics, Queen' s University Belfast, University Road, Belfast BT71NN Northern Ireland UK; Wu, X. [Department of Physics, University of Texas at Austin, Austin TX 78712 USA; Ren, Y. [Department of Physics, University of Texas at Austin, Austin TX 78712 USA; VanLeeuwen, Brian K. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 USA; Haislmaier, Ryan C. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 USA; Holt, Martin [Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439 USA; Lai, Keji [Department of Physics, University of Texas at Austin, Austin TX 78712 USA; Kalinin, Sergei V. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Gopalan, Venkatraman [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 USA

    2017-06-19

    The design of new or enhanced functionality in materials is traditionally viewed as requiring the discovery of new chemical compositions through synthesis. Large property enhancements may however also be hidden within already well-known materials, when their structural symmetry is deviated from equilibrium through a small local strain or field. Here, the discovery of enhanced material properties associated with a new metastable phase of monoclinic symmetry within bulk KNbO3 is reported. This phase is found to coexist with the nominal orthorhombic phase at room temperature, and is both induced by and stabilized with local strains generated by a network of ferroelectric domain walls. While the local microstructural shear strain involved is only approximate to 0.017%, the concurrent symmetry reduction results in an optical second harmonic generation response that is over 550% higher at room temperature. Moreover, the meandering walls of the low-symmetry domains also exhibit enhanced electrical conductivity on the order of 1 S m(-1). This discovery reveals a potential new route to local engineering of significant property enhancements and conductivity through symmetry lowering in ferroelectric crystals.

  15. Review of crystal and domain structures in the PbZrxTi1-xO3 solid solution

    DEFF Research Database (Denmark)

    Woodward, D.I.; Knudsen, J.; Reaney, I.M.

    2005-01-01

    Several intermediate phases have recently been identified in the PbZrxTi1-xO3 (PZT) phase diagram, located close to the antiferroelectric-ferroelectric and morphotropic phase boundaries. Superlattice reflections from some of these phases are clearly visible in the appropriate electron diffraction...... patterns and have therefore been used to provide further information concerning their symmetry. Here, the structural distortions giving rise to the new phases are discussed and their domain structures compared with those of tetragonal and rhombohedral PZT. Coherent structural arguments are presented...

  16. Ferroelectricity and Piezoelectricity in Free-Standing Polycrystalline Films of Plastic Crystals.

    Science.gov (United States)

    Harada, Jun; Yoneyama, Naho; Yokokura, Seiya; Takahashi, Yukihiro; Miura, Atsushi; Kitamura, Noboru; Inabe, Tamotsu

    2018-01-10

    Plastic crystals represent a unique compound class that is often encountered in molecules with globular structures. The highly symmetric cubic crystal structure of plastic crystals endows these materials with multiaxial ferroelectricity that allows a three-dimensional realignment of the polarization axes of the crystals, which cannot be achieved using conventional molecular ferroelectric crystals with low crystal symmetry. In this work, we focused our attention on malleability as another characteristic feature of plastic crystals. We have synthesized the new plastic/ferroelectric ionic crystals tetramethylammonium tetrachloroferrate(III) and tetramethylammonium bromotrichloroferrate(III), and discovered that free-standing translucent films can be easily prepared by pressing powdered samples of these compounds. The thus obtained polycrystalline films exhibit ferroelectric polarization switching and a relatively large piezoelectric response at room temperature. The ready availability of functional films demonstrates the practical utility of such plastic/ferroelectric crystals, and considering the vast variety of possible constituent cations and anions, a wide range of applications should be expected for these unique and attractive functional materials.

  17. Structure of the fully ferroelectric/fully ferroelastic orthohombic room-temperature phase of cobalt bromine boracite, Co3B7O13Br and nickel chlorine boracite, Ni3B7O13Cl

    International Nuclear Information System (INIS)

    Kubel, F.; Mao, S.Y.; Schmid, H.

    1992-01-01

    The X-ray crystal structures of optically controlled single-domain crystals of fully ferroelectric/fully ferroelastic cobalt bromine boracite, Co 3 B 7 O 13 Br (Co-Br) at 298 K [M r = 540.38, orthorhombic, Pca2 1 , a = 8.5614 (2), b = 8.5657 (2), c = 12.1196 (3) A, V = 888.78 (4) A 3 , Z = 4, D x = 4.04 Mg m -3 , λ(Mo Kα) = 0.7107 A, μ = 10.61 mm -1 , F(000) = 1020, R = 7.0, wR = 5.4%, 2824 reflections] and of nickel chlorine boracite, Ni 3 B 7 O 13 Cl (Ni-Cl) at 298 K [M r = 495.25, orthorhombic, Pca2 1 , a = 8.5105 (4), b = 8.4984 (4), c = 12.0324 (5) A, V = 870.25 (7) A 3 , Z = 4, D x = 3.78 Mg m -3 , λ(Mo Kα) = 0.7107 A, μ = 6.8 mm -1 , F(000) = 960, R = 3.5, wR = 3.1%, 2082 reflections] are reported. The metal surroundings of Co-Br and Ni-Cl were analyzed in detail and show two metal sites (Co2, Co3; Ni2, Ni3) with chemically similar environments and one metal site (Co1; Ni1) with a different environment. Six B atoms have a tetrahedral or slightly distorted tetrahedral coordination, whereas one B atom (B4) has triangular surroundings in both compounds. (orig.)

  18. Surface potential at a ferroelectric grain due to asymmetric screening of depolarization fields

    Energy Technology Data Exchange (ETDEWEB)

    Genenko, Yuri A., E-mail: genenko@mm.tu-darmstadt.de; Hirsch, Ofer [Technische Universität Darmstadt, Darmstadt (Germany); Erhart, Paul [Chalmers University of Technology, Gothenburg (Sweden)

    2014-03-14

    Nonlinear screening of electric depolarization fields, generated by a stripe domain structure in a ferroelectric grain of a polycrystalline material, is studied within a semiconductor model of ferroelectrics. It is shown that the maximum strength of local depolarization fields is rather determined by the electronic band gap than by the spontaneous polarization magnitude. Furthermore, field screening due to electronic band bending and due to presence of intrinsic defects leads to asymmetric space charge regions near the grain boundary, which produce an effective dipole layer at the surface of the grain. This results in the formation of a potential difference between the grain surface and its interior of the order of 1 V, which can be of either sign depending on defect transition levels and concentrations. Exemplary acceptor doping of BaTiO{sub 3} is shown to allow tuning of the said surface potential in the region between 0.1 and 1.3 V.

  19. The influence of the coexistence of ferroelectric and antiferroelectric states on the lead lanthanum zirconate titanate crystal structure

    International Nuclear Information System (INIS)

    Ishchuk, V M; Baumer, V N; Sobolev, V L

    2005-01-01

    We present results of detailed investigation of the crystal structure of Pb 1-3x/2 La x (Zr 1-y Ti y )O 3 solid solutions. In this letter our attention is concentrated on the series of solid solutions with x = 6% usually referred to as relaxor ferroelectrics. We have established the reasons for the non-cubic crystal structure of these solid solutions at the temperatures below T C . It is demonstrated that the peculiarities of the properties of Pb 1-3x/2 La x (Zr 1-y Ti y )O 3 depend on the position of a particular solid solution with respect to the hysteresis ferroelectric-antiferroelectric region in the 'Ti-content-temperature' phase diagram. (letter to the editor)

  20. Study of the structure and ferroelectric behavior of BaBi4-xLaxTi4O15 ceramics

    Science.gov (United States)

    Khokhar, Anita; Goyal, Parveen K.; Thakur, O. P.; Sreenivas, K.

    2015-06-01

    The structure and ferroelectric properties of Lanthanum substituted barium bismuth titanate BaBi4-xLaxTi4O15 (0 ≤ x ≤ 0.5) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material. The distribution of lanthanum into the perovskite layers and (Bi2O2)2+ layers of BaBi4Ti4O15 ceramics have been revealed through Raman spectroscopy. At lower value of x, it is seen that La3+ ions prefer to substitute A-site Bi3+ ions in the perovskite layers while for higher x values, La3+ ions get incorporated into the (Bi2O2)2+ layers. A critical La content of x ˜ 0.2 in BaBi4-xLaxTi4O15 is seen to exhibit a large remnant polarization (Pr) with low coercive field (Ec). The improvement in the ferroelectric properties of La substituted BaBi4Ti4O15 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of lanthanum ion.

  1. Study of the structure, dielectric and ferroelectric behavior of BaBi4+δTi4O15 ceramics

    Science.gov (United States)

    Khokhar, Anita; Goyal, Parveen K.; Thakur, O. P.; Sreenivas, K.

    2016-05-01

    The structure and ferroelectric properties of excess bismuth doped barium bismuth titanate BaBi4+δTi4O15 (δ = 2 - 10 wt.%)) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material with a change in the orthorhombic distortion with varying excess of bismuth content. There is no change in the phase transition temperature (Tm) while the relaxor behaviour has been modified significantly with excess of bismuth doping. Saturated hysteresis loops with high remnant polarization (Pr ~ 12.5 µC/cm2), low coercive fields (Ec ~ 26 kV/cm) are measured and a high piezoelectric coefficient (d33 ~ 29 pC/N) is achieved in poled BaBi4Ti4O15 ceramics prepared with up to 8 wt.% of excess bismuth oxide. The improvement in the ferroelectric properties with increase in the excess bismuth content in BaBi4Ti4O15 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of excess bismuth.

  2. Study of the mapping mechanism of ferroelectric domains with the scanning force microscope; Untersuchung der Abbildungsmechanismen ferroelektrischer Domaenen mit dem Rasterkraftmikroskop

    Energy Technology Data Exchange (ETDEWEB)

    Jungk, T.

    2006-12-15

    The piezo-force microscopy (PFM) allows the mapping of ferroelectric domains until the nanometer range. In spite of its simple function principle it was hitherto not completely understood. In ordser to develop the PFM further to a quantitative analysis method its methodical aspects were analyzed. It was shown that the fundamental mapping mechanism is based on the inverse piezo-effect. Different artefacts to be found in the literature could therefore be reduced to a measurement background. Furthermore the influence of the electrode geometry was analyzed. The width of doamin walls was systematically measured and simulated with a mode, whereby a maximal resolution of 17 nm was reached. By the development of a correction procedure for the exact detection of the forces acting on the spring-beam the lateral signals measured on domain walls could by newly interpreted. So the ''Lateral Electrostatic Force Microscopy'' was developed.

  3. Strain-induced structural, magnetic and ferroelectric properties of ...

    Indian Academy of Sciences (India)

    2017-07-25

    Jul 25, 2017 ... deposited on the composite film surface by DC sputtering techniques. The magnetic measurements of these composite films were performed using a vibratory sample magnetometer. (VSM). Ferroelectric properties of films were measured using a Precision multiferroic analyser. All measurements were per-.

  4. The application of nonlinear dynamics in the study of ferroelectric materials

    International Nuclear Information System (INIS)

    Blochwitz, S.; Habel, R.; Diestelhorst, M.; Beige, H.

    1996-01-01

    It is well known that the structural phase transitions in ferroelectric materials are connected with strong nonlinear properties. So we can expect all features of nonlinear dynamical systems such as period-doubling cascades and chaos in a dynamical system that contains ferroelectric materials. Therefore we can apply nonlinear dynamics to these ferroelectric materials and we are doing it in two directions: (i) We study the structural phase transitions by analyzing the large signal behaviour with means of nonlinear dynamics. (ii) We control the chaotic behaviour of the system with the method proposed by Ott, Grebogi and Yorke. (authors)

  5. Ferroelectric switching of elastin

    Science.gov (United States)

    Liu, Yuanming; Cai, Hong-Ling; Zelisko, Matthew; Wang, Yunjie; Sun, Jinglan; Yan, Fei; Ma, Feiyue; Wang, Peiqi; Chen, Qian Nataly; Zheng, Hairong; Meng, Xiangjian; Sharma, Pradeep; Zhang, Yanhang; Li, Jiangyu

    2014-01-01

    Ferroelectricity has long been speculated to have important biological functions, although its very existence in biology has never been firmly established. Here, we present compelling evidence that elastin, the key ECM protein found in connective tissues, is ferroelectric, and we elucidate the molecular mechanism of its switching. Nanoscale piezoresponse force microscopy and macroscopic pyroelectric measurements both show that elastin retains ferroelectricity at 473 K, with polarization on the order of 1 μC/cm2, whereas coarse-grained molecular dynamics simulations predict similar polarization with a Curie temperature of 580 K, which is higher than most synthetic molecular ferroelectrics. The polarization of elastin is found to be intrinsic in tropoelastin at the monomer level, analogous to the unit cell level polarization in classical perovskite ferroelectrics, and it switches via thermally activated cooperative rotation of dipoles. Our study sheds light onto a long-standing question on ferroelectric switching in biology and establishes ferroelectricity as an important biophysical property of proteins. This is a critical first step toward resolving its physiological significance and pathological implications. PMID:24958890

  6. Identification of inversion domains in KTiOPO{sub 4}via resonant X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizi, Federica, E-mail: federica.fabrizi@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom); Thomas, Pamela A. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Nisbet, Gareth; Collins, Stephen P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom)

    2015-05-14

    The identification and high-resolution mapping of the absolute crystallographic structure in multi-domain ferroelectric KTiOPO{sub 4} is achieved through a novel synchrotron X-ray diffraction method. On a single Bragg reflection, the intensity ratio in resonant diffraction below and above the Ti absorption K edge demonstrates a domain contrast up to a factor of ∼270, thus implementing a non-contact, non-destructive imaging technique with micrometre spatial resolution, applicable to samples of arbitrarily large dimensions. A novel method is presented for the identification of the absolute crystallographic structure in multi-domain polar materials such as ferroelectric KTiOPO{sub 4}. Resonant (or ‘anomalous’) X-ray diffraction spectra collected across the absorption K edge of Ti (4.966 keV) on a single Bragg reflection demonstrate a huge intensity ratio above and below the edge, providing a polar domain contrast of ∼270. This allows one to map the spatial domain distribution in a periodically inverted sample, with a resolution of ∼1 µm achieved with a microfocused beam. This non-contact, non-destructive technique is well suited for samples of large dimensions (in contrast with traditional resonant X-ray methods based on diffraction from Friedel pairs), and its potential is particularly relevant in the context of physical phenomena connected with an absence of inversion symmetry, which require characterization of the underlying absolute atomic structure (such as in the case of magnetoelectric coupling and multiferroics)

  7. Low-temperature structure and the ferroelectric phase transitions in the CdTi O3 perovskite

    Science.gov (United States)

    Kennedy, Brendan J.; Zhou, Qingdi; Zhao, Shipeng; Jia, Fanhao; Ren, Wei; Knight, Kevin S.

    2017-12-01

    The paraelectric-ferroelectric transition in CdTi O3 has been monitored using high-resolution neutron diffraction data. This necessitated preparing a sample enriched in 114Cd. A subtle, but significant, anisotropy in the thermal expansion of the lattice parameters for CdTi O3 associated with the transition to the polar structure was observed. First-principles calculations are presented to understand energies, phonon dispersion, and structures of possible phases with different symmetries.

  8. Advantages and Challenges of Relaxor-PbTiO3 Ferroelectric Crystals for Electroacoustic Transducers- A Review

    Science.gov (United States)

    Zhang, Shujun; Li, Fei; Jiang, Xiaoning; Kim, Jinwook; Luo, Jun; Geng, Xuecang

    2014-01-01

    Relaxor-PbTiO3 (PT) based ferroelectric crystals with the perovskite structure have been investigated over the last few decades due to their ultrahigh piezoelectric coefficients (d33 > 1500 pC/N) and electromechanical coupling factors (k33 > 90%), far outperforming state-of-the-art ferroelectric polycrystalline Pb(Zr,Ti)O3 ceramics, and are at the forefront of advanced electroacoustic applications. In this review, the performance merits of relaxor-PT crystals in various electroacoustic devices are presented from a piezoelectric material viewpoint. Opportunities come from not only the ultrahigh properties, specifically coupling and piezoelectric coefficients, but through novel vibration modes and crystallographic/domain engineering. Figure of merits (FOMs) of crystals with various compositions and phases were established for various applications, including medical ultrasonic transducers, underwater transducers, acoustic sensors and tweezers. For each device application, recent developments in relaxor-PT ferroelectric crystals were surveyed and compared with state-of-the-art polycrystalline piezoelectrics, with an emphasis on their strong anisotropic features and crystallographic uniqueness, including engineered domain - property relationships. This review starts with an introduction on electroacoustic transducers and the history of piezoelectric materials. The development of the high performance relaxor-PT single crystals, with a focus on their uniqueness in transducer applications, is then discussed. In the third part, various FOMs of piezoelectric materials for a wide range of ultrasound applications, including diagnostic ultrasound, therapeutic ultrasound, underwater acoustic and passive sensors, tactile sensors and acoustic tweezers, are evaluated to provide a thorough understanding of the materials’ behavior under operational conditions. Structure-property-performance relationships are then established. Finally, the impacts and challenges of relaxor

  9. Bismuth-, Tin-, and Lead-Containing Metal-Organic Materials: Synthesis, Structure, Photoluminescence, Second Harmonic Generation, and Ferroelectric Properties

    Science.gov (United States)

    Wibowo, Arief Cahyo

    Metal-Organic Materials (MOMs) contain metal moieties and organic ligands that combine to form discrete (e.g. metal-organic polyhedra, spheres or nanoballs, metal-organic polygons) or polymeric structures with one-, two-, or three-dimensional periodicities that can exhibit a variety of properties resulting from the presence of the metal moieties and/or ligand connectors in the structure. To date, MOMs with a range of functional attributes have been prepared, including record-breaking porosity, catalytic properties, molecular magnetism, chemical separations and sensing ability, luminescence and NLO properties, multiferroic, ferroelectric, and switchable molecular dielectric properties. We are interested in synthesizing non-centrosymmetric MOM single crystals possessing one of the ten polar space groups required for non-linear optical properties (such as second harmonic generation) and ferroelectric applications. This thesis is divided into two main parts: materials with optical properties, such as photoluminescence and materials for targeted applications such as second harmonic generation and ferroelectric properties. This thesis starts with an introduction describing material having centrosymmetric, non-polar space groups, single crystals structures and their photoluminescence properties. These crystals exhibit very interesting and rare structures as well as interesting photoluminescence properties. Chapters 2-5 of this thesis focus on photoluminescent properties of new MOMs, and detail the exploratory research involving the comparatively rare bismuth, lead, and tin coordination polymers. Specifically, the formation of single white-light emitting phosphors based on the combination of bismuth or lead with pyridine-2,5-dicarboxylate is discussed (Chapter 2). The observation of a new Bi2O2 layer and a new Bi4O 3 chain in bismuth terephthalate-based coordination polymers is presented in Chapter 3, while the formation of diverse structures of tin-based coordination

  10. Structural transitions in hybrid improper ferroelectric C a3T i2O7 tuned by site-selective isovalent substitutions: A first-principles study

    Science.gov (United States)

    Li, C. F.; Zheng, S. H.; Wang, H. W.; Gong, J. J.; Li, X.; Zhang, Y.; Yang, K. L.; Lin, L.; Yan, Z. B.; Dong, Shuai; Liu, J.-M.

    2018-05-01

    C a3T i2O7 is an experimentally confirmed hybrid improper ferroelectric material, in which the electric polarization is induced by a combination of the coherent Ti O6 octahedral rotation and tilting. In this work, we investigate the tuning of ferroelectricity of C a3T i2O7 using isovalent substitutions on Ca sites. Due to the size mismatch, larger/smaller alkaline earths prefer A'/A sites, respectively, allowing the possibility for site-selective substitutions. Without extra carriers, such site-selected isovalent substitutions can significantly tune the Ti O6 octahedral rotation and tilting, and thus change the structure and polarization. Using the first-principles calculations, our study reveals that three substituted cases (Sr, Mg, and Sr+Mg) show divergent physical behaviors. In particular, (CaTiO3) 2SrO becomes nonpolar, which can reasonably explain the suppression of polarization upon Sr substitution observed in experiment. In contrast, the polarization in (MgTiO3) 2CaO is almost doubled upon substitutions, while the estimated coercivity for ferroelectric switching does not change. The (MgTiO3) 2SrO remains polar but its structural space group changes, with moderate increased polarization and possible different ferroelectric switching paths. Our study reveals the subtle ferroelectricity in the A3T i2O7 family and suggests one more practical route to tune hybrid improper ferroelectricity, in addition to the strain effect.

  11. Domains within domains and walls within walls: Evidence for polar domains in cryogenic SrTiO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Salje, E.K.H.; Aktas, O.; Carpenter, M.A.; Laguta, Valentyn; Scott, J.F.

    2013-01-01

    Roč. 111, č. 24 (2013), "247603-1"-"247603-5" ISSN 0031-9007 Institutional support: RVO:68378271 Keywords : ferroelectric domains * SrTiO 3 * phase transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.728, year: 2013

  12. Ferroelectric and electrical characterization of multiferroic BiFeO3 at the single nanoparticle level

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Rama K [ORNL; Bogle, K A [University of New South Wales, Sydney, Australia; Kumar, Amit [ORNL; Jesse, Stephen [ORNL; Magaraggia, R [University of Glasgow; Stamps, R [University of Glasgow; Ogale, S [National Chemical Laboratory, India; Potdar, H S [National Chemical Laboratory, India

    2011-01-01

    Ferroelectric BiFeO3 (BFO) nanoparticles deposited on epitaxial substrates of SrRuO3 (SRO) and La1xSrxMnO3 (LSMO) were studied using band excitation piezoresponse spectroscopy (BEPS), piezoresponse force microscopy (PFM), and ferromagnetic resonance (FMR). BEPS confirms that the nanoparticles are ferroelectric in nature. Switching behavior of nanoparticle clusters were studied and showed evidence for inhomogeneous switching. The dimensionality of domains within nanoparticles was found to be fractal in nature, with a dimensionality constant of 1.4, on par with ferroelectric BFO thin-films under 100 nm in thickness. Ferromagnetic resonance studies indicate BFO nanoparticles only weakly affect the magnetic response of LSMO.

  13. Ferroelectric and electrical characterization of multiferroic BiFeO3 at the single nanoparticle level

    Science.gov (United States)

    Vasudevan, R. K.; Bogle, K. A.; Kumar, A.; Jesse, S.; Magaraggia, R.; Stamps, R.; Ogale, S. B.; Potdar, H. S.; Nagarajan, V.

    2011-12-01

    Ferroelectric BiFeO3 (BFO) nanoparticles deposited on epitaxial substrates of SrRuO3 (SRO) and La1-xSrxMnO3 (LSMO) were studied using band excitation piezoresponse spectroscopy (BEPS), piezoresponse force microscopy (PFM), and ferromagnetic resonance (FMR). BEPS confirms that the nanoparticles are ferroelectric in nature. Switching behavior of nanoparticle clusters were studied and showed evidence for inhomogeneous switching. The dimensionality of domains within nanoparticles was found to be fractal in nature, with a dimensionality constant of ˜1.4, on par with ferroelectric BFO thin-films under 100 nm in thickness. Ferromagnetic resonance studies indicate BFO nanoparticles only weakly affect the magnetic response of LSMO.

  14. Strain tunable ferroelectric and dielectric properties of BaZrO3

    International Nuclear Information System (INIS)

    Zhang, Yajun; Liu, Man; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie

    2014-01-01

    The crucial role of epitaxial (in-plane) strain on the structural, electronic, energetic, ferroelectric, and dielectric properties of BaZrO 3 (BZO) is investigated using density-functional theory calculations. We demonstrate that the BZO crystal subjected to a critical compressive (or tensile) strain exhibits non-trivial spontaneous polarization that is higher than that of well-known ferroelectrics BaTiO 3 , while the BZO crystal is essentially paraelectric in the absence of strain. The electronic structure and Born-effective-charge analyses elucidate that the strain-induced paraelectric-to-ferroelectric transition is driven by the orbital hybridization of d-p electrons between zirconium and oxygen. Through the strain-induced paraelectric-to-ferroelectric phase transition, the dielectric response of BZO is significantly enhanced by the in-plane strain. The tensile strain increases the in-plane dielectric constant by a factor of seven with respect to that without the strain, while the compression tends to enhance the out-of-plane dielectric response. Therefore, strain engineering makes BZO an important electromechanical material due to the diversity in ferroelectric and dielectric properties.

  15. Molecular ferroelectrics: where electronics meet biology.

    Science.gov (United States)

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-12-28

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with the ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by an overview of the fundamentals of ferroelectricity. The latest developments in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also described.

  16. Domain morphology controlled crystal habits in PbTiO{sub 3} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dudhe, C.M., E-mail: chandraguptadudhe@gmail.com; Khambadkar, S.J.

    2015-11-05

    Various crystal habits and associated domain structures in PbTiO{sub 3} nanocrystals synthesized by a modified sol–gel method have been studied. Structural and morphological characterizations of synthesized nanoparticles have been done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was found from the -z coordinates of O{sub 1} and O{sub 2} that the Ti–O{sub 6} octahedra were distorted slightly, favorable for the ferroelectric nature. TEM images show butterfly like, plate like, irregular sphere like and oval-shaped habits of the nanocrystals. 90° and 180° domain structures in these crystal habits were explored from their morphologies and appearance in the field of views. The mutual association between the crystal habit and the direction spontaneous polarization P{sub s} due to domain structures was explored. Domain wall energies of 90° and 180° domains were also estimated from the kinetic process of domain nucleation. - Highlights: • Various crystal habits of PbTiO{sub 3} nanoparticles were examined by TEM. • 90° and 180° domains were explored in the nanocrystal. • Crystal habits and domain structures were correlated. • Domain wall energies were estimated.

  17. A hybrid ferroelectric-flash memory cells

    Science.gov (United States)

    Park, Jae Hyo; Byun, Chang Woo; Seok, Ki Hwan; Kim, Hyung Yoon; Chae, Hee Jae; Lee, Sol Kyu; Son, Se Wan; Ahn, Donghwan; Joo, Seung Ki

    2014-09-01

    A ferroelectric-flash (F-flash) memory cells having a metal-ferroelectric-nitride-oxynitride-silicon structure are demonstrated, and the ferroelectric materials were perovskite-dominated Pb(Zr,Ti)O3 (PZT) crystallized by Pt gate electrode. The PZT thin-film as a blocking layer improves electrical and memorial performance where programming and erasing mechanism are different from the metal-ferroelectric-insulator-semiconductor device or the conventional silicon-oxide-nitride-oxide-silicon device. F-flash cells exhibit not only the excellent electrical transistor performance, having 442.7 cm2 V-1 s-1 of field-effect mobility, 190 mV dec-1 of substhreshold slope, and 8 × 105 on/off drain current ratio, but also a high reliable memory characteristics, having a large memory window (6.5 V), low-operating voltage (0 to -5 V), faster P/E switching speed (50/500 μs), long retention time (>10 years), and excellent fatigue P/E cycle (>105) due to the boosting effect, amplification effect, and energy band distortion of nitride from the large polarization. All these characteristics correspond to the best performances among conventional flash cells reported so far.

  18. Ferroelectrics: A pathway to switchable surface chemistry and catalysis

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab; Altman, Eric I.

    2016-08-01

    It has been known for more than six decades that ferroelectricity can affect a material's surface physics and chemistry thereby potentially enhancing its catalytic properties. Ferroelectrics are a class of materials with a switchable electrical polarization that can affect surface stoichiometry and electronic structure and thus adsorption energies and modes; e.g., molecular versus dissociative. Therefore, ferroelectrics may be utilized to achieve switchable surface chemistry whereby surface properties are not fixed but can be dynamically controlled by, for example, applying an external electric field or modulating the temperature. Several important examples of applications of ferroelectric and polar materials in photocatalysis and heterogeneous catalysis are discussed. In photocatalysis, the polarization direction can control band bending at water/ferroelectric and ferroelectric/semiconductor interfaces, thereby facilitating charge separation and transfer to the electrolyte and enhancing photocatalytic activity. For gas-surface interactions, available results suggest that using ferroelectrics to support catalytically active transition metals and oxides is another way to enhance catalytic activity. Finally, the possibility of incorporating ferroelectric switching into the catalytic cycle itself is described. In this scenario, a dynamic collaboration of two polarization states can be used to drive reactions that have been historically challenging to achieve on surfaces with fixed chemical properties (e.g., direct NOx decomposition and the selective partial oxidation of methane). These predictions show that dynamic modulation of the polarization can help overcome some of the fundamental limitations on catalytic activity imposed by the Sabatier principle.

  19. Study of the structure, dielectric and ferroelectric behavior of BaBi_4_+_δTi_4O_1_5 ceramics

    International Nuclear Information System (INIS)

    Khokhar, Anita; Goyal, Parveen K.; Sreenivas, K.; Thakur, O. P.

    2016-01-01

    The structure and ferroelectric properties of excess bismuth doped barium bismuth titanate BaBi_4_+_δTi_4O_1_5 (δ = 2 - 10 wt.%)) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material with a change in the orthorhombic distortion with varying excess of bismuth content. There is no change in the phase transition temperature (T_m) while the relaxor behaviour has been modified significantly with excess of bismuth doping. Saturated hysteresis loops with high remnant polarization (P_r ~ 12.5  µC/cm"2), low coercive fields (E_c ~ 26 kV/cm) are measured and a high piezoelectric coefficient (d_3_3 ~ 29 pC/N) is achieved in poled BaBi_4Ti_4O_1_5 ceramics prepared with up to 8 wt.% of excess bismuth oxide. The improvement in the ferroelectric properties with increase in the excess bismuth content in BaBi_4Ti_4O_1_5 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of excess bismuth.

  20. Second harmonic generation in generalized Thue-Morse ferroelectric superlattices

    International Nuclear Information System (INIS)

    Wang Longxiang; Yang Xiangbo; Chen Tongsheng

    2009-01-01

    In this paper the second harmonic generation (SHG) in generalized Thue-Morse (GTM(m, n)) ferroelectric superlattices is studied. Under the small-signal approximation, the SHG spectra in both real and reciprocal spaces are investigated. It is found that: (1) only when the structure parameters l, l A , and l B are all chosen to be proper, can SHG in GTM(m, n) ferroelectric superlattices be generated; (2) for Family A of generalized Thue-Morse, GTM(m, 1) ferroelectric systems, with the increase of parameter m, the intense peaks of SHG concentrate on the long wavelength 1.4-1.5μm (the fundamental beam (FB) wavelength is within 0.8-1.5μm), but for Family B of generalized Thue-Morse, GTM(1, n) ferroelectric superlattices, with the increase of parameter n, the intense peaks of SHG concentrate on the middle wavelength 1.1-1.2μm; and (3) for GTM(m, 1) ferroelectric superlattices, the bigger the m, the stronger the relative integral intensity (RII) of SHG would be, but for GTM(1, n) ferroelectric systems, the bigger the n, the weaker the RII of SHG would be.

  1. Overview of one transistor type of hybrid organic ferroelectric non-volatile memory

    Institute of Scientific and Technical Information of China (English)

    Young; Tea; Chun; Daping; Chu

    2015-01-01

    Organic ferroelectric memory devices based on field effect transistors that can be configured between two stable states of on and off have been widely researched as the next generation data storage media in recent years.This emerging type of memory devices can lead to a new instrument system as a potential alternative to previous non-volatile memory building blocks in future processing units because of their numerous merits such as cost-effective process,simple structure and freedom in substrate choices.This bi-stable non-volatile memory device of information storage has been investigated using several organic or inorganic semiconductors with organic ferroelectric polymer materials.Recent progresses in this ferroelectric memory field,hybrid system have attracted a lot of attention due to their excellent device performance in comparison with that of all organic systems.In this paper,a general review of this type of ferroelectric non-volatile memory is provided,which include the device structure,organic ferroelectric materials,electrical characteristics and working principles.We also present some snapshots of our previous study on hybrid ferroelectric memories including our recent work based on zinc oxide nanowire channels.

  2. Ferroelectric properties of tungsten bronze morphotropic phase boundary systems

    International Nuclear Information System (INIS)

    Oliver, J.R.; Neurgaonkar, R.R.; Cross, L.E.; Pennsylvania State Univ., University Park, PA

    1989-01-01

    Tungsten bronze ferroelectrics which have a morphotropic phase boundary (MPB) can have a number or enhanced dielectric, piezoelectric, and electrooptic properties compared to more conventional ferroelectric materials. The structural and ferroelectric properties of several MPB bronze systems are presented, including data from sintered and hot-pressed ceramics, epitaxial thin films, and bulk single crystals. Included among these are three systems which had not been previously identified as morphotropic. The potential advantages and limitations of these MPB systems are discussed, along with considerations of the appropriate growth methods for their possible utilization in optical, piezoelectric, or pyroelectric device applications

  3. Metal-induced gap states in ferroelectric capacitors and its relationship with complex band structures

    Science.gov (United States)

    Junquera, Javier; Aguado-Puente, Pablo

    2013-03-01

    At metal-isulator interfaces, the metallic wave functions with an energy eigenvalue within the band gap decay exponentially inside the dielectric (metal-induced gap states, MIGS). These MIGS can be actually regarded as Bloch functions with an associated complex wave vector. Usually only real values of the wave vectors are discussed in text books, since infinite periodicity is assumed and, in that situation, wave functions growing exponentially in any direction would not be physically valid. However, localized wave functions with an exponential decay are indeed perfectly valid solution of the Schrodinger equation in the presence of defects, surfaces or interfaces. For this reason, properties of MIGS have been typically discussed in terms of the complex band structure of bulk materials. The probable dependence on the interface particulars has been rarely taken into account explicitly due to the difficulties to include them into the model or simulations. We aim to characterize from first-principles simulations the MIGS in realistic ferroelectric capacitors and their connection with the complex band structure of the ferroelectric material. We emphasize the influence of the real interface beyond the complex band structure of bulk materials. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes''. Computer resources provided by the RES.

  4. Giant Magnetoelectric Energy Conversion Utilizing Inter-Ferroelectric Phase Transformations in Ferroics

    Science.gov (United States)

    Finkel, Peter; Staruch, Margo

    Phase transition-based electromechanical transduction permits achieving a non-resonant broadband mechanical energy conversion see (Finkel et al Actuators, 5 [1] 2. (2015)) , the idea is based on generation high energy density per cycle , at least 100x of magnitude larger than linear piezoelectric type generators in stress biased [011]cut relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal can generate reversible strain >0.35% at remarkably low fields (0.1 MV/m) for tens of millions of cycles. Recently we demonstrated that large strain and polarization rotation can be generated for over 40 x 106cycles with little fatigue by realization of reversible ferroelectric-ferroelectric phase transition in [011] cut PIN-PMN-PT relaxor ferroelectric single crystal while sweeping through the transition with a low applied electric field <0.18 MV/m under mechanical stress. This methodology was extended in the present work to propose magnetoelectric (ME) composite hybrid system comprised of highly magnetostrictive alloymFe81.4Ga18.6 (Galfenol), and lead indium niobate-lead magnesium niobate-lead titanate (PIN-PMN-PT) domain engineered relaxor ferroelectric single crystal. A small time-varying magnetic field applied to this system causes the magnetostrictive element to expand, and the resulting stress forces the phase change in the relaxor ferroelectric single crystal. ME coupling coefficient was fond to achieve 80 V/cm Oe near the FR-FO phase transition that is at least 100X of magnitude higher than any currently reported values.

  5. Second-harmonic imaging of ferroelectric domain walls

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Hvam, Jørn Märcher; Pedersen, Kjeld

    1998-01-01

    configurations are presented. The SH generation enhancement is found especially pronounced for the polarization of the SH radiation being perpendicular to the domain walls. The origin and selection rules for the contrast in SH images of domain walls are discussed. The results obtained suggest that the domain...

  6. Graded ferroelectrics, transpacitors and transponents

    CERN Document Server

    Mantese, Joseph V

    2005-01-01

    The text details the experimental and theoretical aspects of newly emerging ferroelectric devices, and their extensions to other ferroic systems such as: ferromagnetics, ferroelastics, piezoelectrics, etc. The theory and experimental results pertaining to non-homogeneous active ferroic devices and structures are presented.

  7. Concurrent transition of ferroelectric and magnetic ordering near room temperature.

    Science.gov (United States)

    Ko, Kyung-Tae; Jung, Min Hwa; He, Qing; Lee, Jin Hong; Woo, Chang Su; Chu, Kanghyun; Seidel, Jan; Jeon, Byung-Gu; Oh, Yoon Seok; Kim, Kee Hoon; Liang, Wen-I; Chen, Hsiang-Jung; Chu, Ying-Hao; Jeong, Yoon Hee; Ramesh, Ramamoorthy; Park, Jae-Hoon; Yang, Chan-Ho

    2011-11-29

    Strong spin-lattice coupling in condensed matter gives rise to intriguing physical phenomena such as colossal magnetoresistance and giant magnetoelectric effects. The phenomenological hallmark of such a strong spin-lattice coupling is the manifestation of a large anomaly in the crystal structure at the magnetic transition temperature. Here we report that the magnetic Néel temperature of the multiferroic compound BiFeO(3) is suppressed to around room temperature by heteroepitaxial misfit strain. Remarkably, the ferroelectric state undergoes a first-order transition to another ferroelectric state simultaneously with the magnetic transition temperature. Our findings provide a unique example of a concurrent magnetic and ferroelectric transition at the same temperature among proper ferroelectrics, taking a step toward room temperature magnetoelectric applications.

  8. Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations

    International Nuclear Information System (INIS)

    Bennett, Joseph W.; Rabe, Karin M.

    2012-01-01

    In this concept paper, the development of strategies for the integration of first-principles methods with crystallographic database mining for the discovery and design of novel ferroelectric materials is discussed, drawing on the results and experience derived from exploratory investigations on three different systems: (1) the double perovskite Sr(Sb 1/2 Mn 1/2 )O 3 as a candidate semiconducting ferroelectric; (2) polar derivatives of schafarzikite MSb 2 O 4 ; and (3) ferroelectric semiconductors with formula M 2 P 2 (S,Se) 6 . A variety of avenues for further research and investigation are suggested, including automated structure type classification, low-symmetry improper ferroelectrics, and high-throughput first-principles searches for additional representatives of structural families with desirable functional properties. - Graphical abstract: Integration of first-principles methods with crystallographic database mining, for the discovery and design of novel ferroelectric materials, could potentially lead to new classes of multifunctional materials. Highlights: ► Integration of first-principles methods and database mining. ► Minor structural families with desirable functional properties. ► Survey of polar entries in the Inorganic Crystal Structural Database.

  9. Effects of Bi doping on dielectric and ferroelectric properties

    Indian Academy of Sciences (India)

    [Pb0.95(La1−Bi)0.05][Zr0.53Ti0.47]O3 (PLBZT) ferroelectric thin films have been synthesized on indium tin oxide (ITO)-coated glass by sol–gel processing. PLBZT thin films were annealed at a relatively low temperature of 550 °C in oxygen ambient. Effects of Bi doping on structure, dielectric and ferroelectric properties of ...

  10. Cofiring behavior and interfacial structure of NiCuZn ferrite/PMN ferroelectrics composites for multilayer LC filters

    International Nuclear Information System (INIS)

    Miao Chunlin; Zhou Ji; Cui Xuemin; Wang Xiaohui; Yue Zhenxing; Li Longtu

    2006-01-01

    The cofiring behavior, interfacial structure and cofiring migration between NiCuZn ferrite and lead magnesium niobate (PMN)-based relaxor ferroelectric materials were investigated via thermomechanical analyzer (TMA), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Mismatched sintering shrinkage between NiCuZn ferrite and PMN was modified by adding an appropriate amount of sintering aids, Bi 2 O 3 , into NiCuZn ferrite. Pyrochlore phase appeared in the mixture of NiCuZn ferrite and PMN, which is detrimental to the final electric properties of LC filters. EDS results indicated that the interdiffusion at the heterogeneous interfaces in the composites, such as Fe, Pb, Zn, existed which can strengthen combinations between ferrite layers and ferroelectrics layers

  11. FY1995 ultrafast photonic devices using dielectric domain superlattice; 1995 nendo yudentai domain chokoshi wo mochiita chokosoku photonic device

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-31

    All optical wavelength conversion around 1550nm is of great importance for the wavelength division multiplexing optical communication system. A dielectric domain superlattice, which has a periodically domain inverted structure, has a wide potential for the various nonlinear interactions such as second harmonic generation (SHG) and difference frequency generation (DFG). The purpose of our research is to establish the theoretical bases and fabrication processes of the guided-wave wavelength converter based on the DFG by domain-inverted LiTaO{sub 3}. We have investigated basic characteristics of guided-wave DFG devices and developed the domain-inversion process by an electric field poling utilizing a liquid electrolyte consisting of LiCI in deionized water as a electrode for applying the electric field to LiTaO{sub 3} substrate. By controlling the injection current for the domain inversion precisely, we fabricated successfully uniform domain-inverted structures. 0.5mm-thick domain-inverted LiTaO{sub 3} of 7.8, 17.2 and 21.3 {mu}m periods and 0.5 duty ratio were obtained by optimizing electrode structure and the domain-inversion process. Waveguide structures can increase the conversion efficiency of DFG by several orders of magnitude over bulk interactions. We have also developed waveguide fabrication process for the domain-inverted LiTaO{sub 3} substrate. Low loss proton-exchanged waveguides were formed by annealed proton exchange technique without a degradation of the domain inversion structure. Domain-controlled nonlinear optics by designing the ferroelectric domain structure of LiTaO{sub 3} and LiNbO{sub 3} make it possible to extend all the spectral range from ultra-violet to far-infrared and THz wave region. (NEDO)

  12. Systematic prediction of new ferroelectric inorganic materials in point group 6

    International Nuclear Information System (INIS)

    Abrahams, S.C.

    1990-01-01

    A total of seven new families and sixteen structurally different inorganic materials with point group 6 are shown to satisfy the criteria presented previously by the present author for predicting ferroelectricity. In case each prediction is experimentally verified, the 183 individual entries for point group 6 listed in the Inorganic Crystal Structure Database will result in over 80 new ferroelectrics, of which about 30 are rare-earth isomorphs. The total number of 'pure'

  13. Polymer Ferroelectric Memory for Flexible Electronics

    KAUST Repository

    Khan, Mohd Adnan

    2013-01-01

    With the projected growth of the flexible and plastic electronics industry, there is renewed interest in the research community to develop high performance all-polymeric memory which will be an essential component of any electronic circuit. Some of the efforts in polymer memories are based on different mechanisms such as filamentary conduction, charge trapping effects, dipole alignment, and reduction-oxidation to name a few. Among these the leading candidate are those based on the mechanism of ferroelectricity. Polymer ferroelectric memory can be used in niche applications like smart cards, RFID tags, sensors etc. This dissertation will focus on novel material and device engineering to fabricate high performance low temperature polymeric ferroelectric memory for flexible electronics. We address and find solutions to some fundamental problems affecting all polymer ferroelectric memory like high coercive fields, fatigue and thermal stability issues, poor breakdown strength and poor p-type hole mobilities. Some of the strategies adopted in this dissertation are: Use of different flexible substrates, electrode engineering to improve charge injection and fatigue properties of ferroelectric polymers, large area ink jet printing of ferroelectric memory devices, use of polymer blends to improve insulating properties of ferroelectric polymers and use of oxide semiconductors to fabricate high mobility p-type ferroelectric memory. During the course of this dissertation we have fabricated: the first all-polymer ferroelectric capacitors with solvent modified highly conducting polymeric poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) [PEDOT:PSS] electrodes on plastic substrates with performance as good as devices with metallic Platinum-Gold electrodes on silicon substrates; the first all-polymer high performance ferroelectric memory on banknotes for security applications; novel ferroelectric capacitors based on blends of ferroelectric poly(vinylidene fluoride

  14. Polymer Ferroelectric Memory for Flexible Electronics

    KAUST Repository

    Khan, Mohd Adnan

    2013-11-01

    With the projected growth of the flexible and plastic electronics industry, there is renewed interest in the research community to develop high performance all-polymeric memory which will be an essential component of any electronic circuit. Some of the efforts in polymer memories are based on different mechanisms such as filamentary conduction, charge trapping effects, dipole alignment, and reduction-oxidation to name a few. Among these the leading candidate are those based on the mechanism of ferroelectricity. Polymer ferroelectric memory can be used in niche applications like smart cards, RFID tags, sensors etc. This dissertation will focus on novel material and device engineering to fabricate high performance low temperature polymeric ferroelectric memory for flexible electronics. We address and find solutions to some fundamental problems affecting all polymer ferroelectric memory like high coercive fields, fatigue and thermal stability issues, poor breakdown strength and poor p-type hole mobilities. Some of the strategies adopted in this dissertation are: Use of different flexible substrates, electrode engineering to improve charge injection and fatigue properties of ferroelectric polymers, large area ink jet printing of ferroelectric memory devices, use of polymer blends to improve insulating properties of ferroelectric polymers and use of oxide semiconductors to fabricate high mobility p-type ferroelectric memory. During the course of this dissertation we have fabricated: the first all-polymer ferroelectric capacitors with solvent modified highly conducting polymeric poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) [PEDOT:PSS] electrodes on plastic substrates with performance as good as devices with metallic Platinum-Gold electrodes on silicon substrates; the first all-polymer high performance ferroelectric memory on banknotes for security applications; novel ferroelectric capacitors based on blends of ferroelectric poly(vinylidene fluoride

  15. Continuous Magnetoelectric Control in Multiferroic DyMnO3 Films with Twin-like Domains

    Science.gov (United States)

    Lu, Chengliang; Deniz, Hakan; Li, Xiang; Liu, Jun-Ming; Cheong, Sang-Wook

    2016-02-01

    The magnetic control of ferroelectric polarization is currently a central topic in the multiferroic researches, owing to the related gigantic magnetoelectric coupling and fascinating physics. Although a bunch of novel magnetoelectric effect have been discovered in multiferroics of magnetic origin, the manipulation of polarization was found to be fundamentally determined by the microscopic origin in a certain multiferroic phase, hindering the development of unusual magnetoelectric control. Here, we report emergent magnetoelectric control in DyMnO3/Nb:SrTiO3 (001) films showing twin-like domain structure. Our results demonstrate interesting magnetically induced partial switch of polarization due to the coexistence of polarizations along both the a-axis and c-axis enabled by the twin-like domain structure in DyMnO3 films, despite the polarization-switch was conventionally believed to be a one-step event in the bulk counterpart. Moreover, a continuous and periodic control of macroscopic polarization by an in-plane rotating magnetic field is evidenced in the thin films. This distinctive magnetic manipulation of polarization is the consequence of the cooperative action of the twin-like domains and the dual magnetic origin of polarization, which promises additional applications using the magnetic control of ferroelectricity.

  16. Transparent Ferroelectric Capacitors on Glass

    Directory of Open Access Journals (Sweden)

    Daniele Sette

    2017-10-01

    Full Text Available We deposited transparent ferroelectric lead zirconate titanate thin films on fused silica and contacted them via Al-doped zinc oxide (AZO transparent electrodes with an interdigitated electrode (IDE design. These layers, together with a TiO2 buffer layer on the fused silica substrate, are highly transparent (>60% in the visible optical range. Fully crystallized Pb(Zr0.52Ti0.48O3 (PZT films are dielectrically functional and exhibit a typical ferroelectric polarization loop with a remanent polarization of 15 μC/cm2. The permittivity value of 650, obtained with IDE AZO electrodes is equivalent to the one measured with Pt electrodes patterned with the same design, which proves the high quality of the developed transparent structures.

  17. Near-field terahertz imaging of ferroelectric domains in barium titanate

    Czech Academy of Sciences Publication Activity Database

    Berta, Milan; Kadlec, Filip

    2010-01-01

    Roč. 83, 10-11 (2010), 985-993 ISSN 0141-1594 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z10100520 Keywords : singular value decomposition * domain structure imaging * near-field terahertz microscopy * subwavelength resolution Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.006, year: 2010

  18. Structural and ferroelectric properties of Sr1−xBaxBi2Nb2O9 thin films obtained by dip-coating

    Directory of Open Access Journals (Sweden)

    Y. González-Abreu

    2017-10-01

    Full Text Available The paper presents the structural and ferroelectric results for Sr1−xBaxBi2Nb2O9(x=0.30; 0.85 thin films, which were obtained by using dip-coating. The solutions containing the desirable ions were prepared from the powders of the previous studied ceramic samples. The films were deposited at room temperature on Fluorine-doped Tin Oxide (FTO substrates and submitted to a heat treatment for crystallization. The films were characterized by using scanning microscopy electronic, energy dispersive spectroscopy and ellipsometry. Hysteresis ferroelectric loops were obtained, at room temperature, by using a Sawyer-Tower circuit at several frequencies. A well-defined grain structure was observed for both compositions. The energy dispersive spectroscopy (EDS measurements revealed the presence of the corresponding elements from the chemical composition of the ceramic systems. The band-gap energy was around 3.3eV for both samples. Typical hysteresis loops for normal and relaxor ferroelectrics were obtained for x=0.30 and 0.85, respectively.

  19. Electrical conduction at domain walls in multiferroic BiFeO3

    Science.gov (United States)

    Seidel, Jan; Martin, Lane; He, Qing; Zhan, Qian; Chu, Ying-Hao; Rother, Axel; Hawkridge, Michael; Maksymovych, Peter; Yu, Pu; Gajek, Martin; Balke, Nina; Kalinin, Sergei; Gemming, Sybille; Wang, Feng; Catalán, Gustau; Scott, James; Spaldin, Nicola; Orenstein, Joseph; Ramesh, Ramamoorthy

    2009-03-01

    We report the observation of room temperature electronic conductivity at ferroelectric domain walls in BiFeO3. The origin and nature of the observed conductivity is probed using a combination of conductive atomic force microscopy, high resolution transmission electron microscopy and first-principles density functional computations. We show that a structurally driven change in both the electrostatic potential and local electronic structure (i.e., a decrease in band gap) at the domain wall leads to the observed electrical conductivity. We estimate the conductivity in the wall to be several orders of magnitude higher than for the bulk material. Additionally we demonstrate the potential for device applications of such conducting nanoscale features.

  20. Structure and electronic properties of graphene on ferroelectric LiNbO{sub 3} surface

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jun, E-mail: dingjun@haue.edu.cn [College of Science, Henan University of Engineering, Zhengzhou 451191 (China); Wen, LiWei; Li, HaiDong [College of Science, Henan University of Engineering, Zhengzhou 451191 (China); Zhang, Ying, E-mail: yingzhang@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2017-05-25

    Highlights: • Interface structure of graphene on O terminated LiNbO{sub 3} surface. • Asymmetry gap around Dirac point. • Berry phase calculations confirm a valley Hall effect. - Abstract: We investigate the structural and electronic properties of graphene on the O terminated LiNbO{sub 3}(001) surface by density functional theory simulations. We observe that the first graphene layer is covalent bonded with the surface O atoms and buckles a lot. While considering second layer graphene upon the first layer, it almost recovers the planar structure and the interface interaction breaks the AB sublattice symmetry which leads to a valley Hall effect. Our results reveal the interface structure of graphene-ferroelectric heterostructure and provide the way for valleytronic applications with graphene.

  1. Pyroelectric field assisted ion migration induced by ultraviolet laser irradiation and its impact on ferroelectric domain inversion in lithium niobate crystals

    International Nuclear Information System (INIS)

    Ying, C. Y. J.; Mailis, S.; Daniell, G. J.; Steigerwald, H.; Soergel, E.

    2013-01-01

    The impact of UV laser irradiation on the distribution of lithium ions in ferroelectric lithium niobate single crystals has been numerically modelled. Strongly absorbed UV radiation at wavelengths of 244–305 nm produces steep temperature gradients which cause lithium ions to migrate and result in a local variation of the lithium concentration. In addition to the diffusion, here the pyroelectric effect is also taken into account which predicts a complex distribution of lithium concentration along the c-axis of the crystal: two separated lithium deficient regions on the surface and in depth. The modelling on the local lithium concentration and the subsequent variation of the coercive field are used to explain experimental results on the domain inversion of such UV treated lithium niobate crystals

  2. Mn55 NMR investigation of the correlation between antiferromagnetism and ferroelectricity in TbMn2O5

    Science.gov (United States)

    Baek, S.-H.; Reyes, A. P.; Hoch, M. J. R.; Moulton, W. G.; Kuhns, P. L.; Harter, A. G.; Hur, N.; Cheong, S.-W.

    2006-10-01

    The correlation between antiferromagnetism and ferroelectricity in magnetoelectric multiferroic TbMn2O5 has been investigated by zero-field Mn55 NMR. Antiferromagnetic transition near 40K is found to be first order. When an external field up to 7T is applied along the easy a axis, a dramatic change in the signal intensity is observed which is hysteretic in nature. Such effects are absent for H along the b and c axes. The observed field-induced signal enhancement is attributed to antiferromagnetic domain walls which are strongly coupled to ferroelectric domain walls. Experimental data suggest that this may be related to the field-induced ferromagnetic ordering of the Tb ion.

  3. On the Structural and Electrical Properties of Metal-Ferroelectric ...

    Indian Academy of Sciences (India)

    6

    Click here to view linked References. 1 ... memory applications due to their unique electrical properties [1-2]. ... considerable attention for their application as the gate material for MFeIS ... and precisely controlled for a particular ferroelectric layer. ..... leading to decrease in the net polarization and memory retention capacity.

  4. Ferroelectricity at the nanoscale basics and applications

    CERN Document Server

    Fridkin, Vladimir

    2014-01-01

    This book examines a wide range of ferroelectric materials. It explains the theoretical background of ultrathin ferroelectric films,  presents applications of ferroelectric materials, and displays the mechanism of switching of nanosized ferroelectric films.

  5. Effect of top electrode material on radiation-induced degradation of ferroelectric thin film structures

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, Steven J.; Bassiri-Gharb, Nazanin [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Deng, Carmen Z.; Callaway, Connor P. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Paul, McKinley K. [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Woodward Academy, College Park, Georgia 30337 (United States); Fisher, Kenzie J. [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Riverwood International Charter School, Atlanta, Georgia 30328 (United States); Guerrier, Jonathon E.; Jones, Jacob L. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Rudy, Ryan Q.; Polcawich, Ronald G. [Army Research Laboratory, Adelphi, Maryland 20783 (United States); Glaser, Evan R.; Cress, Cory D. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-07-14

    The effects of gamma irradiation on the dielectric and piezoelectric responses of Pb[Zr{sub 0.52}Ti{sub 0.48}]O{sub 3} (PZT) thin film stacks were investigated for structures with conductive oxide (IrO{sub 2}) and metallic (Pt) top electrodes. The samples showed, generally, degradation of various key dielectric, ferroelectric, and electromechanical responses when exposed to 2.5 Mrad (Si) {sup 60}Co gamma radiation. However, the low-field, relative dielectric permittivity, ε{sub r}, remained largely unaffected by irradiation in samples with both types of electrodes. Samples with Pt top electrodes showed substantial degradation of the remanent polarization and overall piezoelectric response, as well as pinching of the polarization hysteresis curves and creation of multiple peaks in the permittivity-electric field curves post irradiation. The samples with oxide electrodes, however, were largely impervious to the same radiation dose, with less than 5% change in any of the functional characteristics. The results suggest a radiation-induced change in the defect population or defect energy in PZT with metallic top electrodes, which substantially affects motion of internal interfaces such as domain walls. Additionally, the differences observed for stacks with different electrode materials implicate the ferroelectric–electrode interface as either the predominant source of radiation-induced effects (Pt electrodes) or the site of healing for radiation-induced defects (IrO{sub 2} electrodes).

  6. High-pressure structure of Pb-based relaxor ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Bernd J.; Mihailova, Boriana; Paulmann, Carsten; Welsch, Anna-Maria; Bismayer, Ulrich [Mineralogisch-Petrographisches Institut, Universitaet Hamburg (Germany); Angel, Ross J. [Crystallography Laboratory, Virgina Tech, Blacksburg (United States); Marshall, William G. [ISIS Neutron Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon (United Kingdom); Engel, Jens M. [Institut fuer Werkstoffwissenschaft, Technische Universitaet Dresden (Germany); Gospodinov, Marin [Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Petrova, Dimitrina [Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia (Bulgaria); South-West University Neofit Rilski, Blagoevgrad (Bulgaria)

    2010-07-01

    The pressure-induced phase transitions that occur in the perovskite-type relaxor ferroelectric PbSc{sub 0.5}Ta{sub 0.5}O{sub 3} (PST) and Pb{sub 0.78}Ba{sub 0.22}Sc{sub 0.5}Ta{sub 0.5}O{sub 3} (PST-Ba) were studied with combined neutron powder diffraction and single-crystal X-ray diffraction. An increase in the intensities of h,k,l=all odd reflections is observed while the intensity of h,h,h peaks, h=2n+1, does not change with pressure, indicating a glide-plane pseudo-symmetry of the structural distortion along the left angle 111 right angle cubic directions. Rietveld refinement to the neutron powder data shows that the high-pressure phase has either R anti 3c or R anti 3 symmetry, depending on whether the presence of 1:1 octahedral cation ordering is neglected or taken into account, and comprises anti-phase octahedral tilts of type a{sup -}a{sup -}a{sup -} that continuously evolve with pressure.

  7. Preparation of Ferroelectric Thin Films of Bismuth Layer Structured Compounds

    Science.gov (United States)

    Watanabe, Hitoshi; Mihara, Takashi; Yoshimori, Hiroyuki; Araujo, Carlos

    1995-09-01

    Ferroelectric thin films of bismuth layer structured compounds, SrBi2Ta2O9, SrBi2Nb2O9, SrBi4Ti4O15 and their solid solutions, were formed onto a sputtered platinum layer on a silicon substrate using spin-on technique and metal-organic decomposition (MOD) method. X-ray diffraction (XRD) analysis and some electrical measurements were performed on the prepared thin films. XRD results of SrBi2(Ta1- x, Nb x)2O9 films (0≤x≤1) showed that niobium ions substitute for tantalum ions in an arbitrary ratio without any change of the layer structure and lattice constants. Furthermore, XRD results of SrBi2 xTa2O9 films (0≤x≤1.5) indicated that the formation of the bismuth layer structure does not always require an accurate bismuth content. The layer structure was formed above 50% of the stoichiometric bismuth content in the general formula. SrBi2(Ta1- x, Nb x)2O9 films with various Ta/Nb ratios have large enough remanent polarization for nonvolatile memory application and have shown high fatigue resistance against 1011 cycles of full switching of the remanent polarization. Mixture films of the three compounds were also investigated.

  8. Ferroelectric devices

    CERN Document Server

    Uchino, Kenji

    2009-01-01

    Updating its bestselling predecessor, Ferroelectric Devices, Second Edition assesses the last decade of developments-and setbacks-in the commercialization of ferroelectricity. Field pioneer and esteemed author Uchino provides insight into why this relatively nascent and interdisciplinary process has failed so far without a systematic accumulation of fundamental knowledge regarding materials and device development.Filling the informational void, this collection of information reviews state-of-the-art research and development trends reflecting nano and optical technologies, environmental regulat

  9. AB initio energetics of lanthanum substitution in ferroelectric bismuth titanate

    International Nuclear Information System (INIS)

    Shah, S.H.

    2012-01-01

    Density functional theory based electronic structure calculations play a vital role in understanding, controlling and optimizing physical properties of materials at microscopic level. In present study system of interest is bismuth titanate (Bi/sub 4/Ti/sub 3/O/sub 12/)/(BIT) which has wide range of applications such as a high temperature piezoelectric and one of the best material for memory devices. However, it also suffers from serious issues such as oxygen vacancies which degrade its performance as a memory element and piezoelectric material. In this context, the bulk and defect properties of orthorhombic bismuth titanate (Bi/sub 4/Ti/sub 3/O/sub 12/) and bismuth lanthanum titanate (Bi/sub 3.25/La/sub 0.75/Ti/sub 3/O/sub 12/)/(BLT, x=0.75) were investigated by using first principles calculations and atomistic thermodynamics. Heats of formation, valid chemical conditions for synthesis, lanthanum substitution energies and oxygen and bismuth vacancy formation energies were computed. The study improves understanding of how native point defects and substitutional impurities influence the ferroelectric properties of these layered perovskite materials. It was found that lanthanum incorporation could occur on either of the two distinct bismuth sites in the structure and that the effect of substitution is to increase the formation energy of nearby native oxygen vacancies. The results provide direct atomistic evidence over a range of chemical conditions for the suggestion that lanthanum incorporation reduces the oxygen vacancy concentration. Oxygen vacancies contribute to ferroelectric fatigue by interacting strongly with domain walls and therefore a decrease in their concentration is beneficial. (orig./A.B.)

  10. The Control of Anisotropic Transport in Manganites by Stripy Domains

    Science.gov (United States)

    Ju, Changcheng; Lu, Xiaomei; Chu, Yinghao

    2014-03-01

    Epitaxial thin film acts as a significant tool to investigate novel phenomena of complex oxide systems. Extrinsic constraint1 of uniform or certain designed buffer layer strain could be easily implanted to these materials. However, the strain distribution might be quite complicated by involving micro- or nano-lattice distortions which could partially relax the strain and determine the complex phase diagrams of thin film, meanwhile introducing structural and physical inhomogeneities. In this work , we report 71° striped ferroelectric domains created in BFO can also epitaxially lock the perovskite manganites leading to the emerge of ordered structural domain. LSMO/BFO hetero-epitaxial samples are deposited by PLD. The 71° periodic striped domains and coherent growth are demonstrated by PFM and X-ray analysis. Plan-view TEM and X-ray RSM have been used to confirm the epitaxial relationships of the functional layers and IP lattice constant. Both the simulation and structural analysis demonstrate we can create a periodic ordered stripe structural domain in LSMO. And this will leave an anisotropic distribution of structural domain walls which makes it possible to capture the anisotropic tunneling for strong electron-lattice coupling in manganites. Temperature-dependent resistivity measurements reveal a substantial anisotropic resistivities and a remarkable shift of the MI transition between the perpendicular and parallel to the stripe domain directions.

  11. Reversible spin texture in ferroelectric Hf O2

    Science.gov (United States)

    Tao, L. L.; Paudel, Tula R.; Kovalev, Alexey A.; Tsymbal, Evgeny Y.

    2017-06-01

    Spin-orbit coupling effects occurring in noncentrosymmetric materials are known to be responsible for nontrivial spin configurations and a number of emergent physical phenomena. Ferroelectric materials may be especially interesting in this regard due to reversible spontaneous polarization making possible a nonvolatile electrical control of the spin degrees of freedom. Here, we explore a technologically relevant oxide material, Hf O2 , which has been shown to exhibit robust ferroelectricity in a noncentrosymmetric orthorhombic phase. Using theoretical modelling based on density-functional theory, we investigate the spin-dependent electronic structure of the ferroelectric Hf O2 and demonstrate the appearance of chiral spin textures driven by spin-orbit coupling. We analyze these spin configurations in terms of the Rashba and Dresselhaus effects within the k .p Hamiltonian model and find that the Rashba-type spin texture dominates around the valence-band maximum, while the Dresselhaus-type spin texture prevails around the conduction band minimum. The latter is characterized by a very large Dresselhaus constant λD= 0.578 eV Å, which allows using this material as a tunnel barrier to produce tunneling anomalous and spin Hall effects that are reversible by ferroelectric polarization.

  12. Ferroelectric ultrathin perovskite films

    Science.gov (United States)

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  13. TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films

    International Nuclear Information System (INIS)

    Lomenzo, Patrick D.; Nishida, Toshikazu; Takmeel, Qanit; Zhou, Chuanzhen; Fancher, Chris M.; Jones, Jacob L.; Lambers, Eric; Rudawski, Nicholas G.; Moghaddam, Saeed

    2015-01-01

    Ferroelectric HfO 2 -based thin films, which can exhibit ferroelectric properties down to sub-10 nm thicknesses, are a promising candidate for emerging high density memory technologies. As the ferroelectric thickness continues to shrink, the electrode-ferroelectric interface properties play an increasingly important role. We investigate the TaN interface properties on 10 nm thick Si-doped HfO 2 thin films fabricated in a TaN metal-ferroelectric-metal stack which exhibit highly asymmetric ferroelectric characteristics. To understand the asymmetric behavior of the ferroelectric characteristics of the Si-doped HfO 2 thin films, the chemical interface properties of sputtered TaN bottom and top electrodes are probed with x-ray photoelectron spectroscopy. Ta-O bonds at the bottom electrode interface and a significant presence of Hf-N bonds at both electrode interfaces are identified. It is shown that the chemical heterogeneity of the bottom and top electrode interfaces gives rise to an internal electric field, which causes the as-grown ferroelectric domains to preferentially polarize to screen positively charged oxygen vacancies aggregated at the oxidized bottom electrode interface. Electric field cycling is shown to reduce the internal electric field with a concomitant increase in remanent polarization and decrease in relative permittivity. Through an analysis of pulsed transient switching currents, back-switching is observed in Si-doped HfO 2 thin films with pinched hysteresis loops and is shown to be influenced by the internal electric field

  14. Study of the structure, dielectric and ferroelectric behavior of BaBi{sub 4+δ}Ti{sub 4}O{sub 15} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Khokhar, Anita, E-mail: mails4anita@gmail.com, E-mail: goyalphy@gmail.com; Goyal, Parveen K., E-mail: mails4anita@gmail.com, E-mail: goyalphy@gmail.com; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi-110 007 (India); Thakur, O. P. [Electroceramics Group, Solid State Physics Laboratory, Lucknow Road, Delhi 110 054 (India)

    2016-05-23

    The structure and ferroelectric properties of excess bismuth doped barium bismuth titanate BaBi{sub 4+δ}Ti{sub 4}O{sub 15} (δ = 2 - 10 wt.%)) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material with a change in the orthorhombic distortion with varying excess of bismuth content. There is no change in the phase transition temperature (T{sub m}) while the relaxor behaviour has been modified significantly with excess of bismuth doping. Saturated hysteresis loops with high remnant polarization (P{sub r} ~ 12.5  µC/cm{sup 2}), low coercive fields (E{sub c} ~ 26 kV/cm) are measured and a high piezoelectric coefficient (d{sub 33} ~ 29 pC/N) is achieved in poled BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics prepared with up to 8 wt.% of excess bismuth oxide. The improvement in the ferroelectric properties with increase in the excess bismuth content in BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of excess bismuth.

  15. Interface and thickness dependent domain switching and stability in Mg doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: gallo@kth.se, E-mail: brian.rodriguez@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Ivanov, Ilia N. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Manzo, Michele; Gallo, Katia, E-mail: gallo@kth.se, E-mail: brian.rodriguez@ucd.ie [Department of Applied Physics, KTH-Royal Institute of Technology, Roslagstullbacken 21, 10691 Stockholm (Sweden); Kholkin, Andrei L. [Department of Physics and CICECO-Aveiro Institute of Materials, 3810-193 Aveiro (Portugal); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-12-14

    Controlling ferroelectric switching in Mg doped lithium niobate (Mg:LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switching properties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg:LN above buried PE phases that allow for precise ferroelectric patterning via domain growth control. Furthermore, piezoresponse force microscopy (PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the “up” to the “down” state increases with increasing thickness in pure Mg:LN, whereas the voltage required for stable back switching to the original “up” state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg:LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg:LN layer above due to the presence of uncompensated polarization charge at the PE-Mg:LN boundary. These alterations in internal electric fields within the sample cause long-range lattice distortions in Mg:LN via electromechanical coupling, which were corroborated with complimentary Raman measurements.

  16. PREFACE: Domain wall dynamics in nanostructures Domain wall dynamics in nanostructures

    Science.gov (United States)

    Marrows, C. H.; Meier, G.

    2012-01-01

    forms of ordered phases such as antiferromagnetism and ferroelectricity. We would like to thank the scientists from all over the world who happily agreed to contribute their latest results to this special issue, and the Journal of Physics: Condensed Matter staff for their help, patience and professionalism. In such a fast-moving field it is not possible to give a definitive account, and this special issue can be no more than a snapshot of the current state of knowledge regarding this topic. Nevertheless, we hope that this collection of papers is a useful resource for experienced workers in the field, forms a useful introduction to researchers early in their careers and inspires others in related areas of nanotechnology to enter into the study of domain dynamics in nanostructures. Domain wall dynamics in nanostructures contents Temperature estimation in a ferromagnetic Fe-Ni nanowire involving a current-driven domain wall motionA Yamaguchi, A Hirohata, T Ono and H Miyajima Magnetization reversal in magnetic nanostripes via Bloch wall formation M Zeisberger and R Mattheis Magnetic soft x-ray microscopy of the domain wall depinning process in permalloy magnetic nanowiresMi-Young Im, Lars Bocklage, Guido Meier and Peter Fischer Domain wall propagation in meso- and nanoscale ferroelectrics R G P McQuaid, M McMillen, L-W Chang, A Gruverman and J M Gregg Transverse and vortex domain wall structure in magnetic nanowires with uniaxial in-plane anisotropyM T Bryan, S Bance, J Dean, T Schrefl and D A Allwood The stochastic nature of the domain wall motion along high perpendicular anisotropy strips with surface roughness Eduardo Martinez Temperature-dependent dynamics of stochastic domain-wall depinning in nanowiresClemens Wuth, Peter Lendecke and Guido Meier Controlled pinning and depinning of domain walls in nanowires with perpendicular magnetic anisotropyTheo Gerhardt, André Drews and Guido Meier The interaction of transverse domain wallsBenjamin Krüger The increase of the

  17. Dynamic fatigue on repolarization of lead zirconate-titanate base ceramics with various ferroelectric hardness

    International Nuclear Information System (INIS)

    Gavrilyachenko, V.G.; Semenchev, A.F.; Sklyarova, E.N.; Kuznetsova, E.M.

    2006-01-01

    One studied experimentally changes of the residual polarization in lead zirconate-titanate base ceramics with various ferroelectric hardness under the effect of a strong varying field. The twinning and untwinning of crystallites accompanying repolarization is assumed to be the basic mechanism of propagation of the crystalline structure defects governing the fatigue rates of the ferroelectric-soft ceramics. In ferroelectric-hard ceramics crystallites the stable configurations of mechanical twins, the result of the secondary twinning, are formed when the hysteresis loop is formed. At repolarization in the mentioned structures one observes no motion of the twin boundaries, and the fatigue rates are low ones [ru

  18. Enhancement of the saturation mobility in a ferroelectric-gated field-effect transistor by the surface planarization of ferroelectric film

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Young, E-mail: semigumi@kaist.ac.kr [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Jeon, Gwang-Jae; Kang, In-Ku; Shim, Hyun Bin; Lee, Hee Chul [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2015-09-30

    Ferroelectricity refers to the property of a dielectric material to undergo spontaneous polarization which originates from the crystalline phase. Hence, ferroelectric materials have a certain degree of surface roughness when they are formed as a thin film. A high degree of surface roughness may cause unintended phenomena when the ferroelectric material is used in electronic devices. Specifically, the quality of subsequently deposited film could be affected by the rough surface. The present study reports that the surface roughness of ferroelectric polymer film can be reduced by a double-spin-coating method of a solution, with control of the solubility of the solution. At an identical thickness of 350 nm, double-spin-coated ferroelectric film has a root-mean-square roughness of only 3 nm, while for single-spin-coated ferroelectric film this value is approximately 16 nm. A ferroelectric-gated field-effect transistor was fabricated using the proposed double-spin-coating method, showing a maximum saturation mobility as much as seven-fold than that of a transistor fabricated with single-spin-coated ferroelectric film. The enhanced saturation mobility could be explained by the Poole–Frenkel conduction mechanism. The proposed method to reduce the surface roughness of ferroelectric film would be useful for high performance organic electronic devices, including crystalline-phase dielectric film. - Highlights: • Single and double-layer solution-processed polymer ferroelectric films were obtained. • Adjusting the solvent solubility allows making double-layer ferroelectric (DF) films. • The DF film has a smoother surface than single-layer ferroelectric (SF) film. • DF-gated transistor has faster saturation mobility than SF-based transistor. • Solvent solubility adjustment led to higher performance organic devices.

  19. A phase field approach for the fully coupled thermo-electro-mechanical dynamics of nanoscale ferroelectric actuators

    Science.gov (United States)

    Wang, Dan; Du, Haoyuan; Wang, Linxiang; Melnik, Roderick

    2018-05-01

    The fully coupled thermo-electro-mechanical properties of nanoscale ferroelectric actuators are investigated by a phase field model. Firstly, the thermal effect is incorporated into the commonly-used phase field model for ferroelectric materials in a thermodynamic consistent way and the governing equation for the temperature field is derived. Afterwards, the modified model is numerically implemented to study a selected prototype of the ferroelectric actuators, where strain associated with electric field-induced non-180° domain switching is employed. The temperature variation and energy flow in the actuation process are presented, which enhances our understanding of the working mechanism of the actuators. Furthermore, the influences of the input voltage frequency and the thermal boundary condition on the temperature variation are demonstrated and carefully discussed in the context of thermal management for real applications.

  20. Ferroelectric, magnetic and structural studies of the Bi4LaSmFe2Ti3O18 multiferroic material

    International Nuclear Information System (INIS)

    Alarcón-Suesca, C.E.; Cardona-Vásquez, J.A.; Salcedo-Fontecha, J.P.; Vargas-Jiménez, A.; Landínez-Téllez, D.A.; Roa-Rojas, J.

    2014-01-01

    We report the synthesis and characterization of the new Bi 4 LaSmFe 2 Ti 3 O 18 ferroelectric ceramic. X-ray characterization reveals reflections for layered perovskite Aurivillius system. Rietveld analyses of the powder pattern shows that Bi 4 LaSmFe 2 Ti 3 O 18 crystallizes in orthorhombic structure, which corresponds to the space group F2/mm (#42), with lattice parameters a=5.4240(16) Ǻ, b=5.4078(23) Ǻ and c=50.2440(12) Ǻ. Scanning electron microscopy (SEM) reveals the formation of dense material with plate-like morphology. Electric polarization curves were measured by means of a radiant ferroelectric tester, at room temperature in bulk samples and exhibit an intrinsic ferroelectric response, even at low applied fields. Measurements of the magnetization as a function of temperature after Zero field cooling and field cooling were carried out by using a MPMS Quantum Design SQUID magnetometer. We found an effective magnetic moment of 7.95 µB, which is 95.8% in agreement with the expected value calculated from Hund's rules. Magnetization curves as the function of applied fields reveal an incipient hysteretic behavior at room temperature

  1. Ferroelectric inverse opals with electrically tunable photonic band gap

    International Nuclear Information System (INIS)

    Li Bo; Zhou Ji; Li Longtu; Wang Xingjun; Liu Xiaohan; Zi Jian

    2003-01-01

    We present a scheme for tuning the photonic band gap (PBG) by an external electric field in a ferroelectric inverse opal structure. The inverse opals, consisting of ferroelectric (Pb,La)(Zr,Ti)O 3 (PLZT) ceramics, were synthesized by a sol-gel process. Optical reflection spectra show that the PBG of the PLZT inverse opals shifts continuously with the change in the applied electric field. As the photonic crystals (PCs) consist of the high-refractive-index constituent and possess an 'all-solid' structure, it should supply a more reliable mode to tune the PBG by the electric field for the superprism effect in PCs. It should be of high interest in device applications

  2. Polarization-switching dynamics and microstructures of ferroelectric (Bi0.5Na0.5)TiO3 single crystals

    Science.gov (United States)

    Yanai, Ken; Onozuka, Hiroaki; Kitanaka, Yuuki; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro; Kurushima, Kousuke; Mori, Shigeo

    2013-04-01

    Single crystals of ferroelectric (Bi0.5Na0.5)TiO3 were successfully grown by using the top-seeded solution growth method at a high oxygen pressure of 0.9 MPa and their polarization switching dynamics along the c direction and their domain structures were investigated. Piezoelectric force microscope (PFM) observations show that BNT crystals poled along the c direction. had 71-degree domains in which the spontaneous polarization ( P s ) vector was opposite to the direction of the poling electric field. Synchrotron-radiation single-crystal X-ray diffraction analyses and PFM observations revealed that the polarization switching in the BNT crystals along the c direction was achieved by a 71-degree rotation of the P s vector.

  3. Structural and electronic parameters of ferroelectric KWOF

    Science.gov (United States)

    Atuchin, V. V.; Gavrilova, T. A.; Kesler, V. G.; Molokeev, M. S.; Aleksandrov, K. S.

    2010-11-01

    The low-temperature ferroelectric G2 polymorph of K 3WO 3F 3 oxyfluoride is formed by chemical synthesis. The electronic parameters of G2-K 3WO 3F 3 have been measured by X-ray photoelectron spectroscopy under excitation with Al Kα radiation (1486.6 eV). Detailed spectra have been recorded for all element core levels and Auger lines. The chemical bonding effects in the WO 3F 3 and WO 6 octahedrons are considered by using the binding energy difference ΔBE(O-W)=BE(O 1s)-BE(W 4f).

  4. ENDOR-investigations in the environment of the ferroelectric phase transition temperature of γ-irradiated TSCC

    International Nuclear Information System (INIS)

    Welter, M.

    1983-01-01

    The structure of the CH 3 NHCH 2 COOH radical in the paraelectric phase and during the transition into the ferroelectric phase has been determined by means of ENDOR measurements. The carboxyl group of the radical is a sensitive probe for the study of crystal field changes. Structural differences of the radical between the paraelectric and the ferroelectric phase were attributed to structural changes within the nearest environment

  5. Synchrotron X-ray topographic studies of para-ferroelectric transition in ammonium sulphate crystal

    International Nuclear Information System (INIS)

    Bhat, H.L.; Roberts, K.J.

    1993-01-01

    Ammonium sulphate undergoes a para-ferroelectric transition at 223 K. The transition is presumably first order in nature. White radiation topographic studies of this transition are presented here. The existence of pre-transition effects due to lattice deformation leading to severe strain is noticed. This sometimes resulted in dislocation generation. The well defined phase boundary observed in this crystal confirms the first order nature of this transition. The zigzag nature of the phase boundary with preferably oriented segments has been attributed to the specific properties of the strain tensors of the transition. Ferroelectric domains have also been detected by faint dynamical x-ray contrast of their images. (author). 7 refs., 1 fig

  6. Structure of the fully ferroelectric/fully ferroelastic orthohombic room-temperature phase of cobalt bromine boracite, Co[sub 3]B[sub 7]O[sub 13]Br and nickel chlorine boracite, Ni[sub 3]B[sub 7]O[sub 13]Cl

    Energy Technology Data Exchange (ETDEWEB)

    Kubel, F; Mao, S Y; Schmid, H [Dept. de Chemie Minerale, Analytique et Applique, Geneva Univ. (Switzerland)

    1992-07-15

    The X-ray crystal structures of optically controlled single-domain crystals of fully ferroelectric/fully ferroelastic cobalt bromine boracite, Co[sub 3]B[sub 7]O[sub 13]Br (Co-Br) at 298 K [M[sub r] = 540.38, orthorhombic, Pca2[sub 1], a = 8.5614 (2), b = 8.5657 (2), c = 12.1196 (3) A, V = 888.78 (4) A[sup 3], Z = 4, D[sub x] = 4.04 Mg m[sup -3], [lambda](Mo K[alpha]) = 0.7107 A, [mu] = 10.61 mm[sup -1], F(000) = 1020, R = 7.0, wR = 5.4%, 2824 reflections] and of nickel chlorine boracite, Ni[sub 3]B[sub 7]O[sub 13]Cl (Ni-Cl) at 298 K [M[sub r] = 495.25, orthorhombic, Pca2[sub 1], a = 8.5105 (4), b = 8.4984 (4), c = 12.0324 (5) A, V = 870.25 (7) A[sup 3], Z = 4, D[sub x] = 3.78 Mg m[sup -3], [lambda](Mo K[alpha]) = 0.7107 A, [mu] = 6.8 mm[sup -1], F(000) = 960, R = 3.5, wR = 3.1%, 2082 reflections] are reported. The metal surroundings of Co-Br and Ni-Cl were analyzed in detail and show two metal sites (Co2, Co3; Ni2, Ni3) with chemically similar environments and one metal site (Co1; Ni1) with a different environment. Six B atoms have a tetrahedral or slightly distorted tetrahedral coordination, whereas one B atom (B4) has triangular surroundings in both compounds. (orig.).

  7. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    International Nuclear Information System (INIS)

    Wang, Fenggong; Grinberg, Ilya; Rappe, Andrew M.

    2014-01-01

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics

  8. Effects of annealing temperature on the structures, ferroelectric and magnetic properties of Aurivillius Bi5Ti3FeO15 polycrystalline films

    International Nuclear Information System (INIS)

    Bai, W.; Zhu, J.Y.; Wang, J.L.; Lin, T.; Yang, J.; Meng, X.J.; Tang, X.D.; Zhu, Z.Q.; Chu, J.H

    2012-01-01

    The effects of annealing temperature on the structures, ferroelectric and magnetic properties of Aurivillius layer-structured Bi 5 Ti 3 FeO 15 (BTF) films were investigated. It was found that an annealing temperature above 625 °C can lead to the appearance of Bi 4 Ti 3 O 12 (BiT) secondary phase on Pt substrates. The reduction of the grain sizes was simultaneously confirmed by X-ray diffraction and atomic force microscopy with the introduction of the BiT phase. Moreover, the remanent polarization and coercive field of the BTF films were dramatically enhanced with the introduction of the BiT phase. Improved ferromagnetism for the BTF films was demonstrated upon increasing annealing temperature. Our data indicated that the ferroelectricity strongly correlated with the growth orientation of the BTF films. Finally, the possible factors for the obvious increase of the remanent polarization and coercive field, and the possible reasons for the enhanced ferromagnetic properties were discussed with increasing annealing temperature. - Highlights: ► Effects of annealing temperature on physical properties of BTF films were studied. ► Improved multiferroic properties were shown with annealing temperature. ► Ferroelectricity strongly depended on the growth orientation of the BTF films. ► Possible factors were proposed to explain the improved multiferroic properties.

  9. Relation between ferroelectric and antiferromagnetic order in RMn2O5

    International Nuclear Information System (INIS)

    Noda, Yukio; Kimura, Hiroyuki; Kamada, Youichi; Osawa, Toshihiro; Fukuda, Yosikazu; Ishikawa, Yoshihisa; Kobayashi, Satoru; Wakabayashi, Yusuke; Sawa, Hiroshi; Ikeda, Naoshi; Kohn, Kay

    2006-01-01

    RMn 2 O 5 (R=Y and rare earth) shows successive magnetic and ferroelectric phase transitions at about 45, 40, 39, 20 and 10K. We have reinvestigated the magnetic structure of YMn 2 O 5 at the commensurate phase (T=25K) using a single crystal four-circle diffractometer in order to discuss the mechanism of magnetoelectric interaction and the origin of ferroelectricity. We also observed the lattice modulation vectors (q L ) to compare the magnetic propagation vectors (q M ) by synchrotron X-ray diffraction. Improved magnetic structure data are compared with the theory recently proposed

  10. Characterization of current transport in ferroelectric polymer devices

    KAUST Repository

    Hanna, Amir; Bhansali, Unnat Sampatraj; Khan, Yasser; Alshareef, Husam N.

    2014-01-01

    We report the charge injection characteristics in poly(vinylidene fluoride-trifluoroethylene), P(VDF-TrFE), as a function of electrode material in metal/ferroelectric/metal device structures. Symmetric and asymmetric devices with Al, Ag, Au and Pt

  11. Neutron and x-ray scattering studies of ferroelectric phase transitions

    International Nuclear Information System (INIS)

    Dolling, G.

    1982-08-01

    The subject of ferroelectric type phase transitions is introduced by means of examples of two main classes (a) displacive transitions, e.g. KNbO 3 , and (b) order-disorder transitions, e.g. NaNO 2 . The significance of crystal structure and crystal dynamics (i.e. the phonon dispersion relations) for ferroelectric behaviour is emphasized. The chief methods for structure determination are x-ray and neutron diffraction, while the most powerful of all techniques for studying phonon properties is that of coherent inelastic neutron scattering. The most useful type of neutron spectrometer for phase transition studies, the triple axis crystal spectrometer, is discussed in detail. The history of the soft mode theory of displacive phase transitions, and its application to the antiferroelectric and 'almost ferroelectric' transitions in SrTiO 3 , provides an introduction to more recent developments in this area, including over-damped soft modes, central peaks and critical scattering, incommensurate phase transitions (e.g. K 2 SeO 4 ), amplitudons, phasons and finally solitions. The treatment throughout is descriptive and introductory, designed for graduate students

  12. Experimental evidence of enhanced ferroelectricity in Ca doped BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Costa, L.V.; Deus, R.C. [Universidade Estadual Paulista, UNESP, Faculdade de Engenharia de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, Bairro Portal das Colinas, CEP 12516-410 Guaratinguetá, SP (Brazil); Foschini, C.R.; Longo, E. [Universidade Estadual Paulista, UNESP, Faculdade de Engenharia de Bauru, Dept. de Eng. Mecânica, Av. Eng. Luiz Edmundo C. Coube 14-01, 17033-360 Bauru, SP (Brazil); Cilense, M. [Universidade Estadual Paulista, UNESP, Instituto de Química – Laboratório Interdisciplinar em Cerâmica (LIEC), Rua Professor Francisco Degni s/n, 14800-90 Araraquara, SP (Brazil); Simões, A.Z., E-mail: alezipo@yahoo.com [Universidade Estadual Paulista, UNESP, Faculdade de Engenharia de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, Bairro Portal das Colinas, CEP 12516-410 Guaratinguetá, SP (Brazil)

    2014-04-01

    Calcium (Ca)-doped bismuth ferrite (BiFeO{sub 3}) thin films prepared by using the polymeric precursor method (PPM) were characterized by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), polarization and piezoelectric measurements. Structural studies by XRD and TEM reveal the co-existence of distorted rhombohedral and tetragonal phases in the highest doped BiFeO{sub 3} where enhanced ferroelectric and piezoelectric properties are produced by internal strain. Resistive switching is observed in BFO and Ca-doped BFO which are affected by the barrier contact and work function of multiferroic materials and Pt electrodes. A high coercive field in the hysteresis loop is observed for the BiFeO{sub 3} film. Piezoelectric properties are improved in the highest Ca-doped sample due to changes in the crystal structure of BFO for a primitive cubic perovskite lattice with four-fold symmetry and a large tetragonal distortion within the crystal domain. This observation introduces magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom which are already present in the multiferroic BiFeO{sub 3}. - Highlights: • Ca doped BiFeO{sub 3} thin films were obtained by the polymeric precursor method. • Co-existence of distorted rhombohedral and tetragonal phases are evident. • Enhanced ferroelectric and piezoelectric properties are produced by the internal strain in the Ca doped BiFeO{sub 3} film.

  13. Electrical performance of polymer ferroelectric capacitors fabricated on plastic substrate using transparent electrodes

    KAUST Repository

    Bhansali, Unnat Sampatraj

    2012-09-01

    Polymer-based flexible ferroelectric capacitors have been fabricated using a transparent conducting oxide (ITO) and a transparent conducting polymer (PEDOT:PSS). It is found that the polarization fatigue performance with transparent oxide electrodes exhibits a significant improvement over the polymer electrodes (20% vs 70% drop in polarization after 10 6 cycles). This result can be explained based on a charge injection model that is controlled by interfacial band-offsets, and subsequent pinning of ferroelectric domain walls by the injected carriers. Furthermore, the coercive field (E c) of devices with our polymer electrodes is nearly 40% lower than reported values with similar polymer electrodes. Surprisingly, this difference was found to be related to the dry etching process used to define the top electrodes, which is reported for the first time by this group. The temperature dependence of relative permittivity of both devices shows a typical first order ferroelectric-to-paraelectric phase transition, but with a reduced Curie temperature compared to reference devices fabricated on Pt. © 2012 Elsevier B.V. All rights reserved.

  14. Electrical performance of polymer ferroelectric capacitors fabricated on plastic substrate using transparent electrodes

    KAUST Repository

    Bhansali, Unnat Sampatraj; Khan, Yasser; Alshareef, Husam N.

    2012-01-01

    Polymer-based flexible ferroelectric capacitors have been fabricated using a transparent conducting oxide (ITO) and a transparent conducting polymer (PEDOT:PSS). It is found that the polarization fatigue performance with transparent oxide electrodes exhibits a significant improvement over the polymer electrodes (20% vs 70% drop in polarization after 10 6 cycles). This result can be explained based on a charge injection model that is controlled by interfacial band-offsets, and subsequent pinning of ferroelectric domain walls by the injected carriers. Furthermore, the coercive field (E c) of devices with our polymer electrodes is nearly 40% lower than reported values with similar polymer electrodes. Surprisingly, this difference was found to be related to the dry etching process used to define the top electrodes, which is reported for the first time by this group. The temperature dependence of relative permittivity of both devices shows a typical first order ferroelectric-to-paraelectric phase transition, but with a reduced Curie temperature compared to reference devices fabricated on Pt. © 2012 Elsevier B.V. All rights reserved.

  15. Ferroelectric properties of full plasma-enhanced ALD TiN/La:HfO{sub 2}/TiN stacks

    Energy Technology Data Exchange (ETDEWEB)

    Chernikova, A. G.; Kuzmichev, D. S.; Negrov, D. V.; Kozodaev, M. G.; Markeev, A. M. [Moscow Institute of Physics and Technology, Institutskii per. 9, 141700 Dolgoprudny, Moscow Region (Russian Federation); Polyakov, S. N. [Technological Institute for Superhard and Novel Carbon Materials, Tsentral' naya Str. 7a, 142190 Troitsk, Moscow (Russian Federation)

    2016-06-13

    We report the possibility of employment of low temperature (≤330 °C) plasma-enhanced atomic layer deposition for the formation of both electrodes and hafnium-oxide based ferroelectric in the metal-insulator-metal structures. The structural and ferroelectric properties of La doped HfO{sub 2}-based layers and its evolution with the change of both La content (2.1, 3.7 and 5.8 at. %) and the temperature of the rapid thermal processing (550–750 °C) were investigated in detail. Ferroelectric properties emerged only for 2.1 and 3.7 at. % of La due to the structural changes caused by the given doping levels. Ferroelectric properties were also found to depend strongly on annealing temperature, with the most robust ferroelectric response for lowest La concentration and intermediate 650 °C annealing temperature. The long term wake-up effect and such promising endurance characteristics as 3 × 10{sup 8} switches by bipolar voltage cycles with 30 μs duration and ± 3 MV/cm amplitude without any decrease of remnant polarization value were demonstrated.

  16. Experimental (155 K) and predicted (151 K) Curie temperature (Tc) of K2ZnBr4: structural confirmation of ferroelectric state below Tc

    International Nuclear Information System (INIS)

    Abrahams, S.C.

    1994-01-01

    The temperature T c at which K 2 ZnBr 4 is predicted to transform from the paraelectric to the ferroelectric phase is 151 (19) K, based on the crystal structure determinations at 291 and 144 K by Fabry, Breczewski, Zuniga and Arnaiz and the Abrahams-Kurtz-Jamieson relationship. A dielectric and heat-capacity anomaly in this material at 155 K has been reported elsewhere. The locations reported for the ZnBr 2- 4 and K + ions fulfill the requirements of mirror plane symmetry above T c ; ionic displacements along the polar direction that approach but do not exceed 0.1 A and that violate the mirror symmetry on cooling through T c form the basis of the prediction and satisfy the structural criteria for ferroelectricity in the phase below the transition. (orig.)

  17. Insights into function of PSI domains from structure of the Met receptor PSI domain

    International Nuclear Information System (INIS)

    Kozlov, Guennadi; Perreault, Audrey; Schrag, Joseph D.; Park, Morag; Cygler, Miroslaw; Gehring, Kalle; Ekiel, Irena

    2004-01-01

    PSI domains are cysteine-rich modules found in extracellular fragments of hundreds of signaling proteins, including plexins, semaphorins, integrins, and attractins. Here, we report the solution structure of the PSI domain from the human Met receptor, a receptor tyrosine kinase critical for proliferation, motility, and differentiation. The structure represents a cysteine knot with short regions of secondary structure including a three-stranded antiparallel β-sheet and two α-helices. All eight cysteines are involved in disulfide bonds with the pattern consistent with that for the PSI domain from Sema4D. Comparison with the Sema4D structure identifies a structurally conserved core comprising the N-terminal half of the PSI domain. Interestingly, this part links adjacent SEMA and immunoglobulin domains in the Sema4D structure, suggesting that the PSI domain serves as a wedge between propeller and immunoglobulin domains and is responsible for the correct positioning of the ligand-binding site of the receptor

  18. Electric-field-induced paraelectric to ferroelectric phase transformation in prototypical polycrystalline BaTiO3

    International Nuclear Information System (INIS)

    Wang, Zhiyang; Hinterstein, Manuel; Daniels, John E.; Webber, Kyle G.; Hudspeth, Jessica M.

    2014-01-01

    An electric-field-induced paraelectric cubic to ferroelectric tetragonal phase transformation has been directly observed in prototypical polycrystalline BaTiO 3 at temperatures above the Curie point (T C ) using in situ high-energy synchrotron X-ray diffraction. The transformation persisted to a maximum temperature of 4 °C above T C . The nature of the observed field-induced transformation and the resulting development of domain texture within the induced phase were dependent on the proximity to the transition temperature, corresponding well to previous macroscopic measurements. The transition electric field increased with increasing temperature above T C , while the magnitude of the resultant tetragonal domain texture at the maximum electric field (4 kV mm −1 ) decreased at higher temperatures. These results provide insights into the phase transformation behavior of a prototypical ferroelectric and have important implications for the development of future large-strain phase-change actuator materials.

  19. Hierarchical domain structure of lead-free piezoelectric (Na{sub 1/2} Bi{sub 1/2})TiO{sub 3}-(K{sub 1/2} Bi{sub 1/2})TiO{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chengtao, E-mail: lchentao@vt.edu; Wang, Yaojin; Ge, Wenwei; Li, Jiefang; Viehland, Dwight [Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Delaire, Olivier [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Li, Xiaobin; Luo, Haosu [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Road, Jiading, Shanghai 201800 (China)

    2016-05-07

    We report a unique hierarchical domain structure in single crystals of (Na{sub 1/2}Bi{sub 1/2})TiO{sub 3}-xat. %(K{sub 1/2}Bi{sub 1/2})TiO{sub 3} for x = 5 and 8 by transmission electron microscopy (TEM). A high density of polar nano-domains with a lamellar morphology was found, which were self-assembled into a quadrant-like configuration, which then assembled into conventional ferroelectric macro-domains. Studies by high resolution TEM revealed that the polar lamellar regions contained a coexistence of in-phase and anti-phase oxygen octahedral tilt regions of a few nanometers in size. Domain frustration over multiple length scales may play an important role in the stabilization of the hierarchy, and in reducing the piezoelectric response of this Pb-free piezoelectric solid solution.

  20. Modeling of strain effects on the device behaviors of ferroelectric memory field-effect transistors

    International Nuclear Information System (INIS)

    Yang, Feng; Hu, Guangda; Wu, Weibing; Yang, Changhong; Wu, Haitao; Tang, Minghua

    2013-01-01

    The influence of strains on the channel current–gate voltage behaviors and memory windows of ferroelectric memory field-effect transistors (FeMFETs) were studied using an improved model based on the Landau–Devonshire theory. ‘Channel potential–gate voltage’ ferroelectric polarization and silicon surface potential diagrams were constructed for strained single-domain BaTiO 3 FeMFETs. The compressive strains can increase (or decrease) the amplitude of transistor currents and enlarge memory windows. However, tensile strains only decrease the maximum value of transistor currents and compress memory windows. Mismatch strains were found to have a significant influence on the electrical behaviors of the devices, therefore, they must be considered in FeMFET device designing. (fast track communication)

  1. Impact of symmetry on the ferroelectric properties of CaTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Biegalski, Michael D.; Qiao, Liang [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Gu, Yijia; Chen, Long-Qing [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16801 (United States); Mehta, Apurva [Stanford Synchrotron Lightsource SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); He, Qian; Borisevich, Albina [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Takamura, Yayoi, E-mail: ytakamura@ucdavis.edu [Department of Chemical Engineering and Materials Science, University of California Davis, Davis, California 95616 (United States)

    2015-04-20

    Epitaxial strain is a powerful tool to induce functional properties such as ferroelectricity in thin films of materials that do not possess ferroelectricity in bulk form. In this work, a ferroelectric state was stabilized in thin films of the incipient ferroelectric, CaTiO{sub 3}, through the careful control of the biaxial strain state and TiO{sub 6} octahedral rotations. Detailed structural characterization was carried out by synchrotron x-ray diffraction and scanning transmission electron microscopy. CaTiO{sub 3} films grown on La{sub 0.18}Sr{sub 0.82}Al{sub 0.59}Ta{sub 0.41}O{sub 3} (LSAT) and NdGaO{sub 3} (NGO) substrates experienced a 1.1% biaxial strain state but differed in their octahedral tilt structures. A suppression of the out-of-plane rotations of the TiO{sub 6} octahedral in films grown on LSAT substrates resulted in a robust ferroelectric I4 mm phase with remnant polarization ∼5 μC/cm{sup 2} at 10 K and T{sub c} near 140 K. In contrast, films grown on NGO substrates with significant octahedral tilting showed reduced polarization and T{sub c}. These results highlight the key role played by symmetry in controlling the ferroelectric properties of perovskite oxide thin films.

  2. Ferroelectric crystals for photonic applications including nanoscale fabrication and characterization techniques

    CERN Document Server

    Grilli, Simonetta

    2008-01-01

    This book deals with the latest achievements in the field of ferroelectric domain engineering and characterization at micron- and nano-scale dimensions and periods. The book collects the results obtained in the last years by world scientific leaders in the field, thus providing a valid and unique overview of the state of the art and also a view to future applications of those engineered materials in the field of photonics.

  3. Electrical characterisation of ferroelectric field effect transistors based on ferroelectric HfO2 thin films

    International Nuclear Information System (INIS)

    Yurchuk, Ekaterina

    2015-01-01

    Ferroelectric field effect transistor (FeFET) memories based on a new type of ferroelectric material (silicon doped hafnium oxide) were studied within the scope of the present work. Utilisation of silicon doped hafnium oxide (Si:HfO 2 ) thin films instead of conventional perovskite ferroelectrics as a functional layer in FeFETs provides compatibility to the CMOS process as well as improved device scalability. The influence of different process parameters on the properties of Si:HfO 2 thin films was analysed in order to gain better insight into the occurrence of ferroelectricity in this system. A subsequent examination of the potential of this material as well as its possible limitations with the respect to the application in non-volatile memories followed. The Si:HfO 2 -based ferroelectric transistors that were fully integrated into the state-of-the-art high-k metal gate CMOS technology were studied in this work for the first time. The memory performance of these devices scaled down to 28 nm gate length was investigated. Special attention was paid to the charge trapping phenomenon shown to significantly affect the device behaviour.

  4. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering.

    Science.gov (United States)

    Pan, Hao; Ma, Jing; Ma, Ji; Zhang, Qinghua; Liu, Xiaozhi; Guan, Bo; Gu, Lin; Zhang, Xin; Zhang, Yu-Jun; Li, Liangliang; Shen, Yang; Lin, Yuan-Hua; Nan, Ce-Wen

    2018-05-08

    Developing high-performance film dielectrics for capacitive energy storage has been a great challenge for modern electrical devices. Despite good results obtained in lead titanate-based dielectrics, lead-free alternatives are strongly desirable due to environmental concerns. Here we demonstrate that giant energy densities of ~70 J cm -3 , together with high efficiency as well as excellent cycling and thermal stability, can be achieved in lead-free bismuth ferrite-strontium titanate solid-solution films through domain engineering. It is revealed that the incorporation of strontium titanate transforms the ferroelectric micro-domains of bismuth ferrite into highly-dynamic polar nano-regions, resulting in a ferroelectric to relaxor-ferroelectric transition with concurrently improved energy density and efficiency. Additionally, the introduction of strontium titanate greatly improves the electrical insulation and breakdown strength of the films by suppressing the formation of oxygen vacancies. This work opens up a feasible and propagable route, i.e., domain engineering, to systematically develop new lead-free dielectrics for energy storage.

  5. Electric field cycling behavior of ferroelectric hafnium oxide.

    Science.gov (United States)

    Schenk, Tony; Schroeder, Uwe; Pešić, Milan; Popovici, Mihaela; Pershin, Yuriy V; Mikolajick, Thomas

    2014-11-26

    HfO2 based ferroelectrics are lead-free, simple binary oxides with nonperovskite structure and low permittivity. They just recently started attracting attention of theoretical groups in the fields of ferroelectric memories and electrostatic supercapacitors. A modified approach of harmonic analysis is introduced for temperature-dependent studies of the field cycling behavior and the underlying defect mechanisms. Activation energies for wake-up and fatigue are extracted. Notably, all values are about 100 meV, which is 1 order of magnitude lower than for conventional ferroelectrics like lead zirconate titanate (PZT). This difference is mainly atttributed to the one to two orders of magnitude higher electric fields used for cycling and to the different surface to volume ratios between the 10 nm thin films in this study and the bulk samples of former measurements or simulations. Moreover, a new, analog-like split-up effect of switching peaks by field cycling is discovered and is explained by a network model based on memcapacitive behavior as a result of defect redistribution.

  6. Structural, dielectric and ferroelectric properties of (Bi,Na)TiO3–BaTiO3 system studied by high throughput screening

    International Nuclear Information System (INIS)

    Hayden, Brian E.; Yakovlev, Sergey

    2016-01-01

    Thin-film materials libraries of the Bi 2 O 3 –Na 2 O–TiO 2 –BaO system in a broad composition range have been deposited in ultra-high vacuum from elemental evaporation sources and an oxygen plasma source. A high throughput approach was used for systematic compositional and structural characterization and the screening of the dielectric and ferroelectric properties. The perovskite (Bi,Na)TiO 3 –BaTiO 3 phase with a Ba concentration near the morphotropic phase boundary (ca. 6 at.%) exhibited a relative dielectric permittivity of 180, a loss tangent of 0.04 and remnant polarization of 19 μC/cm 2 . Compared to published data, observed remnant polarization is close to that known for epitaxially grown films but higher than the values reported for polycrystalline films. The high throughput methodology and systematic nature of the study allowed us to establish the composition boundaries of the phase with optimal dielectric and ferroelectric characteristics. - Highlights: • Bi 2 O 3 –Na 2 O–TiO 2 –BaO high throughput materials library was deposited using PVD method. • Materials were processed from individual molecular beam epitaxy sources of elements. • High throughput approach was used for structural, dielectric and ferroelectric study. • Composition boundaries of perovskite compounds with optimum properties are reported.

  7. Nanoscale organic ferroelectric resistive switches

    NARCIS (Netherlands)

    Khikhlovskyi, V.; Wang, R.; Breemen, A.J.J.M. van; Gelinck, G.H.; Janssen, R.A.J.; Kemerink, M.

    2014-01-01

    Organic ferroelectric resistive switches function by grace of nanoscale phase separation in a blend of a semiconducting and a ferroelectric polymer that is sandwiched between metallic electrodes. In this work, various scanning probe techniques are combined with numerical modeling to unravel their

  8. Image plane digital holographic microscope for the inspection of ferroelectric single crystals.

    Czech Academy of Sciences Publication Activity Database

    Psota, Pavel; Mokrý, Pavel; Lédl, Vít; Vojtíšek, Petr

    2016-01-01

    Roč. 55, č. 12 (2016), č. článku 121731. ISSN 0091-3286 R&D Projects: GA ČR(CZ) GA14-32228S Institutional support: RVO:61389021 Keywords : Digital holography * barium titanate * domain pattern * ferroelectric crystals * holographic microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.082, year: 2016 http://dx.doi.org/10.1117/1.OE.55.12.121731

  9. Ab initio study on mechanical-bending-induced ferroelectric phase transition in ultrathin perovskite nanobelts

    International Nuclear Information System (INIS)

    Li, H.F.; Zhang, G.H.; Zheng, Yue; Wang, Biao; Chen, W.J.

    2014-01-01

    Based on first-principles calculations, we systematically investigated the structural, ferroelectric (FE), energetic and electronic properties of bended ultrathin PbTiO 3 and BaTiO 3 nanobelts in between flat sheet and nanotube configurations. It is found that both PbTiO 3 and BaTiO 3 ultrathin nanobelts can possess axial antiferrodistortive structural distortion (AFD distortion), and the magnitude of the AFD rotation angle is obviously determined by the bending curvature of the nanobelts. Meanwhile, spontaneous polarization can be retained in these single-unit-cell-thick nanobelts with contributions from the axial improper ferroelectricity and the radial flexoelectricity, which indicates that ultrathin perovskite nanobelts do not have a critical thickness. On the other hand, we found that the AFD distortion is stable and significant in PbTiO 3 nanobelts while it is metastable in BaTiO 3 nanobelts in comparison with the stable non-AFD structure without AFD distortion. This is due to the competition between AFD distortion and circumferential lattice extension in releasing the elastic energy in BaTiO 3 material. Moreover, we found that the electronic structure and bandgap of the nanobelts can be tuned by the bending curvature, indicating potential control of transport properties by mechanical bending. Our results gave more insight into the inherence of improper ferroelectricity in low-dimensional perovskite ferroelectrics

  10. Charging and switching of ferroelectrets: how much can ferroelectrets behave like ferroelectrics?

    International Nuclear Information System (INIS)

    Schwoediauer, R.; Graz, I.; Bauer, S.

    2004-01-01

    Dielectrics with good charge storage capability, so called charge electrets, are non or weakly-polar materials. Despite their non-polar nature porous charge electrets with internally charged surfaces can exhibit very pronounced piezoelectricity. Such systems have been termed 'ferroelectrets' and they have been receiving growing attention over the last few years. Their puzzling and unexpected features resemble very much those normally known from traditional ferroelectrics: ferroelectrets are piezo- and pyroelectric, their polarization can be reversed by means of an external field and electrical as well as mechanical hysteresis loops were observed. As conventional ferroelectrics are different and more complicated than ferromagnets, so are ferroelectrets different and more complex than most ferroelectrics. Here we report about the very different charging and switching mechanism in ferroelectrets, both in simple model-systems and in less simple foam structures. These mechanisms are crucial and form the basis for the striking phenomenological similarities to ferroelectrics. We also want to address some of the specific peculiarities and pitfalls related to present ferroelectrets and their characterization. Interfacial charge injection at high electric fields and anelastic non-linearities, for instance, can be the cause for false ferroelectric-like hysteresis effects which do not reflect any polarization reversal. Our contribution is an attempt towards a more comprehensive picture of how much ferroelectrets behave like ferroelectrics. (author)

  11. A three-dimensional polarization domain retrieval method from electron diffraction data

    International Nuclear Information System (INIS)

    Pennington, Robert S.; Koch, Christoph T.

    2015-01-01

    We present an algorithm for retrieving three-dimensional domains of picometer-scale shifts in atomic positions from electron diffraction data, and apply it to simulations of ferroelectric polarization in BaTiO 3 . Our algorithm successfully and correctly retrieves polarization domains in which the Ti atom positions differ by less than 3 pm (0.4% of the unit cell diagonal distance) with 5 and 10 nm depth resolution along the beam direction, and we also retrieve unit cell strain, corresponding to tetragonal-to-cubic unit cell distortions, for 10 nm domains. Experimental applicability is also discussed. - Highlights: • We show a retrieval method for ferroelectric polarization from TEM diffraction data. • Simulated strain and polarization variations along the beam direction are retrieved. • This method can be used for 3D strain and polarization mapping without specimen tilt

  12. Hysteresis loop behaviors of ferroelectric thin films:A Monte Carlo simulation study

    Institute of Scientific and Technical Information of China (English)

    C. M. Bedoya-Hincapi´e; H. H. Ortiz-´Alvarez; E. Restrepo-Parra; J. J. Olaya-Fl´orez; J. E. Alfonso

    2015-01-01

    The ferroelectric response of bismuth titanate Bi4Ti3O12 (BIT) thin film is studied through a Monte Carlo simulation of hysteresis loops. The ferroelectric system is described by using a Diffour Hamiltonian with three terms: the electric field applied in the z direction, the nearest dipole–dipole interaction in the transversal (x–y) direction, and the nearest dipole–dipole interaction in the direction perpendicular to the thin film (the z axis). In the sample construction, we take into consideration the dipole orientations of the monoclinic and orthorhombic structures that can appear in BIT at low temperature in the ferroelectric state. The effects of temperature, stress, and the concentration of pinned dipole defects are assessed by using the hysteresis loops. The results indicate the changes in the hysteresis area with temperature and stress, and the asymmetric hysteresis loops exhibit evidence of the imprint failure mechanism with the emergence of pinned dipolar defects. The simulated shift in the hysteresis loops conforms to the experimental ferroelectric response.

  13. Direct observation of oxygen-vacancy-enhanced polarization in a SrTiO{sub 3}-buffered ferroelectric BaTiO{sub 3} film on GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Qiao [Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240 (United States); Materials Science and Technology Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Zhang, Yuyang [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240 (United States); Materials Science and Technology Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Contreras-Guerrero, Rocio; Droopad, Ravi [Ingram School of Engineering, Texas State University, San Marcos, Texas 78666 (United States); Pantelides, Sokrates T. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240 (United States); Materials Science and Technology Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37240 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 (Singapore); Ogut, Serdar; Klie, Robert F. [Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607 (United States)

    2015-11-16

    The integration of functional oxide thin-films on compound semiconductors can lead to a class of reconfigurable spin-based optoelectronic devices if defect-free, fully reversible active layers are stabilized. However, previous first-principles calculations predicted that SrTiO{sub 3} thin films grown on Si exhibit pinned ferroelectric behavior that is not switchable, due to the presence of interfacial vacancies. Meanwhile, piezoresponse force microscopy measurements have demonstrated ferroelectricity in BaTiO{sub 3} grown on semiconductor substrates. The presence of interfacial oxygen vacancies in such complex-oxide/semiconductor systems remains unexplored, and their effect on ferroelectricity is controversial. Here, we use a combination of aberration-corrected scanning transmission electron microscopy and first-principles density functional theory modeling to examine the role of interfacial oxygen vacancies on the ferroelectric polarization of a BaTiO{sub 3} thin film grown on GaAs. We demonstrate that interfacial oxygen vacancies enhance the polar discontinuity (and thus the single domain, out-of-plane polarization pinning in BaTiO{sub 3}), and propose that the presence of surface charge screening allows the formation of switchable domains.

  14. Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors

    Science.gov (United States)

    Tian, Bo Bo; Liu, Yang; Chen, Liu Fang; Wang, Jian Lu; Sun, Shuo; Shen, Hong; Sun, Jing Lan; Yuan, Guo Liang; Fusil, Stéphane; Garcia, Vincent; Dkhil, Brahim; Meng, Xiang Jian; Chu, Jun Hao

    2015-12-01

    Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices.

  15. Switching of the polarization of ferroelectric-ferroelastic gadolinium molybdate in a magnetic field

    Science.gov (United States)

    Yakushkin, E. D.

    2017-10-01

    A change in the character of the electric switching of polydomain ferroelectric-ferroelastic gadolinium molybdate in an external magnetic field has been detected. This change has been attributed to a magnetically stimulated increase in the pinning of domain walls. Under certain conditions, the loop of switchable polarization is degenerated into an ellipse characteristic of a linear insulator with leakage current.

  16. Distributions of electric and elastic fields at domain boundaries

    International Nuclear Information System (INIS)

    Novak, Josef; Fousek, Jan; Maryska, Jiri; Marvan, Milan

    2005-01-01

    In this paper we describe the application of the finite element method (FEM) in modelling spatial distributions of electric and elastic fields in a ferroelectric crystals with two domains separated by a 90 deg. domain wall. The domain boundary is idealized as a two-dimensional defect in an electro-elastic continuum. It represents the source of inhomogenity and internal distortion in both elastic and electric fields. The main results are distributions of electric field, strain and mechanical force along the domain boundary

  17. Ultrahigh piezoelectricity in ferroelectric ceramics by design

    Science.gov (United States)

    Li, Fei; Lin, Dabin; Chen, Zibin; Cheng, Zhenxiang; Wang, Jianli; Li, ChunChun; Xu, Zhuo; Huang, Qianwei; Liao, Xiaozhou; Chen, Long-Qing; Shrout, Thomas R.; Zhang, Shujun

    2018-03-01

    Piezoelectric materials, which respond mechanically to applied electric field and vice versa, are essential for electromechanical transducers. Previous theoretical analyses have shown that high piezoelectricity in perovskite oxides is associated with a flat thermodynamic energy landscape connecting two or more ferroelectric phases. Here, guided by phenomenological theories and phase-field simulations, we propose an alternative design strategy to commonly used morphotropic phase boundaries to further flatten the energy landscape, by judiciously introducing local structural heterogeneity to manipulate interfacial energies (that is, extra interaction energies, such as electrostatic and elastic energies associated with the interfaces). To validate this, we synthesize rare-earth-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), as rare-earth dopants tend to change the local structure of Pb-based perovskite ferroelectrics. We achieve ultrahigh piezoelectric coefficients d33 of up to 1,500 pC N-1 and dielectric permittivity ɛ33/ɛ0 above 13,000 in a Sm-doped PMN-PT ceramic with a Curie temperature of 89 °C. Our research provides a new paradigm for designing material properties through engineering local structural heterogeneity, expected to benefit a wide range of functional materials.

  18. A micromagnetic study of domain structure modeling

    International Nuclear Information System (INIS)

    Matsuo, Tetsuji; Mimuro, Naoki; Shimasaki, Masaaki

    2008-01-01

    To develop a mesoscopic model for magnetic-domain behavior, a domain structure model (DSM) was examined and compared with a micromagnetic simulation. The domain structure of this model is given by several domains with uniform magnetization vectors and domain walls. The directions of magnetization vectors and the locations of domain walls are determined so as to minimize the magnetic total energy of the magnetic material. The DSM was modified to improve its representation capability for domain behavior. The domain wall energy is multiplied by a vanishing factor to represent the disappearance of magnetic domain. The sequential quadratic programming procedure is divided into two steps to improve an energy minimization process. A comparison with micromagnetic simulation shows that the modified DSM improves the representation accuracy of the magnetization process

  19. Photoelectron spectroscopic and microspectroscopic probes of ferroelectrics

    Science.gov (United States)

    Tǎnase, Liviu C.; Abramiuc, Laura E.; Teodorescu, Cristian M.

    2017-12-01

    This contribution is a review of recent aspects connected with photoelectron spectroscopy of free ferroelectric surfaces, metals interfaced with these surfaces, graphene-like layers together with some exemplifications concerning molecular adsorption, dissociations and desorptions occurring from ferroelectrics. Standard photoelectron spectroscopy is used nowadays in correlation with other characterization techniques, such as piezoresponse force microscopy, high resolution transmission electron spectroscopy, and ferroelectric hysteresis cycles. In this work we will concentrate mainly on photoelectron spectroscopy and spectro-microscopy characterization of ferroelectric thin films, starting from atomically clean ferroelectric surfaces of lead zirco-titanate, then going towards heterostructures using this material in combination with graphene-like carbon layers or with metals. Concepts involving charge accumulation and depolarization near surface will be revisited by taking into account the newest findings in this area.

  20. Investigation of structural, ferroelectric, piezoelectric and dielectric properties of Ba0.92Ca0.08TiO3-BaTi0.96Zr0.04O3 lead-free electroceramics

    Science.gov (United States)

    Keswani, Bhavna C.; Patil, S. I.; Kolekar, Y. D.

    2018-04-01

    Lead free ferroelectric with composition 0.55Ba0.92Ca0.08TiO3-0.45BaTi0.96Zr0.04O3 (BCT8-BZT4) was synthesized by solid state reaction method and investigated their structural, ferroelectric, piezoelectric and dielectric properties. X-ray diffraction analysis shows that BCT8-BZT4 ceramic possess both tetragonal (space group P4mm) and orthorhombic (space group Amm2) crystal structure which was further confirmed from Raman spectra spectroscopy. The micronized grains were observed from scanning electron micrographs while the presence of polarization-electric field hysteresis loop confirms ferroelectric nature of BCT8-BZT4 ceramic. Higher values of maximum polarization (Pmax = 22.27 μC/cm2), remnant polarization (Pr = 11.61 μC/cm2), coercive electric field (Ec = 4.77 kV/cm) and direct piezoelectric coefficient (d33) approximately 185 pC/N were observed. The real part of dielectric constant with frequency shows the usual dielectric dispersion behaviour at RT. The observed properties show that the lead free BCT8-BZT4 ceramic is suitable for ferroelectric memory device, piezoelectric sensor, capacitor, etc. applications.

  1. Temperature-dependent high energy-resolution EELS of ferroelectric and paraelectric BaTiO3 phases

    Science.gov (United States)

    Bugnet, Matthieu; Radtke, Guillaume; Woo, Steffi Y.; Zhu, Guo-zhen; Botton, Gianluigi A.

    2016-01-01

    Probing the ferroelectricity at the nanometer scale is of particular interest for a wide range of applications. In this Rapid Communication, the structural distortion of BaTiO3 (BTO) is studied in its ferroelectric (rhombohedral and tetragonal), and paraelectric phases from the O K near edge structures in electron energy loss spectroscopy. Modifications of the electronic structure are detected in the lowest energy fine structure (FS) of the O K edge in the ferroelectric phases, and are interpreted by core-hole valence-electron screening geometry. For the paraelectric phase, the lowest energy FS of the O K edge is comparable to the one obtained at room temperature, which is inconsistent with an expected cubic structure. The variations observed in the O K near edge structures, such as a broader and more asymmetric lowest energy FS at low temperature, suggest that the magnitude of the Ti+4 off-centering along increases in lower-temperature phases. These findings demonstrate the sensitivity of the O K near edge structures to the structural distortions of BTO polymorphs, and form a basis for further investigations on defective or strained BTO at the nanoscale.

  2. Flexible graphene–PZT ferroelectric nonvolatile memory

    International Nuclear Information System (INIS)

    Lee, Wonho; Ahn, Jong-Hyun; Kahya, Orhan; Toh, Chee Tat; Özyilmaz, Barbaros

    2013-01-01

    We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr 0.35 ,Ti 0.65 )O 3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol–gel methods, respectively. Such PZT films show a high remnant polarization (P r ) of 30 μC cm −2 and a coercive voltage (V c ) of 3.5 V under a voltage loop over ±11 V. The graphene–PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits. (paper)

  3. Flexible graphene-PZT ferroelectric nonvolatile memory.

    Science.gov (United States)

    Lee, Wonho; Kahya, Orhan; Toh, Chee Tat; Ozyilmaz, Barbaros; Ahn, Jong-Hyun

    2013-11-29

    We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr0.35,Ti0.65)O3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol–gel methods, respectively. Such PZT films show a high remnant polarization (Pr) of 30 μC cm−2 and a coercive voltage (Vc) of 3.5 V under a voltage loop over ±11 V. The graphene–PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits.

  4. Electrical characterisation of ferroelectric field effect transistors based on ferroelectric HfO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yurchuk, Ekaterina

    2015-02-06

    Ferroelectric field effect transistor (FeFET) memories based on a new type of ferroelectric material (silicon doped hafnium oxide) were studied within the scope of the present work. Utilisation of silicon doped hafnium oxide (Si:HfO{sub 2}) thin films instead of conventional perovskite ferroelectrics as a functional layer in FeFETs provides compatibility to the CMOS process as well as improved device scalability. The influence of different process parameters on the properties of Si:HfO{sub 2} thin films was analysed in order to gain better insight into the occurrence of ferroelectricity in this system. A subsequent examination of the potential of this material as well as its possible limitations with the respect to the application in non-volatile memories followed. The Si:HfO{sub 2}-based ferroelectric transistors that were fully integrated into the state-of-the-art high-k metal gate CMOS technology were studied in this work for the first time. The memory performance of these devices scaled down to 28 nm gate length was investigated. Special attention was paid to the charge trapping phenomenon shown to significantly affect the device behaviour.

  5. Structure-property relations in sputter deposited epitaxial (1-x)Pb(Mg1/3Nb2/3)O3- xPbTiO3 thin films

    Science.gov (United States)

    Frederick, Joshua C.

    Lead-based ferroelectric materials are of significant technological importance for sensing and actuation due to their high piezoelectric performance (i.e., the ability to convert an electrical signal to mechanical displacement, and vice versa). Traditionally, bulk ceramic or single crystals materials have filled these roles; however, emerging technologies stand to benefit by incorporating thin films to achieve miniaturization while maintaining high efficiency and sensitivity. Currently, chemical systems that have been well characterized in bulk form (e.g. Pb(Mg1/3Nb2/3)O3- xPbTiO3, or PMN-xPT) require further study to optimize both the chemistry and structure for deployment in thin film devices. Furthermore, the effect of internal electric fields is more significant at the length scales of thin films, resulting in self biases that require compensation to reveal their intrinsic dielectric response. To this end, the structure-property relations of epitaxial PMN-xPT films sputter deposited on a variety of substrates were investigated. Attention was paid to how the structure (i.e., strain state, crystal structure, domain configuration, and defects) gave rise to the ferroelectric, dielectric, and piezoelectric response. Three-dimensional visualization of the dielectric response as a simultaneous function of electric field and temperature revealed the true phase transition of the films, which was found to correspond to the strain state and defect concentration. A lead-buffered anneal process was implemented to enhance the ferroelectric and dielectric response of the films without altering their stoichiometry. It was discovered that PMN- xPT films could be domain-engineered to exhibit a mixed domain state through chemistry and substrate choice. Such films exhibited a monoclinic distortion similar to that of the bulk compositions near the morphotropic phase boundary. Finally, it was revealed that the piezoelectric response could be greatly enhanced by declamping the film

  6. Investigation of domain walls in PPLN by confocal raman microscopy and PCA analysis

    Science.gov (United States)

    Shur, Vladimir Ya.; Zelenovskiy, Pavel; Bourson, Patrice

    2017-07-01

    Confocal Raman microscopy (CRM) is a powerful tool for investigation of ferroelectric domains. Mechanical stresses and electric fields existed in the vicinity of neutral and charged domain walls modify frequency, intensity and width of spectral lines [1], thus allowing to visualize micro- and nanodomain structures both at the surface and in the bulk of the crystal [2,3]. Stresses and fields are naturally coupled in ferroelectrics due to inverse piezoelectric effect and hardly can be separated in Raman spectra. PCA is a powerful statistical method for analysis of large data matrix providing a set of orthogonal variables, called principal components (PCs). PCA is widely used for classification of experimental data, for example, in crystallization experiments, for detection of small amounts of components in solid mixtures etc. [4,5]. In Raman spectroscopy PCA was applied for analysis of phase transitions and provided critical pressure with good accuracy [6]. In the present work we for the first time applied Principal Component Analysis (PCA) method for analysis of Raman spectra measured in periodically poled lithium niobate (PPLN). We found that principal components demonstrate different sensitivity to mechanical stresses and electric fields in the vicinity of the domain walls. This allowed us to separately visualize spatial distribution of fields and electric fields at the surface and in the bulk of PPLN.

  7. Characterization of domain reorientation in Pzt ceramics

    International Nuclear Information System (INIS)

    Lente, Manuel Henrique; Povoa, Jose Marques; Eiras, Jose Antonio

    1997-01-01

    The dynamic of domains in ferroelectric materials has been intensively studied due to its importance in applications like non volatile memories. Domain reorientation was characterized in lead zirconate titanate samples, pure and doped, through measurements of the transient current, after reversal a electric field. The reorientation behavior of the domains showed to be influenced by type of impurity (Nb or Fe) and by the electrical field intensity. Analysis of the experimental results reveals mainly the existence of two contributions: a dependent (t 0.1 s) of the field intensity. (author)

  8. Ba-DOPED ZnO MATERIALS: A DFT SIMULATION TO INVESTIGATE THE DOPING EFFECT ON FERROELECTRICITY

    Directory of Open Access Journals (Sweden)

    Luis H. da S. Lacerda

    2016-04-01

    Full Text Available ZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.

  9. Negative capacitance in a ferroelectric capacitor.

    Science.gov (United States)

    Khan, Asif Islam; Chatterjee, Korok; Wang, Brian; Drapcho, Steven; You, Long; Serrao, Claudy; Bakaul, Saidur Rahman; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2015-02-01

    The Boltzmann distribution of electrons poses a fundamental barrier to lowering energy dissipation in conventional electronics, often termed as Boltzmann Tyranny. Negative capacitance in ferroelectric materials, which stems from the stored energy of a phase transition, could provide a solution, but a direct measurement of negative capacitance has so far been elusive. Here, we report the observation of negative capacitance in a thin, epitaxial ferroelectric film. When a voltage pulse is applied, the voltage across the ferroelectric capacitor is found to be decreasing with time--in exactly the opposite direction to which voltage for a regular capacitor should change. Analysis of this 'inductance'-like behaviour from a capacitor presents an unprecedented insight into the intrinsic energy profile of the ferroelectric material and could pave the way for completely new applications.

  10. Reconstruction of the domain orientation distribution function of polycrystalline PZT ceramics using vector piezoresponse force microscopy.

    Science.gov (United States)

    Kratzer, Markus; Lasnik, Michael; Röhrig, Sören; Teichert, Christian; Deluca, Marco

    2018-01-11

    Lead zirconate titanate (PZT) is one of the prominent materials used in polycrystalline piezoelectric devices. Since the ferroelectric domain orientation is the most important parameter affecting the electromechanical performance, analyzing the domain orientation distribution is of great importance for the development and understanding of improved piezoceramic devices. Here, vector piezoresponse force microscopy (vector-PFM) has been applied in order to reconstruct the ferroelectric domain orientation distribution function of polished sections of device-ready polycrystalline lead zirconate titanate (PZT) material. A measurement procedure and a computer program based on the software Mathematica have been developed to automatically evaluate the vector-PFM data for reconstructing the domain orientation function. The method is tested on differently in-plane and out-of-plane poled PZT samples, and the results reveal the expected domain patterns and allow determination of the polarization orientation distribution function at high accuracy.

  11. Study of the structure and ferroelectric behavior of BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Khokhar, Anita, E-mail: mails4anita@gmail.com; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi-110 007 (India); Goyal, Parveen K. [Department of Physics, ARSD College, University of Delhi, Dhaula Kuan, New Delhi-110 021 (India); Thakur, O. P. [Electroceramics Group, Solid State Physics Laboratory, Lucknow Road, Delhi 110 054 (India)

    2015-06-24

    The structure and ferroelectric properties of Lanthanum substituted barium bismuth titanate BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} (0 ≤ x ≤ 0.5) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material. The distribution of lanthanum into the perovskite layers and (Bi{sub 2}O{sub 2}){sup 2+} layers of BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics have been revealed through Raman spectroscopy. At lower value of x, it is seen that La{sup 3+} ions prefer to substitute A-site Bi{sup 3+} ions in the perovskite layers while for higher x values, La{sup 3+} ions get incorporated into the (Bi{sub 2}O{sub 2}){sup 2+} layers. A critical La content of x ∼ 0.2 in BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} is seen to exhibit a large remnant polarization (P{sub r}) with low coercive field (E{sub c}). The improvement in the ferroelectric properties of La substituted BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of lanthanum ion.

  12. Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design.

    Science.gov (United States)

    Corradi, Hazel R; Schwager, Sylva L U; Nchinda, Aloysius T; Sturrock, Edward D; Acharya, K Ravi

    2006-03-31

    Human somatic angiotensin I-converting enzyme (sACE) is a key regulator of blood pressure and an important drug target for combating cardiovascular and renal disease. sACE comprises two homologous metallopeptidase domains, N and C, joined by an inter-domain linker. Both domains are capable of cleaving the two hemoregulatory peptides angiotensin I and bradykinin, but differ in their affinities for a range of other substrates and inhibitors. Previously we determined the structure of testis ACE (C domain); here we present the crystal structure of the N domain of sACE (both in the presence and absence of the antihypertensive drug lisinopril) in order to aid the understanding of how these two domains differ in specificity and function. In addition, the structure of most of the inter-domain linker allows us to propose relative domain positions for sACE that may contribute to the domain cooperativity. The structure now provides a platform for the design of "domain-specific" second-generation ACE inhibitors.

  13. Magnetoelastic coupling in multilayered ferroelectric/ferromagnetic thin films: A quantitative evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Chiolerio, A., E-mail: alessandro.chiolerio@iit.it [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129 Turin (Italy); Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, IT-10129 Turin (Italy); Quaglio, M. [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, IT-10129 Turin (Italy); Lamberti, A. [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129 Turin (Italy); Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, IT-10129 Turin (Italy); Celegato, F. [Electromagnetism Division, INRIM, Strada delle Cacce 91, IT-10135 Turin (Italy); Balma, D.; Allia, P. [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129 Turin (Italy)

    2012-08-01

    The electrical control of magnetization in a thin film, achieved by means of magnetoelastic coupling between a ferroelectric and a ferromagnetic layer represents an attractive way to implement magnetic information storage and processing within logical architectures known as Magnetic Quantum Cellular Automata (MQCA). Such systems have been addressed as multiferroics. We exploited cost-effective techniques to realize multi-layered multiferroic systems, such as sol-gel deposition and RF sputtering, introducing a specific technique to control the crystal structure and film roughness effect on the magnetic domain wall motion and reconfiguration, induced by magnetoelastic coupling, by evaluating the 2-dimensional statistical properties of enhanced MFM matrices. A RF sputtered 50-nm-thick Co layer on a Si/SiO{sub 2}/Si{sub 3}N{sub 4}/Ti/Pt/PbTiO{sub 3}/Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3} substrate was realized, exploiting two differently engineered PZT nano-crystalline structures and the conditions leading to a favorable compromise in order to realize functional devices were elucidated.

  14. Crystal structure and ferroelectric properties of Ca(Cu3−xMx)Ti4O12 (M = Fe and Ni) ceramics

    International Nuclear Information System (INIS)

    Moriyama, Tohru; Kan, Akinori; Ogawa, Hirotaka

    2013-01-01

    Highlights: ► M-substituted Ca(Cu 3−x M x )Ti 4 O 12 (CCMTO) ceramics, where M = Fe and Ni, were synthesized. ► The influence of M substitution for Cu on crystal structure and ferroelectric properties of CCMTO ceramics were investigated. ► Analysis of CCMTO ceramics revealed the single phase of CCMTO ceramics belongs to I23 non-centrosymmetric space group of I23. ► As a result, the P r and E c values of CCFTO ceramics at x = 0.05 were 1.8 μC/cm 2 and 40 kV/cm, respectively. -- Abstract: M-substituted Ca(Cu 3−x M x )Ti 4 O 12 (CCMTO) ceramics, where M = Fe and Ni, were synthesized and the influence of M substitutions for Cu on the crystal structure and ferroelectric properties of CCMTO ceramics were investigated in this study. From the variations in the lattice parameters of CCMTO ceramics, the solubility limit of Ni substitution for Cu in CaCu 3−x Ni x Ti 4 O 12 (CCNTO) ceramics was x = 0.2, whereas that of CaCu 3−x Fe x Ti 4 O 12 (CCFTO) ceramics was x = 0.05. The crystal structural analysis of CCMTO ceramics revealed that the single phase of CCMTO ceramics belongs to the I23 non-centrosymmetric space group of I23; as a result, the P r and E c values of CCFTO ceramics at x = 0.05 were 1.8 μC/cm 2 and 40 kV/cm, respectively. The ferroelectric behavior of CCMTO ceramics by the M substitutions for Cu may be related to the displacement of a Ti 4+ cation in the TiO 6 octahedra and tilting of the Ti–O–Ti angle because of the non-centrosymmetric space group

  15. Solution structure of leptospiral LigA4 Big domain

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Song; Zhang, Jiahai [Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Xuecheng [School of Life Sciences, Anhui University, Hefei, Anhui 230039 (China); Tu, Xiaoming, E-mail: xmtu@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-11-13

    Pathogenic Leptospiraspecies express immunoglobulin-like proteins which serve as adhesins to bind to the extracellular matrices of host cells. Leptospiral immunoglobulin-like protein A (LigA), a surface exposed protein containing tandem repeats of bacterial immunoglobulin-like (Big) domains, has been proved to be involved in the interaction of pathogenic Leptospira with mammalian host. In this study, the solution structure of the fourth Big domain of LigA (LigA4 Big domain) from Leptospira interrogans was solved by nuclear magnetic resonance (NMR). The structure of LigA4 Big domain displays a similar bacterial immunoglobulin-like fold compared with other Big domains, implying some common structural aspects of Big domain family. On the other hand, it displays some structural characteristics significantly different from classic Ig-like domain. Furthermore, Stains-all assay and NMR chemical shift perturbation revealed the Ca{sup 2+} binding property of LigA4 Big domain. - Highlights: • Determining the solution structure of a bacterial immunoglobulin-like domain from a surface protein of Leptospira. • The solution structure shows some structural characteristics significantly different from the classic Ig-like domains. • A potential Ca{sup 2+}-binding site was identified by strains-all and NMR chemical shift perturbation.

  16. Solution structure of leptospiral LigA4 Big domain

    International Nuclear Information System (INIS)

    Mei, Song; Zhang, Jiahai; Zhang, Xuecheng; Tu, Xiaoming

    2015-01-01

    Pathogenic Leptospiraspecies express immunoglobulin-like proteins which serve as adhesins to bind to the extracellular matrices of host cells. Leptospiral immunoglobulin-like protein A (LigA), a surface exposed protein containing tandem repeats of bacterial immunoglobulin-like (Big) domains, has been proved to be involved in the interaction of pathogenic Leptospira with mammalian host. In this study, the solution structure of the fourth Big domain of LigA (LigA4 Big domain) from Leptospira interrogans was solved by nuclear magnetic resonance (NMR). The structure of LigA4 Big domain displays a similar bacterial immunoglobulin-like fold compared with other Big domains, implying some common structural aspects of Big domain family. On the other hand, it displays some structural characteristics significantly different from classic Ig-like domain. Furthermore, Stains-all assay and NMR chemical shift perturbation revealed the Ca"2"+ binding property of LigA4 Big domain. - Highlights: • Determining the solution structure of a bacterial immunoglobulin-like domain from a surface protein of Leptospira. • The solution structure shows some structural characteristics significantly different from the classic Ig-like domains. • A potential Ca"2"+-binding site was identified by strains-all and NMR chemical shift perturbation.

  17. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.

    Science.gov (United States)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-08

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  18. Improper ferroelectrics as high-efficiency energy conversion materials

    International Nuclear Information System (INIS)

    Wakamatsu, Toru; Tanabe, Kenji; Terasaki, Ichiro; Taniguchi, Hiroki

    2017-01-01

    An improper ferroelectric is a certain type of ferroelectrics whose primary order parameter is not polarization but another physical quantity such as magnetization. In contrast to a conventional proper ferroelectrics as represented by Pb(Zr,Ti)O_3 and BaTiO_3, the improper ferroelectrics has been inconceivable for practical applications thus far. Herein, we illustrate the great potential of improper ferroelectrics for efficient conversion of temperature fluctuation to electric energy, as demonstrated with (Ca_0_._8_4Sr_0_._1_6)_8[AlO_2]_1_2(MoO_4)_2 (CSAM-16). The present study has experimentally proven that CSAM-16 achieves an excellent electrothermal coupling factor and high electric field sensitivity for pyroelectric energy conversion that approach a practical level for application to self-powered autonomous electronic devices for rapidly spreading wireless sensor networks. The present results provide a novel approach to developing innovative pyroelectric energy harvesting devices using improper ferroelectrics. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Computational study of textured ferroelectric polycrystals: Dielectric and piezoelectric properties of template-matrix composites

    Science.gov (United States)

    Zhou, Jie E.; Yan, Yongke; Priya, Shashank; Wang, Yu U.

    2017-01-01

    Quantitative relationships between processing, microstructure, and properties in textured ferroelectric polycrystals and the underlying responsible mechanisms are investigated by phase field modeling and computer simulation. This study focuses on three important aspects of textured ferroelectric ceramics: (i) grain microstructure evolution during templated grain growth processing, (ii) crystallographic texture development as a function of volume fraction and seed size of the templates, and (iii) dielectric and piezoelectric properties of the obtained template-matrix composites of textured polycrystals. Findings on the third aspect are presented here, while an accompanying paper of this work reports findings on the first two aspects. In this paper, the competing effects of crystallographic texture and template seed volume fraction on the dielectric and piezoelectric properties of ferroelectric polycrystals are investigated. The phase field model of ferroelectric composites consisting of template seeds embedded in matrix grains is developed to simulate domain evolution, polarization-electric field (P-E), and strain-electric field (ɛ-E) hysteresis loops. The coercive field, remnant polarization, dielectric permittivity, piezoelectric coefficient, and dissipation factor are studied as a function of grain texture and template seed volume fraction. It is found that, while crystallographic texture significantly improves the polycrystal properties towards those of single crystals, a higher volume fraction of template seeds tends to decrease the electromechanical properties, thus canceling the advantage of ferroelectric polycrystals textured by templated grain growth processing. This competing detrimental effect is shown to arise from the composite effect, where the template phase possesses material properties inferior to the matrix phase, causing mechanical clamping and charge accumulation at inter-phase interfaces between matrix and template inclusions. The computational

  20. Ferroelectric and incipient ferroelectric properties of a novel Sr.sub.9-x./sub.Pb.sub.x./sub.Ce.sub.2./sub.Ti.sub.12./sub.O.sub.36./sub. (x=0-9) ceramic system

    Czech Academy of Sciences Publication Activity Database

    Kamba, Stanislav; Savinov, Maxim; Laufek, F.; Tkáč, O.; Kadlec, Christelle; Veljko, Sergiy; John, E.V.; Subodh, G.; Sebastian, M. T.; Klementová, Mariana; Bovtun, Viktor; Pokorný, Jan; Goian, Veronica; Petzelt, Jan

    2009-01-01

    Roč. 21, č. 5 (2009), s. 811-819 ISSN 0897-4756 R&D Projects: GA ČR(CZ) GA202/06/0403 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectrics * crystal structure * incipient ferroelectrics * soft mode Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.368, year: 2009 http://pubs.acs.org/doi/abs/10.1021/cm803058q

  1. Phonon localization transition in relaxor ferroelectric PZN-5%PT

    International Nuclear Information System (INIS)

    Manley, Michael E.; Christianson, Andrew D.; Abernathy, Douglas L.; Sahul, Raffi

    2017-01-01

    Relaxor ferroelectric behavior occurs in many disordered ferroelectric materials but is not well understood at the atomic level. Recent experiments and theoretical arguments indicate that Anderson localization of phonons instigates relaxor behavior by driving the formation of polar nanoregions (PNRs). Here, we use inelastic neutron scattering to observe phonon localization in relaxor ferroelectric PZN-5%PT (0.95[Pb(Zn 1/3 Nb 2/3 )O 3 ]–0.05PbTiO 3 ) and detect additional features of the localization process. In the lead, up to phonon localization on cooling, the local resonant modes that drive phonon localization increase in number. The increase in resonant scattering centers is attributed to a known increase in the number of locally off centered Pb atoms on cooling. The transition to phonon localization occurs when these random scattering centers increase to a concentration where the Ioffe-Regel criterion is satisfied for localizing the phonon. Finally, we also model the effects of damped mode coupling on the observed phonons and phonon localization structure.

  2. Ferroelectric BaTiO3 and LiNbO3 Nanoparticles Dispersed in Ferroelectric Liquid Crystal Mixtures: Electrooptic and Dielectric (Postprint)

    Science.gov (United States)

    2016-10-14

    strength for non- doped LF4 and LiNbO3/LF4 nanocolloids at temperature 30C. 146 R. K . SHUKLA ET AL. 6 Distribution A. Approved for public release (PA...AFRL-RX-WP-JA-2017-0210 FERROELECTRIC BaTiO3 AND LiNbO3 NANOPARTICLES DISPERSED IN FERROELECTRIC LIQUID CRYSTAL MIXTURES: ELECTROOPTIC...COMMAND UNITED STATES AIR FORCE Ferroelectric BaTiO3 and LiNbO3 nanoparticles dispersed in ferroelectric liquid crystal mixtures: Electrooptic and

  3. High-performance ferroelectric memory based on phase-separated films of polymer blends

    KAUST Repository

    Khan, Yasser; Bhansali, Unnat Sampatraj; Almadhoun, Mahmoud N.; Odeh, Ihab N.; Cha, Dong Kyu; Alshareef, Husam N.

    2013-01-01

    High-performance polymer memory is fabricated using blends of ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) and highly insulating poly(p-phenylene oxide) (PPO). The blend films spontaneously phase separate into amorphous PPO nanospheres embedded in a semicrystalline P(VDF-TrFE) matrix. Using low molecular weight PPO with high miscibility in a common solvent, i.e., methyl ethyl ketone, blend films are spin cast with extremely low roughness (Rrms ≈ 4.92 nm) and achieve nanoscale phase seperation (PPO domain size < 200 nm). These blend devices display highly improved ferroelectric and dielectric performance with low dielectric losses (<0.2 up to 1 MHz), enhanced thermal stability (up to ≈353 K), excellent fatigue endurance (80% retention after 106 cycles at 1 KHz) and high dielectric breakdown fields (≈360 MV/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High-performance ferroelectric memory based on phase-separated films of polymer blends

    KAUST Repository

    Khan, Yasser

    2013-10-29

    High-performance polymer memory is fabricated using blends of ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) and highly insulating poly(p-phenylene oxide) (PPO). The blend films spontaneously phase separate into amorphous PPO nanospheres embedded in a semicrystalline P(VDF-TrFE) matrix. Using low molecular weight PPO with high miscibility in a common solvent, i.e., methyl ethyl ketone, blend films are spin cast with extremely low roughness (Rrms ≈ 4.92 nm) and achieve nanoscale phase seperation (PPO domain size < 200 nm). These blend devices display highly improved ferroelectric and dielectric performance with low dielectric losses (<0.2 up to 1 MHz), enhanced thermal stability (up to ≈353 K), excellent fatigue endurance (80% retention after 106 cycles at 1 KHz) and high dielectric breakdown fields (≈360 MV/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Two-dimensional ferroelectric topological insulators in functionalized atomically thin bismuth layers

    Science.gov (United States)

    Kou, Liangzhi; Fu, Huixia; Ma, Yandong; Yan, Binghai; Liao, Ting; Du, Aijun; Chen, Changfeng

    2018-02-01

    We introduce a class of two-dimensional (2D) materials that possess coexisting ferroelectric and topologically insulating orders. Such ferroelectric topological insulators (FETIs) occur in noncentrosymmetric atomic layer structures with strong spin-orbit coupling (SOC). We showcase a prototype 2D FETI in an atomically thin bismuth layer functionalized by C H2OH , which exhibits a large ferroelectric polarization that is switchable by a ligand molecule rotation mechanism and a strong SOC that drives a band inversion leading to the topologically insulating state. An external electric field that switches the ferroelectric polarization also tunes the spin texture in the underlying atomic lattice. Moreover, the functionalized bismuth layer exhibits an additional quantum order driven by the valley splitting at the K and K' points in the Brillouin zone stemming from the symmetry breaking and strong SOC in the system, resulting in a remarkable state of matter with the simultaneous presence of the quantum spin Hall and quantum valley Hall effect. These phenomena are predicted to exist in other similarly constructed 2D FETIs, thereby offering a unique quantum material platform for discovering novel physics and exploring innovative applications.

  6. Ferroelectric devices, interconnects, and methods of manufacture thereof

    KAUST Repository

    Alshareef, Husam N.; Unnat, Bhansali; Khan, Mohd Adnan; Saleh, Moussa M.; Odeh, Ihab N.

    2013-01-01

    A doped electroconductive organic polymer is used for forming the electrode of a ferroelectric device or an interconnect. An exemplary ferroelectric device is a ferrelectric capacitor comprising: a substrate (101); a first electrode (106) disposed on the substrate; a ferroelectric layer (112) disposed on and in contact with the first electrode; and a second electrode (116) disposed on and in contact with the ferroelectric layer, wherein at least one of the first electrode and the second electrode is an organic electrode comprising a doped electroconductive organic polymer, for example DMSO-doped PEDOT-PSS.

  7. Ferroelectric devices, interconnects, and methods of manufacture thereof

    KAUST Repository

    Alshareef, Husam N.

    2013-12-12

    A doped electroconductive organic polymer is used for forming the electrode of a ferroelectric device or an interconnect. An exemplary ferroelectric device is a ferrelectric capacitor comprising: a substrate (101); a first electrode (106) disposed on the substrate; a ferroelectric layer (112) disposed on and in contact with the first electrode; and a second electrode (116) disposed on and in contact with the ferroelectric layer, wherein at least one of the first electrode and the second electrode is an organic electrode comprising a doped electroconductive organic polymer, for example DMSO-doped PEDOT-PSS.

  8. Hybrid dual gate ferroelectric memory for multilevel information storage

    KAUST Repository

    Khan, Yasser; Caraveo-Frescas, Jesus Alfonso; Alshareef, Husam N.

    2015-01-01

    Here, we report hybrid organic/inorganic ferroelectric memory with multilevel information storage using transparent p-type SnO semiconductor and ferroelectric P(VDF-TrFE) polymer. The dual gate devices include a top ferroelectric field

  9. Fibonacci Sequences Quasiperiodic A5B6C7 Ferroelectric Based Photonic Crystal: FDTD analysis

    Directory of Open Access Journals (Sweden)

    S. Simsek

    2017-10-01

    Full Text Available In this study, we present an investigation of the optical properties and band structures for the conventional and Fibonacci photonic crystals (PCs based on some A5B6C7 ferroelectrics (SbSBr and BiTeCl. Here, we use one dimensional SbSBr and BiTeCl based layers in air background. We have theoretically calculated the photonic band structure and transmission spectra of SbSBr and BiTeCl based PC superlattices. The position of minima in the transmission spectrum correlates with the gaps obtained in the calculation. The intensity of the transmission depths is more intense in the case of higher refractive index contrast between the layers. In our simulation, we employed the finite-difference time domain  technique and the plane wave expansion method, which implies the solution of Maxwell equations with centered finite-difference expressions for the space and time derivatives.

  10. On the structure of order domains

    DEFF Research Database (Denmark)

    Geil, Olav; Pellikaan, Ruud

    2002-01-01

    The notion of an order domain is generalized. The behaviour of an order domain by taking a subalgebra, the extension of scalars, and the tensor product is studied. The relation of an order domain with valuation theory, Gröbner algebras, and graded structures is given. The theory of Gröbner bases...... for order domains is developed and used to show that the factor ring theorem and its converse, the presentation theorem, hold. The dimension of an order domain is related to the rank of its value semigroup....

  11. Effects of configurational changes on molecular dynamics in polyvinylidene fluoride and poly(vinylidene fluoride-trifluoroethylene) ferroelectric polymers

    Energy Technology Data Exchange (ETDEWEB)

    Jalarvo, N., E-mail: jalarvonh@ornl.gov, E-mail: abhijit.pramanick@gmail.com, E-mail: omardiallos@ornl.gov [Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pramanick, A., E-mail: jalarvonh@ornl.gov, E-mail: abhijit.pramanick@gmail.com, E-mail: omardiallos@ornl.gov [Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Do, C. [Biology and Soft-Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Diallo, S. O., E-mail: jalarvonh@ornl.gov, E-mail: abhijit.pramanick@gmail.com, E-mail: omardiallos@ornl.gov [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-08-24

    We present a comparative study of proton dynamics in unpoled non-ferroelectric polymer polyvinylidene fluoride (PVDF) and in its trifluoroethylene containing ferroelectric copolymer (with 70/30 molar proportion), using quasi-elastic neutron scattering. The neutron data reveal the existence of two distinct types of molecular motions in the temperature range investigated. The slower motion, which is characterized in details here, is ascribed to protons jump diffusion along the polymeric carbon chains, while the faster motion could be attributed to localized rotational motion of methylene groups. At temperatures below the Curie point (T{sub c} ∼ 385 K) of the composite polymer, the slower diffusive mode experiences longer relaxation times in the ferroelectric blend than in the bare PVDF, although the net corresponding diffusion coefficient remains comparatively the same in both polymers with characteristic activation energy of E{sub A} ≈ 27–33 kJ/mol. This arises because of a temperature dependent jump length r{sub 0}, which we observe to be effectively longer in the copolymer, possibly due to the formation of ordered ferroelectric domains below T{sub c}. Above T{sub c}, there is no appreciable difference in r{sub 0} between the two systems. This observation directly relates the known dependence of T{sub c} on molar ratio to changes in r{sub 0}, providing fundamental insight into the ferroelectric properties of PVDF-based copolymers.

  12. Sequential injection of domain walls into ferroelectrics at different bias voltages: Paving the way for “domain wall memristors”

    Energy Technology Data Exchange (ETDEWEB)

    Whyte, J. R.; McQuaid, R. G. P.; Einsle, J. F.; Gregg, J. M., E-mail: m.gregg@qub.ac.uk [Centre for Nanostructured Media (CNM), School of Maths and Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Ashcroft, C. M. [Centre for Nanostructured Media (CNM), School of Maths and Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Department of Physics, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Canalias, C. [Department of Applied Physics, Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm (Sweden); Gruverman, A. [Department of Physics and Astronomy, University of Nebraska Lincoln, Nebraska 68588–0299 (United States)

    2014-08-14

    Simple meso-scale capacitor structures have been made by incorporating thin (∼300 nm) single crystal lamellae of KTiOPO{sub 4} (KTP) between two coplanar Pt electrodes. The influence that either patterned protrusions in the electrodes or focused ion beam milled holes in the KTP have on the nucleation of reverse domains during switching was mapped using piezoresponse force microscopy imaging. The objective was to assess whether or not variations in the magnitude of field enhancement at localised “hot-spots,” caused by such patterning, could be used to both control the exact locations and bias voltages at which nucleation events occurred. It was found that both the patterning of electrodes and the milling of various hole geometries into the KTP could allow controlled sequential injection of domain wall pairs at different bias voltages; this capability could have implications for the design and operation of domain wall electronic devices, such as memristors, in the future.

  13. Improper ferroelectrics as high-efficiency energy conversion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, Toru; Tanabe, Kenji; Terasaki, Ichiro; Taniguchi, Hiroki [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2017-05-15

    An improper ferroelectric is a certain type of ferroelectrics whose primary order parameter is not polarization but another physical quantity such as magnetization. In contrast to a conventional proper ferroelectrics as represented by Pb(Zr,Ti)O{sub 3} and BaTiO{sub 3}, the improper ferroelectrics has been inconceivable for practical applications thus far. Herein, we illustrate the great potential of improper ferroelectrics for efficient conversion of temperature fluctuation to electric energy, as demonstrated with (Ca{sub 0.84}Sr{sub 0.16}){sub 8}[AlO{sub 2}]{sub 12}(MoO{sub 4}){sub 2} (CSAM-16). The present study has experimentally proven that CSAM-16 achieves an excellent electrothermal coupling factor and high electric field sensitivity for pyroelectric energy conversion that approach a practical level for application to self-powered autonomous electronic devices for rapidly spreading wireless sensor networks. The present results provide a novel approach to developing innovative pyroelectric energy harvesting devices using improper ferroelectrics. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Organic non-volatile memories from ferroelectric phase-separated blends

    Science.gov (United States)

    Asadi, Kamal; de Leeuw, Dago M.; de Boer, Bert; Blom, Paul W. M.

    2008-07-01

    New non-volatile memories are being investigated to keep up with the organic-electronics road map. Ferroelectric polarization is an attractive physical property as the mechanism for non-volatile switching, because the two polarizations can be used as two binary levels. However, in ferroelectric capacitors the read-out of the polarization charge is destructive. The functionality of the targeted memory should be based on resistive switching. In inorganic ferroelectrics conductivity and ferroelectricity cannot be tuned independently. The challenge is to develop a storage medium in which the favourable properties of ferroelectrics such as bistability and non-volatility can be combined with the beneficial properties provided by semiconductors such as conductivity and rectification. Here we present an integrated solution by blending semiconducting and ferroelectric polymers into phase-separated networks. The polarization field of the ferroelectric modulates the injection barrier at the semiconductor-metal contact. The combination of ferroelectric bistability with (semi)conductivity and rectification allows for solution-processed non-volatile memory arrays with a simple cross-bar architecture that can be read out non-destructively. The concept of an electrically tunable injection barrier as presented here is general and can be applied to other electronic devices such as light-emitting diodes with an integrated on/off switch.

  15. Are lithium niobate (LiNbO{sub 3}) and lithium tantalate (LiTaO{sub 3}) ferroelectrics bioactive?

    Energy Technology Data Exchange (ETDEWEB)

    Vilarinho, Paula Maria, E-mail: paula.vilarinho@ua.pt; Barroca, Nathalie; Zlotnik, Sebastian; Félix, Pedro; Fernandes, Maria Helena

    2014-06-01

    The use of functional materials, such as ferroelectrics, as platforms for tissue growth in situ or ex situ, is new and holds great promise. But the usage of materials in any bioapplication requires information on biocompatibility and desirably on bioactive behavior when bone tissue engineering is envisaged. Both requirements are currently unknown for many ferroelectrics. Herein the bioactivity of LiNbO{sub 3} and LiTaO{sub 3} is reported. The formation of apatite-like structures on the surface of LiNbO{sub 3} and LiTaO{sub 3} powders after immersion in simulated body fluid (SBF) for different soaking periods indicates their bioactive potential. The mechanism of apatite formation is suggested. In addition, the significant release of lithium ions from the ferroelectric powders in the very first minutes of soaking in SBF is examined and ways to overcome this likely hurdle addressed. - Highlights: • LiNbO{sub 3} and LiTaO{sub 3} are bioactive ferroelectrics. • Cauliflower apatite type structures indicative of in-vitro bioactivity of LiNbO{sub 3} and LiTaO{sub 3.} • Negative surface charges anchor Ca{sup 2+} to which PO{sub 4}{sup 3−} attracts forming apatite structure nuclei. • Use of ferroelectrics as platforms for tissue growth in situ or ex situ is new and holds great promise.

  16. Twice electric field poling for engineering multiperiodic Hex-PPLN microstructures

    Science.gov (United States)

    Pagliarulo, Vito; Gennari, Oriella; Rega, Romina; Mecozzi, Laura; Grilli, Simonetta; Ferraro, Pietro

    2018-05-01

    Satellite bulk ferroelectric domains were observed everywhere around the larger main inverted ferroelectric domains when a Twice Electric Field Poling (TEFP) process is applied on a z-cut lithium niobate substrate. TEFP approach can be very advantageous for engineering multiperiodic poled microstructures in ferroelectrics. In fact, it is very difficult in the experimental practice to avoid underpoling and/or overpoling when structures with different sizes are requested in the same crystal. TEFP was applied to photoresist patterned crystal with 100 μm period and then a second EP step, with a ten-times smaller periodicity of 10 μm, was accomplished on the same sample. The intriguing fact is that the shorter 10 μm pattern disappeared everywhere except that around the larger satellite ferroelectric domains. The formation of this double-periodicity in the reversed ferroelectric domains occurs very easily and in repeatedly way. We have experimentally investigated the formation of such HePPLN structures by an interference microscopy in digital holography (DH) modality. The reported results demonstrate the possibility of fabricating multi-periodic structures and open the way to investigate the possibility to achieve hierarchical PPLN structures by multiple subsequent electric poling processes.

  17. Organic ferroelectric/semiconducting nanowire hybrid layer for memory storage

    NARCIS (Netherlands)

    Cai, R.; Kassa, H.G.; Haouari, R.; Marrani, A.; Geerts, Y.H.; Ruzié, C.; Breemen, A.J.J.M. van; Gelinck, G.H.; Nysten, B.; Hu, Z.; Jonas, A.M.

    2016-01-01

    Ferroelectric materials are important components of sensors, actuators and non-volatile memories. However, possible device configurations are limited due to the need to provide screening charges to ferroelectric interfaces to avoid depolarization. Here we show that, by alternating ferroelectric and

  18. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure

    Science.gov (United States)

    Cai, Kaiming; Yang, Meiyin; Ju, Hailang; Wang, Sumei; Ji, Yang; Li, Baohe; Edmonds, Kevin William; Sheng, Yu; Zhang, Bao; Zhang, Nan; Liu, Shuai; Zheng, Houzhi; Wang, Kaiyou

    2017-07-01

    All-electrical and programmable manipulations of ferromagnetic bits are highly pursued for the aim of high integration and low energy consumption in modern information technology. Methods based on the spin-orbit torque switching in heavy metal/ferromagnet structures have been proposed with magnetic field, and are heading toward deterministic switching without external magnetic field. Here we demonstrate that an in-plane effective magnetic field can be induced by an electric field without breaking the symmetry of the structure of the thin film, and realize the deterministic magnetization switching in a hybrid ferromagnetic/ferroelectric structure with Pt/Co/Ni/Co/Pt layers on PMN-PT substrate. The effective magnetic field can be reversed by changing the direction of the applied electric field on the PMN-PT substrate, which fully replaces the controllability function of the external magnetic field. The electric field is found to generate an additional spin-orbit torque on the CoNiCo magnets, which is confirmed by macrospin calculations and micromagnetic simulations.

  19. Stable Ferroelectric Behavior of Nb-Modified Bi0.5K0.5TiO3-Bi(Mg0.5Ti0.5)O3 Lead-Free Relaxor Ferroelectric Ceramics

    Science.gov (United States)

    Zaman, Arif; Malik, Rizwan Ahmed; Maqbool, Adnan; Hussain, Ali; Ahmed, Tanveer; Song, Tae Kwon; Kim, Won-Jeong; Kim, Myong-Ho

    2018-03-01

    Crystal structure, dielectric, ferroelectric, piezoelectric, and electric field-induced strain properties of lead-free Nb-modified 0.96Bi0.5K0.5TiO3-0.04Bi(Mg0.5Ti0.5)O3 (BKT-BMT) piezoelectric ceramics were investigated. Crystal structure analysis showed a gradual phase transition from tetragonal to pseudocubic phase with increasing Nb content. The optimal piezoelectric property of small-signal d 33 was enhanced up to ˜ 68 pC/N with a lower coercive field ( E c) of ˜ 22 kV/cm and an improved remnant polarization ( P r) of ˜ 13 μC/cm2 for x = 0.020. A relaxor-like behavior with a frequency-dependent Curie temperature T m was observed, and a high T m around 320°C was obtained in the investigated system. This study suggests that the ferroelectric properties of BKT-BMT was significantly improved by means of Nb substitution. The possible shift of depolarization temperature T d toward high temperature T m may have triggered the spontaneous relaxor to ferroelectric phase transition with long-range ferroelectric order without any traces of a nonergodic relaxor state in contradiction with Bi0.5Na0.5TiO3-based systems. The possible enhancement in ferroelectric and piezoelectric properties near the critical composition x = 0.020 may be attributed to the increased anharmonicity of lattice vibrations which may facilitate the observed phase transition from a low-symmetry tetragonal to a high-symmetry cubic phase with a decrease in the lattice anisotropy of an undoped sample. This highly flexible (at a unit cell level) narrow compositional range triggers the enhancement of d 33 and P r values.

  20. Liquid crystals with novel terminal chains as ferroelectric liquid crystal hosts

    International Nuclear Information System (INIS)

    Cosquer, G.Y.

    2000-02-01

    Changes to the molecular structure of liquid crystals can have a significant effect upon their mesomorphism and ferroelectric properties. Most of the research in liquid crystal for display applications concentrates on the design and synthesis of novel mesogenic cores to which straight terminal alkyl or alkoxy chains are attached. However, little is known about the effects upon the mesomorphism and ferroelectric properties of varying the terminal chains. The compounds prepared in this work have a common core - a 2,3-difluoroterphenyl unit with a nine-atom alkyl (nonyl) or alkoxy (octyloxy) chain at the 4-position, but with an unusual chain at the 4''-position. In some cases the terminal chain contains hetero atoms such as silicon, oxygen, chlorine and bromine or has a bulky end group. In total 46 final materials were synthesised in an attempt to understand the effect of an unusual terminal chains on mesomorphism and for some of these compounds the effect upon the switching times when added to a standard ferroelectric mixture were investigated. It was found that most compounds containing a bulky end group only displayed a smectic C phase, compounds with a halogen substituent as an end unit displayed a smectic A phase and that increasing the chain flexibility by introducing an oxygen atom in the chain reduces the melting and clearing points. The electro-optical measurements carried out on ferroelectric mixtures containing a bulky end group compound showed that shorter switching times were produced than for the ferroelectric mixture containing a straight chain compound. It is suggested that a bulky end group diminishes te extent of interlayer mixing in the chiral smectic C phase and therefore the molecules move more easily with ferroelectric switching. (author)

  1. Coexisting exchange bias effect and ferroelectricity in geometrically frustrated ZnCr2O4

    Science.gov (United States)

    Dey, J. K.; Majumdar, S.; Giri, S.

    2018-06-01

    Concomitant occurrence of exchange bias effect and ferroelectric order is revealed in antiferromagnetic spinel ZnCr2O4. The exchange bias effect is observed below antiferromagnetic Neél temperature (T N) with a reasonable value of exchange bias field ( Oe at 2 K). Intriguingly, the ratio is found unusually high as  ∼2.2, where H C is the coercivity. This indicates that large H C is not always primary for obtaining large exchange bias effect. Ferroelectric order is observed at T N, where non-centrosymmetric magnetic structure with space group associated with the magnetoelectric coupling correlates the ferroelectric order, proposing that, ZnCr2O4 is an improper multiferroic material. Rare occurrence of exchange bias effect and ferroelectric order in ZnCr2O4 attracts the community for fundamental interest and draws special attention in designing new materials for possible electric field control of exchange bias effect.

  2. Comparative structural analysis of lipid binding START domains.

    Directory of Open Access Journals (Sweden)

    Ann-Gerd Thorsell

    Full Text Available Steroidogenic acute regulatory (StAR protein related lipid transfer (START domains are small globular modules that form a cavity where lipids and lipid hormones bind. These domains can transport ligands to facilitate lipid exchange between biological membranes, and they have been postulated to modulate the activity of other domains of the protein in response to ligand binding. More than a dozen human genes encode START domains, and several of them are implicated in a disease.We report crystal structures of the human STARD1, STARD5, STARD13 and STARD14 lipid transfer domains. These represent four of the six functional classes of START domains.Sequence alignments based on these and previously reported crystal structures define the structural determinants of human START domains, both those related to structural framework and those involved in ligand specificity.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  3. Interfacial Nb-substitution induced anomalous enhancement of polarization and conductivity in BaTiO3 ferroelectric tunnel junctions

    Directory of Open Access Journals (Sweden)

    H. F. Li

    2014-12-01

    Full Text Available Using density functional theory (DFT method combined with non-equilibrium Green’s function approach, we systematically investigated the structural, ferroelectric and electronic transport properties of Pt/BaTiO3/Pt ferroelectric tunnel junctions (FTJ with the interface atomic layers doped by charge neutral NbTi substitution. It is found that interfacial NbTi substitution will produce several anomalous effects such as the vanishing of ferroelectric critical thickness and the decrease of junction resistance against tunneling current. Consequently, the thickness of the ferroelectric thin film (FTF in the FTJ can be reduced, and both the electroresistance effect and sensitivity to external bias of the FTJ are enhanced. Our calculations indicate that the enhancements of conductivity and ferroelectric distortion can coexist in FTJs, which should be important for applications of functional electronic devices based on FTJs.

  4. Structure of an isolated unglycosylated antibody CH2 domain

    International Nuclear Information System (INIS)

    Prabakaran, Ponraj; Vu, Bang K.; Gan, Jianhua; Feng, Yang; Dimitrov, Dimiter S.; Ji, Xinhua

    2008-01-01

    The crystal structure of an isolated unglycosylated antibody C H 2 domain has been determined at 1.7 Å resolution. The C H 2 (C H 3 for IgM and IgE) domain of an antibody plays an important role in mediating effector functions and preserving antibody stability. It is the only domain in human immunoglobulins (Igs) which is involved in weak interchain protein–protein interactions with another C H 2 domain solely through sugar moieties. The N-linked glycosylation at Asn297 is conserved in mammalian IgGs as well as in homologous regions of other antibody isotypes. To examine the structural details of the C H 2 domain in the absence of glycosylation and other antibody domains, the crystal structure of an isolated unglycosylated antibody γ1 C H 2 domain was determined at 1.7 Å resolution and compared with corresponding C H 2 structures from intact Fc, IgG and Fc receptor complexes. Furthermore, the oligomeric state of the protein in solution was studied using size-exclusion chromatography. The results suggested that the unglycosylated human antibody C H 2 domain is a monomer and that its structure is similar to that found in the intact Fc, IgG and Fc receptor complex structures. However, certain structural variations were observed in the Fc receptor-binding sites. Owing to its small size, stability and non-immunogenic Ig template, the C H 2-domain structure could be useful for the development by protein design of antibody domains exerting effector functions and/or antigen specificity and as a robust scaffold in protein-engineering applications

  5. Kinetics of zigzag domain boundaries in gadolinium molybdate

    International Nuclear Information System (INIS)

    Alekseev, A.N.; Proklov, A.L.; Tikhomirova, N.A.; Shuvalov, L.A.; AN SSSR, Moscow. Inst. Kristallografii)

    1987-01-01

    Kinetics of zigzag domain boundaries (3DB) in ferroelectric gadolinium molybdate (GMO) crystal was investigated at different amplitude, duration and growth rate of external electric field. The results verify the difference between shifting rates of two 3DB constituents of wedge-shaped systems, growing with field change rate increase

  6. Reversible and nonvolatile ferroelectric control of two-dimensional electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films with a layered structure

    Science.gov (United States)

    Zhao, Xu-Wen; Gao, Guan-Yin; Yan, Jian-Min; Chen, Lei; Xu, Meng; Zhao, Wei-Yao; Xu, Zhi-Xue; Guo, Lei; Liu, Yu-Kuai; Li, Xiao-Guang; Wang, Yu; Zheng, Ren-Kui

    2018-05-01

    Copper-based ZrCuSiAs-type compounds of LnCuChO (Ln =Bi and lanthanides, Ch =S , Se, Te) with a layered crystal structure continuously attract worldwide attention in recent years. Although their high-temperature (T ≥ 300 K) electrical properties have been intensively studied, their low-temperature electronic transport properties are little known. In this paper, we report the integration of ZrCuSiAs-type copper oxyselenide thin films of B i0.94P b0.06CuSeO (BPCSO) with perovskite-type ferroelectric Pb (M g1 /3N b2 /3 ) O3-PbTi O3 (PMN-PT) single crystals in the form of ferroelectric field effect devices that allow us to control the electronic properties (e.g., carrier density, magnetoconductance, dephasing length, etc.) of BPCSO films in a reversible and nonvolatile manner by polarization switching at room temperature. Combining ferroelectric gating and magnetotransport measurements with the Hikami-Larkin-Nagaoka theory, we demonstrate two-dimensional (2D) electronic transport characteristics and weak antilocalization effect as well as strong carrier-density-mediated competition between weak antilocalization and weak localization in BPCSO films. Our results show that ferroelectric gating using PMN-PT provides an effective and convenient approach to probe the carrier-density-related 2D electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films.

  7. Complex Electric-Field Induced Phenomena in Ferroelectric/Antiferroelectric Nanowires

    Science.gov (United States)

    Herchig, Ryan Christopher

    Perovskite ferroelectrics and antiferroelectrics have attracted a lot of attention owing to their potential for device applications including THz sensors, solid state cooling, ultra high density computer memory, and electromechanical actuators to name a few. The discovery of ferroelectricity at the nanoscale provides not only new and exciting possibilities for device miniaturization, but also a way to study the fundamental physics of nanoscale phenomena in these materials. Ferroelectric nanowires show a rich variety of physical characteristics which are advantageous to the design of nanoscale ferroelectric devices such as exotic dipole patterns, a strong dependence of the polarization and phonon frequencies on the electrical and mechanical boundary conditions, as well as a dependence of the transition temperatures on the diameter of the nanowire. Antiferroelectricity also exists at the nanoscale and, due to the proximity in energy of the ferroelectric and antiferroelectric phases, a phase transition from the ferroelectric to the antiferroelectric phase can be facilitated through the application of the appropriate mechanical and electrical boundary conditions. While much progress has been made over the past several decades to understand the nature of ferroelectricity/antiferroelectricity in nanowires, many questions remain unanswered. In particular, little is known about how the truncated dimensions affect the soft mode frequency dynamics or how various electrical and mechanical boundary conditions might change the nature of the phase transitions in these ferroelectric nanowires. Could nanowires offer a distinct advantage for solid state cooling applications? Few studies have been done to elucidate the fundamental physics of antiferroelectric nanowires. How the polarization in ferroelectric nanowires responds to a THz electric field remains relatively underexplored as well. In this work, the aim is to to develop and use computational tools that allow first

  8. Chemical segregation and self polarisation in ferroelectrics

    Directory of Open Access Journals (Sweden)

    Bernard E. Watts

    2009-06-01

    Full Text Available Chemical partitioning or segregation is commonly encountered in solid-state syntheses. It is driven by compositional, thermal and electric field gradients. These phenomena can be quite extreme in thin films and lead to notable effects on the electrical properties of ferroelectrics. The segregation in ferroelectric thin films will be illustrated and the mechanisms explained in terms of diffusion processes driven by a potential gradient of the oxygen. The hypothesis can also explain self polarisation and imprint in ferroelectric hysteresis.

  9. Structuring of material parameters in lithium niobate crystals with low-mass, high-energy ion radiation

    Science.gov (United States)

    Peithmann, K.; Eversheim, P.-D.; Goetze, J.; Haaks, M.; Hattermann, H.; Haubrich, S.; Hinterberger, F.; Jentjens, L.; Mader, W.; Raeth, N. L.; Schmid, H.; Zamani-Meymian, M.-R.; Maier, K.

    2011-10-01

    Ferroelectric lithium niobate crystals offer a great potential for applications in modern optics. To provide powerful optical components, tailoring of key material parameters, especially of the refractive index n and the ferroelectric domain landscape, is required. Irradiation of lithium niobate crystals with accelerated ions causes strong structured modifications in the material. The effects induced by low-mass, high-energy ions (such as 3He with 41 MeV, which are not implanted, but transmit through the entire crystal volume) are reviewed. Irradiation yields large changes of the refractive index Δn, improved domain engineering capability within the material along the ion track, and waveguiding structures. The periodic modification of Δn as well as the formation of periodically poled lithium niobate (PPLN) (supported by radiation damage) is described. Two-step knock-on displacement processes, 3He→Nb and 3He→O causing thermal spikes, are identified as origin for the material modifications.

  10. Kinetic approach to the explanation of fatigue effect in ferroelectric materials

    International Nuclear Information System (INIS)

    Shur, V.Ya.; Rumyantsev, E.L.; Nikolaeva, E.V.; Shishkin, E.I.; Baturin, I.S.

    2002-01-01

    The new kinetic approach to explanation of the fatigue effect in the ferroelectrics consistent change in the area and geometry of the switched-over part of the sample by the cyclic switch-over, accompanied by the origination and growth of the kinetic frozen domains, is considered. It is supposed, that the fatigue effect is conditioned by the self-organizing formation of the spatially nonuniform internal shift field due to the delay of the voluminous scanning of the depolarizing field. The changes in the value of the switched charge and the switch-over current amplitude, calculated through the computerized simulation of the domains kinetics by the cyclic switch-over are in good agreement with the experimental data, obtained in thin films of the lead zirconate-titanate [ru

  11. Quantifying information transfer by protein domains: Analysis of the Fyn SH2 domain structure

    Directory of Open Access Journals (Sweden)

    Serrano Luis

    2008-10-01

    Full Text Available Abstract Background Efficient communication between distant sites within a protein is essential for cooperative biological response. Although often associated with large allosteric movements, more subtle changes in protein dynamics can also induce long-range correlations. However, an appropriate formalism that directly relates protein structural dynamics to information exchange between functional sites is still lacking. Results Here we introduce a method to analyze protein dynamics within the framework of information theory and show that signal transduction within proteins can be considered as a particular instance of communication over a noisy channel. In particular, we analyze the conformational correlations between protein residues and apply the concept of mutual information to quantify information exchange. Mapping out changes of mutual information on the protein structure then allows visualizing how distal communication is achieved. We illustrate the approach by analyzing information transfer by the SH2 domain of Fyn tyrosine kinase, obtained from Monte Carlo dynamics simulations. Our analysis reveals that the Fyn SH2 domain forms a noisy communication channel that couples residues located in the phosphopeptide and specificity binding sites and a number of residues at the other side of the domain near the linkers that connect the SH2 domain to the SH3 and kinase domains. We find that for this particular domain, communication is affected by a series of contiguous residues that connect distal sites by crossing the core of the SH2 domain. Conclusion As a result, our method provides a means to directly map the exchange of biological information on the structure of protein domains, making it clear how binding triggers conformational changes in the protein structure. As such it provides a structural road, next to the existing attempts at sequence level, to predict long-range interactions within protein structures.

  12. Dynamic processes of domain switching in lead zirconate titanate under cyclic mechanical loading by in situ neutron diffraction

    International Nuclear Information System (INIS)

    Pojprapai, Soodkhet; Luo, Zhenhua; Clausen, Bjorn; Vogel, Sven C.; Brown, Donald W.; Russel, Jennifer; Hoffman, Mark

    2010-01-01

    The performance of ferroelectric ceramics is governed by the ability of domains to switch. A decrease in the switching ability can lead to degradation of the materials and failure of ferroelectric devices. In this work the dynamic properties of domain reorientation are studied. In situ time-of-flight neutron diffraction is used to probe the evolution of ferroelastic domain texture under mechanical cyclic loading in bulk lead zirconate titanate ceramics. The high sensitivity of neutron diffraction to lattice strain is exploited to precisely analyze the change of domain texture and strain through a full-pattern Rietveld method. These results are then used to construct a viscoelastic model, which explains the correlation between macroscopic phenomena (i.e. creep and recovered deformation) and microscopic dynamic behavior (i.e. ferroelastic switching, lattice strain).

  13. Self-Assembly of Organic Ferroelectrics by Evaporative Dewetting: A Case of β-Glycine.

    Science.gov (United States)

    Seyedhosseini, Ensieh; Romanyuk, Konstantin; Vasileva, Daria; Vasilev, Semen; Nuraeva, Alla; Zelenovskiy, Pavel; Ivanov, Maxim; Morozovska, Anna N; Shur, Vladimir Ya; Lu, Haidong; Gruverman, Alexei; Kholkin, Andrei L

    2017-06-14

    Self-assembly of ferroelectric materials attracts significant interest because it offers a promising fabrication route to novel structures useful for microelectronic devices such as nonvolatile memories, integrated sensors/actuators, or energy harvesters. In this work, we demonstrate a novel approach for self-assembly of organic ferroelectrics (as exemplified by ferroelectric β-glycine) using evaporative dewetting, which allows forming quasi-regular arrays of nano- and microislands with preferred orientation of polarization axes. Surprisingly, self-assembled islands are crystallographically oriented in a radial direction from the center of organic "grains" formed during dewetting process. The kinetics of dewetting process follows the t -1/2 law, which is responsible for the observed polygon shape of the grain boundaries and island coverage as a function of radial position. The polarization in ferroelectric islands of β-glycine is parallel to the substrate and switchable under a relatively small dc voltage applied by the conducting tip of piezoresponse force microscope. Significant size effect on polarization is observed and explained within the Landau-Ginzburg-Devonshire phenomenological formalism.

  14. Stabilization of ferroelectric properties in Hafnia and Zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Kersch, Alfred [Univ. of Applied Sciences Munich (Germany). Modeling and Simulation Lab

    2016-11-01

    Experiments by our collaborators show that not only earth alkaline metals but also lanthanides and boron group metals are capable of inducing ferroelectric behavior in Hafnia. These dopants are known to form more complex defect structures due to their 3-valent nature. This requires further simulation. In some cases computationally more expensive density functionals will be required.

  15. Tunable band gap in epitaxial ferroelectric Ho(Mn,Ga)O{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daesu; Noh, Tae Won, E-mail: twnoh@snu.ac.kr [Center for Correlated Electron Systems, Institute for Basic Science, Seoul 151-742 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Choi, Woo Seok [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2016-05-09

    Ferroelectrics have recently attracted attention as a new class of materials for use in optical and photovoltaic devices. We studied the electronic properties in epitaxially stabilized ferroelectric hexagonal Ho(Mn{sub 1−x}Ga{sub x})O{sub 3} (x = 0, 0.33, 0.67, and 1) thin films. Our films exhibited systematic changes in electronic structures, such as bandgap and optical transitions, according to the Ga concentration. In particular, the bandgap increased systematically from 1.4 to 3.2 eV, including the visible light region, with increasing Ga concentration from x = 0 to 1. These systematic changes, attributed to lattice parameter variations in epitaxial Ho(Mn{sub 1−x}Ga{sub x})O{sub 3} films, should prove useful for the design of optoelectronic devices based on ferroelectrics.

  16. Ab-initio study of the relation between electric polarization and electric field gradients in ferroelectrics

    CERN Document Server

    Gonçalves, J N; Correia, J G; Butz, T; Picozzi, S; Fenta, A S; Amaral, V S

    2012-01-01

    The hyperfine interaction between the quadrupole moment of atomic nuclei and the electric field gradient (EFG) provides information on the electronic charge distribution close to a given atomic site. In ferroelectric materials, the loss of inversion symmetry of the electronic charge distribution is necessary for the appearance of the electric polarization. We present first-principles density functional theory calculations of ferroelectrics such as BaTiO$_{3}$, KNbO$_{3}$, PbTiO$_{3}$ and other oxides with perovskite structures, by focusing on both EFG tensors and polarization. We analyze the EFG tensor properties such as orientation and correlation between components and their relation with electric polarization. This work supports previous studies of ferroelectric materials where a relation between EFG tensors and polarization was observed, which may be exploited to study the ferroelectric order when standard techniques to measure polarization are not easily applied.

  17. First-principles analysis of ferroelectric transition in MnSnO3 and MnTiO3 perovskites

    Science.gov (United States)

    Kang, Sung Gu

    2018-06-01

    The ferroelectric instabilities of an artificially adopted Pnma structure in low tolerance perovskites have been explored (Kang et al., 2017) [4], where an unstable A-site environment was reported to be the major driving source for the low tolerance perovskites to exhibit ferroelectric instability. This study examined the ferroelectric transition of two magnetic perovskite materials, MnSnO3 and MnTiO3, in Pnma phase. Phase transitions to the Pnma phase at elevated pressures were observed. MnSnO3, which has a lower (larger) tolerance factor (B-site cation radius), showed a higher ferroelectric mode amplitude than MnTiO3. The distribution of the bond length of Mn-O and the mean quadratic elongation (QE) of octahedra (SnO6 or TiO6) were investigated for structural analysis. However, MnTiO3 showed a larger spontaneous polarization than MnSnO3 due to high Born effective charges of titanium. This study is useful because it provides a valuable pathway to the design of promising multiferroic materials.

  18. Impact induced depolarization of ferroelectric materials

    Science.gov (United States)

    Agrawal, Vinamra; Bhattacharya, Kaushik

    2018-06-01

    We study the large deformation dynamic behavior and the associated nonlinear electro-thermo-mechanical coupling exhibited by ferroelectric materials in adiabatic environments. This is motivated by a ferroelectric generator which involves pulsed power generation by loading the ferroelectric material with a shock, either by impact or a blast. Upon impact, a shock wave travels through the material inducing a ferroelectric to nonpolar phase transition giving rise to a large voltage difference in an open circuit situation or a large current in a closed circuit situation. In the first part of this paper, we provide a general continuum mechanical treatment of the situation assuming a sharp phase boundary that is possibly charged. We derive the governing laws, as well as the driving force acting on the phase boundary. In the second part, we use the derived equations and a particular constitutive relation that describes the ferroelectric to nonpolar phase transition to study a uniaxial plate impact problem. We develop a numerical method where the phase boundary is tracked but other discontinuities are captured using a finite volume method. We compare our results with experimental observations to find good agreement. Specifically, our model reproduces the observed exponential rise of charge as well as the resistance dependent Hugoniot. We conclude with a parameter study that provides detailed insight into various aspects of the problem.

  19. Patterned piezo-, pyro-, and ferroelectricity of poled polymer electrets

    International Nuclear Information System (INIS)

    Qiu, Xunlin

    2010-01-01

    Polymers with strong piezo-, pyro-, and ferroelectricity are attractive for a wide range of applications. In particular, semicrystalline ferroelectric polymers are suitable for a large variety of piezo- and pyroelectric transducers or sensors, while amorphous polymers containing chromophore molecules are particularly interesting for photonic devices. Recently, a new class of polymer materials has been added to this family: internally charged cellular space-charge polymer electrets (so-called “ferroelectrets”), whose piezoelectricity can be orders of magnitude higher than that of conventional ferroelectric polymers. Suitable patterning of these materials leads to improved or unusual macroscopic piezo-, pyro-, and ferroelectric or nonlinear optical properties that may be particularly useful for advanced transducer or waveguide applications. In the present paper, the piezo-, pyro-, and ferroelectricity of poled polymers is briefly introduced, an overview on the preparation of polymer electrets with patterned piezo-, pyro-, and ferroelectricity is provided and a survey of selected applications is presented.

  20. Nonlinear modeling of ferroelectric-ferromagnetic composites based on condensed and finite element approaches (Presentation Video)

    Science.gov (United States)

    Ricoeur, Andreas; Lange, Stephan; Avakian, Artjom

    2015-04-01

    Magnetoelectric (ME) coupling is an inherent property of only a few crystals exhibiting very low coupling coefficients at low temperatures. On the other hand, these materials are desirable due to many promising applications, e.g. as efficient data storage devices or medical or geophysical sensors. Efficient coupling of magnetic and electric fields in materials can only be achieved in composite structures. Here, ferromagnetic (FM) and ferroelectric (FE) phases are combined e.g. including FM particles in a FE matrix or embedding fibers of the one phase into a matrix of the other. The ME coupling is then accomplished indirectly via strain fields exploiting magnetostrictive and piezoelectric effects. This requires a poling of the composite, where the structure is exposed to both large magnetic and electric fields. The efficiency of ME coupling will strongly depend on the poling process. Besides the alignment of local polarization and magnetization, it is going along with cracking, also being decisive for the coupling properties. Nonlinear ferroelectric and ferromagnetic constitutive equations have been developed and implemented within the framework of a multifield, two-scale FE approach. The models are microphysically motivated, accounting for domain and Bloch wall motions. A second, so called condensed approach is presented which doesn't require the implementation of a spatial discretisation scheme, however still considering grain interactions and residual stresses. A micromechanically motivated continuum damage model is established to simulate degradation processes. The goal of the simulation tools is to predict the different constitutive behaviors, ME coupling properties and lifetime of smart magnetoelectric devices.

  1. Structural, dielectric and ferroelectric properties of (Bi,Na)TiO{sub 3}–BaTiO{sub 3} system studied by high throughput screening

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, Brian E. [Ilika Technologies Plc., Kenneth Dibben House, Enterprise Road, University of Southampton Science Park, Chilworth, Southampton SO16 7NS (United Kingdom); Department of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Yakovlev, Sergey, E-mail: sergey.yakovlev@ilika.com [Ilika Technologies Plc., Kenneth Dibben House, Enterprise Road, University of Southampton Science Park, Chilworth, Southampton SO16 7NS (United Kingdom)

    2016-03-31

    Thin-film materials libraries of the Bi{sub 2}O{sub 3}–Na{sub 2}O–TiO{sub 2}–BaO system in a broad composition range have been deposited in ultra-high vacuum from elemental evaporation sources and an oxygen plasma source. A high throughput approach was used for systematic compositional and structural characterization and the screening of the dielectric and ferroelectric properties. The perovskite (Bi,Na)TiO{sub 3}–BaTiO{sub 3} phase with a Ba concentration near the morphotropic phase boundary (ca. 6 at.%) exhibited a relative dielectric permittivity of 180, a loss tangent of 0.04 and remnant polarization of 19 μC/cm{sup 2}. Compared to published data, observed remnant polarization is close to that known for epitaxially grown films but higher than the values reported for polycrystalline films. The high throughput methodology and systematic nature of the study allowed us to establish the composition boundaries of the phase with optimal dielectric and ferroelectric characteristics. - Highlights: • Bi{sub 2}O{sub 3}–Na{sub 2}O–TiO{sub 2}–BaO high throughput materials library was deposited using PVD method. • Materials were processed from individual molecular beam epitaxy sources of elements. • High throughput approach was used for structural, dielectric and ferroelectric study. • Composition boundaries of perovskite compounds with optimum properties are reported.

  2. Development of highly-ordered, ferroelectric inverse opal films using sol gel infiltration

    Science.gov (United States)

    Matsuura, N.; Yang, S.; Sun, P.; Ruda, H. E.

    2005-07-01

    Highly-ordered, ferroelectric, Pb-doped Ba0.7Sr0.3TiO3, inverse opal films were fabricated by spin-coating a sol gel precursor into a polystyrene artificial opal template followed by heat treatment. Thin films of the ferroelectric were independently studied and were shown to exhibit good dielectric properties and high refractive indices. The excellent quality of the final inverse opal film using this spin-coating infiltration method was confirmed by scanning electron microscopy images and the good correspondence between optical reflection data and theoretical simulations. Using this method, the structural and material parameters of the final ferroelectric inverse opal film were easily adjusted by template heating and through repeated infiltrations, without changes in the initial template or precursor. Also, crack-free inverse opal thin films were fabricated over areas comparable to that of the initial crack-free polystyrene template (˜100 by 100 μm2).

  3. Cooperative Couplings between Octahedral Rotations and Ferroelectricity in Perovskites and Related Materials

    Science.gov (United States)

    Gu, Teng; Scarbrough, Timothy; Yang, Yurong; Íñiguez, Jorge; Bellaiche, L.; Xiang, H. J.

    2018-05-01

    The structure of AB O 3 perovskites is dominated by two types of unstable modes, namely, the oxygen octahedral rotation (AFD) and ferroelectric (FE) mode. It is generally believed that such AFD and FE modes tend to compete and suppress each other. Here we use first-principles methods to show that a dual nature of the FE-AFD coupling, which turns from competitive to cooperative as the AFD mode strengthens, occurs in numerous perovskite oxides. We provide a unified model of such a dual interaction by introducing novel high-order coupling terms and explain the atomistic origin of the resulting new form of ferroelectricity in terms of universal steric mechanisms. We also predict that such a novel form of ferroelectricity leads to atypical behaviors, such as an enhancement of all the three Cartesian components of the electric polarization under hydrostatic pressure and compressive epitaxial strain.

  4. Static Characteristics of the Ferroelectric Transistor Inverter

    Science.gov (United States)

    Mitchell, Cody; Laws, crystal; MacLeond, Todd C.; Ho, Fat D.

    2010-01-01

    The inverter is one of the most fundamental building blocks of digital logic, and it can be used as the foundation for understanding more complex logic gates and circuits. This paper presents the characteristics of an inverter circuit using a ferroelectric field-effect transistor. The voltage transfer characteristics are analyzed with respect to varying parameters such as supply voltage, input voltage, and load resistance. The effects of the ferroelectric layer between the gate and semiconductor are examined, and comparisons are made between the inverters using ferroelectric transistors and those using traditional MOSFETs.

  5. Electrostatic micromotor based on ferroelectric ceramics

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, E. G.

    2004-11-01

    A new electrostatic micromotor is described that utilizes the electromechanical energy conversion principle earlier described by the authors. The electromechanical energy conversion is based on reversible electrostatic rolling of thin metallic films (petals) on a ferroelectric surface. The motor's active media are layers of ferroelectric ceramics (about 100 µm in thickness). The characteristics of the electrostatic rolling of the petals on different ceramic surfaces are studied, as well as the dynamic characteristics of the micromotors. It is shown that the use of antiferroelectric material allows one to reach a specific energy capacitance comparable to that of the micromotors based on ferroelectric films and to achieve a specific power of 30-300 µW mm-2.

  6. History and the future perspective of the ferroelectric memory; Kyoyudentai memory no rekishiteki haikei to tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Tarui, Y [Waseda University, Tokyo (Japan)

    1998-10-01

    Development work is in progress on ferroelectric memory. The memory is a most suitable non-volatile memory which can be incorporated into IC cards, with its higher speed, lower voltage operation, smaller power consumption, and greater number of rewriting times than EEPROM, DRAM and SRAM. Taking as an opportunity the announcement on an experiment as performed by the authors to control semiconductor charge by using electric depolarization of ferroelectric materials, reports have been made one after another on experiments on thin metal films on TGS or BaTiO3, and experiments on semiconductor films formed on ferroelectric crystals or ceramics substrates by using vacuum deposition. In order to solve problems in ferroelectric materials, thin films of PZT and PLZT have emerged, whose good hysteresis characteristics have also been reported. Thereafter, an announcement was made on a material with bismuth layer like perovskite structure. The material is characterized with having very little film fatigue degradation after rewriting of about 10 {sup 12} times. In scaling a ferroelectric memory, if voltage is decreased in proportion with the size, the operation can be reduced proportionately according to the voltage reduction. This paper introduces a method to constitute a ferroelectric memory. 22 refs., 11 figs., 2 tabs.

  7. Field-effect transistor memories based on ferroelectric polymers

    Science.gov (United States)

    Zhang, Yujia; Wang, Haiyang; Zhang, Lei; Chen, Xiaomeng; Guo, Yu; Sun, Huabin; Li, Yun

    2017-11-01

    Field-effect transistors based on ferroelectrics have attracted intensive interests, because of their non-volatile data retention, rewritability, and non-destructive read-out. In particular, polymeric materials that possess ferroelectric properties are promising for the fabrications of memory devices with high performance, low cost, and large-area manufacturing, by virtue of their good solubility, low-temperature processability, and good chemical stability. In this review, we discuss the material characteristics of ferroelectric polymers, providing an update on the current development of ferroelectric field-effect transistors (Fe-FETs) in non-volatile memory applications. Program supported partially by the NSFC (Nos. 61574074, 61774080), NSFJS (No. BK20170075), and the Open Partnership Joint Projects of NSFC-JSPS Bilateral Joint Research Projects (No. 61511140098).

  8. Piezoelectric properties of tetragonal single-domain Mn-doped NBT-6 %BT single crystals

    Czech Academy of Sciences Publication Activity Database

    Guennou, Mael; Savinov, Maxim; Drahokoupil, Jan; Luo, H.; Hlinka, Jiří

    2014-01-01

    Roč. 116, č. 1 (2014), s. 225-228 ISSN 0947-8396 R&D Projects: GA ČR GAP204/10/0616; GA MPO FR-TI2/165 Institutional support: RVO:68378271 Keywords : peizoelectricity * ferroelectric domains * domain-engineering * Raman spectroscopy * lead-free Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2014

  9. Ferroelectric properties of composites containing BaTiO3 nanoparticles of various sizes

    International Nuclear Information System (INIS)

    Adam, Jens; Lehnert, Tobias; Klein, Gabi; McMeeking, Robert M

    2014-01-01

    Size effects, including the occurrence of superparaelectric phases associated with small scale, are a significant research topic for ferroelectrics. Relevant phenomena have been explored in detail, e.g. for homogeneous, thin ferroelectric films, but the related effects associated with nanoparticles are usually only inferred from their structural properties. In contrast, this paper describes all the steps and concepts necessary for the direct characterization and quantitative assessment of the ferroelectric properties of as-synthesized and as-received nanoparticles. The method adopted uses electrical polarization measurements on polymer matrix composites containing ferroelectric nanoparticles. It is applied to ten different BaTiO 3 particle types covering a size range from 10 nm to 0.8 μm. The influence of variations of particle characteristics such as tetragonality and dielectric constant is considered based on measurements of these properties. For composites containing different particle types a clearly differing polarization behaviour is found. For decreasing particle size, increasing electric field is required to achieve a given level of polarization. The size dependence of a measure related to the coercive field revealed by this work is qualitatively in line with the state of the knowledge for ferroelectrics having small dimensions. For the first time, such results and size effects are described based on data from experiments on collections of actual nanoparticles. (paper)

  10. Ferroelectric properties of composites containing BaTiO 3 nanoparticles of various sizes

    Science.gov (United States)

    Adam, Jens; Lehnert, Tobias; Klein, Gabi; McMeeking, Robert M.

    2014-01-01

    Size effects, including the occurrence of superparaelectric phases associated with small scale, are a significant research topic for ferroelectrics. Relevant phenomena have been explored in detail, e.g. for homogeneous, thin ferroelectric films, but the related effects associated with nanoparticles are usually only inferred from their structural properties. In contrast, this paper describes all the steps and concepts necessary for the direct characterization and quantitative assessment of the ferroelectric properties of as-synthesized and as-received nanoparticles. The method adopted uses electrical polarization measurements on polymer matrix composites containing ferroelectric nanoparticles. It is applied to ten different BaTiO3 particle types covering a size range from 10 nm to 0.8 μm. The influence of variations of particle characteristics such as tetragonality and dielectric constant is considered based on measurements of these properties. For composites containing different particle types a clearly differing polarization behaviour is found. For decreasing particle size, increasing electric field is required to achieve a given level of polarization. The size dependence of a measure related to the coercive field revealed by this work is qualitatively in line with the state of the knowledge for ferroelectrics having small dimensions. For the first time, such results and size effects are described based on data from experiments on collections of actual nanoparticles.

  11. Crystal structure, dielectric, ferroelectric and energy storage properties of La-doped BaTiO3 semiconducting ceramics

    Directory of Open Access Journals (Sweden)

    Venkata Sreenivas Puli

    2015-09-01

    Full Text Available Polycrystalline La-doped BaTiO3 (Ba(1-xLax\tTiO3 [x=0,0.0005,0.001,0.003] ceramics (denoted as BTO,BLT1,BLT2,BLT3 were synthesized by conventional solid-state reaction method and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and Raman spectroscopy. XRD and Raman spectra revealed single-phase tetragonal perovskite crystalline structure. Well-saturated polarization–electric field (P–E hysteresis loops were observed with the measurement frequency of 50 Hz at room temperature and confirmed ferroelectric nature of these ceramics and a high recoverable electrical energy storage density of 0.350 J/cm3 with energy efficiency (n∼9%, which is useful in energy storage capacitor applications. Dielectric studies revealed anomalies around 415–420 K and near the Curie temperature. The latter is attributed to the ferroelectric to paraelectric phase transition. Better dielectric performances were obtained for La-doped samples sintered at 1350°C for 4 h. Grain growth is inhibited with lanthanum (La incorporation into the BTO lattice. Room temperature semiconducting behavior with positive temperature coefficient of resistivity (PTCR behavior at TC is attributed to electron compensation mechanism.

  12. Incipient ferroelectric to a possible ferroelectric transition in Te4+ doped calcium copper titanate (CaCu3Ti4O12 ceramics at low temperature as evidenced by Raman and dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Nabadyuti Barman

    2017-03-01

    Full Text Available Partial replacement of Ti4+ by Te4+ ions in calcium copper titanate lattice improved its dielectric behaviour mostly due to cubic-to-tetragonal structural transformation and associated distortion in TiO6 octahedra. The relative permittivity values (23–30 x 103 of Te4+ doped ceramics is more than thrice that of un-doped ceramics (8 x 103 at 1 kHz. A decreasing trend in relative permittivity with increasing temperature (50–300 K is observed for all the samples. Barrett’s formula, as a signature of incipient ferroelectricity, is invoked to rationalize the relative permittivity variation as a function of temperature. A systematic investigation supported by temperature dependent Raman studies reveal a possible ferroelectric transition in Te4+ doped ceramic samples below 120 K. The possible ferroelectric transition is attributed to the interactions between quasi-local vibrations associated with the micro-clusters comprising TiO6 and TeO6 structural units and indirect dipole-dipole interactions of off-center B–cations (Ti4+ and Te4+ in double perovskite lattice.

  13. Nano-embossing technology on ferroelectric thin film Pb(Zr0.3,Ti0.7O3 for multi-bit storage application

    Directory of Open Access Journals (Sweden)

    Lu Qian

    2011-01-01

    Full Text Available Abstract In this work, we apply nano-embossing technique to form a stagger structure in ferroelectric lead zirconate titanate [Pb(Zr0.3, Ti0.7O3 (PZT] films and investigate the ferroelectric and electrical characterizations of the embossed and un-embossed regions, respectively, of the same films by using piezoresponse force microscopy (PFM and Radiant Technologies Precision Material Analyzer. Attributed to the different layer thickness of the patterned ferroelectric thin film, two distinctive coercive voltages have been obtained, thereby, allowing for a single ferroelectric memory cell to contain more than one bit of data.

  14. Ferroelectric, magnetic and structural studies of the Bi{sub 4}LaSmFe{sub 2}Ti{sub 3}O{sub 18} multiferroic material

    Energy Technology Data Exchange (ETDEWEB)

    Alarcón-Suesca, C.E. [Fachgebiet Synthese und Charakterisierung Innovatiert Materialien, Chemistry Department, Technische Universität München, Lichtenbergstrasse D-85748, Garching (Germany); Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, AA 5997 Bogotá DC (Colombia); Cardona-Vásquez, J.A. [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, AA 5997 Bogotá DC (Colombia); Salcedo-Fontecha, J.P.; Vargas-Jiménez, A. [Maestría en Ciencias Física, Departamento de Física, Universidad Nacional de Colombia, AA 5997 Bogotá DC (Colombia); Landínez-Téllez, D.A.; Roa-Rojas, J. [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, AA 5997 Bogotá DC (Colombia)

    2014-12-15

    We report the synthesis and characterization of the new Bi{sub 4}LaSmFe{sub 2}Ti{sub 3}O{sub 18} ferroelectric ceramic. X-ray characterization reveals reflections for layered perovskite Aurivillius system. Rietveld analyses of the powder pattern shows that Bi{sub 4}LaSmFe{sub 2}Ti{sub 3}O{sub 18} crystallizes in orthorhombic structure, which corresponds to the space group F2/mm (#42), with lattice parameters a=5.4240(16) Ǻ, b=5.4078(23) Ǻ and c=50.2440(12) Ǻ. Scanning electron microscopy (SEM) reveals the formation of dense material with plate-like morphology. Electric polarization curves were measured by means of a radiant ferroelectric tester, at room temperature in bulk samples and exhibit an intrinsic ferroelectric response, even at low applied fields. Measurements of the magnetization as a function of temperature after Zero field cooling and field cooling were carried out by using a MPMS Quantum Design SQUID magnetometer. We found an effective magnetic moment of 7.95 µB, which is 95.8% in agreement with the expected value calculated from Hund's rules. Magnetization curves as the function of applied fields reveal an incipient hysteretic behavior at room temperature.

  15. Ferroelectric relaxor Ba(TiCe)O3

    International Nuclear Information System (INIS)

    Chen Ang; Zhi Jing; Yu Zhi

    2002-01-01

    The dielectric behaviour of Ba(Ti 1-y Ce y )O 3 solid solutions (y=0-0.3) has been studied. A small amount of Ce doping (y=0.02) has weak influence on the dielectric behaviour of Ba(Ti 1-y Ce y )O 3 . With increasing Ce concentration, three phase transitions of pure BaTiO 3 are pinched into one rounded dielectric peak with frequency dispersion, and the relaxation time follows the Vogel-Fulcher relation. The evolution from a normal ferroelectric to a ferroelectric relaxor is emphasized. High strains (S=∼0.1-0.19%) with a small hysteresis under ac fields are obtained in ferroelectric relaxors Ba(Ti 1-y Ce y )O 3 . The physical mechanism of the relaxation process, the pinching effect of the phase transitions and their influence on the ferroelectric and electrostrictive behaviour are discussed. (author)

  16. Electrical and ferroelectric properties of RF sputtered PZT/SBN on silicon for non-volatile memory applications

    Science.gov (United States)

    Singh, Prashant; Jha, Rajesh Kumar; Singh, Rajat Kumar; Singh, B. R.

    2018-02-01

    We report the integration of multilayer ferroelectric film deposited by RF magnetron sputtering and explore the electrical characteristics for its application as the gate of ferroelectric field effect transistor for non-volatile memories. PZT (Pb[Zr0.35Ti0.65]O3) and SBN (SrBi2Nb2O9) ferroelectric materials were selected for the stack fabrication due to their large polarization and fatigue free properties respectively. Electrical characterization has been carried out to obtain memory window, leakage current density, PUND and endurance characteristics. Fabricated multilayer ferroelectric film capacitor structure shows large memory window of 17.73 V and leakage current density of the order 10-6 A cm-2 for the voltage sweep of -30 to +30 V. This multilayer gate stack of PZT/SBN shows promising endurance property with no degradation in the remnant polarization for the read/write iteration cycles upto 108.

  17. Gamma Radiation Damage Evaluation Studies on Ferroelectric La and Nb doped PZT Related Ceramics

    International Nuclear Information System (INIS)

    Cruz, Carlos M.; Pinnera, Ibrahin; Rodriguez, Arturo; Durruti, Ma. Dolores; Hernandez, Moises; Yannez-Limon, J. M.

    2015-01-01

    It is reported the research results of the gamma radiation damage evaluation on La (crystalline sites A) and / or Nb (crystalline sites B) doped ferroelectric PZT ceramics, which were irradiated with 60 Co gamma rays by applying two irradiation regimes: up to 125 lGy (irradiation steps of 25 kGy) and up to 700 kGy (irradiation steps of 100 kGy) exposition doses. The X Ray Diffraction pattern profiles of the irradiated sample were analyzed and the induced crystalline structure changes are reported and correlated with the observed irradiation induced changes on their ferroelectric properties on regard of the irradiation doses. Through the application of the MCCM atom displacements calculations algorithm and code, total dpa profiles were calculated for the studied samples, as well as, the dpa contributions of the different atomics species, where the atom displacements threshold energies were extrapolated from the values calculated by Molecular Dynamic methods for BaTiO 3 system. An evaluation of the reported dpa calculated values on regard of the observed crystal structure and radiation response of the ferroelectric properties is presented. (Author)

  18. An Algebro-Topological Description of Protein Domain Structure

    Science.gov (United States)

    Penner, Robert Clark; Knudsen, Michael; Wiuf, Carsten; Andersen, Jørgen Ellegaard

    2011-01-01

    The space of possible protein structures appears vast and continuous, and the relationship between primary, secondary and tertiary structure levels is complex. Protein structure comparison and classification is therefore a difficult but important task since structure is a determinant for molecular interaction and function. We introduce a novel mathematical abstraction based on geometric topology to describe protein domain structure. Using the locations of the backbone atoms and the hydrogen bonds, we build a combinatorial object – a so-called fatgraph. The description is discrete yet gives rise to a 2-dimensional mathematical surface. Thus, each protein domain corresponds to a particular mathematical surface with characteristic topological invariants, such as the genus (number of holes) and the number of boundary components. Both invariants are global fatgraph features reflecting the interconnectivity of the domain by hydrogen bonds. We introduce the notion of robust variables, that is variables that are robust towards minor changes in the structure/fatgraph, and show that the genus and the number of boundary components are robust. Further, we invesigate the distribution of different fatgraph variables and show how only four variables are capable of distinguishing different folds. We use local (secondary) and global (tertiary) fatgraph features to describe domain structures and illustrate that they are useful for classification of domains in CATH. In addition, we combine our method with two other methods thereby using primary, secondary, and tertiary structure information, and show that we can identify a large percentage of new and unclassified structures in CATH. PMID:21629687

  19. Directly patternable high refractive index ferroelectric sol–gel resist

    Energy Technology Data Exchange (ETDEWEB)

    Garoli, D., E-mail: denis.garoli@iit.it [Istituto Italiano di Tecnologia, Via Morego 16, 16136 Genova (Italy); Della Giustina, G. [Industrial Engineering Department, University of Padova and INSTM, Via Marzolo 9, 35131 Padova (Italy)

    2015-08-15

    The development of a ferroelectric negative tone sol–gel resist for Ultraviolet (UV) and Electron Beam (EB) lithography is presented. A new system based on Lead Zirconate Titanate (PZT, with formula PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}) was synthesized by sol–gel method. The lithographic performances were investigated and several structures spanning from the micron range down to less than 50 nm have been achieved by UV and EB lithography. The system interaction with UV light and Electron beam was thoroughly characterized by FT-IT spectroscopy. The exposed PZT was annealed at high temperatures in order to study the crystalline phase evolution, the optical constants values and stability of patterned structures. After exposure and annealing, the refractive index of the material can vary from 1.68 up to 2.33 (@400 nm), while the ferroelectric behaviour seems to be maintained after high temperature annealing. These results suggest a possible application of PZT resist not only as ferroelectric but also as nanopatternable high refractive index material. Moreover, direct nanopatterning by means of Focused Ion Beam (FIB) lithography was verified and the potentiality for the preparation of high aspect ratio hollow nanostructures will be presented. - Highlights: • A new formula directly patternable PZT high refractive index resist is presented. • The gel is sensitive to both UV and electron beam exposure. • The refractive index can vary from 1.68 up to 2.33 (@400 nm). • Direct nanopatterning by means of Focused Ion Beam (FIB) lithography was verified. • High aspect ratio hollow nanostructures will be presented.

  20. Mobility of ferroelastic domain walls in barium titanate

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jiří

    2007-01-01

    Roč. 349, - (2007), s. 49-54 ISSN 0015-0193 R&D Projects: GA ČR GA202/06/0411 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric and ferroelastic domains * BaTiO 3 * Ginzburg-Landau theory * mobility Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.427, year: 2007

  1. Ferroelectric-gate field effect transistor memories device physics and applications

    CERN Document Server

    Ishiwara, Hiroshi; Okuyama, Masanori; Sakai, Shigeki; Yoon, Sung-Min

    2016-01-01

    This book provides comprehensive coverage of the materials characteristics, process technologies, and device operations for memory field-effect transistors employing inorganic or organic ferroelectric thin films. This transistor-type ferroelectric memory has interesting fundamental device physics and potentially large industrial impact. Among the various applications of ferroelectric thin films, the development of nonvolatile ferroelectric random access memory (FeRAM) has progressed most actively since the late 1980s and has achieved modest mass production levels for specific applications since 1995. There are two types of memory cells in ferroelectric nonvolatile memories. One is the capacitor-type FeRAM and the other is the field-effect transistor (FET)-type FeRAM. Although the FET-type FeRAM claims ultimate scalability and nondestructive readout characteristics, the capacitor-type FeRAMs have been the main interest for the major semiconductor memory companies, because the ferroelectric FET has fatal handic...

  2. Same but not alike: Structure, flexibility and energetics of domains in multi-domain proteins are influenced by the presence of other domains.

    Science.gov (United States)

    Vishwanath, Sneha; de Brevern, Alexandre G; Srinivasan, Narayanaswamy

    2018-02-01

    The majority of the proteins encoded in the genomes of eukaryotes contain more than one domain. Reasons for high prevalence of multi-domain proteins in various organisms have been attributed to higher stability and functional and folding advantages over single-domain proteins. Despite these advantages, many proteins are composed of only one domain while their homologous domains are part of multi-domain proteins. In the study presented here, differences in the properties of protein domains in single-domain and multi-domain systems and their influence on functions are discussed. We studied 20 pairs of identical protein domains, which were crystallized in two forms (a) tethered to other proteins domains and (b) tethered to fewer protein domains than (a) or not tethered to any protein domain. Results suggest that tethering of domains in multi-domain proteins influences the structural, dynamic and energetic properties of the constituent protein domains. 50% of the protein domain pairs show significant structural deviations while 90% of the protein domain pairs show differences in dynamics and 12% of the residues show differences in the energetics. To gain further insights on the influence of tethering on the function of the domains, 4 pairs of homologous protein domains, where one of them is a full-length single-domain protein and the other protein domain is a part of a multi-domain protein, were studied. Analyses showed that identical and structurally equivalent functional residues show differential dynamics in homologous protein domains; though comparable dynamics between in-silico generated chimera protein and multi-domain proteins were observed. From these observations, the differences observed in the functions of homologous proteins could be attributed to the presence of tethered domain. Overall, we conclude that tethered domains in multi-domain proteins not only provide stability or folding advantages but also influence pathways resulting in differences in

  3. Ferroelectricity of Sn-doped SrTiO3 perovskites with tin at both A and B sites

    Science.gov (United States)

    Suzuki, Shoichiro; Honda, Atsushi; Iwaji, Naoki; Higai, Shin'ichi; Ando, Akira; Takagi, Hiroshi; Kasatani, Hirofumi; Deguchi, Kiyoshi

    2012-08-01

    We successfully obtained Sn-doped SrTiO3 (SSTO) perovskites, and clarified their ferroelectricity and structural properties by using first-principles theoretical calculations. The ferroelectricity of SSTO was confirmed by the appearance of a dielectric permittivity maximum and a clear hysteresis loop of the relationship between the external electric field and the electric flux density below 180 K. X-ray diffraction and Raman spectra revealed the structural phase transition of SSTO at approximately 200 K. We directly observed by spherical aberration corrected scanning transmission electron microscopy with energy-dispersive x-ray spectroscopy that Sn ions are doped into both Sr and Ti sites (SnA and SnB), and that SnA is located at an off-centered position. We also performed theoretical analyses of SSTO and related perovskites, and found that SnA is preferentially located in an off-centered position and that SnA and the O6 octahedron, which includes SnB in its center, oscillate along the antiphase direction in the soft mode. Thus, we propose that the ferroelectricity of SSTO originates from the antiphase off-centering, which induces ferroelectric nanoregions in paraelectric SrTiO3.

  4. Quantitative grain-scale ferroic domain volume fractions and domain switching strains from three-dimensional X-ray diffraction data

    DEFF Research Database (Denmark)

    Oddershede, Jette; Majkut, Marta; Caosyd, Qinghua

    2015-01-01

    A method for the extension of the three-dimensional X-ray diffraction technique to allow the extraction of domain volume fractions in polycrystalline ferroic materials is presented. This method gives access to quantitative domain volume fractions of hundreds of independent embedded grains within...... are applied to tetragonal coarse-grained Ba0.88Ca0.12Zr0.06Ti0.94O3 and rhombohedral fine-grained (0.82)Bi0.5Na0.5TiO3–(0.18)Bi0.5K0.5TiO3 electroceramic materials. The fitted volume fraction information is used to calculate grain-scale non-180° ferroelectric domain switching strains. The absolute errors...

  5. Multifunctional BiFeO{sub 3}/TiO{sub 2} nano-heterostructure: Photo-ferroelectricity, rectifying transport, and nonvolatile resistive switching property

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Ayan; Khan, Gobinda Gopal, E-mail: gobinda.gk@gmail.com [Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Technology Campus, Block JD2, Sector III, Salt Lake City, Kolkata 700 098 (India); Chaudhuri, Arka [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700 098 (India); Department of Applied Science, Haldia Institute of Technology, Haldia 721657, Purba Medinipur, West Bengal (India); Das, Avishek [Department of Electronic Science, University of Calcutta, 92 APC Road, Kolkata 700009 (India); Mandal, Kalyan [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700 098 (India)

    2016-01-18

    Multifunctional BiFeO{sub 3} nanostructure anchored TiO{sub 2} nanotubes are fabricated by coupling wet chemical and electrochemical routes. BiFeO{sub 3}/TiO{sub 2} nano-heterostructure exhibits white-light-induced ferroelectricity at room temperature. Studies reveal that the photogenerated electrons trapped at the domain/grain boundaries tune the ferroelectric polarization in BiFeO{sub 3} nanostructures. The photon controlled saturation and remnant polarization opens up the possibility to design ferroelectric devices based on BiFeO{sub 3.} The nano-heterostructure also exhibits substantial photovoltaic effect and rectifying characteristics. Photovoltaic property is found to be correlated with the ferroelectric polarization. Furthermore, the nonvolatile resistive switching in BiFeO{sub 3}/TiO{sub 2} nano-heterostructure has been studied, which demonstrates that the observed resistive switching is most likely caused by the electric-field-induced carrier injection/migration and trapping/detrapping process at the hetero-interfaces. Therefore, BiFeO{sub 3}/TiO{sub 2} nano-heterostructure coupled with logic, photovoltaics and memory characteristics holds promises for long-term technological applications in nanoelectronics devices.

  6. Ferroelectric BaPbO3/PbZr0.53Ti0.47/BaPbO3 heterostructures

    International Nuclear Information System (INIS)

    Liang Chunsheng; Wu Jennming; Chang Mingchu

    2002-01-01

    BaPbO 3 (BPO)/PbZr 0.53 Ti 0.47 (PZT)/BPO heterostructures were fabricated by combining the sol-gel and rf-magnetron sputtering techniques. Experimental results indicate that the BPO bottom electrodes effectively prevent the formation of the rosette structure of PZT, producing smooth surfaces. Additionally, ferroelectric, fatigue, and leakage current properties were markedly improved when both the top and the bottom electrodes were changed from Pt to BPO. These improvements are due to a superior electrode/ferroelectric interface. BPO is better than Pt and other oxide electrodes for use in PZT ferroelectric capacitors due to its remarkably improved properties and quite low growth temperature

  7. Bulk magnetic domain structures visualized by neutron dark-field imaging

    International Nuclear Information System (INIS)

    Gruenzweig, C.; David, C.; Bunk, O.; Dierolf, M.; Frei, G.; Kuehne, G.; Schaefer, R.; Pofahl, S.; Roennow, H. M. R.; Pfeiffer, F.

    2008-01-01

    We report on how a neutron grating interferometer can yield projection images of the internal domain structure in bulk ferromagnetic samples. The image contrast relies on the ultrasmall angle scattering of unpolarized neutrons at domain wall structures in the specimen. The results show the basic domains of (110)-oriented sheets in an FeSi test sample. The obtained domain structures could be correlated with surface sensitive magneto-optical Kerr effect micrographs

  8. Bulk magnetic domain structures visualized by neutron dark-field imaging

    Science.gov (United States)

    Grünzweig, C.; David, C.; Bunk, O.; Dierolf, M.; Frei, G.; Kühne, G.; Schäfer, R.; Pofahl, S.; Rønnow, H. M. R.; Pfeiffer, F.

    2008-09-01

    We report on how a neutron grating interferometer can yield projection images of the internal domain structure in bulk ferromagnetic samples. The image contrast relies on the ultrasmall angle scattering of unpolarized neutrons at domain wall structures in the specimen. The results show the basic domains of (110)-oriented sheets in an FeSi test sample. The obtained domain structures could be correlated with surface sensitive magneto-optical Kerr effect micrographs.

  9. Electrical properties of niobium doped Bi4Ti3O12-SrBi4Ti4O15 intergrowth ferroelectrics

    International Nuclear Information System (INIS)

    Parida, Geetanjali; Bera, J.

    2013-01-01

    Bismuth layer structured ferroelectrics (BLSFs) have attracted much attention because of their potential applications in non-volatile ferroelectric random access memories and high temperature piezoelectric. They are very attractive for these applications due to their fatigue free nature and environment friendly lead-free composition. BLSF crystal structure has layers of bismuth oxide and pseudo perovskite block stacked alternately along their c-direction, For commercial application, numerous efforts have been made to improve the electrical properties of BLSFs. Some effective approaches are: (i) doping at A-site, (ii) high valentcation doping at B-site and (iii) formation of intergrowth between different BLSFs. The intergrowth BLSFs are consist of regular stacking of one half the unit cell of m-member structure and one half the unit cell of (m+1) member BLSF structure along their c-axis. In this report, Nb-doped Bi 4 Ti 3 O 12 -SrBi 4 Ti 4 O 15 intergrowth ceramics have been prepared by modified oxalate route. XRD phase analysis confirmed the formation of single phase compound. Nb-doping does not affect the basic crystal structure of the intergrowth. SEM micrographs showed that the grain size of the ceramics decreases with Nb-doping. The temperature dependence of dielectric constant and losses was investigated in the temperature range 30 to 800℃ and frequency range 1 kHz to 1 MHz. With Nb-doping, the T c of the ferroelectrics reduces and peak permittivity increases. Doping also introduces small relaxor behaviour in the ferroelectrics. The dc conductivity of the ceramics decreases with doping. The remnant polarization (Pr) of the intergrowth ferroelectrics is increased with Nb doping. (author)

  10. Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces.

    Science.gov (United States)

    Taniyama, Tomoyasu

    2015-12-23

    By taking advantage of the coupling between magnetism and ferroelectricity, ferromagnetic (FM)/ferroelectric (FE) multiferroic interfaces play a pivotal role in manipulating magnetism by electric fields. Integrating the multiferroic heterostructures into spintronic devices significantly reduces energy dissipation from Joule heating because only an electric field is required to switch the magnetic element. New concepts of storage and processing of information thus can be envisioned when the electric-field control of magnetism is a viable alternative to the traditional current based means of controlling magnetism. This article reviews some salient aspects of the electric-field effects on magnetism, providing a short overview of the mechanisms of magneto-electric (ME) coupling at the FM/FE interfaces. A particular emphasis is placed on the ME effect via interfacial magneto-elastic coupling arising from strain transfer from the FE to FM layer. Recent results that demonstrate the electric-field control of magnetic anisotropy, magnetic order, magnetic domain wall motion, and etc are described. Obstacles that need to be overcome are also discussed for making this a reality for future device applications.

  11. Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces

    International Nuclear Information System (INIS)

    Taniyama, Tomoyasu

    2015-01-01

    By taking advantage of the coupling between magnetism and ferroelectricity, ferromagnetic (FM)/ferroelectric (FE) multiferroic interfaces play a pivotal role in manipulating magnetism by electric fields. Integrating the multiferroic heterostructures into spintronic devices significantly reduces energy dissipation from Joule heating because only an electric field is required to switch the magnetic element. New concepts of storage and processing of information thus can be envisioned when the electric-field control of magnetism is a viable alternative to the traditional current based means of controlling magnetism. This article reviews some salient aspects of the electric-field effects on magnetism, providing a short overview of the mechanisms of magneto-electric (ME) coupling at the FM/FE interfaces. A particular emphasis is placed on the ME effect via interfacial magneto-elastic coupling arising from strain transfer from the FE to FM layer. Recent results that demonstrate the electric-field control of magnetic anisotropy, magnetic order, magnetic domain wall motion, and etc are described. Obstacles that need to be overcome are also discussed for making this a reality for future device applications. (topical review)

  12. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy.

    Science.gov (United States)

    Tenne, D A; Bruchhausen, A; Lanzillotti-Kimura, N D; Fainstein, A; Katiyar, R S; Cantarero, A; Soukiassian, A; Vaithyanathan, V; Haeni, J H; Tian, W; Schlom, D G; Choi, K J; Kim, D M; Eom, C B; Sun, H P; Pan, X Q; Li, Y L; Chen, L Q; Jia, Q X; Nakhmanson, S M; Rabe, K M; Xi, X X

    2006-09-15

    We demonstrated that ultraviolet Raman spectroscopy is an effective technique to measure the transition temperature (Tc) in ferroelectric ultrathin films and superlattices. We showed that one-unit-cell-thick BaTiO3 layers in BaTiO3/SrTiO3 superlattices are not only ferroelectric (with Tc as high as 250 kelvin) but also polarize the quantum paraelectric SrTiO3 layers adjacent to them. Tc was tuned by approximately 500 kelvin by varying the thicknesses of the BaTiO3 and SrTiO3 layers, revealing the essential roles of electrical and mechanical boundary conditions for nanoscale ferroelectricity.

  13. Room temperature p-type conductivity and coexistence of ferroelectric order in ferromagnetic Li doped ZnO nanoparticles

    KAUST Repository

    Awan, Saif Ullah

    2014-10-28

    Memory and switching devices acquired new materials which exhibit ferroelectric and ferromagnetic order simultaneously. We reported multiferroic behavior in Zn1-yLiyO(0.00≤y≤0.10) nanoparticles. The analysis of transmission electron micrographs confirmed the hexagonal morphology and wurtzite crystalline structure. We investigated p-type conductivity in doped samples and measured hole carriers in range 2.4×1017/cc to 7.3×1017/cc for different Li contents. We found that hole carriers are responsible for long range order ferromagnetic coupling in Li doped samples. Room temperature ferroelectric hysteresis loops were observed in 8% and 10% Li doped samples. We demonstrated ferroelectric coercivity (remnant polarization) 2.5kV/cm (0.11 μC/cm2) and 2.8kV/cm (0.15 μC/cm2) for y=0.08 and y=0.10 samples. We propose that the mechanism of Li induced ferroelectricity in ZnO is due to indirect dipole interaction via hole carriers. We investigated that if the sample has hole carriers ≥5.3×1017/cc, they can mediate the ferroelectricity. Ferroelectric and ferromagnetic measurements showed that higher electric polarization and larger magnetic moment is attained when the hole concentration is larger and vice versa. Our results confirmed the hole dependent coexistence of ferromagnetic and ferroelectric behavior at room temperature, which provide potential applications for switchable and memory devices.

  14. Suppression of slow capacitance relaxation phenomenon in Pt/Ba0.3Sr0.7TiO3/Pt thin film ferroelectric structures by annealing in oxygen atmosphere

    KAUST Repository

    Altynnikov, A. G.; Gagarin, A. G.; Gaidukov, M. M.; Tumarkin, A. V.; Petrov, P. K.; Alford, N.; Kozyrev, A. B.

    2014-01-01

    The impact of oxygen annealing on the switching time of ferroelectric thin film capacitor structures Pt/Ba0.3Sr0.7TiO3/Pt was investigated. The response of their capacitance on pulsed control voltages before and after annealing was experimentally

  15. Organic non-volatile memories from ferroelectric phase separated blends

    Science.gov (United States)

    Asadi, Kamal; de Leeuw, Dago; de Boer, Bert; Blom, Paul

    2009-03-01

    Ferroelectric polarisation is an attractive physical property for non-volatile binary switching. The functionality of the targeted memory should be based on resistive switching. Conductivity and ferroelectricity however cannot be tuned independently. The challenge is to develop a storage medium in which the favourable properties of ferroelectrics such as bistability and non-volatility can be combined with the beneficial properties provided by semiconductors such as conductivity and rectification. In this contribution we present an integrated solution by blending semiconducting and ferroelectric polymers into phase separated networks. The polarisation field of the ferroelectric modulates the injection barrier at the semiconductor--metal contact. This combination allows for solution-processed non-volatile memory arrays with a simple cross-bar architecture that can be read-out non-destructively. Based on this general concept a non-volatile, reversible switchable Schottky diode with relatively fast programming time of shorter than 100 microseconds, long information retention time of longer than 10^ days, and high programming cycle endurance with non-destructive read-out is demonstrated.

  16. Characterization of current transport in ferroelectric polymer devices

    KAUST Repository

    Hanna, Amir

    2014-01-01

    We report the charge injection characteristics in poly(vinylidene fluoride-trifluoroethylene), P(VDF-TrFE), as a function of electrode material in metal/ferroelectric/metal device structures. Symmetric and asymmetric devices with Al, Ag, Au and Pt electrodes were fabricated to determine the dominant carrier type, injection current density, and to propose transport mechanisms in the ferroelectric polymer. Higher work function metals such as Pt are found to inject less charges compared to lower work function metals, implying n-type conduction behavior for P(VDF-TrFE) with electrons as the dominant injected carrier. Two distinct charge transport regimes were identified in the P(VDF-TrFE) devices; a Schottky-limited conduction regime for low to intermediate fields (E < 20 MV/m), and a space-charge limited conduction (SCLC) regime for high fields (20 < E < 120 MV/m). Implication of these results for degradation in P(VDF-TrFE) memory performance are discussed. © 2013 Elsevier B.V. All rights reserved.

  17. A concept of ferroelectric microparticle propulsion thruster

    International Nuclear Information System (INIS)

    Yarmolich, D.; Vekselman, V.; Krasik, Ya. E.

    2008-01-01

    A space propulsion concept using charged ferroelectric microparticles as a propellant is suggested. The measured ferroelectric plasma source thrust, produced mainly by microparticles emission, reaches ∼9x10 -4 N. The obtained trajectories of microparticles demonstrate that the majority of the microparticles are positively charged, which permits further improvement of the thruster

  18. Ferroelectric Phase Diagram of PVDF:PMMA

    OpenAIRE

    Li, Mengyuan; Stingelin, Natalie; Michels, Jasper J.; Spijkman, Mark-Jan; Asadi, Kamal; Feldman, Kirill; Blom, Paul W. M.; de Leeuw, Dago M.

    2012-01-01

    We have investigated the ferroelectric phase diagram of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA). The binary nonequilibrium temperature composition diagram was determined and melting of alpha- and beta-phase PVDF was identified. Ferroelectric beta-PVDF:PMMA blend films were made by melting, ice quenching, and subsequent annealing above the glass transition temperature of PMMA, close to the melting temperature of PVDF. Addition of PMMA suppresses the crystallizatio...

  19. Structure and dynamics of the human pleckstrin DEP domain: distinct molecular features of a novel DEP domain subfamily.

    Science.gov (United States)

    Civera, Concepcion; Simon, Bernd; Stier, Gunter; Sattler, Michael; Macias, Maria J

    2005-02-01

    Pleckstrin1 is a major substrate for protein kinase C in platelets and leukocytes, and comprises a central DEP (disheveled, Egl-10, pleckstrin) domain, which is flanked by two PH (pleckstrin homology) domains. DEP domains display a unique alpha/beta fold and have been implicated in membrane binding utilizing different mechanisms. Using multiple sequence alignments and phylogenetic tree reconstructions, we find that 6 subfamilies of the DEP domain exist, of which pleckstrin represents a novel and distinct subfamily. To clarify structural determinants of the DEP fold and to gain further insight into the role of the DEP domain, we determined the three-dimensional structure of the pleckstrin DEP domain using heteronuclear NMR spectroscopy. Pleckstrin DEP shares main structural features with the DEP domains of disheveled and Epac, which belong to different DEP subfamilies. However, the pleckstrin DEP fold is distinct from these structures and contains an additional, short helix alpha4 inserted in the beta4-beta5 loop that exhibits increased backbone mobility as judged by NMR relaxation measurements. Based on sequence conservation, the helix alpha4 may also be present in the DEP domains of regulator of G-protein signaling (RGS) proteins, which are members of the same DEP subfamily. In pleckstrin, the DEP domain is surrounded by two PH domains. Structural analysis and charge complementarity suggest that the DEP domain may interact with the N-terminal PH domain in pleckstrin. Phosphorylation of the PH-DEP linker, which is required for pleckstrin function, could regulate such an intramolecular interaction. This suggests a role of the pleckstrin DEP domain in intramolecular domain interactions, which is distinct from the functions of other DEP domain subfamilies found so far.

  20. Raman scattering study of the ferroelectric phase transition in BaT i2O5

    Science.gov (United States)

    Tsukada, Shinya; Fujii, Yasuhiro; Yoneda, Yasuhiro; Moriwake, Hiroki; Konishi, Ayako; Akishige, Yukikuni

    2018-02-01

    Uniaxial ferroelectric BaT i2O5 with a Curie temperature TC of 743 K was investigated to clarify its paraelectric-ferroelectric phase-transition behavior. The mechanism is discussed on the basis of the structure from short to long ranges determined by synchrotron x-ray diffraction and the lattice dynamics probed by Raman spectroscopy. BaT i2O5 is regarded as a homogeneous system, and the lattice dynamics can be interpreted by the selection rules and tensor properties of the homogeneous structure. Angle-resolved polarized Raman spectroscopy clearly shows that an A -mode-type overdamped phonon plays the key role in the phase transition. Using a combination of experimental results and first-principles calculations, we explain the phase transition as follows: In one of three Ti O6 octahedral units, Ti vibrates along the b axis opposite an oxygen octahedral unit with large damping in the paraelectric phase, whereas this vibration is frozen in the ferroelectric phase, leading to a change in the space group from nonpolar C 2 /m to polar C 2 .

  1. Magnetic structure driven ferroelectricity and large magnetoelectric coupling in antiferromagnet Co4Nb2O9

    Science.gov (United States)

    Srivastava, P.; Chaudhary, S.; Maurya, V.; Saha, J.; Kaushik, S. D.; Siruguri, V.; Patnaik, S.

    2018-05-01

    Synthesis and extensive structural, pyroelectric, magnetic, dielectric and magneto-electric characterizations are reported for polycrystalline Co4Nb2O9 towards unraveling the multiferroic ground state. Magnetic measurements confirm that Co4Nb2O9 becomes an anti-ferromagnet at around 28 K. Associated with the magnetic phase transition, a sharp peak in pyroelectric current indicates the appearance of strong magneto-electric coupling below Neel temperature (TN) along with large coupling constant upto 17.8 μC/m2T. Using temperature oscillation technique, we establish Co4Nb2O9 to be a genuine multiferroic with spontaneous electric polarization in the anti-ferromagnetic state in the absence of magnetic field poling. This is in agreement with our low temperature neutron diffraction studies that show the magnetic structure of Co4Nb2O9 to be that of a non-collinear anti-ferromagnet with ferroelectric ground state.

  2. Structure of synaptophysin: a hexameric MARVEL-domain channel protein.

    Science.gov (United States)

    Arthur, Christopher P; Stowell, Michael H B

    2007-06-01

    Synaptophysin I (SypI) is an archetypal member of the MARVEL-domain family of integral membrane proteins and one of the first synaptic vesicle proteins to be identified and cloned. Most all MARVEL-domain proteins are involved in membrane apposition and vesicle-trafficking events, but their precise role in these processes is unclear. We have purified mammalian SypI and determined its three-dimensional (3D) structure by using electron microscopy and single-particle 3D reconstruction. The hexameric structure resembles an open basket with a large pore and tenuous interactions within the cytosolic domain. The structure suggests a model for Synaptophysin's role in fusion and recycling that is regulated by known interactions with the SNARE machinery. This 3D structure of a MARVEL-domain protein provides a structural foundation for understanding the role of these important proteins in a variety of biological processes.

  3. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    Science.gov (United States)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  4. A novel readout integrated circuit for ferroelectric FPA detector

    Science.gov (United States)

    Bai, Piji; Li, Lihua; Ji, Yulong; Zhang, Jia; Li, Min; Liang, Yan; Hu, Yanbo; Li, Songying

    2017-11-01

    Uncooled infrared detectors haves some advantages such as low cost light weight low power consumption, and superior reliability, compared with cryogenically cooled ones Ferroelectric uncooled focal plane array(FPA) are being developed for its AC response and its high reliability As a key part of the ferroelectric assembly the ROIC determines the performance of the assembly. A top-down design model for uncooled ferroelectric readout integrated circuit(ROIC) has been developed. Based on the optical thermal and electrical properties of the ferroelectric detector the RTIA readout integrated circuit is designed. The noise bandwidth of RTIA readout circuit has been developed and analyzed. A novel high gain amplifier, a high pass filter and a low pass filter circuits are designed on the ROIC. In order to improve the ferroelectric FPA package performance and decrease of package cost a temperature sensor is designed on the ROIC chip At last the novel RTIA ROIC is implemented on 0.6μm 2P3M CMOS silicon techniques. According to the experimental chip test results the temporal root mean square(RMS)noise voltage is about 1.4mV the sensitivity of the on chip temperature sensor is 0.6 mV/K from -40°C to 60°C the linearity performance of the ROIC chip is better than 99% Based on the 320×240 RTIA ROIC, a 320×240 infrared ferroelectric FPA is fabricated and tested. Test results shows that the 320×240 RTIA ROIC meets the demand of infrared ferroelectric FPA.

  5. Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zeng, Hong; Lam, Robert; Tempel, Wolfram; Amaya, Maria F.; Xu, Chao; Dombrovski, Ludmila; Qiu, Wei; Wang, Yanming; Min, Jinrong (Toronto); (Penn)

    2013-09-25

    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.

  6. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers

    Science.gov (United States)

    2016-04-19

    the free energy of the system [3,4,8]. Intensive research has been aimed at bypassing the intrinsic size limits imposed by the depolarization field...Page 1 of 21   Ultrafast photovoltaic response in ferroelectric nanolayers Dan Daranciang1,2, Matthew J. Highland3, Haidan Wen4, Steve M. Young5...ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on

  7. Upconversion photoluminescence of epitaxial Yb{sup 3+}/Er{sup 3+} codoped ferroelectric Pb(Zr,Ti)O{sub 3} films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang, E-mail: zhangy_acd@hotmail.com [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kämpfe, Thomas [Institut für Angewandte Physik, TU Dresden, 01062 Dresden (Germany); Bai, Gongxun [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China); Mietschke, Michael; Yuan, Feifei; Zopf, Michael [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Abel, Stefan [IBM Research GmbH, Saümerstrasse 4, 8803 Rüschlikon (Switzerland); Eng, Lukas M. [Institut für Angewandte Physik, TU Dresden, 01062 Dresden (Germany); Hühne, Ruben [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Fompeyrine, Jean [IBM Research GmbH, Saümerstrasse 4, 8803 Rüschlikon (Switzerland); Ding, Fei, E-mail: f.ding@ifw-dresden.de [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Schmidt, Oliver G. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer strasse 70, 09107 Chemnitz (Germany)

    2016-05-31

    Thin films of Yb{sup 3+}/Er{sup 3+} codoped Pb(Zr,Ti)O{sub 3} (PZT:Yb/Er) have been epitaxially grown on the SrTiO{sub 3} buffered Si wafer by pulsed laser deposition. Strong upconversion photoluminescence was observed in the PZT:Yb/Er thin film. Using piezoresponse force microscopy, polar domains in the PZT:Yb/Er film can be reversibly switched with a phase change of 180°. Ferroelectric hysteresis loop shape with a well-saturated response was observed. The epitaxially grown lanthanide-doped PZT on silicon opens up a promising route to the integration of luminescent functional oxides on the silicon platform. - Highlights: • Epitaxial growth of Yb{sup 3+}/Er{sup 3+} codoped Pb(Zr,Ti)O{sub 3} films on SrTiO{sub 3} buffered silicon • Upconversion emissions were obtained from the lanthanide ion doped thin films. • Saturated ferroelectric hysteresis loops were observed. • Polar domains were switched by PFM with a phase change of 180°.

  8. Effects on Ferroelectric Thin-Film Stacks and Devices for Piezoelectric MEMS Applications at Varied Total Ionizing Dose (TID)

    Science.gov (United States)

    2017-03-01

    non -linearly mobile internal interfaces, e.g. domain walls and eventual phase boundaries. Radiation exposure is expected...zirconate titanate; PZT; actuator; radiation ; gamma; total ionization dose; TID; top electrode; Pt; IrO2; polarization; PE; hysteresis; permittivity...Hayashigawa, et. al., “A 2 Mbit Radiation Hardened Stackable Ferroelectric Memory” Non - Volatile Memory Technology Symposium, NVMTS 07, Nov 10-13, 2007 Albuquerque, NM, USA

  9. Identification of structural domains in proteins by a graph heuristic

    NARCIS (Netherlands)

    Wernisch, Lorenz; Hunting, M.M.G.; Wodak, Shoshana J.

    1999-01-01

    A novel automatic procedure for identifying domains from protein atomic coordinates is presented. The procedure, termed STRUDL (STRUctural Domain Limits), does not take into account information on secondary structures and handles any number of domains made up of contiguous or non-contiguous chain

  10. Depolarization corrections to the coercive field in thin-film ferroelectrics

    International Nuclear Information System (INIS)

    Dawber, M; Chandra, P; Littlewood, P B; Scott, J F

    2003-01-01

    Empirically, the coercive field needed to reverse the polarization in a ferroelectric increases with decreasing film thickness. For ferroelectric films of 100 μm to 100 nm in thickness the coercive field has been successfully described by a semi-empirical scaling law. Accounting for depolarization corrections, we show that this scaling behaviour is consistent with field measurements of ultrathin ferroelectric capacitors down to one nanometre in film thickness. Our results also indicate that the minimum film thickness, determined by a polarization instability, can be tuned by the choice of electrodes, and recommendations for next-generation ferroelectric devices are discussed. (letter to the editor)

  11. Depolarization corrections to the coercive field in thin-film ferroelectrics

    CERN Document Server

    Dawber, M; Littlewood, P B; Scott, J F

    2003-01-01

    Empirically, the coercive field needed to reverse the polarization in a ferroelectric increases with decreasing film thickness. For ferroelectric films of 100 mu m to 100 nm in thickness the coercive field has been successfully described by a semi-empirical scaling law. Accounting for depolarization corrections, we show that this scaling behaviour is consistent with field measurements of ultrathin ferroelectric capacitors down to one nanometre in film thickness. Our results also indicate that the minimum film thickness, determined by a polarization instability, can be tuned by the choice of electrodes, and recommendations for next-generation ferroelectric devices are discussed. (letter to the editor)

  12. Ferroelectric ferrimagnetic LiFe2F6 : Charge-ordering-mediated magnetoelectricity

    Science.gov (United States)

    Lin, Ling-Fang; Xu, Qiao-Ru; Zhang, Yang; Zhang, Jun-Jie; Liang, Yan-Ping; Dong, Shuai

    2017-12-01

    Trirutile-type LiFe2F6 is a charge-ordered material with an Fe2 +/Fe3 + configuration. Here, its physical properties, including magnetism, electronic structure, phase transition, and charge ordering, are studied theoretically. On one hand, the charge ordering leads to improper ferroelectricity with a large polarization. On the other hand, its magnetic ground state can be tuned from the antiferromagnetic to ferrimagnetic by moderate compressive strain. Thus, LiFe2F6 can be a rare multiferroic with both large magnetization and polarization. Most importantly, since the charge ordering is the common ingredient for both ferroelectricity and magnetization, the net magnetization may be fully switched by flipping the polarization, rendering intrinsically strong magnetoelectric effects and desirable functions.

  13. Electric control of magnetism in low-dimensional magnets on ferroelectric surfaces

    Directory of Open Access Journals (Sweden)

    Dorj Odkhuu

    2017-05-01

    Full Text Available Employing first-principles electronic structure calculations, we have studied the electric field controls of magnetism and magnetic anisotropy energy (MAE of the Fe adatoms on ferroelectric BaTiO3 and PbTiO3 surfaces. Remarkably, those effects exhibit dependence of the level of coverage as well as adsorption site of Fe atoms. While the magnitude of MAE is shown tunable by ferroelectric polarization in the full coverage of Fe monolayer, the direction of magnetization undergoes a transition from perpendicular to in-plane for the half or lower coverages. This magnetization reorientation is mainly ascribed to the site-dependent Fe d–O p hybridization, as a consequence of the formation of FeTiO2 layer at the surface.

  14. Role of oxygen disorder in the ferroelectric phase transitions for various materials

    International Nuclear Information System (INIS)

    Pasciak, Marek; Goossens, Darren J.; Welberry, Richard T.

    2009-01-01

    Full text: The nature of ferroelectric phase transitions in many materials have been questioned for many years. Whereas some methods provide definitive evidence of mode softening, other methods, such as local structure probes, indicate the existence of disorder in the paraelectric phase [1]. It is now widely accepted, that the ferroelectric phase transition usually has two components - soft-mode displacive and order-disorder. The latter leads inevitably to some form of pretransitional clusters in the paraelectric phase [2]. In relaxor ferroelectrics, in which disorder drives the transformation, such polar clusters can exist over a wide range of temperatures. Diffuse scattering is a powerful tool for studying such disorder and also for studying short-range order correlations in atomic displacements [3]. In this work we concentrate on the role of oxygens in various materials. By different means of molecular simulations we build models in which the oxygens constitute a framework for short range order correlations. This leads to a discussion of the differences between x-ray and neutron diffuse scattering patterns that may arise due to the disorder of oxygens.

  15. Solution structure of the isolated Pelle death domain.

    Science.gov (United States)

    Moncrieffe, Martin C; Stott, Katherine M; Gay, Nicholas J

    2005-07-18

    The interaction between the death domains (DDs) of Tube and the protein kinase Pelle is an important component of the Toll pathway. Published crystallographic data suggests that the Pelle-Tube DD interface is plastic and implies that in addition to the two predominant Pelle-Tube interfaces, a third interaction is possible. We present the NMR solution structure of the isolated death domain of Pelle and a study of the interaction between the DDs of Pelle and Tube. Our data suggests the solution structure of the isolated Pelle DD is similar to that of Pelle DD in complex with Tube. Additionally, they suggest that the plasticity observed in the crystal structure may not be relevant in the functioning death domain complex.

  16. Neutron diffraction study of crystal structures of deuterated glycinium phosphite in paraelectric and ferroelectric phases

    International Nuclear Information System (INIS)

    Machida, Mitsuo; Uchida, Hiroyuki; Ishibashi, Toku; Taniguchi, Hiroki; Komukae, Masaru; Osaka, Toshio; Koyano, Nobumitsu

    2004-01-01

    Crystal structure of deuterated glycinium phosphite was studied in the paraelectric (P) phase at 348 K and in the ferroelectric (F) phase at 223 K by means of the single crystal neutron diffraction. Deuteration rate is estimated to be 0.939 by the least-squares refinement. In the P phase, quasi-one-dimensional hydrogen bond chains are built by mutually linking the DPO 3 2- anions through two different types of hydrogen bonds with the bond angles of 179.2 and 171.6deg. Two independent deuterons within the hydrogen bonds forming the chains are disordered over two sites separated by 0.545 and 0.539A. In the F phase, they order at a position nearly equal to one of two sites related by the disorder in the P phase. With the ordering of the deuterons, the P-O bonds with covalently bonded deuteron elongate, and those without covalently bonded deuteron reduce their lengths to some extend from the values determined in the P phase. Two oxygens involved in the hydrogen bond with the bond angle 179.2deg exhibits especially large displacements in the F phase. This suggests strongly an importance of this hydrogen bond in the polarization appearance and in the ferroelectric transition. Comparison with results of non-deuterated salt indicates that only the hydrogen bonds forming the chains show significant isotope shift. In particular, the hydrogen bond with the bond angle 179.2deg exhibits the most pronounced shift on the angle parameter defined by the angle between the line connecting two sites of disordered proton or deuteron and the line connecting two oxygens involved in the hydrogen bond. (author)

  17. Structural Contribution to the Ferroelectric Fatigue in Lead Zirconate Titanate (PZT) Ceramics

    OpenAIRE

    Hinterstein , Manuel; Rouquette , Jerome; Haines , J; Papet , Ph; Glaum , Julia; Knapp , Michael; Eckert , J; Hoffman , M

    2014-01-01

    International audience; Many ferroelectric devices are based on doped lead zirconate titanate (PZT) ceramics with compositions near the morphotropic phase boundary (MPB), at which the relevant material's properties approach their maximum. Based on a synchrotron x-ray diffraction study of MPB PZT, bulk fatigue is unambiguously found to arise from a less effective field induced tetragonal-to-monoclinic transformation, at which the degradation of the polarization flipping is detected by a less i...

  18. Temperature dependence of electronic transport property in ferroelectric polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.L.; Wang, J.L., E-mail: jlwang@mail.sitp.ac.cn; Tian, B.B.; Liu, B.L.; Zou, Y.H.; Wang, X.D.; Sun, S.; Sun, J.L., E-mail: jlsun@mail.sitp.ac.cn; Meng, X.J.; Chu, J.H.

    2014-10-15

    Highlights: • The ferroelectric polymer was fabricated by Langmuir–Blodgett method. • The electrons as the dominant injected carrier were conformed in the ferroelectric polymer films. • The leakage current conduction mechanisms in ferroelectric polymer were investigated. - Abstract: The leakage current mechanism of ferroelectric copolymer of polyvinylidene fluoride with trifluoroethylene prepared by Langmuir–Blodgett was investigated in the temperature range from 100 K to 350 K. The electron as the dominant injected carrier was observed in the ferroelectric copolymer films. The transport mechanisms in copolymer strongly depend on the temperature and applied voltage. From 100 K to 200 K, Schottky emission dominates the conduction. With temperature increasing, the Frenkel–Poole emission instead of the Schottky emission to conduct the carrier transport. When the temperature gets to 260 K, the leakage current becomes independent of temperature, and the space charge limited current conduction was observed.

  19. Modeling the influence of the seeding layer on the transition behavior of a ferroelectric thin film

    International Nuclear Information System (INIS)

    Oubelkacem, A.; Essaoudi, I.; Ainane, A.; Saber, M.; Dujardin, F.

    2011-01-01

    The transition properties of a ferroelectric thin film with seeding layers were studied using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions. The effect of interaction parameters for the seeding layer on the phase diagram was also examined. We calculated the critical temperature and the polarization of the ferroelectric thin film for different seeding layer structures. We found that the seeding layer can greatly increase the Curie temperature and the polarization.

  20. Effects of temperature and electric field on order parameters in ferroelectric hexagonal manganites

    Science.gov (United States)

    Zhang, C. X.; Yang, K. L.; Jia, P.; Lin, H. L.; Li, C. F.; Lin, L.; Yan, Z. B.; Liu, J.-M.

    2018-03-01

    In Landau-Devonshire phase transition theory, the order parameter represents a unique property for a disorder-order transition at the critical temperature. Nevertheless, for a phase transition with more than one order parameter, such behaviors can be quite different and system-dependent in many cases. In this work, we investigate the temperature (T) and electric field (E) dependence of the two order parameters in improper ferroelectric hexagonal manganites, addressing the phase transition from the high-symmetry P63/mmc structure to the polar P63cm structure. It is revealed that the trimerization as the primary order parameter with two components: the trimerization amplitude Q and phase Φ, and the spontaneous polarization P emerging as the secondary order parameter exhibit quite different stability behaviors against various T and E. The critical exponents for the two parameters Q and P are 1/2 and 3/2, respectively. As temperature increases, the window for the electric field E enduring the trimerization state will shrink. An electric field will break the Z2 part of the Z2×Z3 symmetry. The present work may shed light on the complexity of the vortex-antivortex domain structure evolution near the phase transition temperature.

  1. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lu

    2016-10-01

    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  2. Visualization of dielectric constant-electric field-temperature phase maps for imprinted relaxor ferroelectric thin films

    International Nuclear Information System (INIS)

    Frederick, J. C.; Kim, T. H.; Maeng, W.; Brewer, A. A.; Podkaminer, J. P.; Saenrang, W.; Vaithyanathan, V.; Schlom, D. G.; Li, F.; Chen, L.-Q.; Trolier-McKinstry, S.; Rzchowski, M. S.; Eom, C. B.

    2016-01-01

    The dielectric phase transition behavior of imprinted lead magnesium niobate–lead titanate relaxor ferroelectric thin films was mapped as a function of temperature and dc bias. To compensate for the presence of internal fields, an external electric bias was applied while measuring dielectric responses. The constructed three-dimensional dielectric maps provide insight into the dielectric behaviors of relaxor ferroelectric films as well as the temperature stability of the imprint. The transition temperature and diffuseness of the dielectric response correlate with crystallographic disorder resulting from strain and defects in the films grown on strontium titanate and silicon substrates; the latter was shown to induce a greater degree of disorder in the film as well as a dielectric response lower in magnitude and more diffuse in nature over the same temperature region. Strong and stable imprint was exhibited in both films and can be utilized to enhance the operational stability of piezoelectric devices through domain self-poling.

  3. Hybrid dual gate ferroelectric memory for multilevel information storage

    KAUST Repository

    Khan, Yasser

    2015-01-01

    Here, we report hybrid organic/inorganic ferroelectric memory with multilevel information storage using transparent p-type SnO semiconductor and ferroelectric P(VDF-TrFE) polymer. The dual gate devices include a top ferroelectric field-effect transistor (FeFET) and a bottom thin-film transistor (TFT). The devices are all fabricated at low temperatures (∼200°C), and demonstrate excellent performance with high hole mobility of 2.7 cm2 V-1 s-1, large memory window of ∼18 V, and a low sub-threshold swing ∼-4 V dec-1. The channel conductance of the bottom-TFT and the top-FeFET can be controlled independently by the bottom and top gates, respectively. The results demonstrate multilevel nonvolatile information storage using ferroelectric memory devices with good retention characteristics.

  4. Influence of Fe{sup 3+} substitution on the dielectric and ferroelectric characteristics of Lead Indium Niobate

    Energy Technology Data Exchange (ETDEWEB)

    Divya, A.S.; Kumar, V., E-mail: vkumar10@yahoo.com

    2015-07-15

    Highlights: • Prepared phase-pure Fe{sup 3+}-substituted Lead Indium Niobate, Pb[(In{sub 0.50−x}Fe{sub x})Nb{sub 0.50}]O{sub 3} by sol–gel method. • Spontaneous Relaxor (R) → Ferroelectric (FE) transition observed for the composition with x = 0.20. • Local structural rearrangement responsible for R → FE transition has been confirmed by Raman spectroscopy. - Abstract: Lead Indium Niobate, Pb(In{sub 0.50}Nb{sub 0.50})O{sub 3} (PIN) is a complex perovskite that exhibits Relaxor (R) characteristics. In this study, we report the synthesis of phase-pure compositions in the system Pb[(In{sub 0.50−x}Fe{sub x})Nb{sub 0.50}]O{sub 3} by sol–gel method and discuss the influence of isovalent substitution of Indium by Iron on the dielectric and ferroelectric characteristics. Spontaneous transition to the Ferroelectric (FE) phase has been observed for the composition having x = 0.20. Local structural rearrangements responsible for R → FE transition have also been studied by Raman spectroscopy and are discussed in detail.

  5. Synthesis of ferroelectric nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Roervik, Per Martin

    2008-12-15

    The increasing miniaturization of electric and mechanical components makes the synthesis and assembly of nanoscale structures an important step in modern technology. Functional materials, such as the ferroelectric perovskites, are vital to the integration and utility value of nanotechnology in the future. In the present work, chemical methods to synthesize one-dimensional (1D) nanostructures of ferroelectric perovskites have been studied. To successfully and controllably make 1D nanostructures by chemical methods it is very important to understand the growth mechanism of these nanostructures, in order to design the structures for use in various applications. For the integration of 1D nanostructures into devices it is also very important to be able to make arrays and large-area designed structures from the building blocks that single nanostructures constitute. As functional materials, it is of course also vital to study the properties of the nanostructures. The characterization of properties of single nanostructures is challenging, but essential to the use of such structures. The aim of this work has been to synthesize high quality single-crystalline 1D nanostructures of ferroelectric perovskites with emphasis on PbTiO3 , to make arrays or hierarchical nanostructures of 1D nanostructures on substrates, to understand the growth mechanisms of the 1D nanostructures, and to investigate the ferroelectric and piezoelectric properties of the 1D nanostructures. In Paper I, a molten salt synthesis route, previously reported to yield BaTiO3 , PbTiO3 and Na2Ti6O13 nanorods, was re-examined in order to elucidate the role of volatile chlorides. A precursor mixture containing barium (or lead) and titanium was annealed in the presence of NaCl at 760 degrees Celsius or 820 degrees Celsius. The main products were respectively isometric nanocrystalline BaTiO3 and PbTiO3. Nanorods were also detected, but electron diffraction revealed that the composition of the nanorods was

  6. Electric double layer transistors with ferroelectric BaTiO3 channels

    NARCIS (Netherlands)

    Ito, M.; Matsubara, Y.; Kozuka, Y.; Takahashi, K. S.; Kagawa, F.; Ye, J. T.; Iwasa, Y.; Ueno, K.; Tokura, Y.; Kawasaki, M.

    2014-01-01

    We report the surface conduction of a BaTiO3 thin film using electric double layer transistor (EDLT) structure. A transistor operation was observed at 220 K with an on/off ratio exceeding 10(5), demonstrating that ionic liquid gating is effective to induce carriers at the surface of ferroelectric

  7. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Jiang, Ping; Ding, Chengyuan; Hu, Xiaoyong; Gong, Qihuang

    2007-01-01

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  8. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ping [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Ding, Chengyuan [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: qhgong@pku.edu.cn

    2007-04-02

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed.

  9. High-resolution 2-D Bragg diffraction reveal heterogeneous domain transformation behavior in a bulk relaxor ferroelectric

    Energy Technology Data Exchange (ETDEWEB)

    Pramanick, Abhijit, E-mail: apramani@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Stoica, Alexandru D.; An, Ke [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2016-08-29

    In-situ measurement of fine-structure of neutron Bragg diffraction peaks from a relaxor single-crystal using a time-of-flight instrument reveals highly heterogeneous mesoscale domain transformation behavior under applied electric fields. It is observed that only ∼25% of domains undergo reorientation or phase transition contributing to large average strains, while at least 40% remain invariant and exhibit microstrains. Such insights could be central for designing new relaxor materials with better performance and longevity. The current experimental technique can also be applied to resolve complex mesoscale phenomena in other functional materials.

  10. Encoding, training and retrieval in ferroelectric tunnel junctions

    Science.gov (United States)

    Xu, Hanni; Xia, Yidong; Xu, Bo; Yin, Jiang; Yuan, Guoliang; Liu, Zhiguo

    2016-05-01

    Ferroelectric tunnel junctions (FTJs) are quantum nanostructures that have great potential in the hardware basis for future neuromorphic applications. Among recently proposed possibilities, the artificial cognition has high hopes, where encoding, training, memory solidification and retrieval constitute a whole chain that is inseparable. However, it is yet envisioned but experimentally unconfirmed. The poor retention or short-term store of tunneling electroresistance, in particular the intermediate states, is still a key challenge in FTJs. Here we report the encoding, training and retrieval in BaTiO3 FTJs, emulating the key features of information processing in terms of cognitive neuroscience. This is implemented and exemplified through processing characters. Using training inputs that are validated by the evolution of both barrier profile and domain configuration, accurate recalling of encoded characters in the retrieval stage is demonstrated.

  11. Giant Electrocaloric Effect in Ferroelectrics with Tailored Polaw-Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiming [Pennsylvania State Univ., University Park, PA (United States)

    2015-06-24

    Electrocaloric effect (ECE) is the temperature and/or entropy change in a dielectric material caused by an electric field induced polarization change. Although ECE has been studied since 1930s, the very small ECE observed in earlier studies in bulk materials before 2007 makes it not attractive for practical cooling applications. The objectives of this DOE program are to carry out a systematical scientific research on the entropy change and ECE in polar-dielectrics, especially ferroelectrics based on several fundamental hypotheses and to search for answers on a few scientific questions. Especially, this research program developed a series of polar-dielectric materials with controlled nano- and meso-structures and carried out studies on how these structures affect the polar-ordering, correlations, energy landscapes, and consequently the entropy states at different phases and ECE. The key hypotheses of the program include: (i) Whether a large ECE can be obtained near the ferroelectric-paraelectric (FE-PE) transition in properly designed ferroelectrics which possess large polarization P and large ß (the coefficient in the thermodynamic Landau theory where the Gibbs free energy G = G = G0+ ½ a P2 +1/4 b P4 + 1/6 c P6 – EP, and a = ß (T-Tc), where b,c,ß and Tc are constants)? (ii) What determines/determine ß? Whether a ferroelectric material with built-in disorders, which disrupt the polar-correlations and enabling a large number of local polar-states, such as a properly designed ferroelectric relaxor, can achieve a large ECE? (iii) How to design a ferroelectric material which has flat energy landscape so that the energy barriers for switching among different phases are vanishingly small? What are the necessary conditions to maximize the number of coexisting phases? (iv) How to design ferroelectric materials with a large tunable dielectric response? That is, at zero electric field, the material possesses very

  12. Fast switchable ferroelectric liquid crystal gratings with two electro-optical modes

    International Nuclear Information System (INIS)

    Ma, Ying; Srivastava, A. K.; Chigrinov, V. G.; Kwok, H.-S.; Wang, Xiaoqian

    2016-01-01

    In this article, we reveal a theoretical and experimental illustration of the Ferroelectric liquid crystal (FLC) grating fabricated by mean of patterned alignment based on photo-alignment. The complexity related to the mismatching of the predefined alignment domains on the top and bottom substrate has been avoided by incorporating only one side photo aligned substrate while the other substrate does not have any alignment layer. Depending on the easy axis in the said alignment domains and the azimuth plane of the impinging polarized light, the diffracting element can be tuned in two modes i.e. DIFF/OFF switchable and DIFF/TRANS switchable modes, which can be applied to different applications. The diffraction profile has been illustrated theoretically that fits well with the experimental finding and thus the proposed diffraction elements with fast response time and high diffraction efficiency could find application in many modern devices.

  13. Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions.

    Science.gov (United States)

    Soni, Rohit; Petraru, Adrian; Meuffels, Paul; Vavra, Ondrej; Ziegler, Martin; Kim, Seong Keun; Jeong, Doo Seok; Pertsev, Nikolay A; Kohlstedt, Hermann

    2014-11-17

    Among recently discovered ferroelectricity-related phenomena, the tunnelling electroresistance (TER) effect in ferroelectric tunnel junctions (FTJs) has been attracting rapidly increasing attention owing to the emerging possibilities of non-volatile memory, logic and neuromorphic computing applications of these quantum nanostructures. Despite recent advances in experimental and theoretical studies of FTJs, many questions concerning their electrical behaviour still remain open. In particular, the role of ferroelectric/electrode interfaces and the separation of the ferroelectric-driven TER effect from electrochemical ('redox'-based) resistance-switching effects have to be clarified. Here we report the results of a comprehensive study of epitaxial junctions comprising BaTiO(3) barrier, La(0.7)Sr(0.3)MnO(3) bottom electrode and Au or Cu top electrodes. Our results demonstrate a giant electrode effect on the TER of these asymmetric FTJs. The revealed phenomena are attributed to the microscopic interfacial effect of ferroelectric origin, which is supported by the observation of redox-based resistance switching at much higher voltages.

  14. An Ultrathin Single Crystalline Relaxor Ferroelectric Integrated on a High Mobility Semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Moghadam, Reza M. [Department; Xiao, Zhiyong [Department; Ahmadi-Majlan, Kamyar [Department; Grimley, Everett D. [Department; Bowden, Mark [Environmental; amp, Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Ong, Phuong-Vu [Physical; amp, Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Chambers, Scott A. [Physical; amp, Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Lebeau, James M. [Department; Hong, Xia [Department; Sushko, Peter V. [Physical; amp, Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Ngai, Joseph H. [Department

    2017-09-13

    The epitaxial growth of multifunctional oxides on semiconductors has opened a pathway to introduce new functionalities to semiconductor device technologies. In particular, ferroelectric materials integrated on semiconductors could lead to low-power field-effect devices that can be used for logic or memory. Essential to realizing such field-effect devices is the development of ferroelectric metal-oxide-semiconductor (MOS) capacitors, in which the polarization of a ferroelectric gate is coupled to the surface potential of a semiconducting channel. Here we demonstrate that ferroelectric MOS capacitors can be realized using single crystalline SrZrxTi1-xO3 (x= 0.7) that has been epitaxially grown on Ge. We find that the ferroelectric properties of SrZrxTi1-xO3 are exceptionally robust, as gate layers as thin as 5 nm give rise to hysteretic capacitance-voltage characteristics that are 2 V in width. The development of ferroelectric MOS capacitors with gate thicknesses that are technologically relevant opens a pathway to realize scalable ferroelectric field-effect devices.

  15. Modeling and Implementation of HfO2-based Ferroelectric Tunnel Junctions

    Science.gov (United States)

    Pringle, Spencer Allen

    HfO2-based ferroelectric tunnel junctions (FTJs) represent a unique opportunity as both a next-generation digital non-volatile memory and as synapse devices in braininspired logic systems, owing to their higher reliability compared to filamentary resistive random-access memory (ReRAM) and higher speed and lower power consumption compared to competing devices, including phase-change memory (PCM) and state-of-the-art FTJ. Ferroelectrics are often easier to deposit and have simpler material structure than films for magnetic tunnel junctions (MTJs). Ferroelectric HfO2 also enables complementary metal-oxide-semiconductor (CMOS) compatibility, since lead zirconate titanate (PZT) and BaTiO3-based FTJs often are not. No other groups have yet demonstrated a HfO2-based FTJ (to best of the author's knowledge) or applied it to a suitable system. For such devices to be useful, system designers require models based on both theoretical physical analysis and experimental results of fabricated devices in order to confidently design control systems. Both the CMOS circuitry and FTJs must then be designed in layout and fabricated on the same die. This work includes modeling of proposed device structures using a custom python script, which calculates theoretical potential barrier heights as a function of material properties and corresponding current densities (ranging from 8x103 to 3x10-2 A/cm 2 with RHRS/RLRS ranging from 5x105 to 6, depending on ferroelectric thickness). These equations were then combined with polynomial fits of experimental timing data and implemented in a Verilog-A behavioral analog model in Cadence Virtuoso. The author proposes tristate CMOS control systems, and circuits, for implementation of FTJ devices as digital memory and presents simulated performance. Finally, a process flow for fabrication of FTJ devices with CMOS is presented. This work has therefore enabled the fabrication of FTJ devices at RIT and the continued investigation of them as applied to any

  16. Continuum damage model for ferroelectric materials and its application to multilayer actuators

    Science.gov (United States)

    Gellmann, Roman; Ricoeur, Andreas

    2016-05-01

    In this paper a micromechanical continuum damage model for ferroelectric materials is presented. As a constitutive law it is implemented into a finite element (FE) code. The model is based on micromechanical considerations of domain switching and its interaction with microcrack growth and coalescence. A FE analysis of a multilayer actuator is performed, showing the initiation of damage zones at the electrode tips during the poling process. Further, the influence of mechanical pre-stressing on damage evolution and actuating properties is investigated. The results provided in this work give useful information on the damage of advanced piezoelectric devices and their optimization.

  17. Hysteresis loop behaviors of ferroelectric thin films: A Monte Carlo simulation study

    Science.gov (United States)

    M. Bedoya-Hincapié, C.; H. Ortiz-Álvarez, H.; Restrepo-Parra, E.; J. Olaya-Flórez, J.; E. Alfonso, J.

    2015-11-01

    The ferroelectric response of bismuth titanate Bi4Ti3O12 (BIT) thin film is studied through a Monte Carlo simulation of hysteresis loops. The ferroelectric system is described by using a Diffour Hamiltonian with three terms: the electric field applied in the z direction, the nearest dipole-dipole interaction in the transversal (x-y) direction, and the nearest dipole-dipole interaction in the direction perpendicular to the thin film (the z axis). In the sample construction, we take into consideration the dipole orientations of the monoclinic and orthorhombic structures that can appear in BIT at low temperature in the ferroelectric state. The effects of temperature, stress, and the concentration of pinned dipole defects are assessed by using the hysteresis loops. The results indicate the changes in the hysteresis area with temperature and stress, and the asymmetric hysteresis loops exhibit evidence of the imprint failure mechanism with the emergence of pinned dipolar defects. The simulated shift in the hysteresis loops conforms to the experimental ferroelectric response. Project sponsored by the research departments of the Universidad Nacional de Colombia DIMA and DIB under Project 201010018227-“Crecimiento y caracterización eléctrica y estructural de películas delgadas de BixTiyOz producidas mediante Magnetrón Sputtering” and Project 12920-“Desarrollo teóricoexperimental de nanoestructuras basadas en Bismuto y materiales similares” and “Bisnano Project.”

  18. Why is the electrocaloric effect so small in ferroelectrics?

    Directory of Open Access Journals (Sweden)

    G. G. Guzmán-Verri

    2016-06-01

    Full Text Available Ferroelectrics are attractive candidate materials for environmentally friendly solid state refrigeration free of greenhouse gases. Their thermal response upon variations of external electric fields is largest in the vicinity of their phase transitions, which may occur near room temperature. The magnitude of the effect, however, is too small for useful cooling applications even when they are driven close to dielectric breakdown. Insight from microscopic theory is therefore needed to characterize materials and provide guiding principles to search for new ones with enhanced electrocaloric performance. Here, we derive from well-known microscopic models of ferroelectricity meaningful figures of merit for a wide class of ferroelectric materials. Such figures of merit provide insight into the relation between the strength of the effect and the characteristic interactions of ferroelectrics such as dipolar forces. We find that the long range nature of these interactions results in a small effect. A strategy is proposed to make it larger by shortening the correlation lengths of fluctuations of polarization. In addition, we bring into question other widely used but empirical figures of merit and facilitate understanding of the recently observed secondary broad peak in the electrocalorics of relaxor ferroelectrics.

  19. A prediction of rate-dependent behaviour in ferroelectric polycrystals

    International Nuclear Information System (INIS)

    Kim, Sang-Joo

    2007-01-01

    Rate-dependent behaviour of a polycrystalline ferroelectric material is predicted based on thermal activation theory and a representative volume element model. First, the behaviour of a ferroelectric single crystal is calculated from a recently proposed three-dimensional free energy model [S.J. Kim, S. Seelecke, Int. J. Solids Struct. 44 (2007) 1196-1209]. Then, from the calculated single crystal responses, poling behaviour of a ferroelectric polycrystal is obtained in three different ways, two representative volume element models and Gaussian integration method. It is found that a dodecahedron representative volume element consisting of 210 crystallites is the best choice among the three methods. Finally, the behaviour of a ferroelectric polycrystal under various electric and stress loads is calculated using the chosen RVE model. The calculated responses are compared qualitatively with experimental observations, and the effects of crystal orientation and polycrystallinity are discussed

  20. Ferroelectric and dielectric properties of Sr2-x(Na, K)xBi4Ti5O18 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Chen Qian; Xu Zhijun; Chu Ruiqing; Hao Jigong; Zhang Yanjie; Li Guorong; Yin Qingrui

    2010-01-01

    (Na, K)-doped Sr 2 Bi 4 Ti 5 O 18 (SBTi) bismuth layer structure ferroelectric ceramics were prepared by the solid-state reaction method. Pure bismuth-layered structural Sr 2-x (Na, K) x Bi 4 Ti 5 O 18 (x=0.1, 0.2, 0.3, and 0.4) ceramics with uniform grain size were obtained in this work. The effects of (Na, K)-doping on the dielectric, ferroelectric and piezoelectric properties of SBTi ceramics were investigated. Results showed that (Na, K)-doping caused the Curie temperature of SBTi ceramics to shift to higher temperature and enhanced the ferroelectric and piezoelectric properties. At x=0.2, the ceramics exhibited optimum properties with d 33 =20 pC/N, P r =10.3 μC/cm 2 , and T c =324 o C.

  1. Processing, microstructure and properties of grain-oriented ferroelectric ceramics

    International Nuclear Information System (INIS)

    Okazaki, K.; Igarashi, H.; Nagata, K.; Yamamoto, T.; Tashiro, S.

    1986-01-01

    Grain oriented ferroelectric ceramics such as PbBi/sub 2/Nb/sub 2/O/sub 9/, bismuth compound with layer structure, (PbLa)Nb/sub 2/O/sub 6/, tungsten-bronze structure and SbSI were prepared by an uni-axial hot-pressing, a double-stage hot-pressing and tape casting methods. Microstructures of them were examined by SEM and the prefered textures of the ceramics composed of thin plate and/or needle crystallites were ascertained. Grain orientation effects on electrical, piezoelectric, optical and mechanical properties are discussed

  2. Wake-up effects in Si-doped hafnium oxide ferroelectric thin films

    International Nuclear Information System (INIS)

    Zhou, Dayu; Xu, Jin; Li, Qing; Guan, Yan; Cao, Fei; Dong, Xianlin; Müller, Johannes; Schenk, Tony; Schröder, Uwe

    2013-01-01

    Hafnium oxide based ferroelectric thin films have shown potential as a promising alternative material for non-volatile memory applications. This work reports the switching stability of a Si-doped HfO 2 film under bipolar pulsed-field operation. High field cycling causes a “wake-up” in virgin “pinched” polarization hysteresis loops, demonstrated by an enhancement in remanent polarization and a shift of negative coercive voltage. The rate of wake-up is accelerated by either reducing the frequency or increasing the amplitude of the cycling field. We suggest de-pinning of domains due to reduction of the defect concentration at bottom electrode interface as origin of the wake-up

  3. Surface engineering of ferroelectric polymer for the enhanced electrical performance of organic transistor memory

    Science.gov (United States)

    Kim, Do-Kyung; Lee, Gyu-Jeong; Lee, Jae-Hyun; Kim, Min-Hoi; Bae, Jin-Hyuk

    2018-05-01

    We suggest a viable surface control method to improve the electrical properties of organic nonvolatile memory transistors. For viable surface control, the surface of the ferroelectric insulator in the memory field-effect transistors was modified using a smooth-contact-curing process. For the modification of the ferroelectric polymer, during the curing of the ferroelectric insulators, the smooth surface of a soft elastomer contacts intimately with the ferroelectric surface. This smooth-contact-curing process reduced the surface roughness of the ferroelectric insulator without degrading its ferroelectric properties. The reduced roughness of the ferroelectric insulator increases the mobility of the organic field-effect transistor by approximately eight times, which results in a high memory on–off ratio and a low-voltage reading operation.

  4. Crystal structure of the Ig1 domain of the neural cell adhesion molecule NCAM2 displays domain swapping

    DEFF Research Database (Denmark)

    Rasmussen, Kim Krighaar; Kulahin, Nikolaj; Kristensen, Ole

    2008-01-01

    The crystal structure of the first immunoglobulin (Ig1) domain of neural cell adhesion molecule 2 (NCAM2/OCAM/RNCAM) is presented at a resolution of 2.7 A. NCAM2 is a member of the immunoglobulin superfamily of cell adhesion molecules (IgCAMs). In the structure, two Ig domains interact by domain...

  5. High-performance solution-processed polymer ferroelectric field-effect transistors

    NARCIS (Netherlands)

    Naber, RCG; Tanase, C; Blom, PWM; Gelinck, GH; Marsman, AW; Touwslager, FJ; Setayesh, S; De Leeuw, DM; Naber, Ronald C.G.; Gelinck, Gerwin H.; Marsman, Albert W.; Touwslager, Fred J.

    We demonstrate a rewritable, non-volatile memory device with flexible plastic active layers deposited from solution. The memory device is a ferroelectric field-effect transistor (FeFET) made with a ferroelectric fluoropolymer and a bisalkoxy-substituted poly(p-phenylene vinylene) semiconductor

  6. Ferroelectric tunneling element and memory applications which utilize the tunneling element

    Science.gov (United States)

    Kalinin, Sergei V [Knoxville, TN; Christen, Hans M [Knoxville, TN; Baddorf, Arthur P [Knoxville, TN; Meunier, Vincent [Knoxville, TN; Lee, Ho Nyung [Oak Ridge, TN

    2010-07-20

    A tunneling element includes a thin film layer of ferroelectric material and a pair of dissimilar electrically-conductive layers disposed on opposite sides of the ferroelectric layer. Because of the dissimilarity in composition or construction between the electrically-conductive layers, the electron transport behavior of the electrically-conductive layers is polarization dependent when the tunneling element is below the Curie temperature of the layer of ferroelectric material. The element can be used as a basis of compact 1R type non-volatile random access memory (RAM). The advantages include extremely simple architecture, ultimate scalability and fast access times generic for all ferroelectric memories.

  7. Guest–host interaction in ferroelectric liquid crystal–nanoparticle

    Indian Academy of Sciences (India)

    Ferroelectric Cu-doped ZnO (Cu–ZnO) nanoparticles have been added to the pure ferroelectric liquid crystal (FLC) Felix 17/100. The nanoparticles are bigger in size as compared to FLC molecules; therefore, they distort the existing geometry of FLC matrix and set up an antiparallel correlation with the dipole moments of the ...

  8. Book of Abstracts, 1983 IEEE International Symposium on Applications of Ferroelectrics (ISAF).

    Science.gov (United States)

    1984-05-31

    1 MHz on MFS structure exhibit a hysteresis indicating a ferroelectric feild effect memory behaviour. The shift of the flat band voltage is consistent...surface. This has the effect that the phonon wave vector becomes discrete and the lattice spectrum no longer includes vibrations with the wave vectors

  9. Photoinduced domain structures in monocrystalline films of yttrium-iron garnets

    International Nuclear Information System (INIS)

    Doroshenko, R.A.; Vladimirov, I.V.; Setchenkov, M.S.

    1988-01-01

    Results of investigating the domain structure in Y 3 Fe 5 O 12 epitaxial films under polarized light effect are presented. The domain structure was observed using Faraday effect at 80 K, crystallographic directions were determined by X-ray method. The sample structure is shown to consist of macrodomains, which parallel boundaries are oriented on (011), (110), (101) and are reoriented under the light effect, therewith easiest magnetization axes are brought about perpendicular to vector E of the affecting light. When explaining such changes in domain structure elastic stresses and induced anisotropy of elastic nature must be taken accout of

  10. Magnetic and ferroelectric properties of Fe doped SrTiO{sub 3-{delta}} films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A Sendil; Suresh, P; Srinath, S [School of Physics, University of Hyderabad, Hyderabad, 500 046 (India); Kumar, M Mahesh; Post, M L [Institute for Chemical Process and Environmental Technology, National Research Council of Canada, Ottawa, ON, K1A 0R6 (Canada); Srikanth, H [Materials Physics Laboratory, Department of Physics, University of South Florida, Tampa, Florida, 33620 (United States); Sahner, Kathy; Moos, Ralf, E-mail: sssp@uohyd.ernet.i [Functional Materials, University of Bayreuth, 95447, Bayreuth (Germany)

    2010-01-01

    Recent interest in SrTiO{sub 3} stems from its wide applicability in microwave devices based on the tunable characteristics of dielectric constant in the microwave frequency range. It is obvious that for any such application, SrTiO{sub 3} should have a ferroelectric Curie temperature (T{sub C}) close to room temperature or higher. By inducing strains by chemical substitutions, it was possible to obtain T{sub C} as high as 200{sup 0}C in SrTiO{sub 3} modified with Fe{sup 4+}. Hysteresis loops obtained confirms the presence of ferroelectric domains. Two apparent transitions, one at {approx}200 {sup 0}C and another {approx}300 {sup 0}C were seen in {epsilon}', which are replicated as sharp drops in resistivity curves. These temperatures far exceed the T{sub C}s reported in the literature till now and could open new avenues for innumerable other applications for SrTiO{sub 3}. The magnetic properties of Fe doped SrTiO{sub 3} are also investigated. Low doping of Fe exhibits simple antiferromagnetic behaviour.

  11. All-polymer bistable resistive memory device based on nanoscale phase-separated PCBM-ferroelectric blends

    KAUST Repository

    Khan, Yasser

    2012-11-21

    All polymer nonvolatile bistable memory devices are fabricated from blends of ferroelectric poly(vinylidenefluoride-trifluoroethylene (P(VDF-TrFE)) and n-type semiconducting [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The nanoscale phase separated films consist of PCBM domains that extend from bottom to top electrode, surrounded by a ferroelectric P(VDF-TrFE) matrix. Highly conducting poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer electrodes are used to engineer band offsets at the interfaces. The devices display resistive switching behavior due to modulation of this injection barrier. With careful optimization of the solvent and processing conditions, it is possible to spin cast very smooth blend films (Rrms ≈ 7.94 nm) and with good reproducibility. The devices exhibit high Ion/I off ratios (≈3 × 103), low read voltages (≈5 V), excellent dielectric response at high frequencies (Ïμr ≈ 8.3 at 1 MHz), and excellent retention characteristics up to 10 000 s. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Displacement-type ferroelectric transition with magnetic Mn ions in perovskite Sr1-xBaxMnO3

    Science.gov (United States)

    Sakai, Hideaki; Fujioka, Jun; Fukuda, Tatsuo; Okuyama, Daisuke; Hashizume, Daisuke; Kagawa, Fumitaka; Nakao, Hironori; Murakami, Youich; Arima, Takahisa; Baron, Alfred Q. R.; Taguchi, Yasujiro; Tokura, Yoshinori

    2012-02-01

    Almost all the proper ferroelectrics with a perovskite structure discovered so far have no d-electrons in the off-center transition metal site, as exemplified by BaTiO3 and Pb(Zr,Ti)O3. This empirical d^0 rule is incompatible with the emergence of magnetism and has significantly restricted the variety of multiferroic materials. In this work, we have discovered a displacement-type ferroelectric transition originating from off-center Mn^4+ ions in antiferromagnetic Mott insulators Sr1-xBaxMnO3. As Ba concentration increases, the perovskite lattice shows the typical soft mode dynamics, and the ferroelectricity shows up for x .45. In addition to the large polarization and high transition temperature comparable to BaTiO3, we demonstrate that the magnetic order suppresses the ferroelectric lattice dilation by ˜70% and increases the soft-phonon energy by ˜50%, indicating gigantic magnetoelectric effects [1]. This work was supported by the FIRST program on ``Quantum Science on Strong Correlation''. [4pt] [1] H. Sakai et al., Phys. Rev. Lett. 107, 137601 (2011).

  13. Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric

    DEFF Research Database (Denmark)

    Walker, Julian; Simons, Hugh; Alikin, Denis O

    2016-01-01

    Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroe......Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb......)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its...... realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from 'dual' strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced...

  14. On bistable states retention in ferroelectric Langmuir-Blodgett films

    Science.gov (United States)

    Geivandov, A. R.; Palto, S. P.; Yudin, S. G.; Fridkin, V. M.; Blinov, L. M.; Ducharme, S.

    2003-08-01

    A new insight into the nature of ferroelectricity is emerging from the study of ultra-thin ferroelectric films prepared of poly(vinylidene fluoride with trifluoroethylene) copolymer using Langmuir-Blodgett (LB) technique. Unique properties of these films indicate the existence of two-dimensional ferroelectricity. The retention of two polarized states in ferroelectric polymer LB films is studied using nonlinear dielectric spectroscopy. The technique is based on phase sensitive measurements of nonlinear dielectric spectroscopy. The amplitude of the current response at the 2nd harmonic of the applied voltage is proportional to the magnitude of the remnant polarization, while its phase gives the sign. We have found that 10 - 20 mm thick LB films can show fast switching time and long retention of the two polarized states. Nevertheless, LB films show a pronounced asymmetry in switching to the opposite states. Possible mechanisms of such behavior are discussed.

  15. Switching Characteristics of Ferroelectric Transistor Inverters

    Science.gov (United States)

    Laws, Crystal; Mitchell, Coey; MacLeod, Todd C.; Ho, Fat D.

    2010-01-01

    This paper presents the switching characteristics of an inverter circuit using a ferroelectric field effect transistor, FeFET. The propagation delay time characteristics, phl and plh are presented along with the output voltage rise and fall times, rise and fall. The propagation delay is the time-delay between the V50% transitions of the input and output voltages. The rise and fall times are the times required for the output voltages to transition between the voltage levels V10% and V90%. Comparisons are made between the MOSFET inverter and the ferroelectric transistor inverter.

  16. High-accuracy determination for optical indicatrix rotation in ferroelectric DTGS

    OpenAIRE

    O.S.Kushnir; O.A.Bevz; O.G.Vlokh

    2000-01-01

    Optical indicatrix rotation in deuterated ferroelectric triglycine sulphate is studied with the high-accuracy null-polarimetric technique. The behaviour of the effect in ferroelectric phase is referred to quadratic spontaneous electrooptics.

  17. Phase fragility and mechatronic reliability for Pb(Mg1/3Nb2/3O3–PbTiO3 ferroelectric single crystals — A review

    Directory of Open Access Journals (Sweden)

    F. Fang

    2014-01-01

    Full Text Available Single crystals of (1-xPb(Mg1/3Nb2/3O3–xPbTiO3(PMN–xPT near their morphotropic phase boundaries (MPBs are under extensive investigations for their extraordinary high dielectric and piezoelectric behavior. Applications of those single crystals facilitated the breakthrough in ultrasonic transducer materials and devices. Ferroelectric materials are known to be fragile which often leads to various reliability failures in applications involving electric loadings. In a mechanical sense, the failure modes concern the fracture under an intensive electric field, and the fatigue crack propagation under an alternating electric field. In an electrical sense, the failure is exhibited by degenerated hysteresis loop by shrinking the remnant polarization and expanding the coercive field. All these modes degrade the performance for ferroelectric devices. As a departure from the tetragonal (T ferroelectric materials, exemplified by BaTiO3 and Pb(ZrTiO3, the domain structures of PMN–PT around the MPB are versatile and intricate, depending sensitively on the composition variation, orientation and previous loading history. In this review, the attention is mainly focused on three aspects. First, the phase fragility and multiphase coexistence are presented for both [100]- and [101]-oriented PMN–PT single crystals. Second, investigations on electric field-induced fatigue crack propagation are described, along with the orientation effect on the crack propagation behavior. Third, the inverse effects of the phase transition and fatigue crack growth on the polarization behavior, or the interaction between the mechanical and electrical degradations will be elucidated. The review aims for better understanding the underlying mechanism for the ultrahigh performance of the PMN–PT single crystals, to bridge the studies of ferroelectric materials from the mechanical and electrical senses, as well as to evaluate the reliability of PMN–PT single crystals under device

  18. The operational mechanism of ferroelectric-driven organic resistive switches

    NARCIS (Netherlands)

    Kemerink, M.; Asadi, K.; Blom, P.W.M.; Leeuw, D.M. de

    2012-01-01

    The availability of a reliable memory element is crucial for the fabrication of 'plastic' logic circuits. We use numerical simulations to show that the switching mechanism of ferroelectric-driven organic resistive switches is the stray field of the polarized ferroelectric phase. The stray field

  19. The operational mechanism of ferroelectric-driven organic resistive switches

    NARCIS (Netherlands)

    Kemerink, M.; Asadi, K. (Kamal); Blom, P.W.M.; Leeuw, de D.M.

    2012-01-01

    The availability of a reliable memory element is crucial for the fabrication of ‘plastic’ logic circuits. We use numerical simulations to show that the switching mechanism of ferroelectric-driven organic resistive switches is the stray field of the polarized ferroelectric phase. The stray field

  20. The operational mechanism of ferroelectric-driven organic resistive switches

    NARCIS (Netherlands)

    Kemerink, Martijn; Asadi, Kamal; Blom, Paul W. M.; de Leeuw, Dago M.

    The availability of a reliable memory element is crucial for the fabrication of 'plastic' logic circuits. We use numerical simulations to show that the switching mechanism of ferroelectric-driven organic resistive switches is the stray field of the polarized ferroelectric phase. The stray field