WorldWideScience

Sample records for ferrite-zinc ferrite spinel

  1. Hyperfine Interactions in Ferrites with Spinel Structure

    OpenAIRE

    Chlan, Vojtěch

    2013-01-01

    Title: Hyperfine Interactions in Ferrites with Spinel Structure Author: Vojtěch Chlan Faculty of Mathematics and Physics, Charles University in Prague Supervisor: Prof. RNDr. Helena Štěpánková, CSc. Abstract: Ferrite systems with spinel structure, manganese ferrite, lithium ferrite and magnetite, are studied experimentally by nuclear magnetic resonance (NMR) spectroscopy and from the first principles by electron structure calculations based on density functional theory (DFT). Manganese ferrit...

  2. Magnetic properties of nanostructured spinel ferrites and ...

    Indian Academy of Sciences (India)

    structured spinel ferrites such as Ni0.5Zn0.5Fe2O4 and Mn0.67Zn0.33Fe2O4 and also that of the nanocomposite Nd2Fe14B/-Fe permanent magnetic material. The increase in the magnetic transition temperature of Ni-Zn ferrite from 538 K in the ...

  3. Micromagnetic simulations of spinel ferrite particles

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Christine C., E-mail: ccdantas@iae.cta.b [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil); Gama, Adriana M., E-mail: adriana-gama@uol.com.b [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil)

    2010-10-15

    This paper presents the results of simulations of the magnetization field ac response (at 2-12 GHz) of various submicron ferrite particles (cylindrical dots). The ferrites in the present simulations have the spinel structure, expressed here by M{sub 1}-{sub n}Zn{sub n}Fe{sub 2}O{sub 4} (where M stands for a divalent metal), and the parameters chosen were the following: (a) for n=0: M={l_brace}Fe, Mn, Co, Ni, Mg, Cu {r_brace}; (b) for n=0.1: M = {l_brace}Fe, Mg{r_brace} (mixed ferrites). These runs represent full 3D micromagnetic (one-particle) ferrite simulations. We find evidences of confined spin waves in all simulations, as well as a complex behavior nearby the main resonance peak in the case of the M = {l_brace}Mg, Cu{r_brace} ferrites. A comparison of the n=0 and n=0.1 cases for fixed M reveals a significant change in the spectra in M = Mg ferrites, but only a minor change in the M=Fe case. An additional larger scale simulation of a 3 by 3 particle array was performed using similar conditions of the Fe{sub 3}O{sub 4} (magnetite; n=0, M = Fe) one-particle simulation. We find that the main resonance peak of the Fe{sub 3}O{sub 4} one-particle simulation is disfigured in the corresponding 3 by 3 particle simulation, indicating the extent to which dipolar interactions are able to affect the main resonance peak in that magnetic compound.

  4. Development and characterization of nickel–zinc spinel ferrite for ...

    Indian Academy of Sciences (India)

    This paper deals with the development and characterization of nickel–zinc spinel ferrite (Ni(1–) ZnFe2O4) for microwave absorption at 2.4 GHz (ISM band). The ferrite powder was prepared by dry attrition and sintering process. Complex permittivity and permeability of the prepared sample have been determined by ...

  5. Magnetic characterization of rare earth doped spinel ferrite

    Science.gov (United States)

    Abdellatif, M. H.; El-Komy, G. M.; Azab, A. A.

    2017-11-01

    Doping spinel structure with large rare earth ions can alter the physical properties of the lattice, which can be used for tuning the magnetic and electrical properties of the ferrite material. We investigated the effect of rare earth doping on the crystal properties such as magnetoimpedance. The X-ray and HRTEM data revealed that the strain increases with increasing the ionic radius of the rare-earth. The Study implemented three types of rare earth, namely Dy, Gd, and Sm. The rare earth ions are in the Spinel crystal of Mn-Cr ferrite. The magnetoimpedance showed all negative slope, with the Gd-doped Mn-Cr ferrite sample, have the giant magnetoimpedance up to 60% drop in impedance at electric field frequency 10 kHz. The magnetisation and remanence of the samples were correlated to the microstrain, in which the magnetisation and remanence of the rare earth doped Mn-Cr ferrite samples decrease as the microstrain increases.

  6. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    Wintec

    Nanocrystalline spinel ferrites by solid state reaction route. T K KUNDU* and S MISHRA. Department of Physics, Visva-Bharati, Santiniketan 731 235, India. Abstract. Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the ...

  7. Development and characterization of nickel–zinc spinel ferrite for ...

    Indian Academy of Sciences (India)

    Wintec

    Development and characterization of nickel–zinc spinel ferrite. 769. Figure 6. (a) Imaginary (εr) vs frequency, (b) real (εr) vs frequency, (c) |εr| vs frequency, (d) imaginary (μr) vs frequency, (e) real (μr) vs frequency and (f) |μr| vs frequency. Table 1. Ferrimagnetic resonance fre- quency for various values of δ. δ. Measured fr ...

  8. Cr(3+) substituted spinel ferrite nanoparticles with high coercivity.

    Science.gov (United States)

    Zhang, Wei; Zuo, Xudong; Zhang, Dongmei; Wu, Chengwei; Silva, S Ravi P

    2016-06-17

    The low coercivity of spinel ferrites is a major barrier that significantly limits their use in high density magnetic recording applications. By controlling the substituting content of Cr(3+), in this article we describe how magnetic CoCr x Fe2-x O4 (0 spinel structure of the nanoparticles with transmission electron microscopy (TEM) suggesting regular tetragonal morphology. The TEM indicated an edge length ranging from 15 nm to 150 nm, which increases monotonically with increasing Cr content. Raman analyses supported the proposed model on the formation mechanism of the nanoparticles, i.e. heterogeneous and homogeneous nucleation.

  9. Spinel cobalt ferrite by complexometric synthesis

    NARCIS (Netherlands)

    Pham Duc Thang, P.D.T.; Rijnders, Augustinus J.H.M.; Blank, David H.A.

    2005-01-01

    Magnetic fine particles of cobalt ferrite (CoFe2O4) have been synthesized using complexometric method in which ethylene diamine tetra acetic acid C10H16N2O8 (EDTA) acts as a complexing agent. The crystallographic structure, microstructure and magnetic properties of the synthesized powder were

  10. Chemisorption of cyanogen chloride by spinel ferrite magnetic nanoparticles.

    Science.gov (United States)

    Glover, T Grant; DeCoste, Jared B; Sabo, Daniel; Zhang, Z John

    2013-05-07

    Spinel ferrite magnetic nanoparticles, MnFe2O4, NiFe2O4, and CoFe2O4, were synthesized and used as gas-phase adsorbents for the removal of cyanogen chloride from dry air. Fixed-bed adsorption breakthrough experiments show adsorption wave behavior at the leading edge of the breakthrough curve that is not typical of physically adsorbed species. Fourier transform infrared spectroscopy (FTIR) results indicate that CK is reacting with the spinel ferrite surface and forming a carbamate species. The reaction is shown to be a function of the hydroxyl groups and adsorbed water on the surface of the particles as well as the metallic composition of the particles. The surface reaction decreases the remnant and saturation magnetism of the MnFe2O4 and CoFe2O4 particles by approximately 25%.

  11. Chemical and physical characterizations of spinel ferrite nanoparticles containing Nd and B elements.

    Science.gov (United States)

    Iwamoto, Takashi; Komorida, Yuki; Mito, Masaki; Takahara, Atsushi

    2010-05-15

    We first succeeded in synthesizing ferrite nanoparticles containing Nd and B elements by a chemical route using a polyol process. The lattice constants of the ferrite nanoparticles were equivalent to 8.39Å of the lattice constant for Fe(3)O(4) with the spinel structure in a bulk state independently of the size in diameter and composition (Fe:Nd:B). The size in diameter was actually dominated by the amount of ligands (oleic acid and oleylamine) coating the nanoparticles and easily tuned by changing refluxing-time under reaction. The spinel-structured ferrite nanoparticles containing Nd and B elements showed large coercivity as compared to Fe(3)O(4) nanoparticles with the spinel structure, which were prepared by the same chemical method. By doping Nd and B elements into the spinel structure of ferrite, magnetic anisotropy increased in comparison with Fe(3)O(4) nanoparticles. According to the analysis of magnetization curve using the modified Langevin function, the ferrite nanoparticles displayed the coexistence of superparamagnetic and antiferromagnetic phases. The ferrite nanoparticles containing Nd and B elements exhibited magnetic core/shell structure on the basis of various magnetic properties. The interface effect between the superparamagnetic core and antiferromagnetic shell might enhance the effective magnetic anisotropy of the ferrite nanoparticles containing Nd and B elements. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Synthesis and magnetic properties of tin spinel ferrites doped manganese

    Energy Technology Data Exchange (ETDEWEB)

    El Moussaoui, H., E-mail: elmoussaoui.hassan@gmail.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Mahfoud, T.; Habouti, S. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); El Maalam, K.; Ben Ali, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the high Energies, URAC 12, Departement of physique, B.P. 1014, Faculty of science, Mohammed V University, Rabat (Morocco); Hamedoun, M.; Mounkachi, O. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid – BP 63, 46000 Safi (Morocco); Hlil, E.K. [Institut Néel, CNRS-UJF, B.P. 166, 38042 Grenoble Cedex (France); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the high Energies, URAC 12, Departement of physique, B.P. 1014, Faculty of science, Mohammed V University, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2016-05-01

    In this work we report the synthesis, the microstructural characterization and the magnetic properties of tin spinel ferrites doped manganese (Sn{sub 1−x}Mn{sub x}Fe{sub 2}O{sub 4} with x=0.25, 0.5, 0.75, and 1) nanoparticles prepared by co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of Sn{sub 0.5}Mn{sub 0.5}Fe{sub 2}O{sub 4} has been investigated. The synthesized nanoparticle sizes have been controlled between 4 and 9 nm, with uniform spherical morphology as confirmed by transmission electron microscopy (TEM). All the samples prepared possess single domain magnetic. The nanoparticles of Sn{sub 0.5}Mn{sub 0.5}Fe{sub 2}O{sub 4} with 4 nm in diameter have a blocking temperature close to 100 K. In addition, the cation distribution obtained from the X-ray diffraction of this sample was confirmed by magnetic measurement. For the Sn{sub 1−x}Mn{sub x}Fe{sub 2}O{sub 4}; (0≤x≤1) samples, the magnetization and coercive fields increase when the augmentation of Mn content increases. For x=0.5, such parameters decrease when the calcination temperature increases. - Highlights: • We have studied the microstructural and the magnetic properties of Sn{sub 1-x}MnxFe{sub 2}O{sub 4}. • The nanoparticles of Sn{sub 0.5}Mn{sub 0.5}Fe{sub 2}O{sub 4} have a blocking temperature around 100 K. • The Ms and Hc increase with the augmentation of Mn content.

  13. Dielectric and impedance study of praseodymium substituted Mg-based spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Farid, Hafiz Muhammad Tahir, E-mail: tahirfaridbzu@gmail.com [Department of Physics, Bahauddin Zakariya, University Multan, 60800 (Pakistan); Ahmad, Ishtiaq; Ali, Irshad [Department of Physics, Bahauddin Zakariya, University Multan, 60800 (Pakistan); Ramay, Shahid M. [College of Science, Physics and Astronomy Department, King Saud University, P.O. Box 2455, 11451 Riyadh (Saudi Arabia); Mahmood, Asif [Chemical Engineering Department, College of Engineering, King Saud University, Riyadh (Saudi Arabia); Murtaza, G. [Centre for Advanced Studies in Physics, GC University, Lahore 5400 (Pakistan)

    2017-07-15

    Highlights: • Magnesium based spinel ferrites were successfully synthesized by sol-gel method. • Dielectric constant shows the normal spinel ferrites behavior. • The dc conductivity are found to decrease with increasing temperature. • The samples with low conductivity have high values of activation energy. • The Impedance decreases with increasing frequency of applied field. - Abstract: Spinel ferrites with nominal composition MgPr{sub y}Fe{sub 2−y}O{sub 4} (y = 0.00, 0.025, 0.05, 0.075, 0.10) were prepared by sol-gel method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The dielectric properties of all the samples as a function of frequency (1 MHz–3 GHz) were measured at room temperature. The dielectric constant and complex dielectric constant of these samples decreased with the increase of praseodymium concentration. In the present spinel ferrite, Cole–Cole plots were used to separate the grain and grain boundary’s effects. The substitution of praseodymium ions in Mg-based spinel ferrites leads to a remarkable rise of grain boundary’s resistance as compared to the grain’s resistance. As both AC conductivity and Cole–Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. AC activation energy was lower than dc activation energy. Temperature dependence normalized AC susceptibility of spinel ferrites reveals that MgFe{sub 2}O{sub 4} exhibits multi domain (MD) structure with high Curie temperature while on substitution of praseodymium, MD to SD transitions occurs. The low values of conductivity and low dielectric loss make these materials best candidate for high frequency application.

  14. Low dielectric loss in nano-Li-ferrite spinels prepared by sol–gel ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 39; Issue 1. Low dielectric loss in nano-Li-ferrite spinels prepared by sol–gel auto-combustion technique. Mamata Maisnam Nandeibam Nilima Maisnam Victory Sumitra Phanjoubam. Volume 39 Issue 1 February 2016 ...

  15. The effect of temperature and atmosphere on spinel phase formation of nano-manganese ferrite

    Directory of Open Access Journals (Sweden)

    B. Nasr

    2006-03-01

    Full Text Available  Phase formation of manganese ferrite prepared by co-precipitation method is studied at different annealing temperatures. It is shown that the spinel phase is formed by quenching only in inert gas. XRD patterns show that the background picks fall in intensity by increasing annealing temperature and the single phase is achieved by magnetic separation.

  16. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    Wintec

    ions essentially breaks up the ferrimagnetically active oxygen polyhedra. This created nanoscale regions of ferrites. Saturation magnetization and coercive field show a strong dependence on the size of the ferrite grains. Superparamagnetic behaviour is observed from the. Mössbauer spectra of nanostructured NiFe2O4, ...

  17. Observation and manipulation of magnetic domains in sol gel derived thin films of spinel ferrites

    Science.gov (United States)

    Datar, Ashwini A.; Mathe, Vikas L.

    2017-12-01

    Thin films of spinel ferrites, namely zinc substituted nickel, cobalt ferrite, and manganese substituted cobalt ferrite, were synthesized using sol-gel derived spin-coating techniques. The films were characterized using x-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy techniques for the analysis of structural, morphological and vibrational band transition properties, which confirm the spinel phase formation of the films. The magnetic force microscopy (MFM) technique was used to observe the magnetic domain structure present in the synthesized films. Further, the films were subjected to an external DC magnetic field of 2 kG to orient the magnetic domains and analyzed using an ex situ MFM technique.

  18. Electronic and optical properties of spinel zinc ferrite: ab initio hybrid functional calculations

    Science.gov (United States)

    Fritsch, Daniel

    2018-03-01

    Spinel ferrites in general show a rich interplay of structural, electronic, and magnetic properties. Here, we particularly focus on zinc ferrite (ZFO), which has been observed experimentally to crystallise in the cubic normal spinel structure. However, its magnetic ground state is still under dispute. In addition, some unusual magnetic properties in ZFO thin films or nanostructures have been explained by a possible partial cation inversion and a different magnetic interaction between the two cation sublattices of the spinel structure compared to the crystalline bulk material. Here, density functional theory has been applied to investigate the influence of different inversion degrees and magnetic couplings among the cation sublattices on the structural, electronic, magnetic, and optical properties. Effects of exchange and correlation have been modelled using the generalised gradient approximation (GGA) together with the Hubbard ‘+U’ parameter, and the more elaborate hybrid functional PBE0. While the GGA+U calculations yield an antiferromagnetically coupled normal spinel structure as the ground state, in the PBE0 calculations the ferromagnetically coupled normal spinel is energetically slightly favoured, and the hybrid functional calculations perform much better with respect to structural, electronic and optical properties.

  19. Development and characterization of nickel–zinc spinel ferrite for ...

    Indian Academy of Sciences (India)

    Wintec

    The measured parameters have been used to determine its wave absorption properties over a frequency range 2⋅1–2⋅6 GHz. Keywords. Ferrites; microwave absorbers; complex permeability. 1. Introduction. Microwave absorbers are very useful in many applications like radar cross-section reduction, EMI/EMC problems,.

  20. Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic andmagneto-transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengqiang; Potzger, K.; Xu, Qingyu; Kuepper, K.; Talut, G.; Marko, D.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.; Schmidt, H.

    2009-08-21

    In this paper we show that spinel ferrite nanocrystals (NiFe{sub 2}O{sub 4}, and CoFe{sub 2}O{sub 4}) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.

  1. Metal ferrite spinel energy storage devices and methods for making and using same

    Science.gov (United States)

    Weimer, Alan W.; Perkins, Christopher; Scheffe, Jonathan; George, Steven M.; Lichty, Paul

    2013-03-19

    1-100 nm metal ferrite spinel coatings are provided on substrates, preferably by using an atomic layer deposition process. The coatings are able to store energy such as solar energy, and to release that stored energy, via a redox reaction. The coating is first thermally or chemically reduced. The reduced coating is then oxidized in a second step to release energy and/or hydrogen, carbon monoxide or other reduced species.

  2. Chemical synthesis of nickel ferrite spinel designed as an insulating bilayer coating on ferromagnetic particles

    Czech Academy of Sciences Publication Activity Database

    Strečková, M.; Hadraba, Hynek; Bureš, R.; Fáberová, M.; Roupcová, Pavla; Kuběna, Ivo; Medvecký, L.; Girman, V.; Kollár, P.; Füzer, J.; Čižmár, E.

    2015-01-01

    Roč. 270, MAY (2015), s. 66-76 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GA14-25246S; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : soft magnetic composite * NiFe2O4 spinel ferrite * coating * precipitation method * focused ion beam Subject RIV: JG - Metallurgy Impact factor: 2.139, year: 2015

  3. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature

    Czech Academy of Sciences Publication Activity Database

    Sedlacik, M.; Pavlinek, V.; Peer, Petra; Filip, Petr

    2014-01-01

    Roč. 18, č. 43 (2014), s. 6919-6924 ISSN 1477-9226 R&D Projects: GA ČR GA202/09/1626 Grant - others:GA MŠk(CZ) ED2.1.00/03.0111 Institutional support: RVO:67985874 Keywords : spinel nanocrystalline cobalt ferrite * nanoparticles * magnetorheological effect Subject RIV: BK - Fluid Dynamics Impact factor: 4.197, year: 2014

  4. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature

    OpenAIRE

    Sedlačík, Michal; Pavlínek, Vladimír; Peer, Petra; Filip, Petr

    2014-01-01

    Magnetic nanoparticles of spinel nanocrystalline cobalt ferrite were synthesized via the sol-gel method and subsequent annealing. The influence of the annealing temperature on the structure, magnetic properties, and magnetorheological effect was investigated. The finite crystallite size of the particles, determined by X-ray diffraction and the particle size observed via transmission electron microscopy, increased with the annealing temperature. The magnetic properties observed via a vibrating...

  5. The role of praseodymium substituted ions on electrical and magnetic properties of Mg spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Farid, Muhammad Tahir, E-mail: tahirfaridbzu@gmail.com; Ahmad, Ishtiaq; Kanwal, Muddassara; Murtaza, Ghulam; Ali, Irshad; Khan, Sajjad Ahmad

    2017-04-15

    Spinel ferrites with composition MgPr{sub y}Fe{sub 2−y}O{sub 4} (y=0.0, 0.025, 0.05, 0.075, 0.10) were successfully synthesized using sol-gel auto-combustion technique. The structural prisoperties of a prepared sintered powder were characterized with the help of X-ray Diffraction (XRD) and then also by using Scanning electron microscopy (SEM). Electrical measurements demonstrate that resistivity and activation energy increases with the Praseodymium substitution while dc resistivity decreases with the rise of temperature showing the semiconductor nature of the synthesized ferrites. Remanence and the saturation magnetization (M{sub s}) decrease while coercivity (H{sub c}) also increases with the increase in praseodymium contents. Anisotropic constant is observed to exhibit similar behavior as H{sub C}. The above mentioned parameters suggest that the synthesized samples are favorable for microwave absorbing purposes. - Highlights: • Magnesium based spinel ferrites were successfully synthesized by sol-gel method. • The spinel phase has been observed in all samples. • The dc resistivity are found to increase with increasing Pr content • The samples with high resistivity have high values of activation energy. • The Ms Decreases with increasing Pr contents while Hc increases.

  6. Coexistence of Low Damping and Strong Magnetoelastic Coupling in Epitaxial Spinel Ferrite Thin Films.

    Science.gov (United States)

    Emori, Satoru; Gray, Benjamin A; Jeon, Hyung-Min; Peoples, Joseph; Schmitt, Maxwell; Mahalingam, Krishnamurthy; Hill, Madelyn; McConney, Michael E; Gray, Matthew T; Alaan, Urusa S; Bornstein, Alexander C; Shafer, Padraic; N'Diaye, Alpha T; Arenholz, Elke; Haugstad, Greg; Meng, Keng-Yuan; Yang, Fengyuan; Li, Dongyao; Mahat, Sushant; Cahill, David G; Dhagat, Pallavi; Jander, Albrecht; Sun, Nian X; Suzuki, Yuri; Howe, Brandon M

    2017-09-01

    Low-loss magnetization dynamics and strong magnetoelastic coupling are generally mutually exclusive properties due to opposing dependencies on spin-orbit interactions. So far, the lack of low-damping, magnetostrictive ferrite films has hindered the development of power-efficient magnetoelectric and acoustic spintronic devices. Here, magnetically soft epitaxial spinel NiZnAl-ferrite thin films with an unusually low Gilbert damping parameter (ferrite. At the same time, the coherently strained film structure suppresses extrinsic damping, enables soft magnetic behavior, and generates large easy-plane magnetoelastic anisotropy. These findings provide a foundation for a new class of low-loss, magnetoelastic thin film materials that are promising for spin-mechanical devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Magnetic property tuning of epitaxial spinel ferrite thin films by strain and composition modulation

    Science.gov (United States)

    Kang, Young-Min; Lee, Seung Han; Kim, Tae Cheol; Jeong, Jaeeun; Yang, Daejin; Han, Kyu-Sung; Kim, Dong Hun

    2017-10-01

    Epitaxial spinel ferrite CoFe2O4 and NiFe2O4 thin films and bilayers of NiFe2O4 and CoFe2O4 have been grown by pulsed laser deposition on (001)-oriented SrTiO3 and MgO substrates. Both the single layer thin films showed epitaxial growth on MgO substrates with out-of-plane magnetic easy axis, originating from the out-of-plane compressive strain and negative magnetostriction constant. However, films on SrTiO3 substrates exhibited a magnetic easy axis along the in-plane. Magnetic hysteresis loops showed intermediate shape between magnetically hard CoFe2O4 and magnetically soft NiFe2O4 without two-step switching. Interdiffusion between spinel phases was suppressed using a blocking layer of MgO.

  8. Enhanced strain sensitivity in magnetostrictive spinel ferrite Co1-xZnxFe2O4

    Science.gov (United States)

    Bhame, Shekhar D.; Joy, P. A.

    2018-02-01

    We report the magnetic and magnetoelastic properties of spinel oxide system Co1-xZnxFe2O4 (CZF series) where x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5. All the composition were prepared by conventional solid state synthesis method and exhibited pure spinel phase formation. The lattice parameters showed gradual increase indicating uniform distribution Zn ions in cobalt ferrite lattice. The magnetic properties such as saturation magnetization and coercive field were drastically affected with Zn substitution showing enhanced saturation magnetization and a sharp decrease in the coercivity. The room temperature magnetostrictive properties showed a promising 30% enhancement in the slope of magnetostriction curve for x = 0.2 composition and a reasonable magnetostrictive strain of 110 ppm indicating its suitability as a promising magnetostrictive material.

  9. Manganese and Zinc Spinel Ferrites Blended with Multi-Walled Carbon Nanotubes as Microwave Absorbing Materials

    Directory of Open Access Journals (Sweden)

    Ahmet Teber

    2017-01-01

    Full Text Available Magnetic and dielectric materials can be blended to enhance absorption properties at microwave frequencies, although the materials may have relatively weak attenuation capabilities by themselves. The specific goal of this work is to enhance microwave absorption properties of materials with interesting dielectric behavior by blending them with magnetic materials based on transition metals. The synthesized Mn1−xZnxFe2O4 (x = 0.0 and 1.0 spinel ferrite nanoparticles (MZF NPs were blended with commercial multi-walled carbon nanotubes (MWCNTs in various proportions with a binder matrix of paraffin. This simple and efficient process did not cause a significant variation in the energy states of MWCNTs. MZF NPs were synthesized with a citric acid assisted sol–gel method. Their electromagnetic characteristics and microwave absorption properties were investigated. These properties were derived from the microwave scattering parameters measured via the transmission line technique by using a vector network analyzer (VNA in conjunction with an X band waveguide system. The return loss (RL values of the samples were obtained from the electromagnetic constitutive parameters (permittivity and permeability. The results indicate that the minimum RL value and the bandwidth change significantly with the amount of ferrite material in the blend. These results encourage further development of MWCNTs blended with ferrite nanoparticles for broadband microwave applications.

  10. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature.

    Science.gov (United States)

    Sedlacik, Michal; Pavlinek, Vladimir; Peer, Petra; Filip, Petr

    2014-05-14

    Magnetic nanoparticles of spinel nanocrystalline cobalt ferrite were synthesized via the sol-gel method and subsequent annealing. The influence of the annealing temperature on the structure, magnetic properties, and magnetorheological effect was investigated. The finite crystallite size of the particles, determined by X-ray diffraction and the particle size observed via transmission electron microscopy, increased with the annealing temperature. The magnetic properties observed via a vibrating sample magnetometer showed that an increase in the annealing temperature leads to the increase in the magnetization saturation and, in contrast, a decrease in the coercivity. The effect of annealing on the magnetic properties of ferrite particles has been explained by the recrystallization process at high temperatures. This resulted in grain size growth and a decrease in an imposed stress relating to defects in the crystal lattice structure of the nanoparticles. The magnetorheological characteristics of suspensions of ferrite particles in silicone oil were measured using a rotational rheometer equipped with a magnetic field generator in both steady shear and small-strain oscillatory regimes. The magnetorheological performance expressed as a relative increase in the magnetoviscosity appeared to be significantly higher for suspensions of particles annealed at 1000 °C.

  11. Reduction of mixed oxide spinels: nickel ferrite and alumina doped nickel ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Allender, J.; De Jonghe, L. C.

    1976-01-01

    When oxide ceramics are used in a hydrogen environment at elevated temperatures they will be reduced at a rate which can depend on a variety of parameters. The presence of minor amounts of alloying elements, e.g., can significantly alter the reduction rate. Since practical oxide ceramics generally contain mixed oxides of two or more metals, an understanding of the reduction behavior of mixed oxides, as well as an understanding of the effects of minor alloying elements in this, is important as a guide to extending the usefulness of oxide ceramics, and may serve to help in selecting raw materials that contain elements beneficial in improving resistance to reduction. In this paper, how the hydrogen reduction of nickel ferrites at 1000/sup 0/C is affected by the presence of 3.5 cation mole % aluminum in solid solution is studied.

  12. Sonochemical synthesis of Gd3+doped CoFe2O4spinel ferrite nanoparticles and its physical properties.

    Science.gov (United States)

    Yadav, Raghvendra Singh; Kuřitka, Ivo; Vilcakova, Jarmila; Havlica, Jaromir; Kalina, Lukas; Urbánek, Pavel; Machovsky, Michal; Skoda, David; Masař, Milan; Holek, Martin

    2018-01-01

    In this work, a facile and green method for gadolinium doped cobalt ferrite (CoFe 2-x Gd x O 4 ; x=0.00, 0.05, 0.10, 0.15, 0.20) nanoparticles by using ultrasonic irradiation was reported. The impact of Gd 3+ substitution on the structural, magnetic, dielectric and electrical properties of cobalt ferrite nanoparticles was evaluated. The sonochemically synthesized spinel ferrite nanoparticles were characterized by X-ray Diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM). X-ray diffraction (XRD) study confirmed the formation of single phase spinel ferrite of CoFe 2-x Gd x O 4 nanoparticles. XRD results also revealed that ultrasonic irradiation seems to be favourable to achieve highly crystalline single crystal phase gadolinium doped cobalt ferrite nanoparticles without any post annealing process. Fourier Transform Infrared and Raman Spectra confirmed the formation of spinel ferrite crystal structure. X-ray photoelectron spectroscopy revealed the impact of Gd 3+ substitution in CoFe 2 O 4 nanoparticles on cation distribution at the tetrahedral and octahedral site in spinel ferrite crystal system. The electrical properties showed that the Gd 3+ doped cobalt ferrite (CoFe 2-x Gd x O 4 ; x=0.20) exhibit enhanced dielectric constant (277 at 100Hz) and ac conductivity (20.2×10 -9 S/cm at 100Hz). The modulus spectroscopy demonstrated the impact of Gd 3+ substitution in cobalt ferrite nanoparticles on grain boundary relaxation time, capacitance and resistance. Magnetic property measurement revealed that the coercivity decreases with Gd 3+ substitution from 234.32Oe (x=0.00) to 12.60Oe (x=0.05) and further increases from 12.60Oe (x=0.05) to 68.62Oe (x=0.20). Moreover, saturation magnetization decreases with Gd 3+ substitution from 40.19emu/g (x=0.00) to 21.58emu/g (x=0.20). This work demonstrates that the grain size and cation

  13. Optical and electrical properties of colloidal (spherical Au)-(spinel ferrite nanorod) heterostructures.

    Science.gov (United States)

    George, Chandramohan; Genovese, Alessandro; Qiao, Fen; Korobchevskaya, Kseniya; Comin, Alberto; Falqui, Andrea; Marras, Sergio; Roig, Anna; Zhang, Yang; Krahne, Roman; Manna, Liberato

    2011-11-01

    We report here a simple synthetic route to Au-Fe(x)O(y) heterostructures in which spinel ferrite (Fe(x)O(y)) grows as a nanorod on a spherical gold (Au) seed. The large red shift in the plasmon resonance in the heterostructures could be explained by a dielectric effect (although we could not entirely exclude a contribution due to electron transfer from Au to defect states at the Au-Fe(x)O(y) interface), while the magnetic properties of the Au-Fe(x)O(y) heterostructures were basically the same as those of the corresponding nanocrystals after Au leaching. In films of Au-Fe(x)O(y) heterostructures the electrical conductivity appeared to be mediated by the Au domains.

  14. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals.

    Science.gov (United States)

    Song, Qing; Zhang, Z John

    2004-05-19

    By combining nonhydrolytic reaction with seed-mediated growth, high-quality and monodisperse spinel cobalt ferrite, CoFe(2)O(4), nanocrystals can be synthesized with a highly controllable shape of nearly spherical or almost perfectly cubic. The shape of the nanocrystals can also be reversibly interchanged between spherical and cubic morphology through controlling nanocrystal growth rate. Furthermore, the magnetic studies show that the blocking temperature, saturation, and remanent magnetization of nanocrystals are solely determined by the size regardless the spherical or cubic shape. However, the shape of the nanocrystals is a dominating factor for the coercivity of nanocrystals due to the effect of surface anisotropy. Such magnetic nanocrystals with distinct shapes possess tremendous potentials in fundamental understanding of magnetism and in technological applications of magnetic nanocrystals for high-density information storage.

  15. Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Amani, Mohammad, E-mail: m_amani@sbu.ac.ir [Mechanical and Energy Engineering Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Amani, Pouria, E-mail: pouria.amani@ut.ac.ir [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Kasaeian, Alibakhsh, E-mail: akasa@ut.ac.ir [Department of Renewable Energies, Faculty of New Science & Technologies, University of Tehran, Tehran (Iran, Islamic Republic of); Mahian, Omid, E-mail: omid.mahian@mshdiau.ac.ir [Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Kasaeian, Fazel, E-mail: f.kasa92@student.sharif.edu [Faculty of Material Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Wongwises, Somchai, E-mail: somchai.won@kmutt.ac.th [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi (KMUTT), Bangmod, Bangkok (Thailand)

    2017-04-15

    In this paper, an experimental evaluation on the viscosity of water-based manganese ferrite nanofluid with and without magnetic field with 100, 200, 300, and 400 G intensities has been conducted. The Brookfield DV-I PRIME viscometer is implemented to measure the MnFe{sub 2}O{sub 4}/water nanofluid viscosity and to evaluate the influence of different volume concentrations (from 0.25% to 3%) and various temperatures (from 20 to 60 °C) on the viscosity. According to the measurements, viscosity incrementally increases with the augmentation of nanoparticles concentration while it remarkably decreases at higher temperatures under absence and attendance of magnetic field. The maximum viscosity ratio of 1.14 is achieved at 3 vol% of nanoparticles and 20 °C under no magnetic field, whereas it increments to maximum viscosity ratio of 1.75 at 3 vol% of nanoparticles and 40 °C under 400 G magnetic field. Furthermore, new correlation is proposed for determination of viscosity of MnFe{sub 2}O{sub 4}/water nanofluids in terms of magnetic field intensity, volume concentration and temperature. - Highlights: • Viscosity of spinel-type manganese ferrite nanofluids is measured. • Effect of a constant magnetic field on the viscosity is investigated. • A novel correlation is proposed for estimation of the measured viscosity.

  16. Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles

    International Nuclear Information System (INIS)

    Raut, Anil V.; Kurmude, D.V.; Shengule, D.R.; Jadhav, K.M.

    2015-01-01

    Highlights: • Co–Zn ferrite nanoparticles were examined before and after γ-irradiation. • Single phase cubic spinel structure of Co–Zn was confirmed by XRD data. • The grain size was reported in the range of 52–62 nm after γ-irradiation. • Ms, Hc, n B were reported to be increased after gamma irradiation. - Abstract: In this work, the structural and magnetic properties of Co 1−x Zn x Fe 2 O 4 (0.0 ≤ x ≤ 1.0) ferrite nanoparticles were studied before and after gamma irradiation. The as-synthesized samples of Co–Zn ferrite nanoparticles prepared by sol–gel auto-combustion technique were analysed by XRD which suggested the single phase; cubic spinel structure of the material. Crystal defects produced in the spinel lattice were studied before and after Co 60 γ-irradiation in a gamma cell with a dose rate of 0.1 Mrad/h in order to report the changes in structural and magnetic properties of the Co–Zn ferrite nanoparticles. The average crystallite size (t), lattice parameter (α) and other structural parameters of gamma-irradiated and un-irradiated Co 1−x Zn x Fe 2 O 4 spinel ferrite system was calculated from XRD data. The morphological characterizations were performed using scanning electron microscopy (SEM). The magnetic properties were measured using pulse field hysteresis loop tracer by applying magnetic field of 1000 Oe, and the analysis of data obtained revealed that the magnetic property such as saturation magnetization (Ms), coecivity (Hc), magneton number (n B ) etc. magnetic parameters were increased after irradiation

  17. Influence of Mn-Co Spinel Coating on Oxidation Behavior of Ferritic SS Alloys for SOFC Interconnect Applications

    DEFF Research Database (Denmark)

    Venkatachalam, Vinothini; Molin, Sebastian; Kiebach, Wolff-Ragnar

    2014-01-01

    ). The oxidation behavior of both the coated and bare alloy was evaluated at 800°C in air for 1000 h. The oxidation kinetics were investigated using weight gain and scale thickness measurements. The weight gain per unit surface area of the bare alloy exhibited parabolic oxidation behavior. The influence of Mn......-Co spinel coating on chromia scale formation and corrosion rate of different ferritic stainless steels is also elucidated....

  18. Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances.

    Science.gov (United States)

    Hu, Wei; Qin, Ni; Wu, Guangheng; Lin, Yanting; Li, Shuwei; Bao, Dinghua

    2012-09-12

    The opportunity of spinel ferrites in nonvolatile memory device applications has been demonstrated by the resistive switching performance characteristics of a Pt/NiFe(2)O(4)/Pt structure, such as low operating voltage, high device yield, long retention time (up to 10(5) s), and good endurance (up to 2.2 × 10(4) cycles). The dominant conduction mechanisms are Ohmic conduction in the low-resistance state and in the lower-voltage region of the high-resistance state and Schottky emission in the higher-voltage region of the high-resistance state. On the basis of measurements of the temperature dependence of the resistances and magnetic properties in different resistance states, we explain the physical mechanism of resistive switching of Pt/NiFe(2)O(4)/Pt devices using the model of formation and rupture of conducting filaments by considering the thermal effect of oxygen vacancies and changes in the valences of cations due to the redox effect.

  19. Synthesis and photo-electrochemical properties of spinel-ferrite-coated hematite for solar water splitting

    Science.gov (United States)

    Selvaraj, Seenivasan; Moon, Hee; Kim, Do-Heyoung

    2018-01-01

    Photo-electrochemical water splitting with hematite photo-anodes under solar irradiation has attracted considerable attention as regards the production of renewable hydrogen energy. However, many challenges remain unresolved, as the full contribution of the catalytic over-layers has not been fully realized. Herein, we incorporate uniform spinel nickel-ferrite over-layers in hematite photo-anodes to obtain an improved understanding of the associated intrinsic changes. We achieve a 1.5-mA/cm2 photo-current density at 1.23 VRHE (RHE: reversible hydrogen electrode) under one-sun illumination conditions, along with a negative shift of 200 mV in the onset potential, for NiFe2O4-coated Sn-doped hematite photo-anodes. Fundamental electrochemical analyses clearly show that the shift in the onset potential is predominantly due to the enhanced photo-voltage development inside the hematite, rather than being purely caused by the interfacial kinetics. These insights reveal a new direction for fundamental research on photo-anodes towards fabrication of more efficient photo-anode systems.

  20. Comparative studies on structural properties and antimicrobial potential of spinel ferrite nanoparticles synthesized using various methods

    Science.gov (United States)

    Baraliya, Jagdish D.; Rakhashiya, Purvi M.; Patel, Pooja P.; Thaker, Vrinda S.; Joshi, Hiren H.

    2017-05-01

    In this study, novel multifunctional magnetic iron-based nanoparticles (CoFe2O4) coated with silica, silica-DEG (diethylene glycol), PEG (polyethylene glycol) were synthesized using Auto Combustion Method (ACM), Co-precipitation Method (COPM), Citrate Precursor Method (CPM), Flash Combustion Method (FCM). These spinel ferrite nanoparticles also contain very high antibacterial properties to fulfill the requirements of a drug delivery system so that the antibiotic concentration could be minimized. A potential delivery system could be based on a ferromagnetic fluid. The effects of various preparation methods on the physical properties of the nanoparticles were examined. The nanoparticles were also tested against four human pathogenic bacteria (Gram negative E.coli, P. aeruginosa, Gram positive S. aureus, S. pyogenus) and two fungi (C. albicans, A.niger). It was revealed that a nanoparticle has strong antibacterial activity as compared to antifungal. Further, Gram positive bacteria are more affected than Gram negative bacteria. It was also clear that different methods of coating have great influence on the antimicrobial properties. It was observed that these nanoparticles have significantly different but potentially very high antimicrobial activities against the tested organisms than found elsewhere by other nanoparticles on the same organisms.

  1. Co-containing spinel ferrite thin-film perpendicular magnetic recording media with Mn-Zn ferrite backlayer

    OpenAIRE

    Yamamoto, Setsuo; Kuniki, Hirofumi; Kurisu, Hiroki; Matsuura, Mitsuru

    2003-01-01

    Co-containing ferrite thin-film/Mn-Zn ferrite thin-film double-layered perpendicular media were prepared using reactive ECR sputtering and magnetron sputtering methods, and their magnetic and structural properties and recording characteristics were studied. The Mn-Zn ferrite thin-film backlayer had saturation magnetization of 3.5 kG and coercivity of 60 Oe. Reproduced voltage for the Co-containing ferrite thin-film/Mn-Zn ferrite thin-film double-layered medium was about twice of that for the ...

  2. Sol-Gel Synthesized Magnetic MnFe2O4 Spinel Ferrite Nanoparticles as Novel Catalyst for Oxidative Degradation of Methyl Orange

    Directory of Open Access Journals (Sweden)

    Linfeng Zhang

    2013-01-01

    Full Text Available The MnFe2O4 spinel ferrite nanoparticles with sensitive magnetic response properties and high specific surface area were prepared from metal nitrates by the sol-gel process as catalysts for oxidative degradation of methyl orange (MO. The nanoparticles were characterized by X-ray powder diffraction (XRD, scanning electron microscopy (SEM, BET surface area analysis, H2-Temperature programmed reduction (H2-TPR, X-ray photoelectron spectra (XPS, and vibration sample magnetometer (VSM. The catalytic activity experimental results showed that the MnFe2O4 spinel ferrite nanoparticles possess very high MO degradation activity. It is expected that this kind of MnFe2O4 spinel ferrite nanoparticles has a potential application in water treatment fields due to its sensitive magnetic response properties and high catalytic activity.

  3. FERROMAGNETIC RESONANCE AND THE FARADAY EFFECT IN SOME FERRITES WITH A SPINEL AND GARNET STRUCTURE,

    Science.gov (United States)

    MAGNETIC MATERIALS, * MAGNETIC RESONANCE), (*MAGNETOOPTICS, MAGNETIC MATERIALS), FERRITES , GARNET, SINGLE CRYSTALS, ANISOTROPY, CHEMICAL COMPOUNDS, SUPERHIGH FREQUENCY, MAGNETIC FIELDS, POLARIZATION, USSR

  4. Structural, magnetic and electrical properties of nickel doped Mn-Zn spinel ferrite synthesized by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Jalaiah, K., E-mail: kjalu4u@gmail.com [Department of Physics, Andhra University, Visakhapatnam 530003 (India); Vijaya Babu, K. [Advanced Analytical Laboratory, Andhra University, Visakhapatnam 530003 (India)

    2017-02-01

    Manganese ferrites (MnFe{sub 2}O{sub 4}) have been of great interest for their remarkable and soft-magnetic properties (low coercivity, moderate saturation magnetization) accompanied by good chemical stability and mechanical hardness. X-ray diffraction analysis confirmed the presence of single phase cubic spinel ferrite with space group Fm3m for all prepared samples. Structural parameters such as lattice constant, crystallite size were calculated from the studies of X-ray diffraction. The morphological analysis of all the compounds is studied using scanning electron microscope. The magnetic properties were measured using electron spin resonance (ESR) and vibrating sample magnetometer (VSM). The results obtained showed the formation of manganese ferrites with an average particle size are in good agreement with previous results and displayed good magnetic properties. The dielectric and impedance properties are studied over a frequency range 20 Hz–1 MHz at room temperature. - Highlights: • We prepared Mn{sub 0.85}Zn{sub 0.15}Ni{sub x}Fe{sub 2}O{sub 4} (x=0.03, 0.06, 0.09, 0.12 and 0.15) nano-ferrite materials by using sol-gel method. • All the compounds characterized by XRD, SEM, VSM, ESR and dielectric studies. • We get lower coercivity values. • We get good results from ESR spectra.

  5. Study of electron transition energies between anions and cations in spinel ferrites using differential UV–vis absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Xue, L.C.; Wu, L.Q. [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); Li, S.Q. [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); School of Sciences, Hebei University of Science and Technology, Shijiazhuang City 050018 (China); Li, Z.Z. [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); Tang, G.D., E-mail: tanggd@mail.hebtu.edu.cn [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); Qi, W.H.; Ge, X.S.; Ding, L.L. [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China)

    2016-07-01

    It is very important to determine electron transition energies (E{sub tr}) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV–vis absorption spectra using the curve (αhν){sup 2} vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV–vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (E{sub tr}) between the anions and cations, Fe{sup 2+} and Fe{sup 3+} at the (A) and [B] sites and Ni{sup 2+} at the [B] sites for the (A)[B]{sub 2}O{sub 4} spinel ferrite samples Co{sub x}Ni{sub 0.7−x}Fe{sub 2.3}O{sub 4} (0.0≤x≤0.3), Cr{sub x}Ni{sub 0.7}Fe{sub 2.3−x}O{sub 4} (0.0≤x≤0.3) and Fe{sub 3}O{sub 4}. We suggest that the differential UV–vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  6. Bulk Single Crystal-Like Structural and Magnetic Characteristics of Epitaxial Spinel Ferrite Thin Films with Elimination of Antiphase Boundaries.

    Science.gov (United States)

    Singh, Amit V; Khodadadi, Behrouz; Mohammadi, Jamileh Beik; Keshavarz, Sahar; Mewes, Tim; Negi, Devendra Singh; Datta, Ranjan; Galazka, Zbigniew; Uecker, Reinhard; Gupta, Arunava

    2017-08-01

    Spinel ferrite NiFe 2 O 4 thin films have been grown on three isostructural substrates, MgAl 2 O 4 , MgGa 2 O 4 , and CoGa 2 O 4 using pulsed laser deposition. These substrates have lattice mismatches of 3.1%, 0.8%, and 0.2%, respectively, with NiFe 2 O 4 . As expected, the films grown on MgAl 2 O 4 substrate show the presence of the antiphase boundary defects. However, no antiphase boundaries (APBs) are observed for films grown on near-lattice-matched substrates MgGa 2 O 4 and CoGa 2 O 4 . This demonstrates that by using isostructural and lattice-matched substrates, the formation of APBs can be avoided in NiFe 2 O 4 thin films. Consequently, static and dynamic magnetic properties comparable with the bulk can be realized. Initial results indicate similar improvements in film quality and magnetic properties due to the elimination of APBs in other members of the spinel ferrite family, such as Fe 3 O 4 and CoFe 2 O 4 , which have similar crystallographic structure and lattice constants as NiFe 2 O 4 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides.

    Science.gov (United States)

    Lingamdinne, Lakshmi Prasanna; Choi, Yu-Lim; Kim, Im-Soon; Yang, Jae-Kyu; Koduru, Janardhan Reddy; Chang, Yoon-Young

    2017-03-15

    For the removal of uranium(VI) (U(VI)) and thorium(IV) (Th(IV)), graphene oxide based inverse spinel nickel ferrite (GONF) nanocomposite and reduced graphene oxide based inverse spinel nickel ferrite (rGONF) nanocomposite were prepared by co-precipitation of GO with nickel and iron salts in one pot. The spectral characterization analyses revealed that GONF and rGONF have a porous surface morphology with an average particle size of 41.41nm and 32.16nm, respectively. The magnetic property measurement system (MPMS) studies confirmed the formation of ferromagnetic GONF and superparamagnetic rGONF. The adsorption kinetics studies found that the pseudo-second-order kinetics was well tune to the U(VI) and Th(IV) adsorption. The results of adsorption isotherms showed that the adsorption of U(VI) and Th(IV) were due to the monolayer on homogeneous surface of the GONF and rGONF. The adsorptions of both U(VI) and Th(IV) were increased with increasing system temperature from 293 to 333±2K. The thermodynamic studies reveal that the U(VI) and Th(IV) adsorption onto GONF and rGONF was endothermic. GONF and rGONF, which could be separated by external magnetic field, were recycled and re-used for up to five cycles without any significant loss of adsorption capacity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties

    Science.gov (United States)

    Yadav, Raghvendra Singh; Havlica, Jaromir; Masilko, Jiri; Kalina, Lukas; Wasserbauer, Jaromir; Hajdúchová, Miroslava; Enev, Vojtěch; Kuřitka, Ivo; Kožáková, Zuzana

    2016-02-01

    Nd3+ doped cobalt ferrite nanoparticles have been synthesized by starch-assisted sol-gel auto-combustion method. The significant role played by Nd3+ added to cobalt ferrite in changing cation distribution and further in influencing structural and magnetic properties, was explored and reported. The crystal structure formation and crystallite size were studied from X-ray diffraction studies. The microstructural features were investigated by field emission scanning electron microscopy and transmission electron microscopy that demonstrates the nanocrystalline grain formation with spherical morphology. An infrared spectroscopy study shows the presence of two absorption bands related to tetrahedral and octahedral group complexes within the spinel ferrite lattice system. The change in Raman modes in synthesized ferrite system were observed with Nd3+ substitution, particle size and cation redistribution. The impact of Nd3+ on cation distribution of Co2+ and Fe3+ at octahedral and tetrahedral sites in spinel ferrite cobalt ferrite nanoparticles was investigated by X-ray photoelectron spectroscopy. Room temperature magnetization measurements showed that the saturation magnetization and coercivity increase with addition of Nd3+ substitution in cobalt ferrite.

  9. Influences of Cation Distribution of Zinc Substituted on Inverse Spinel Nickel Ferrite Nanoparticle for Superparamagnetic Approach

    Science.gov (United States)

    Ismail, Mukhlis M.; Jaber, Nasma A.

    Sol-gel method has been employed to prepare Ni-Zn ferrite with chemical formula Ni1‑xZnxFe2O4 where x= 0, 0.1, 0.2, 0.3, 0.4 and 0.5. The structural Ni-Zn ferrite was studied via the X-ray diffractometer (XRD) pattern. X-ray analysis showed that there is a small shift in peaks towards shorter angles which increases with the concentration of zinc. Experimental values of lattice constant was varied from 8.34 of Ni ferrite to 8.397nm for Ni-Zn ferrite. The crystallite size of Ni ferrite was 83nm which is decreasing with substituted Zn to it and became 43nm at 4x=0.5. Therefore, the superparamagnetic behavior appears with substitution of Zn to Ni ferrite. The saturation magnetization, remiensis, coersivity, magnetic moment and anisotropy constant were calculated according to hysteresis loop using the result of vibrating sample magnetometer (VSM). The effect of cation distribution appeared clearly through the saturation magnetization value which was 46.8emu/gm for nickel ferrite and increased to an optimum value (59.64emu/gm) at x=0.3.

  10. Use of magnetoplumbite and spinel ferrite seed layers for the growth of oriented Y ferrite thin films

    Czech Academy of Sciences Publication Activity Database

    Uhrecký, Róbert; Buršík, Josef; Soroka, Miroslav; Kužel, R.; Prokleška, J.

    2017-01-01

    Roč. 622, JAN (2017), s. 104-110 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GA14-18392S; GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Hexagonal ferrites * Seed layer * Thin films * Chemical solution deposition Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.879, year: 2016

  11. Adsorption of sulfur dioxide by CoFe2O4 spinel ferrite nanoparticles and corresponding changes in magnetism.

    Science.gov (United States)

    Glover, T Grant; Sabo, Daniel; Vaughan, Lisa A; Rossin, Joseph A; Zhang, Z John

    2012-04-03

    Adsorption of sulfur dioxide on 10 nm CoFe(2)O(4) spinel ferrite nanoparticles was examined. Adsorption loadings of sulfur dioxide at breakthrough conditions were determined to be approximately 0.62 mol/kg, which is significant given the 150 m(2)/g surface area of the nanoparticles. Adsorption proceeds through a chemisorption mechanism with sulfur dioxide forming a sulfate upon adsorption on the particle surface, which leads to a 23% decrease in the remnant magnetization, a 20% decrease in the saturation magnetization, and a 9% decrease in the coercivity of the magnetic nanoparticles. Adsorbent materials that provide a magnetic signal when adsorption occurs could have broad implications on adsorption-based separations.

  12. Comparison effects and electron spin resonance studies of α-Fe2O4 spinel type ferrite nanoparticles.

    Science.gov (United States)

    Bayrakdar, H; Yalçın, O; Cengiz, U; Özüm, S; Anigi, E; Topel, O

    2014-11-11

    α-Fe2O4 spinel type ferrite nanoparticles have been synthesized by cetyltrimethylammonium bromide (CTAB) and ethylenediaminetetraacetic acid (EDTA) assisted hydrothermal route by using NaOH solution. Electron spin resonance (ESR/EPR) measurements of α-Fe2O4 nanoparticles have been performed by a conventional x-band spectrometer at room temperature. The comparison effect of nanoparticles prepared by using CTAB and EDTA in different α-doping on the structural and morphological properties have been investigated in detail. The effect of EDTA-assisted synthesis for α-Fe2O4 nanoparticles are refined, and thus the spectroscopic g-factor are detected by using ESR signals. These samples can be considered as great benefits for magnetic recording media, electromagnetic and drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Lingamdinne, Lakshmi Prasanna; Choi, Yu-Lim [Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Kim, Im-Soon [Graduate School of Environmental Studies, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Yang, Jae-Kyu [Ingenium College of Liberal Arts, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Koduru, Janardhan Reddy, E-mail: reddyjchem@gmail.com [Graduate School of Environmental Studies, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Chang, Yoon-Young, E-mail: yychang@kw.ac.kr [Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (Korea, Republic of)

    2017-03-15

    Highlights: • Novel porous Ferromagnetic, GONF and Superparamagnetic, rGONF preparation. • The nanosize particles GONF (41.14 nm) and rGONF (32.16 nm) preparation. • Adsorption mechanism and modeling developments for radionuclides. • Zeta potential and surface site density of nanocomposites for comparison. - Abstract: For the removal of uranium(VI) (U(VI)) and thorium(IV) (Th(IV)), graphene oxide based inverse spinel nickel ferrite (GONF) nanocomposite and reduced graphene oxide based inverse spinel nickel ferrite (rGONF) nanocomposite were prepared by co-precipitation of GO with nickel and iron salts in one pot. The spectral characterization analyses revealed that GONF and rGONF have a porous surface morphology with an average particle size of 41.41 nm and 32.16 nm, respectively. The magnetic property measurement system (MPMS) studies confirmed the formation of ferromagnetic GONF and superparamagnetic rGONF. The adsorption kinetics studies found that the pseudo-second-order kinetics was well tune to the U(VI) and Th(IV) adsorption. The results of adsorption isotherms showed that the adsorption of U(VI) and Th(IV) were due to the monolayer on homogeneous surface of the GONF and rGONF. The adsorptions of both U(VI) and Th(IV) were increased with increasing system temperature from 293 to 333 ± 2 K. The thermodynamic studies reveal that the U(VI) and Th(IV) adsorption onto GONF and rGONF was endothermic. GONF and rGONF, which could be separated by external magnetic field, were recycled and re-used for up to five cycles without any significant loss of adsorption capacity.

  14. The influence of Ga doping on structural magnetic and dielectric properties of NiCr0.2Fe1.8O4 spinel ferrite

    Science.gov (United States)

    Ajmal, Muhammad; Islam, M. U.; Ashraf, Ghulam Abbas; Nazir, Muhammad Aamir; Ghouri, M. I.

    2017-12-01

    A series of spinel ferrites NiCr0.2GaxFe1.8-xO4 (x=0.00, 0.002, 0.04, 0.06, 0.08) was prepared by co precipitation technique. The influence of rare earth element Ga ions the structural dielectric and magnetic properties of NiCr0.2Fe1.8O4 ferrites was investigated. The X-ray diffraction confirmed the phase precipitated out was pure spinel phase with few traces of secondary phases. The crystallite size decreases and density increases with the increases of Ga contents. The magnetic moment, saturation magnetization and remanent magnetization increased with addition of Ga ions in spinel ferrite. The dielectric constant is described that it decreases more suddenly at low frequencies as compare at higher frequencies. The decrease in dielectric loss with frequency follows Deby's relaxation phenomena. Both the variation in tan loss and dielectric loss with frequency shows a similar. AC conductivity increases with the increases of frequency which inversely proportional to concentration of Ga3+ ions follows Jonscher law. These Gallium Chromium doped nickel ferrites are very helpful for high frequency switching devices.

  15. Low dielectric loss in nano-Li-ferrite spinels prepared by sol–gel ...

    Indian Academy of Sciences (India)

    size goes down to nanometric scale and these deviations widen the scope of applications [13,14]. Pure nano-Li- ... well-defined diffraction peaks, indicating single phase with spinel structure. It can be noted that the ... ing conditions are found to be close to the standard value. ∼8.329 Å [16], indicating that the synthesizing ...

  16. Magnetic, dielectric and microwave absorption properties of rare earth doped Ni–Co and Ni–Co–Zn spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Stergiou, Charalampos, E-mail: stergiou@cperi.certh.gr

    2017-03-15

    In this article we analyze the electromagnetic properties of rare earth substituted Ni–Co and Ni–Co–Zn cubic ferrites in the microwave band, along with their performance as microwave absorbing materials. Ceramic samples with compositions Ni{sub 0.5}Co{sub 0.5}Fe{sub 2−x}R{sub x}O{sub 4} and Ni{sub 0.25}Co{sub 0.5}Zn{sub 0.25}Fe{sub 2−x}R{sub x}O{sub 4} (R=Y and La, x=0, 0.02), fabricated with the solid state reaction method, were characterized with regard to the complex permeability μ*(f) and permittivity ε*(f) up to 20 GHz. The rare earth substitutions basically affect the microwave μ*(f) spectra and the dynamic magnetization mechanisms of domain wall motion and magnetization rotation. Key parameters for this effect are the reduced magnetocrystalline anisotropy and the created crystal inhomogeneities. Moreover, permittivity is increased with the Y and La content, due to the enhancement of the dielectric orientation polarization. Regarding the electromagnetic wave attenuation, the prepared ferrites exhibit narrowband return losses (RL) by virtue of the cancellation of multiple reflections, when their thickness equals an odd multiple of quarter-wavelength. Interestingly, the zero-reflection conditions are satisfied in the vicinity of the ferromagnetic resonance. As the rare earth doping shifts this mechanism to lower frequencies, loss peaks with RL>46 dB occur at 4.1 GHz and 5 GHz for Y and La-doped Ni–Co–Zn spinels, whereas peaks with RL>40 dB appear at 18 GHz and 19 GHz for Y and La-doped Ni–Co spinels, respectively. The presented experimental findings underline the potential of cubic ferrites with high Co concentration in the suppression of electromagnetic reflections well above the 1 GHz region. - Highlights: • Due to cation distribution, magnetic anisotropy drops in Y and La doped samples. • Microwave permeability spectra shift to lower frequencies with rare earth doping. • Permittivity is increased due to crystal modifications

  17. Low dielectric loss in nano-Li-ferrite spinels prepared by sol–gel ...

    Indian Academy of Sciences (India)

    constituent materials and also impurity pick-ups. The refrac- tory nature of the starting materials for preparation of Li- ferrites by the conventional ceramic technique requires high temperature to sinter to the desired [3–6]. Such high sinter- ing temperature and prolonged heating results in evaporation of constituent materials ...

  18. Strain effects in spinel ferrite thin films from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, D; Ederer, Claude, E-mail: fritschd@tcd.ie [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2011-04-01

    The inverse spinel ferrimagnets CoFe{sub 2}O{sub 4} (CFO) and NiFe{sub 2}O{sub 4} (NFO) are of interest for applications in spin-filter devices or as building blocks of artificial multiferroic heterostructures. Here we present density functional theory calculations of the structural and magnetic properties of CFO and NFO, with special emphasis on strain-induced changes in the magneto-crystalline anisotropy energy. We find that tensile (compressive) strain favours perpendicular (in-plane) anisotropy, in agreement with experimental observations. Our calculated magnetostriction constants {lambda}{sub 100} agree well with available experimental data. Furthermore, the influence of different cation arrangements used to represent the inverse spinel structure and the effect of different exchange-correlation functionals are analysed and discussed.

  19. Rietveld structure refinement and elastic properties of MgAlxCrxFe2-2xO4 spinel ferrites

    Science.gov (United States)

    Thummer, K. P.; Tanna, Ashish R.; Joshi, Hiren H.

    2017-05-01

    MgAlxCrxFe2-2xO4 (x = 0.1, 03 & 0.6) ferrites are synthesized by solid state reaction method. The Rietveld refinement of X-ray diffraction (XRD) data confirms the cubic spinel structure with Fd3m space group. The Fourier Transform Infrared Transmission Spectroscopy (FTIR) is employed to study elastic properties of present systems at 300K. The force constants for tetrahedral (A) and octahedral (B) sites of the spinel lattice are determined by infrared spectral and X-ray diffraction analysis. The elastic constants like bulk modulus, rigidity modulus, Young's modulus, Poisson's ratio and Debye temperature are determined. The vibrational frequency of both the interstitial sites increases as Al-Cr content increases hence the force constant and elastic moduli for all the samples are found to increase for the present ferrite system.

  20. Sol-Gel Synthesized Magnetic MnFe2O4 Spinel Ferrite Nanoparticles as Novel Catalyst for Oxidative Degradation of Methyl Orange

    OpenAIRE

    Zhang, Linfeng; Wu, Yuanxin

    2013-01-01

    The MnFe2O4 spinel ferrite nanoparticles with sensitive magnetic response properties and high specific surface area were prepared from metal nitrates by the sol-gel process as catalysts for oxidative degradation of methyl orange (MO). The nanoparticles were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), BET surface area analysis, H2-Temperature programmed reduction (H2-TPR), X-ray photoelectron spectra (XPS), and vibration sample magnetometer (VSM). The c...

  1. Structural and magnetic properties of Li-Cu mixed spinel ferrites

    Science.gov (United States)

    Manjura Hoque, S.; Samir Ullah, M.; Khan, F. A.; Hakim, M. A.; Saha, D. K.

    2011-04-01

    Li0.5-x/2CuxFe2.5-x/2O4 (where x=0.0-1.0) ferrites have been prepared by solid-state reaction. X-ray diffraction was used to study the structure of the above investigated ferrites at various sintering temperatures. Samples were sintered at 1000, 1100 and 1200 °C for 3 h in the atmosphere. For the sintering temperature of 1000 °C, Li0.5-x/2CuxFe2.5-x/2O4 undergoes cubic to tetragonal transformation for higher Cu content. However, for the sintering temperature of 1100 and 1200 °C, X-ray diffraction patterns are mainly characterized by fcc structure, though presence of tetragonal distortion was found by other temperature dependence of initial permeability curves. The lattice parameter, X-ray density and bulk density were calculated for different compositions. Curie temperature was measured from the temperature dependence of initial permeability curves. Curie temperatures of Li-Cu mixed ferrites were found to decrease with the increase in Cu2+ content due to the reduction of A-B interaction. As mentioned earlier, temperature dependence of initial permeability curves was characterized by tetragonal deformation for the samples containing higher at% of Cu. The complex initial permeability has been studied for different samples. The B-H loops were measured at constant frequency, f=1200 Hz, at room temperature (298 K). Coercivity and hysteresis loss were estimated for different Cu contents.

  2. Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites

    Science.gov (United States)

    Abraham, A. Godlyn; Manikandan, A.; Manikandan, E.; Vadivel, S.; Jaganathan, S. K.; Baykal, A.; Renganathan, P. Sri

    2018-04-01

    In this study, spinel magnesium cobalt ferrite (CoxMg1-xFe2O4: x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanocomposites were synthesized successfully by modified sol-gel combustion method. Magnesium nitrate, cobalt nitrate and iron nitrate were used as the source of divalent (Mg2+ and Co2+) and trivalent (Fe3+) cations, respectively and urea were used as the reducing (fuel) agent. The effects of cobalt ions on morphology, structural, optical, magnetic and photo-catalytic properties of spinel CoxMg1-xFe2O4 nanocomposites were investigated. Various characterization methods, including X-ray powder diffraction (XRD), high resolution scanning electron microscope (HR-SEM), transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transforms infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM) and photo-catalytic degradation (PCD) activity were used to study the phase purity, microstructure, particle size, elemental composition, functional group determination, band gap calculation, magnetic properties and degradation efficiency of nanoparticles, respectively. The observed results showed that the final products consists cubic spinel phase with sphere-like nanoparticles morphologies. Furthermore, spinel Co0.6Mg0.4Fe2O4 nanocomposite showed highest PCD efficiency (98.55%) than other composition of ferrite nanoparticles.

  3. Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, M.; Sabari Girisun, T.C., E-mail: sabarigirisun@bdu.ac.in

    2017-01-15

    Highlights: • Nanospindle and nanosphere ZnFe{sub 2}O{sub 4} were decorated upon GO by hydrothermal method. • All the samples show superparamagnetism with almost zero coercivity and remanence. • The observed nonlinearity arises due to effective two photon absorption process. • Tuning of NLO behavior with variation in amount of ZnFe{sub 2}O{sub 4} upon GO were achieved. • ZnFe{sub 2}O{sub 4}-(15 wt%)GO show higher NLO coefficients and superior limiting actions. - Abstract: Nonlinear absorption and optical limiting properties of ZnFe{sub 2}O{sub 4}-rGO magnetic nanostructures was investigated by the Z-scan technique using Q-switched Nd:YAG laser (5 ns, 532 nm, 10 Hz) as an excitation source. Excited state absorption was the dominant process responsible for the observed nonlinearity in ZnFe{sub 2}O{sub 4} decorated rGO which arises due to photo-generated charge carriers in the conduction band of zinc ferrite and increases in defects at the surface of rGO due to the incorporation of ZnFe{sub 2}O{sub 4}. The magnitude of the nonlinear absorption co-efficient was found to be in the order of 10{sup −10} m/W. A noteworthy enhancement in the third-order NLO properties in ZnFe{sub 2}O{sub 4}-(15 wt%) rGO with those of individual counter parts and well known graphene composites was reported. Role of induced defects states (sp{sup 3}) arising from the functionalization of rGO in the enhancement of NLO response was explained through Raman studies. Earlier incorporation and distribution of ZnFe{sub 2}O{sub 4} upon GO through one-step hydrothermal method was analyzed by XRD and FTIR. Formation of (nanospheres/nanospindles) ZnFe{sub 2}O{sub 4} along with reduction of graphene oxide was confirmed through TEM analysis. VSM studies showed zinc ferrite decorated rGO posseses superparamagnetic behavior. The tuning of nonlinear optical and magnetic behavior with variation in the content of spinel ferrites upon reduced graphene oxide provides an easy way to attain tunable

  4. Microwave-assisted nonaqueous sol-gel deposition of different spinel ferrites and barium titanate perovskite thin films.

    Science.gov (United States)

    Kubli, Martin; Luo, Li; Bilecka, Idalia; Niederberger, Markus

    2010-01-01

    Rapid and selective heating of solvents by microwave irradiation coupled to nonaqueous sol-gel chemistry makes it possible to simultaneously synthesize metal oxide nanoparticles within minutes and deposit them on substrates. The simple immersion of substrates, such as glass slides, in the reaction solution results after microwave heating in the deposition of homogeneous porous thin films whose thickness can be adjusted through the precursor concentration. Here we use such a microwave-assisted nonaqueous sol-gel process for the formation of various spinel ferrite MFe2O4 (M = Fe, Co, Mn, Ni) and BaTiO3 nanoparticles and their deposition as thin films. The approach offers high flexibility with respect to controlling the crystal size by adjusting the reaction time and/or temperature. Based on the example of CoFe2O4 nanoparticles, we show how the crystal size can carefully be tuned from 4 to 8 nm, resulting in a continuous change of the magnetic properties.

  5. Characterization of stoichiometric nanocrystalline spinel ferrites dispersed on porous silica aerogel.

    Science.gov (United States)

    Casula, M F; Concas, G; Congiu, F; Corrias, A; Loche, D; Marras, C; Spano, G

    2011-11-01

    Stoichiometric magnetic nanosized ferrites MFe2O4 (M = Mn, Co, Ni) were prepared in form of nearly spherical nanocrystals supported on a highly porous silica aerogel matrix, by a sol-gel procedure. X-ray diffraction and transmission electron microscopy indicate that these materials are made out of non-agglomerated ferrite nanocrystals having size in the 5-10 nm range. Investigation by Mössbauer Spectroscopy was used to gain insights on the superparamagnetic relaxation and on the inversion degree. Magnetic ordering at room temperature varies from superparamagnetic in the NiFe2O4 sample, highly blocked (approximately 70%) in the MnFe2O4 sample and nearly fully blocked in the CoFe2O4 sample. A fitting procedure of the Mössbauer data has been used in order to resolve the spectrum into the tetrahedral and octahedral components; in this way, an inversion degree of 0.68 (very close to bulk values) was obtained for 6 nm silica-supported CoFe2O4 nanocrystals.

  6. Magnetic moment directions and distributions of cations in Cr (Co substituted spinel ferrites Ni0.7Fe2.3O4

    Directory of Open Access Journals (Sweden)

    L. C. Xue

    2015-09-01

    Full Text Available Powder samples of the spinel ferrites MxNi0.7−xFe2.3O4 (M = Cr, Co and 0.0 ≤ x ≤ 0.3 and CrxNi0.7Fe2.3−xO4 (0.0 ≤ x ≤ 0.3 were synthesized using the chemical co-precipitation method. The XRD spectra confirmed that the samples had a single-phase cubic spinel structure. Magnetic measurements showed that the magnetic moments (μexp per formula both at 10 K and 300 K increased with Co substitution, while the values of μexp decreased with Cr substitution. Applying the assumption that the magnetic moments of Cr2+ and Cr3+ lie antiparallel to those of the divalent and trivalent Fe, Co, and Ni cations in the same sublattice of spinel ferrites, these interesting behaviors could be easily interpreted. The cation distributions of the three series of samples were estimated successfully by fitting the dependences of μexp, measured at 10 K, on the doping level x, using a quantum-mechanical potential barrier model earlier proposed by our group. The results obtained for the Cr cation distributions at the (A and [B] sites are very close to those obtained elsewhere using neutron diffraction.

  7. Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, Qayyum, E-mail: qayyumzafar@gmail.com; Azmer, Mohamad Izzat [University of Malaya, Department of Physics, Low Dimensional Materials Research Centre (Malaysia); Al-Sehemi, Abdullah G. [King Khalid University, Department of Chemistry, Faculty of Science (Saudi Arabia); Al-Assiri, Mohammad S. [Najran University, Department of Physics, Faculty of Sciences and Arts (Saudi Arabia); Kalam, Abul [King Khalid University, Department of Chemistry, Faculty of Science (Saudi Arabia); Sulaiman, Khaulah [University of Malaya, Department of Physics, Low Dimensional Materials Research Centre (Malaysia)

    2016-07-15

    In this study, we report the enhanced sensing parameters of previously reported TMBHPET-based humidity sensor. Significant improved sensing performance has been demonstrated by coupling of TMBHPET moisture sensing thin film with cobalt ferrite nanoparticles (synthesized by eco-benign ultrasonic method). The mean size of CoFe{sub 2}O{sub 4} nanoparticles has been estimated to be ~ 6.5 nm. It is assumed that the thin film of organic–ceramic hybrid matrix (TMBHPET:CoFe{sub 2}O{sub 4}) is a potential candidate for humidity sensing utility by virtue of its high specific surface area and porous surface morphology (as evident from TEM, FESEM, and AFM images). The hybrid suspension has been drop-cast onto the glass substrate with preliminary deposited coplanar aluminum electrodes separated by 40 µm distance. The influence of humidity on the capacitance of the hybrid humidity sensor (Al/TMBHPET:CoFe{sub 2}O{sub 4}/Al) has been investigated at three different frequencies of the AC applied voltage (V{sub rms} ~ 1 V): 100 Hz, 1 kHz, and 10 kHz. It has been observed that at 100 Hz, under a humidity of 99 % RH, the capacitance of the sensor increased by 2.61 times, with respect to 30 % RH condition. The proposed sensor exhibits significantly improved sensitivity ~560 fF/ % RH at 100 Hz, which is nearly 7.5 times as high as that of pristine TMBHPET-based humidity sensor. Further, the capacitive sensor exhibits improved dynamic range (30–99 % RH), small hysteresis (~2.3 %), and relatively quicker response and recovery times (~12 s, 14 s, respectively). It is assumed that the humidity response of the sensor is associated with the diffusion kinetics of water vapors and doping of the semiconductor nanocomposite by water molecules.

  8. Self-assembled mesoporous Co and Ni-ferrite spherical clusters consisting of spinel nanocrystals prepared using a template-free approach.

    Science.gov (United States)

    Yu, Byong Yong; Kwak, Seung-Yeop

    2011-10-21

    Based on a self-assembly strategy, spherical mesoporous cobalt and nickel ferrite nanocrystal clusters with a large surface area and narrow size distribution were successfully synthesized for the first time via a template-free solvothermal process in ethylene glycol and subsequent heat treatment. In this work, the mesopores in the ferrite clusters were derived mainly from interior voids between aggregated primary nanoparticles (with crystallite size of less than 7 nm) and disordered particle packing domains. The concentration of sodium acetate is shown herein to play a crucial role in the formation of mesoporous ferrite spherical clusters. These ferrite clusters were characterized in detail using wide-angle X-ray diffraction, thermogravimetric-differential thermal analysis, (57)Fe Mössbauer spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, standard and high-resolution transmission electron microscopy, and other techniques. The results confirmed the formation of both pure-phase ferrite clusters with highly crystalline spinel structure, uniform size (about 160 nm) and spherical morphology, and worm-like mesopore structures. The BET specific surface areas and mean pore sizes of the mesoporous Co and Ni-ferrite clusters were as high as 160 m(2) g(-1) and 182 m(2) g(-1), and 7.91 nm and 6.87 nm, respectively. A model for the formation of the spherical clusters in our system is proposed on the basis of the results. The magnetic properties of both samples were investigated at 300 K, and it was found that these materials are superparamagnetic. This journal is © The Royal Society of Chemistry 2011

  9. The comparative study of the structural and the electrical properties of the nano spinel ferrites prepared by the soft mehanochemical synthesis

    Directory of Open Access Journals (Sweden)

    Sekulić D.L.

    2014-01-01

    Full Text Available Nano spinel ferrites MFe2O4 (M=Ni, Mn, Zn were obtained by soft mechanochemical synthesis in a planetary ball mill. The appropriate mixture of oxide and hydroxide powders was used as initial compounds. All of this mixture of powders was mechanically activated, uniaxial pressed and sintered at 1100°C/2h. The phase composition of the powders and sintered samples were analyzed by XRD and Raman spectroscopy. Morphologies were examined by SEM. In this study, the AC-conductivity and DC-resistivity of sintered samples of MFe2O4 (M= Ni, Mn, Zn ferrites were measured at different frequencies and at room temperature. The values of the electrical conductivities show an increase with increasing temperature, which indicated the semiconducting behavior of the studied ferrites. The conduction phenomenon of the investigated samples could be explained on the basis of hopping model. The complex impedance spectroscopy analysis was used to study the effect of grain and grain boundary on the electrical properties of all three obtained ferrites [Projekat Ministarstva nauke Republike Srbije, br. III 45003

  10. Structural Rietveld refinement and vibrational study of MgCr{sub x}Fe{sub 2−x}O{sub 4} spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, K. [Laboratoire des Sciences et technique de l’Environnement et de la Valorisation, département de Génie des Procédés, Université de Mostaganem, Mostaganem (Algeria); Rais, A., E-mail: amrais@yahoo.com [Laboratoire des Sciences et technique de l’Environnement et de la Valorisation, département de Génie des Procédés, Université de Mostaganem, Mostaganem (Algeria); Taibi, K. [Laboratoire de Science et Génie des Matériaux, USTHB, Alger, Algéria (Algeria); Moreau, M.; Ouddane, B. [Laboratory of LASIR Spectrochemistry, University of Science and Technology, 59650 Villeneuve d’Ascq (France); Addou, A. [Laboratoire des Sciences et technique de l’Environnement et de la Valorisation, département de Génie des Procédés, Université de Mostaganem, Mostaganem (Algeria)

    2016-11-15

    Spinel ferrites with the general formula MgCr{sub x}Fe{sub 2−x}O{sub 4} (0≤x≤1) were synthesized by the standard ceramic technique and characterized by X-ray diffraction. The XRD patterns confirmed that the mixed ferrite samples are in the cubic spinel structure which is further validated by Rietveld refinement in the space group Fd3m. The crystal structure and cell parameters were refined by Rietveld analysis. The vibrational study was achieved using Fourier Transform-InfraRed (FT-IR) and Raman spectroscopy. From FT-IR band frequencies, the force constants K{sub t} and K{sub o} , for tetrahedral (A) and octahedral (B) sites respectively, have been calculated and discussed with the trend of bond lengths obtained from Rietveld refinement. For all compositions, Raman spectra revealed the five active modes showing the vibration of O{sup 2−} ions at both the A-site and B-site ions. The frequencies trend with chromium content of both FT-IR and Raman spectra showed a shift toward higher values for all modes.

  11. Study of structural phase transformation and hysteresis behavior of inverse-spinel α-ferrite nanoparticles synthesized by co-precipitation method

    Directory of Open Access Journals (Sweden)

    Shadab Dabagh

    2018-03-01

    Full Text Available Substitution of cobalt (Co2+ ions in cobalt ferrite (CoFe2O4 with copper (Cu2+ and aluminum (Al3+ ions allows variations in their electric and magnetic properties which can be optimized for specific applications. In this article, synthesis of inverse-spinel Co1−xCuxFe2−xAlxO4 (0.0 ≤ x ≤ 0.8 nanoparticles by substituting Cu2+ and Al3+ ions in CoFe2O4 via co-precipitation method is reported. By controlling copper and aluminum (Cu-Al substituent ratio, the magnetic moment and coercivity of synthesized cobalt ferrite nanoparticles is optimized. The role of substituents on the structure, particle size, morphology, and magnetic properties of nano-crystalline ferrite is investigated. The Co1−xCuxFe2−xAlxO4 (0.0 ≤ x≤ 0.8 nanoparticles with crystallite size in the range of 23.1–26.5 nm are observed, 26.5 nm for x = 0.0–23.1 nm for x = 0.8. The inverse-spinel structure of synthesized Co1−xCuxFe2−xAlxO4 (0.0 ≤ x ≤ 0.8 nano-particles is confirmed by characteristic vibrational bands at tetrahedral and octahedral sites using Fourier transform infrared spectroscopy. A decreases in coercive field and magnetic moment is observed as Cu-Al contents are increased (x = 0.0–0.8. The positive anisotropy of synthesized particles Co1−xCuxFe2−xAlxO4 (0.0 ≤ x ≤ 0.8 is obtained in the range 1.96 × 105 J/m3 for x = 0.0 to 0.29 × 105 J/m3 for x = 0.8. Keywords: Co-precipitation method, XRD, Spinel ferrites, VSM, TEM

  12. Study of structural phase transformation and hysteresis behavior of inverse-spinel α-ferrite nanoparticles synthesized by co-precipitation method

    Science.gov (United States)

    Dabagh, Shadab; Chaudhary, Kashif; Haider, Zuhaib; Ali, Jalil

    2018-03-01

    Substitution of cobalt (Co2+) ions in cobalt ferrite (CoFe2O4) with copper (Cu2+) and aluminum (Al3+) ions allows variations in their electric and magnetic properties which can be optimized for specific applications. In this article, synthesis of inverse-spinel Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) nanoparticles by substituting Cu2+ and Al3+ ions in CoFe2O4 via co-precipitation method is reported. By controlling copper and aluminum (Cu-Al) substituent ratio, the magnetic moment and coercivity of synthesized cobalt ferrite nanoparticles is optimized. The role of substituents on the structure, particle size, morphology, and magnetic properties of nano-crystalline ferrite is investigated. The Co1-xCuxFe2-xAlxO4 (0.0 ≤ x≤ 0.8) nanoparticles with crystallite size in the range of 23.1-26.5 nm are observed, 26.5 nm for x = 0.0-23.1 nm for x = 0.8. The inverse-spinel structure of synthesized Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) nano-particles is confirmed by characteristic vibrational bands at tetrahedral and octahedral sites using Fourier transform infrared spectroscopy. A decreases in coercive field and magnetic moment is observed as Cu-Al contents are increased (x = 0.0-0.8). The positive anisotropy of synthesized particles Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) is obtained in the range 1.96 × 105 J/m3 for x = 0.0 to 0.29 × 105 J/m3 for x = 0.8.

  13. Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method

    Science.gov (United States)

    Yadav, Raghvendra Singh; Kuřitka, Ivo; Vilcakova, Jarmila; Urbánek, Pavel; Machovsky, Michal; Masař, Milan; Holek, Martin

    2017-11-01

    This paper reports a honey-mediated green synthesis of ZnFe2O4 spinel ferrite nanoparticles and the effect of further annealing on structural, magnetic, optical, dielectric and electrical properties. X-ray diffraction study confirmed the well formation of ZnFe2O4 spinel ferrite crystal structure. Raman and Fourier transform infrared spectroscopy confirmed the formation of spinel ferrite crystal structure. The scanning electron microscopy study revealed the formation of spherical morphology at lower annealing temperature with achieved particle size 30-60 nm, whereas, octahedral like morphology at higher annealing temperature with particle size 50-400 nm. Magnetization measurements were carried out using a vibrating sample magnetometer at room temperature. The estimated magnetic parameter such as saturation magnetization (Ms), remanence (Mr) and coercivity (Hc) showed variation in value with nano-crystallite size. The highest saturation magnetization (Ms) was 12.81 emu/g for as-synthesized ZnFe2O4 spinel ferrite nanoparticles, whereas, highest coercivity (Hc) was 25.77 Oe for ZnFe2O4 nanoparticles annealed at high temperature 1000 °C. UV-Visible reflectance spectroscopy showed the band gap variation from 1.90 eV to 2.14 eV with the increase of annealing temperature. The dielectric constant and dielectric loss were decreased with frequency showing the normal behavior of spinel ferrites. The variation in conductivity is explained in terms of the variation in microstructure and variation in the mobility of charge carriers associated with the cation redistribution induced by annealing or grain size. The modulus and impedance spectroscopy study revealed the influence of bulk grain and the grain boundary on the electrical resistance and capacitance of ZnFe2O4 nanoparticles. The results presented in this work are helpful for green synthesis of well-controlled size, morphology and physical properties of ZnFe2O4 nanoparticles.

  14. Nanocrystalline spinel ferrite (MFe2O4, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route

    International Nuclear Information System (INIS)

    Phumying, Santi; Labuayai, Sarawuth; Swatsitang, Ekaphan; Amornkitbamrung, Vittaya; Maensiri, Santi

    2013-01-01

    Graphical abstract: This figure shows the specific magnetization curves of the as-prepared MFe 2 O 4 (M = Ni, Co, Mn, Mg, Zn) powders obtained from room temperature VSM measurement. These curves are typical for a soft magnetic material and indicate hysteresis ferromagnetism in the field ranges of ±500 Oe, ±1000 Oe, and ±2000 Oe for the CoFe 2 O 4 , MgFe 2 O 4 and MnFe 2 O 4 respectively, whereas the samples of NiFe 2 O 4 and ZnFe 2 O 4 show a superparamagnetic behavior. Highlights: ► Nanocrystalline MFe 2 O 4 powders were synthesized by a novel hydrothermal method. ► Metal acetylacetonates and aloe vera plant-extracted solution are used. ► This biosynthetic route is very simple and provides high-yield oxide nanomaterials. ► XRD and TEM results indicate that the prepared samples have only spinel structure. ► The maximum M s of 68.9 emu/g at 10 kOe were observed for the samples of MnFe 2 O 4 . - Abstract: Nanocrystalline spinel ferrite MFe 2 O 4 (M = Ni, Co, Mn, Mg, Zn) powders were synthesized by a novel hydrothermal method using Fe(acac) 3 , M(acac) 3 (M = Ni, Co, Mn, Mg, Zn) and aloe vera plant extracted solution. The X-ray diffraction and selected-area electron diffraction results indicate that the synthesized nanocrystalline have only spinel structure without the presence of other phase impurities. The crystal structure and morphology of the spinel ferrite powders, as revealed by TEM, show that the NiFe 2 O 4 and CoFe 2 O 4 samples contain nanoparticles, whereas the MnFe 2 O 4 and MgFe 2 O 4 samples consist of many nanoplatelets and nanoparticles. Interestingly, the ZnFe 2 O 4 sample contains plate-like structure of networked nanocrystalline particles. Room temperature magnetization results show a ferromagnetic behavior of the CoFe 2 O 4 , MnFe 2 O 4 and MgFe 2 O 4 samples, whereas the samples of NiFe 2 O 4 and ZnFe 2 O 4 exhibit a superparamagnetic behavior

  15. Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered Co1-xZnxFe2O4 (x = 0.0, 0.5) spinel ferrite nanoparticles

    Science.gov (United States)

    Singh Yadav, Raghvendra; Kuřitka, Ivo; Havlica, Jaromir; Hnatko, Miroslav; Alexander, Cigáň; Masilko, Jiri; Kalina, Lukas; Hajdúchová, Miroslava; Rusnak, Jaroslav; Enev, Vojtěch

    2018-02-01

    In this article, Co1-xZnxFe2O4 (x = 0.0 and 0.5) disc-shaped pellets were formed by hot-press sintering of nanoparticles at temperature 925 °C for 10 min in vacuum atmosphere under 30 MPa mechanical pressure. X-ray diffraction study confirmed the formation of spinel cubic ferrite structure of hot-press sintered spinel ferrite Co1-xZnxFe2O4 (x = 0.0 and 0.5) samples. The scanning electron microscopy image indicated that the growth and densification of smaller ferrite nanoparticles were higher than larger ferrite nanoparticles. Magnetic properties of sintered samples were investigated by the superconducting quantum interface device (SQUID) magnetometer at room temperature. The hot press sintered Co1-xZnxFe2O4 (x = 0.0 and 0.5) pellet samples exhibited magnetic properties dependent on the grain size of spinel ferrite particles. The maximum saturation magnetization 82.47 emu/g was obtained for Co0.5Zn0.5Fe2O4 hot press sintered sample of ball-milled ferrite particles. Further, the impact of grain size and density of sample on hardness, dielectric property and ac conductivity of hot-press sintered samples was investigated. In addition, the longitudinal wave velocity (Vl), transverse wave velocity (Vt), mean elastic wave velocity (Vm), bulk modulus (B), rigidity modulus (G), Young's modulus (E), Poisson ratio (σ) and Debye temperature (θD) were calculated. The elastic moduli of hot press sintered ferrite samples were corrected to zero porosity using Hosselman and Fulrath model.

  16. Spinel Ferrite Core-Shell Nanostructures by a Versatile Solvothermal Seed-Mediated Growth Approach and Study of Their Nanointerfaces

    Czech Academy of Sciences Publication Activity Database

    Angotzi, M. S.; Musinu, A.; Mameli, V.; Ardu, A.; Cara, C.; Nižňanský, Daniel; Xin, H. L.; Cannas, C.

    2017-01-01

    Roč. 11, č. 8 (2017), s. 7889-7900 ISSN 1936-0851 Institutional support: RVO:61388980 Keywords : ferrite * core-shell nanoparticles * cofe2o4/nife2o4 * EELS * EDX Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 13.942, year: 2016

  17. Influence of Bi(3+)-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite.

    Science.gov (United States)

    Gore, Shyam K; Mane, Rajaram S; Naushad, Mu; Jadhav, Santosh S; Zate, Manohar K; Alothman, Z A; Hui, Biz K N

    2015-04-14

    The influence of Bi(3+)-doping on the magnetic and Mössbauer properties of cobalt ferrite (CoFe2O4), wherein the Fe(3+) ions are replaced by the Bi(3+) ions to form CoBixFe2-xO4 ferrites, where x = 0.0, 0.05, 0.1, 0.15 or 0.2, has been investigated. The structural and morphological properties of undoped and doped ferrites, synthesized chemically through a self-igniting sol-gel method, are initially screened using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. The changes in magnetic moment of ions, their coupling with neighboring ions and cation exchange interactions are confirmed from the Mössbauer spectroscopy analysis. The effect of Bi(3+)-doping on the magnetic properties of CoFe2O4 ferrite is examined from the vibrating sample magnetometry spectra. Saturation magnetization and coercivity values are increased initially and then decreased, as result of Bi(3+)-doping. The obtained results with improved saturation magnetization (from 26.36 to 44.96 emu g(-1)), coercivity (from 1457 to 1863 Oe) and remanence magnetization (from 14.48 to 24.63 emu g(-1)) on 0.1-0.15 mol Bi(3+)-doping of CoBixFe2-xO4 demonstrate the usefulness for magnetic recording and memory devices.

  18. Effect of d-block element Co{sup 2+} substitution on structural, Mössbauer and dielectric properties of spinel copper ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Dar, M.A.; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com

    2017-08-15

    Highlights: • Tetragonal (I41/amd) to cubic (Fd3m) phase change is observed in Cu{sub 1−x}Co{sub x}Fe{sub 2}O{sub 4}. • Raman studies reveal 2 (5) optical active modes in CuFe{sub 2}O{sub 4} and 5 (5) at room temperature. • Transmission Mössbauer spectroscopy discerns two sets of six-line hyperfine patterns. • The dielectric constant increases is maximum for Co{sup 2+}x = 0.1 composition. • ac conductivity is constant (low frequency) and increases abruptly (high frequency). - Abstract: The present work focuses on the influence of replacement of d-block element Cu{sup 2+} ion by Co{sup 2+} in Cu-spinel ferrites [Cu{sub 1−x}Co{sub x}Fe{sub 2}O{sub 4} (x = 0.0, 0.1, 0.2, 0.4, 0.6, and 1.0)] on the structural, vibrational and dielectric properties as synthesized by Solid-state reaction route. A structural transition from tetragonal (space group I41/amd)) to cubic (space group Fd3m) phase is observed due to introduction of cobalt. Cubic spinel- type structure at room temperature of Cu{sub 1−x}Co{sub x}Fe{sub 2}O{sub 4} (0.4 ≤ x ≤ 1.0) is confirmed by Rietveld – refined X-ray powder diffraction patterns. Raman spectroscopic studies reveal 2 (5) optical active modes in CuFe{sub 2}O{sub 4} (CoFe{sub 2}O{sub 4}) at room temperature. Transmission Mössbauer spectroscopy of Cu{sub 1−x}Co{sub x}Fe{sub 2}O{sub 4} (x = 0.0, 0.2 and 0.6) shows two sets of six-line hyperfine patterns for all the three samples, indicating the presence of Fe in both A and B sites. Identification of sites is accomplished by evidence from hyperfine distribution and isomer-shift data. Dielectric constant and dielectric loss tangent measured in the frequency range from 1 KHz to 1 MHz at room temperature are found to be decreasing with the increase in frequency.

  19. As-grown enhancement of spinodal decomposition in spinel cobalt ferrite thin films by Dynamic Aurora pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Nipa [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Physics, Jagannath University, Dhaka 1100 (Bangladesh); Kawaguchi, Takahiko; Kumasaka, Wataru [Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Das, Harinarayan [Materials Science Division, Atomic Energy Centre, Dhaka 1000 (Bangladesh); Shinozaki, Kazuo [School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Sakamoto, Naonori [Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan); Suzuki, Hisao [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan); Wakiya, Naoki, E-mail: wakiya.naoki@shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan)

    2017-06-15

    Highlights: • As-grown enhancement of spinodal decomposition (SD) in Co{sub x}Fe{sub 3−x}O{sub 4} film is observed. • Magnetic-field-induced ion-impingement enhances SD without any post-annealing. • The enhancement of SD is independent of the lattice-mismatch-induced strain. • This approach can promote SD in any thin film without post-deposition annealing. - Abstract: Cobalt ferrite Co{sub x}Fe{sub 3−x}O{sub 4} thin films with composition within the miscibility gap were grown using Dynamic Aurora pulsed laser deposition. X-ray diffraction patterns reveal as-grown phase separation to Fe-rich and Co-rich phases with no post-deposition annealing. The interconnected surface microstructure of thin film shows that this phase separation occurs through spinodal decomposition enhanced by magnetic-field-induced ion-impingement. The lattice parameter variation of the thin films with the magnetic field indicates that the composition fluctuations can be enhanced further by increasing the magnetic field. Results show that spinodal decomposition enhancement by magnetic-field-induced ion-impingement is independent of the lattice-mismatch-induced strain. This approach can promote spinodal decomposition in any thin film with no post-deposition annealing process.

  20. Effects of surface coordination chemistry on the magnetic properties of MnFe(2)O(4) spinel ferrite nanoparticles.

    Science.gov (United States)

    Vestal, Christy R; Zhang, Z John

    2003-08-13

    To understand the influence of surface interactions upon the magnetic properties of magnetic nanoparticles, the surface of manganese ferrite, MnFe(2)O(4), nanoparticles have been systematically modified with a series of para-substituted benzoic acid ligands (HOOC-C(6)H(4)-R; R = H, CH(3), Cl, NO(2), OH) and substituted benzene ligands (Y-C(6)H(5), Y = COOH, SH, NH(2), OH, SO(3)H). The coercivity of magnetic nanoparticles decreases up to almost 50% upon the coordination of the ligands on the nanoparticle surface, whereas the saturation magnetization has increased. The percentage coercivity decrease of the modified nanoparticles with respect to the native nanoparticles strongly correlates with the crystal field splitting energy (CFSE) Delta evoked by the coordination ligands. The ligand inducing largest CFSE results in the strongest effect on the coercivity of magnetic nanoparticles. The change in magnetic properties of nanoparticles also correlates with the specific coordinating functional group bound onto the nanoparticle surface. The correlations suggest the decrease in spin-orbital couplings and surface anisotropy of magnetic nanoparticles due to the surface coordination. Such surface effects clearly show the dependence on the size of nanoparticles.

  1. Spinel-type manganese ferrite (MnFe2O4) microspheres: A novel affinity probe for selective and fast enrichment of phosphopeptides.

    Science.gov (United States)

    Long, Xing-Yu; Li, Jia-Yuan; Sheng, Dong; Lian, Hong-Zhen

    2017-05-01

    The spinel-type magnetic manganese ferrite (MnFe 2 O 4 ) microspheres synthesized by simple solvothermal method were used as a novel adsorbent for selective enrichment and effective isolation of phosphopeptides. The uniform MnFe 2 O 4 magnetic affinity microspheres (MAMSs) had a narrow particle size distribution between 250 and 260nm, and displayed superparamagnetism with a saturation magnetization value of 67.0emu/g. Comprehensively, the possible formation mechanism of MnFe 2 O 4 microspheres with ferric and manganous sources as dual precursors was elucidated by comparison with those of Fe 3 O 4 nanoparticles and MnOOH nanosheets respectively with either ferric or manganous source as single precursor. It was suggested that the spherical or sheet nanostructures could be achieved via secondary recrystallization or Ostwald ripening. The MnFe 2 O 4 MAMSs probe exhibited excellent dispersibility in aqueous solution, and rapid magnetic separation within 15s, as well as good reusability. More importantly, MnFe 2 O 4 was highly selective for phosphopeptides because of the strong coordination interaction between metal ions (Fe 3+ and Mn 2+ ) and phosphate groups of phosphopeptdies. This high specificity was demonstrated by effectively enriching phosphopeptides from digest mixture of β-casein and bovine serum albumin (BSA) with high content of non-phosphopeptides, and embodied further in phosphopeptides enrichment from non-fat milk digests and human serum. Consequently, the prepared MnFe 2 O 4 affinity materials are expected to possess great potential in phosphoproteome research. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Crystallographic and magnetic properties of the spinel-type ferrites ZnxCo1-xFe2O4 (0.0 ≤ x ≤ 0.75)

    Science.gov (United States)

    Azad, A. K.; Zakaria, A. K. M.; Jewel, Md. Yusuf; Khan, Abu Saeed; Yunus, S. M.; Kamal, I.; Datta, T. K.; Eriksson, S.-G.

    2015-05-01

    Ultrahigh frequencies (UHF) have applications in signal and power electronics to minimize product sizes, increase production quantity and lower manufacturing cost. In the UHF range of 300 MHz to 3 GHz, ferrimagnetic iron oxides (ferrites) are especially useful because they combine the properties of a magnetic material with that of an electrical insulator. Ferrites have much higher electrical resistivity than metallic ferromagnetic materials, resulting in minimization of the eddy current losses, and total penetration of the electromagnetic (EM) field. Hence ferrites are frequently applied as circuit elements, magnetic storage media like read/write heads, phase shifters and Faraday rotators. The electromagnetic properties of ferrites are affected by operating conditions such as field strength, temperature and frequency. The spinel system ZnxCo1-xFe2O4 (x=0.0, 0.25, 0.50 and 0.75) has been prepared by the standard solid state sintering method. X-ray and neutron powder diffraction measurements were performed at room temperature. Neutron diffraction data analysis confirms the cubic symmetry corresponding to the space group Fd3m. The distribution of three cations Zn2+, Co2+ and Fe3+ over the spinel lattice and other crystallographic parameters like lattice constant, oxygen position parameter, overall temperature factor and occupancies of different ions in different lattice sites for the samples have been determined from the analysis of neutron diffraction data. The lattice constant increases with increasing Zn content in the system. The magnetic structure was found to be ferrimagnetic for the samples with x≤0.50. Magnetization measurements show that with the increase of Zn content in the system the value of saturation magnetization first increases and then decreases. The variation of the magnetic moment with Zn substitution has been discussed in terms of the distribution of magnetic and non-magnetic ions over the A and B sub-lattices and their exchange coupling.

  3. Síntese e caracterização de espinélios à base de ferritas com gelatina como agente direcionador Synthesis and characterization of ferrite-base spinels with gelatin as directing agent

    Directory of Open Access Journals (Sweden)

    A. F. Costa

    2011-09-01

    Full Text Available As ferritas com estrutura tipo espinélio compreendem um grupo de materiais magnéticos muito bem estabelecidos. Contudo, melhoramentos e inovações continuam acontecendo visando novas aplicações e otimização das técnicas de preparação. Dentre os materiais com estrutura espinélio, as ferritas se destacam por possuírem ampla importância tecnológica na área de materiais, com aplicabilidades em sensores de umidade e de oxigênio, materiais de microondas, pigmentos, materiais magnéticos e elétricos, catálise de hidrogenação, filmes finos, revestimentos cerâmicos, dentre outros. Neste trabalho espinélios tipo CuFe2O4 e CuFeCr2O4 foram sintetizadas usando gelatina como agente direcionador, com a finalidade de produzir partículas nanométricas e homogêneas através de um método simples, rápido e economicamente viável. Os pós foram caracterizados por difração de raios X, espectroscopia de absorção no infravermelho e microscopia eletrônica de varredura. Os resultados confirmaram a viabilidade da rota de síntese utilizada.The ferrites with spinel type structure comprise a group of magnetic materials very well established. However, improvements and innovations are still happening seeking new applications and optimization of preparation techniques. Among the materials with spinel structure, the ferrite stand out because they have a broad technological importance in the area of materials, with applications in humidity and oxygen sensors, microwave materials, pigments, magnetic materials and electrical, catalytic hydrogenation, thin films ceramic tiles, among others. In this work spinel-type CuFe2O4 and CuFeCr2O4 were synthesized using gelatin as directing agent with the purpose of producing nanosized homogeneous particles through a simple, fast and affordable method. The ferrites were characterized by thermal analysis, X-ray diffraction, infrared spectroscopy and scanning electron microscopy. The results confirmed the

  4. Nanocrystalline spinel ferrite (MFe{sub 2}O{sub 4}, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Phumying, Santi; Labuayai, Sarawuth; Swatsitang, Ekaphan; Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand); Maensiri, Santi, E-mail: santimaensiri@gmail.com [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand)

    2013-06-01

    Graphical abstract: This figure shows the specific magnetization curves of the as-prepared MFe{sub 2}O{sub 4} (M = Ni, Co, Mn, Mg, Zn) powders obtained from room temperature VSM measurement. These curves are typical for a soft magnetic material and indicate hysteresis ferromagnetism in the field ranges of ±500 Oe, ±1000 Oe, and ±2000 Oe for the CoFe{sub 2}O{sub 4}, MgFe{sub 2}O{sub 4} and MnFe{sub 2}O{sub 4} respectively, whereas the samples of NiFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} show a superparamagnetic behavior. Highlights: ► Nanocrystalline MFe{sub 2}O{sub 4} powders were synthesized by a novel hydrothermal method. ► Metal acetylacetonates and aloe vera plant-extracted solution are used. ► This biosynthetic route is very simple and provides high-yield oxide nanomaterials. ► XRD and TEM results indicate that the prepared samples have only spinel structure. ► The maximum M{sub s} of 68.9 emu/g at 10 kOe were observed for the samples of MnFe{sub 2}O{sub 4}. - Abstract: Nanocrystalline spinel ferrite MFe{sub 2}O{sub 4} (M = Ni, Co, Mn, Mg, Zn) powders were synthesized by a novel hydrothermal method using Fe(acac){sub 3}, M(acac){sub 3} (M = Ni, Co, Mn, Mg, Zn) and aloe vera plant extracted solution. The X-ray diffraction and selected-area electron diffraction results indicate that the synthesized nanocrystalline have only spinel structure without the presence of other phase impurities. The crystal structure and morphology of the spinel ferrite powders, as revealed by TEM, show that the NiFe{sub 2}O{sub 4} and CoFe{sub 2}O{sub 4} samples contain nanoparticles, whereas the MnFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4} samples consist of many nanoplatelets and nanoparticles. Interestingly, the ZnFe{sub 2}O{sub 4} sample contains plate-like structure of networked nanocrystalline particles. Room temperature magnetization results show a ferromagnetic behavior of the CoFe{sub 2}O{sub 4}, MnFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4} samples, whereas the

  5. Investigations on microstructure, electrical and magnetic properties of copper spinel ferrite with WO3 addition for applications in the humidity sensors

    Science.gov (United States)

    Tudorache, Florin

    2018-04-01

    In the present study we report the structural, electrical, magnetic and humidity characteristics of copper ferrite with different percent on tungsten trioxide addition. The aim of this study was to obtain more stable and sensitive active materials for humidity sensors. In order to highlight the influence of tungsten on the structural, electrical and magnetic properties, the ferrite samples were fabricated via sol-gel self-combustion method and sintered for 30 min at 1000 °C with percent between 0 and 20% tungsten trioxide additions. The X-ray diffraction investigations showed the copper ferrite phase composition. The scanning electron microscopy revealed the influence of the substitution on characteristics of the crystallites and the profilometry showed the surface topography of samples. The investigation was focused on the variation of permittivity and electrical conductivity, in relation with tungsten trioxide addition, frequency and humidity. We have also, investigated the relevant magnetic characteristics of the copper ferrite material by highlighting the influence of tungsten trioxide addition on to Curie temperature and the permeability frequency characteristics. The data suggests that the copper ferrite with tungsten trioxide addition can be used as active material for humidity sensors.

  6. Barium ferrite nanoparticles prepared by self-propagating low ...

    Indian Academy of Sciences (India)

    Administrator

    temperature combustion method using ... talline barium ferrite. Keywords. Barium ferrite; self-propagating combustion method; magnetic property; X-ray diffraction; morphology. 1. Introduction .... known that γ-Fe2O3 is a cubic spinel, whose chemical.

  7. The Formation of Lithiated Ti-Doped {alpha}-Fe{sub 2}O{sub 3} Nanocrystalline Particles by Mechanical Milling of Ti-Doped Lithium Spinel Ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Widatallah, H. M., E-mail: hisham@ictp.trieste.it [Khartoum University, Department of Physics (Sudan); Gismelseed, A. M.; Bouziane, K. [Sultan Qaboos University, Department of Physics (Oman); Berry, F. J. [Open University, Department of Chemistry (United Kingdom); Al Rawas, A. D.; Al-Omari, I. A.; Yousif, A. A.; Elzain, M. E. [Sultan Qaboos University, Department of Physics (Oman)

    2004-12-15

    The milling of spinel-related Ti-doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} for different times is studied with XRD, Moessbauer spectroscopy and magnetic measurements. Milling converts the material to Li-Ti-doped {alpha}-Fe{sub 2}O{sub 3} nanocrystalline particles via an intermediate {gamma}-LiFeO{sub 2}-related phase. The role played by the dopant Ti-ion in the process is emphasized.

  8. Magneto-resistive coefficient enhancement observed around Verwey-like transition on spinel ferrites XFe{sub 2}O{sub 4} (X = Mn, Zn)

    Energy Technology Data Exchange (ETDEWEB)

    López Maldonado, K. L., E-mail: liliana.lopez.maldonado@gmail.com; Vazquez Zubiate, L.; Elizalde Galindo, J. T. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez (Mexico); Presa, P. de la [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), P.O. Box 155, 28230 Las Rozas (Spain); Departamento de Física de Materiales, Univ. Complutense de Madrid, Madrid (Spain); Matutes Aquino, J. A. [Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, 31109 Chihuahua (Mexico)

    2014-05-07

    Manganese and Zinc ferrites were prepared by solid state reaction. The resulting powders were pressed into pellets and heat treated at 1100 °C. The samples were characterized by using X-ray diffraction, pure phases of zinc ferrite (ZnFe{sub 2}O{sub 4}) and manganese ferrite (MnFe{sub 2}O{sub 4}) were obtained. Scanning electron microscopy images showed a good contact between particles. A drop of electrical resistance was found in both samples, MnFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4}, with values going from 2750 to 130 Ω and from 1100 to 55 Ω, respectively. Transition temperatures were determined to be T{sub V} = 225 K for MnFe{sub 2}O{sub 4} and T{sub V} = 130 K for ZnFe{sub 2}O{sub 4}. Magnetoresistance measurements were carried out in the temperature range where R showed the transition, defined as the Verwey-like transition temperature range, ΔT{sub V}. No magnetoresistive effect was observed out of it. The magnetoresistive coefficient (MRC) observed at ΔT{sub V} reached its maximum values of 1.1% for MnFe{sub 2}O{sub 4} and 6.68% for ZnFe{sub 2}O{sub 4}. The differences between MRC values are related to the divalent metal element used. Finally, the magnetoresistive response indicates that the electrical transition observed is strongly influencing the magnetoresistance; where the underlying responsible for this behavior could be a charge reordering occurring at the Verwey-like transition temperature.

  9. First XANES evidence of a disorder-order transition in a spinel ferrite compound: nanocrystalline ZnFe2O4.

    Science.gov (United States)

    Figueroa, S J A; Stewart, S J

    2009-01-01

    In situ Zn K-edge XANES experiments were performed to investigate the thermal evolution of the non-equilibrium state in nano-sized ZnFe2O4. The initially disordered ferrite was annealed under oxygen atmosphere and kept at temperatures of 673, 773 and 873 K. Modifications of the XANES features allowed the direct detection of the Zn local surrounding changes from Oh to Td symmetry. Quantitative analyses of these results were performed by using the principal-component analysis approach. The ferrite inversion does not change until the activation barrier is overcome at Ta = 585 K. Above Ta, the Zn ions continuously change their environment to their normal equilibrium state. Isothermal treatments confirm that the Zn transference follows a first-order kinetic process. In addition, the thermal treatment produces a partial recrystallization that increases the average grain size from 13 to 50 nm and reduces the microstrain. The room-temperature magnetic state changes from ferrimagnetic to paramagnetic, while the blocking temperature increases after the treatment.

  10. Structural properties of Cd–Co ferrites

    Indian Academy of Sciences (India)

    optical recording and electronic devices. (Gaikwad et al 2011). The structural, electrical and magnetic properties of these spinel ferrites are dependent on magnetic interaction and distribution of cations among tetrahedral (A) and octahedral (B) ...

  11. Electric Field Tunable Microwave and MM-wave Ferrite Devices

    Science.gov (United States)

    2010-04-30

    spinel ferrite can be used to achieve very high magnetizations for the low millimeter wave frequency range, and hexagonal ferrite films can be used for...piezoelectric effect manifests as a frequency shift in the spin wave spectrum or ferromagnetic resonance (FMR) for the ferrite . The traditional magnetic ...garnet (YIG), nickel zinc ferrite , or barium ferrite for the magnetic phase and lead zirconate titanate (PZT), lead magnesium niobate- lead titanate

  12. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    Wintec

    Ferrites are also used in camouflaging military aircrafts and missiles against radar detection (Meshram et al 2002). Among the spinel type ferrites, nickel ... agglomeration of the particles. The precipitate formed was separated and washed several times in distilled water to free it from ions and other impurities. Finally it was.

  13. Microwave applications of soft ferrites

    CERN Document Server

    Pardavi-Horvath, M P

    2000-01-01

    Signal processing requires broadband, low-loss, low-cost microwave devices (circulators, isolators, phase shifters, absorbers). Soft ferrites (garnets, spinels, hexaferrites), applied in planar microwave devices, are reviewed from the point of view of device requirements. Magnetic properties, specific to operation in high-frequency electromagnetic fields, are discussed. Recent developments in thick film ferrite technology and device design are reviewed. Magnetic losses related to planar shape and inhomogeneous internal fields are analyzed.

  14. Mössbauer and magnetization studies of nanosize chromium ferrite

    African Journals Online (AJOL)

    user

    ray diffraction (XRD), vibrating sample magnetometer (VSM) and Mössbauer spectroscopic techniques. Synthesized chromium ferrite powders were in good phase and showed spinel structure in the XRD pattern. Nanocrystalline CrF powder ...

  15. Magnetic properties of nanostructured spinel ferrites and ...

    Indian Academy of Sciences (India)

    small horse-shoe magnet (4 mT). The zero-field and in-field (6 T) Mössbauer spectra were recorded using a constant acceleration Mössbauer spectrometer with a 57Co source diffused into a Rh matrix. In the case of Mn0.67Zn0.33Fe2O4, the reagents. FeSO4·7H2O, MnCl2·4H2O, ZnSO4·H2O and Fe2(SO4)3 were used ...

  16. Magnetic properties of nanostructured spinel ferrites and ...

    Indian Academy of Sciences (India)

    when the grain size is reduced to 16 nm is correlated to the enhancement in the AB super- exchange interaction ... anisotropy is removed by thermal annealing and thus facilitating the enhancement of the energy product. ... netic recording media, magnetic hyperthermia, drug delivery systems etc. [1]. In this paper we report ...

  17. Role of pH value during material synthesis and grain-grain boundary contribution on the observed semiconductor to metal like conductivity transition in Ni{sub 1.5}Fe{sub 1.5}O{sub 4} spinel ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, R.N., E-mail: rnbhowmik.phy@pondiuni.edu.in; Aneesh Kumar, K.S.

    2016-07-01

    Ni{sub 1.5}Fe{sub 1.5}O{sub 4} ferrite samples were synthesized by maintaining different pH values (1–12) during chemical reaction at 80 {sup °}C. The as-prepared samples were annealed at 1000 {sup °}C to form a cubic spinel structure. The heat treated samples were used for the study of electrical conductivity and dielectric properties. In this work, we understand the mechanism of unusual metal-like state in ferrite samples, characterized by negative temperature coefficient of conductivity. We have discussed various aspects, e.g., hopping mechanism through superexchange paths (Fe{sup 3+}-O{sup 2−}-Fe{sup 3+} and Ni{sup 2+}-O{sup 2−}-Ni{sup 2+}), charge delocalized conduction mechanism affected by the magnetic spins order in t{sub 2g} and e{sub g} electronic energy levels of B sites cations, grain size variation, relaxation of charge carriers at grains and grain boundaries of the particles, for outlining the mechanism of thermal activated charge localization (semiconductor state) and delocalization (metal-like state) effect in our samples. We have carried out a detailed analysis of conductivity spectra (Jonscher's power law fit, scaling of conductivity), impedance spectra (Cole-Cole plot by incorporating constant phase element), modulus spectra (Bergman proposed KWW function), and dielectric loss and dielectric constant spectra to extract the conductivity and relaxation contributions from grains, grain boundaries and space charge polarization in the samples. - Highlights: • Dielectric properties of Ni{sub 1.5}Fe{sub 1.5}O{sub 4} ferrite are studied. • Mechanism of metal-like conductivity state in ferrite is understood. • Electrical contributions from grains and grain boundaries are extracted. • Temperature dependence of charge relaxation process is understood.

  18. on the magnetic properties of ultra-fine zinc ferrites

    NARCIS (Netherlands)

    Anantharaman, M.R.; Jagatheesan, S.; Malini, K.A.; Sindhu, S.; Narayanasamy, A.; Chinnasamy, C.N.; Jacobs, J.P.; Reijne, S.; Seshan, Kulathuiyer; Smits, R.H.H.; Smits, R.H.H.; Brongersma, H.H.

    1998-01-01

    Zinc ferrite belongs to the class of normal spinels where it is assumed to have a cation distribution of Zn2+(Fe3+)2(O2−)4, and it is purported to be showing zero net magnetisation. However, there have been recent reports suggesting that zinc ferrite exhibits anomaly in its magnetisation. Zinc

  19. Spin canting phenomenon in cadmium doped cobalt ferrites ...

    Indian Academy of Sciences (India)

    observed in diamagnetically substituted spinel ferrites, hav- ing the general formula MFe2O4 (where M is a divalent cation). These have been extensively studied due to their unique electrical and magnetic properties, high resistivity, mechanical hardness and chemical stability. The diversity in the properties of such ferrites ...

  20. Dielectric properties of Al-substituted Co ferrite nanoparticles

    Indian Academy of Sciences (India)

    Administrator

    have a narrow particle size, thereby influencing structural, electrical, and magnetic properties of spinel ferrites. Cobalt ferrite based nanomaterials are known to be a good candidate for magneto optical recording and very promising for applications in high-density storage (Panda et al 2003; Abo El Ata et al 2004; Zaki 2005).

  1. Spin Filtering in Epitaxial Spinel Films with Nanoscale Phase Separation

    KAUST Repository

    Li, Peng

    2017-05-08

    The coexistence of ferromagnetic metallic phase and antiferromagnetic insulating phase in nanoscaled inhomogeneous perovskite oxides accounts for the colossal magnetoresistance. Although the model of spin-polarized electron transport across antiphase boundaries has been commonly employed to account for large magnetoresistance (MR) in ferrites, the magnetic anomalies, the two magnetic phases and enhanced molecular moment, are still unresolved. We observed a sizable MR in epitaxial spinel films (NiCo2O4-δ) that is much larger than that commonly observed in spinel ferrites. Detailed analysis reveals that this MR can be attributed to phase separation, in which the perfect ferrimagnetic metallic phase and ferrimagnetic insulating phase coexist. The magnetic insulating phase plays an important role in spin filtering in these phase separated spinel oxides, leading to a sizable MR effect. A spin filtering model based on Zeeman effect and direct tunneling is developed to account for MR of the phase separated films.

  2. Synthesis and characterization of nanocrystalline zinc ferrite

    DEFF Research Database (Denmark)

    Jiang, J.S.; Yang, X.L.; Gao, L.

    1999-01-01

    Nanocrystalline zinc ferrite powders with a partially inverted spinel structure were synthesized by high-energy ball milling in a closed container at ambient temperature from a mixture of alpha-Fe2O3 and ZnO crystalline powders in equimolar ratio. From low-temperature and in-field Mossbauer...

  3. Cadmium substituted high permeability lithium ferrite

    Indian Academy of Sciences (India)

    Unknown

    3, 0⋅4, 0⋅5 and 0⋅6 were pre- pared by a double sintering ... Lithium ferrites; initial permeability; grain size; microstructure; magnetic properties. 1. Introduction ... The single-phase spinel nature of the samples was con- firmed from X-ray ...

  4. Effect of annealing temperatures on the electrical conductivity and dielectric properties of Ni1.5Fe1.5O4 spinel ferrite prepared by chemical reaction at different pH values

    Science.gov (United States)

    Aneesh Kumar, K. S.; Bhowmik, R. N.

    2017-12-01

    The electrical conductivity and dielectric properties of Ni1.5Fe1.5O4 ferrite has been controlled by varying the annealing temperature of the chemical routed samples. The frequency activated conductivity obeyed Jonscher’s power law and universal scaling suggested semiconductor nature. An unusual metal like state has been revealed in the measurement temperature scale in between two semiconductor states with different activation energy. The metal like state has been affected by thermal annealing of the material. The analysis of electrical impedance and modulus spectra has confirmed non-Debye dielectric relaxation with contributions from grains and grain boundaries. The dielectric relaxation process is thermally activated in terms of measurement temperature and annealing temperature of the samples. The hole hopping process, due to presence of Ni3+ ions in the present Ni rich ferrite, played a significant role in determining the thermal activated conduction mechanism. This work has successfully applied the technique of a combined variation of annealing temperature and pH value during chemical reaction for tuning electrical parameters in a wide range; for example dc limit of conductivity ~10‑4–10‑12 S cm‑1, and unusually high activation energy ~0.17–1.36 eV.

  5. Photocatalytic degradation of congo red using copper substituted cobalt ferrite

    Science.gov (United States)

    Kirankumar, V. S.; Hardik, B.; Sumathi, S.

    2017-11-01

    Co1-xCuxFe2O4 nanoparticles with x = 0 and 0.5 were synthesized through the combustion method. The as-made materials are face centered-cubic close-packed spinel structures. The characterization techniques such as powder XRD, FTIR, UV-DRS and SEM studies collectively verified that the formed products are cobalt ferrite and copper substituted cobalt ferrite nanoparticles. In addition, the mean crystalline size, lattice parameter and band gap energy of nanoparticles are calculated. The photocatalytic activity of the obtained Co1-xCuxFe2O4 spinel nanoparticles is evaluated by monitoring the degradation of congo red under visible light irradiation.

  6. Higher d.c. resistivity of Li–Zn–Cd ferrites prepared by microwave ...

    Indian Academy of Sciences (India)

    Administrator

    Ceramics; lithium ferrites; spinel structure; microwave sintering; d.c. resistivity; activation energy. 1. Introduction. Lithium ferrites are good dielectric materials with inter- esting magnetic properties like high Curie temperature, rectangularity of hysteresis loop and high saturation magnetization, thereby making them technically ...

  7. High Frequency Magneto Dielectric Effects In Self Assembled Ferrite Ferroelectric Core Shell Nanoparticles

    Science.gov (United States)

    2014-09-10

    magneto-electric interactions Appl. Phys. Lett. 105, 072905 (2014); 10.1063/1.4893699 Magnetic field assisted self-assembly of ferrite -ferroelectric...10.1063/1.4795820 Co- ferrite spinel and FeCo alloy core shell nanocomposites and mesoporous systems for multifunctional applications J. Appl. Phys...1. The stress in the ferrite phase is assumed to be produced by applied magnetic field and transferred to ferroelectric shell. Strain and stress

  8. ac Conductivity of mixed spinel NiAl0.7Cr0.7Fe0.6O4

    Indian Academy of Sciences (India)

    Spinel; ac conductivity; frequency response. PACS Nos 75.50.-y; 77.90.+k. 1. Introduction. The nickel ferrite NiFe2O4 is an inverse spinel [1]. This spinel remains insulating at all temperatures and shows a paramagnetic to a collinear ferrimagnetic transition at Néel tem- perature TN ≈ 850 K. A metal–insulator transition is ...

  9. Structural properties of Cd–Co ferrites

    Indian Academy of Sciences (India)

    Ferrite samples with composition, CdCo1−Fe2O4 ( = 0.80, 0.85, 0.90, 0.95 and 1.0), were prepared by standard ceramic method and characterized by XRD, IR and SEM techniques. X-ray analysis confirms the formation of single phase cubic spinel structure. Lattice constant and grain size of the samples increase with ...

  10. Magneto-optical properties of manganese ferrite films

    Czech Academy of Sciences Publication Activity Database

    Šimša, Zdeněk; Thailhades, P.; Presmanes, L.; Bonningue, C.

    242-245, - (2002), s. 381-383 ISSN 0304-8853 Grant - others:project BARRANDE(XX) 88057 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferrite s spinel * Faraday rotation * magneto-optical films thin films sputtering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.046, year: 2002

  11. High coercivity in nanostructured Co-ferrite thin films

    Indian Academy of Sciences (India)

    with a thickness of ~ 100 nm deposited using PLD with a substrate temperature at 550°C. The Co-ferrite films prepared by PLD at over ... the high coercivity is related with a large residual strain, which may induce an additional magnetic anisotropy .... of the spinel phase for both sol–gel and sputtering grown films starts at ...

  12. Synthesis and characterization of zinc ferrite nanoparticles obtained ...

    Indian Academy of Sciences (India)

    Administrator

    Among various nanomaterials, mainly spinel ferrite (MFe2O4, M = Ni, Co, Mn, Zn, etc.) nanoparticles have become immensely popular magnetic materials for a wide variety of applications such as electronic ignition systems, generators, vending machines, medical implants, wrist watches, inductor core, transformer circuits, ...

  13. Dielectric behaviour of erbium substituted Mn–Zn ferrites

    Indian Academy of Sciences (India)

    Unknown

    xErxO4 (where x = 0⋅2, 0⋅4, 0⋅6, 0⋅8 and. 1⋅0) were ... Plots of dielectric constant (ε′) vs frequency show a normal dielectric behaviour of spinel ferrites. The frequency ..... with temperature may be due to a magnetic transition, where the ...

  14. Preparation of monodisperse ferrite nanocrystals with tunable morphology and magnetic properties.

    Science.gov (United States)

    Liang, Ruizheng; Tian, Rui; Liu, Zhihui; Yan, Dongpeng; Wei, Min

    2014-04-01

    The synthesis of monodisperse magnetic ferrite nanomaterials plays an important role in several scientific and technological areas. In this work, dibasic spinel MFe2O4 (M=Mg, Ni, Co, Fe, Mn) and polybasic spinel ferrite MCoFeO4 (M=Mg, Ni, Mn, MgNi) nanocrystals were prepared by the calcination of layered double hydroxide (LDH) precursors at 900 °C, which was confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images demonstrate that the as-obtained spinel ferrites present a single-crystalline nature with uniform particle size and good dispersibility. The composition, morphology, and particle size can be effectively tuned by changing the metal ratio, basicity, reaction time, and temperature of the LDH precursors. In addition, these spinel ferrites show high magnetic saturation values in the range 21.7-84.3 emu g(-1), which maintain a higher level than the previously reported magnetic nanoparticles. Therefore, this work provides a facile approach for the design and fabrication of spinel ferrites with controllable nanostructure and improved magnetism, which could potentially be used in magnetic and biological fields, such as recording media, sensors, drug delivery, and intracellular imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Magnetic and structural properties of cobalt and nickel ferrites obtained by combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, D.K.S.; Melo, D.M.A.; Araujo, J.H.; Costa, A.F. [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil); Pimentel, P.M. [Universidade Federal Rural do Semi-Arido (UFERSA), Mossoro, RN (Brazil)

    2014-07-01

    Spinel-type ferrites have shown great potential for applications due to their optical electrical and magnetic properties. It has been reported that magnetic properties of ferrites depend on composition and cation distribution. According to the occupancy of cations in the A and B sites, these materials can exhibit ferromagnetic and antiferromagnetic behavior . In this work cobalt and nickel ferrites were prepared by microwave-assisted self-combustion synthesis. This synthesis process is a cost efficient method used to produce homogeneous and fine particles with high reproducibility. The resulting powders were characterized using X-ray diffraction combined with the Rietveld refinement method, infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and magnetic measurements. The Rietveld XRD data had shown to formation of the partially inverse spinel-type structure. SEM images revealed the formation of irregular porous powders. It is observed that the saturation magnetization and coercive field decreases with the presence of nickel in spinel structure. (author)

  16. Preparation and Characterization of Manganese Ferrite Aluminates

    Directory of Open Access Journals (Sweden)

    R. L. Dhiman

    2008-01-01

    Full Text Available Aluminum doped manganese ferrites MnAlxFe2−xO4 with 0.0≤x≤1.0 have been prepared by the double ceramic route. The formation of mixed spinel phase has been confirmed by X-ray diffraction analysis. The unit cell parameter `aO' is found to decrease linearly with aluminum concentration due to smaller ionic radius of aluminum. The cation distributions were estimated from X-ray diffraction intensities of various planes. The theoretical lattice parameter, X-ray density, oxygen positional parameter, ionic radii, jump length, and bonds and edges lengths of the tetrahedral (A and octahedral (B sites were determined. 57Fe Mössbauer spectra recorded at room temperature were fitted with two sextets corresponding to Fe3+ ions at A- and B-sites. In the present ferrite system, the area ratio of Fe3+ ions at the A- and B-sites determined from the spectral analysis of Mössbauer spectra gives evidence that Al3+ ions replace iron ions at B-sites. This change in the site preference reflects an abrupt change in magnetic hyperfine fields at A- and B-sites as aluminum concentration increases, which has been explained on the basis of supertransferred hyperfine field. On the basis of estimated cation distribution, it is concluded that aluminum doped manganese ferrites exhibit a 55% normal spinel structure.

  17. Moessbauer spectroscopic studies on ultra fine powders of NiZn-ferrite

    International Nuclear Information System (INIS)

    Michalk, C.; Knese, K.; Fischer, S.; Toepelmann, W.; Scheler, H.

    1991-01-01

    Mixed ferrite Ni x Zn 1-x Fe 2 O 4 was precipitated from a solution containing Ni 2+ , Zn 2+ and Fe 3+ ions in the molecular ratio of 1:1:4. The different aged samples were investigated by X-ray diffractometry and Moessbauer spectroscopy. The substance which was not aged contains β-FeOOH and strongly distorted NiZn ferrite. Ageing leads to the formation of spinel structure. Moessbauer spectra of the aged samples exhibit a typical relaxation shape, which can be explained by occuring of small clusters possessing complete spinel structure. (orig.) [de

  18. Moessbauer spectroscopic studies on ultra fine powders of NiZn-ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Michalk, C.; Knese, K. (Leipzig Univ. (Germany, F.R.). Sektion Physik); Fischer, S.; Toepelmann, W.; Scheler, H. (Technische Univ. Dresden (Germany, F.R.). Sektion Chemie)

    1991-01-01

    Mixed ferrite Ni{sub x}Zn{sub 1-x}Fe{sub 2}O{sub 4} was precipitated from a solution containing Ni{sup 2+}, Zn{sup 2+} and Fe{sup 3+} ions in the molecular ratio of 1:1:4. The different aged samples were investigated by X-ray diffractometry and Moessbauer spectroscopy. The substance which was not aged contains {beta}-FeOOH and strongly distorted NiZn ferrite. Ageing leads to the formation of spinel structure. Moessbauer spectra of the aged samples exhibit a typical relaxation shape, which can be explained by occuring of small clusters possessing complete spinel structure. (orig.).

  19. ACICULAR FERRITE

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2015-09-01

    Full Text Available Intermediate austenite transformation develops in the temperature between the regions pearlitic and martensitic transformation [4]. Under continuous cooling steel at speeds below the critical value, but higher than those necessary for the decomposition of austenite by the diffusion mechanism, the formation of a mixture of different types of structures whose identification is not always unambiguous. This resulted in a different classification systems of microstructures of low-carbon steel after accelerated cooling and the absence of a common terminology relating to the products of austenite decomposition [3; 5 – 11]. In modern terminology, all of the intermediate transformation product classifications based on the differentiation of the following features – the morphology of bainite ferrite component (rack or plate, the presence of iron carbide precipitates, their distribution and morphology, as well as the presence or absence of residual austenite or martensite-austenite mixture. Identification of the products of the intermediate conversion not morphology ferrite component, and other characteristics by light microscopy is extremely difficult, and in some instances impossible due to the limited resolution of the light microscope, so for these purposes should be to use the method of transmission electron microscopy of thin foils. Electron microscopy studies show that low-carbon steels lamellar morphology of intermediate products decomposition of austenite is extremely rare, which is confirmed by foreign authors [2; 7; 9; 10].

  20. Synthesize of Superparamagnetic Zinc Ferrite Nanoparticles at Room Temperature

    Directory of Open Access Journals (Sweden)

    R. Raeisi Shahraki

    2012-12-01

    Full Text Available Superparamagnetic single phase zinc ferrite nanoparticles have been prepared by coprecipitation method at 20 °C without any subsequent calcination. The composition, crystallite size, microstructure and magnetic properties of the prepared nanoparticles were investigated using X-ray diffraction (XRD, field emission scanning electron microscope (FESEM, transmission electron microscope (TEM, Fourier transmission infrared spectrum (FTIR and vibrating sample magnetometer (VSM. The XRD pattern proved that the nanoparticles were single phase cubic spinel ZnFe2O4 with crystallite size of 5nm. The magnetic measurement showed that the as-prepared nanoparticles of zinc ferrite were superparamagnet at room temperature.

  1. Magnetism of the ball-milled spinel Zn Fe2 O4

    International Nuclear Information System (INIS)

    Ehrhardt, H.; Campbell, S.J.; Hofmann, M.

    2002-01-01

    Full text:In materials science, oxide spinels play an important technological role with numerous applications due to their fundamental magnetic characteristics. With the spinel crystal structure being an approximately close-packed face-centered cubic array of anions with holes partly filled by the cations, the structure can generally be described by the formula (A)[B 2 ]O 4 where A and B denote divalent and trivalent cations, respectively. In the case of a normal spinel, all of the A atoms are tetrahedrally coordinated while the B atoms are octahedrally coordinated by oxygen atoms; in the case of an inverse spinel, the A atoms occupy half of the B sites. With Fe representing the B atoms, normal spinels are commonly found to order antiferromagnetically whereas they show ferrimagnetic behaviour in the case of an inverse spinel below the transition temperature. However, natural spinels often emerge with other than purely normal or purely inverse distributions of cations. The site occupation can then be represented by (A 1-c B c )[A c B 2-c ]O 4 where c is the inversion parameter (O 2 O 4 , which occurs as a purely normal spinel in its natural state of matter, has been investigated as a model system. Treated by milling, zinc ferrite exhibits a systematic transition from its normal structure towards the inverse counterpart. In particular an increase in c value is observed with increasing milling time along with a decrease of the average particle size as determined by X-ray diffraction. Moessbauer spectroscopy and temperature-dependent neutron diffraction on an extended series of ball-milled samples allow a detailed characterization of the magnetic behaviour as a function of the microstructure. The comprehensive set of results will be discussed with respect to theoretical predictions of the magnetism of spinels in relation to their degree of inversion

  2. Direct observation of cation distributions of ideal inverse spinel CoFe2O4nanofibres and correlated magnetic properties.

    Science.gov (United States)

    Zeng, Xue; Zhang, Junwei; Zhu, Shimeng; Deng, Xia; Ma, Hongbin; Zhang, Junli; Zhang, Qiang; Li, Peng; Xue, Desheng; Mellors, Nigel J; Zhang, Xixiang; Peng, Yong

    2017-06-08

    Low-dimensional spinel ferrites have recently attracted increasing attention because their tunable magnetic properties make them attractive candidates as spin-filtering tunnel barriers in spintronic devices and as magnetic components in artificial multiferroic heterostructures. Although we know that the distribution of cations (Fe 3+ and Co 2+ ) in a spinel structure governs its magnetic properties, their distribution in the so-called ideal inverse spinel structure of a ferrite, CoFe 2 O 4 , has not yet been imaged with sub-ångstrom resolution. In this work, we fill this gap in evidence by reporting a direct observation of the distribution of cations in an ideal inverse spinel structure of CoFe 2 O 4 nanofibres using aberration-corrected transmission electron microscopy (TEM). The ordering of Co 2+ and Fe 3+ at the octahedral sites imaged along either [001], [011] or [-112] orientation was identified as 1 : 1, in accordance with the ideal inverse spinel structure. The saturation magnetisation calculated based on the crystal structure as determined from the TEM image is in good agreement with that measured experimentally on the spinel CoFe 2 O 4 nanofibres, further confirming results from TEM.

  3. Direct observation of cation distributions of ideal inverse spinel CoFe2O4 nanofibres and correlated magnetic properties

    KAUST Repository

    Zeng, Xue

    2017-04-25

    Low-dimensional spinel ferrites have recently attracted increasing attention because their tunable magnetic properties make them attractive candidates as spin-filtering tunnel barriers in spintronic devices and as magnetic components in artificial multiferroic heterostructures. Although we know that the distribution of cations (Fe3+ and Co2+) in a spinel structure governs its magnetic properties, their distribution in the so-called ideal inverse spinel structure of a ferrite, CoFe2O4, has not yet been imaged with sub-ångstrom resolution. In this work, we fill this gap in evidence by reporting a direct observation of the distribution of cations in an ideal inverse spinel structure of CoFe2O4 nanofibres using aberration-corrected transmission electron microscopy (TEM). The ordering of Co2+ and Fe3+ at the octahedral sites imaged along either [001], [011] or [-112] orientation was identified as 1 : 1, in accordance with the ideal inverse spinel structure. The saturation magnetisation calculated based on the crystal structure as determined from the TEM image is in good agreement with that measured experimentally on the spinel CoFe2O4 nanofibres, further confirming results from TEM.

  4. Glassy behavior of diluted Cu-Zn ferrites

    Science.gov (United States)

    Akhter, Shahida; Hakim, M. A.; Hoque, S. M.; Mathieu, R.; Nordblad, P.

    2018-04-01

    The magnetic behavior of Zn substituted Cu-Zn spinel ferrites having chemical formula Cu1-xZnxFe2O4 (x = 0.7, 0.8, 0.9 and 1.0) has been studied by SQUID magnetometry, by means of magnetic hysteresis, field-cooled (FC) and zero-field-cooled (ZFC) magnetization, memory effect and low field ac susceptibility measurements. These measurements suggest that the ferrimagnetic phase of the x ≤ 0.8 samples is gradually turned into a spin glass (x ≥ 0.9). The compound with x = 0.9 exhibits the typical dynamical behavior of spin glasses, with indication of aging, rejuvenation and memory effects. The evolution of the magnetic properties of Cu-Zn spinel ferrites with substitution of Zn for Cu is discussed.

  5. AS Spinel toodab ja ehitab

    Index Scriptorium Estoniae

    1998-01-01

    1990. aastast tegutseb Eestis majade, suvilate, aiamajade, saunade jt. hoonete elementide komplektide valmistamisega AS Spinel. Märjamaal toodetakse freespuidust hoonete komplekte, Kõrvetagusel valmivad soojustatud puitkarkassil elemendid monteeritavate majade jaoks

  6. Thermodynamic Modelling of Fe-Cr-Ni-Spinel Formation at the Light-Water Reactor Conditions

    International Nuclear Information System (INIS)

    Kurepin, V. A.; Kulik, D. A.; Hitpold, A.; Nicolet, M.

    2002-03-01

    In the light water reactors (LWR), the neutron activation and transport of corrosion products is of concern in the context of minimizing the radiation doses received by the personnel during maintenance works. A practically useful model for transport and deposition of the stainless steel corrosion products in LWR can only be based on an improved understanding of chemical processes, in particular, on the attainment of equilibrium in this hydrothermal system, which can be described by means of a thermodynamic solid-solution -aqueous-solution (SSAS) model. In this contribution, a new thermodynamic model for a Fe-Cr-Ni multi-component spinel solid solutions was developed that considers thermodynamic consequences of cation interactions in both spinel sub-Iattices. The obtained standard thermodynamic properties of two ferrite and two chromite end-members and their mixing parameters at 90 bar pressure and 290 *c temperature predict a large miscibility gap between (Fe,Ni) chromite and (Fe,Ni) ferrite phases. Together with the SUPCRT92-98 thermo- dynamic database for aqueous species, the 'spinel' thermodynamic dataset was applied to modeling oxidation of austenitic stainless steel in hydrothermal water at 290*C and 90 bar using the Gibbs energy minimization (GEM) algorithm, implemented in the GEMS-PSI code. Firstly, the equilibrium compositions of steel oxidation products were modelIed as function of oxygen fugacity .fO 2 by incremental additions of O 2 in H 2 O-free system Cr-Fe- Ni-O. Secondly, oxidation of corrosion products in the Fe-Cr-Ni-O-H aquatic system was modelIed at different initial solid/water ratios. It is demonstrated that in the transition region from hydrogen regime to oxygen regime, the most significant changes in composition of two spinel-oxide phases (chromite and ferrite) and hematite must take place. Under more reduced conditions, the Fe-rich ferrite (magnetite) and Ni-poor chromite phases co-exist at equilibrium with a metal Ni phase, maintaining

  7. Manganese zinc ferrite nanoparticles as efficient catalysts for wet ...

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/jcsc/127/03/0537-0546. Keywords. Spinel ferrites; catalytic activity; wet peroxide oxidation; 4-chlorophenol; water treatment. Abstract. Manganese substituted zinc nanoparticles, MnxZn1−xFe2O4 (x = 0.0, 0.25, 0.5, 0.75, 1.0) prepared by sol gel method were found to be efficient catalysts for ...

  8. Structure and morphology of spinel MFe2O4 (M=Fe, Co, Ni) nanoparticles chemically synthesized from heterometallic complexes.

    Science.gov (United States)

    Naidek, Karine Priscila; Bianconi, Flavia; da Rocha, Tulio Costa Rizuti; Zanchet, Daniela; Bonacin, Juliano Alves; Novak, Miguel Alexandre; Vaz, Maria das Graças Fialho; Winnischofer, Herbert

    2011-06-01

    We synthesized magnetic spinel ferrites from trimetallic single-source precursors. Fe(II), Co(II), and Ni(II) ferrite nanoparticles in the range of 9-25 nm were synthesized by solvothermal decomposition of trimetallic acetate complex precursors in benzyl ether in the presence of oleic acid and oleylamine, using 1,2-dodecanediol as the reducing agent. For comparison, spinel ferrite nanoparticles were synthesized by stoichiometric mixtures of metal acetate or acetylacetonate salts. The nanoparticles (NP) were characterized by TEM, DLS, powder XRD, and Raman spectroscopy; and their magnetic properties were characterized by ZFC-FC and M(H) measurements. The ferrite-NP were more homogeneous and had a narrower size distribution when trimetallic complexes were used as precursors. As a consequence, the magnetic properties of these ferrite-NP are closer to the aimed room temperature superparamagnetic behavior, than are those of other ferrites obtained by a mixture of salts. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Effect of Mg substitution on the magnetic properties of Ni–Zn ferrites

    Indian Academy of Sciences (India)

    Y Ramesh Babu

    2017-05-31

    May 31, 2017 ... C (x = 0.25) with the increase in magnesium content. Smooth coercivity variation suggests better structural homogeneity. The results are discussed in the light of the distribution of the cations among octahedral and tetrahedral sites. Keywords. Ni–Zn ferrites; spinels; lattice constant; saturation magnetization; ...

  10. Structure of Co–Zn ferrite ferrofluid: A small angle neutron scattering

    Indian Academy of Sciences (India)

    A hydrothermal synthesis route is used to synthesize nanomagnetic particles of Co0.3Zn0.7Fe2O4 ferrite ferrofluids with particle diameter ranging from 5.5–9 nm. XRD analysis shows the formation of a single phase spinel structure. EDX results confirm the stoichiometric composition of the cations. Small angle neutron ...

  11. NiCrxFe2−xO4 ferrite nanoparticles and their composites with ...

    Indian Academy of Sciences (India)

    4. Nickel ferrite (NiFe2O4) has become one of the impor- tant materials for decades, due to its unique electrical and magnetic properties that lead to extended technological applications.5 NiFe2O4 is an inverted spinel with Ni2+ ions occupying ...

  12. Lithium ferrite: The study on magnetic and complex permittivity characteristics

    Directory of Open Access Journals (Sweden)

    Madhavaprasad Dasari

    2017-03-01

    Full Text Available Lithium ferrite (Li0.5Fe2.5O4 powder was prepared by solid state reaction method, which was finally pressed and sintered at 1150 °C. The spinel structure of the lithium ferrite was confirmed by X-ray diffraction and grain size estimation was obtained from scanning electron microscope (SEM. Fourier transform infrared spectroscopy (FTIR confirmed the presence of primary and secondary absorption bands characteristic for spinel structure. The force constants were estimated using absorption bands for the lithium ferrite. Magnetization and dielectric studies were carried out for the sintered sample. Saturation magnetization (Ms of 59.6 emu/g was achieved and variation of magnetization with temperature was used to identify the Curie temperature. The complex permittivity (ε∗ for the lithium ferrite sample was obtained for wide frequency range up to 3 GHz and discussed based on available models. The Curie temperature was estimated around 480 °C and verified from both magnetization versus temperature and dielectric constant versus temperature measurements.

  13. Ferrites and ceramic composites

    CERN Document Server

    Jotania, Rajshree B

    2013-01-01

    The Ferrite term is used to refer to all magnetic oxides containing iron as major metallic component. Ferrites are very attractive materials because they simultaneously show high resistivity and high saturation magnetization, and attract now considerable attention, because of the interesting physics involved. Typical ferrite material possesses excellent chemical stability, high corrosion resistivity, magneto-crystalline anisotropy, magneto-striction, and magneto-optical properties. Ferrites belong to the group of ferrimagnetic oxides, and include rare-earth garnets and ortho-ferrites. Several

  14. Synthesis of Various Ferrite (MFe₂O₄) Nanoparticles and Their Application as Efficient and Magnetically Separable Catalyst for Biginelli Reaction.

    Science.gov (United States)

    Chandel, Madhurya; Ghosh, Barun Kumar; Moitra, Debabrata; Patra, Manoj Kumar; Vadera, Sampat Raj; Ghosh, Narendra Nath

    2018-04-01

    Herein, we reports the application of various spinel ferrite nanoparticles, MFe2O4 (M = Co, Ni, Cu, Zn), as efficient catalyst for Biginelli reaction. All ferrite nanoparticles were synthesized using a novel aqueous solution based method. It was observed that, the catalytic activity of the ferrite nanoparticles followed the decreasing order of CoFe2O4 > CuFe2O4 > NiFe2O4 > ZnFe2O4. The most important feature of these ferrite nanocatalysts is that, these nanoparticles can directly be used as catalyst and no surface modification or functionalization is required. These ferrite nanoparticles are easily separable from reaction mixture after reaction by using a magnet externally. Easy synthesis methodology, high catalytic activity, easy magnetic separation and good reusability make these ferrite nanoparticles attractive catalysts for Biginelli reaction.

  15. Technique under compressive stress for determining the magneto-elastic effects in ferrites

    International Nuclear Information System (INIS)

    Le Gallou, J.-H.; Ledieu, M.; Grimal, V.; Acher, O.

    2008-01-01

    A method for determining the magneto-elastic effects in spinel ferrites at high frequencies is presented. To investigate the high-frequency properties of different ferrite materials under stress, a reflection/transmission cell had been designed. In the measurement technique described here, we use a cell which based on a modified reflection/transmission line. This setup allows measurement of permeability under stress up to 20 MPa from 1 MHz to 10 GHz. Specific retrieval procedures have been developed to take into account the modifications in the line geometry. In this study, the permeability properties of spinel ferrites versus frequency between 1 MHz and 6 GHz as a function of the applied stress are showed. The two most important contributions of the permeability are the wall bulging and the gyro-magnetism which have a different behavior versus the applied stress

  16. Structural and Mössbauer investigation on barium titanate-cobalt ferrite composites

    Science.gov (United States)

    Leonel, Liliam V.; Silva, Juliana B.; Albuquerque, Adriana S.; Ardisson, José D.; Macedo, Waldemar A. A.; Mohallem, Nelcy D. S.

    2012-11-01

    Perovskite and spinels oxides have received renewed attention due to the possibility of combining both structures in di-phase composites to obtain multifunctional materials. In this work, barium titanate (perovskite)-cobalt ferrite (spinel) composite powders with different microstructures were obtained from thermal treatment of amorphous precursors at 500-1100 °C. The precursors were prepared by combining coprecipitation and sol-gel routes. Lyophilization of ferrite prior to mixing was used as a strategy to control interphase reaction. Mössbauer spectroscopy showed that the dispersion of coprecipitated ferrite in a viscous BaTiO3 precursor gel resulted in superparamagnetic behavior and reduction of the local magnetic field of site [B].

  17. Microwave absorbing materials using Ag-NiZn ferrite core-shell nanopowders as fillers

    International Nuclear Information System (INIS)

    Peng, C.-H.; Wang, H.-W.; Kan, S.-W.; Shen, M.-Z.; Wei, Y.-M.; Chen, S.-Y.

    2004-01-01

    Silver nanoparticles coated with Ni 0.5 Zn 0.5 Fe 2 O 4 spinel ferrites, forming a core-shell structure, were synthesized by utilizing hydrothermal method at different ferrite/silver ratio (ferrite/silver=6/1, 4/1, 2/1, 1/1, 1/6) and introduced into polyurethane matrix to be a microwave absorber. The complex permittivity (ε',ε'') and permeability (μ',μ'') of absorbing composite materials consisted of ferrite/silver core-shell nanopowders and polyurethane were measured in the frequency range of 2-15GHz. The reflection loss and matching frequency were calculated from measured data using theory of the absorbing wall for different ferrite/silver ratios. It was found that the matching frequency for reflection loss exceeded a satisfactory -25dB at 9.0GHz for using NiZn ferrite as a filler shifts to higher frequencies (10.9-13.7GHz) as the ferrite/silver ratio of core-shell nano-filler decreased from 6/1 to 2/1. The present result demonstrates that microwave absorbers using ferrite/silver core-shell filler can be fabricated for the applications over 9GHz, with reflection loss more than-25dB for specific frequencies, by controlling the ferrite/silver ratio of the core-shell nano-fillers in the composites

  18. Evaluation of Antioxidant and Cytotoxicity Activities of Copper Ferrite (CuFe2O4 and Zinc Ferrite (ZnFe2O4 Nanoparticles Synthesized by Sol-Gel Self-Combustion Method

    Directory of Open Access Journals (Sweden)

    Samikannu Kanagesan

    2016-08-01

    Full Text Available Spinel copper ferrite (CuFe2O4 and zinc ferrite (ZnFe2O4 nanoparticles were synthesized using a sol-gel self-combustion technique. The structural, functional, morphological and magnetic properties of the samples were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, Transmission electron microscopy (TEM and vibrating sample magnetometry (VSM. XRD patterns conform to the copper ferrite and zinc ferrite formation, and the average particle sizes were calculated by using a transmission electron microscope, the measured particle sizes being 56 nm for CuFe2O4 and 68 nm for ZnFe2O4. Both spinel ferrite nanoparticles exhibit ferromagnetic behavior with saturation magnetization of 31 emug−1 for copper ferrite (50.63 Am2/Kg and 28.8 Am2/Kg for zinc ferrite. Both synthesized ferrite nanoparticles were equally effective in scavenging 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH free radicals. ZnFe2O4 and CuFe2O4 nanoparticles showed 30.57% ± 1.0% and 28.69% ± 1.14% scavenging activity at 125 µg/mL concentrations. In vitro cytotoxicity study revealed higher concentrations (>125 µg/mL of ZnFe2O4 and CuFe2O4 with increased toxicity against MCF-7 cells, but were found to be non-toxic at lower concentrations suggesting their biocompatibility.

  19. Low-temperature Spin Spray Deposited Ferrite/piezoelectric Thin Film Magnetoelectric Heterostructures with Strong Magnetoelectric Coupling

    Science.gov (United States)

    2014-01-08

    spinel ferrites thin film can be fabricated directly from aqueous solution at *90 C through this method. The processing temperature is much lower than...1ITLE AND SUBTITLE 5a CONTRACTNUMBER Low-temperature spin spray deposited ferrite /piezoelectric thin W911NF-09-l-0435 film magnetoelectric... magnetic /piezoelectric magnetoelectric heterostructures. A voltage induced effective ferromagnetic resonance field of 14 Oe was realized in Fe304/Zn0

  20. Synthesis and microstructure of manganese ferrite colloidal nanocrystals.

    Science.gov (United States)

    Carta, D; Casula, M F; Floris, P; Falqui, A; Mountjoy, G; Boni, A; Sangregorio, C; Corrias, A

    2010-05-21

    The atomic level structure of a series of monodisperse single crystalline nanoparticles with a magnetic core of manganese ferrite was studied using X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) techniques at both the Fe and Mn K-edges, and conventional and high resolution transmission electron microscopy (TEM and HRTEM). In particular, insights on the non-stoichiometry and on the inversion degree of manganese ferrite nanocrystals of different size were obtained by the use of complementary structural and spectroscopic characterization techniques. The inversion degree of the ferrite nanocrystals, i.e. the cation distribution between the octahedral and tetrahedral sites in the spinel structure, was found to be much higher (around 0.6) than the literature values reported for bulk stoichiometric manganese ferrite (around 0.2). The high inversion degree of the nanoparticles is ascribed to the partial oxidation of Mn(2+) to Mn(3+) which was evidenced by XANES, leading to non-stoichiometric manganese ferrite.

  1. Magnetic and catalytic properties of inverse spinel CuFe2O4 nanoparticles

    International Nuclear Information System (INIS)

    Anandan, S.; Selvamani, T.; Prasad, G. Guru; Asiri, A.M.; Wu, J.J.

    2017-01-01

    Highlights: • Copper ferrite (CuFe 2 O 4 ) nanoparticles were synthesized via citrate-nitrate combustion method. • Spectroscopic information’s have found that CuFe 2 O 4 nanoparticles as an inverse spinel structure. • Magnetic study exhibits CuFe 2 O 4 nanoparticles have ferromagnetic behavior. • CuFe 2 O 4 nanoparticles employed for photocatalytic decolourisation of methylene blue under visible light irradiation. - Abstract: In this research, inverse spinel copper ferrite nanoparticles (CuFe 2 O 4 NPs) were synthesized via citrate-nitrate combustion method. The crystal structure, particle size, morphology and magnetic studies were investigated using various instrumental tools to illustrate the formation of the inverse spinel structure. Mossbauer spectrometry identified Fe is located both in the tetrahedral and octahedral site in the ratio (40:60) and the observed magnetic parameters values such as saturation magnetization (M s = 20.62 emu g −1 ), remnant magnetization (M r = 11.66 emu g −1 ) and coercivity (H c = 63.1 mTesla) revealed that the synthesized CuFe 2 O 4 NPs have a typical ferromagnetic behaviour. Also tested CuFe 2 O 4 nanoparticles as a photocatalyst for the decolourisation of methylene blue (MB) in the presence of peroxydisulphate as the oxidant.

  2. Synthesis of Highly Uniform and Compact Lithium Zinc Ferrite Ceramics via an Efficient Low Temperature Approach.

    Science.gov (United States)

    Xu, Fang; Liao, Yulong; Zhang, Dainan; Zhou, Tingchuan; Li, Jie; Gan, Gongwen; Zhang, Huaiwu

    2017-04-17

    LiZn ferrite ceramics with high saturation magnetization (4πM s ) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 μm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 μm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li 0.415 Zn 0.27 Mn 0.06 Ti 0.1 Fe 2.155 O 4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πM s and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.

  3. Layer-by-Layer Self-Assembled Ferrite Multilayer Nanofilms for Microwave Absorption

    Directory of Open Access Journals (Sweden)

    Jiwoong Heo

    2015-01-01

    Full Text Available We demonstrate a simple method for fabricating multilayer thin films containing ferrite (Co0.5Zn0.5Fe2O4 nanoparticles, using layer-by-layer (LbL self-assembly. These films have microwave absorbing properties for possible radar absorbing and stealth applications. To demonstrate incorporation of inorganic ferrite nanoparticles into an electrostatic-interaction-based LbL self-assembly, we fabricated two types of films: (1 a blended three-component LbL film consisting of a sequential poly(acrylic acid/oleic acid-ferrite blend layer and a poly(allylamine hydrochloride layer and (2 a tetralayer LbL film consisting of sequential poly(diallyldimethylammonium chloride, poly(sodium-4-sulfonate, bPEI-ferrite, and poly(sodium-4-sulfonate layers. We compared surface morphologies, thicknesses, and packing density of the two types of ferrite multilayer film. Ferrite nanoparticles (Co0.5Zn0.5Fe2O4 were prepared via a coprecipitation method from an aqueous precursor solution. The structure and composition of the ferrite nanoparticles were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. X-ray diffraction patterns of ferrite nanoparticles indicated a cubic spinel structure, and energy dispersive X-ray spectroscopy revealed their composition. Thickness growth and surface morphology were measured using a profilometer, atomic force microscope, and scanning electron microscope.

  4. Femtosecond pulsed laser deposition of cobalt ferrite thin films

    Science.gov (United States)

    Dascalu, Georgiana; Pompilian, Gloria; Chazallon, Bertrand; Caltun, Ovidiu Florin; Gurlui, Silviu; Focsa, Cristian

    2013-08-01

    The insertion of different elements in the cobalt ferrite spinel structure can drastically change the electric and magnetic characteristics of CoFe2O4 bulks and thin films. Pulsed Laser Deposition (PLD) is a widely used technique that allows the growth of thin films with complex chemical formula. We present the results obtained for stoichiometric and Gadolinium-doped cobalt ferrite thin films deposited by PLD using a femtosecond laser with 1 kHz repetition rate. The structural properties of the as obtained samples were compared with other thin films deposited by ns-PLD. The structural characteristics and chemical composition of the samples were investigated using profilometry, Raman spectroscopy, X-Ray diffraction measurements and ToF-SIMS analysis. Cobalt ferrite thin films with a single spinel structure and a preferential growth direction have been obtained. The structural analysis results indicated the presence of internal stress for all the studied samples. By fs-PLD, uniform thin films were obtained in a short deposition time.

  5. One-pot production of copper ferrite nanoparticles using a chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Naoki, E-mail: nnishida@rs.tus.ac.jp; Amagasa, Shota [Tokyo University of Science, Department of Chemistry (Japan); Kobayashi, Yoshio [The University of Electro-Communications, Department of Engineering Science (Japan); Yamada, Yasuhiro [Tokyo University of Science, Department of Chemistry (Japan)

    2016-12-15

    Copper ferrite nanoparticles were synthesized via the oxidation of precipitates obtained from the reaction of FeCl{sub 2}, CuSO{sub 4} and N{sub 2}H{sub 4} in the presence of gelatin. These copper ferrite particles were subsequently examined using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Mössbauer spectroscopy. The average size of the copper ferrite nanoparticles was less than 5 nm, and they exhibited superparamagnetic behavior as a result of their small size. The low temperature Mössbauer spectrum exhibited three sets of sextets, two corresponding to the tetrahedral and octahedral sites of the copper spinel structure and one with small hyperfine magnetic field corresponding to the surface or defects of the nanoparticles. When the ratio of copper salt was increased, the tetrahedral site became preferable for copper, and metallic copper and copper ferrite were both present in a single nanoparticle.

  6. Low-temperature magnetic properties of NiCrxFe2-xO4 ferrites

    Science.gov (United States)

    Bushkova, V. S.

    2017-12-01

    Nickel-chrome ferrites of general formula NiCrxFe2-xO4 (x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) were produced using low-temperature sol-gel self-combustion technique. Magnetic hysteresis loop of the samples showed that due to a low coercive field Hc, in the range of 2484-4283 A/m at 77 K, the ferrites are soft magnetic materials. The residual induction Br of the magnetic field decreases with increasing the concentration of Cr3+ ions due to a weakening of the interaction between the tetrahedral and octahedral sublattices of the ferrite with the spinel structure. The specific saturation magnetization σs of NiFe2O4 ferrite is 33.9 A m2/kg. The blocking temperature Tb was determined; its average value was found to be 157 K.

  7. Effect of calcination temperature on microstructural and magnetic properties of CuFe2O4 spinel

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A.F.; Melo, D.M.A.; Gomes, D.K.S.; Araujo, J.H.; Lima, A.C. [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil); Pimentel, P.M. [Universidade Federal Rural do Semi-Arido (UFERSA), Mossoro, RN (Brazil); Santana, R.S.; Oliveira, R.M.P.B. [Universidade Federal de Sergipe (UFS), SE (Brazil)

    2014-07-01

    In this research, we report a study of nanostructured CuFe{sub 2}O{sub 4} Spinel obtained by a method which makes uses of gelatin as an organic precursor. The structural and magnetic properties were investigated in function of calcination temperature. The precursor powders were calcined at 700 and 900 deg C to obtain spinel phase. Then were characterized using X-ray diffraction combined with the Rietveld refinement method, infrared spectroscopy (FTIR), and magnetic measurements. The X-ray diffraction patterns revealed the presence of an inverse spinel phase, corresponding to copper ferrite in all samples. Moreover, Fe{sub 2}O{sub 3} and CuO phases were also identified. The results reveal that the calcination temperature strongly influences the magnetic properties of the prepared oxides. (author)

  8. Reducing agent (NaBH4) dependent structure, morphology and magnetic properties of nickel ferrite (NiFe2O4) nanorods

    Science.gov (United States)

    Saravanakumar, B.; Rani, B. Jansi; Ravi, G.; Thambidurai, M.; Yuvakkumar, R.

    2017-04-01

    Nickel ferrite (Ni-Fe2O4) nanorods were synthesized employing a simple chemical reduction method. Reducing agent (NaBH4) influence on structural, morphological and magnetic properties of NiFe2O4 nanorods was investigated. XRD results clearly revealed the presence of inverse cubic spinel nickel ferrite structure characteristic peaks and confirmed the site inversion of inverse spinel structure of Fe3+ tetrahedral A site and Ni2+ octahedral B site. The observed Raman characteristic peak at 488 and 683 cm-1 were corresponded to E1 g and A1 g mode whereas A and B site respectively corresponded to tetrahedral and octahedral site of NiFe2O4 inverse spinel structure. The obtained PL peaks at 530 and 542 nm were attributed to the emission spectra of Fe3+ ions in site A of inverse spinel structure and Ni2+ ions in site B of inverse spinel structure respectively. SEM result clearly revealed that increase in NaBH4 concentration had remarkable impact on nanorods formation, nano-octahedron structure, homogeneity and regularity of Ni-Ferrites. VSM studies clearly revealed the soft ferromagnetic nature of NiFe2O4 and increase in NaBH4 concentration further induced raise in metal cations concentration in A- and B- site which might impact the resultant magnetization of ferrites.

  9. Low Temperature Synthesis of Magnesium Aluminate Spinel

    International Nuclear Information System (INIS)

    Lebedovskaya, E.G.; Gabelkov, S.V.; Litvinenko, L.M.; Logvinkov, D.S.; Mironova, A.G.; Odejchuk, M.A.; Poltavtsev, N.S.; Tarasov, R.V.

    2006-01-01

    The low-temperature synthesis of magnesium-aluminum spinel is carried out by a method of thermal decomposition in combined precipitated hydrates. The fine material of magnesium-aluminium spinel with average size of coherent dispersion's area 4...5 nanometers is obtained. Magnesium-aluminum spinel and initial hydrates were investigated by methods of the differential thermal analysis, the x-ray phase analysis and measurements of weight loss during the dehydration and thermal decomposition. It is established that synthesis of magnesium-aluminum spinel occurs at temperature 300 degree C by method of the x-ray phase analysis

  10. Investigation of ferrites properties with polyaniline layer in anticorrosive coatings

    Science.gov (United States)

    Brodinová, J.; Stejskal, J.; Kalendová, A.

    2007-05-01

    The presented paper is devoted to pigments of various chemical compositions and particles morphology surface-modified by polyaniline layer as corrosion inhibitors to coatings. They were synthetized of pigments on the spinel base, ferrites with contents of Zn, Mg and Ca cations with isometric and nonisometric forms of primary particles. These pigments were surface-modified with electrically conductive polymer, polyaniline, by the oxidative polymerization of aniline. The surface composition of coated pigments was characterized by Fourier transform infrared (FTIR) spectrum and scanning electron microscopy (SEM). For testing the properties of pigments prepared, the model coatings compositions were formulated using solvent-based alkyd resin. On the tested samples, corrosive tests were performed. The present research has shown that the presence of polyaniline has better efficiency in protection against corrosion than spinel-type pigments alone in the selected alkyd resin.

  11. Study of cation distribution in Cu-Zn ferrites

    Science.gov (United States)

    Sharma, P. K.; Samariya, Arvind; Pareek, S. P.; Dhawan, M. S.; Prasad, Arun S.; Dolia, S. N.

    2013-06-01

    Series of nanocrystalline Cu1-xZnxFe2O4 (x=0.2, 0.4, 0.6 and 0.8) spinel ferrites were synthesized using advanced sol-gel technique. The XRD measurements confirm the formation of cubic spinel structure in single phase for the entire sample. The average particle sizes of 14-18 nm with lattice parameter ranges from 8.38Å to 8.52Å were estimated. Cation distribution over the two sites of nanocrystalline Cu1-xZnxFe2O4 series, estimated from X-ray diffraction measurements is reported. The lattice parameter `a' is found to be increased with increase in Zn concentration, which is attributed to the larger ionic radius of Zn compared to that of Cu.

  12. Growth, structure, morphology, and magnetic properties of Ni ferrite films.

    Science.gov (United States)

    Dong, Chunhui; Wang, Gaoxue; Guo, Dangwei; Jiang, Changjun; Xue, Desheng

    2013-04-27

    The morphology, structure, and magnetic properties of nickel ferrite (NiFe2O4) films fabricated by radio frequency magnetron sputtering on Si(111) substrate have been investigated as functions of film thickness. Prepared films that have not undergone post-annealing show the better spinel crystal structure with increasing growth time. Meanwhile, the size of grain also increases, which induces the change of magnetic properties: saturation magnetization increased and coercivity increased at first and then decreased. Note that the sample of 10-nm thickness is the superparamagnetic property. Transmission electron microscopy displays that the film grew with a disorder structure at initial growth, then forms spinel crystal structure as its thickness increases, which is relative to lattice matching between substrate Si and NiFe2O4.

  13. Topotactic Synthesis of Porous Cobalt Ferrite Platelets from a Layered Double Hydroxide Precursor and Their Application in Oxidation Catalysis.

    Science.gov (United States)

    Ortega, Klaus Friedel; Anke, Sven; Salamon, Soma; Özcan, Fatih; Heese, Justus; Andronescu, Corina; Landers, Joachim; Wende, Heiko; Schuhmann, Wolfgang; Muhler, Martin; Lunkenbein, Thomas; Behrens, Malte

    2017-09-12

    Monocrystalline, yet porous mosaic platelets of cobalt ferrite, CoFe 2 O 4 , can be synthesized from a layered double hydroxide (LDH) precursor by thermal decomposition. Using an equimolar mixture of Fe 2+ , Co 2+ , and Fe 3+ during co-precipitation, a mixture of LDH, (Fe II Co II ) 2/3 Fe III 1/3 (OH) 2 (CO 3 ) 1/6 ⋅m H 2 O, and the target spinel CoFe 2 O 4 can be obtained in the precursor. During calcination, the remaining Fe II fraction of the LDH is oxidized to Fe III leading to an overall Co 2+ :Fe 3+ ratio of 1:2 as required for spinel crystallization. This pre-adjustment of the spinel composition in the LDH precursor suggests a topotactic crystallization of cobalt ferrite and yields phase pure spinel in unusual anisotropic platelet morphology. The preferred topotactic relationship in most particles is [111] Spinel ∥[001] LDH . Due to the anion decomposition, holes are formed throughout the quasi monocrystalline platelets. This synthesis approach can be used for different ferrites and the unique microstructure leads to unusual chemical properties as shown by the application of the ex-LDH cobalt ferrite as catalyst in the selective oxidation of 2-propanol. Compared to commercial cobalt ferrite, which mainly catalyzes the oxidative dehydrogenation to acetone, the main reaction over the novel ex-LDH cobalt is dehydration to propene. Moreover, the oxygen evolution reaction (OER) activity of the ex-LDH catalyst was markedly higher compared to the commercial material. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of Zn substitution on morphology and magnetic properties of copper ferrite nanofibers

    OpenAIRE

    Pan, Weiwei; Gu, Fengmei; Qi, Kuo; Liu, Qingfang; Wang, Jianbo

    2011-01-01

    Spinel ferrite Cu1-xZnxFe2O4 nanofibers over a compositional range 0 < x < 1 were prepared by electrospinning combined with sol-gel method. The influence of Zn2+ ions substitution on morphology, structure, and magnetic properties of copper ferrite has been investigated. The results show that surface of CuFe2O4 nanofibers consists of small open porosity, while surface of doped nanofibers reveals smooth and densified nature. With increasing Zn substitution, saturation magnetization initially in...

  15. Synthesis and microwave absorbing properties of Cobalt ferrite

    Science.gov (United States)

    Liu, H. Y.; Li, Y. S.

    2018-01-01

    Cobalt ferrite power CoFe2O4 was synthesized through the chemical co-precipitation method. The structure, morphology and microwave absorbing properties were studied by changing raw materials, annealing temperature and experimental steps. The measurements of X-ray diffraction and scanning electron micrograph suggest that annealed CoFe2O4 sample is still a spinel structure. Moreover, the crystalline and grain sizes become large with the enhancement of annealing temperature. The measurements of microwave absorbing properties show that the reflection loss decreases continuously, and the wavelength of maximum absorption loss shift to short-wave limit as the sample thickness increases.

  16. Mecanosynthesis of partially inverted zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Nachbaur, Virginie [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 St Etienne du Rouvray (France)], E-mail: virginie.nachbaur@univ-rouen.fr; Tauvel, Guillaume; Verdier, Thomas [Laboratoire d' Analyse Spectroscopique et de Traitements de Surfaces, Universite de Rouen, 76801 St Etienne du Rouvray (France); Jean, Malick [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 St Etienne du Rouvray (France); Juraszek, Jean [Laboratoire d' Analyse Spectroscopique et de Traitements de Surfaces, Universite de Rouen, 76801 St Etienne du Rouvray (France); Houvet, David [LUSAC (EA2607), Groupe Ceramique Capteurs Composants et Procedes, Universite de Caen Basse-Normandie, BP 78, 50130 Cherbourg Octeville (France)

    2009-04-03

    Synthesis of zinc ferrite (ZnFe{sub 2}O{sub 4}) by high-energy ball-milling from a powder mixture of zinc oxide (ZnO) and hematite ({alpha}-Fe{sub 2}O{sub 3}) is investigated. The millings are performed under air using tungsten carbide vials and balls. The spinel phase appears within 2 h grinding and the reaction is almost complete after 24 h. The broadening of X-ray diffraction lines shows that the crystallite size is around 10 nm. Moessbauer spectra indicate that there is some inversion in the ferrite, leading to the formula (Zn{sub 0.31}{sup 2+}Fe{sub 0.69}{sup 3+}){sub A}(Zn{sub 0.69}{sup 2+}Fe{sub 1.31}{sup 3+}){sub B}O{sub 4}{sup 2-} for the 24 h sample. We also show that preliminary millings of the initial oxides (zincite and hematite) slow down the reaction. Finally, dilatometric studies show that the shrinkage proceeds in several steps, due to a grain size distribution in the sample.

  17. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    Science.gov (United States)

    Debnath, A.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl3) and Calcium chloride dihydrate (CaCl2.2H2O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  18. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, A., E-mail: debnathanimesh@gmail.com [Department of Civil Engineering, National Institute of Technology Agartala, Jirania, West Tripura, 799046 India (India); Bera, A.; Saha, B. [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Chattopadhyay, K. K. [Department of Physics, Jadavpur University, Kolkata 700 032 (India)

    2016-05-23

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl{sub 3}) and Calcium chloride dihydrate (CaCl{sub 2}.2H{sub 2}O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  19. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    International Nuclear Information System (INIS)

    Debnath, A.; Bera, A.; Saha, B.; Chattopadhyay, K. K.

    2016-01-01

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl 3 ) and Calcium chloride dihydrate (CaCl 2 .2H 2 O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  20. The structural and magnetic properties of dual phase cobalt ferrite.

    Science.gov (United States)

    Gore, Shyam K; Jadhav, Santosh S; Jadhav, Vijaykumar V; Patange, S M; Naushad, Mu; Mane, Rajaram S; Kim, Kwang Ho

    2017-05-31

    The bismuth (Bi 3+ )-doped cobalt ferrite nanostructures with dual phase, i.e. cubic spinel with space group Fd3m and perovskite with space group R3c, have been successfully engineered via self-ignited sol-gel combustion route. To obtain information about the phase analysis and structural parameters, like lattice constant, Rietveld refinement process is applied. The replacement of divalent Co 2+ by trivalent Bi 3+ cations have been confirmed from energy dispersive analysis of the ferrite samples. The micro-structural evolution of cobalt ferrite powders at room temperature under various Bi 3+ doping levels have been identified from the digital photoimages recorded using scanning electron microscopy. The hyperfine interactions, like isomer shift, quadrupole splitting and magnetic hyperfine fields, and cation distribution are confirmed from the Mossbauer spectra. Saturation magnetization is increased with Bi 3+ -addition up to x = 0.15 and then is decreased when x = 0.2. The coercivity is increased from 1457 to 2277 G with increasing Bi 3+ -doping level. The saturation magnetization, coercivity and remanent ratio for x = 0.15 sample is found to be the highest, indicating the potential of Bi 3+ -doping in enhancing the magnetic properties of cobalt ferrite.

  1. Modern Ferrite Technology

    CERN Document Server

    Goldman, Alex

    2006-01-01

    Modern Ferrite Technology, 2nd Ed. offers the readers an expert overview of the latest ferrite advances as well as their applications in electronic components. This volume develops the interplay among material properties, component specification and device requirements using ferrites. Throughout, emphasis is placed on practical technological concerns as opposed to mathematical and physical aspects of the subject. The book traces the origin of the magnetic effect in ferrites from the level of the simplest particle and then increases the scope to include larger hierarchies. From the desired magnetic properties, the author deduces the physical and chemical material parameters, taking into consideration major chemistry, impurity levels, ceramic microstructures and grain boundary effects. He then discusses the processing conditions and associated conditions required for implementation. In addition to conventional ceramic techniques, he describes non-conventional methods such as co-precipitation, co-spray roasting ...

  2. Investigations of cations distributions and morphology of cobalt ferrite magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chandekar, Kamlesh V., E-mail: chandekar.kamlex@gmail.com; Kant, K. Mohan [Dept. of Applied Physics, Visvesvaraya National Institute of Technology, Nagpur, - 440010 (India)

    2016-05-06

    Cobalt ferrite nanoparticles were synthesized by co-precipitation method and structural properties was investigated by X-ray diffraction (XRD) at room temperature. X-ray diffraction data was used to determine lattice parameter, X-ray density, distributions of cations among tetrahedral and octahedral sites, site radii, ionic radii and bond length of inverse spinel cobalt ferrite. XRD analysis revealed crystallinity and high intense peak correspond to cubic inverse spinel structure with average crystalline size measured by X-ray line profile fitting was found to be 13nm for most intense peak (311). The surface morphology and microstructural feature was investigated by TEM analysis which revealed that particle size varying from 12-22 nm with selected electron diffraction pattern (SAED).

  3. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  4. Thermodynamic Modelling of Fe-Cr-Ni-Spinel Formation at the Light-Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kurepin, V.A.; Kulik, D.A.; Hitpold, A.; Nicolet, M

    2002-03-01

    In the light water reactors (LWR), the neutron activation and transport of corrosion products is of concern in the context of minimizing the radiation doses received by the personnel during maintenance works. A practically useful model for transport and deposition of the stainless steel corrosion products in LWR can only be based on an improved understanding of chemical processes, in particular, on the attainment of equilibrium in this hydrothermal system, which can be described by means of a thermodynamic solid-solution -aqueous-solution (SSAS) model. In this contribution, a new thermodynamic model for a Fe-Cr-Ni multi-component spinel solid solutions was developed that considers thermodynamic consequences of cation interactions in both spinel sub-Iattices. The obtained standard thermodynamic properties of two ferrite and two chromite end-members and their mixing parameters at 90 bar pressure and 290 *c temperature predict a large miscibility gap between (Fe,Ni) chromite and (Fe,Ni) ferrite phases. Together with the SUPCRT92-98 thermo- dynamic database for aqueous species, the 'spinel' thermodynamic dataset was applied to modeling oxidation of austenitic stainless steel in hydrothermal water at 290*C and 90 bar using the Gibbs energy minimization (GEM) algorithm, implemented in the GEMS-PSI code. Firstly, the equilibrium compositions of steel oxidation products were modelIed as function of oxygen fugacity .fO{sub 2} by incremental additions of O{sub 2} in H{sub 2}O-free system Cr-Fe- Ni-O. Secondly, oxidation of corrosion products in the Fe-Cr-Ni-O-H aquatic system was modelIed at different initial solid/water ratios. It is demonstrated that in the transition region from hydrogen regime to oxygen regime, the most significant changes in composition of two spinel-oxide phases (chromite and ferrite) and hematite must take place. Under more reduced conditions, the Fe-rich ferrite (magnetite) and Ni-poor chromite phases co-exist at equilibrium with a metal Ni

  5. Evidence of the spin Seebeck effect in Ni-Zn ferrites polycrystalline slabs

    Science.gov (United States)

    Arboleda, J. D.; Arnache, O.; Aguirre, M. H.; Ramos, R.; Anadón, A.; Ibarra, M. R.

    2018-02-01

    We report on the observation of the spin Seebeck effect in Ni-Zn ferrites slabs with different Zn concentration. All samples have a spinel structure confirmed by XRD and TEM. We fully characterize the magnetic properties by VSM and Mössbauer spectroscopy. Samples exhibit a nonmonotonic magnetization behavior depending on the structural inversion parameter, however we found a spin Seebeck response voltage of about 25.5 nV/K independent of the magnetization and the inversion degree.

  6. X-ray and magnetic studies of Zn 2 substituted Ni–Pb ferrites

    Indian Academy of Sciences (India)

    Seven samples of the polycrystalline, Ni1.25–ZnPb0.25Fe1.5O4 ( = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) ferrites, were prepared by usual double sintering ceramic method. X-ray diffraction patterns of the samples revealed single-phase cubic spinel structure. The magnetic properties were investigated by means of ...

  7. X-ray and magnetic studies of Zn substituted Ni–Pb ferrites

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Seven samples of the polycrystalline, Ni1⋅25–xZnxPb0⋅25Fe1⋅5O4 (x = 0⋅0, 0⋅1, 0⋅2, 0⋅3, 0⋅4, 0⋅5 and 0⋅6) ferrites, were prepared by usual double sintering ceramic method. X-ray diffraction patterns of the samples revealed single-phase cubic spinel structure. The magnetic properties were investigated by ...

  8. Structure and magnetic properties of ZnO coated MnZn ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mallesh, Shanigaram [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Sunny, Annrose; Vasundhara, Mutta [Materials Science and Technology Division, CSIR-NIIST, Thiruvananthapuram, Kerala 695019 (India); Srinivas, Veeturi, E-mail: veeturi@iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-11-15

    A comparative study of structural and magnetic properties of MnZn spinel ferrite (SF) and ZnO coated MnZn ferrite (ZF) nanoparticles (NPs) has been carried out. The as-prepared NPs show a single phase cubic spinel structure, with lattice parameter ~8.432 Å. However, α-Fe{sub 2}O{sub 3} impurity phase emerge from SF particles when subjected to annealing at 600 °C in air. The weight fraction of α-Fe{sub 2}O{sub 3} phase increases with increasing Mn concentration (9% for x=0.2 and 53% for x=0.6). On the other hand in ZF (x=0.2 and 0.4) NPs no trace of impurity phase is observed when annealed at 600 °C. The magnetic measurements as a function of field and temperature revealed superparamagnetic like behavior with cluster moment ~10{sup 4} μ{sub B} in as-prepared particles. The cluster size obtained from the magnetic data corroborates well with that estimated from structural analysis. Present results on ZnO coated MnZn ferrite particles suggest that an interfacial (ZnO@SF) reaction takes place during annealing, which results in formation of Zn-rich ferrite phase in the interface region. This leads to deterioration of magnetic properties even in the absence of α-Fe{sub 2}O{sub 3} impurity phase. - Highlights: • The properties of ZnO coated MnZn ferrite NPs are compared with uncoated NPs. • The structural data reveals that the ZnO shell protects ferrite core from degradation. • The field and temperature dependence of magnetization suggests SPM like behavior. • From the magnetic isotherms average cluster moment is estimated to be ~10{sup 4} μ{sub B.} • Magnetic data suggests formation of Zn-rich ferrite phase in interfacial region.

  9. Structural, morphological and electrical properties of Sn-substituted Ni-Zn ferrites synthesized by double sintering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M.A. [Department of Physics, Chittagong University of Engineering and Technology (CUET), Chittagong 4349 (Bangladesh); Uddin, M.M., E-mail: mohi@cuet.ac.bd [Department of Physics, Chittagong University of Engineering and Technology (CUET), Chittagong 4349 (Bangladesh); Khan, M.N.I. [Materials Science Division, Atomic Energy Center, Dhaka 1000 (Bangladesh); Chowdhury, F.U.-Z. [Department of Physics, Chittagong University of Engineering and Technology (CUET), Chittagong 4349 (Bangladesh); Haque, S.M. [Materials Science Division, Atomic Energy Center, Dhaka 1000 (Bangladesh)

    2017-02-15

    The Sn-substituted Ni-Zn ferrites, (0.0≤x≤0.30), have been synthesized by the standard double sintering technique from the oxide nanopowders of Ni, Zn, Fe and Sn. The structural and electrical properties have been investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), DC resistivity and dielectric measurements. From XRD data, the single cubic spinel phase has been confirmed for x≤0.1, whereas for x>0.1 an extra intermediate phase has been detected along with the cubic spinel phase of Ni-Zn ferrite. The grain size is increased due to Sn substitution in Ni-Zn ferrites. DC resistivity as a function of temperature has been measured by two probe method. The semiconducting nature has been found operative in the samples. The DC resistivity was found to decrease whilst the dielectric constant increased with increasing Sn content in Ni-Zn ferrites. The unusual behavior of the dielectric loss factor of the ferrites was explained by the Rezlescu model. The electrical relaxation of the ferrites has been studied in terms of electric modulus formalism and the time for dielectric relaxation was calculated. The contribution of grain resistance has been studied from the Cole-Cole plot. The suitability to use the as prepared samples in the miniaturized memory devices based capacitive components or energy storage principles are confirmed from the values of dielectric constant. - Highlights: • Sn-substituted Ni-Zn ferrites with cubic spinel structure have been synthesized. • a{sub th} is calculated and well compared with a{sub expt}. • Dielectric unusual behavior has been successfully explained by the Rezlescu model. • Long τ (ns) is determined, can be utilized for memory and spintronics devices.

  10. Investigation of structural and magnetic properties of Zr-Co doped nickel ferrite nanomaterials

    Science.gov (United States)

    Ali, Rajjab; Khan, Muhammad Azhar; Manzoor, Alina; Shahid, Muhammad; Haider, Sajjad; Malik, Abdul Sattar; Sher, Muhammad; Shakir, Imran; Farooq Warsi, Muhammad

    2017-05-01

    Nano-sized Zr-Co doped nickel ferrites with nominal composition, NiZrxCoxFe2-2xO4 (x=0.0, 0.2, 0.4, 0.6, 0.8) were synthesized using the micro-emulsion route. The structural elucidation of the synthesized materials was carried out by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The XRD analysis confirmed face centered cubic (FCC) structure of all compositions of NiZrxCoxFe2-2xO4 nanocrystallites. Crystallite size was calculated by Scherrer's formula found in the range 10-15 nm. The variation in lattice parameter as determined by XRD data agreed with size variation of host (Fe3+) and guest (Zr4+ and Co2+) cations. FTIR spectra of doped NiFe2O4 exhibited the typical octahedral bands at 528.4 cm-1 which is the characteristic feature of spinel structure of spinel ferrites. The characterized spinel NiZrxCoxFe2-2xO4 nano-ferrites were evaluated for their potential applications by magnetic hysteresis loops and dielectric measurements. The value of saturation magnetization (Ms) decreased from 47.9 to 13.09 emu/g up to x=0.8 with ups and downs fluctuations in between x=0.0 to x=0.8. The high values of Ms of some compositions predicted the potential applications in high density perpendicular recording media and microwave devices. The frequency dependent behavior of permittivity (ε') is recorded and discussed with the help of hopping mechanism of both holes and electrons. The dielectric and magnetic data of NiZrxCoxFe2-2xO4 nano-ferrites suggested the potential applications of these ferrite nanoparticles in high frequency and magnetic data storage devices fabrication.

  11. Effect of Zn-doping on structural and magnetic properties of copper ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Nisha; Thirupathi, Gadipelly; Singh, Rajender [School of Physics, University of Hyderabad, Central University P.O. Hyderabad-500046 (India)

    2016-05-23

    The nanoparticles of CuFe{sub 2}O{sub 4} (CF) and Cu{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (CZF) were synthesized using co-precipitation method to study the effect of Zn doping in Cu-ferrite. The X-ray diffraction (XRD) patterns were well fitted with two-phase structure using Rietveld analysis as Fd-3 m space group (spinel system) and C12/c1 space group (monoclinic system CuO-phase). The average crystallite size of the CF and CZF nanoparticles for spinel structure are 6 and 7 nm respectively. The spinel phase fraction is increased from 56% to 71% with Zn-doping of 20% in CF. The transmission electron micrograph analysis showed the narrow size distribution for CZF nanoparticles. The magnetization plots as a function of magnetic field (M (H)) of CF and CZF nanoparticles indicate superparamagnetic behavior. The magnetization is increased with Zn-doping in CF. The stable spinel Cu-ferrite can be obtained with Zn-doping in CF.

  12. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders.

    Science.gov (United States)

    Rus, S F; Vlazan, P; Herklotz, A

    2016-01-01

    Nanocrystalline ferrites; CoFe₂O₄ (CFO) and CoFe₁.₉Zr₀.₁O₄ (CFZO) have been synthesized through chemical coprecipitation method. The role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. The increase in the saturation magnetization with the substitution of Zr suggests the preferential occupation of Zr⁴⁺ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. In the present study the investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials.

  13. Development of Ni-Ferrite-Based PVDF Nanomultiferroics

    Science.gov (United States)

    Behera, C.; Choudhary, R. N. P.; Das, Piyush R.

    2017-10-01

    Thin-film polyvinylidene fluoride (PVDF)-spinel ferrite nanocomposites with 0-3 connectivity and varying composition, i.e., (1 - x)PVDF- xNiFe2O4 ( x = 0.05, 0.1, 0.15), have been fabricated by a solution-casting route. The basic crystal data and microstructure of the composite samples were obtained by x-ray powder diffraction analysis and scanning electron microscopy, respectively. Preliminary structural analysis showed the presence of polymeric electroactive β-phase of PVDF (matrix) and spinel ferrite (filler) phase in the composites. The composites were found to be flexible with high relative dielectric constant ( ɛ r) and low loss tangent (tan δ). Detailed studies of their electrical characteristics using complex impedance spectroscopy showed the contributions of bulk (grains) and grain boundaries in the resistive and capacitive properties of the composites. Study of the frequency-dependent electrical conductivity at different temperatures showed that Jonscher's power law could be used to interpret the transport properties of the composites. Important experimental data and results obtained from magnetic as well ferroelectric hysteresis loops and the first-order magnetoelectric coefficient suggest the suitability of some of these composites for fabrication of multifunctional devices. The low electrical conductivity, high dielectric constant, and low loss tangent suggest that such composites could be used in capacitor devices.

  14. Ferrite materials for memory applications

    CERN Document Server

    Saravanan, R

    2017-01-01

    The book discusses the synthesis and characterization of various ferrite materials used for memory applications. The distinct feature of the book is the construction of charge density of ferrites by deploying the maximum entropy method (MEM). This charge density gives the distribution of charges in the ferrite unit cell, which is analyzed for charge related properties.

  15. Structural and electrical properties of nanometric Ni-Cu ferrites synthesized by citrate precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.A., E-mail: moala47@hotmail.com [Materials Science Lab (1), Physics Department, Faculty of Science, Cairo University, Giza (Egypt); Mansour, S.F. [Physics Department, Faculty of Science, Zagazig University (Egypt); Afifi, M. [Materials Science Lab (1), Physics Department, Faculty of Science, Cairo University, Giza (Egypt)

    2012-01-15

    Nanometric nickel copper ferrites Ni{sub 1-x}Cu{sub x}Fe{sub 2}O{sub 4}, 0{<=}x{<=}0.45 were prepared by the citrate precursor method. X-ray diffraction measurements confirm the formation of single phase cubic spinel structure. The lattice parameter (a) is increased with increasing Cu{sup 2+} ion substitution. The crystallite size was calculated from XRD data and compared with that obtained from TEM micrographs. A significant increase in the density is observed with increasing Cu content. The IR absorption spectra were used for the detection and confirmation of the chemical bonds in spinel ferrites. The dielectric constant {epsilon}' and dielectric loss showed a decrease with increasing frequency for all samples. The decrease in the ac conductivity was ascribed to the increase in hopping length. - Highlights: > Ni-Cu ferrite was successfully prepared using citrate auto combustion method. > The lattice parameter and the density increased with increasing Cu{sup 2+} content. > We suggest the use of Ni ferrite with large Cu{sup 2+} content in electrical devices.

  16. Competing crystallite size and zinc concentration in silica coated cobalt ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    K. Nadeem

    2014-06-01

    Full Text Available Silica coated (30 wt% cobalt zinc ferrite (Co1−xZnxFe2O4, x=0, 0.2, 0.3, 0.4, 0.5 and 1 nanoparticles were synthesized by using sol–gel method. Silica acts as a spacer among the nanoparticles to avoid the agglomeration. X-ray diffraction (XRD reveals the cubic spinel ferrite structure of nanoparticles with crystallite size in the range 37–45 nm. Fourier transform infrared (FTIR spectroscopy confirmed the formation of spinel ferrite and SiO2. Scanning electron microscopy (SEM images show that the nanoparticles are nearly spherical and non-agglomerated due to presence of non-magnetic SiO2 surface coating. All these measurements signify that the structural and magnetic properties of Co1−xZnxFe2O4 ferrite nanoparticles strongly depend on Zn concentration and nanoparticle average crystallite size in different Zn concentration regimes.

  17. Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Velinov, N., E-mail: nikivelinov@ic.bas.bg; Petrova, T. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria); Tsoncheva, T.; Genova, I. [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences (Bulgaria); Koleva, K. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria); Kovacheva, D. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences (Bulgaria); Mitov, I. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria)

    2016-12-15

    Spinel ferrites with nominal composition Cu {sub 0.5}Mn {sub 0.5}Fe {sub 2}O{sub 4} and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe {sub 5}C{sub 2} were observed by the influence of the reaction medium.

  18. Magnetic and catalytic properties of inverse spinel CuFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Anandan, S., E-mail: sanand@nitt.edu [Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620 015 (India); Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan (China); Selvamani, T.; Prasad, G. Guru [Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620 015 (India); Asiri, A.M. [The Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21413 (Saudi Arabia); Wu, J.J., E-mail: jjwu@fcu.edu.tw [Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan (China)

    2017-06-15

    Highlights: • Copper ferrite (CuFe{sub 2}O{sub 4}) nanoparticles were synthesized via citrate-nitrate combustion method. • Spectroscopic information’s have found that CuFe{sub 2}O{sub 4} nanoparticles as an inverse spinel structure. • Magnetic study exhibits CuFe{sub 2}O{sub 4} nanoparticles have ferromagnetic behavior. • CuFe{sub 2}O{sub 4} nanoparticles employed for photocatalytic decolourisation of methylene blue under visible light irradiation. - Abstract: In this research, inverse spinel copper ferrite nanoparticles (CuFe{sub 2}O{sub 4} NPs) were synthesized via citrate-nitrate combustion method. The crystal structure, particle size, morphology and magnetic studies were investigated using various instrumental tools to illustrate the formation of the inverse spinel structure. Mossbauer spectrometry identified Fe is located both in the tetrahedral and octahedral site in the ratio (40:60) and the observed magnetic parameters values such as saturation magnetization (M{sub s} = 20.62 emu g{sup −1}), remnant magnetization (M{sub r} = 11.66 emu g{sup −1}) and coercivity (H{sub c} = 63.1 mTesla) revealed that the synthesized CuFe{sub 2}O{sub 4} NPs have a typical ferromagnetic behaviour. Also tested CuFe{sub 2}O{sub 4} nanoparticles as a photocatalyst for the decolourisation of methylene blue (MB) in the presence of peroxydisulphate as the oxidant.

  19. Solubility limits in Mn–Mg ferrites system under hydrothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, O.M., E-mail: omhemeda@yahoo.co.uk [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Mostafa, N.Y. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Faculty of Science, Taif University, PO Box 888, Al-Haweiah, Taif (Saudi Arabia); Abd Elkader, O.H. [Electron Microscope and Thin Films Department, National Research Center, Dokki 12622, Cairo (Egypt); Electron Microscope Unit, Zoology Department, King Saud University, Riyadh 11451 (Saudi Arabia); Ahmed, M.A. [Physics Department, Faculty of Science, Al Azhar University, Nasr City, Cairo (Egypt)

    2014-09-01

    In the present investigation, we successfully synthesized a pure MnFe{sub 2}O{sub 4} ferrite by the hydrothermal method. Moreover, the effect of Mg ion content on the formation of Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} particles (with x varying from 0.1 to 1.0) was also investigated using XRD, SEM, TEM and Mossbauer Spectroscopy. Phases formed in the system Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4}; 0.0≤x≤1.0 were investigated under hydrothermal conditions at 453 K.The produced phases were characterized by X-ray diffraction, Scanning, transmission microscopy and Mossbauer spectroscopy. The information of composition, cation distribution in the spinel structure and the particle size of the products were obtained. The spinel ferrites; Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} were formed in the range 0.0≤x≤0.3. However, sample with x>0.3 showed semi-crystalline magnesium hydroxide (Mg(OH){sub 2}) and hematite (Fe{sub 2}O{sub 3}) beside the ferrite phase. For x=1.0, only magnesium hydroxide and hematite are formed without any ferrites. Particles of uniform size around 10–20 nm were obtained in the spinel structure of Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} with x=0.0 and 0.1. The corresponding average crystallite size for each sample was 40.3 nm and 39.2 nm respectively. In addition, the Mossbauer spectra were analyzed into two subspectra, one for the tetrahedral A-site and the other for the octahedral B-site. The Mossbauer parameters were determined and discussed for the studied system. The cation distribution was estimated from the analysis of the Mossbauer spectra as well as the X-ray diffraction patterns. The results showed that Mg ions occupy mainly B-site while both Mn and Fe ions are distributed between A- and B-sites. - Highlights: • Mossbauer characterization of Mg–Mn ferrite prepared by hydrothermal route. • X-ray powder diffraction analysis of Mg–Mn ferrite prepared by hydrothermal route. • Solubility limit of MgMn ferrite under

  20. Synthesis of nanorods and mixed shaped copper ferrite and their applications as liquefied petroleum gas sensor

    Science.gov (United States)

    Singh, Satyendra; Yadav, B. C.; Prakash, Rajiv; Bajaj, Bharat; lee, Jae Rock

    2011-10-01

    Present paper reports the preparation and characterization of nanorods and mixed shaped (nanospheres/nanocubes) copper ferrite for liquefied petroleum gas (LPG) sensing at room temperature. The structural, surface morphological, optical, electrical as well as LPG sensing properties of the copper ferrite were investigated. Single phase spinel structure of the CuFe 2O 4 was confirmed by XRD data. The minimum crystallite size of copper ferrite was found 25 nm. The stoichiometry was confirmed by elemental analysis and it revealed the presence of oxygen, iron and copper elements with 21.91, 12.39 and 65.70 atomic weight percentages in copper ferrite nanorods. The band gap of copper ferrite was 3.09 and 2.81 eV, respectively for nanospheres/nanocubes and nanorods. The sensing films were made by using screen printing technology and investigated with the exposure of LPG. Our results show that the mixed shaped CuFe 2O 4 had an improved sensing performance over that of the CuFe 2O 4 nanorods, of which a possible sensing mechanism related to a surface reaction process was discussed. Sensor based on mixed shaped copper ferrite is 92% reproducible after one month. The role of PEG in the synthesis for obtaining nanospheres/nanocubes has also been demonstrated.

  1. Nano-crystalline Magnesium Substituted Cadmium Ferrites as X-band Microwave Absorbers

    Science.gov (United States)

    Bhongale, S. R.; Ingawale, H. R.; Shinde, T. J.; Pubby, Kunal; Bindra Narang, Sukhleen; Vasambekar, P. N.

    2017-11-01

    The magnetic and electromagnetic properties of nanocrystalline spinel ferrites with chemical formula MgxCd1-xFe2O4 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) prepared by oxalate co-precipitation method under microwave sintering technique were studied. The magnetic and dielectric parameters of ferrites were determined by using vibrating sample magnetometer (VSM) and vector network analyzer (VNA) respectively. Magnetic parameters such as saturation magnetizations (Ms), coercive force (Hc), remnant magnetization (Mr), Yafet-Kittel (Y-K) angle of ferrites were determined from hysteresis loops. The variation of real permittivity (ε‧), dielectric loss tangent (tanδe), real permeability (μ‧) and magnetic loss tangent (tanδm) with frequency and Mg2+content were studied in X-band frequency range. The values of ε‧, tanδe, μ‧ and tanδm of ferrites were observed to be in range of 4.2 - 6.12, 2.9 × 10-1 - 6 × 10-2, 0.6 - 1.12 and 4.5 × 10-1 - 2 × 10-3 respectively for the prepared compositions. The study of variation of reflection loss with frequency of all ferrites shows that ferrite with magnesium content x = 0.4 can be potential candidate for microwave applications in X-band.

  2. Preparation and characterization of the cobalt ferrite nano-particles by reverse coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Huixia, Feng, E-mail: fenghx66@163.com; Baiyi, Chen; Deyi, Zhang; Jianqiang, Zhang; Lin, Tan

    2014-04-01

    In this paper, cobalt ferrite nano-particles were rapidly prepared using a reverse coprecipitation method. The effects of pH value, aging time, aging temperature and calcination temperature were studied by VSM, XRD and TEM. The results presented that the conditions to obtain the cobalt ferrite nano-particles with a perfect cubic spinel ferrite type structure are the pH value of 12.00, aging time of 60 min, aging temperature of 92 °C and calcination temperature of 800 °C. The crystallite size of cobalt ferrite increased with increasing the aging and calcination temperature. The saturation magnetization of cobalt ferrite increased with increasing the aging and calcination temperature. The VSM analysis demonstrated that the optimum sample has a high saturation magnetization and proper coercivity, 72.95 emu/g and 717 Oe, respectively. Furthermore, the particle size estimated from the TEM was seen to be larger than that observed from the XRD analysis. - Highlights: • Cobalt ferrite nano-particles were synthesized by reverse precipitation method. • The synthesis conditions were investigated in detail. • The optimum sample presents high saturation magnetization and proper coercivity. • The optimum sample was approximately spherical shape.

  3. Sol-Gel Synthesis and Characterization of Selected Transition Metal Nano-Ferrites

    Directory of Open Access Journals (Sweden)

    Aurelija GATELYTĖ

    2011-09-01

    Full Text Available In the present work, the sinterability and formation of nanosized yttrium iron garnet (Y3Fe5O12, yttrium perovskite ferrite (YFeO3, cobalt, nickel and zinc iron spinel (CoFe2O4, NiFe2O4 and ZnFe2O4, respectively powders by an aqueous sol-gel processes are investigated. The metal ions, generated by dissolving starting materials of transition metals in the diluted acetic acid were complexed by 1,2-ethanediol to obtain the precursors for the transition metal ferrite ceramics. The phase purity of synthesized nano-compounds was characterized by infrared spectroscopy (IR and powder X-ray diffraction analysis (XRD. The microstructural evolution and morphological features of obtained transition metal ferrites were studied by scanning electron microscopy (SEM.http://dx.doi.org/10.5755/j01.ms.17.3.598

  4. Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method

    Directory of Open Access Journals (Sweden)

    Tejabhiram Yadavalli

    2016-05-01

    Full Text Available A facile low temperature co-precipitation method for the synthesis of crystalline cobalt ferrite nanostructures using ferrous sulfate salt as the precursor has been discussed. The prepared samples were compared with nanoparticles prepared by conventional co-precipitation and hydrothermal methods using ferric nitrate as the precursor. X-ray diffraction studies confirmed the formation of cubic spinel cobalt ferrites when dried at 110 °C as opposed to conventional methods which required higher temperatures/pressure for the formation of the same. Field emission scanning electron microscope studies of these powders revealed the formation of nearly spherical nanostructures in the size range of 20-30 nm which were comparable to those prepared by conventional methods. Magnetic measurements confirmed the ferromagnetic nature of the cobalt ferrites with low magnetic remanance. Further magnetic hyperthermia studies of nanostructures prepared by low temperature method showed a rise in temperature to 50 °C in 600 s.

  5. 57Fe internal field nuclear magnetic resonance and Mössbauer spectroscopy study of Li-Zn ferrites

    Science.gov (United States)

    Anupama, A. V.; Manjunatha, M.; Rathod, V.; Jali, V. M.; Damle, R.; Ramesh, K. P.; Sahoo, B.

    2018-01-01

    We report the internal field nuclear magnetic resonance (IFNMR) and Mössbauer spectroscopy study of Li-Zn ferrites at RT. The results were supported by the IFNMR data measured at 77 K. As Zn concentration increases the IFNMR echo amplitude decreases and below certain Zn concentration no signal was detected. At RT the echo amplitude vanishes at a lower Zn concentration, whereas at 77 K, the echo amplitude does not vanish completely (except for pure Zn-ferrite). However, in Mössbauer spectroscopy at RT, we have observed magnetically ordered state of all the Li-Zn ferrite samples. This discrepancy could be related to the difference between the time scale of detection of the spins by Mössbauer spectroscopy (10-7-10-10 s) and NMR spectroscopy (10-6 s). Hence, sensitivity of zero-field NMR depends on the magnetic hyperfine field, temperature and abundance of the magnetic cations at the lattice of the spinel ferrites. We have demonstrated that the 'two-equal-pulses' sequence leads to higher echo signal than the spin echo pulse sequence due to the presence of distribution of internal magnetic fields throughout the material. We obtained a limiting value for the fraction of spins needed to produce an echo signal at a particular temperature and at a particular site of the Li-Zn ferrite spinels that can be sensitively detected by pulsed IFNMR technique.

  6. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  7. Magnetic and Structural Investigations of Nanocrystalline Cobalt-Ferrite

    Directory of Open Access Journals (Sweden)

    I. Sharifi

    2012-10-01

    Full Text Available Cobalt ferrite is an important magnetic material due to their large magneto-crystalline anisotropy, high cohercivity, moderate saturation magnetization and chemical stability.In this study, cobalt ferrites Nanoparticles have been synthesized by the co-precipitation method and a new microemulsion route. We examined the cation occupancy in the spinel structure based on the “Rietveld with energies” method. The Xray measurements revealed the production of a broad single ferrite cubic phase with the average particle sizes of about 12 nm and 7nm, for co-precipitation and micro-emulsion methods, respectively. The FTIR measurements between 400 and 4000 cm-1 confirmed the intrinsic cation vibrations of the spinelstructure for the two methods. Furthermore, the Vibrating Sample Magnetometer (VSM was carried out at room temperature to study the structural and magnetic properties. The results revealed that by changing the method from co-precipitation to the reverse micelle the material exhibits a softer magnetic behavior in such a way that both saturation magnetization and coercivity decrease from 58 to 29 emu/g and from 286 to 25 Oe, respectively.

  8. Influence of rare earth ion doping (Ce and Dy) on electrical and magnetic properties of cobalt ferrites

    Science.gov (United States)

    Hashim, Mohd.; Raghasudha, M.; Meena, Sher Singh; Shah, Jyoti; Shirsath, Sagar E.; Kumar, Shalendra; Ravinder, D.; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.

    2018-03-01

    Ce and Dy substituted Cobalt ferrites with the chemical composition CoCexDyxFe2-2xO4 (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) were synthesized through the chemical route, citrate-gel auto-combustion method. The structural characterization was carried out with the help of XRD Rieveld analysis, SEM and EDAX analysis. Formation of spinel cubic structure of the ferrites was confirmed by XRD analysis. SEM and EDAX results show that the particles are homogeneous with slight agglomeration without any impurity pickup. The effect of RE ion doping (Ce and Dy) on the dielectric, magnetic and impedance studies was systematically investigated by LCR meter, Vibrating Sample Magnetometer and Impedance analyzer respectively at room temperature in the frequency range of 10 Hz-10 MHz. Various dielectric parameters viz., dielectric constant, dielectric loss and ac conductivity were measured. The dielectric constant of all the ferrite compositions shows normal dielectric dispersion of ferrites with frequency. Impedance analysis confirms that the conduction in present ferrites is majorly due to the grain boundary mechanism. Ferrite sample with x = 0.03 show high dielectric constant, low dielectric loss and hence can be utilized in high frequency electromagnetic devices. Magnetization measurements indicate that with increase in Ce and Dy content in cobalt ferrites, the magnetization values decreased and coercivity has increased.

  9. Effect of Jahn-Teller distortion on the short range magnetic order in copper ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Abdellatif, M.H., E-mail: Mohamed.abdellatif@iit.it [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Innocenti, Claudia [INSTM—Department of Chemistry, University of Florence, via della Lastruccia 3, I-50019 Sesto Fiorentino, FI (Italy); Liakos, Ioannis [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Scarpellini, Alice; Marras, Sergio [Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Salerno, Marco [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy)

    2017-02-15

    Copper ferrite of spinel crystal structure was synthesized in the form of nano-particles using citrate-gel auto-combustion method. The sample morphology and composition were identified using scanning electron microscopy, X-ray diffraction, and X-ray spectroscopy. The latter technique reveals an inverse spinel structure with Jahn-Teller tetragonal distortion. The static magnetization was measured using vibrating sample magnetometer. Magnetic force microscopy was used in combination with the magnetization data to demonstrate the finite size effect of the magnetic spins and their casting behavior due to the introduction of copper ions in the tetrahedral magnetic sub-lattices, which results in tetragonal distorting the spinel structure of the copper ferrite. The magnetic properties of materials are a result of the collective behavior of the magnetic spins, and magnetic force microscopy can probe the collective behavior of the magnetic spins in copper ferrite, yet providing a sufficient resolution to map the effects below the micrometer size scale, such as the magnetic spin canting. A theoretical study was done to clarify the finite size effect of Jahn-Teller distortion on the magnetic properties of the material. When the particles are in the nano-scale, below the single domain size, their magnetic properties are very sensitive to their size change. - Highlights: • The spin canting due to Jahn-Teller distortion in Copper ferrite can be detected using magnetic force microscope. • The contrast in the magnetic AFM image can be analyzed to give information not only about the surface spins but also about the canting of the core spins inside the aggregated cluster of magnetic nanoparticle.

  10. Moessbauer spectroscopic characterization of ferrite ceramics

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1999-01-01

    The principle of Moessbauer effect and the nature of hyperfine interactions were presented. The discovery of the Moessbauer effect was the basis of a new spectroscopic technique, called Moessbauer spectroscopy, which has already made important contribution to research in physics, chemistry, metallurgy, mineralogy and biochemistry. In the present work the selected ferrites such as spinel ferrite, NiFe 2 O 4 , and some rare earth orthoferrites and garnets were investigated using Moessbauer spectroscopy. X-ray powder diffraction and Fourier transform infrared spectroscopy were used as complementary techniques. The formation of NiFe 2 O 4 was monitored during the thermal decomposition of mixed salt (Ni(NO 3 ) 2 +2Fe(NO 3 ) 3 )nH 2 O. The ferritization of Ni 2+ ions was observed at 500 deg. C and after heating at 1300 deg. C the stoichiometric NiFe 2 O 4 was produced. The Moessbauer parameters obtained for NiFe 2 O 4 , d Fe = 0.36 mm s -1 and HMF = 528 kOe, can be ascribed to Fe 3+ ions in the octahedral sublattice, while parameters d Fe = 0.28 mm s -1 and HMF = 494 kOe can be ascribed to Fe 3+ ions in the tetrahedral lattice. The effect of ball-milling of NiFe 2 O 4 was monitored. The formation of oxide phases and their properties in the systems Nd 2 O 3 -Fe 2 O 3 , Sm 2 O 3 -Fe 2 O 3 , Gd 2 O 3 -Fe 2 O 3 , Eu 2 O 3 -Fe 2 O 3 and Er 2 O 3 -Fe 2 O 3 were also investigated. Quantitative distributions of oxide phases, a-Fe 2 O 3 , R 2 O 3 , R 3 Fe 5 O 12 and RFeO 3 , R = Gd or Eu, were determined for the systems xGd 2 O 3 +(1-x)Fe 2 O 3 and xEu 2 O 3 +(1-x)Fe 2 O 3 . The samples, prepared by chemical coprecipitation in the system xEu 2 O 3 +(1-x)Fe 2 O 3 , 0≤x≤1, were completely amorphous as observed by XRD, even at the relatively high temperature of the sample preparation (600 deg. C). Similar behavior was observed during the formation of Er 3 Fe 5 O 12 . Moessbauer spectroscopy indicated that this 'amorphous' phase is actually composed of very small and/or poor

  11. Microstructure and Properties of the Ferroelectric-Ferromagnetic PLZT-Ferrite Composites

    Directory of Open Access Journals (Sweden)

    Dariusz Bochenek

    2018-03-01

    Full Text Available The paper presents the technology of ferroelectric-ferromagnetic ceramic composites obtained from PLZT powder (the chemical formula Pb0.98La0.02(Zr0.90Ti0.100.995O3 and ferrite powder (Ni0.64Zn0.36Fe2O4, as well as the results of X-ray powder-diffraction data (XRD measurement, microstructure, dielectric, ferroelectric, and magnetic properties of the composite samples. The ferroelectric-ferromagnetic composite (P-F was obtained by mixing and the synthesis of 90% of PLZT and 10% of ferrite powders. The XRD test of the P-F composite shows a two-phase structure derived from the PLZT component (strong peaks and the ferrite component (weak peaks. The symmetry of PLZT was identified as a rhombohedral ferroelectric phase, while the ferrite was identified as a spinel structure. Scanning electron microscope (SEM microstructure analysis of the P-F ceramic composites showed that fine grains of the PLZT component surrounded large ferrite grains. At room temperature P-F composites exhibit both ferroelectric and ferromagnetic properties. The P-F composite samples have lower values of the maximum dielectric permittivity at the Curie temperature and a higher dielectric loss compared to the PLZT ceramics, however, the exhibit overall good multiferroic properties.

  12. Influence of the temperature in the electrochemical synthesis of cobalt ferrites nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mazario, E. [Departamento de Quimica Fisica Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid, UAM, C/Francisco Tomas y Valiente 7, 28049 Cantoblanco, Madrid (Spain); Morales, M.P. [Instituto de Ciencia de Materiales de Madrid, CSIC, C/Sor Juana Ines de la Cruz 3, 28049 Cantoblanco, Madrid (Spain); Galindo, R. [Departamento de Quimica Fisica Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid, UAM, C/Francisco Tomas y Valiente 7, 28049 Cantoblanco, Madrid (Spain); Herrasti, P., E-mail: pilar.herrasti@uam.es [Departamento de Quimica Fisica Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid, UAM, C/Francisco Tomas y Valiente 7, 28049 Cantoblanco, Madrid (Spain); Menendez, N. [Departamento de Quimica Fisica Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid, UAM, C/Francisco Tomas y Valiente 7, 28049 Cantoblanco, Madrid (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Cobalt ferrite nanoparticles were synthesized by new electrochemical method. Black-Right-Pointing-Pointer Temperature affects to percentage of inclusion of Co and diameter of the synthesized nanoparticles. Black-Right-Pointing-Pointer At 80 Degree-Sign C and current densities of 50/25 mA cm{sup -2} applied to Fe and Co, respectively, a stoichiometric CoFe{sub 2}O{sub 4} nanoparticles with 40 nm of diameter were obtained. - Abstract: A new electrochemical method to synthesize cobalt ferrite nanoparticles has been developed. Magnetic measurement, Moessbauer spectroscopy, X-ray diffraction, inductive coupled plasma spectroscopy, and transmission electron microscopy were carried out to characterize the cobalt ferrites synthesized at different temperatures between 25 Degree-Sign C and 80 Degree-Sign C. These techniques confirm the efficiency of the electrochemical method. At room temperature a mixture of different compounds was obtained with a particle diameter around 20 nm, while at 80 Degree-Sign C the synthesis of cobalt ferrite leads to a stoichiometric spinel, with a crystallite size of 40 nm measured by Scherrer equation. The temperature was defined as an important parameter to obtain stoichiometric ferrites and different diameters.

  13. Gd{sup 3+} doped Mn-Zn soft ferrite nanoparticles: Superparamagnetism and its correlation with other physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Prashant; Sharma, Rohit; Sharma, Vineet; Barman, P.B. [Department of Physics & Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 (India); Kumar, Manoj [Department of Physics & Materials Science, Jaypee Institute of Information Technology, Noida 201307 (India); Barman, Dipto [Gwangju Institute of Science & Technology, Gwangju (Korea, Republic of); Department of Computer Science & Engineering, Jaypee University of Information Technology, Waknaghat, Solan, Himachap Pradesh 173234 (India); Katyal, S.C. [Department of Physics & Materials Science, Jaypee Institute of Information Technology, Noida 201307 (India); Sharma, Pankaj, E-mail: pankaj.sharma@juit.ac.in [Department of Physics & Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 (India)

    2017-06-15

    Highlights: • Superparamagnetic nanoparticles of Gd doped Mn-Zn spinel ferrites synthesized by co-precipitation. • XRD and FTIR studies justify the formation of cubical spinel structure. • Maximum saturation magnetization and magnetic moment at x = 0.025. • PL spectra shows blue shift for x = 0.025, 0.075 and may be attributed to quantum confinement. - Abstract: Superparamagnetic nanoparticles are very important in biomedicine due to their various applications like drug delivery, gene delivery in the body and also used for hyperthermia. In the present work, superparamagnetic nanoparticles of Mn{sub 0.5}Zn{sub 0.5}Gd{sub x}Fe{sub 2-x}O{sub 4} (x = 0, 0.025, 0.050, 0.075, 0.1) ferrites have been prepared by co-precipitation method. Thorough characterizations (XRD, FTIR, FE-SEM, EDS, VSM and fluorescence spectroscopy) have proved the formation of cubical spinel superparamagnetic nanoparticles of soft ferrites. A cation distribution has been proposed for the determination of various important theoretical parameters for these samples. With the addition of Gd{sup 3+} nanoparticles have shown the superparamagnetism at room temperature confirmed by VSM analysis. Photoluminescence (PL) spectra shows a blue shift (for x = 0.025, 0.075) which may be due to quantum confinement.

  14. Effect of particle size on degree of inversion in ferrites

    International Nuclear Information System (INIS)

    Siddique, M.; Butt, N.M.

    2012-01-01

    Ferrites with the spinel structure are important materials because of their structural, magnetic and electrical properties. The suitability of these materials depends on both the intrinsic behavior of the material and the effects of the grain size. Moessbauer spectroscopy was employed to investigate the cation distribution and degree of inversion in bulk and nano sized particles of CuFe/sub 2/O/sub 4/, MnFe/sub 2/O/sub 4/ and NiFe/sub 2/O/sub 4/ ferrites. The Moessbauer spectra of all bulk ferrites showed complete magnetic behavior, whereas nanoparticle ferrites showed combination of ferromagnetic and superparamagnetic components. Moreover, the cation distribution in nanoparticle materials was also found to be different to that of their bulk counterparts indicating the particle size dependency. The inversion of Cu and Ni ions in bulk sample was greater than that of nanoparticles; whereas the inversion of Mn ions was less in bulk material as compared to the nanoparticles. Hence the degree of inversion decreased in CuFe/sub 2/O/sub 4/ and NiFe/sub 2/O/sub 4/ samples whereas, it increased in MnFe/sub 2/O/sub 4/ as the particle size decreased and thus showed the anomalous behavior in this case. The nanoparticle samples also showed paramagnetic behaviour due to superparamagnetism and this effect is more prominent in MnFe/sub 2/O/sub 4/. Moessbauer spectra of bulk and nanoparticles CuFe/sub 2/O/sub 4/ is shown. (Orig./A.B.)

  15. Characteristics and Modification of Non-metallic Inclusions in Titanium-Stabilized AISI 409 Ferritic Stainless Steel

    Science.gov (United States)

    Kruger, Dirk; Garbers-Craig, Andrie

    2017-06-01

    This study describes an investigation into the improvement of castability, final surface quality and formability of titanium-stabilized AISI 409 ferritic stainless steel on an industrial scale. Non-metallic inclusions found in this industrially produced stainless steel were first characterized using SEM-EDS analyses through the INCA-Steel software platform. Inclusions were found to consist of a MgO·Al2O3 spinel core, which acted as heterogeneous nucleation site for titanium solubility products. Plant-scale experiments were conducted to either prevent the formation of spinel, or to modify it by calcium treatment. Modification to spherical dual-phase spinel-liquid matrix inclusions was achieved with calcium addition, which eliminated submerged entry nozzle clogging for this grade. Complete modification to homogeneous liquid calcium aluminates was achieved at high levels of dissolved aluminum. A mechanism was suggested to explain the extent of modification achieved.

  16. Enhanced microwave absorption properties in cobalt–zinc ferrite based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Poorbafrani, A., E-mail: a.poorbafrani@gmail.com; Kiani, E.

    2016-10-15

    In an attempt to find a solution to the problem of the traditional spinel ferrite used as the microwave absorber, the Co{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}–Paraffin nanocomposites were investigated. Cobalt–zinc ferrite powders, synthesized through PVA sol–gel method, were combined with differing concentrations of Paraffin wax. The nanocomposite samples were characterized employing various experimental techniques including X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Alternating Gradient Force Magnetometer (AGFM), and Vector Network Analyzer (VNA). The saturation magnetization and coercivity were enhanced utilizing appropriate stoichiometry, coordinate agent, and sintering temperature required for the preparation of cobalt–zinc ferrite. The complex permittivity and permeability spectra, and Reflection Loss (RL) of Co{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}–Paraffin nanocomposites were measured in the frequency range of 1–18 GHz. The microwave absorption properties of nanocomposites indicated that the absorbing composite containing 20 wt% of paraffin manifests the strongest microwave attenuation ability. The composite exhibited the reflection loss less than –10 dB in the whole C-band and 30% of the X-band frequencies. - Highlights: • We enhanced the magnetic properties of cobalt–zinc Ferrite nanocomposites. • The samples showed absorption in the whole C-band and 30% of the X-band frequencies. • We tried to solve the problem of the spinel ferrite utilized as efficient absorber. • We enhanced the microwave reflection loss over extended frequency ranges.

  17. Effect of sintering temperature on magnetization and Mössbauer parameters of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Grish, E-mail: grishphysics@gmail.com [Department of Physics, DSB Campus Kumaun University, Nainital 263002, Uttarakhand (India); Srivastava, R.C. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India); Reddy, V.R. [UGC-DAE CSR, Khandwa Road, DAVV Campus, Indore 452017, Madhya Pradesh (India); Agrawal, H.M. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India)

    2017-04-01

    Nanoparticles of cobalt ferrite of different particle size were prepared using sol-gel method. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Mössbauer spectroscopy techniques were employed for characterization of nanoparticles for structural and magnetic properties. The particle size and saturation magnetization increase with the increase of sintering temperature. The saturation magnetization increases from 53 to 85 emu/g as the sintering temperature increases from 300 to 900 °C. The remanence increases while the coercivity decreases slightly with the increase of sintering temperature. Mössbauer spectra show the ferrimagnetic nature of all the samples and the cation distribution strictly depends on the sintering temperature. The stoichiometry of the cobalt ferrite formed was estimated to be (Co{sup 2+}{sub x}Fe{sup 3+}{sub 1−x})[Co{sup 2+}{sub 1−x}Fe{sup 3+}{sub 1+x}]O{sub 4}, based on our Mössbauer analysis. The inverse spinel structure gradually transforms towards the normal spinel structure as the sintering temperature increases. - Highlights: • After 500 °C sintering the cobalt ferrite shows complete crystallization. • An inversion sintering temperature between 900 °C and 1200 °C is proposed where the Fe{sup +3} again starts migration from B site to A site. • Sintering temperature is one of the prime factors which effect the magnetization and cation distribution between two sites A and B.

  18. Severe reduction of Ni–Zn ferrites during consolidation by Spark Plasma Sintering (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, Raul, E-mail: monjaras@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Gaudisson, Thomas; Ammar, Souad [ITODYS, Université Paris-Diderot, PRES Sorbonne Paris Cité, CNRS-UMR-7086, 75205 Paris (France)

    2016-02-15

    NiZn ferrites of composition Zn{sub 0.7}Ni{sub 0.3}Fe{sub 2}O{sub 4} were synthesized by the polyol method and subsequently consolidated into fine grain, high density ceramics by means of Spark Plasma Sintering at 600 °C for 10 min, under vacuum and applying a uniaxial pressure of 80 MPa. Their saturation magnetization at room temperature exhibited a value far larger (~71 emu/g) than the value corresponding to the bulk ferrite (~50 emu/g), and their Curie point showed also an increase of about 210 K, as compared with the bulk value. These results, together with the presence of a small amount of metallic Ni, are interpreted in terms of a departure of Ni from the spinel phase and an associated reduction of ferric to ferrous cations to compensate for Ni loss. - Highlights: • Nanostructured ferrites are obtained at 600°C by 10 min. • Magnetic properties change significantly. • These changes are due to reductive conditions in SPS. • Metallic Ni precipitated from the spinel and are replaced by ferrous ions. • This leads to an increase in Ms and Tc.

  19. Physical and magnetic properties of (Ba/Sr) substituted magnesium nano ferrites

    Science.gov (United States)

    Ateia, Ebtesam E.; Takla, E.; Mohamed, Amira T.

    2017-10-01

    In the presented paper, strontium (Sr) and barium (Ba) nano ferrites were synthesized by citrate auto combustion method. The investigated samples are characterized by X-ray diffraction technique (XRD), field emission scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. The structural properties of the obtained samples were examined by XRD analysis showing that the synthesized nanoparticles are in cubic spinel structure. The average crystallite sizes are in the range of 22.66 and 21.95 nm for Mg0.7Ba0.3Fe2O4 and Mg0.7 Sr0.3Fe2O4 respectively. The VSM analysis confirms the existence of ferromagnetic nature of Sr2+/Ba2+ substituted magnesium nano particles. Exchange interaction between hard (Sr/Ba) and soft (Mg) magnetic phases improves the structural and magnetic properties of nano ferrite particles. Rigidity modulus, longitudinal and shear wave velocities are predicted theoretically from Raman spectroscopy and structural data of the investigated spinel ferrite. The magnetic and structural properties of magnesium are enhanced by doping with barium and strontium nano particles. The saturation magnetization, remanent magnetization and coercivity reported on vibrating sample magnetometer curve illustrate the promising industrial and magnetic recording applications of the prepared samples.

  20. Microstructure and magnetic studies of Mg-Ni-Zn-Cu ferrites

    International Nuclear Information System (INIS)

    Bachhav, S.G.; Patil, R.S.; Ahirrao, P.B.; Patil, A.M.; Patil, D.R.

    2011-01-01

    Highlights: → Ni x Mg 0.5-x Cu 0.1 Zn 0.4 Fe 2 O 4 ferrite shows spinel structure. → Lattice parameter, X-ray density, porosity increase with increase in Ni content. → The IR spectra show tetrahedral and octahedral complexes. → Initial permeability remains constant with temperature and drops to zero at certain temperature which is in close agreement with Curie temperature. → The Curie temperature shows increasing trend with Ni content. - Abstract: Soft Mg-Ni-Zn-Cu spinel ferrites having general chemical formula Ni x Mg 0.5-x Cu 0.1 Zn 0.4 Fe 2 O 4 (where x 0.1, 0.2, 0.3, 0.4 and 0.5) were prepared by standard double sintering ceramic method. The samples were characterized by X-ray diffraction at room temperature. The X-ray diffraction (XRD) study revealed that lattice parameter decreases with increase in Ni content, resulting in a reduction in lattice strain. The electrical and magnetic properties of the synthesized ferrites have been investigated as a function of temperature. The variation of initial permeability and AC susceptibility with temperature exhibits normal ferrimagnetic behavior. The variation of initial permeability with frequency is studied. The Curie temperature (T C ) in the present work was determined from initial permeability and AC susceptibility. The Curie temperature increases with Ni content.

  1. Reducing agent (NaBH4) dependent structure, morphology and magnetic properties of nickel ferrite (NiFe2O4) nanorods

    International Nuclear Information System (INIS)

    Saravanakumar, B.; Rani, B. Jansi; Ravi, G.; Thambidurai, M.; Yuvakkumar, R.

    2017-01-01

    Nickel ferrite (Ni-Fe 2 O 4 ) nanorods were synthesized employing a simple chemical reduction method. Reducing agent (NaBH 4 ) influence on structural, morphological and magnetic properties of NiFe 2 O 4 nanorods was investigated. XRD results clearly revealed the presence of inverse cubic spinel nickel ferrite structure characteristic peaks and confirmed the site inversion of inverse spinel structure of Fe 3+ tetrahedral A site and Ni 2+ octahedral B site. The observed Raman characteristic peak at 488 and 683 cm −1 were corresponded to E 1 g and A 1 g mode whereas A and B site respectively corresponded to tetrahedral and octahedral site of NiFe 2 O 4 inverse spinel structure. The obtained PL peaks at 530 and 542 nm were attributed to the emission spectra of Fe 3+ ions in site A of inverse spinel structure and Ni 2+ ions in site B of inverse spinel structure respectively. SEM result clearly revealed that increase in NaBH 4 concentration had remarkable impact on nanorods formation, nano-octahedron structure, homogeneity and regularity of Ni-Ferrites. VSM studies clearly revealed the soft ferromagnetic nature of NiFe 2 O 4 and increase in NaBH 4 concentration further induced raise in metal cations concentration in A- and B- site which might impact the resultant magnetization of ferrites. - Highlights: • Nano rod formation has been initiated while increase of NaBH 4 concentration. • Further increasing NaBH 4 concentration favors nano-octahedron formation. • VSM studies revealed soft ferromagnetic nature of NiFe 2 O 4 .

  2. Reducing agent (NaBH{sub 4}) dependent structure, morphology and magnetic properties of nickel ferrite (NiFe{sub 2}O{sub 4}) nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Saravanakumar, B.; Rani, B. Jansi; Ravi, G. [Nanomaterials Laboratory, Department of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India); Thambidurai, M. [Luminous Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical & Electronic Engineering, The Photonics Institute (TPI), Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Yuvakkumar, R., E-mail: yuvakkumar@gmail.com [Nanomaterials Laboratory, Department of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India)

    2017-04-15

    Nickel ferrite (Ni-Fe{sub 2}O{sub 4}) nanorods were synthesized employing a simple chemical reduction method. Reducing agent (NaBH{sub 4}) influence on structural, morphological and magnetic properties of NiFe{sub 2}O{sub 4} nanorods was investigated. XRD results clearly revealed the presence of inverse cubic spinel nickel ferrite structure characteristic peaks and confirmed the site inversion of inverse spinel structure of Fe{sup 3+} tetrahedral A site and Ni{sup 2+} octahedral B site. The observed Raman characteristic peak at 488 and 683 cm{sup −1} were corresponded to E{sub 1} {sub g} and A{sub 1} {sub g} mode whereas A and B site respectively corresponded to tetrahedral and octahedral site of NiFe{sub 2}O{sub 4} inverse spinel structure. The obtained PL peaks at 530 and 542 nm were attributed to the emission spectra of Fe{sup 3+} ions in site A of inverse spinel structure and Ni{sup 2+} ions in site B of inverse spinel structure respectively. SEM result clearly revealed that increase in NaBH{sub 4} concentration had remarkable impact on nanorods formation, nano-octahedron structure, homogeneity and regularity of Ni-Ferrites. VSM studies clearly revealed the soft ferromagnetic nature of NiFe{sub 2}O{sub 4} and increase in NaBH{sub 4} concentration further induced raise in metal cations concentration in A- and B- site which might impact the resultant magnetization of ferrites. - Highlights: • Nano rod formation has been initiated while increase of NaBH{sub 4} concentration. • Further increasing NaBH{sub 4} concentration favors nano-octahedron formation. • VSM studies revealed soft ferromagnetic nature of NiFe{sub 2}O{sub 4}.

  3. Ferrites – what is new?

    Indian Academy of Sciences (India)

    Ferrites; conductivity; magnetoresistance; spin compensation temperature; irradiation effect; nanoparticle. ... changes in magneto-resistance (MR) in the region of magnetic compensation temperature of a typical ferrite .... scattering of conduction electrons by the changes in the magnetic ordering caused by ex- ternal field.

  4. The Effect of Catalyst Type on The Microstructure and Magnetic Properties of Synthesized Hard Cobalt Ferrite Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Shaima'a Jaber Kareem

    2018-02-01

    Full Text Available A sol-gel process prepared the nanoparticles of hard cobalt ferrite (CoFe2O4. Cobalt nitrate hexahydrate (Co (NO32⋅6H2O, iron nitrate nonahydrate (Fe (NO33⋅9H2O with using two catalysis acid (citric acid and alkaline (hydroxide ammonium were used as precursor materials. Crystallization behavior of the CoFe2O4 nanoparticles were studied by X-ray diffraction (XRD. Nanoparticles phases can change from amorphous to spinel ferrite crystalline depending on the calcinated temperature at 600°C, with using citric acid as a catalysis without finding forgone phase, while using hydroxide ammonium was shown second phase (α-Fe2O3 with CoFe2O4. Crystallite size was measured by Scherrer’s formula about (25.327 nm and (27.119 nm respectively. Structural properties were investigated by FTIR, which was appeared main bond of (Fe-O, (Co-O, (C-O, and (H-O. Scanning electron microscopy (FE- SEM was shown the microstructure observation of cobalt ferrite and the particle size at the range about (28.77-42.97 nm. Magnetization measurements were carried out on a vibrating sample magenometer (VSM that exhibited hard spinel ferrite.

  5. Influence of nickel addition on structural and magnetic properties of aluminium substituted Ni-Zn ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    Donta Paramesh

    2016-09-01

    Full Text Available Ni-Zn-Al mixed ferrite nanoparticles, with general formula NixZn1-xAlFeO4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, were synthesized by sol-gel auto combustion technique. All prepared ferrite nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometer. X-ray diffraction study confirmed the formation of the single phase cubic spinel structure in all ferrite samples. The crystallite size was calculated by the DebyeScherrer formula and found to be in the range 15–46 nm. The lattice constant decreased with increasing Ni2+ ion concentration. Scanning electron microscopy images clearly indicate that the particles are very small but agglomerated. Energy dispersive X-ray was used to confirm the composition of the prepared powders. Fourier transform infrared spectra showed two main absorption bands of ferrite nanoparticles, the high frequency band (ν1 around 600 cm-1 and the low frequency band (ν2 around 400 cm-1 arising from tetrahedral (A and octahedral (B interstitial sites in the spinel lattice, respectively. Vibrating sample magnetometer results reported that the saturation magnetization, remanent magnetization and magnetic moments decrease with increasing Ni2+ ion concentration.

  6. Homogeneous Precipitation Synthesis and Magnetic Properties of Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    2008-01-01

    Full Text Available Magnetic nanoparticles (NPs of cobalt ferrite have been synthesized via a homogeneous precipitation route using hexamethylenetetramine (HMT as the precipitant. The particle size, crystal structure, and magnetic properties of the synthesized particles were investigated by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The NPs are of cubic inverse spinel structure and nearly spherical shape. With the increase of oxidation time from 30 to 180 minutes in the reaction solution at 90∘C, the average particle size increases from ~30 nm to ~45 nm. The as-synthesized NPs ~30 nm in size show higher Ms (61.5 emu/g and moderate Hc (945 Oe and Mr/Ms (0.45 value compared with the materials synthesized by coprecipitation method using NaOH as precipitate at high pH value.

  7. Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite.

    Directory of Open Access Journals (Sweden)

    Y K Dasan

    Full Text Available Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00 synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21-25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM. The results revealed that saturation magnetization (Ms and coercivity (Hc of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles.

  8. Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite.

    Science.gov (United States)

    Dasan, Y K; Guan, B H; Zahari, M H; Chuan, L K

    2017-01-01

    Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00) synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21-25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM). The results revealed that saturation magnetization (Ms) and coercivity (Hc) of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles.

  9. Composition dependence of structural, magnetic and electrical properties of Co substituted magnesium ferrite

    Science.gov (United States)

    Ramarao, K.; Rajesh Babu, B.; Kishore Babu, B.; Veeraiah, V.; Ramarao, S. D.; Rajasekhar, K.; Venkateswara Rao, A.

    2018-01-01

    In this work cobalt substituted magnesium spinel ferrite having general formula Mg1-xCoxFe2O4 (where x = 0.0, 0.1, 0.15,0.2,0.25 and 0.3) was synthesized by solid state reaction method. All the sample are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Vibrating sample magnetometer (VSM) and dc resistivity measurements. XRD analysis confirms the formation of single phase spinel and the calculated lattice constant 'aexp' from XRD decreases as substitution of Co (x) is increased. The FTIR spectra reveled two prominent frequency bands in the wave number range 400-600 cm-1, which confirm the cubic spinel structure. Magnetic studies revealed that the saturation magnetization attains a maximum value when x = 0.2, and then decreases for higher concentration of (x). This non-linear trend in magnetization has been explained on the basis of redistribution of magnetic and non-magnetic cations among A and B sites of the spinel lattice. A significant influence of cation distribution observed on DC electrical resistivity and activation energy.

  10. Structural and magnetic studies of Cr doped nickel ferrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Kalpana, E-mail: kalpanapanwar99@gmail.com [Department of Pure & Applied Physics, University of Kota, Kota-324010 (India); Department of Physics, Govt. Women Engg. College, Ajmer-305002 (India); Heda, N. L. [Department of Pure & Applied Physics, University of Kota, Kota-324010 (India); Tiwari, Shailja [Department of Physics, Govt. Women Engg. College, Ajmer-305002 (India); Bapna, Komal; Ahuja, B. L. [Department of Physics, M. L. Sukhadia University, Udaipur-313001 (India); Choudhary, R. J.; Phase, D. M. [UGC-DAE Consortium for Scientific Research, University Campus, Indore-452017 (India)

    2016-05-23

    We have studied the structural and magnetic properties of Cr doped nickel ferrite thin films deposited on Si (100) and Si (111) using pulsed laser deposition technique. The films were deposited under vacuum and substrate temperature was kept at 700°C. X-ray diffraction analysis revealed that films on both substrates have single phase cubic spinel structure. However, the film grown on Si (111) shows better crystalline behavior. Fourier transform infrared spectroscopy suggests that films on both substrates have mixed spinel structure. These films show magnetic hysteresis behavior and magnetization value of film on Si (100) is larger than that on Si (111). It turns out that structural and magnetic properties of these two films are correlated.

  11. Evolution of the magnetic structure with chemical composition in spinel iron oxide nanoparticles.

    Science.gov (United States)

    Muscas, G; Yaacoub, N; Concas, G; Sayed, F; Sayed Hassan, R; Greneche, J M; Cannas, C; Musinu, A; Foglietti, V; Casciardi, S; Sangregorio, C; Peddis, D

    2015-08-28

    Magnetic properties of iron oxide nanoparticles with spinel structure are strictly related to a complex interplay between cationic distribution and the presence of a non-collinear spin structure (spin canting). With the aim to gain better insight into the effect of the magnetic structure on magnetic properties, in this paper we investigated a family of small crystalline ferrite nanoparticles of the formula CoxNi1-xFe2O4 (0 ≤x≤ 1) having equal size (≈4.5 nm) and spherical-like shape. The field dependence of magnetization at low temperatures indicated a clear increase of magnetocrystalline anisotropy and saturation magnetization (higher than the bulk value for CoFe2O4: ∼130 A m(2) kg(-1)) with the increase of cobalt content. The magnetic structure of nanoparticles has been investigated by Mössbauer spectroscopy under an intense magnetic field (8 T) at a low temperature (10 K). The magnetic properties have been explained in terms of an evolution of the magnetic structure with the increase of cobalt content. In addition a direct correlation between cationic distribution and spin canting has been proposed, explaining the presence of a noncollinear spin structure in terms of superexchange interaction energy produced by the average cationic distribution and vacancies in the spinel structure.

  12. Substitution effects on magnetic properties of Mg1.3-xMnxAlyFe1.8-yO4 ferrite

    Directory of Open Access Journals (Sweden)

    Ming-Feng Kuo

    2017-05-01

    Full Text Available Mg1.3-xMnxAlyFe1.8-yO4 (x = 0.1–0.2, y = 0.15–0.3 spinel ferrites were prepared using conventional ceramic technique. Highly densified Mg–Mn–Al ferrites (with 99% theoretical density were obtained, and the influence of Mn and Al substitution on the characteristics of these ferrites has been systematically studied. The microstructure, magnetic properties, and ferromagnetic resonance linewidth (ΔH of the Mg–Mn–Al ferrites have been analyzed by X-ray diffraction, B-H analyzer, and ferromagnetic resonance (FMR spectrometer. The results showed that all of the samples were single spinel phase. As Mn content increases and Al content decreases, both saturation magnetization (4πMs and squareness ratio increase, while the coercivity (Hc first increases and then decreases. In addition, good ferromagnetic resonance linewidth properties were also obtained as 143.8 Oe at 9.3 GHz for the sample with x = 0.17 and y = 0.20. The results imply that Mg1.3-xMnxAlyFe1.8-yO4 ferrites may be applicable for X-band (8–12 GHz microwave devices.

  13. Cationic exchange in nanosized ZnFe2O4 spinel revealed by experimental and simulated near-edge absorption structure

    International Nuclear Information System (INIS)

    Stewart, S. J.; Figueroa, S. J. A.; Ramallo Lopez, J. M.; Requejo, F. G.; Marchetti, S. G.; Bengoa, J. F.; Prado, R. J.

    2007-01-01

    The nonequilibrium cation site occupancy in nanosized zinc ferrites (∼6-13 nm) with different degree of inversion (∼0.2 to 0.4) was investigated using Fe and Zn K-edge x-ray absorption near edge spectroscopy (XANES) and extended x-ray absorption fine structure, and magnetic measurements. The very good agreement between experimental and ab initio calculations on the Zn K-edge XANES region clearly shows the large Zn 2+ (A)→Zn 2+ [B] transference that takes place in addition to the well-identified Fe 3+ [B]→Fe 3+ (A) one, without altering the long-range structural order. XANES spectra features as a function of the spinel inversion were shown to depend on the configuration of the ligand shells surrounding the absorbing atom. This XANES approach provides a direct way to sense cationic inversion in these Zn-containing spinel ferrites. We also demonstrated that a mechanical crystallization takes place on nanocrystalline spinel that causes an increase of both grain and magnetic sizes and, simultaneously, generates a significant augment of the inversion

  14. Magnetostructural and magnetodielectric coupling in spinel oxides

    Science.gov (United States)

    Kemei, Moureen Chemurgor

    Spinels oxides are of great interest functionally as multiferroic, battery, and magnetic materials as well as fundamentally because they exhibit novel spin, structural, and orbital ground states. Competing interactions are at the heart of novel functional behavior in spinels. Here, we explore the intricate landscape of spin, lattice, and orbital interactions in magnetic spinels by employing variable-temperature high-resolution synchrotron x-ray powder diffraction, total neutron scattering, magnetic susceptibility, dielectric, and heat capacity measurements. We show that the onset of long-range magnetic interactions often gives rise to lattice distortions. We present the complete crystallographic descriptions of the ground state structures of several spinels, thereby paving the way for accurate modeling and design of structure-property relationships in these materials. We also report the emergence of magnetodielectric coupling in the magnetostructural phases of some of the studied spinels. We begin by examining spin-lattice coupling in the Jahn-Teller active systems NiCr2O4 and CuCr2O4. Orbital ordering yields a cubic to tetragonal lattice distortion in these materials above their magnetic ordering temperatures, however, we find that magnetic ordering also drives structural distortions in these spinels through exchange striction. We provide the first orthorhombic structural descriptions of NiCr 2O4 and CuCr2O4. Our observation of strong spin-lattice coupling in NiCr2O4 and CuCr 2O4 inspired the study of magnetodielectric coupling in these spinels. Magnetocapacitance measurements of NiCr2O4 reveal multiferroic behavior and new magnetostructural distortions below the Neel temperature. This observation illustrates the sensitivity of dielectric measurements to magnetostructural transitions in spinel materials. Finally, in the examination of NiCr2O4 we show that magnetodielectric coupling is well described by Ginzburg-Landau theory. In addition to exchange striction

  15. Evaluation of heating conditions of Ni-Zn ferrite obtained by combustion in a microwave oven

    International Nuclear Information System (INIS)

    Santos, Rafaela L.P.; Diniz, Veronica Cristhina S.; Vieira, Debora A.; Costa, Ana Cristina F.M.; Kiminam, R.H.G.A.

    2011-01-01

    This paper aims the synthesis by combustion reaction using microwave energy as heating source to obtain ferrite powders of Ni-Zn and its structural, morphological characterization. The influence of power and exposure time in the microwave oven was also investigated. The powders were prepared according to the theory of propellants and explosives using a vitreous silica crucible and urea as fuel. The powders were characterized by: XRD, BET and SEM. The resulted of XRD show only the formation of inverse spinel phase of Ni- Zn ferrite in all samples. The exposure time and power of microwave oven slightly altered the final characteristics of the powders. However, increasing the exposure time was more prominent than the increase of microwave power in both structural and morphological parameters. (author)

  16. Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders

    International Nuclear Information System (INIS)

    Oliver, S. A.; Harris, V. G.; Hamdeh, H. H.; Ho, J. C.

    2000-01-01

    The cation site occupancy of a mechanically activated nanocrystalline zinc ferrite powder was determined as (Zn 0.55 2+ Fe 0.18 3+ ) tet [Zr 0.45 2+ Fe 1.82 3+ ] oct O 4 through analysis of extended x-ray absorption fine structure measurements, showing a large redistribution of cations between sites compared to normal zinc ferrite samples. The overpopulation of cations in the octahedral sites was attributed to the ascendance in importance of the ionic radii over the crystal energy and bonding coordination in determining which interstitial sites are occupied in this structurally disordered powder. Slight changes are observed in the local atomic environment about the zinc cations, but not the iron cations, with respect to the spinel structure. The presence of Fe 3+ on both sites is consistent with the measured room temperature magnetic properties. (c) 2000 American Institute of Physics

  17. Severe reduction of Ni-Zn ferrites during consolidation by Spark Plasma Sintering (SPS)

    Science.gov (United States)

    Valenzuela, Raul; Gaudisson, Thomas; Ammar, Souad

    2016-02-01

    NiZn ferrites of composition Zn0.7Ni0.3Fe2O4 were synthesized by the polyol method and subsequently consolidated into fine grain, high density ceramics by means of Spark Plasma Sintering at 600 °C for 10 min, under vacuum and applying a uniaxial pressure of 80 MPa. Their saturation magnetization at room temperature exhibited a value far larger ( 71 emu/g) than the value corresponding to the bulk ferrite ( 50 emu/g), and their Curie point showed also an increase of about 210 K, as compared with the bulk value. These results, together with the presence of a small amount of metallic Ni, are interpreted in terms of a departure of Ni from the spinel phase and an associated reduction of ferric to ferrous cations to compensate for Ni loss.

  18. A general approach to the synthesis and detailed characterization of magnetic ferrite nanocubes.

    Science.gov (United States)

    Xu, Yaolin; Sherwood, Jennifer; Qin, Ying; Holler, Robert A; Bao, Yuping

    2015-08-07

    A general approach to the synthesis and detailed characterization of magnetic ferrite nanocubes were reported, where the nanocubes were synthesized by the thermal decomposition of metal-oleate complexes following a step-heating method. The doping ions were introduced during the precursor preparation by forming M(2+)/Fe(3+) oleate mixed complex (M(2+) = Fe(2+), Mn(2+), Zn(2+), Cu(2+), Ca(2+), and Mg(2+)). The mechanistic studies showed that the presence of sodium oleate in combination with step-heating was critical for the formation of the cubic shapes for the doped magnetic ferrites. The nanocubes were extensively characterized, including morphology and crytsal structure by advanced transmission electron microscopy, doping level and distribution by energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy, cation distribution within the spinel structures by Fourier transform infrared and Raman spectroscopy, and magnetic properties by alternating gradient magnetometer at room temperature.

  19. Magnetic Properties of Copper Doped Nickel Ferrite Nanoparticles Synthesized by Co Precipitation Method

    Science.gov (United States)

    Anjana, V.; John, Sara; Prakash, Pooja; Nair, Amritha M.; Nair, Aravind R.; Sambhudevan, Sreedha; Shankar, Balakrishnan

    2018-02-01

    Nickel ferrite nanoparticles with copper atoms as dopant have been prepared using co-precipitation method with general formula Ni1-xCuxFe2O4 (x=0.2, 0.4, 0.6, 0.8 and 1) and are sintered at quite ambient temperature. Structural and magnetic properties were examined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction method (XRD) and Vibrating Sample Magnetometer (VSM) to study the influence of copper doping in nickel ferrite magnetic nanoparticles. X-ray studies proves that the particles are possessing single phase spinel structure with an average particle size calculated using Debye Scherer formula. Magnetic measurements reveal that saturation magnetization value (Ms) decreases while magnetic coercivity (Hc) increases upon doping.

  20. Crystal field distortion of La3+ ion-doped Mn-Cr ferrite

    Science.gov (United States)

    Abdellatif, M. H.; El-Komy, G. M.; Azab, A. A.; Salerno, M.

    2018-02-01

    Ion doping in crystals can result in lattice modifications triggering interesting magnetic and optical properties of the material, understood as a compensation of the crystal deformation and microstrain. We investigated the spinel structure of Mn-Cr ferrite after doping with La3+ ions. The structure was first characterized by X-ray diffraction and high-resolution transmission electron microscopy. Raman scattering spectra were taken that could also be interpreted in terms of crystal field distortion due to La3+ ion doping. On assessing the magneto-impedance of the doped ferrite, it showed giant magneto-impedance behavior, with a strong drop of over 50%. The saturation magnetization was characterised by vibrating sample magnetometer and was found to be 20.25 emu/g with remnant magnetization of 1.47 emu/g.

  1. Structural and electrical studies on La{sup 3+} substituted Ni-Zn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.A. [Physics Department, Faculty of Science, Cairo University, Giza (Egypt); Ateia, E. [Physics Department, Faculty of Science, Cairo University, Giza (Egypt)]. E-mail: drebtesam@hotmail.com; Salah, L.M. [Physics Department, Faculty of Science, Cairo University, Giza (Egypt); El-Gamal, A.A. [Physics Department, Faculty of Science, Cairo University, Giza (Egypt)

    2005-08-15

    The spinel ferrite system Ni{sub 1-x}Zn{sub x}La{sub y}Fe{sub 2-y}O{sub 4}; 0.0 {<=} x {<=} 1.0 and y = 0.0, 0.05 is prepared by standard ceramic method. X-ray diffraction is used to obtain the structural characterization of Ni, Zn, Ni-Zn and Ni-Zn-La ferrite. The influence of zinc ion substitution on the electrical properties of samples is investigated indicating, that the ac conductivity (ln {sigma}) as well as dielectric constant ({epsilon}') are nearly constant for small Zn ion concentration, while they increase at high Zn content (x = 0.6). The calculated values of the activation energy confirm the obtained results and indicate the semiconductor properties of the investigated samples. The dielectric constant data shows more than one peak which is discussed in view of the ionization potential of each element and hopping mechanism.

  2. High magnesium mobility in ternary spinel chalcogenides.

    Science.gov (United States)

    Canepa, Pieremanuele; Bo, Shou-Hang; Sai Gautam, Gopalakrishnan; Key, Baris; Richards, William D; Shi, Tan; Tian, Yaosen; Wang, Yan; Li, Juchuan; Ceder, Gerbrand

    2017-11-24

    Magnesium batteries appear a viable alternative to overcome the safety and energy density limitations faced by current lithium-ion technology. The development of a competitive magnesium battery is plagued by the existing notion of poor magnesium mobility in solids. Here we demonstrate by using ab initio calculations, nuclear magnetic resonance, and impedance spectroscopy measurements that substantial magnesium ion mobility can indeed be achieved in close-packed frameworks (~ 0.01-0.1 mS cm -1 at 298 K), specifically in the magnesium scandium selenide spinel. Our theoretical predictions also indicate that high magnesium ion mobility is possible in other chalcogenide spinels, opening the door for the realization of other magnesium solid ionic conductors and the eventual development of an all-solid-state magnesium battery.

  3. Magnetic and electrical properties of Cr substituted Ni nano ferrites

    Directory of Open Access Journals (Sweden)

    Katrapally Vijaya Kumar

    2018-03-01

    Full Text Available Nano-ferrites with composition NiCrxFe2-xO4 (where x = 0.1, 0.3, 0.5, 0.7, 0.9, 1.0 were synthesized through citrate-gel auto combustion technique at moderately low temperature. X-ray analysis shows cubic spinel structure single phase without any impurity peak and average crystallite size in the range 8.5–10.5 nm. Magnetic properties were measured using a vibrating sample magnetometer at room temperature in the applied field of ±6 KOe. The obtained M-H loop area is very narrow, hence the synthesized nano ferrites are soft magnetic materials with small coercivity. Magnetic parameters such as saturation magnetization (Ms, coercivity (Hc, remanent magnetization (Mr and residual magnetization were measured and discussed with regard to Cr3+ ion concentration. Electrical properties were measured using two probe method from room temperature to well beyond transition temperature. The DC resistivity variation with temperature shows the semiconductor nature. Resistivity, drift mobility and activation energy values are measured and discussed with regard to composition. The Curie temperature was determined using DC resistivity data and Loria-Sinha method. The observed results can be explained in detail on the basis of composition.

  4. Temperature Dependent Dielectric Behavior of Nanocrystalline Ca Ferrite

    Science.gov (United States)

    Samariya, Arvind; Pareek, S. P.; Sharma, P. K.; Prasad, Arun S.; Dhawan, M. S.; Dolia, S. N.; Sharma, K. B.

    Dielectric behaviour of Nanocrystalline CaFe2O4 ferrite synthesized by advanced sol- gel method has been investigated as a function of frequency at different temperatures. Rietveld profile refinement of the XRD pattern confirms formation of cubic spinel structure of the specimen.The dispersion in dielectric behavior of CaFe2O4ferrite sample has been observed in the temperature range of 100-250˚C as a function of frequency in the range 75 kHz to 10 MHz Both the real value of dielectric constant (ɛ‧) and the dielectric loss factor (tanδ) decrease with frequency. This decrease in the values of ɛ‧ and tanδ could be explained on the basis of available ferrous, i.e. Fe2+, ions on octahedral sites such that beyond a certain frequency of applied electric field the electronic exchange between the ferrous and ferric ions i.e. Fe2+↔Fe3+ cannot follow the applied alternating electric field.

  5. Brain Tumor Diagnostics and Therapeutics with Superparamagnetic Ferrite Nanoparticles.

    Science.gov (United States)

    Hyder, Fahmeed; Manjura Hoque, S

    2017-01-01

    Ferrite nanoparticles (F-NPs) can transform both cancer diagnostics and therapeutics. Superparamagnetic F-NPs exhibit high magnetic moment and susceptibility such that in presence of a static magnetic field transverse relaxation rate of water protons for MRI contrast is augmented to locate F-NPs (i.e., diagnostics) and exposed to an alternating magnetic field local temperature is increased to induce tissue necrosis (i.e., thermotherapy). F-NPs are modified by chemical synthesis of mixed spinel ferrites as well as their size, shape, and coating. Purposely designed drug-containing nanoparticles (D-NPs) can slowly deliver drugs (i.e., chemotherapy). Convection-enhanced delivery (CED) of D-NPs with MRI guidance improves glioblastoma multiforme (GBM) treatment. MRI monitors the location of chemotherapy when D-NPs and F-NPs are coadministered with CED. However superparamagnetic field gradients produced by F-NPs complicate MRI readouts (spatial distortions) and MRS (extensive line broadening). Since extracellular pH (pH e ) is a cancer hallmark, pH e imaging is needed to screen cancer treatments. Biosensor imaging of redundant deviation in shifts (BIRDS) extrapolates pH e from paramagnetically shifted signals and the pH e accuracy remains unaffected by F-NPs. Hence effect of both chemotherapy and thermotherapy can be monitored (by BIRDS), whereas location of F-NPs is revealed (by MRI). Smarter tethering of nanoparticles and agents will impact GBM theranostics.

  6. Chromium Substituted Cobalt Ferrites by Glycine-Nitrates Process

    Directory of Open Access Journals (Sweden)

    Dana Gingasu

    2015-12-01

    Full Text Available Chromium substituted cobalt ferrites (CoFe2–xCrxO4, 0 ≤ x ≤ 2 were synthesized through solution combustion method using glycine as fuel, named glycine-nitrates process (GNP. As evidenced by X-ray diffraction data (XRD, single cubic spinel phase was formed for all CoFe2–xCrxO4 (0 ≤ x ≤ 2 series. The cubic lattice parameter (a decreases with increasing chromium content. Room temperature 57Fe Mössbauer spectra revealed the Fe3+ and Cr3+ site occupancy, the local hyperfine magnetic fields and the substitution of Fe3+ by Cr3+ in the lattice. Scanning electron microscopy (SEM showed a refinement of particle size with the increase of Cr3+ content. Magnetic measurements from 5 K to 120 K have shown a dropping in the saturation magnetization as the chromium content increases. This behaviour has been explained in terms of substitution of Fe3+ by Cr3+ in the cubic lattice of cobalt ferrite.

  7. Hyperthermia application of zinc doped nickel ferrite nanoparticles

    Science.gov (United States)

    Ghayour, Hamid; Abdellahi, Majid; Ozada, Neriman; Jabbrzare, Saeid; Khandan, Amirsalar

    2017-12-01

    This work was written with the aim of preparing zinc doped nickel ferrite (Ni1-xZnxFe2O4: x = 0.25, x = 0.5 and x = 0.75) nanoparticles via mechanical milling and subsequent sintering. The mobility of Zn2+ ions within the lattice structure of NiFe2O4 ferrite with an inverse spinel structure was investigated and the resultant magnetic properties were discussed. Variation of magnetization of Ni1-xZnxFe2O4 (x = 0.25, x = 0.5 and x = 0.75) under a DC magnetic field was studied and the obtained results were used to justify the initial heating rate of the samples under an AC magnetic field. According to the results, the Brown effect, as a heating mechanism in soft ferromagnetic and super paramagnetic materials, did not have a decisive role in the heat release of magnetic nanoparticles. In return, the Néel effect was consistently more active as a result of increasing the zinc content. The aggregate analysis showed that the saturation magnetization played the most important role in the minimum value of the specific absorption rate of Ni0.25Zn0.75Fe2O4 samples.

  8. Brain Tumor Diagnostics and Therapeutics with Superparamagnetic Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fahmeed Hyder

    2017-01-01

    Full Text Available Ferrite nanoparticles (F-NPs can transform both cancer diagnostics and therapeutics. Superparamagnetic F-NPs exhibit high magnetic moment and susceptibility such that in presence of a static magnetic field transverse relaxation rate of water protons for MRI contrast is augmented to locate F-NPs (i.e., diagnostics and exposed to an alternating magnetic field local temperature is increased to induce tissue necrosis (i.e., thermotherapy. F-NPs are modified by chemical synthesis of mixed spinel ferrites as well as their size, shape, and coating. Purposely designed drug-containing nanoparticles (D-NPs can slowly deliver drugs (i.e., chemotherapy. Convection-enhanced delivery (CED of D-NPs with MRI guidance improves glioblastoma multiforme (GBM treatment. MRI monitors the location of chemotherapy when D-NPs and F-NPs are coadministered with CED. However superparamagnetic field gradients produced by F-NPs complicate MRI readouts (spatial distortions and MRS (extensive line broadening. Since extracellular pH (pHe is a cancer hallmark, pHe imaging is needed to screen cancer treatments. Biosensor imaging of redundant deviation in shifts (BIRDS extrapolates pHe from paramagnetically shifted signals and the pHe accuracy remains unaffected by F-NPs. Hence effect of both chemotherapy and thermotherapy can be monitored (by BIRDS, whereas location of F-NPs is revealed (by MRI. Smarter tethering of nanoparticles and agents will impact GBM theranostics.

  9. Magnetic behavior of the oxide spinels:

    Indian Academy of Sciences (India)

    1031–1034. Magnetic behavior of the oxide spinels: Li0.5Fe2.5−2xAlxCrxO4. U N TRIVEDI, K B MODI and H H JOSHI. Department of Physics, Saurashtra University, Rajkot 360 005, India. Abstract. In order to study the effect of substitution of Fe3+ by Al3+ and Cr3+ in Li0.5Fe2.5O4 on its structural and magnetic properties, ...

  10. Magnetic behavior of the oxide spinels

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 5-6. Magnetic behavior of the oxide spinels: Li0.5Fe2.5-2AlCrO4. U N Trivedi K B Modi H H Joshi. Colossal Magnetoresistance & Other Materials Volume 58 Issue 5-6 May-June 2002 pp 1031-1034 ...

  11. Electrical and magnetic properties of MgGa(2-x)FexO4 ferrite

    International Nuclear Information System (INIS)

    Ribeiro, Vander Alkmin dos Santos

    2005-01-01

    The ceramics of the type ferrites are materials that present important characteristics of electrical conduction and magnetic properties, as much as material magnetic hard, how much of soft magnetic materials. The cubic ferrites of the spinel structure are oxides with chemical formula MFe 2 O 4 , where M is a divalent metallic ion. Due to characteristic of the spinel, diverse magnetic configurations are a gotten, depending on the occupation tax of the magnetic ion (in general iron) in each sublattice. The diluted ferrites possess general formula given for: MD 2-x Fe x O4, where M and D are diamagnetic ions, being D the ion of substitution doping and x is the concentration of ions of iron (0,002 ≤ x ≤ 0,350). The sample was prepared using ceramics techniques in reaction of solid state and later they were submitted to a magnetic characterization, electric and X-ray diffraction. The results of the magnetic characterization were gotten by a magnetometer of vibrant sample (VSM) EG&G-Princeton Applied Research, model 4500; the characterization for X-ray was used one X-ray diffractometer, model URD 65; of the Seifert & with. Electrical measurements DC were carried through with the use of a unit high-voltage measuring source - Keithley, model 237, where the voltage applied in the samples varied of 0-40 V, the high temperatures. Two types of contacts were used: the arrangement type 'sandwich', being the inferior electrode the proper door-sample, and the superior electrode with ring geometry and a silver was pasted on both sides of the samples to ensure good electrical contact. The magnetic measurements confirm its ferrite characteristics and in the electrical measurements, the electrical conductivity indicated behavior of a semiconductor the high temperatures and the process of electrical conduction thermally presented to be activated. (author)

  12. Glass additive influence on the sintering behavior, microstructure and microwave magnetic properties of Cu-Bi-Zn co-doped Co2Z ferrites

    International Nuclear Information System (INIS)

    Hsiang, Hsing-I; Mei, Li-Then; Hsi, Chi-Shiung; Wu, Wei-Cheng; Cheng, Li-Bao; Yen, Fu-Su

    2011-01-01

    The Bi 2 O 3 -B 2 O 3 -ZnO-SiO 2 (BB35SZ) glass effects on the sintering behavior and microwave magnetic properties of Cu-Bi-Zn co-doped Co 2 Z ferrites were investigated to develop low-temperature-fired ferrites. The glass wetting characteristics on the Co 2 Z ferrite surface, X-ray diffractometer, scanning electron microscopy and a dilatometer were used to examine the BB35SZ glass effect on Co 2 Z ferrite densification and the chemical reaction between the glass and Co 2 Z ferrites. The results indicate that BB35SZ glass can be used as a sintering aid to reduce the densification temperature of Co 2 Z ferrites from 1300 to 900 o C. 3(Ba 0.9 Bi 0.1 O).2(Co 0.8 Cu 0.2 O).12(Fe 1.975 Zn 0.025 O 3 ) ferrite with 2 wt% BB35SZ glass can be densified below 900 o C, exhibiting an initial permeability of 3.4. This process provides a promising candidate for multilayer chip magnetic devices for microwave applications. - Research highlights: → Bi 2 O 3 -B 2 O 3 -ZnO-SiO 2 glass can effectively wet Co 2 Z ferrites and promote Co 2 Z ferrite densification. → The excess substitution of Bi and Zn (x=0.2) and glass addition enhanced Z phase decomposition into U, W and spinel phases, which resulted in magnetic property degradation. → 3(Ba 0.9 Bi 0.1 O).2(Co 0.8 Cu 0.2 O).12(Fe 1.975 Zn 0.025 O 3 ) ferrite with 2 wt% glass can be densified at below 900 o C and exhibits an initial permeability of 3.4, which provides a promising candidate for multilayer chip magnetic devices for microwave applications.

  13. Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites

    Directory of Open Access Journals (Sweden)

    Aiman Zubair

    Full Text Available Europium (Eu doped spinel cobalt ferrites having composition CoEuxFe2−xO4 where x = 0.00, 0.03, 0.06, 0.09, 0.12 were fabricated by co-precipitation route. In order to observe the phase development of the ferrite samples, thermo-gravimetric analysis was carried out. The synthesized samples were subjected to X-ray diffraction analysis for structural investigation. All the samples were found to constitute face centered cubic (FCC spinel structure belonging to Fd3m space group. Scanning electron microscopy revealed the formation of nanocrystalline grains with spherical shape. Energy dispersive X-ray spectra confirmed the presence of Co, Eu, Fe and O elements with no existence of any impurity. The magnetic hysteresis curves measured at room temperature exhibited ferrimagnetic behavior with maximum saturation magnetization (Ms of 65 emu/g and coercivity (Hc of 966 Oe. The origin of ferrimagnetism in Eu doped cobalt ferrites was discussed in detail with reverence to the allocation of Co2+ and Fe3+ ions within the spinel lattice. The overall coercivity was increased (944–966 Oe and magnetization was decreased (65–46 emu/g with the substitution of Eu3+. The enhancement of former is ascribed to the transition from multi domain to single domain state and reduction in lateral is attributed to the incorporation of nonmagnetic Eu ions for Fe, resulting in weak superexchange interactions. Keywords: Europium doped cobalt ferrites, Co-precipitation, X-ray diffraction, Scanning electron microscopy, Magnetic properties

  14. Synthesis, structural, dielectric and magnetic properties of polyol assisted copper ferrite nano particles

    Energy Technology Data Exchange (ETDEWEB)

    Pavithradevi, S. [Assistant Professor, Department of Physics, Park College of Engineering and Technology, Coimbatore (India); Suriyanarayanan, N., E-mail: madurasuri2210@yahoo.com [Prof & Head, Department of Physics, Government College of Technology, Coimbatore (India); Boobalan, T. [Lecturer, Department of Physics, PSG Polytechnic College, Coimbatore (India)

    2017-03-15

    Nanocrystalline copper ferrite CuFe{sub 2}O{sub 4} is synthesized by co-precipitation method in ethylene glycol as chelating agent, using sodium Hydroxide as precipitator at pH 8. The as synthesized CuFe{sub 2}O{sub 4} is annealed at temperatures of 350 °C, 700 °C, and 1050 °C for 2 h respectively. The thermal analysis of the synthesized sample is done by TG technique. It is shown that at 260 °C ethylene glycol has evaporated completely and after 715 °C, spinel ferrite is formed with a cubic structure. The calculated lattice parameters are in agreement with the reported values. FTIR spectra of CuFe{sub 2}O{sub 4} nano particles are as synthesized and annealed at 1050 °C and recorded between 400 cm{sup −1} and 4000 cm{sup −1}. It shows that when the temperature increases ethylene glycol gradually evaporates. Finally, nano crystalline single phase spinel ferrite is obtained. X-ray diffraction (XRD) and electron diffraction (EDS) studies show that the sample is indexed as the face centered cubic spinel structure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that the particles are flaky and spherical with the crystallite size in the range of 25–34 nm. From the dielectric studies, the dielectric constant decreases as the frequency increases. Low value of dielectric loss at higher frequencies suggests that the material is suitable for high frequency applications. AC conductivity increases with frequency. The magnetic properties of the samples are measured using a vibrating sample magnetometer (VSM) at room temperature, which shows that the sample exhibited a typical super paramagnetic behavior at low temperature. The saturation magnetization, remanant magnetism, and coercivity increases with applied field. - Highlights: • Complete removal of hematite phase along with ethylene glycol at 1050 °C. • Large decrease in particle sizes noticed along with ethylene glycol. • Ethylene glycol improves purity of the

  15. Synthesis and magnetic induction heating properties of Gd-substituted Mg-Zn ferrite nanoparticles

    Science.gov (United States)

    Hirosawa, Fumie; Iwasaki, Tomohiro; Watano, Satoru

    2017-06-01

    Gadolinium-substituted magnesium-zinc ferrite (Mg x Zn1- x Gd y Fe2- y O4) nanoparticles with different metal compositions for x between 0 and 1 and y between 0 and 0.06 were synthesized via coprecipitation of metal hydroxides, followed by calcination. Their crystal structure was characterized via X-ray diffraction analysis, confirming that the Gd-substituted Mg-Zn ferrite samples had a single-phase spinel structure. The metal composition significantly affected the crystal structure, including the lattice parameters and crystallite size. Scanning electron microscopy (SEM) showed that the ferrite samples had a diameter of approximately 50-200 nm. Furthermore, the temperature rise in an alternating magnetic field was measured, and the magnetic induction heating properties were evaluated using the specific absorption rate (SAR) determined from the temperature profile. The SAR significantly varied depending on the compositions of x and y. When x = 0.5 and y = 0.02, the SAR was found to be at maximum. This reveals that the compositions can control the magnetic induction heating properties. The results suggest that Gd-substituted Mg-Zn ferrite nanoparticles are promising candidates for magnetic hyperthermia applications.

  16. DC conductivity and Seebeck coefficient of nonstoichiometric MgCuZn ferrites

    Directory of Open Access Journals (Sweden)

    Madhuri W.

    2017-02-01

    Full Text Available Nonstoichiometric series of Mg0.5−xCuxZn0.5Fe1.9O4−δ where x = 0.0, 0.1, 0.15, 0.2 and 0.25 has been synthesized by conventional solid state reaction route. The single phase spinel structure of the double sintered ferrites was confirmed by X-ray diffraction patterns (XRD. The ferrite series was studied in terms of DC electrical conductivity and thermoelectric power in the temperature ranging from room temperature to 300 °C and 400 °C, respectively. It was observed that DC electrical conductivity and Seebeck coefficient α decreased with the increase in x. DC electrical conductivity was found to decrease by about 4 orders. All the compositions showed a negative Seebeck coefficient exhibiting n-type semiconducting nature. From the above experimental results, activation energy and mobility of all the samples were estimated. Small polaron hopping conduction mechanism was suggested for the series of ferrites. Owing to their low conductivity the nonstoichiometric MgCuZn ferrites are the best materials for transformer core and high definition television deflection yokes.

  17. Shape and size-controlled synthesis of Ni Zn ferrite nanoparticles by two different routes

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Mohamed [Department of Emerging Material Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu (Korea, Republic of); Center for NanoBioEngineering and Spintronics, Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Ceramics Department, National Research Centre, 12311 Cairo (Egypt); Parvatheeswara Rao, B. [Department of Physics, Andhra University, Visakhapatnam 530003 (India); Kim, CheolGi, E-mail: cgkim@dgist.ac.kr [Department of Emerging Material Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu (Korea, Republic of); Center for NanoBioEngineering and Spintronics, Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2014-10-15

    Monodisperse Ni–Zn ferrite nanoparticles of different compositions have been synthesized using two different routes, such as sonochemical and polyol methods. In both the cases, the process was attempted in a single reaction in the absence of any surfactant and deoxygenated conditions. X-ray diffraction data on the samples confirmed formation of pure ferrite phase with spinel structure, and indicated that the sonochemical method produces highly crystalline particles compared to the polyol process. Transmission electron microscopy images reveal formation of different shapes, such as cubic, spherical, flower-like and amorphous depending on the method and composition of the ferrite. The magnetic properties of the synthesized Ni–Zn ferrite nanoparticles, measured by vibrating sample magnetometer at room temperature, show that the highest magnetization value was obtained for the composition of Ni{sub 0.5} Zn{sub 0.5} Fe{sub 2}O{sub 4} in both the synthesis methods. The results of both the methods were discussed by correlating the structure to the magnetism at nanoscales. - Highlights: • Ni Zn Fe{sub 2}O{sub 4} NPs were synthesized by two different method polyol, and sonochemical. • Cube, sphere, amorphous, and flower-like shapes were obtained based on the method used. • The sonochemical techniques produced NPs with high crstallinity than polyol method. • XRD, TEM, EDS, TGA, FTIR, and VSM techniques used to characterize the samples.

  18. Dielectric properties of nanocrystalline Co-Mg ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Jyoti, E-mail: jyotijoshi.phy2008@gmail.com [Department of Physics, University of Rajasthan, Jaipur (India); Sharma, Neha [Department of Physics, VEC Lakhanpur, Sarguja University, Ambikapur (C.G.) (India); Parashar, Jyoti; Saxena, V.K.; Bhatnagar, D. [Department of Physics, University of Rajasthan, Jaipur (India); Sharma, K.B. [Department of Physics, S. S. Jain Subodh P. G. College, Jaipur (India)

    2015-11-15

    Nanocrystalline powder samples with chemical formula Co{sub x}Mg{sub 1−x}Fe{sub 2}O{sub 4} (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) have been synthesized by sol–gel auto combustion method using citric acid as fuel agent. The rietveld refinement study of x-ray diffraction patterns confirmed the spinel single phase formation for all samples. Dielectric constant (ε′), dielectric loss tangent (tan δ) and AC conductivity of Co{sub x}Mg{sub 1−x}Fe{sub 2}O{sub 4} ferrite nanoparticles have been measured at room temperature in the frequency range from 1000 Hz to 120 MHz. The dielectric dispersion observed at lower frequency region is attributed to Maxwell–Wagner two layer model, which is in agreement with Koops phenomenological theory. The observed results have been explained by polarization which is attributed to the electron exchange between Fe{sup 2+} and Fe{sup 3+} ions. The temperature variation of ε′ and tanδ for some particular frequencies were studied. The rapid increase in ε′ and tan δ has been explained using thermally activated electron exchange between Fe{sup 2+} ↔ Fe{sup 3+} and Co{sup 2+} ↔ Co{sup 3+} ions at adjacent octahedral sites. The role of interfacial polarization has been focused to explain the high dispersion in ε′ and tanδ with temperature observed at low frequencies. - Graphical abstract: (a) TEM image of Co{sub 0.4}Mg{sub 0.6}Fe{sub 2}O{sub 4} shows the nano size of the synthesized ferrite particles and (b) Dielectric constant behavior with frequency of Co{sub x}Mg{sub 1−x}Fe{sub 2}O{sub 4} ferrite.

  19. Far-infrared spectra for copper-zinc mixed ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Zaki, H.M., E-mail: dakdik2001@yahoo.co [Physics Department, Faculty of Science, King Abdul Aziz University, Jeddah (Saudi Arabia); Physics Department, Faculty of Science, Zagazig University (Egypt); Dawoud, H.A. [University of Gaza, P.O. Box 108, Gaza Strip, Palestine Physics Department (Palestinian Territory, Occupied)

    2010-11-01

    Infrared spectra of Zn{sup 2+} ions substituted Cu ferrites with the general formula Cu{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} (where x=0.0, 0.2, 0.4, 0.6, 0.8 and 1) have been analyzed in the frequency range 200-1000 cm{sup -1}. These mixed ferrites were prepared by the standard double sintering ceramic method. Two prominent bands were observed, high-frequency band {nu}{sub 1} around 550 cm{sup -1} and low-frequency band {nu}{sub 2} around 395 cm{sup -1} and assigned to tetrahedral and octahedral sites for spinel lattice, respectively. On introducing zinc ions IR spectra indicate new shoulders or splitting on tetrahedral absorption bands around 600 and 700 cm{sup -1}. A small absorption band {nu}{sub 3} was observed around 310 cm{sup -1}. This indicates the migration of some Zn{sup 2+} ions to octahedral site. Another small weak absorption band was also observed around 265 cm{sup -1}; its intensity increased with Zn content. Force constant was calculated for both tetrahedral and octahedral sites. Threshold frequency {nu}{sub th} for the electronic transition was determined and found to increase with an increase in Zn ions. The half bandwidth for each site was calculated and the ratio seemed to increase with an increase in zinc content. The cation distribution for these ferrites was estimated in the light of IR spectra.

  20. Low dielectric loss in nano-Li-ferrite spinels prepared by sol–gel ...

    Indian Academy of Sciences (India)

    Author Affiliations. Mamata Maisnam1 Nandeibam Nilima2 Maisnam Victory2 Sumitra Phanjoubam2. Department of Basic Sciences and Humanities, National Institute of Technology Manipur, Langol 795 004, India; Department of Physics, Manipur University, Canchipur 795 003, India ...

  1. Growth and crystallographic feature-dependent characterization of spinel zinc ferrite thin films by RF sputtering.

    Science.gov (United States)

    Liang, Yuan-Chang; Hsia, Hao-Yuan

    2013-12-19

    ZnFe2O4 (ZFO) thin films exhibiting varying crystallographic features ((222)-epitaxially, (400)-epitaxially, and randomly oriented films) were grown on various substrates by radio-frequency magnetron sputtering. The type of substrate used profoundly affected the surface topography of the resulting ZFO films. The surface of the ZFO (222) epilayer was dense and exhibited small rectangular surface grains; however, the ZFO (400) epilayer exhibited small grooves. The surface of the randomly oriented ZFO thin film exhibited distinct three-dimensional island-like grains that demonstrated considerable surface roughness. Magnetization-temperature curves revealed that the ZFO thin films exhibited a spin-glass transition temperature of approximately 40 K. The crystallographic orientation of the ZFO thin films strongly affected magnetic anisotropy. The ZFO (222) epitaxy exhibited the strongest magnetic anisotropy, whereas the randomly oriented ZFO thin film exhibited no clear magnetic anisotropy.

  2. Epitaxial Lift-Off of Centimeter-Scaled Spinel Ferrite Oxide Thin Films for Flexible Electronics.

    Science.gov (United States)

    Shen, Lvkang; Wu, Liang; Sheng, Quan; Ma, Chunrui; Zhang, Yong; Lu, Lu; Ma, Ji; Ma, Jing; Bian, Jihong; Yang, Yaodong; Chen, Aiping; Lu, Xiaoli; Liu, Ming; Wang, Hong; Jia, Chun-Lin

    2017-09-01

    Mechanical flexibility of electronic devices has attracted much attention from research due to the great demand in practical applications and rich commercial value. Integration of functional oxide materials in flexible polymer materials has proven an effective way to achieve flexibility of functional electronic devices. However, the chemical and mechanical incompatibilities at the interfaces of dissimilar materials make it still a big challenge to synthesize high-quality single-crystalline oxide thin film directly on flexible polymer substrates. This study reports an improved method that is employed to successfully transfer a centimeter-scaled single-crystalline LiFe 5 O 8 thin film on polyimide substrate. Structural characterizations show that the transferred films have essentially no difference in comparison with the as-grown films with respect to the microstructure. In particular, the transferred LiFe 5 O 8 films exhibit excellent magnetic properties under various mechanical bending statuses and show excellent fatigue properties during the bending cycle tests. These results demonstrate that the improved transfer method provides an effective way to compose single-crystalline functional oxide thin films onto flexible substrates for applications in flexible and wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Superparamagnetic response of zinc ferrite incrusted nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Maldonado, K.L., E-mail: liliana.lopez.maldonado@gmail.com [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez (Mexico); Presa, P. de la, E-mail: pmpresa@ucm.es [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), PO Box 155, 28230 Las Rozas (Spain); Dpto. Física de Materiales, Univ. Complutense de Madrid, Madrid (Spain); Betancourt, I., E-mail: israelb@unam.mx [Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México, D.F. 04510 (Mexico); Farias Mancilla, J.R., E-mail: rurik.farias@uacj.mx [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez (Mexico); Matutes Aquino, J.A., E-mail: jose.matutes@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, 31109 Chihuahua (Mexico); Hernando, A., E-mail: antonio.hernando@externos.adif.es [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), PO Box 155, 28230 Las Rozas (Spain); Dpto. Física de Materiales, Univ. Complutense de Madrid, Madrid (Spain); and others

    2015-07-15

    Highlights: • Incrusted nanoparticles are found at the surface of ZnFe{sub 2}O{sub 4} microparticles. • Magnetic contribution of nano and microparticles are analyzed by different models. • Langevin model is used to calculate the nanoparticles-superparamagnetic diameter. • Susceptibility and Langevin analysis and calculations agree with experimental data. - Abstract: Zinc ferrite is synthesized via mechano-activation, followed by thermal treatment. Spinel ZnFe{sub 2}O{sub 4} single phase is confirmed by X-ray diffraction. SEM micrographs show large particles with average particle size 〈D{sub part}〉 = 1 μm, with particles in intimate contact. However, TEM micrographs show incrusted nanocrystallites at the particles surface, with average nanocrystallite size calculated as 〈D{sub inc}〉 ≈ 5 nm. The blocking temperature at 118 K in the ZFC–FC curves indicates the presence of a superparamagnetic response which is attributable to the incrusted nanocrystallites. Moreover, the hysteresis loops show the coexistence of superpara- and paramagnetic responses. The former is observable at the low field region; meanwhile, the second one is responsible of the lack of saturation at high field region. This last behavior is related to a paramagnetic contribution coming from well-ordered crystalline microdomains. The hysteresis loops are analyzed by means of two different models. The first one is the susceptibility model used to examine separately the para- and superparamagnetic contributions. The fittings with the theoretical model confirm the presence of the above mentioned magnetic contributions. Finally, using the Langevin-based model, the average superparamagnetic diameter 〈D{sub SPM}〉 is calculated. The obtained value 〈D{sub SPM}〉 = 4.7 nm (∼5 nm) is consistent with the average nanocrystallite size observed by TEM.

  4. Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol−gel−hydrothermal route using spent Li-ion battery

    International Nuclear Information System (INIS)

    Yao, Lu; Xi, Yuebin; Xi, Guoxi; Feng, Yong

    2016-01-01

    The combination of a sol–gel method and a hydrothermal method was successfully used for synthesizing the nano-crystalline cobalt ferrite powders with a spinel structure using spent Li-ion batteries as the raw materials. The phase composition, microstructure, magnetic properties and magnetostriction coefficient of cobalt ferrite were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), magnetometer and magnetostrictive measurement instrument. The microstructure of the products exhibited hedgehog-like microspheres with particle size of approximately 5 μm. The different crystalline sizes and the microstructure of cobalt ferrites precursor were controlled by varying the hydrothermal time, which significantly affected the super-exchange and the deflection direction of the magnetic domain, and led to the change of the magnetic properties of sintered cylindrical samples. The saturation magnetization and maximum magnetostriction coefficient were 81.7 emu/g and −158.5 ppm, respectively, which was larger than that of products prepared by the sol-gel sintered method alone. - Graphical abstract: The magnetostriction of cobalt ferrites with a spinel structure was successfully prepared using the sol–gel–hydrothermal route using spent Li-ion batteries. On the basis of the aforementioned SEM observation, the formation of a hedgehog-like microsphere structure might involve two important steps: Ostwald ripening and self-assembly. - Highlights: • The cobalt ferrites were prepared by the sol–gel–hydrothermal route. • The cobalt ferrites show hedgehog-like microsphere particles in shape. • The microspheres size increased with increasing hydrothermal time. • The magnetostriction properties of the cobalt ferrite were enhanced.

  5. Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol−gel−hydrothermal route using spent Li-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Lu, E-mail: yaolu1020@126.com [Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, College of Environment, Henan Normal University, Xinxiang 453007 (China); College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang Henan 453003 (China); Xi, Yuebin [Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, College of Environment, Henan Normal University, Xinxiang 453007 (China); Xi, Guoxi, E-mail: yaolu001@163.com [Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, College of Environment, Henan Normal University, Xinxiang 453007 (China); Feng, Yong [Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, College of Environment, Henan Normal University, Xinxiang 453007 (China)

    2016-09-25

    The combination of a sol–gel method and a hydrothermal method was successfully used for synthesizing the nano-crystalline cobalt ferrite powders with a spinel structure using spent Li-ion batteries as the raw materials. The phase composition, microstructure, magnetic properties and magnetostriction coefficient of cobalt ferrite were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), magnetometer and magnetostrictive measurement instrument. The microstructure of the products exhibited hedgehog-like microspheres with particle size of approximately 5 μm. The different crystalline sizes and the microstructure of cobalt ferrites precursor were controlled by varying the hydrothermal time, which significantly affected the super-exchange and the deflection direction of the magnetic domain, and led to the change of the magnetic properties of sintered cylindrical samples. The saturation magnetization and maximum magnetostriction coefficient were 81.7 emu/g and −158.5 ppm, respectively, which was larger than that of products prepared by the sol-gel sintered method alone. - Graphical abstract: The magnetostriction of cobalt ferrites with a spinel structure was successfully prepared using the sol–gel–hydrothermal route using spent Li-ion batteries. On the basis of the aforementioned SEM observation, the formation of a hedgehog-like microsphere structure might involve two important steps: Ostwald ripening and self-assembly. - Highlights: • The cobalt ferrites were prepared by the sol–gel–hydrothermal route. • The cobalt ferrites show hedgehog-like microsphere particles in shape. • The microspheres size increased with increasing hydrothermal time. • The magnetostriction properties of the cobalt ferrite were enhanced.

  6. Influence of pH on the physical and electromagnetic properties of Mg–Mn ferrite synthesized by a solution combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Lwin, Nilar, E-mail: nilarlwin111@gmail.com [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Othman, Radzali, E-mail: radzali@utem.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76100, Durian Tunggal, Malacca (Malaysia); Noor, Ahmad Fauzi Mohd, E-mail: srafauzi@usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Sreekantan, Srimala, E-mail: sreekantansrimala1974@gmail.com [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Yong, Tan Chou, E-mail: chouyong@um.edu.my [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Singh, Ramesh, E-mail: ramesh79@um.edu.my [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Tin, Chin-Che, E-mail: cctin@um.edu.my [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-12-15

    The synthesis of nano-crystalline Mg–Mn ferrites by a solution combustion method using citric acid and ammonia was investigated by varying the pH of the precursor solution, which played an important role in controlling the morphology of the synthesized powders. The phase formation, microstructure and electromagnetic properties were studied using X-ray diffraction, scanning electron microscopy, impedance analyzer and vibrating sample magnetometer. Single phase pure spinel Mg–Mn ferrite powders were obtained for all the samples at different pH (< 1, 3, 5, 7, 9). The results showed that an increase of pH improves the crystallinity of the Mg–Mn ferrite nanoparticles. The average grain size of sintered samples was found to decrease from 2 μm to 0.5 μm with increasing pH values from pH < 1 to pH 9, respectively. The dielectric constant of the samples with different pH is in the range of 7–12 from frequencies of 1 MHz to 1 GHz. The highest saturation magnetization (30.04 emu/g) was obtained for the sample with pH < 1. - Highlights: • Mg–Mn ferrites were synthesized by a solution combustion method with different pH. • Auto-combustion process resulted in the formation of single phase spinel ferrite. • An increase of pH improves the crystallinity of the Mg–Mn ferrite nanoparticles. • pH variation has influence on phase formation and morphology of the ferrite.

  7. Mechanochemical synthesis of stoichiometric nickel and nickel-zinc ferrite powders with Nicolson-Ross analysis of absorption coefficients

    Directory of Open Access Journals (Sweden)

    Jovalekić Čedomir

    2012-01-01

    Full Text Available The interest in finding new methods for preparation of nickel ferrite (NiFe2O4 and nickel-zinc ferrite (NixZn1-xFe2O4 powders has recently increased, due to the fact that physical and chemical properties of these soft magnetic materials depend strongly on the preparation conditions. In this paper, powder samples of ferrites were obtained by: 1 classic sintering procedure (NixZn1-xFe2O4, x = 0.9 and 2 planetary mill synthesis (both NiFe2O4 and NixZn1-xFe2O4. Mechanochemical reaction leading to the formation of NixZn1-xFe2O4 (x = 1 and 0.9 spinel phase was monitored by SEM, TEM, and XRD. Values of the real and imaginary parts of permittivity and permeability were measured for the obtained nickel and nickel-zinc ferrite samples in the 7-12 GHz frequency range. Based on the obtained results, the EMR absorption coefficients were calculated for all three sample types. It has been concluded that the method of preparation and the final particle size influence the EMR absorption coefficient of nickel and nickel-zinc ferrites.

  8. Preparation and characterization of polyol assisted ultrafine Cu–Ni–Mg–Ca mixed ferrite via co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Boobalan, T. [Park College of Engineering and Technology, Coimbatore (India); Pavithradevi, S. [Department of Physics, Government College of Technology, Coimbatore (India); Suriyanarayanan, N., E-mail: nsuri22@gmail.com [Department of Physics, PSG Polytechnic College, Coimbatore (India); Manivel Raja, M. [Defence Metallurgical Research Laboratory, Ministry of Defence, Govt. of India, Hyderabad (India); Ranjith Kumar, E., E-mail: ranjueaswar@gmail.com [Dr. NGP Institute of Technology, Coimbatore (India)

    2017-04-15

    Nanocrystalline spinel ferrite of composition Cu{sub 0.2}Ni{sub 0.2}Mg{sub 0.2}Ca{sub 0.4}Fe{sub 2}O{sub 4} is synthesized by wet hydroxyl co-precipitation method in ethylene glycol as chelating agent and sodium hydroxide as precipitator at pH 8. Ethylene glycol is utilized as the medium which serves as the dissolvable and in addition a complexing specialist. The synthesized particles are annealed at various temperatures. Thermogravimetric investigation affirms that at 280 °C ethylene glycol is dissipated totally and stable phase arrangement happens over 680 °C. FTIR spectra of as synthesized and annealed at 1050 °C recorded between 400 cm{sup −1} and 4000 cm{sup −1}. Structural characterizations of all the samples are carried out by X-ray diffraction (XRD) technique. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) affirm that the particles are spherical and cubic shape with the crystallite size of 12 nm to 32 nm. Magnetic measurements are performed utilizing vibrating sample magnetometer at room temperature. - Highlights: • Polyol improves purity of the spinel ferrite. • TG curves confirm the single phase ferrite is obtained above 680 °C. • Super paramagnetic behavior is seen at lower annealing temperature. • Soft ferromagnetic behavior is obtained at 1050 °C.

  9. Magnetic properties of hexagonal barium ferrite films on Pt/MgO(111) substrates annealed at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hui [National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 610054 (China); Han, Mangui, E-mail: han_mangui@yahoo.com [National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zheng, Liang; Deng, Jiangxia; Zheng, Peng [Institute of Electron Device & Application, Hangzhou Dianzi University, Hangzhou 310008 (China); Wu, Qiong [Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou 310018 (China); Deng, Longjiang [National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 610054 (China); Qin, Huibin [Institute of Electron Device & Application, Hangzhou Dianzi University, Hangzhou 310008 (China)

    2016-09-01

    In this work, hexagonal barium ferrite thin films have been deposited on Pt/MgO(111) substrates by pulsed laser deposition. The anneal temperature dependence of crystal structures, extents of diffusion and magnetic properties have been studied. X-ray diffraction patterns reveal that the crystal structure changes from the hexagonal to the spinel when the anneal temperature increases. The texture with c-axis perpendicular to the film plane and the small c-axis dispersion angles (△θ{sub c}) have been obtained in the film annealed at 950 °C for 10 h. Both the X-ray photoelectron spectroscopy profiles and energy dispersive spectrometer show that the diffusions of Mg{sup 2+}and Fe{sup 3+}cations are more obvious when the annealing temperature is higher than 950 °C. The film annealed at 950 °C show anisotropic and hard magnetic properties. The magnetic properties of film annealed at 1050 °C are soft. - Highlights: • Obvious cation diffusions between the films and substrates are observed by XPS measurements. • Hexagonal ferrites gradually transform into spinel ferrites when the annealing temperatures increase. • Ba-M thin films with the c-axis of grains perpendicular to the film plane have been obtained.

  10. Combustion synthesis by reaction and characterization of structural Ni-Zn ferrite doped with copper

    International Nuclear Information System (INIS)

    Dantas, J.; Santos, J.R.D.; Cunha, R.B.L.; Feitosa, C.A.; Costa, A.C.F.M.

    2012-01-01

    The present stud aims to evaluate the effect of doping with Cu 2+ ions concentrations of 0.0, 0.1, 0.2, 0.3 and 0.4 mol in the synthesis and structure of Ni-Zn ferrite. Samples were synthesized by the method of the combustion reaction and characterized by measuring the temperature as a function of reaction time, X-ray diffraction (XRD) and infrared spectroscopy in Fourier transform (FTIR). The combustion temperature and time were 646, 900, 989, 975 and 735°C and 210, 175, 220, 210 and 110 seconds for the sample doped with 0.0, 0.1, 0.2, 0.3 and 0.4 mol of copper, respectively. XRD results show that all concentrations of copper evaluated, there was only a training phase inverse spinel ferrite and Ni-Zn FTIR spectra show absorption bands below 1000cm -1 , which are characteristics of the spinel type AB 2 O 4- (author)

  11. Magneto-structural studies of sol–gel synthesized nanocrystalline manganese substituted nickel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Pandav, R.S. [Department of Chemistry, Shivaji University, Kolhapur 416004, MH (India); Patil, R.P. [Department of Chemistry, M.H. Shinde Mahavidyalaya, Tisangi 416206, MH (India); Chavan, S.S. [Department of Chemistry, Shivaji University, Kolhapur 416004, MH (India); Mulla, I.S. [Centre for Materials for Electronics and Technology (C-MET), Panchavati, Pune 411008 (India); Hankare, P.P., E-mail: p_hankare@rediffmail.com [Department of Chemistry, Shivaji University, Kolhapur 416004, MH (India)

    2016-11-01

    Nanocrystalline NiFe{sub 2−x}Mn{sub x}O{sub 4} (2≥x≥0) ferrites were prepared by sol–gel method. X-ray diffraction patterns reveal that synthesized compounds are in single phase cubic spinel lattice for all the composition. The surface morphology of all the samples were studied by scanning electron microscopy. The particle size measured from transmission electron microscopy and X-ray diffraction patterns confirms the nanosized dimension of the as-prepared powder. The elemental analysis was carried out by energy dispersive X-ray analysis technique. Magnetic properties such as saturation magnetization, coercivity and remanence are studied as a function of increasing Mn concentration at room temperature. The saturation magnetization shows a decreasing trend with increase in Mn content. The substitution of manganese in the nickel ferrite affects the structural and magnetic properties of cubic spinels. - Highlights: • NiFe{sub 2−x}Mn{sub x}O{sub 4} system was synthesized by a chemical combustion route. • All samples shows cubic phase. • All the synthesized ferrospinels are in nanocrystalline form. • The saturation magnetization decreases with increase in Mn content.

  12. Characterization of Ni ferrites powders prepared by plasma arc discharge process

    Energy Technology Data Exchange (ETDEWEB)

    Safari, A. [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Gheisari, Kh., E-mail: khgheisari@scu.ac.ir [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Farbod, M. [Physics Department, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of)

    2017-01-01

    The aim of this work was to synthesize a single-phase spinel structure from a mixture of zinc, iron and nickel powders by plasma arc discharge method. A mixture of zinc, iron and nickel powders with the appropriate molar ratio was prepared and formed into a cylindrical shape. The synthesis process was performed in air, oxygen and argon atmospheres with the applied arc current of 400 A and pressure of 1 atm. After establishing an arc between the electrodes, the produced powders were collected and their structure and magnetic properties were examined by XRD and VSM, respectively. ZnO as an impurity was appeared in the as-produced powders owing to the high reactivity of zinc atoms, preventing the formation of Ni–Zn ferrite. A pure spinel structure with the highest saturation magnetization (43.8 emu/g) was observed as zinc powders removed completely from the initial mixture. Morphological evaluations using field emission scanning electron microscopy showed that the mean size of fabricated nanoparticles was in the range 100–200 nm and was dependent on the production conditions. - Highlights: • Nanocrystalline Ni ferrite powders are prepared by plasma arc discharge process. • The mean particle size of the as-synthesized ceramic powders is about 100 nm. • The highest saturation magnetization is observed as zinc powders removed completely from the initial mixture.

  13. The effect of neodymium substitution on the structural and magnetic properties of nickel ferrite

    Directory of Open Access Journals (Sweden)

    İsrafil Şabikoğlu

    2015-06-01

    Full Text Available Nickel ferrite NiFe2O4 is a typical soft magnetic ferrite with high electrical resistivity used as high frequency magnetic material. Neodymium (Nd3+ doped NiFe2O4 materials were fabricated using solid state reaction. The properties of the obtained material were investigated by X-Ray Diffraction (XRD, Scanning Electron Microscope (SEM, Fourier-Transform Infrared Spectroscopy (FT-IR, magnetic measurements on SQUID and Mössbauer spectroscopy. It was found that the material consists of two different phases: Nd3+ doped NiFe2O4 and NdFeO3. The Nd3+ ions occupy cation sites of the NiFe2O4 inverse spinel structure. NdFeO3 phase occurred when the level of Nd3+ atoms exceed a percolation limit. The presence of both phases was confirmed by SEM observations. The Mössbauer spectra analysis showed two sextets, which can be ascribed to iron atoms in tetrahedral and octahedral positions. From their intensities it is concluded that Nd3+ occupies octahedral sites in the spinel structure of NiFe2O4, which were originally occupied by Ni2+.

  14. Chromian spinel-rich black sands from eastern shoreline of ...

    Indian Academy of Sciences (India)

    rocks, especially Alpine-type peridotites (Press. 1986; Arai and Okada 1991; Cookenboo et al. 1997;. Lee 1999). Due to the high mechanical and chem- ical resistivity of spinel grains, it usually forms beach placers. The spinel compositions, known to be influenced by the geodynamic environment of formation (Evans and ...

  15. Chromian spinel-rich black sands from eastern shoreline of ...

    Indian Academy of Sciences (India)

    Black sands rich in chromian spinel commonly occur in pockets along the eastern shoreline of Andaman. Island where various types of peridotites and volcanics belonging to the Andaman ophiolite suite are exposed in close vicinity. The chemistry of these detrital chromian spinels has been extensively used here.

  16. Chromian spinel-rich black sands from eastern shoreline of ...

    Indian Academy of Sciences (India)

    Black sands rich in chromian spinel commonly occur in pockets along the eastern shoreline of Andaman Island where various types of peridotites and volcanics belonging to the Andaman ophiolite suite are exposed in close vicinity. The chemistry of these detrital chromian spinels has been extensively used here in ...

  17. Effect of preparation conditions on Nickel Zinc Ferrite nanoparticles: A comparison between sol–gel auto combustion and co-precipitation methods

    Directory of Open Access Journals (Sweden)

    Manju Kurian

    2016-09-01

    Full Text Available The experimental conditions used in the preparation of nano crystalline mixed ferrite materials play an important role in the particle size of the product. In the present work a comparison is made on sol–gel auto combustion methods and co-precipitation methods by preparing Nickel Zinc Ferrite (Ni0.5Zn0.5Fe2O4 nano particles. The prepared ferrite samples were calcined at different temperatures and characterized by using standard methods. X-ray diffraction analysis indicated the formation of single phase ferrite nanoparticles for samples calcined at 500 °C. The lattice parameter range of 8.32–8.49 Å confirmed the cubic spinel structure. Average crystallite size estimated from X-ray diffractogram was found to be between 17 and 40 nm. The IR spectra showed two main absorption bands, the high frequency band ν1 around 600 cm−1 and the low frequency band ν2 around 400 cm−1 arising from tetrahedral (A and octahedral (B interstitial sites in the spinel lattice. TEM pictures showed particles in the nanometric range confirming the XRD data. The studies revealed that the sol–gel auto combustion method was superior to the co-precipitation method for producing single phase nano particles with smaller crystallite size.

  18. Articles comprising ferritic stainless steels

    Science.gov (United States)

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  19. Electrical transport properties of CoMn0.2−xGaxFe1.8O4 ferrites using complex impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Chien-Yie Tsay

    2016-05-01

    Full Text Available In this study, we report the influence of Ga content on the microstructural, magnetic, and AC impedance properties of Co-based ferrites with compositions of CoMn0.2−xGaxFe1.8O4 (x=0, 0.1, and 0.2 prepared by the solid-state reaction method. Experimental results showed that the as-prepared Co-based ferrites had a single-phase spinel structure; the Curie temperature of Co-based ferrites decreased with increasing Ga content. All ferrite samples exhibited a typical hysteresis behavior with good values of saturation magnetization at room temperature. The electrical properties of Co-based ferrites were investigated using complex impedance spectroscopy analysis in the frequency range of 100 kHz-50 MHz at temperatures of 150 to 250 oC. The impedance analysis revealed that the magnitudes of the real part (Z’ and the imaginary part (Z” of complex impedance decreased with increasing temperature. Only one semicircle was observed in each complex impedance plane plot, which revealed that the contribution to conductivity was from the grain boundaries. It was found that the relaxation time for the grain boundary (τgb also decreased with increasing temperature. The values of resistance for the grain boundary (Rgb significantly increased with increasing Ga content, which indicated that the incorporation of Ga into Co-based ferrites enhanced the electrical resistivity.

  20. Structural characterization, morphology and magnetic ferrite Ni0,4Zn0,5Fe2Cu0,1O4

    International Nuclear Information System (INIS)

    Santos, P.T.A.; Fernandes, P.C.; Santos, P.T.A.; Costa, A.C.F.M.

    2011-01-01

    In this work the system Ni 0,4 Zn 0,5 Fe 2 Cu 0,1 O 4 was obtained by combustion reaction using urea as fuel in order to evaluate their structural characteristics, and morphological imaging. The resulting samples were characterized by XRD, BET, SEM / EDS and magnetic measurements. The synthesis by combustion reaction was effective for producing samples of ferrites with crystallite size 13 nm. The X-ray diffraction showed the major phase of the inverse spinel and traces of ZnO second phase. The resulting morphology showed the formation of soft agglomerates with interparticle porosity, and mapping by SEM / EDS indicated a good distribution of elements Ni, Cu, Zn, Fe and O constituent of ferrite. The ferrite showed superparamagnetic behavior with a value of saturation magnetization of 5.60 emu / g. (author)

  1. Structural and Magnetic properties of lithium ferrite substituted BaTi0.9Zr0.1O3 composite ceramics

    Directory of Open Access Journals (Sweden)

    Ganapathi Rao Gajula

    2017-06-01

    Full Text Available Improvement of magnetic properties, suggesting the effectiveness of Li0.5Fe2.5O4 (LF in lower concentration doped in BaTi0.9Zr0.1O3 (BTZr. The composites with a formula of (1-xBaTi0.9Zr0.1O3 + (x Li0.5Fe2.5O4 (x = 0.0, 0.05, 0.10 and 0.15 synthesized by conventional solid state reaction method at 1150 °C. X-ray diffraction (XRD peaks are indexed to the crystal planes for tetragonal perovskite and spinel ferrite observed in the samples. SEM micrographs show dense microstructure resulting in increasing grain size with an increase in ferrite content. Stability of magnetic phase in the higher temperature range, enhancing the Curie temperature with increase in ferrite content.

  2. Structural, magnetic and electrical characterization of Cd-substituted Mg ferrites synthesized by double sintering technique

    Energy Technology Data Exchange (ETDEWEB)

    Zahir, R. [Department of Physics, Chittagong University of Engineering and Technology, Chittagong 4349 (Bangladesh); Chowdhury, F.-U.Z, E-mail: faruque@cuet.ac.bd [Department of Physics, Chittagong University of Engineering and Technology, Chittagong 4349 (Bangladesh); Uddin, M.M. [Department of Physics, Chittagong University of Engineering and Technology, Chittagong 4349 (Bangladesh); Hakim, M.A. [Materials Science Division, Atomic Energy Center, Dhaka 1000 (Bangladesh)

    2016-07-15

    Cd-substituted Mg ferrites with compositional formula Mg{sub 1−x}Cd{sub x}Fe{sub 2}O{sub 4} with 0.1≤x≤0.6 in the steps of 0.1 have been synthesized by double sintering ceramic technique. The X-ray diffraction analysis has revealed that the samples crystallize in a single phase cubic spinel structure. The lattice parameter has increased with increasing Cd content in conformity with Vegard's law. The study of scanning electron microscopy has revealed that Cd substitution has increased the particle size of the ferrites increases from ~2.2 to 9.2 µm. Some probable interpretations based on literature have been discussed. The increase in particle size with increasing of Cd content has consequently resulted in the initial permeability. The Curie temperature has decreased linearly with increasing Cd content which pointed out the weakening of A-B exchange interaction. The spectra of quality factor have showed a steady bandwidth of 0.1–8 MHz, this finding makes the ferrite system suitable for broadband pulse transformer. The variation of electrical resistivity (DC and AC) has been explained on the basis of electron hopping between Fe{sup 2+}and Fe{sup 3+}. - Highlights: • Synthesis of Cd-substituted Mg ferrites by double sintering ceramic technique. • Studies of Cd substitution on the structural and magnetic properties of Mg Ferrites. • The Curie temperature decreases linearly with increasing Cd concentration. • Due to the conduction of hopping of charge carriers DC resistivity decreases.

  3. Gadolinium substitution effect on the thermomagnetic properties of Ni ferrite ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Jacobo, Silvia E., E-mail: sjacobo@fi.uba.edu [LAFMACEL-INTECIN, Facultad de Ingeniería, UBA. Av. Paseo Colón 850, C1063EHA Buenos Aires (Argentina); Arana, Mercedes; Bercoff, Paula G. [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba. IFEG, CONICET. Ciudad Universitaria, Córdoba (Argentina)

    2016-10-01

    This work is focused on the structural and magnetic characterization of Gd-doped Ni ferrite nanoparticles and the preparation of a ferrofluid for applications in heat-transfer devices. For this purpose, spinel ferrites NiFe{sub 2}O{sub 4}, and NiFe{sub 1.88}Gd{sub 0.12}O{sub 4} were prepared by the self-combustion method. The substituted sample was obtained with a small amount of Gd inclusion and the excess appeared as GdFeO{sub 3}. The smallest nanoparticles of both samples were properly coated and dispersed in kerosene. Thermal conductivities of the produced ferrofluids were measured at 25 °C under an applied magnetic field. There is a significant enhancement in the thermal conductivity of the ferrofluid prepared with NiGd ferrite with respect to the one with Ni ferrite, in presence of a magnetic field. This effect is directly related to the well-known magnetocaloric effect of Gd. - Highlights: • NiFe{sub 2}O{sub 4}, and NiFe{sub 1.88}Gd{sub 0.12}O{sub 4} were prepared by the self-combustion method. • Two organic ferrofluids were prepared with the smallest nanoparticles of both samples (~50 nm). • Increments in thermal conductivity are observed under low-intensity applied magnetic fields. • Gd induces magnetocaloric effects in NiGd-ferrite ferrofluids. • Thermal properties of NiGd ferrofluids can by optimized the by applying low magnetic fields.

  4. Investigation of structural, optical, magnetic and electrical properties of tungsten doped Nisbnd Zn nano-ferrites

    Science.gov (United States)

    Pathania, Abhilash; Bhardwaj, Sanjay; Thakur, Shyam Singh; Mattei, Jean-Luc; Queffelec, Patrick; Panina, Larissa V.; Thakur, Preeti; Thakur, Atul

    2018-02-01

    Tungsten substituted nickel-zinc ferrite nanoparticles with chemical composition of Ni0.5Zn0.5WxFe2-xO4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 & 1.0) were successfully synthesized by a chemical co-precipitation method. The prepared ferrites were pre sintered at 850 °C and then annealed at 1000 °C in a muffle furnace for 3 h each. This sintered powder was inspected by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM) to study the structural, optical, and magnetic properties. XRD measurement revealed the phase purity of all the nanoferrite samples with cubic spinel structure. The estimated crystallite size by X-ray line broadening is found in the range of 49-62 nm. FTIR spectra of all the samples have observed two prominent absorption bands in the range 400-700 cm-1 arising due to tetrahedral and octahedral stretching vibrations. Vibrating sample magnetometer experiments showed that the saturation magnetizations (MS) decreased with an increase in non-magnetic tungsten ion doping. The electrical resistivity of tungsten doped Nisbnd Zn nano ferrites were examined extensively as a function of temperature. With an increase in tungsten composition, resistivity was found to decrease from 2.2 × 105 Ω cm to 1.9 × 105 Ω cm which indicates the semiconducting behavior of the ferrite samples. The activation energy also decreased from 0.0264 to 0.0221 eV at x = 0.0 to x = 1.0. These low coercive field tungsten doped Nisbnd Zn ferrites are suitable for hyperthermia and sensor applications. These observations are explained in detail on the basis of various models and theories.

  5. The use of ferrites at microwave frequencies

    CERN Document Server

    Thourel, Léo

    1964-01-01

    The Use of Ferrites at Microwave Frequencies describes the applications of ferrites at microwave frequencies and the apparatus involved. Topics covered range from the properties of ferrites to gyromagnetic and non-reciprocal effects, ferrite isolators, circulators, and modulators. The use of ferrites in variable frequency filter cavities is also discussed. Mathematical explanations are reduced to the strict minimum and only the results of calculations are indicated. This book consists of seven chapters and opens with a review of the theory of magnetism, touching on subjects such as the BOHR m

  6. Synchrotron X-ray powder diffraction studies on the order-disorder phase transition in lithium ferrites

    International Nuclear Information System (INIS)

    Darul, J.; Nowicki, W.; Piszora, P.; Baehtz, C.; Wolska, E.

    2005-01-01

    Investigations on the manganese substituted lithium ferrites reveal the strong influence of manganese ions on the ordering of Li + cations in the spinel-type crystal lattice. We present the effect of Mn 3+ substitution in the LiFe 5-x Mn x O 8 (0 ≤ x ≤ 1) samples on the order-disorder phase transition and on the thermal expansion of their spinel lattices. Synchrotron X-ray measurements have been performed in the temperature range 10-300 K and 300-1173 K. The diffraction experiments were carried out at the DESY-HASYLAB high-resolution powder diffractometer (beamline B2). The transition from ordered (cubic primitive, P4 1 32) to disordered (face centred cubic, Fd3m) structure was observed with the increasing Mn 3+ content

  7. Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    International Nuclear Information System (INIS)

    Raut, A.V.; Barkule, R.S.; Shengule, D.R.; Jadhav, K.M.

    2014-01-01

    Structural morphology and magnetic properties of the Co 1−x Zn x Fe 2 O 4 (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn 2+ content in cobalt ferrite nanoparticles is followed by decrease in n B , M s and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique

  8. Influence of Sn4+ on Structural and DC Electrical Resistivity of Ni-Zn Ferrite Thick Films

    Science.gov (United States)

    Dalawai, S. P.; Shinde, T. J.; Gadkari, A. B.; Tarwal, N. L.; Jang, J. H.; Vasambekar, P. N.

    2017-03-01

    Among the soft ferrites, Ni-Zn ferrite is one of the most versatile ceramic materials because of their important electrical and magnetic properties. These properties were improved by substituting Sn4+ in Ni-Zn ferrites with chemical composition of Ni x Zn1+ y- x Fe2-2 y Sn y O4 ( x = 0, 0.2, 0.4, 0.6, 0.8, 1.0; y = 0.1, 0.2). To achieve homogenous ferrite powder at lower sintering temperature and smaller duration in nano-size form, the oxalate co-precipitation method was preferred as compared to other physical and chemical methods. Using this powder, ferrite thick films (FTFs) were prepared by the screen printing technique because of its low cost and easy use. To study structural behavior, the FTFs were characterized by different techniques. The x-ray diffraction and thermo-gravimetric and differential thermal analysis studies show the formation of cubic spinel structure and ferrite phase formation, respectively. There is no remarkable trend observed in lattice constants for the Sn4+ ( y = 0.1)- and Sn4+ ( y = 0.2)-substituted Ni-Zn ferrites. The bond lengths as well as ionic radii on the A-site of Ni-Zn-Sn ferrites were found to decrease with increasing nickel content. The bond length and ionic radii on the B-sites remained almost constant for Sn4+ ( y = 0.1, 0.2)-substituted Ni-Zn ferrites. The energy dispersive x-ray analysis confirms the elemental analysis of FTFs. The Fourier transform infrared spectra show two major absorption bands near 400 cm-1 and 600 cm-1 corresponding to octahedral and tetrahedral sites, respectively, which also confirms the formation of the ferrites. The field emission scanning electron microscopy images shows that the particles are highly porous in nature and located in loosely packed agglomerates. The average particle size of the FTFs lies in the range 20-60 nm. Direct current (DC) resistivity of Ni-Zn-Sn FTFs shows the semiconductor nature. The DC resistivity of Ni-Zn-Sn0.2FTFs is lower than Ni-Zn-Sn0.1 FTFs. The DC resistivity is

  9. Structural, Magnetic and Microwave Properties of Nanocrystalline Ni-Co-Gd Ferrites

    Science.gov (United States)

    Nikzad, Alireza; Parvizi, Roghaieh; Rezaei, Ghasem; Vaseghi, Behrooz; Khordad, Reza

    2018-02-01

    A series of Co- and Gd-substituted NiFe2O4 ferrite nanoparticles with the formula Ni1- x Co x Fe2- y Gd y O4 (where x = 0.0-1.0 and y = 0.0-0.1) have been successfully synthesized using a hydrothermal method. X-ray diffraction and field emission scanning electron microscopy results indicated that a highly crystallized spherical ferrite nanoparticle structure was obtained along with an increase in the lattice parameters. Compositional analysis of the prepared nanoferrite powders has been carried out using energy-dispersive x-ray (EDX) spectra. The EDX analysis reveals the presence of Ni, Co, Gd and Fe elements in the specimens. Magnetization and the coercive field improved dramatically with an increase in the amount of cobalt and gadolinium added, attributed to the redistribution of cations in the spinel nanoferrite structure. Saturation magnetization and coercivity values up to 99 emu/g and 918 Oe, respectively, were measured using a vibration sample magnetometer at room temperature. Comparative microwave absorption experiments demonstrated that the reflection loss (RL) properties enhanced with increasing substitution of cations in the Ni-ferrite spinel structure for an absorber thickness of 1.8 mm. A maximum RL of - 26.7 dB was obtained for substituted Ni-Co-Gd nanoferrite with x = 1.0 and y = 0.1 at a frequency of 9.4 GHz with a bandwidth of 3.6 GHz (RL ≤ - 10 dB). Experimental results revealed that the synthesized nanoparticles possessed great potential in microwave absorption applications.

  10. High thermal stability of the ferrimagnetic moment in exchange biased FeO(core)/spinel(shell) nanocubes

    International Nuclear Information System (INIS)

    Hai, H T; Kura, H; Takahashi, M; Ogawa, T

    2011-01-01

    We demonstrate herein a basic approach to a new type of exchange-coupled iron oxide-based core/shell nanocubes consisting of an antiferromagnetic (AFM) core of ferrous oxide (wustite, FeO) surrounded by a ferrimagnetic (FM) shell of ferrite (spinel, γ-Fe 2 O 3 or Fe 3 O 4 ). By coupling with AFM core, effective blocking temperature of FM moments is strongly enhanced up to Neel temperature (T N = 198 K) of AFM core. This is assigned to contribution of an extra anisotropy induced by exchange bias at the interface between AFM and FM components in the nanocubes. Because of this special coupling structure, the high stability of FM moments can be achieved even at very small volume fraction of AFM with respect to FM matrix, thus significantly eliminate contribution of AFM to the magnetization of whole coupling system, suggesting a new hybrid structure for magnetic devices applications.

  11. Magnetic Spinel-Type CoFe2O4 Nanoparticles: Synthesis and Investigation of Structural, Morphological Properties

    Directory of Open Access Journals (Sweden)

    Mesut ÖZDİNÇER

    2017-05-01

    Full Text Available Spinel-type metal oxide nanoparticles were synthesized via co-precipitation approach. Mono ethylene glycol (MEG was used as a capping agent to stabilize the particles and prevent them from agglomeration. The structural, morphological and thermal properties of the calcined sample were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, raman spectroscopy and thermal analysis. Energy-dispersive X-ray analysis (EDX has also proved that the element composition was composed of pure single phase and contained Co, Fe and O elements. The mean crystallite size of the prepared ferrite nanoparticles was determined to be in the range of 30-345 nm based on the SEM images. The magnetic measurements of the CoFe2O4 nanoparticles were examined with a vibrating sample magnetometer (VSM at room temperature to determine their magnetic behavior and the magnetic parameters were found.

  12. Nanocrystalline zinc ferrite films studied by magneto-optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lišková-Jakubisová, E., E-mail: liskova@karlov.mff.cuni.cz; Višňovský, Š. [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague (Czech Republic); Široký, P.; Hrabovský, D.; Pištora, J. [Nanotechnology Center, VŠB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic); Sahoo, Subasa C. [Department of Physics, Central University of Kerala, Kasaragod, Kerala 671314 (India); Prasad, Shiva [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Venkataramani, N. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Bohra, Murtaza [Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa (Japan); Krishnan, R. [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS-UVSQ, 45 Avenue des Etats-Unis, 78935 Versailles (France)

    2015-05-07

    Ferrimagnetic Zn-ferrite (ZnFe{sub 2}O{sub 4}) films can be grown with the ferromagnetic resonance linewidth of 40 Oe at 9.5 GHz without going through a high temperature processing. This presents interest for applications. The work deals with laser ablated ZnFe{sub 2}O{sub 4} films deposited at O{sub 2} pressure of 0.16 mbar onto fused quartz substrates. The films about 120 nm thick are nanocrystalline and their spontaneous magnetization, 4πM{sub s}, depends on the nanograin size, which is controlled by the substrate temperature (T{sub s}). At T{sub s} ≈ 350 °C, where the grain distribution peaks around ∼20–30 nm, the room temperature 4πM{sub s} reaches a maximum of ∼2.3 kG. The films were studied by magnetooptical polar Kerr effect (MOKE) spectroscopy at photon energies between 1 and 5 eV. The complementary characteristics were provided by spectral ellipsometry (SE). Both the SE and MOKE spectra confirmed ferrimagnetic ordering. The structural details correspond to those observed in MgFe{sub 2}O{sub 4} and Li{sub 0.5}Fe{sub 2.5}O{sub 4} spinels. SE experiments confirm the insulator behavior. The films display MOKE amplitudes somewhat reduced with respect to those in Li{sub 0.5}Fe{sub 2.5}O{sub 4} and MgFe{sub 2}O{sub 4} due to a lower degree of spinel inversion and nanocrystalline structure. The results indicate that the films are free of oxygen vacancies and Fe{sup 3+}-Fe{sup 2+} exchange.

  13. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    International Nuclear Information System (INIS)

    Orosco, Pablo; Barbosa, Lucía; Ruiz, María del Carmen

    2014-01-01

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl 2 –N 2 flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al 2 O 3 (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl 2 atmosphere of the MgO–Al 2 O 3 mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C

  14. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis (Argentina); Barbosa, Lucía [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Instituto de Ciencias Básicas (ICB), Universidad Nacional de Cuyo Parque General San Martín, Mendoza (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis (Argentina)

    2014-11-15

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl{sub 2}–N{sub 2} flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al{sub 2}O{sub 3} (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl{sub 2} atmosphere of the MgO–Al{sub 2}O{sub 3} mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C.

  15. Investigation of structural and magnetic properties of Zr-Co doped nickel ferrite nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Rajjab [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Manzoor, Alina [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Department of Physics, Government College University, Faisalabad 38000 (Pakistan); Shahid, Muhammad [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Haider, Sajjad [Chemical Engineering Department, College of Engineering, King Saud University, Riyadh 11421 (Saudi Arabia); Malik, Abdul Sattar [Department of Electrical Engineering, University College of Engineering and Technology, Bahauddin Zakariya University, Multan 60800 Pakistan (Pakistan); Sher, Muhammad [Department of Chemistry, University of Sargodha, Sargodha 40100 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) Center, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); FarooqWarsi, Muhammad, E-mail: farooq.warsi@iub.edu.pk [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2017-05-01

    Nano-sized Zr-Co doped nickel ferrites with nominal composition, NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} (x=0.0, 0.2, 0.4, 0.6, 0.8) were synthesized using the micro-emulsion route. The structural elucidation of the synthesized materials was carried out by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The XRD analysis confirmed face centered cubic (FCC) structure of all compositions of NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} nanocrystallites. Crystallite size was calculated by Scherrer's formula found in the range 10–15 nm. The variation in lattice parameter as determined by XRD data agreed with size variation of host (Fe{sup 3+}) and guest (Zr{sup 4+} and Co{sup 2+}) cations. FTIR spectra of doped NiFe{sub 2}O{sub 4} exhibited the typical octahedral bands at 528.4 cm{sup −1} which is the characteristic feature of spinel structure of spinel ferrites. The characterized spinel NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} nano-ferrites were evaluated for their potential applications by magnetic hysteresis loops and dielectric measurements. The value of saturation magnetization (M{sub s}) decreased from 47.9 to 13.09 emu/g up to x=0.8 with ups and downs fluctuations in between x=0.0 to x=0.8. The high values of Ms of some compositions predicted the potential applications in high density perpendicular recording media and microwave devices. The frequency dependent behavior of permittivity (ε') is recorded and discussed with the help of hopping mechanism of both holes and electrons. The dielectric and magnetic data of NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} nano-ferrites suggested the potential applications of these ferrite nanoparticles in high frequency and magnetic data storage devices fabrication. - Graphical abstract: Zr-Co doped nickel nano-ferrites were prepared via micro-emulsion method. The crystallite size calculated by scherrer's formula lie in the range 10–15 nm. The saturation magnetization decreases from 47

  16. Large polaron tunneling, magnetic and impedance analysis of magnesium ferrite nanocrystallite

    Energy Technology Data Exchange (ETDEWEB)

    Mahato, Dev K., E-mail: drdevkumar@yahoo.com [Department of Physics, National Institute of Technology Patna, Patna 800 005 (India); Majumder, Sumit [Department of Physics, Jadavpur University, Kolkata 700032 (India); Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Banerjee, S. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2017-08-15

    Graphical abstract: The diffraction peaks corresponding to the planes (111), (220), (311), (222), (400), (422), (511), (440), (620), (533) and (444) provide a clear evidence for the formation of spinel structure of the ferrites. The lattice parameter ‘a’ determined as 8.392 Å matches well with JCPDS (73-2410) file for MgFe{sub 2}O{sub 4.} The volume of the unit cell is 591.012 Å{sup 3}. The crystallite size of the synthesized powder estimated from X-ray peak broadening of (311) highest intensity diffraction peak using Scherer formula was 56.4 nm. - Highlights: • Both the grain and grain boundaries contribution to conductivity of the Mg-ferrite has been observed. • Polydispersive nature of the material is checked using Cole – Cole relation. • The ac conductivity of magnesium ferrite followed σ{sub ac} ∝ ω{sup n} dependence. • The variation of the exponent ‘n’ with temperature suggests that overlapping large polaron tunnelling is the dominant conduction mechanism. • The superparamagnetic behavior of this Mg-ferrite has been observed for sample S1 annealed at 500 °C. - Abstract: Single phase MgFe{sub 2}O{sub 4} (MFO) ferrite was prepared through sol-gel auto-combustion route. The Rietveld analysis of X-ray patterns reveals that our samples are single phase. The increase in average particle size with annealing temperature and formation of nanoparticle agglomerates is observed in MgFe{sub 2}O{sub 4}. The structural morphology of the nanoparticles is studied using Scanning Electron Microscopy (SEM). Formation of spinel structure is confirmed using Fourier transform infrared spectroscopy (FTIR). The Zero-Field-Cooled (ZFC) and Field-Cooled (FC) magnetization measurements show the maximum irreversibility at 700 °C annealing temperature. The formation of a maximum at blocking temperature, T{sub B}∼ 180 K for sample annealed at 500 °C in the ZFC curve shows the superparamagnetic behavior of the sample. The increase of saturation magnetism (M

  17. Gd3+ doped Mn-Zn soft ferrite nanoparticles: Superparamagnetism and its correlation with other physical properties

    Science.gov (United States)

    Thakur, Prashant; Sharma, Rohit; Sharma, Vineet; Barman, P. B.; Kumar, Manoj; Barman, Dipto; Katyal, S. C.; Sharma, Pankaj

    2017-06-01

    Superparamagnetic nanoparticles are very important in biomedicine due to their various applications like drug delivery, gene delivery in the body and also used for hyperthermia. In the present work, superparamagnetic nanoparticles of Mn0.5Zn0.5GdxFe2-xO4 (x = 0, 0.025, 0.050, 0.075, 0.1) ferrites have been prepared by co-precipitation method. Thorough characterizations (XRD, FTIR, FE-SEM, EDS, VSM and fluorescence spectroscopy) have proved the formation of cubical spinel superparamagnetic nanoparticles of soft ferrites. A cation distribution has been proposed for the determination of various important theoretical parameters for these samples. With the addition of Gd3+ nanoparticles have shown the superparamagnetism at room temperature confirmed by VSM analysis. Photoluminescence (PL) spectra shows a blue shift (for x = 0.025, 0.075) which may be due to quantum confinement.

  18. Synthesis and characterization of CoFe2O4 ferrite nanoparticles obtained by an electrochemical method.

    Science.gov (United States)

    Mazarío, E; Herrasti, P; Morales, M P; Menéndez, N

    2012-09-07

    Uniform size cobalt ferrite nanoparticles have been synthesized in one step using an electrochemical technique. Synthesis parameters such as the current density, temperature and stirring were optimized to produce pure cobalt ferrite. The nanoparticles have been investigated by means of magnetic measurements, Mössbauer spectroscopy, x-ray powder diffraction and transmission electron microscopy. The average size of the electrosynthesized samples was controlled by the synthesis parameters and this showed a rather narrow size distribution. The x-ray analysis shows that the CoFe(2)O(4) obtained presents a totally inverse spinel structure. The magnetic properties of the stoichiometric nanoparticles show ferromagnetic behavior at room temperature with a coercivity up to 6386 Oe and a saturation magnetization of 85 emu g(-1).

  19. Cation distribution in NiZn-ferrite films determined using x-ray absorption fine structure

    Science.gov (United States)

    Harris, V. G.; Koon, N. C.; Williams, C. M.; Zhang, Q.; Abe, M.

    1996-04-01

    We have applied extended x-ray absorption fine structure (EXAFS) spectroscopy to study the cation distribution in a series of spin-sprayed NiZn-ferrite films, Ni0.15ZnyFe2.85-yO4 (y=0.16, 0.23, 0.40, 0.60). The Ni, Zn, and Fe EXAFS were collected from each sample and analyzed to Fourier transforms. Samples of Ni-ferrite, Zn-ferrite, and magnetite were similarly studied as empirical standards. These standards, together with EXAFS data generated from the theoretical EXAFS FEFF codes, allowed the correlation of features in the Fourier transforms with specific lattice sites in the spinel unit cell. We find that the Ni ions reside mostly on the octahedral (B) sites whereas the Zn ions are predominantly on the tetrahedral (A) sites. The Fe ions reside on both A and B sites in a ratio determined by the ratio of Zn/Fe. The addition of Zn displaces a larger fraction of Fe cations onto the B sites serving to increase the net magnetization. The fraction of A site Ni ions is measured to increase peaking at ≊25% for y=0.6. At higher Zn concentrations (y≥0.5) the lattice experiences local distortions around the Zn sites causing a decrease in the superexchange resulting in a decrease in the net magnetization.

  20. Synthesis of surfactant-coated cobalt ferrite nanoparticles for adsorptive removal of acid blue 45 dye

    Science.gov (United States)

    Waheed Mushtaq, Muhammad; Kanwal, Farah; Imran, Muhammad; Ameen, Naila; Batool, Madeeha; Batool, Aisha; Bashir, Shahid; Mustansar Abbas, Syed; Rehman, Ata ur; Riaz, Saira; Naseem, Shahzad; Ullah, Zaka

    2018-03-01

    Cobalt ferrite (CoFe2O4) nanoparticles (NPs) are synthesized by wet chemical coprecipitation method using metal chlorides as precursors and potassium hydroxide (KOH) as a precipitant. The tergitol-1x (T-1x) and didecyldimethyl ammonium bromide (DDAB) are used as capping agents and their effect is investigated on particle size, size distribution and morphology of cobalt ferrite nanoparticles (CFNPs). The Fourier transform infrared spectroscopy confirms the synthesis of CFNPs and formation of metal-oxygen (M-O) bond. The spinel phase structure, morphology, polydispersity and magnetic properties of ferrite nanoparticles are investigated by x-ray diffraction, scanning electron microscopy, dynamic light scattering and vibrating sample magnetometry analyses, respectively. The addition of capping agents effects the secondary growth of CFNPs and reduces their particle size, as is investigated by dynamic light scattering and atomic force microscopy. The results evidence that the DDAB is more promising surfactant to control the particle size (∼13 nm), polydispersity and aggregation of CFNPs. The synthesized CFNPs, CFNPs/T-1x and CFNPs/DDAB are used to study their adsorption potential for removal of acid blue 45 dye, and a maximum adsorptive removal of 92.25% is recorded by 0.1 g of CFNPs/DDAB at pH 2.5 and temperature 20 ± 1 °C. The results show that the dye is physically adsorbed by magnetic NPs and follows the Langmuir isotherm model.

  1. Processing and characterization of a Ni-Co ferrite for sensor applications

    Directory of Open Access Journals (Sweden)

    V. L. O. Brito

    2015-09-01

    Full Text Available AbstractNi-Co ferrites are magnetostrictive ceramics that have potential application in magnetostrictive/ magnetoelastic sensors, as well as in magnetoelectric composites. Ni-rich Ni-Co spinel ferrite samples were processed by the ceramic method and bulk samples were sintered at 1350 ºC in the solid state and at 950 ºC with Bi2O3 liquid phase. The sintered samples were characterized by light microscopy, scanning electron microscopy, Raman spectroscopy, vibrating sample magnetometry and capacitance dilatometry. With Bi2O3 additions as small as 0.6 mol% it was possible to sinter the Ni-Co ferrite at 950 ºC, obtaining high-density samples; however, such liquid-phase sintered samples presented iron oxide particles. The studied samples presented magnetoelastic sensitivities very close to CoFe2O4, with significantly lower magnetic hysteresis. The results thus indicate that the magnetic properties of the samples analyzed are suitable for applications in magnetomechanical sensors.

  2. Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: Effect of nickel concentration

    Directory of Open Access Journals (Sweden)

    Ninad B. Velhal

    2015-09-01

    Full Text Available Nickel substituted cobalt ferrite nanoparticles with composition Co1−xNixFe2O4 (0.0 ≤ x ≤ 1.0 was synthesized using simple, low temperature auto combustion method. The X-ray diffraction patterns reveal the formation of cubic phase spinel structure. The crystallite size varies from 30-44 nm with the nickel content. Porous and agglomerated morphology of the bulk sample was displayed in the scanning electron microscopy. Micro Raman spectroscopy reveals continuous shift of Eg and Eg(2 stokes line up to 0.8 Ni substitution. The dispersion behavior of the dielectric constant with frequency and the semicircle nature of the impedance spectra show the cobalt nickel ferrite to have high resistance. The ferromagnetic nature is observed in all the samples, however, the maximum saturation magnetization was achieved by the 0.4 Ni substituted cobalt ferrite, which is up to the 92.87 emu/gm at 30K.

  3. Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions doping

    Science.gov (United States)

    Zhong, X. C.; Guo, X. J.; Zou, S. Y.; Yu, H. Y.; Liu, Z. W.; Zhang, Y. F.; Wang, K. X.

    2018-04-01

    Mn-Zn ferrites doped with different Sm2O3, Gd2O3, Ce2O3 or Y2O3 were prepared by traditional ceramic technology using industrial pre-sintered powders. A small amount of Sm2O3, Gd2O3, Ce2O3 or Y2O3 can significantly improve the microstructure and magnetic properties. The single spinel phase structure can be maintained with the doping amount up to 0.07 wt.%. A refined grain structure and uniform grain size distribution can be obtained by doping. For all rare earth oxides, a small amount of doping can significantly increase the permeability and reduce the coercivity and magnetic core loss. The optimized doping amount for Sm2O3 or Gd2O3 is 0.01 wt.%, while for Ce2O3 or Y2O3 is 0.03 wt.%. A further increase of the doping content will lead to reduced soft magnetic properties. The ferrite sample with 0.01 wt.% Sm2O3 exhibits the good magnetic properties with permeability, loss, and coercivity of 2586, 316 W/kg, and 24A/m, respectively, at 200 mT and 100 kHz. The present results indicate that rare earth doping can be suggested to be one of the effective ways to improve the performance of soft ferrites.

  4. Influences of Ti4+ and Mg2+ substitutions on the properties of lithium ferrites

    International Nuclear Information System (INIS)

    Su Hua; Zhang Huaiwu; Tang Xiaoli; Liu Baoyuan

    2009-01-01

    The Ti 4+ and Mg 2+ co-substituted lithium ferrites with different compositions of Zn 0.1 Li 0.45 Mn 0.1 Fe 2.35-2x (TiMg) x O 4 (x=0.0-0.5) were prepared by the ceramic standard processing. The magnetic properties and microstructure of the samples were investigated. A single phase spinel structure was confirmed by XRD in substituting range. Sintering densities continuously decreased with the increase at x value, which was attributed to the fact that the heavier Fe 3+ ions were replaced by the relatively lighter Ti 4+ and Mg 2+ ions. However, relative density of the samples had no obvious relationship with the substituting value. Saturation magnetization continuously decreased with x value, which was attributed to the decrease of resultant magnetic moment between A and B sub-lattice. Remanence decreased monotonously with x value due to the decrease of saturation magnetization and magnetocrystalline anisotropy constant. But the effect of Ti 4+ and Mg 2+ substitutions on the Br/Bs ratio values was not obvious. Coercive force was mainly determined by the microstructure and magnetocrystalline anisotropy constant of the ferrites. In this research, with the increase of Ti 4+ and Mg 2+ substitutions, the advantageous influence by the decrease of magnetocrystalline anisotropy constant was more significant than the disadvantageous influence caused by the increase of closed pores. As a result, coercive force of the ferrites also decreased monotonously with the increase at x value.

  5. Method for thermal processing alumina-enriched spinel single crystals

    Science.gov (United States)

    Jantzen, Carol M.

    1995-01-01

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly.

  6. Solvothermal synthesis of cobalt ferrite hollow spheres with chitosan.

    Science.gov (United States)

    Briceño, Sarah; Suarez, Jorge; Gonzalez, Gema

    2017-09-01

    Cobalt ferrite hollow spheres with chitosan (CoFe 2 O 4 /CS) were synthesized by two different approaches using the solvothermal method. The first approach involves in-situ incorporation of FeCl 3 :6H 2 O and CoNO 3 :6H 2 O in the solvothermal reaction (M1) and in second approach already prepared CoFe 2 O 4 nanoparticles (NPs) using the thermal decomposition method was placed in the solvothermal reaction to form the hollow spheres (M2). Structural identification of the samples were characterized by Fourier transform infrared spectra (FTIR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analyses (DSC-TGA) and energy dispersive X-ray spectroscopy (EDX). The magnetic properties were evaluated using a vibrating sample magnetometer (VSM). The presence of chitosan on the hollow sphere was confirmed by FTIR. The XRD analyses proved that the synthesized samples were cobalt ferrite with spinel structure. The structure of the surface and the average particle size of the spheres were observed by SEM and TEM showing the nano scale of the CoFe 2 O 4 component. Structural characterization demonstrating that chitosan does not affect the crystallinity, chemical composition, and magnetic properties of the CoFe 2 O 4 /CS. This work demonstrates that the CoFe 2 O 4 /CS prepared using the as synthesized CoFe 2 O 4 NPs have better structural and magnetic properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Electrical and optical properties of nickel ferrite/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Khairy

    2015-07-01

    Full Text Available Polyaniline–NiFe2O4 nanocomposites (PANI–NiFe2O4 with different contents of NiFe2O4 (2.5, 5 and 50 wt% were prepared via in situ chemical oxidation polymerization, while the nanoparticles nickel ferrite were synthesized by sol–gel method. The prepared samples were characterized using some techniques such as Fourier transforms infrared (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM and thermogravimetric analysis (TGA. Moreover, the electrical conductivity and optical properties of the nanocomposites were investigated. Pure (PANI and the composites containing 2.5 and 5 wt% NiFe2O4 showed amorphous structures, while the one with 50 wt% NiFe2O4 showed a spinel crystalline structure. The SEM images of the composites showed different aggregations for the different nickel ferrite contents. FTIR spectra revealed to the formation of some interactions between the PANI macromolecule and the NiFe2O4 nanoparticles, while the thermal analyses indicated an increase in the composites stability for samples with higher NiFe2O4 nanoparticles contents. The electrical conductivity of PANI–NiFe2O4 nanocomposite was found to increase with the rise in NiFe2O4 nanoparticle content, probably due to the polaron/bipolaron formation. The optical absorption experiments illustrate direct transition with an energy band gap of Eg = 1.0 for PANI–NiFe2O4 nanocomposite.

  8. Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method

    Science.gov (United States)

    Sontu, Uday Bhasker; G, Narsinga Rao; Chou, F. C.; M, V. Ramana Reddy

    2018-04-01

    Spinel ferrites have come a long way in their versatile applications. The ever growing applications of these materials demand detailed study of material properties and environmental considerations in their synthesis. In this article, we report the effect of temperature and applied magnetic field strength on the magnetic behavior of the cobalt nickel ferrite nano powder samples. Basic structural properties of spinel ferrite nano particles, that are synthesized by an environmentally benign method of auto combustion, are characterized through XRD, TEM, RAMAN spectroscopy. Diffuse Reflectance Spectroscopy (DRS) is done to understand the nickel substitution effect on the optical properties of cobalt ferrite nano particles. Thermo magnetic studies using SQUID in the temperature range 5 K to 400 K and room temperature (300 K) VSM studies are performed on these samples. Fields of 0Oe (no applied field: ZF), 1 kOe (for ZFC and FC curves), 5 kOe (0.5 T), 50 kOe (5T) (for M-H loop study) are used to study the magnetic behavior of these nano particles. The XRD,TEM analysis suggest 40 nm crystallites that show changes in the cation distribution and phase changes in the spinel structure with nickel substitution. Raman micrographs support phase purity changes and cation redistributions with nickel substitution. Diffuse reflectance study on powder samples suggests two band gap values for nickel rich compounds. The Magnetic study of these sample nano particles show varied magnetic properties from that of hard magnetic, positive multi axial anisotropy and single-magnetic-domain structures at 5 K temperature to soft magnetic core shell like structures at 300 K temperature. Nickel substitution effect is non monotonous. Blocking temperature of all the samples is found to be higher than the values suggested in the literature.

  9. Synthesis, characterization and adsorption capability for Congo red of CoFe2O4 ferrite nanoparticles

    International Nuclear Information System (INIS)

    Ding, Zui; Wang, Wei; Zhang, Yajun; Li, Feng; Liu, J. Ping

    2015-01-01

    Highlights: • CoFe 2 O 4 ferrite nanoparticles are synthesized by an ethanol-assisted hydrothermal method. • Suitable amount of ethanol can reduce the particle size and increase BET surface area. • The introduction of ethanol leads to the cation redistribution. • Using ethanol/water mixed solution greatly enhances their adsorption capacity for CR dyes. - Abstract: CoFe 2 O 4 ferrite nanoparticles are synthesized by an ethanol-assisted hydrothermal method, where the ethanol is mixed with water as the solution. In this synthesis, a rapid mixing of reducible metal cations with reducing agent and a simultaneous reduction process take place in a colloid mill. Synthesized ferrite samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Raman spectroscopy. XRD patterns reveal the formation of CoFe 2 O 4 ferrites with single spinel phase. SEM and TEM images show that the as-synthesized samples are with narrow size distribution. Raman spectroscopy studies clearly indicate the cation distribution in nanosized particles. Here, it is worthy to note that, with increasing ethanol content in ethanol–water mixed solution, an obvious superparamagnetic behavior of as-synthesized nanoparticles at room temperature is observed. The adsorption capability of the as-synthesized ferrite nanoparticles for Congo Red (CR) is examined. Enhancement of adsorption capability for CR with adding ethanol as the mixing solution is shown. The adsorption mechanism is discussed. This investigation reveals that the composition of ethanol/water mixed solution has great effects on the microstructure and magnetic properties as well as adsorption capacity of Congo Red (CR) dye of the as-synthesized CoFe 2 O 4 ferrite samples

  10. Investigation of Structural, Morphological, Magnetic Properties and Biomedical applications of Cu2+ Substituted Uncoated Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Margabandhu

    Full Text Available ABSTRACT In the present work, Cu2+ substituted cobalt ferrite (Co1-xCuxFe2O4, x = 0, 0.3, 0.5, 0.7 and 1 magnetic nanopowders were synthesized via chemical co-precipitation method. The prepared powders were investigated by various characterization methods such as X-ray diffraction analysis (XRD, scanning electron microscope analysis (SEM, vibrating sample magnetometer analysis (VSM and fourier transform infrared spectroscopy analysis (FTIR. The XRD analysis reveals that the synthesized nanopowders possess single phase centred cubic spinel structure. The average crystallite size of the particles ranging from 27-49 nm was calculated by using Debye-scherrer formula. Magnetic properties of the synthesized magnetic nanoparticles are studied by using VSM. The VSM results shows the magnetic properties such as coercivity, magnetic retentivity decreases with increase in copper substitution whereas the saturation magnetization shows increment and decrement in accordance with Cu2+ substitution in cobalt ferrite nanoparticles. SEM analysis reveals the morphology of synthesized magnetic nanoparticles. FTIR spectra of Cu2+ substituted cobalt ferrite magnetic nanoparticles were recorded in the frequency range 4000-400cm-1. The spectrum shows the presence of water adsorption and metal oxygen bonds. The adhesion nature of Cu2+ substituted cobalt ferrite magnetic nanoparticles with bacteria in reviewed results indicates that the synthesized nanoparticles could be used in biotechnology and biomedical applications.

  11. Investigation on effects of surface morphologies on response of LPG sensor based on nanostructured copper ferrite system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Satyendra [Nanomaterials and Sensors Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Yadav, B.C., E-mail: balchandra_yadav@rediffmail.com [Nanomaterials and Sensors Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P. (India); Gupta, V.D. [Nanomaterials and Sensors Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Dwivedi, Prabhat K. [DST Unit on Nanosciences, Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, U.P. (India)

    2012-11-15

    Graphical abstract: Figure shows the variations in resistance with time for copper ferrite system synthesized in various molar ratio. A maximum variation in resistance was observed for copper ferrite prepared in 1:1 molar ratio. Highlights: ► Evaluation of structural, optical and surface morphologies. ► Significant variation in LPG sensing properties. ► Surface modification of ferric oxide pellet by copper ferrite. ► CuFe{sub 2}O{sub 4} pellets for LPG sensing at room temperature. -- Abstract: Synthesis of a copper ferrite system (CuFe{sub 2}O{sub 4}) via chemical co-precipitation method is characterized by X-ray diffraction, surface morphology (scanning electron microscope) and optical absorption spectroscopy. These characteristics show their dependence on the relative compositions of the two subsystems. They are further confirmed by the variation in the band gap. A study of gas sensing properties shows the spinel CuFe{sub 2}O{sub 4} synthesized in 1:1 molar ratio exhibit best response to LPG adsorption/resistance measurement. Thus resistance based LPG sensor is found robust, cheap and may be applied for kitchens and industrial applications.

  12. Structural, magnetic and gas sensing properties of nanosized copper ferrite powder synthesized by sol gel combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Sumangala, T.P.; Mahender, C. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Barnabe, A. [Université de Toulouse, Institut Carnot CIRIMAT – UMR CNRS-UPS-INP 5085, Université Paul Sabatier, Toulouse 31062 (France); Venkataramani, N. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Prasad, Shiva, E-mail: shiva.pd@gmail.com [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-11-15

    Stoichiometric nano sized copper ferrite particles were synthesized by sol gel combustion technique. They were then calcined at various temperatures ranging from 300–800 °C and were either furnace cooled or quenched in liquid nitrogen. A high magnetisation value of 48.2 emu/g signifying the cubic phase of copper ferrite, was obtained for sample quenched to liquid nitrogen temperature from 800 °C. The ethanol sensing response of the samples was studied and a maximum of 86% response was obtained for 500 ppm ethanol in the case of a furnace cooled sample calcined at 800 °C. The chemical sensing is seen to be correlated with the c/a ratio and is best in the case of tetragonal copper ferrite. - Highlights: • One of the first study on ethanol sensing of cubic copper ferrite. • In-situ High temperature XRD done shows phase transition from cubic to tetragonal. • A non-monotonic increase in magnetization was seen with calcination temperature. • A response of 86% was obtained towards 500 ppm ethanol. • Tried to correlate sensing response and ion content in spinel structure.

  13. High-Q ferrite-tuned cavity

    International Nuclear Information System (INIS)

    Carlini, R.D.; Thiessen, H.A.; Potter, J.M.; Earley, L.M.

    1983-01-01

    Rapid cycling proton synchrotrons, such as the proposed LAMPF II accelerator, require approximately 10 MV per turn rf with 17% tuning range near 50 MHz. The traditional approach to ferrite-tuned cavities uses a ferrite which is longitudinally biased (rf magnetic field parallel to bias field). This method leads to unacceptably high losses in the ferrite. At Los Alamos, we are developing a cavity with transverse bias (rf magnetic field perpendicular to the bias field) that makes use of the tensor permeability of the ferrite. Initial tests of a small (10-cm-diam) quarter-wave singly re-entrant cavity tuned by several different ferrites indicate that the losses in the ferrite can be made negligible compared with the losses due to the surface resistivity of the copper cavity

  14. PREPARATION OF NICKEL - COBALT SPINEL OXIDES NixCO3 ...

    African Journals Online (AJOL)

    ABSTRACT. A comparative study of two electro-physical properties (porosity and electrical conductivity) of binary nickel cobalt oxides electrodes with spinels mixed oxides NixCo3-xO4 as active matter, was carried out. Four different routes were used to prepare spinel-type NixCo3-xO4 (0 ≤ x ≤. 2.5) compounds in order to ...

  15. Thermal expansion of spinel-type Si3N4

    DEFF Research Database (Denmark)

    Paszkowics, W.; Minkikayev, R.; Piszora, P.

    2004-01-01

    The lattice parameter and thermal expansion coefficient (TEC) for the spinel-type Si3N4 phase prepared under high-pressure and high-temperature conditions are determined for 14 K......The lattice parameter and thermal expansion coefficient (TEC) for the spinel-type Si3N4 phase prepared under high-pressure and high-temperature conditions are determined for 14 K...

  16. Microstructural study of synthetic spinel from natural raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Y.; Hagni, R.D. (Univ. of Missouri, Rolla, MO (United States). Dept. of Geology and Geophysics); Caballero, A. (Inst. de Ceramica y Vidrio, Madrid (Spain)); Moore, R.E. (Univ. of Missouri, Rolla, MO (United States). Dept. of Ceramic Engineering)

    1993-03-01

    Alumina-magnesia spinel is being used increasingly as a high quality refractory in furnace and cement rotary kiln applications, but the costs of synthetic powders and grains limit its application. Different sources of bauxite from Guyana and China and diaspore from Missouri have been utilized to synthesize spinel for refractories in order to reduce the cost. The purpose of this research is to examine extent and character or spinel formation under different firing conditions and varying Al[sub 2]O[sub 3]:MgO ratios. Finely ground raw materials were mixed with hardburned magnesia in certain ratios to form spinel. X-ray analysis has been completed and shows that spinel readily occurs, after heating at 1,550 C, together with some impurity minerals such as mullite, rutile, corundum and some glassy phases. In order to study the microstructure, quantitative analysis, reflected light microscopy, scanning electron microscopy (SEM) and automatic image analysis are currently being utilized to determine the amount and distribution of each phase present in 39 samples prepared at different firing temperatures and with different chemical compositions. The results of this investigation provide a better understanding of the character of the microstructures of synthetic spinels.

  17. Sonochemical Synthesis of Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Partha P. Goswami

    2013-01-01

    Full Text Available Cobalt ferrite being a hard magnetic material with high coercivity and moderate magnetization has found wide-spread applications. In this paper, we have reported the sonochemical synthesis of cobalt ferrite nanoparticles using metal acetate precursors. The ferrite synthesis occurs in three steps (hydrolysis of acetates, oxidation of hydroxides, and in situ microcalcination of metal oxides that are facilitated by physical and chemical effects of cavitation bubbles. The physical and magnetic properties of the ferrite nano-particles thus synthesized have been found to be comparable with those reported in the literature using other synthesis techniques.

  18. Structural, electrical and magnetic properties of Sc{sup 3+} doped Mn-Zn ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Angadi, V. Jagdeesha [Department of Physics, Bangalore University, Bangalore 560056 (India); Choudhury, Leema [Department of Physics, K.G. Reddy College of Engineering & Technology, Moinabad, 501504 Ranga Reddy, Telangana (India); Sadhana, K. [Department of Physics, University College of Science, Osmania University, Saifabad, Hyderabad 500004 (India); Liu, Hsiang-Lin [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Sandhya, R. [Department of Physics, University College of Science, Osmania University, Hyderabad 500007 (India); Matteppanavar, Shidaling; Rudraswamy, B.; Pattar, Vinayak; Anavekar, R.V. [Department of Physics, Bangalore University, Bangalore 560056 (India); Praveena, K., E-mail: praveenaou@gmail.com [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China)

    2017-02-15

    Sc{sup 3+} doped Mn{sub 0.5}Zn{sub 0.5}Sc{sub y}Fe{sub 2−y}O{sub 4} (y=0.00, 0.01, 0.03 and 0.05) nanoparticles were synthesized by solution combustion method using mixture of fuels were reported for the first time. The mixture of fuels plays an important role in obtaining nano crystalline, single phase present without any heat treatment. X-ray diffraction (XRD) results confirm the formation of the single-phase ferrites which crystallize in cubic spinel structure. The Fourier transform infrared spectra (FTIR) exhibit two prominent bands around 360 cm{sup −1} and 540 cm{sup −1} which are characteristic feature of spinel ferrite. The transmission electron microscope (TEM) micrographs revealed the nanoparticles to be nearly spherical in shape and of fairly uniform size. The room temperature impedance spectra (IS) and vibrating sample magnetometry (VSM) measurements were carried out in order to study the effect of doping (Sc{sup 3+}) on the characteristic properties of Mn-Zn ferrites. Further, the frequency dependent dielectric constant and dielectric loss were found to decrease with increasing multiple Sc{sup 3+} concentration. Nyquist plot in the complex impedance spectra suggest the existence of multiple electrical responses. Magnetic measurements reveals that saturation magnetization (M{sub s}), remnant magnetization (M{sub r}), magnetic moment (η{sub B}) and magnetic particle size (D{sub m}) increase with Sc{sup 3+} ion concentration up to x=0.03 and then decrease. The values of spin canting angle (α{sub Y-K}) and the magnetic particle size (D{sub m}) are found to be in the range of 68–75° and 10–19 nm respectively with Sc{sup 3+} concentration. The room temperature Mössbauer spectra were fitted with two sextets corresponding to ions at tetrahedral (A-) and octahedral (B-) sites confirms the spinel lattice. The ferromagnetic resonance (FMR) spectra's has shown that high concentration of scandium doping leads to an increase in dipolar interaction

  19. Attestation in self-propagating combustion approach of spinel AFe{sub 2}O{sub 4} (A = Co, Mg and Mn) complexes bearing mixed oxidation states: Magnetostructural properties

    Energy Technology Data Exchange (ETDEWEB)

    Bennet, J., E-mail: b.eenneett@gmail.com [Department of Physics, College of Engineering, Guindy, Anna University, Sardar Patel Road, Chennai,600025 (India); Tholkappiyan, R. [Department of Physics, College of Engineering, Guindy, Anna University, Sardar Patel Road, Chennai,600025 (India); Department of Physics, College of Science, UAE University, Al Ain 15551 (United Arab Emirates); Vishista, K.; Jaya, N. Victor [Department of Physics, College of Engineering, Guindy, Anna University, Sardar Patel Road, Chennai,600025 (India); Hamed, Fathalla [Department of Physics, College of Science, UAE University, Al Ain 15551 (United Arab Emirates)

    2016-10-15

    Highlights: • Spinel type ferrite compounds AFe{sub 2}O{sub 4} (A = Co, Mg and Mn) have been successfully prepared by self-propagating combustion method using glycine as fuel. • To investigate and confirms the presence of phases in the synthesized ferrite nanoparticles by XRD and FTIR analysis. • The formation of mixed oxidation state of cobalt (Co{sup 2+} and Co{sup 3+}), iron (Fe{sup 2+} and Fe{sup 3+}) and manganese (Mn{sup 2+} and Mn{sup 3+}) ions were studied and confirmed from XPS analysis. • The magnetic properties of the synthesized ferrites were studied by VSM measurement. - Abstract: Spinel type nano-sized ferrite compounds AFe{sub 2}O{sub 4} (A = Co, Mg and Mn) have been successfully prepared by self-propagating combustion method using glycine as fuel at 400 °C under air atmosphere for 4 h. The crystal structure, chemical composition, morphology and magnetic properties of the synthesized samples were characterized by X−ray diffraction, Fourier transform infrared spectroscopy, X−ray photoelectron spectroscopy, Energy dispersive X−ray, Scanning and Transmission electron microscopy and vibrating sample magnetometer. The chemical reaction and role of fuel on the nanoparticles formation were discussed. The XRD pattern of the synthesized samples shows the formation of pure phase with average crystallite size of 97, 57 and 98 nm from Scherrer formula and 86, 54 and 87 nm from Williamson and Hall (W–H) formula respectively. FTIR absorption spectra revealed that the presence of strong absorption peaks near 400–600 cm{sup −1} corresponds to tetrahedral and octahedral complex of spinel ferrites. The relative concentrations of electronic states of elements such as cobalt (Co{sup 2+} and Co{sup 3+}), iron (Fe{sup 2+} and Fe{sup 3+}) and manganese (Mn{sup 2+} and Mn{sup 3+}) oxidation states were studied from XPS and it is found that 55% of Fe ions are in Fe{sup 2+} state and the remaining is in Fe{sup 3+} state and thus the cationic distribution

  20. Quasicrystalline Approach to Prediting the Spinel-Nepheline Liquidus: Application to Nuclear Waste Glass Processing

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol

    2005-10-10

    The crystal-melt equilibria in complex fifteen component melts are modeled based on quasicrystalline concepts. A pseudobinary phase diagram between acmite (which melts incongruently to a transition metal ferrite spinel) and nepheline is defined. The pseudobinary lies within the Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3}-Na{sub 2}O-SiO{sub 2} quaternary system that defines the crystallization of basalt glass melts. The pseudobinary provides the partitioning of species between the melt and the primary liquidus phases. The medium range order of the melt and the melt-crystal exchange equilibria are defined based on a constrained mathematical treatment that considers the crystallochemical coordination of the elemental species in acmite and nepheline. The liquidus phases that form are shown to be governed by the melt polymerization and the octahedral site preference energies. This quasicrystalline liquidus model has been used to prevent unwanted crystallization in the world's largest high level waste (HLW) melter for the past three years while allowing >10 wt% higher waste loadings to be processed.

  1. Cu2+-modified physical properties of Cobalt-Nickel ferrite

    Science.gov (United States)

    Rajasekhar Babu, K.; Rao, K. Rama; Rajesh Babu, B.

    2017-07-01

    The present study focused on structural, magnetic and electrical properties of Cu substituted Co-Ni ferrite nanoparticles synthesized by sol-gel combustion method. X-ray diffraction, Fourier Transform infra-red spectroscopy (FTIR), magnetization, magnetic permeability and resistivity measurements were carried out to study the structural, magnetic and electrical properties. X-ray diffraction pattern confirms single phase spinel formation. Crystallite size determined from Scherer's method increases with Cu concentration. Distribution of cations was estimated from X-ray line intensity calculations, suggest that the majority of Cu2+ ions occupy octahedral (B) site. Saturation magnetization exhibit increasing trend from 40 emu/g (x = 0.0) to 60 emu/g (x = 0.4) with Cu concentration, though higher magnetic moment Ni ions are replaced by lower magnetic moment Cu ions. Magnetic permeability increases with increasing Cu concentration and shows a flat profile in the frequency range 1-50 MHz. Significant modification in DC electrical resistivity and activation energy are explained on the basis of hopping mechanism.

  2. Magnetic heating of silica-coated manganese ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Yousaf; Bae, Hongsub [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Rhee, Ilsu, E-mail: ilrhee@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hong, Sungwook [Division of Science Education, Daegu University, Gyeongsan 712-714 (Korea, Republic of)

    2016-07-01

    Manganese ferrite nanoparticles were synthesized using the reverse micelle method; these particles were then coated with silica. The silica-coated nanoparticles were spherical in shape, with an average diameter of 14 nm. The inverse spinel crystalline structure was observed through X-ray diffraction patterns. The coating status of silica on the surface of the nanoparticles was confirmed with a Fourier transform infrared spectrometer. The superparamagnetic properties were revealed by the zero coercive force in the hysteresis curve. Controllable heating at a fixed temperature of 42 °C was achieved by changing either the concentration of nanoparticles in the aqueous solution or the intensity of the alternating magnetic field. We found that at a fixed field strength of 5.5 kA/m, the 2.6 mg/ml sample showed a saturation temperature of 42 °C for magnetic hyperthermia. On the other hand, at a fixed concentration of 3.6 mg/ml, a field intensity of 4.57 kA/m satisfied the required temperature of 42 °C. - Highlights: • Controllable heating at 42 °C was achieved by changing either the concentration of nanoparticles in the aqueous solution or the intensity of the alternating magnetic field.

  3. Spin canting in ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Marx, J., E-mail: jmarx@physik.uni-kl.de; Huang, H.; Salih, K. S. M.; Thiel, W. R.; Schünemann, V. [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    Recently, an easily scalable process for the production of small (3 −7 nm) monodisperse superparamagnetic ferrite nanoparticles MeFe{sub 2}O{sub 4} (Me = Zn, Mn, Co) from iron metal and octanoic acid has been reported (Salih et al., Chem. Mater. 25 1430–1435 2013). Here we present a Mössbauer spectroscopic study of these ferrite nanoparticles in external magnetic fields of up to B = 5 T at liquid helium temperatures. Our analysis shows that all three systems show a comparable inversion degree and the cationic distribution for the tetrahedral A and the octahedral B sites has been determined to (Zn{sub 0.19}Fe{sub 0.81}){sup A}[Zn{sub 0.81}Fe{sub 1.19}] {sup B}O{sub 4}, (Mn{sub 0.15}Fe{sub 0.85}){sup A}[Mn{sub 0.85}Fe{sub 1.15}] {sup B}O{sub 4} and (Co{sub 0.27}Fe{sub 0.73}){sup A}[Co{sub 0.73}Fe{sub 1.27}] {sup B}O{sub 4}. Spin canting occurs presumably in the B-sites and spin canting angles of 33°, 51° and 59° have been determined for the zinc, the manganese, and the cobalt ferrite nanoparticles.

  4. Size controlled sonochemical synthesis of highly crystalline superparamagnetic Mn–Zn ferrite nanoparticles in aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Mohamed [Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 711-873 Daegu (Korea, Republic of); Ceramics Department, National Research Centre, El-Bohous Street, 12622 Cairo (Egypt); Torati, Sri Ramulu [Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 711-873 Daegu (Korea, Republic of); Rao, B. Parvatheeswara [Department of Physics, Andhra University, Visakhapatnam 530003 (India); Abdel-Hamed, M.O. [Physics Department, Faculty of Science, El-Minia University (Egypt); Kim, CheolGi, E-mail: cgkim@dgist.ac.kr [Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 711-873 Daegu (Korea, Republic of)

    2015-09-25

    Highlights: • Mn–Zn ferrite NPs were synthesized by two different methods are polyol and sonochemical. • The sonochemical method produced NPs with high crystallinity than polyol method. • The ferrite samples synthesized by sonochemical method showed high magnetization values and superparamagnetic properties. • XRD, TEM, EDS, TGA, FTIR, and VSM techniques used to characterize the samples. - Abstract: Monodisperse Mn{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} (x = 0.2, 0.5 and 0.8) nanoparticles have been synthesized using two different routes namely sonochemical and polyol methods, and the shape and size along with physiochemical properties of the nanoparticles were compared in detail. In both the routes, the synthesis was performed in a single reaction without the use of any surfactant and deoxygenated conditions. The reaction kinetics and surface adsorption characteristics of nanoparticles were observed by thermogravimetric analysis and Fourier transform infrared spectroscopy measurements. X-ray diffraction patterns confirmed the formation of a pure ferrite phase with cubic spinel structure, and the patterns further clearly indicate that the sonochemical method produces highly crystalline particles without any post calcination reaction, comparing with the polyol process. Transmission electron microscopy results reveal that the nanoparticles synthesized by polyol method are mostly aggregated and spherical in nature whereas the nanoparticles produced by sonochemical method are monodisperse large particles with cubic like shapes. The overall studies demonstrated that the sonochemical method is facile, reliable, rapid and very attractive for the aqueous synthesis of highly crystalline and high magnetic moment (84.5 emu/g) monodisperse superparamagnetic Mn–Zn ferrite nanoparticles which considered as potential materials for various applications.

  5. Structural and magnetic properties correlated with cation distribution of Mo-substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Heiba, Z.K. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Abd-Elkader, Omar H. [Department of Zoology, Science College, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Electron Microscope and Thin Films Department, National Research Center (NRC), El-Behooth Street, Dokki, Cairo 12622 (Egypt)

    2014-11-15

    Mo-substituted cobalt ferrite nanoparticles; CoFe{sub 2−2x}Mo{sub x}O{sub 4} (0.0≤x≤0.3) were prepared by a one-step solution combustion synthesis technique. The reactants were metal nitrates and glycine as a fuel. The samples were characterized using an X-ray diffraction (XRD), a transmission electron microscope (TEM) and a vibrating sample magnetometer (VSM). XRD analysis revealed a pure single phase of cubic spinel ferrites for all samples with x up to 0.3. The lattice parameter decreases with Mo{sup 6+} substitution linearly up to x=0.15, then nonlinearly for x≥0.2. Rietveld analysis and saturation magnetization (M{sub s}) revealed that Mo{sup 6+} replaced Fe{sup 3+} in the tetrahedral A-sites up to x=0.15, then it replaced Fe{sup 3+} in both A-sites and B-sites for x≥0.2. The saturation magnetization (M{sub s}) increases with increasing Mo{sup 6+} substitution up to x=0.15 then decreases. The crystallite size decreased while the microstrain increased with increasing Mo{sup 6+} substitution. Inserting Mo{sup 6+} produces large residents of defects and cation vacancies. - Highlights: • Nano-sized Mo-substituted cobalt ferrite CoFe{sub 2−2x}Mo{sub x}O{sub 4} (0.0≤x≤0.3) were prepared by solution combustion. • The change in M{sub s} with increasing Mo-substitution was investigated. • The cations distributions of ferrites were obtained from Rietveld analysis. • Inserting Mo{sup 6+} produces large residents of defects and cation vacancies.

  6. Removal of phosphate from water by amine-functionalized copper ferrite chelated with La(III).

    Science.gov (United States)

    Gu, Wei; Li, Xiaodi; Xing, Mingchao; Fang, Wenkan; Wu, Deyi

    2018-04-01

    Eutrophication has become a worldwide environmental problem and removing phosphorus from water/wastewater before discharge is essential. The purpose of our present study was to develop an efficient material in terms of both phosphate adsorption capacity and magnetic separability. To this end, we first compared the performances of four spinel ferrites, including magnesium, zinc, nickel and copper ferrites. Then we developed a copper ferrite-based novel magnetic adsorbent, by synthesizing 1,6-hexamethylenediamine-functionalized copper ferrite(CuFe 2 O 4 ) via a single solvothermal synthesis process followed by LaCl 3 treatment. The materials were characterized with X-ray diffraction, transmission electron microscope, vibrating sample magnetometer, Fourier transform infrared spectra and N 2 adsorption-desorption. The maximum adsorption capacity of our material, calculated from the Langmuir adsorption isotherm model, attained 32.59mg/g with a saturation magnetization of 31.32emu/g. Data of adsorption kinetics were fitted well to the psuedo-second-order model. Effects of solution pH and coexisting anions (Cl - , NO 3 - , SO 4 2- ) on phosphate adsorption were also investigated, showing that our material had good selectivity for phosphate. But OH - competed efficiently with phosphate for adsorption sites. Furthermore, increasing both NaOH concentration and temperature resulted in an enhancement of desorption efficiency. Thus NaOH solution could be used to desorb phosphate adsorbed on the material for reuse, by adopting a high NaOH concentration and/or a high temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moradmard, H. [Nanostructure Lab, Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Farjami Shayesteh, S., E-mail: saber@guilan.ac.ir [Nanostructure Lab, Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Tohidi, P.; Abbas, Z. [Department of Physics, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Khaleghi, M. [Nanostructure Lab, Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of)

    2015-11-25

    Magnesia doped nickel ferrite nanopowders (Ni{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4}, x = 0, 0.1, 0.3, 0.5, 0.7) have been synthesized by co-precipitation method and all samples were annealed at 900 °C. The structural, morphological and magnetic properties of the products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) spectroscopy and vibrating sample magnetometer (VSM). Also microwave dielectric properties were measured at frequencies 1 GHz–12 GHz. XRD analysis indicates that all samples have spinel structure and there is not any extra phase in all samples. The increase in magnesia concentration caused to variation in the average crystallite size and lattice constant. Doping magnesia in nickel ferrite gave rise to a decrease in the saturation magnetization whereas doping led to increase in coercivity field. The parameters like dielectric constant, dielectric loss and ac conductivity of the nanoparticles samples are studied in the frequency range from 1 to 12 GHz. All these parameters show, size dependent variations. Complex dielectric permittivity of samples was decreased by increasing in frequency. - Highlights: • Co-precipitation synthesis of Mg doped Ni ferrite nanoparticles is reported. • Its structural, morphological, magnetic and dielectric behavior is studied. • Structural properties were characterized by XRD, SEM, and FTIR. • Doping magnesia in nickel ferrite gave rise to an increase in the H{sub C} field. • The particle size observed to change with increasing Mg concentration.

  8. Structural modifications of spinels under radiation

    International Nuclear Information System (INIS)

    Quentin, A.

    2010-12-01

    This work is devoted to the study of spinel structure materials under radiation. For that purpose, samples of polycrystalline ZnAl 2 O 4 and monocrystalline MgAl 2 O 4 were irradiated by different heavy ions with different energies. Samples of ZnAl 2 O 4 were studied par electron transmission microscopy, and by grazing incidence X-Ray diffraction and Rietveld analysis. Samples of MgAl 2 O 4 were studied by optical spectroscopy. Most of the results concern amorphization and crystalline structure modification of ZnAl 2 O 4 especially the inversion. We were able to determine a stopping power threshold for amorphization, between 11 keV/nm and 12 keV/nm, and also the amorphization process, which is a multiple impacts process. We studied the evolution of the amorphous phase by TEM and showed a nano-patterning phenomenon. Concerning the inversion, we determined that it did happen by a single impact process, and the saturation value did not reach the random cation distribution value. Inversion and amorphization have different, but close, stopping power threshold. However, amorphization seems to be conditioned by a pre-damage of the material which consists in inversion. (author)

  9. Microstructural changes and effect of variation of lattice strain on positron annihilation lifetime parameters of zinc ferrite nanocomposites prepared by high enegy ball-milling

    Directory of Open Access Journals (Sweden)

    Abhijit Banerjee

    2012-12-01

    Full Text Available Zn-ferrite nanoparticles were synthesized at room temperature by mechanical alloying the stoichiometric (1:1 mol% mixture of ZnO and α-Fe2O3 powder under open air. Formation of both normal and inverse spinel ferrite phases was noticed after 30 minutes and 2.5 hours ball milling respectively and the content of inverse spinel phase increased with increasing milling time. The phase transformation kinetics towards formation of ferrite phases and microstructure characterization of ball milled ZnFe2O4 phases was primarily investigated by X-ray powder diffraction pattern analysis. The relative phase abundances of different phases, crystallite size, r.m.s. strain, lattice parameter change etc. were estimated from the Rietveld powder structure refinement analysis of XRD data. Positron annihilation lifetime spectra of all ball milled samples were deconvoluted with three lifetime parameters and their variation with milling time duration was explained with microstructural changes and formation of different phases with increase of milling time duration.

  10. Estimation of Oxidation Kinetics and Oxide Scale Void Position of Ferritic-Martensitic Steels in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Li Sun

    2017-01-01

    Full Text Available Exfoliation of oxide scales from high-temperature heating surfaces of power boilers threatened the safety of supercritical power generating units. According to available space model, the oxidation kinetics of two ferritic-martensitic steels are developed to predict in supercritical water at 400°C, 500°C, and 600°C. The iron diffusion coefficients in magnetite and Fe-Cr spinel are extrapolated from studies of Backhaus and Töpfer. According to Fe-Cr-O ternary phase diagram, oxygen partial pressure at the steel/Fe-Cr spinel oxide interface is determined. The oxygen partial pressure at the magnetite/supercritical water interface meets the equivalent oxygen partial pressure when system equilibrium has been attained. The relative error between calculated values and experimental values is analyzed and the reasons of error are suggested. The research results show that the results of simulation at 600°C are approximately close to experimental results. The iron diffusion coefficient is discontinuous in the duplex scale of two ferritic-martensitic steels. The simulation results of thicknesses of the oxide scale on tubes (T91 of final superheater of a 600 MW supercritical boiler are compared with field measurement data and calculation results by Adrian’s method. The calculated void positions of oxide scales are in good agreement with a cross-sectional SEM image of the oxide layers.

  11. Ferrite Solutions for Electromagnetic Shock Lines

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Phillip D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dudley, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Primm, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The goal of this work is to develop tools and test procedures for identifying ferrites suitable for use in shock line applications. Electromagnetic shocklines have been used to provide fast rising voltage pulses for many applications. In these applications a slow rising pulse is injected into the line where currents drive the ferrites into saturation leading to a fast rising output pulse. A shockline’s unique capabilities could be applied to new detonator configurations. A properly conditioned voltage pulse is critical for fire set applications. A carefully designed shockline could provide a passive solution to generating a fast rising voltage pulse for the fire set. Traditional circuits use ferrites operating in a linear regime. Shock lines push the ferrites well into the nonlinear regime where very few tools and data currently exist. Ferrite material is key to the operation of these shock lines, and tools for identifying suitable ferrites are critical. This report describes an experimental setup to that allows testing of ferrite samples and comparison to models with the goal of identifying optimal ferrites for shockline use.

  12. Synthesis and characterization of nanosized Mg{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 4} ferrites by both sol-gel and thermal decomposition methods

    Energy Technology Data Exchange (ETDEWEB)

    De-León-Prado, Laura Elena, E-mail: laura.elena.prado@gmail.com [Cinvestav-Unidad Saltillo, Av. Industria Metalúrgica #1062, Parque Industrial Saltillo-Ramos Arizpe, CP 25900, Ramos Arizpe, Coahuila, México (Mexico); Cortés-Hernández, Dora Alicia; Almanza-Robles, José Manuel; Escobedo-Bocardo, José Concepción; Sánchez, Javier; Reyes-Rdz, Pamela Yajaira; Jasso-Terán, Rosario Argentina [Cinvestav-Unidad Saltillo, Av. Industria Metalúrgica #1062, Parque Industrial Saltillo-Ramos Arizpe, CP 25900, Ramos Arizpe, Coahuila, México (Mexico); Hurtado-López, Gilberto Francisco [Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, CP 25294, Saltillo, Coahuila, México (Mexico)

    2017-04-01

    This work reports the synthesis of Mg{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 4} (x=0–1) nanoparticles by both sol-gel and thermal decomposition methods. In order to determine the effect of synthesis conditions on the crystal structure and magnetic properties of the ferrites, the synthesis was carried out varying some parameters, including composition. By both methods it was possible to obtain ferrites having a single crystalline phase with cubic inverse spinel structure and a behavior near to that of superparamagnetic materials. Saturation magnetization values were higher for materials synthesized by sol-gel. Furthermore, in both cases particles have a spherical-like morphology and nanometric sizes (11–15 nm). Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia. - Highlights: • Mg–Mn ferrites were synthesized by sol-gel and thermal decomposition methods. • Materials showed a single cubic inverse spinel crystalline structure. • Ferrites have a soft ferrimagnetic behavior close to superparamagnetic materials.

  13. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2004-01-01

    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  14. Synthesis and characterization of nano crystalline nickel zinc ferrite for chlorine gas sensor at room temperature

    Science.gov (United States)

    Pawar, C. S.; Gujar, M. P.; Mathe, V. L.

    2015-06-01

    Nano crystalline Nickel Zinc ferrite (Ni0.25Zn0.75Fe2O4) thin films were synthesized by Sol Gel method for gas response. The phase and microstructure of the obtained Ni0.25Zn0.75Fe2O4 thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The nanostructured Ni0.25Zn0.75Fe2O4 thin film shows single spinel phase. Magnetic study was obtained with the help of VSM. The effects of working temperature on the gas response were studied. The results reveal that the Ni0.25Zn0.75Fe2O4 thin film gas sensor shows good selectivity to chlorine gas at room temperature. The sensor shows highest sensitivity (˜50%) at room temperature, indicating its application in detecting chlorine gas at room temperature in the future.

  15. Structural, Magnetic and Mossbauer Studies of Magnesium Ferrite Nanoparticles Prepared by Hydrothermal Method

    Science.gov (United States)

    Kurian, Jessyamma; Mathew, M. Jacob

    Magnesium ferrite (MgFe2O4) being a soft magnetic material with fast frequency response, high a.c. heat power generation and high biocompatibility, is widely used in biomedical fields such as targeted drug delivery, magnetic hyperthermia, etc. This paper reports the synthesis of magnetic MgFe2O4 nanoparticles by hydrothermal method using chloride salts of metal ions. The effect of calcination on the structural and magnetic properties is studied by XRD, FTIR, VSM and Mossbauer spectrum analysis. Fine particles in the size range 3-24nm are obtained. On calcination, crystallite size increases and lattice parameter decreases. From the magnetic characterization, it is seen that the magnetic properties mainly depend on crystallite size and cation distribution. The mixed spinel states of the prepared materials are confirmed from the FTIR and Mossbauer spectrum analysis. The doublet spectrum obtained in the Mossbauer studies indicates the superparamagnetic relaxation at room temperature.

  16. Study of structural and magnetic properties of cobalt ferrite (CoFe2O4) nanostructures

    Science.gov (United States)

    Senthil, V. P.; Gajendiran, J.; Raj, S. Gokul; Shanmugavel, T.; Ramesh Kumar, G.; Parthasaradhi Reddy, C.

    2018-03-01

    CoFe2O4 nanostructures have successfully via the auto-combustion sol-gel method. The effects of the calcined temperatures (600, 700 and 800 °C) on the structural and magnetic properties of CoFe2O4 were studied by XRD and VSM analysis. Well defined and sharp peaks corresponding to the CoFe2O4 were developed by increasing the calcination temperature in the XRD pattern. The functional groups of as prepared and calcined sample were identified by the FTIR spectra analysis. The VSM measurements showed that the saturation magnetization and coercivity increase with increasing calcination temperature. Significant differences in the magnetic properties of the CoFe2O4 nanoparticles have been observed and these differences seem to result from the calcination temperature of the spinel ferrite nanoparticles.

  17. Magnetization and Magnetocaloric Effect in Sol-Gel Derived Nanocrystalline Copper-Zinc Ferrite.

    Science.gov (United States)

    Anwar, M S; Ahmed, Faheem; Koo, Bon Heun

    2015-02-01

    We report the sol-gel synthesis and magnetocaloric effect in nanocrystalline copper-zinc ferrite (Cu0.5Zn0.5Fe2O4). The synthesized powder was characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and magnetization measurements. The XRD results confirm the formation of single phase spinel structure. The average particle size was found to be ~58 nm. FE-SEM results suggested that the nanoparticles are agglomerated and spherical in shape. Magnetization measurement reveals that Cu0.5Zn0.5Fe2O4 nanoparticles exhibit transition temperature (Tc) above room temperature. The maximum magnetic entropy change (ΔSM)max shows interesting behaviour and was found to vary with the applied magnetic field. This nanopowder can be considered as potential material for magnetic refrigeration above room temperature.

  18. Synthesis of ferrofluids based on cobalt ferrite nanoparticles: Influence of reaction time on structural, morphological and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Amirabadizadeh, Ahmad; Salighe, Zohre; Sarhaddi, Reza, E-mail: reza.sarhaddi@birjand.ac.ir; Lotfollahi, Zahra

    2017-07-15

    Highlights: • Ferrofluids based on cobalt ferrite nanoparticles were synthesized by co-precipitation method. • The crystallite and particle size of cobalt ferrite can be controlled effectively by reaction time. • The ferrofluids have lower values of saturation magnetization and coercivity as compared to nanoparticles. • By increasing the size of nanoparticles, the narrower and sharper spikes of ferrofluids are formed. - Abstract: In this work, for first time the ferrofluids based on the cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles were prepared by the co-precipitation method at different reaction times (0.5–6.5 h). Crystal structure, morphology and magnetic properties of the cobalt ferrite nanoparticles and the ferrofluids based on the nanoparticles were studied by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and vibrating sample magnetometer (VSM). The XRD patterns of CoFe{sub 2}O{sub 4} nanoparticles synthesized at different reaction times indicated that all samples are single phase in accordance with inverse cubic spinel structure with space group Fd-3m, and no impurity phase was observed. By increasing the reaction time to 3.5 h, the lattice parameter and the average crystallites size increased and then afterwards decreased by increasing the reaction time. The microscopic studies indicated the formation of nanosized particles with nearly spherical in shape, whereas the average particle size for all samples is found to be less than 50 nm. The results of VSM also showed that the saturation magnetization and coercivity field of the cobalt ferrite nanoparticles and the ferrofluids were influenced by reaction time, whereas the ferrofluids have lower values of magnetic parameters than that of nanoparticles.

  19. Magnetic, Electric and Optical Properties of Mg-Substituted Ni-Cu-Zn Ferrites

    Science.gov (United States)

    Kabbur, S. M.; Ghodake, U. R.; Kambale, Rahul C.; Sartale, S. D.; Chikhale, L. P.; Suryavanshi, S. S.

    2017-10-01

    The Ni0.25- x Mg x Cu0.30Zn0.45Fe2O4 ( x = 0.00 mol, 0.05 mol, 0.10 mol, 0.15 mol, 0.20 mol and 0.25 mol) magnetic oxide system was prepared by a sol-gel auto-combustion method using glycine as a fuel. X-ray diffraction study reveals the formation of pure spinel lattice symmetry along with the presence of a small fraction of unreacted Fe2O3 phase as a secondary phase due to incomplete combustion reaction between fuel and oxidizer. The lattice constant ( a) was found to decrease with the increase of Mg2+ content; the average crystallite size ( D) is observed in the range of 26.78-33.14 nm. At room temperature, all the samples show typical magnetic hysteresis loops with the decrease of magnetic moment ( n B) of Ni-Cu-Zn ferrites with the increase of Mg2+ content. The intrinsic vibrational absorption bands for the tetrahedral and octahedral sites of the spinel structure were confirmed by infrared (IR) spectroscopy. The optical parameters such as refractive index ( η), velocity of IR waves ( v) and jump rates ( J 1, J 2, J) were studied and found to be dependent on the variation of the lattice constant. The Curie temperature ( T c) of Ni-Cu-Zn mixed ferrite was found to decrease with Mg2+ addition. The composition x = 0.15 mol.% with a low dielectric loss tangent of 2% seems to have potential for multilayer chip inductor applications at a wide range of frequencies.

  20. Magnesium-zinc ferrite nanoparticles: effect of copper doping on the structural, electrical and magnetic properties.

    Science.gov (United States)

    Zaki, H M; Al-Heniti, S; Umar, Ahmad; Al-Marzouki, F; Abdel-Daiem, A; Elmosalami, T A; Dawoud, H A; Al-Hazmi, F S; Ata-Allah, S S

    2013-06-01

    In this paper, Mg0.5Zn0.5-Cu(x)Fe2O4 ferrites nanoparticles were synthesized by facile co-precipitation route and characterized in detail in terms of their structural, electrical and magnetic properties as a function of Cu concentration. The prepared samples have cubic spinel phase as confirmed by X-ray diffraction patterns. The decrease of the lattice constant and increase of X-ray density indicate the solubility of Cu ions in the spinel lattice. The AC conductivity measurements between 300 K and 773 K at different frequencies 1 KHz up to 1 MHz, showed two different behaviors as semiconductor-like at high temperature and frequency depending behavior associated with dispersion phenomena at low temperatures. The conduction mechanism in the system is influenced by Cu concentration and the dominant one is the hopping conduction mechanism. Dielectric measurements at the same conditions of temperatures and frequencies exhibited that the dielectric loss increases with increasing the temperature and decreasing the frequency indicating the semiconducting nature of the ferrite compounds. An anomalous behavior of the dielectric loss is observed in samples with high Cu content which explained in terms of resonance between frequency accompanied the electronic hopping and the frequency of the external electric field. The analysis of Mössbauer spectra revealed that copper free compound is super-paramagnetically relaxed in nature and zinc free compound demonstrates ferrimagnetic order. Moreover, hyperfine field spectrum shows the migration of Cu ions from octahedral to tetrahedral site in zinc free compound.

  1. Pulse Sharpening Effects in Ferrites

    Science.gov (United States)

    1981-07-01

    the magnetic field h is obtained by solving the experimental results with the theory . In the case of zero (1 )-(3). Over the voltage range shown the...transmission line theory with steady-state fre- The results have shown that the ferrite pulse sharpener is quency w,, the extent of mismatch at the...dielectric sleeves (farads/meter). E2 ++ + Z2 h Peak magnetic field in spin reversal region ( Oersteds ). 1m Mean magnetic length: ir(d + a)(meters). 2 1 [rL

  2. Magnesia-spinel bricks for secondary refining furnaces; Niji seiren`yo magnesia-spinel shitsu renga no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujitani, S.; Ogata, M.; Nakamura, R.; Ito, K.; Otani, T. [Shinagawa Refractories Co. Ltd., Tokyo (Japan)

    1998-01-01

    A magnesia-spinel brick is developed in this report as an environmentally-friendly chromium-free refractory to replace the magnesia-chrome brick widely in use for secondary refining furnaces. In the case of the magnesia-spinel brick for cement kilns, the bond structure is improved and anti-corrosion strength enhanced when crystal grain boundaries are allowed to be impregnated with small amounts of Fe2O3 and TiO2. This method is applied also in the development of the secondary refining furnace brick introduced in this paper, and is executed to attain higher resistance to corrosion by using electromelting materials for the magnesia aggregate. As the result, a brick is developed, in which there is direct bond found well developed between periclase and spinel grains. Since a material containing more Al2O3 or spinel is higher in anti-spalling feature but lower in anti-corrosion feature, balancing should be prudently established between the two features in view of the conditions of the intended application. It is further anticipated that, except in cases where a severe attack of erosion is expected in the presence of low-basicity slag, the newly developed magnesia-spinel brick will remain in service as long as the conventional magnesia-chrome brick. 2 refs., 5 figs., 3 tabs.

  3. Effect of mulitivalent cation dopants on lithium manganese spinel cathodes

    CSIR Research Space (South Africa)

    De Kock, A

    1998-02-01

    Full Text Available Mn,m,jM,,,,,O,+, spinels with hl = Mg?, Zn?+ and A13+, 0 < d I 0.15, h = 2 or 3 and 6 = 0 were synthesised by reaction of the required stoichiometric amounts of LiOH H,,O, MnOz and either Mg(NO,), 6H,O, Zn(NO,), 2H,O or Al(NO,), . 9Hz0..., when the average manganese oxidation state is 3.5 (Table 1). The doped LiMn,_ dMd, hO4 spinels have an average manganese oxidation state greater than 3.5 with the specific value dependent on the doping level. These doped spinels can...

  4. Effect of sintering temperature on micro structural and impedance spectroscopic properties of Ni0.5Zn0.5Fe2O4 nano ferrite

    Science.gov (United States)

    Venkatesh, Davuluri; Ramesh, K. V.; Sastry, C. V. S. S.

    2017-07-01

    Ni-Zn nanoferrite Ni0.5Zn0.5Fe2O4 is prepared by citrate gel auto combustion method and sintered at various temperatures 800, 900, 1000, 1100 and 1200°C. The room temperature x-ray diffraction conforms that the single phase spinel structure is formed. Crystallite size and density were increased with increasing of sintering temperature. From Raman spectroscopy all sintered samples are single phase with cubic spinel structure belong to Fd3m space group. From surface morphology studies it is clearly observed that the particle size increased with increasing of sintering temperature. Impedance spectroscopy revel that increasing of conductivity is due to grain resistance is decreased with increasing of sintering temperature. Cole-Cole plots are studied from impedance data. The electrical modulus analysis shows that non-Debye nature of Ni0.5Zn0.5Fe2O4 ferrite.

  5. Effect of annealing on properties of Mg doped Zn-ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    K. Nadeem

    2015-04-01

    Full Text Available A comparison of structural and magnetic properties of as-prepared and annealed (900 °C Mg doped Zn ferrite nanoparticles (Zn1−xMgxFe2O4, with x=0, 0.1, 0.2, 0.3, 0.4 and 0.5 is presented. X-ray diffraction (XRD studies confirmed the cubic spinel structure for both the as-prepared and annealed nanoparticles. The average crystallite size and lattice parameter were increased by annealing. Scanning electron microscopy (SEM images also showed that the average particle size increased after annealing. Fourier transform infrared spectroscopy (FTIR also confirmed the spinel structure for both series of nanoparticles. For both annealed and as-prepared nanoparticles, the O–Mtet.–O vibrational band shifts towards higher wave numbers with increased Mg concentration due to cationic rearrangement on the lattice sites. Magnetization studies revealed an anomalous decreasing magnetization for the annealed nanoparticles which is also ascribed to cationic rearrangement on the lattice sites after annealing. The measurement of coercivity showed a decreasing trend by annealing due to the increased nanoparticle size and better crystallinity.

  6. Characterization of Ni ferrites powders prepared by plasma arc discharge process

    Science.gov (United States)

    Safari, A.; Gheisari, Kh.; Farbod, M.

    2017-01-01

    The aim of this work was to synthesize a single-phase spinel structure from a mixture of zinc, iron and nickel powders by plasma arc discharge method. A mixture of zinc, iron and nickel powders with the appropriate molar ratio was prepared and formed into a cylindrical shape. The synthesis process was performed in air, oxygen and argon atmospheres with the applied arc current of 400 A and pressure of 1 atm. After establishing an arc between the electrodes, the produced powders were collected and their structure and magnetic properties were examined by XRD and VSM, respectively. ZnO as an impurity was appeared in the as-produced powders owing to the high reactivity of zinc atoms, preventing the formation of Ni-Zn ferrite. A pure spinel structure with the highest saturation magnetization (43.8 emu/g) was observed as zinc powders removed completely from the initial mixture. Morphological evaluations using field emission scanning electron microscopy showed that the mean size of fabricated nanoparticles was in the range 100-200 nm and was dependent on the production conditions.

  7. Magnetic and electric behavior of praseodymium substituted CuPr{sub y}Fe{sub 2-y}O{sub 4} ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Farid, Muhammad Tahir, E-mail: tahirfaridbzu@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Ahmad, Ishtiaq; Kanwal, Muddassara; Murtaza, Ghulam; Ali, Irshad [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Ashiq, Muhammad Naeem [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Khan, Sajjad Ahmad [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan)

    2017-01-15

    Spinel ferrites with chemical formula CuPr{sub y}Fe{sub 2-y}O{sub 4}(y=0.0,0.02,0.04,0.06,0.08,0.10) were synthesized using sol-gel technique. The sintered powder characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and vibrating sample magnetometer (VSM). X-ray Diffraction analysis showed that the samples with concentration (y=0.0–0.06) have single spinel phase and the samples with concentration at y=0.08–0.10 have secondary phase (ortho ferrite phase) along spinel phase. The Lattice constant a increased with the substitution of Praseodymium (Pr) ions. The crystallite size calculated from Scherre's formula is found in the range of 53–37 nm. It is observed that DC resistivity and activation energy enhances with the substitution of Pr. The dc resistivity decreased with the increase in temperature. The conduction below Curie temperature (T{sub c}) is due to hopping of electrons and holes, whereas, above Curie temperature it is due to polaron hopping. The decrease in T{sub c} with increasing Pr constant may be due to the fact that Pr–Fe interactions on the B sites are weaker than Fe–Fe interaction. The saturation magnetization (M{sub s}) and remanence (M{sub r}) decreased where as coercivity (H{sub c}) has been increased with the increase of Pr content. The measured parameters suggest that these materials are potential candidates for high frequency applications. - Highlights: • XRD patterns show the spinel phase, while last two samples are bi-phasic. • The lattice constant increase as y increases. • The dc resistivity and activation energy are found to decrease with increase in temperature. • The saturation magnetization decreases with increasing praseodymium content.

  8. Structural, impedance and Mössbauer studies of magnesium ferrite synthesized via sol–gel auto-combustion process

    Directory of Open Access Journals (Sweden)

    Shahid Khan Durrani

    2017-12-01

    Full Text Available Crystalline magnesium ferrite (MgFe2O4 spinel oxide powder was synthesized by nitrate–citrate sol–gel auto-combustion process with stoichiometric composition of metal nitrate salts, urea and citric acid. The study was focused on the modification of synthesis conditions and effect of these modified conditions on the structural and electrical properties of synthesized MgFe2O4 ceramic materials. Phase composition, crystallinity, structure and surface morphology were studied by X-ray diffraction, FTIR and SEM. Pure single phase MgFe2O4 spinel ferrite was obtained after calcination at 850 °C. Rietveld refinement of XRD result confirmed the single cubic phase spinel oxide with the lattice constant of a = 8.3931 Å and Fd3m symmetry. UV–visible absorption study of calcined powder revealed an optical band gap of 2.17 eV. SEM images of sintered specimens (1050–1450 °C showed that the grain size increased with the increase in sintering temperature. From the impedance results of the sintered MgFe2O4 specimens, it was found that the resistance of grain, grain boundary and electrode effect decreased with an increase in sintering temperature and associated grain growth. In the intermediate frequency region lowering of impedance and dielectric values was observed due to the decrease in grain boundary areas. Mössbauer studies indicated that magnesium ferrite had a mixed spinel structure in calcined and sintered samples, however, the well refined single phase MgFe2O4 was observed due to well developed high crystalline structure at 1350 °C and 1450 °C. Keywords: Sol–gel auto-combustion, Magnesium ferrite, X-ray diffraction, SEM, Mössbauer spectroscopy, Impedance spectroscopy

  9. Synthesis and characterization of nanosized MgxMn1-xFe2O4 ferrites by both sol-gel and thermal decomposition methods

    Science.gov (United States)

    De-León-Prado, Laura Elena; Cortés-Hernández, Dora Alicia; Almanza-Robles, José Manuel; Escobedo-Bocardo, José Concepción; Sánchez, Javier; Reyes-Rdz, Pamela Yajaira; Jasso-Terán, Rosario Argentina; Hurtado-López, Gilberto Francisco

    2017-04-01

    This work reports the synthesis of MgxMn1-xFe2O4 (x=0-1) nanoparticles by both sol-gel and thermal decomposition methods. In order to determine the effect of synthesis conditions on the crystal structure and magnetic properties of the ferrites, the synthesis was carried out varying some parameters, including composition. By both methods it was possible to obtain ferrites having a single crystalline phase with cubic inverse spinel structure and a behavior near to that of superparamagnetic materials. Saturation magnetization values were higher for materials synthesized by sol-gel. Furthermore, in both cases particles have a spherical-like morphology and nanometric sizes (11-15 nm). Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia.

  10. Some of Physical Properties of Nanostructured (Mg1-xCoxFe2O4 Ferrites Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Ammer Alsherefi

    2018-01-01

    Full Text Available Sol-gel auto combustion technique was used to prepare nanoparticles of magnesium-cobalt ferrites with the chemical formula Mg1-xCoxFe2O4 for  (x=0, 0.2, 0.4, 0.6, 0.8, 1, where x added as weight  percentages, and sintering  at temperature (1100 oC. The X-ray patterns of prepared powder has confirmed the structure of cubic spinel structure (fcc. The prepared samples were composed of nearly spherical nano particles .An average particle size of  magnesium-cobalt ferrite  were  calculated  using  Debye Scherer’s relation is equal 53.12 nm. The surface structure of the samples was investigated by Scanning Electron Microscope(SEM. The electromagnetic properties for prepared samples were investigated using Vector Network Analyzer (VNA in X-band microwave region.

  11. Dielectric and magnetic behavior of nanocrystalline Cu{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4} ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Jadoun, Priya, E-mail: priya4jadoun@gmail.com; Sharma, Jyoti; Prashant, B. L.; Dolia, S. N.; Bhatnagar, Deepak; Saxena, V. K. [Department of Physics, University of Rajasthan, Jaipur 302012 (India)

    2016-05-23

    The mixed copper cobalt ferrite nanoparticles (Cu{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4}) have been synthesized by sol-gel auto combustion route with aqueous metal nitrates and citric acid as the precursor. The crystal structure has been analyzed by X-Ray diffraction (XRD) method. XRD reveals the formation of single phase cubic spinel structure. The Scanning Electron Microscopy (SEM) is used for morphological studies. The dielectric measurements at room temperature show the decrease in dielectric constant with increasing frequency which is attributed to Maxwell Wagner model and conduction mechanism in ferrites.The magnetic measurements show ferromagnetic behavior at room temperature and large coercivity is observed on cooling down the temperature to 20 K.

  12. Composition, microstructures and ferrimagnetic properties of Bi-modified LiZnTiMn ferrites for LTCC application

    Directory of Open Access Journals (Sweden)

    Lijun Jia

    2016-05-01

    Full Text Available The effects of Bi modification on the microstructural development and gyromagnetic properties of low-temperature sintered ferrites with composition of Li0.42Zn0.27Ti0.11Mn0.1Fe2.1−xBixO4 (x = 0.0-0.1 have been studied in order to adapt the development of low-temperature cofired ceramics technology (LTCC and produce gyromagnetic devices with a multilayer process. In the present work, a pure spinel phase can be formed with a sintering temperature ranging from 880°C to 900°C, which allows them to be co-fired with silver. We found that Bi3+ ions could enter into the ferrite lattice, which enhanced the grain growth and densification during sintering due to the activation of the lattice. Results show that the modifying of x = 0.003 cannot only double saturation induction but also drastically reduce ferromagnetic resonance line width at 9.3 GHz, indicating that Bi modification is a good approach for lowing the sintering temperature of LiZnTiMn ferrites.

  13. Composition, microstructures and ferrimagnetic properties of Bi-modified LiZnTiMn ferrites for LTCC application

    Science.gov (United States)

    Jia, Lijun; Zhao, Yuanpei; Xie, Fei; Li, Qiang; Li, Yuanxun; Liu, Cheng; Zhang, Huaiwu

    2016-05-01

    The effects of Bi modification on the microstructural development and gyromagnetic properties of low-temperature sintered ferrites with composition of Li0.42Zn0.27Ti0.11Mn0.1Fe2.1-xBixO4 (x = 0.0-0.1) have been studied in order to adapt the development of low-temperature cofired ceramics technology (LTCC) and produce gyromagnetic devices with a multilayer process. In the present work, a pure spinel phase can be formed with a sintering temperature ranging from 880°C to 900°C, which allows them to be co-fired with silver. We found that Bi3+ ions could enter into the ferrite lattice, which enhanced the grain growth and densification during sintering due to the activation of the lattice. Results show that the modifying of x = 0.003 cannot only double saturation induction but also drastically reduce ferromagnetic resonance line width at 9.3 GHz, indicating that Bi modification is a good approach for lowing the sintering temperature of LiZnTiMn ferrites.

  14. Magnetic and magneto elastic properties of cobalt ferrite ceramic compacted through cold isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Indla, Srinivas; Das, Dibakar, E-mail: ddse@uohyd.ernet.in [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Chelvane, Arout [Advanced Magnetic Group, Defense Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India)

    2016-05-06

    Nano crystalline CoFe{sub 2}O{sub 4} powder was prepared by combustion synthesis method. As synthesized powder was calcined at an appropriate condition to remove the impurities and to promote phase formation. Phase pure CoFe{sub 2}O{sub 4} powder was pressed into cylindrical rod at an applied pressure of 200 MPa using a cold isostatic pressing. Sintering of the green compact at 1350°c for 12 hrs resulted in sintered cylindrical rod with ~85% of the theoretical density. Single phase cubic spinel structure was observed in the powder x-ray diffraction pattern of the sintered pellet. Scanning electron micrographs (SEM) of the as sintered pellet revealed the microstructure to be composed of ferrite grains of average size ~4 µm. Saturation magnetization of 72 emu/g and coercivity of 355 Oe were observed for cobalt ferrite sample. The magnetostriction was measured on a circular disc (12 mm diameter and 12 mm length) with the strain gauge (350 Ω) mounted on the flat surface of the circular disc. Magnetostriciton of 180 ppm and strain derivative of 1 × 10{sup −9} m/A were observed for the sintered CoFe{sub 2}O{sub 4} sample.

  15. DC resistivity of Ni-Zn ferrites prepared by oxalate precipitation method

    International Nuclear Information System (INIS)

    Shinde, T.J.; Gadkari, A.B.; Vasambekar, P.N.

    2008-01-01

    Polycrystalline ferrites with general formula Ni 1-x Zn x Fe 2 O 4 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) were prepared by oxalate precipitation method. The samples were characterized by X-ray diffraction (XRD), IR and scanning electron microscope (SEM) techniques. All compositions show cubic Spinel structure. Lattice constant increases with increase in zinc content, obeying Vegard's law. The physical densities are about 98.14% of their X-ray density. Average crystallite size lies in the range 27.59-31.49 nm. Infrared studies show two absorption bands near about 400 cm -1 and 600 cm -1 for octahedral and tetrahedral sites, respectively. The resistivity of all the samples was studied. It is observed that the resistivity of nickel-zinc ferrites prepared by oxalate precipitation method is higher than that prepared by ceramic and citrate precursor method. It is attributed to greater homogeneity and smaller grain size. Activation energy in paramagnetic region is higher than that of ferrimagnetic region

  16. Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, S. A. [Center for Electromagnetic Research, Northeastern University, Boston, Massachusetts 02115 (United States); Harris, V. G. [Complex Materials Section, Code 6342, Naval Research Laboratory, Washington, DC 20375 (United States); Hamdeh, H. H. [Department of Physics, Wichita State University, Wichita, Kansas 67260 (United States); Ho, J. C. [Department of Physics, Wichita State University, Wichita, Kansas 67260 (United States)

    2000-05-08

    The cation site occupancy of a mechanically activated nanocrystalline zinc ferrite powder was determined as (Zn{sub 0.55}{sup 2+}Fe{sub 0.18}{sup 3+}){sub tet}[Zr{sub 0.45}{sup 2+}Fe{sub 1.82}{sup 3+}]{sub oct}O{sub 4} through analysis of extended x-ray absorption fine structure measurements, showing a large redistribution of cations between sites compared to normal zinc ferrite samples. The overpopulation of cations in the octahedral sites was attributed to the ascendance in importance of the ionic radii over the crystal energy and bonding coordination in determining which interstitial sites are occupied in this structurally disordered powder. Slight changes are observed in the local atomic environment about the zinc cations, but not the iron cations, with respect to the spinel structure. The presence of Fe{sup 3+} on both sites is consistent with the measured room temperature magnetic properties. (c) 2000 American Institute of Physics.

  17. Application of x-ray diffraction for analysis in the synthesis of ferrites

    International Nuclear Information System (INIS)

    Casanova Gomez, Abdel; Alfonso Olmo, Esteban; Alonso Perez, Jose Antonio; Rodriguez, Joelis; Bercoff, Paula G.; Arana, Mercedes; Correa Reina, Jose Raul

    2016-01-01

    As a fundamental part of the work to obtain ferrites, from waste materials (Tailings) of the nickel industry, it is the analytical control and monitoring products as well as the conditions of synthesis. Through this work the study of magnetic products is carried out using magnetometry and X-ray diffraction characterization of their properties, and the qualitative and quantitative analysis. First, the ideal temperature calcination was determined for which an average crystallite size of magnetic spinel as large as possible and with high magnetic response is obtained. Subsequently the magnetic and phase analysis of final products, following five different formulations synthesis, was performed. This analysis showed, that in general the method results in solids, even with varying amounts of hematite as impurity in four formulations, having a high magnetic saturation after calcination. XRD analysis made to the products featured determining the average crystallite size as indicative aspect of border interference. Furthermore, the structural refinement (profile matching variant) for the quantitative analysis of phases was carried on, fact that arguments the differences of magnetism for the five formulations. Rietveld method for detailed determination of the structure of the ferrite F-59 and its nonstoichiometric formula was also applied. (Author)

  18. Structure and magnetic properties of ultrafine lithium ferrite crystallized from a borate glass

    Science.gov (United States)

    El Shabrawy, S.; Bocker, C.; Tzankov, D.; Georgieva, M.; Harizanova, R.; Rüssel, C.

    2017-04-01

    A glass with the mol. % compositions 51.7 B2O3/9.3 K2O/1 P2O5/27.6 Li2O/10.4 Fe2O3 was crystallized at temperatures in the range from 400 to 540 °C for different periods of time (2-12 h). X-ray diffraction showed cubic Li ferrite with a spinel structure, LiFe5O8, with small crystallites with sizes in the range from 3 to 31 nm. While the samples crystallized at 440, 480, and 500 °C reveal a disordered phase, crystallization at 540 °C indicates a phase transformation to the ordered state. Magnetization curves showed that the samples crystallized at 440 °C are superparamagnetic with very low maximum magnetization, while the samples crystallized at 480 and 500 °C show thin clear S-shaped magnetization curves with zero coercivity and hence are also superparamagnetic. By contrast, the sample crystallized at 540 °C shows a coercive field of 40 Oe and thus is ferrimagnetic. The magnetic properties can be tailored by the size of the ferrite crystals and hence by the crystallization conditions.

  19. Structural, electrical and dielectric properties of nanocrystalline Mg-Zn ferrites

    International Nuclear Information System (INIS)

    Anis-ur-Rehman, M.; Malik, M.A.; Nasir, S.; Mubeen, M.; Khan, K.; Maqsood, A.

    2011-01-01

    The nanocrystalline Mg-Zn ferrites having general formula Mg/sub 1-x/Zn/sub x/Fe/sub 2/O/sub 4/ (x=0, 0.1, 0.2, 0.3, 0.4, 0. 5) were prepared by WOWS sol-gel route. All prepared samples were sintered at 700 deg. C for 2 h. X-ray powder diffraction (XRD) technique was used to investigate structural properties of the samples. The crystal structure was found to be spinel. The crystallite size, lattice parameters and porosity of samples were calculated by XRD data analysis as function of zinc concentration. The crystallite size for each sample was calculated using the Scherrer formula considering the most intense (3 1 1) peak and the range obtained was 34-68 nm. The dielectric constant, dielectric loss tangent and AC electrical conductivity of nanocrystalline Mg-Zn ferrites are investigated as a function of frequency. The dielectric constant, dielectric loss tangent increased with increase of Zn concentration. All the electrical properties are explained in accordance with Maxwell Wagner model and K/sub oops/ phenomenological theory. (author)

  20. Magnetic Nanoparticles: Synthesis, Characterization and Magnetic Properties of Cobalt Aluminum Ferrite.

    Science.gov (United States)

    Zaki, H M; Al-Heniti, Saleh H; Al-Hadeethi, Y; Alsanoosi, A M

    2016-05-01

    Nanoparticles of the ferrite system CoFe(2-x)Al(x)O4 (x = 0.0, 0.3, 0.7 and 1.0) were synthesized through the co-precipitation technique. Thermal decomposition process and formation of a single crystalline phase were followed using thermal differential analysis technique (DTA). X-ray powder diffraction patterns of the samples confirmed the formation of a nano-size single spinel phase. The average crystallite size was found to be in the range 20-63 nm for all samples. This was further confirmed by TEM of one of the samples, with concentration x = 1.0 which was found statistically to be 27 nm. This agrees well with the value of 24 nm deduced by means of X-ray diffraction method for the same sample. A considerable decrease in the intensity of the octahedral bands is observed as the aluminum concentration increases, and even vanishes completely at x = 1.0 indicating the migration of cations between the octahedral and tetrahedral sites. The magnetic hysteresis loops at room temperature showed decrease in both, coercivity and saturation magnetization as the non-magnetic Al3+ ions content increases. The relative values of M(r0/M(s) were found to be between 0.44 and 0.31 for the samples with a remarkable change in the squareness of the loops. This is highly beneficial for the microwave and memory devices applications of these nano sized ferrite system.

  1. Treatment of complex heavy metal wastewater using a multi-staged ferrite process.

    Science.gov (United States)

    Tu, Yao-Jen; Chang, Chien-Kuei; You, Chen-Feng; Wang, Shan-Li

    2012-03-30

    Complete removal of heavy metal from complex heavy-metal wastewater (CHMW) requires advanced technology. This study investigated the feasibility of a multi-staged ferrite process (MSFP) for treating CHMW, containing Cd, Cu, Pb, Cr, Zn, Ag, Hg, Ni, Sn and Mn. Our experimental results showed that most of the supernatants after conventional single-step ferrite process could conform to the effluent standard of Environmental Protection Administration in Taiwan. However, the sludge could not satisfy the toxicity characteristic leaching procedure (TCLP) limits due to high Cd, Cu, and Pb concentrations. The performance of MSFP in removing heavy metals from wastewater was subsequently investigated and the parameters of three treating steps in MSFP were optimized under 70°C and 90°C at pH 9, and 80°C at pH 10. After the three-staged procedures, all heavy metals in supernatant and sludge could fulfill the contamination levels regulated by law. In addition, the sludge generated from the MSFP was examined by XRD and forms a stable spinel structure, which could be effectively separated by external magnetic field. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties.

    Science.gov (United States)

    Coker, Victoria S; Telling, Neil D; van der Laan, Gerrit; Pattrick, Richard A D; Pearce, Carolyn I; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E P; Lloyd, Jonathan R

    2009-07-28

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe(2)O(4)) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of ∼10(6) erg cm(-3) can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies.

  3. Observation of longitudinal spin-Seebeck effect in cobalt-ferrite epitaxial thin films

    Directory of Open Access Journals (Sweden)

    Tomohiko Niizeki

    2015-05-01

    Full Text Available The longitudinal spin-Seebeck effect (LSSE has been investigated in cobalt ferrite (CFO, an exceptionally hard magnetic spinel ferrite. A bilayer of a polycrystalline Pt and an epitaxially-strained CFO(110 exhibiting an in-plane uniaxial anisotropy was prepared by reactive rf sputtering technique. Thermally generated spin voltage in the CFO layer was measured via the inverse spin-Hall effect in the Pt layer. External-magnetic-field (H dependence of the LSSE voltage (VLSSE in the Pt/CFO(110 sample with H ∥ [001] was found to exhibit a hysteresis loop with a high squareness ratio and high coercivity, while that with H ∥ [ 1 1 ̄ 0 ] shows a nearly closed loop, reflecting the different anisotropies induced by the epitaxial strain. The magnitude of VLSSE has a linear relationship with the temperature difference (ΔT, giving the relatively large VLSSE /ΔT of about 3 μV/K for CFO(110 which was kept even at zero external field.

  4. Influence of Cu-Cr substitution on structural, morphological, electrical and magnetic properties of magnesium ferrite

    Science.gov (United States)

    Yonatan Mulushoa, S.; Murali, N.; Tulu Wegayehu, M.; Margarette, S. J.; Samatha, K.

    2018-03-01

    Cu-Cr substituted magnesium ferrite materials (Mg1 - xCuxCrxFe21 - xO4 with x = 0.0-0.7) have been synthesized by the solid state reaction method. XRD analysis revealed the prepared samples are cubic spinel with single phase face centered cubic. A significant decrease of ∼41.15 nm in particle size is noted in response to the increase in Cu-Cr substitution level. The room temperature resistivity increases gradually from 0.553 × 105 Ω cm (x = 0.0) to 0.105 × 108 Ω cm (x = 0.7). Temperature dependent DC-electrical resistivity of all the samples, exhibits semiconductor like behavior. Cu-Cr doped materials can be suitable to limit the eddy current losses. VSM result shows pure and doped magnesium ferrite particles show soft ferrimagnetic nature at room temperature. The saturation magnetization of the samples decreases initially from 34.5214 emu/g for x = 0.0 to 18.98 emu/g (x = 0.7). Saturation magnetization, remanence and coercivity are decreased with doping, which may be due to the increase in grain size.

  5. Distribution of cations in nanosize and bulk Co-Zn ferrites.

    Science.gov (United States)

    Veverka, M; Jirák, Z; Kaman, O; Knížek, K; Maryško, M; Pollert, E; Závěta, K; Lančok, A; Dlouhá, M; Vratislav, S

    2011-08-26

    The structural and magnetic properties of Co(1-x)Zn(x)Fe2O4 ferrites (Co-Zn ferrites) are investigated in a narrow compositional range around x = 0.6, which is of interest because of applications in magnetic fluid hyperthermia. The study by x-ray and neutron diffraction, Mössbauer spectroscopy and magnetization measurements is done on nanoparticles prepared by the coprecipitation method and bulk samples sintered at high temperatures. In spite of the known preference of Zn2+ for tetrahedral (A) sites and Co2+ for octahedral [B] sites, the cations are distributed nearly evenly over the two sites of spinel structure and there is also a variable number of [B] site vacancies (see text), making cobalt ions trivalent. In particular for x = 0.6, the cationic distribution is refined to [Formula: see text] and [Formula: see text] for the 13 nm particles (T(C) = 335 K) and bulk sample (T(C) = 351 K), respectively.

  6. COMPARATIVE MAGNETIC AND PHOTOCATALYTIC PROPERTIES OF COPRECIPITATED ZINC FERRITE NANOPARTICLES BEFORE AND AFTER CALCINATION

    Directory of Open Access Journals (Sweden)

    M. Ebrahimi

    2017-03-01

    Full Text Available In this work, the effects of co-precipitation temperature and post calcination on the magnetic properties and photocatalytic activities of ZnFe2O4 nanoparticles were investigated. The structure, magnetic and optical properties of zinc ferrite nanoparticles were characterized by X-ray diffraction (XRD, vibrating sample magnetometry and UV–Vis spectrophotometry techniques.  The XRD results showed that the coprecipitated as well as calcined nanoparticles are single phase with partially inverse spinel structures. The magnetization and band gap decreased with the increasing of co-precipitation temperature through the increasing of the crystallite size. However, the post calcination at 500 °C was more effective on the decreasing of magnetization and band gap. Furthermore, photocatalytic activity of zinc ferrite nanoparticles was studied by the degradation of methyl orange under UV-light irradiation. Compare with the coprecipitated ZnFe2O4 nanoparticles with 5% degradation of methyl orange after 5 h UV-light light radiation, the calcined ZnFe2O4 nanoparticles exhibited a better photocatalytic activity with 20% degradation.

  7. Silica-Coated Nonstoichiometric Nano Zn-Ferrites for Magnetic Resonance Imaging and Hyperthermia Treatment.

    Science.gov (United States)

    Starsich, Fabian H L; Sotiriou, Georgios A; Wurnig, Moritz C; Eberhardt, Christian; Hirt, Ann M; Boss, Andreas; Pratsinis, Sotiris E

    2016-10-01

    Large-scale and reproducible synthesis of nanomaterials is highly sought out for successful translation into clinics. Flame aerosol technology with its proven capacity to manufacture high purity materials (e.g., light guides) up to kg h -1 is explored here for the preparation of highly magnetic, nonstoichiometric Zn-ferrite (Zn 0.4 Fe 2.6 O 4 ) nanoparticles coated in situ with a nanothin SiO 2 layer. The focus is on their suitability as magnetic multifunctional theranostic agents analyzing their T2 contrast enhancing capability for magnetic resonance imaging (MRI) and their magnetic hyperthermia performance. The primary particle size is closely controlled from 5 to 35 nm evaluating its impact on magnetic properties, MRI relaxivity, and magnetic heating performance. Most importantly, the addition of Zn in the flame precursor solution facilitates the growth of spinel Zn-ferrite crystals that exhibit superior magnetic properties over iron oxides typically made in flames. These properties result in strong MRI T2 contrast agents as shown on a 4.7 T small animal MRI scanner and lead to a more efficient heating with alternating magnetic fields. Also, by injecting Zn 0.4 Fe 2.6 O 4 nanoparticle suspensions into pork tissue, MR-images are acquired at clinically relevant concentrations. Furthermore, the nanothin SiO 2 shell facilitates functionalization with polymers, which improves the biocompatibility of the theranostic system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Influence of Cu-Cr substitution on structural, morphological, electrical and magnetic properties of magnesium ferrite

    Directory of Open Access Journals (Sweden)

    S. Yonatan Mulushoa

    2018-03-01

    Full Text Available Cu-Cr substituted magnesium ferrite materials (Mg1 − xCuxCrxFe21 − xO4 with x = 0.0–0.7 have been synthesized by the solid state reaction method. XRD analysis revealed the prepared samples are cubic spinel with single phase face centered cubic. A significant decrease of ∼41.15 nm in particle size is noted in response to the increase in Cu-Cr substitution level. The room temperature resistivity increases gradually from 0.553 × 105 Ω cm (x = 0.0 to 0.105 × 108 Ω cm (x = 0.7. Temperature dependent DC-electrical resistivity of all the samples, exhibits semiconductor like behavior. Cu-Cr doped materials can be suitable to limit the eddy current losses. VSM result shows pure and doped magnesium ferrite particles show soft ferrimagnetic nature at room temperature. The saturation magnetization of the samples decreases initially from 34.5214 emu/g for x = 0.0 to 18.98 emu/g (x = 0.7. Saturation magnetization, remanence and coercivity are decreased with doping, which may be due to the increase in grain size. Keywords: Solid state reaction, X-ray diffraction, Crystallite size, Magnetic and electrical properties, Saturation magnetization

  9. Magnetic cobalt ferrite composite as an efficient catalyst for photocatalytic oxidation of carbamazepine.

    Science.gov (United States)

    He, Yongzhen; Dai, Chaomeng; Zhou, Xuefei

    2017-01-01

    A magnetic spinel cobalt ferrite nanoparticle composite (CFO) was prepared via an ultrasonication-assisted co-precipitation method. The morphological structure and surface composition of CFO before and after reaction were investigated by using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy, indicating the consumption of iron oxide during photodegradation. X-ray photoelectron spectroscopy and vibrating sample magnetometry confirm the preparation of the ferrite nanoparticle composite and its magnetic properties. The prepared CFO was then used for the photocatalytic degradation of carbamazepine (CBZ) as an example of pharmaceuticals and personal care products (PPCPs) from aqueous solution. The effects of the nanocomposite dosage, contact time, and solution pH on the photodegradation process were investigated. More than 96% of the CBZ was degraded within 100 min at 0.2 g·L -1 CFO in the presence of UV light. The reactive species for CBZ degradation in the CFO/UV system was identified as hydroxyl radicals by the methanol scavenging method. Combined with the detection of leached iron ions during the process, the CBZ degradation mechanism can be presumed to be heterogeneous and homogeneous photocatalytic degradation in the CFO/UV system. Furthermore, iminostilbene and acridine were detected as intermediate products by GC-MS.

  10. Synthesis and Characterization of Cobalt Substituted Zinc Ferrite Nanoparticles by Microwave Combustion Method.

    Science.gov (United States)

    Sundararajan, M; Kennedy, L John; Vijaya, J Judith

    2015-09-01

    Pure and cobalt doped zinc ferrites were prepared by microwave combustion method using L-arginine as a fuel. The prepared samples were characterized by various instrumental techniques such as X-ray powder diffractometry, high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis, Fourier transformed infrared (FT-IR) spectroscopy, photoluminescence spectroscopy and UV-Visible diffuse reflectance spectroscopy. Vibrating sample magnetometry at room temperature was recorded to study the magnetic behavior of the samples. X-ray analysis confirmed the formation of zinc ferrites normal spinel-type structure with an average crystallite sizes in the range, 25.69 nm to 35.68 nm. The lattice parameters decreased as cobalt fraction was increased. The HR-SEM images showed nanoparticles are agglomerated. The estimated band gap energy value was found to decrease with an increase in cobalt content (1.87 to 1.62 eV). Broad visible emissions are observed in the photoluminescence spectra. A gradual increase in the coercivity and saturation magnetization (M(s)) were noted at relatively higher cobalt doping fractions.

  11. Ni-Zn Ferrite-graphene Nanohybrids: Synthesis and Characterization of Magnetic and Microwave Absorbing Properties

    Directory of Open Access Journals (Sweden)

    Thim Ng Yau

    2017-01-01

    Full Text Available An in-situ deposition technique was used in the synthesis of Ni-Zn ferrite-graphene (NZFG nanohybrids. The XRD patterns revealed the presence of cubic spinel structure of Ni-Zn ferrite (NZF nanoparticles with good crystallinity and small crystallite sizes. The SEM images showed NZF nanoparticles were uniformly deposited on graphene sheets. The effect of different loading amounts of NZF nanoparticles in the nanohybrids was also investigated by tuning the mass ratio of FeCl3 and expanded graphite (EG. The magnetic measurements showed ferromagnetic behaviour with low coercivity. Improvements in saturation magnetization of the nanohybrids can be seen with increasing mass ratio of FeCl3:EG. The microwave absorption properties were determined based on the measured relative complex permittivity and permeability. For the nanohybrids, the minimum reflection loss (RL obtained is -37.57 dB at 7.54 GHz and the absorbing bandwidth in which the RL is less than -10 dB is 7.30 GHz when the NZF content was 79 wt·% at 7 mm thickness. The enhancement in the minimum RL was due to the synergistic effect between NZF nanoparticles and graphene.

  12. Structural, Magnetic, and Electronic Properties of Mixed Spinel NiFe2-xCrxO4Nanoparticles Synthesized by Chemical Combustion.

    Science.gov (United States)

    Lyubutin, Igor S; Lin, Chun-Rong; Starchikov, Sergey S; Baskakov, Arseniy O; Gervits, Natalia E; Funtov, Konstantin O; Tseng, Yaw-Teng; Lee, Wen-Jen; Shih, Kun-Yauh; Lee, Jiann-Shing

    2017-10-16

    A series of nickel-chromium-ferrite NiFe 2-x Cr x O 4 (with x = 1.25) nanoparticles (NPs) with a cubic spinel structure and with size d ranging from 1.6 to 47.7 nm was synthesized by the solution combustion method. A dual structure of all phonon modes revealed in Raman spectra is associated with metal cations of different types present in the spinel lattice sites. Mössbauer spectra of small NPs exhibit superparamagnetic behavior. However, the transition into the paramagnetic state occurs at a temperature that is unusually high for small particles (T N is about 240 K in the d = 4.5 nm NPs). The larger NPs with d > 20 nm do not exhibit superparamagnetic properties up to the Neel temperature. From the magnetic and Mössbauer data, the cation occupation of the tetrahedral (A) and octahedral [B] sites was determined (Fe 0.75 Ni 0.25 )[Ni 0.75 Cr 1.25 ]O 4 . The saturation magnetization M S in the largest NPs is about (0.98-0.95) μ B , which is more than twice higher the value in bulk ferrite (Fe)[CrNi]O 4 . At low temperatures the total magnetic moment of the ferrite coincides with the direction of the B-sublattice moment. In the NPs with d > 20 nm, the compensation of the magnetic moments of A- and B-sublattices was revealed at about T com = 360-365 K. This value significantly exceeds the point T com in bulk ferrites NiFe x Cr 2-x O 4 (about 315 K) with the similar Cr concentration. However, in the smaller NPs NiFe 0.75 Cr 1.25 O 4 with d ≤ 11.7 nm, the compensation effect does not occur. The magnetic anomalies are explained in terms of highly frustrated magnetic ordering in the B sublattice, which appears due to the competition of AFM and FM exchange interactions and results in a canted magnetic structure.

  13. Empirical constraints on partitioning of platinum group elements between Cr-spinel and primitive terrestrial magmas

    Science.gov (United States)

    Park, Jung-Woo; Kamenetsky, Vadim; Campbell, Ian; Park, Gyuseung; Hanski, Eero; Pushkarev, Evgeny

    2017-11-01

    Recent experimental studies and in situ LA-ICP-MS analysis on natural Cr-spinel have shown that Rh and IPGEs (Ir-group platinum group elements: Ru, Ir, Os) are enriched in the lattice of Cr-spinel. However, the factors controlling the partitioning behaviour of these elements are not well constrained. In this study, we report the Rh, IPGE, and trace element contents in primitive Cr-spinel, measured by LA-ICP-MS, from nine volcanic suites covering various tectonic settings including island arc picrites, boninites, large igneous province picrites and mid-ocean ridge basalts. The aim is to understand the factors controlling the enrichment of Rh and IPGEs in Cr-spinels, to estimate empirical partition coefficients between Cr-spinel and silicate melts, and to investigate the role of Cr-spinel fractional crystallization on the PGE geochemistry of primitive magmas during the early stages of fractional crystallization. There are systematic differences in trace elements, Rh and IPGEs in Cr-spinels from arc-related magmas (Arc Group Cr-spinel), intraplate magmas (Intraplate Group Cr-spinel), and mid-ocean ridge magmas (MORB Group Cr-spinel). Arc Group Cr-spinels are systematically enriched in Sc, Co and Mn and depleted in Ni compared to the MORB Group Cr-spinels. Intraplate Group Cr-spinels are distinguished from the Arc Group Cr-spinels by their high Ni contents. Both the Arc and Intraplate Group Cr-spinels have total Rh and IPGE contents of 22-689 ppb whereas the MORB Group Cr-spinels are depleted in Rh and IPGE (total controlled by a combination of the Rh and IPGE contents in parental melts and the magnetite component of the spinel. Empirical partition coefficients (D) for Rh and IPGEs between Cr-spinels and silicate melts were calculated using the Rh and IPGE contents of the Cr-spinel and their host volcanic rocks after subtracting the accumulation effect of Cr-spinel. The D values for the Intraplate and MORB Group Cr-spinels increase with increasing magnetite component

  14. Identification of Spinel Iron Oxide Nanoparticles by 57Fe NMR

    Directory of Open Access Journals (Sweden)

    SangGap Lee

    2011-12-01

    Full Text Available We have synthesized and studied monodisperse iron oxide nanoparticles of smaller than 10 nm to identify between the two spinel phases, magnetite and maghemite. It is shown that 57Fe NMR spectroscopy is a promising tool for distinguishing between the two phases.

  15. Supperssion effect on turfgrass pathogen (sclerotinia homoecocarpa) by ultrafine ferrite particles; Chobiryushi ferriteno shibakusabyo (darasupotto byokin: Sclerotinia homoeocarpa) ni taisuru seicho yokusei koka

    Energy Technology Data Exchange (ETDEWEB)

    Kimizuka, T.; Ishibashi, S.; Sato, H. [Tokyo Engineering University, Tokyo (Japan); Haneda, K. [Ishinomaki Senshu University, Miyagi (Japan); Yamauchi, G. [Daido Institute of Tecnology, Aichi (Japan); Oshimaan, K. [Sumitomo Forestry Co. Ltd., Tokyo (Japan)

    2000-03-15

    This study has been done to clarify some characteristics of ultrafine spinel ferrite particles prepared by a chemical coprecipitation method and to investigate their suppressive effect on mycelial growth of turfgrass pathogen, Sclerotinia homoeocarpa. Average particle sizes of these ferrites ranged from 5 to 30nm as determined by X-ray diffraction and TEM observation. Values of saturation magnetization {sigma}{sub s} of these ferrites were 20 to 80emu/g. The optimum growth temperature for the pathogen was 25 degree C. The suppression rate of MnFe{sub 2}O{sub 4}, Fe{sub 3}O{sub 4} and ZnFe{sub 2}O{sub 4} on the mycelial growth was 20 to 50% at 10 degree C as compared with the control, though the suppression was not clear at 25 degree C. CoFe{sub 2}O{sub 4} and Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} showed stronger suppression rate of 40 to 70% at both temperatures. Optical microscopic observation has revealed that additional CoFe{sub 2}O{sub 4} suppresses the 70% of the mycelial growth rate. The origin of the suppression effect of these ultrafine ferrites has been pursued from the viewpoints of electromagnetic field existing on the surface of the ferrite particles and/or extremely small amount of chemical free-ions dissolved from the surface of particles. The suppressive effect becomes higher with the higher {sigma}{sub s} of many ferrites, except MnFe{sub 2}O{sub 4}, Fe{sub 3}O{sub 4} and Ni{sub 0.8}Zn{sub 0.8}Fe{sub 2}O{sub 4}. Suppressive effects by free-ions of Ni{sup 2+}, Co{sup 2+} increases dramatically at higher concentration than 100{mu}M. (author)

  16. Structural and magnetic characterization of co-precipitated NixZn1−xFe2O4 ferrite nanoparticles

    International Nuclear Information System (INIS)

    Srinivas, Ch.; Tirupanyam, B.V.; Meena, S.S.; Yusuf, S.M.; Babu, Ch. Seshu; Ramakrishna, K.S.; Potukuchi, D.M.; Sastry, D.L.

    2016-01-01

    A series of Ni x Zn 1−x Fe 2 O 4 (x=0.5, 0.6 and 0.7) ferrite nanoparticles have been synthesized using a co-precipitation technique, in order to understand the doping effect of nickel on their structural and magnetic properties. XRD and FTIR studies reveal the formation of spinel phase of ferrite samples. Substitution of nickel has promoted the growth of crystallite size (D), resulting the decrease of lattice strain (η). It was also observed that the lattice parameter (a) increases with the increase of Ni 2+ ion concentration. All particles exhibit superparamagnetism at room temperature. The hyperfine interaction increases with the increase of nickel substitution, which can be assumed to the decrease of core–shell interactions present in the nanoparticles. The Mössbauer studies witness the existence of Fe 3+ ions and absence of Fe 2+ ions in the present systems. These superparamagnetic nanoparticles are supposed to be potential candidates for biomedical applications. The results are interpreted in terms of microstructure, cation redistribution and possible core–shell interactions. - Highlights: • Thermodynamic solubility of Ni 2+ in zinc ferrite influences the crystallite sizes. • At room temperature the ferrite systems exhibit superparamagnetism. • Core–shell model was exactly suited to explain magnetic behavior. • Core–shell interactions decrease with increase in Ni 2+ ion concentration.

  17. Structural and magnetic characterization of co-precipitated Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, Ch., E-mail: srinivas.chintoju75@gmail.com [Department of Physics, Sasi Institute of Technology and Engineering, Tadepalligudem 534101 (India); Tirupanyam, B.V. [Department of Physics, Government College (Autonomous), Rajamahendravaram 533103 (India); Meena, S.S.; Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Center, Mumbai 400085 (India); Babu, Ch. Seshu [Department of Physics, Sasi Institute of Technology and Engineering, Tadepalligudem 534101 (India); Ramakrishna, K.S. [Department of Physics, Srinivasa Institute of Engineering and Technology, Amalapuram 533222 (India); Potukuchi, D.M. [Department of Physics, University College of Engineering, Jawaharlal Nehru Technological University, Kakinada 533003 (India); Sastry, D.L., E-mail: dl_sastry@rediffmail.com [Department of Physics, Andhra University, Visakhapatnam 530003 (India)

    2016-06-01

    A series of Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} (x=0.5, 0.6 and 0.7) ferrite nanoparticles have been synthesized using a co-precipitation technique, in order to understand the doping effect of nickel on their structural and magnetic properties. XRD and FTIR studies reveal the formation of spinel phase of ferrite samples. Substitution of nickel has promoted the growth of crystallite size (D), resulting the decrease of lattice strain (η). It was also observed that the lattice parameter (a) increases with the increase of Ni{sup 2+} ion concentration. All particles exhibit superparamagnetism at room temperature. The hyperfine interaction increases with the increase of nickel substitution, which can be assumed to the decrease of core–shell interactions present in the nanoparticles. The Mössbauer studies witness the existence of Fe{sup 3+} ions and absence of Fe{sup 2+} ions in the present systems. These superparamagnetic nanoparticles are supposed to be potential candidates for biomedical applications. The results are interpreted in terms of microstructure, cation redistribution and possible core–shell interactions. - Highlights: • Thermodynamic solubility of Ni{sup 2+} in zinc ferrite influences the crystallite sizes. • At room temperature the ferrite systems exhibit superparamagnetism. • Core–shell model was exactly suited to explain magnetic behavior. • Core–shell interactions decrease with increase in Ni{sup 2+} ion concentration.

  18. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  19. Superparamagnetic behavior of indium substituted NiCuZn nano ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Mohd, E-mail: md.hashim09@gmail.com [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Shirsath, Sagar E. [Spin Device Technology Centre, Faculty of Engineering, Shinshu University, Nagano 380-8553 (Japan); Meena, S.S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kotnala, R.K. [National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Kumar, Shalendra [Department of Applied Physics, Aligarh Muslim University, Aligarh 202002 (India); School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773 (Korea, Republic of); Ravinder, D. [Department of Physics, Osmania University, Hyderabad 500007, AP (India); Raghasudha, M. [Department of Chemistry, Jayaprakash Narayan College of Engineering, Mahabubnagar 509001, AP (India); Bhatt, Pramod [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Şentürk, Erdoğan [Department of Physics, Sakarya University, Esentepe 54187, Sakarya (Turkey); Alimuddin [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Kumar, Ravi [Centre for Material Science Engineering, National Institute of Technology, Hamirpur 177005, HP (India)

    2015-05-01

    Nano structured indium substituted NiCuZn ferrites with chemical composition Ni{sub 0.5}Cu{sub 0.25}Zn{sub 0.25}Fe{sub 2−x}In{sub x}O{sub 4} (0.0≤x≤0.4) were prepared using citrate-gel method. The XRD analysis confirmed the formation of single phased cubic spinel structure with a crystallite size ranging from 25 to 34 nm. The morphology of the prepared samples was studied using transmission electron microscopy and the thermal growth of the samples was analyzed by thermo gravimetric analysis and differential thermal analysis. Magnetic properties such as the Curie temperature and the temperature dependence magnetization studies of the samples were carried out using vibrating sample magnetometer. From the temperature dependence of both the field cooled and Zero field cooled magnetization measurements in the temperature range 50–350 K under an applied field of 500 Oe, the blocking temperature (T{sub b}) was estimated to be 325 K. Above T{sub b} the material shows superparamagnetic behavior which makes the material desirable for biomedical applications. - Highlights: • Crystallite size of Ni{sub 0.5}Cu{sub 0.25}Zn{sub 0.25}Fe{sub 2−x}In{sub x}O{sub 4} ranges from 25 to 34 nm. • T{sub c} of the ferrites has decreased from 698 K to 653 K with increase in In content. • Ferrites with x=0.0, 0.2 and 0.4 show superparamagnetic nature with T{sub c} of 325 K. • Hence the materials are desirable for biomedical applications and show excellent application in hyperthermia cancer therapy.

  20. Dielectric-ferrite film heterostructures for magnetic field controlled resonance microwave components

    Energy Technology Data Exchange (ETDEWEB)

    Zavislyak, I.V., E-mail: zav@univ.kiev.ua [Faculty of Radiophysics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, Kyiv 01601 (Ukraine); Popov, M.A., E-mail: maxim_popov@univ.kiev.ua [Faculty of Radiophysics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, Kyiv 01601 (Ukraine); Solovyova, E.D., E-mail: solovyovak@mail.ru [Department of Solid State Chemistry, V.I. Vernadskii Institute of General and Inorganic Chemistry, 32/34 Prospect Palladina, Kyiv-142, 03680 (Ukraine); Solopan, S.A., E-mail: solopan@ukr.net [Department of Solid State Chemistry, V.I. Vernadskii Institute of General and Inorganic Chemistry, 32/34 Prospect Palladina, Kyiv-142, 03680 (Ukraine); Belous, A.G., E-mail: belous@ionc.kiev.ua [Department of Solid State Chemistry, V.I. Vernadskii Institute of General and Inorganic Chemistry, 32/34 Prospect Palladina, Kyiv-142, 03680 (Ukraine)

    2015-07-15

    Highlights: • Thin films of M-type BaFe{sub 12}O{sub 19} (BHF) on α-Al{sub 2}O{sub 3} substrate have been produced. • Synthesis conditions of thermally stable film-forming solutions have been studied. • The temperature range for the pre-heat treatment of BHF films has been defined. • The BHF films after rapid heating are characterized by a c-axis magnetic texture. • Obtained BHF films are characterized by a c-axis magnetic texture. • The texture degree of obtained BHF films decreases with increasing film thickness. • Obtained BHF films are promising for application in high-density recording media. - Abstract: An investigation of the composite “α-Al{sub 2}O{sub 3} dielectric resonator-thick ferrite film” heterostructures magnetic field tunable microwave properties has been conducted. Thick high-density high-quality NiFe{sub 2}O{sub 4} spinel and M-type hexaferrite BaFe{sub 12}O{sub 19} films were deposited on the surface of the dielectric by tape-casting technique. Specific organic suspensions for ferrite films synthesis were developed; optimal conditions for pre-heat treatment and annealing have been defined. It was found, that magnetic field has a profound impact on microwave transmission characteristic of composite resonator, including peak absorption level and unloaded Q-factor. Both effects were attributed to increase of the magnetic part of the composite resonator internal losses at frequencies close to ferromagnetic resonance. Since qualitatively similar results were obtained for both cm-wave (with nickel ferrite) and mm-wave (with barium hexaferrite) resonators, the proposed method of electronic control over dielectric resonator properties can be successfully utilized in a very broad frequency range, basically, from few GHz to more than 100 GHz.

  1. Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Archana; Singh, Ajendra [Macromolecular Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Singh, Satyendra, E-mail: satyendra_nano84@rediffmail.com [Department of Physics, University of Allahabad, Allahabad 211002, U.P. (India); Tandon, Poonam [Macromolecular Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Yadav, B.C. [Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P. (India); Yadav, R.R. [Department of Physics, University of Allahabad, Allahabad 211002, U.P. (India)

    2015-01-05

    Highlights: • Fabrication of zinc ferrite thin film LPG and CO{sub 2} gas sensors. • Morphological growth of nanorods. • Significant advancement towards the fabrication of a reliable LPG sensor. • A new pathway to produce nanorods as sensorial material. - Abstract: In the present communication, nanorods of zinc ferrite was synthesized and fabricated by employing sol–gel spin coating process. The synthesized material was characterized using X-ray diffraction, scanning electron microscopy, acoustic particle sizer, atomic force microscopy, UV–visible absorption and infrared spectroscopic techniques. Thermal properties were investigated using differential scanning calorimetry. The XRD reveals cubic spinel structure with minimum crystallite size 10 nm. SEM image of the film shows porous surface morphology with uniform distribution of nanorods. The band gap of the zinc ferrite nanorods was found 3.80 eV using the Tauc plot. ZnFe{sub 2}O{sub 4} shows weak super paramagnetic behavior at room temperature investigated using the vibrating sample magnetometer. Further, the liquefied petroleum gas (LPG) and carbon dioxide gas (CO{sub 2}) sensing properties of the fabricated film were investigated at room temperature (25 °C). More variations in electrical resistance were observed for LPG in comparison to CO{sub 2} gas. The parameters such as lattice constant, X-ray density, porosity and specific surface area were also calculated for the better understanding of the observed gas sensing properties. High sensitivity and percentage sensor response, small response and recovery times, good reproducibility and stability characterized the fabricated sensor for the detection of LPG at room temperature.

  2. Stability under irradiation of a fine dispersion of oxides in a ferritic matrix

    International Nuclear Information System (INIS)

    Monnet, I.

    1999-01-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels are being considered for high temperature, high fluence nuclear applications, like fuel pin cladding in Fast Breeder Reactors. ODS alloys offer improved out of pile strength characteristics at temperature above 550 deg.C and ferritic-martensitic matrix is highly swelling resistant. A clad in an ODS ferritic steel, call DY (Fe-13Cr-1,5Mo+TiO 2 +Y 2 O 3 ) has been irradiated in the experimental reactor Phenix. Under irradiation oxide dissolution occurs. Microstructural observations indicated that oxide evolution is correlated with the dose and consist in four phenomena: the interfaces of oxide particles with the matrix become irregular, the uniform distribution of the finest oxide ( 2 O 3 , Y 2 O 3 , MgO or MgAl 2 O 4 . These materials were irradiated with charged particles in order to gain a better understanding of the mechanisms of dissolution. Irradiation with 1 MeV Helium does not induce any modification, neither in the chemical modification of the particles nor in their spatial and size distribution. Since most of the energy of helium ions is lost by inelastic interaction, this result proves that this kind of interaction does not induce oxide dissolution. Irradiation with 1 MeV or 1.2 MeV electrons leads to a significant dissolution with a radius decrease proportional to the dose. These experiments prove that oxide dissolution can be induced by Frenkel pairs alone, provided that metallic atoms are displaced. The comparison between irradiation with ions (displacements cascades) and electrons (Frenkel pairs only) shows the importance of free point defects in the dissolution phenomena. For all the irradiations (ions or electrons) the spinel MgAl 2 O 4 seems more resistant than Y 2 O 3 to dissolution, and MgO and Al 2 O 3 are even less resistant. This is the order of stability under irradiation of bulk oxides. (author)

  3. Raman spectroscopic study of solid solution spinel oxides

    Science.gov (United States)

    Hosterman, Brian D.

    Solid solution spinel oxides of composition MgxNi1-x Cr2O4, NiFexCr2-xO 4, and FexCr3-xO4 were synthesized and characterized using x-ray diffraction and Raman spectroscopy. Frequencies of the Raman-active modes are tracked as the metal cations within the spinel lattice are exchanged. This gives information about the dependence of the lattice vibrations on the tetrahedral and octahedral cations. The highest frequency Raman-active mode, A1g, is unaffected by substitution of the divalent tetrahedral cation, whereas the lower frequency vibrations are more strongly affected by substitution of the tetrahedral cation. The change in frequency of many phonons is nonlinear upon cation exchange. All detected modes of MgxNi1-xCr2O4 and FexCr3-xO4 exhibit one-mode behavior. Additional modes are detected in NiFexCr2-xO4 due to cation inversion of the spinel lattice. Results from the FexCr3-xO4 spinels are applied to identifying the corrosion layers of several stainless steel samples exposed to lead-bismuth eutectic in a high-temperature, oxygen controlled environment. The Raman spectrum of the outer corrosion layer in all steels is identified as Fe3O4. The position of the A 1g mode for the inner corrosion layer indicates an iron chromium spinel oxide. Micro-Raman spectroscopy proves capable of determining structural and compositional differences between complex corrosion layers of stainless steels.

  4. How Rich is Rich? Placing Constraints on the Abundance of Spinel in the Pink Spinel Anorthosite Lithology on the Moon Through Space Weathering

    Science.gov (United States)

    Gross, J.; Gillis-Davis, J.; Isaacson, P. J.; Le, L.

    2015-01-01

    previously unknown lunar rock was recently recognized in the Moon Mineralogy Mapper (M(sup 3)) visible to near-infrared (VNIR) reflectance spectra. The rock type is rich in Mg-Al spinel (approximately 30%) and plagioclase and contains less than 5% mafic silicate minerals (olivine and pyroxene). The identification of this pink spinel anorthosite (PSA) at the Moscoviense basin has sparked new interest in lunar spinel. Pieters et al. suggested that these PSA deposits might be an important component of the lunar crust. However, Mg-Al spinel is rare in the Apollo and meteorite sample collections (only up to a few wt%), and occurs mostly in troctolites and troctolitic cataclastites. In this study, we are conducting a series of experiments (petrologic and space weathering) to investigate whether deposits of spinel identified by remote sensing are in high concentration (e.g. 30%) or whether the concentrations of spinel in these deposits are more like lunar samples, which contain only a few wt%. To examine the possibility of an impact-melt origin for PSA, conducted 1-bar crystallization experiments on rock compositions similar to pink spinel troctolite 65785. The VNIR spectral reflectance analyses of the low-temperature experiments yield absorption features similar to those of the PSA lithology detected at Moscoviense Basin. The experimental run products at these temperatures contain approximately 5 wt% spinel, which suggests that the spinel-rich deposits detected by M(sup 3) might not be as spinel-rich as previously thought. However, the effect of space weathering on spinel is unknown and could significantly alter its spectral properties including potential weakening of its diagnostic 2-micrometers absorption feature. Thus, weathered lunar rocks could contain more spinel than a comparison with the unweathered experimental charges would suggest. In this study, we have initiated space weathering experiments on 1) pure pink spinel, 2) spinel-anorthite mixtures, and 3) the low

  5. Magnetization and anisotropy of cobalt ferrite thin films

    Science.gov (United States)

    Eskandari, F.; Porter, S. B.; Venkatesan, M.; Kameli, P.; Rode, K.; Coey, J. M. D.

    2017-12-01

    The magnetization of thin films of cobalt ferrite frequently falls far below the bulk value of 455 kA m-1 , which corresponds to an inverse cation distribution in the spinel structure with a significant orbital moment of about 0.6 μB that is associated with the octahedrally coordinated Co2+ ions. The orbital moment is responsible for the magnetostriction and magnetocrystalline anisotropy and its sensitivity to imposed strain. We have systematically investigated the structure and magnetism of films produced by pulsed-laser deposition on different substrates (Ti O2 , MgO, MgA l2O4 , SrTi O3 , LSAT, LaAl O3 ) and as a function of temperature (500 -700 °C) and oxygen pressure (10-4-10 Pa ) . Magnetization at room-temperature ranges from 60 to 440 kA m-1 , and uniaxial substrate-induced anisotropy ranges from +220 kJ m-3 for films on deposited on MgO (100) to -2100 kJ m-3 for films deposited on MgA l2O4 (100), where the room-temperature anisotropy field reaches 14 T. No rearrangement of high-spin Fe3+ and Co2+ cations on tetrahedral and octahedral sites can reduce the magnetization below the bulk value, but a switch from Fe3+ and Co2+ to Fe2+ and low-spin Co3+ on octahedral sites will reduce the low-temperature magnetization to 120 kA m-1 , and a consequent reduction of Curie temperature can bring the room-temperature value to near zero. Possible reasons for the appearance of low-spin cobalt in the thin films are discussed.

  6. Magnetic Field Emissions for Ferrite and Non-Ferrite Geometries for Wireless Power Transfer to Vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik

    2014-01-01

    . For geometries without ferrite, these zones can be defined only on basis of distance from coils. The simulation results indicate that magnetic field profile in the surroundings is influenced for ferrite based geometries and the three zones tend to overlap. This overlapping is studied via Comsol simulations...

  7. Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of MFe{sub 2}O{sub 4} spinel magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Solano, Eduardo; Perez-Mirabet, Leonardo [Universitat Autonoma de Barcelona, Departament de Quimica (Spain); Martinez-Julian, Fernando; Guzman, Roger; Arbiol, Jordi; Puig, Teresa; Obradors, Xavier [Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC (Spain); Yanez, Ramon [Universitat Autonoma de Barcelona, Departament de Quimica (Spain); Pomar, Alberto; Ricart, Susagna, E-mail: ricart@icmab.es [Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC (Spain); Ros, Josep [Universitat Autonoma de Barcelona, Departament de Quimica (Spain)

    2012-08-15

    Well-defined synthesis conditions of high quality MFe{sub 2}O{sub 4} (M = Mn, Fe, Co, Ni, Zn, and Cu) spinel ferrite magnetic nanoparticles, with diameters below 10 nm, have been described based on facile and efficient one-pot solvothermal or microwave-assisted heating procedures. Both methods are reproducible and scalable and allow forming concentrated stable colloidal solutions in polar solvents, but microwave-assisted heating allows reducing 15 times the required annealing time and leads to an enhanced monodispersity of the nanoparticles. Non-agglomerated nanoparticles dispersions have been achieved using a simple one-pot approach where a single compound, triethyleneglycol, behaves at the same time as solvent and capping ligand. A narrow nanoparticle size distribution and high quality crystallinity have been achieved through selected nucleation and growth conditions. High resolution transmission electron microscopy images and electron energy loss spectroscopy analysis confirm the expected structure and composition and show that similar crystal faceting has been formed in both synthetic approaches. The spinel nanoparticles behave as ferrimagnets with a high saturation magnetization and are superparamagnetic at room temperature. The influence of synthesis route on phase purity and unconventional magnetic properties is discussed in some particular cases such as CuFe{sub 2}O{sub 4}, CoFe{sub 2}O{sub 4}, and ZnFe{sub 2}O{sub 4}.

  8. Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of MFe2O4 spinel magnetic nanoparticles

    International Nuclear Information System (INIS)

    Solano, Eduardo; Perez-Mirabet, Leonardo; Martinez-Julian, Fernando; Guzmán, Roger; Arbiol, Jordi; Puig, Teresa; Obradors, Xavier; Yañez, Ramón; Pomar, Alberto; Ricart, Susagna; Ros, Josep

    2012-01-01

    Well-defined synthesis conditions of high quality MFe 2 O 4 (M = Mn, Fe, Co, Ni, Zn, and Cu) spinel ferrite magnetic nanoparticles, with diameters below 10 nm, have been described based on facile and efficient one-pot solvothermal or microwave-assisted heating procedures. Both methods are reproducible and scalable and allow forming concentrated stable colloidal solutions in polar solvents, but microwave-assisted heating allows reducing 15 times the required annealing time and leads to an enhanced monodispersity of the nanoparticles. Non-agglomerated nanoparticles dispersions have been achieved using a simple one-pot approach where a single compound, triethyleneglycol, behaves at the same time as solvent and capping ligand. A narrow nanoparticle size distribution and high quality crystallinity have been achieved through selected nucleation and growth conditions. High resolution transmission electron microscopy images and electron energy loss spectroscopy analysis confirm the expected structure and composition and show that similar crystal faceting has been formed in both synthetic approaches. The spinel nanoparticles behave as ferrimagnets with a high saturation magnetization and are superparamagnetic at room temperature. The influence of synthesis route on phase purity and unconventional magnetic properties is discussed in some particular cases such as CuFe 2 O 4 , CoFe 2 O 4 , and ZnFe 2 O 4 .

  9. Epitaxial growth of highly-crystalline spinel ferrite thin films on perovskite substrates for all-oxide devices.

    Science.gov (United States)

    Moyer, Jarrett A; Gao, Ran; Schiffer, Peter; Martin, Lane W

    2015-06-01

    The potential growth modes for epitaxial growth of Fe3O4 on SrTiO3 (001) are investigated through control of the energetics of the pulsed-laser deposition growth process (via substrate temperature and laser fluence). We find that Fe3O4 grows epitaxially in three distinct growth modes: 2D-like, island, and 3D-to-2D, the last of which is characterized by films that begin growth in an island growth mode before progressing to a 2D growth mode. Films grown in the 2D-like and 3D-to-2D growth modes are atomically flat and partially strained, while films grown in the island growth mode are terminated in islands and fully relaxed. We find that the optimal structural, transport, and magnetic properties are obtained for films grown on the 2D-like/3D-to-2D growth regime boundary. The viability for including such thin films in perovskite-based all-oxide devices is demonstrated by growing a Fe3O4/La0.7Sr0.3MnO3 spin valve epitaxially on SrTiO3.

  10. Studies on the efficient dual performance of Mn1-xNixFe2O4spinel nanoparticles in photodegradation and antibacterial activity.

    Science.gov (United States)

    Jesudoss, S K; Vijaya, J Judith; Kennedy, L John; Rajan, P Iyyappa; Al-Lohedan, Hamad A; Ramalingam, R Jothi; Kaviyarasu, K; Bououdina, M

    2016-12-01

    The present work describes the successful synthesize of spinel magnetic ferrite Mn 1-x Ni x Fe 2 O 4 (x=0.0, 0.1, 0.2, 0.3, 0.4 & 0.5) nanoparticles via a simple microwave combustion method which was then evaluated for its photocatalytic activity in the degradation of indigo carmine (IC) synthetic dye, a major water pollutant. Our results reveal that the synthesized of Ni 2+ doped MnFe 2 O 4 nanoparticles possess well-crystalline pure cubic spinel phase, exhibit excellent optical and magnetic properties. Further, the photocatalytic performance of the synthesized nanoparticles at different concentration ratios of Ni 2+ ions was monitored by photocatalytic degradation of indigo carmine synthetic dye under UV (λ=365nm) light irradiation. In order to get maximum photocatalytic degradation (PCD) efficiency, we have optimized various parameters, which include catalyst dosage, initial dye concentration, pH and Ni 2+ dopant content. It was found that the reaction was facilitated with optimum catalyst dose of 50mg/100mL, high dye concentrations of 150mg/L and acidic pH and among all the synthesized samples, Mn 0·5 Ni 0.5 Fe 2 O 4 exhibit superior performance of photocatalytic activity on the degradation of indigo carmine synthetic dye. These results highlighted the potential use of effective, low-cost and easily available photocatalysts for the promotion of wastewater treatment and environmental remediation. In addition, the antibacterial activity of spinel magnetic Mn 1-x Ni x Fe 2 O 4 nanoparticles against two Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two Gram negative bacteria (Pseudomonas aeruginosa and Escherichia coli) was also examined. Our antibacterial activity results are comparable with the results obtained using the antibiotic, streptomycin. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Origin of the low compressibility in hard nitride spinels

    DEFF Research Database (Denmark)

    Mori-Sánchez, P.; Marqués, M.; Beltrán, A.

    2003-01-01

    A microscopic investigation of first-principles electron densities of gamma-A(3)N(4) (A:C,Si,Ge) spinels reveals a clear relationship between the compressibility and the chemical bonding of these materials. Three striking findings emanate from this analysis: (i) the chemical graph is governed...... by a network of highly directional strong bonds with covalent character in gamma-C3N4 and different degrees of ionic polarization in gamma-Si3N4 and gamma-Ge3N4, (ii) nitrogen is the lowest compressible atom controlling the trend in the bulk modulus of the solids, and (iii) the group-IV counterions show strong...... site dependent compressibilities enhancing the difficulty in the synthesis of the spinel phases of these nitrides....

  12. Thermobarometry for spinel lherzolite xenoliths in alkali basalts

    Science.gov (United States)

    Ozawa, Kazuhito; Youbi, Nasrrddine; Boumehdi, Moulay Ahmed; Nagahara, Hiroko

    2016-04-01

    Application of geothermobarometers to peridotite xenoliths has been providing very useful information on thermal and chemical structure of lithospheric or asthenospheric mantle at the time of almost instantaneous sampling by the host magmas, based on which various thermal (e.g., McKenzie et al., 2005), chemical (e.g., Griffin et al., 2003), and rheological (e.g., Ave Lallemant et al., 1980) models of lithosphere have been constructed. Geothermobarometry for garnet or plagioclase-bearing lithologies provide accurate pressure estimation, but this is not the case for the spinel peridotites, which are frequently sampled from Phanerozoic provinces in various tectonic environments (Nixon and Davies, 1987). There are several geobarometers proposed for spinel lherzolite, such as single pyroxene geothermobarometer (Mercier, 1980) and geothermobarometer based on Ca exchange between olivine and clinopyroxene (Köhler and Brey, 1990), but they have essential problems and it is usually believed that appropriated barometers do not exist for spinel lherzolites (O'Reilly et al., 1997; Medaris et al., 1999). It is thus imperative to develop reliable barometry for spinel peridotite xenoliths. We have developed barometry for spinel peridotite xenoliths by exploiting small differences in pressure dependence in relevant reactions, whose calibration was made through careful evaluation of volume changes of the reactions. This is augmented with higher levels of care in application of barometer by choosing mineral domains and their chemical components that are in equilibrium as close as possible. This is necessary because such barometry is very sensitive to changes in chemical composition induced by transient state of the system possibly owing to pressure and temperature changes as well as chemical modification, forming chemical heterogeneity or zoning frequently reported from various mantle xenoliths (Smith, 1999). Thus very carful treatment of heterogeneity, which might be trivial for

  13. Raman spectroscopic studies of lithium manganates with spinel structure

    CERN Document Server

    Julien, C M

    2003-01-01

    Raman scattering spectra of a set of lithium manganospinels Li sub 1 sub - sub x sub + sub z Mn sub 2 sub - sub z O sub 4 with 0 sup<= x sup<= 1 and 0 sup<= z sup<= 0.33 are reported and analysed. Structural changes have been investigated following the evolution of Raman spectra with the concentration of lithium cations. The local structure was characterized as a function of the mean oxidation state of manganese cations. The trigonal distortion of MnO sub 6 octahedra is evidenced by insertion of lithium ions into the [B sub 2]O sub 4 spinel framework. A comparison with tetragonal Mn sub 3 O sub 4 and Fe sub 3 O sub 4 spinels shows the influence of the Jahn-Teller effect on the Raman features for this class of materials.

  14. AC and DC electrical conductivity, dielectric and magnetic properties of Co0.65Zn0.35Fe2- x Mo x O4 ( x = 0.0, 0.1 and 0.2) ferrites

    Science.gov (United States)

    Pradhan, A. K.; Saha, S.; Nath, T. K.

    2017-11-01

    Cobalt-Zinc ferrites are an important material for designing multiferroic composite. The Mo (4d-transition metal) doped Cobalt-Zinc ferrites are synthesized using ceramic (solid-state reaction) method. Investigation of detailed ac and dc electrical conductivity, dielectric and magnetic properties of Co0.65Zn0.35Fe2- x Mo x O4 ( x = 0.0, 0.1 and 0.2) spinel ferrites have been reported here. The recorded XRD pattern confirms the formation of inverse spinel structure of the material. The dielectric dispersion has been studied in detail and the existence of non-Debye type relaxation behavior has been confirmed. The dielectric tangent loss is found to be very small at high frequency. The ac conductivity follows the correlated barrier hopping like model. Also the conduction process can be best explained on the basis of Verwey-de Boer mechanism. Magnetic phase transition of the material is estimated from magnetization vs. temperature plots.

  15. Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water.

    Science.gov (United States)

    López-Ramón, María V; Álvarez, Miguel A; Moreno-Castilla, Carlos; Fontecha-Cámara, María A; Yebra-Rodríguez, África; Bailón-García, Esther

    2018-02-01

    A copper ferrite synthesized by a sol-gel combustion method was calcined at different temperatures up to 800°C, determining changes in its structural characteristics and magnetic measurements and studying its catalytic performance in gallic acid removal by Fenton reaction. The main objective was to study the effect of the calcination temperature of copper ferrite on its crystalline phase formation and transformation, activity and metal ion leaching. The cubic-to-tetragonal transformation of the spinel occurred via its reaction with the CuO phase, displacing Fe 3+ ions in B (octahedral) sites out of the spinel structure by the following reaction: 2Fe 3+ B +3CuO→Fe 2 O 3 +3Cu 2+ B . The catalysts showed superparamagnetic or substantial superparamagnetic behaviour. At higher calcination temperatures, catalyst activity was lower, and Cu ion leaching was markedly decreased. There was no Fe ion leaching with any catalyst. The as-prepared catalyst showed better catalytic performance than a commercial copper ferrite. Leached Cu ions acted as homogeneous catalysts, and their contribution to the overall removal mechanism was examined. Cu 2 O present in the as-prepared catalysts made only a small contribution to their activity. Finally, the reutilization of various catalysts was studied by performing different catalytic cycles. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Synthesis and magnetic properties of Zn Spinel ceramics

    Czech Academy of Sciences Publication Activity Database

    Huber, Š.; Sofer, Z.; Nádherný, L.; Jankovský, O.; Šimek, P.; Sedmidubský, D.; Maryško, Miroslav

    2013-01-01

    Roč. 57, č. 2 (2013), s. 162-166 ISSN 0862-5468 R&D Projects: GA ČR GA13-17538S; GA MŠk(CZ) 7AMB12FR019 Institutional support: RVO:68378271 Keywords : Zn spinel * synthesis * magnetic properties * antiferromagnet * bulk ZnO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.434, year: 2013

  17. Obtaining of PA 6/Ni ferrite composites. Structural characterization by XRD of the ferrites powders and composites

    International Nuclear Information System (INIS)

    Bezerra, Daniella C.; Gouveia, Taciana R. de; Leite, Amanda M.D.; Costa, Ana Cristina F.M.; Araujo, Edcleide M.

    2009-01-01

    In general, the ferrites are absorbers of electromagnetic radiation and have the versatility to be manufactured with different geometries, or be used in the form of polycrystalline ferrites (sintered sample), or composites of ferrite (in addition of the powder appropriate matrix). The nylon 6, in turn, belongs to a class of polymers, attractive for applications in engineering due to the combination of properties such as dimensional stability, good resistance to impact without notch and excellent chemical resistance. The objective of this study was to characterize structurally the Ni ferrite powders and nylon 6/ Ni ferrite composites obtained by X-ray diffraction (DRX). The Ni ferrite powders were mixed with a polymer matrix of nylon 6 in internal mixer Haake Blucher at a temperature of 240 deg C and 60 rpm, at concentrations of 10 and 30 wt.% of Ni ferrite powders. For both concentrations we observed the characteristic diffraction peaks of ferrite and nylon 6. (author)

  18. Ferritic steels for French LMFBR steam generators

    International Nuclear Information System (INIS)

    Aubert, M.; Mathieu, B.; Petrequin, P.

    1983-06-01

    Austenitic stainless steels have been widely used in many components of the French LMFBR. Up to now, ferritic steels have not been considered for these components, mainly due to their relatively low creep properties. Some ferritic steels are usable when the maximum temperatures in service do not exceed about 530 0 C. It is the case of the steam generators of the Phenix plant, where the exchange tubes of the evaporator are made of 2,25% Cr-1% Mo steel, stabilized or not by addition of niobium. These ferritic alloys have worked successfully since the first steam production in October 1973. For the SuperPhenix power plant, an ''all austenitic stainless alloy'' apparatus has been chosen. However, for the future, ferritic alloys offer potential for use as alternative materials in the evaporators: low alloys steels type 2,25% Cr-1% Mo (exchange tubes, tube-sheets, shells), or at higher chromium content type 9% Cr-2% Mo NbV (exchange tubes) or 12M Cr-1% Mo-V (tube-sheets). Most of these steels have already an industrial background, and are widely used in similar applications. The various potential applications of these steels are reviewed with regards to the French LMFBR steam generators, indicating that some points need an effort of clarification, for instance the properties of the heterogeneous ferritic/austenitic weldments

  19. Dielectric properties of Al-substituted Co ferrite nanoparticles

    Indian Academy of Sciences (India)

    Administrator

    tric loss, ε″ and dielectric loss tangent, tan δ, have been studied for nanocrystalline ferrite samples as a func- tion of frequency. The dielectric constant and dielectric loss obtained for the nanocrystalline ferrites proposed by this technique possess lower value than that of the ferrites prepared by other methods for the same ...

  20. Tailoring magnetic and dielectric properties of rubber ferrite ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Rubber ferrite composites containing various mixed ferrites were prepared for different compositions and various loadings. The magnetic and dielectric properties of the fillers as well as the ferrite filled matrixes were evaluated separately. The results are correlated. Simple equations are proposed to predetermine ...

  1. Ferrite Loaded Coils for Improved Wireless Power Transfer Efficiency

    Science.gov (United States)

    2015-09-01

    a proven technology in some commercial applications, such as charging electronic toothbrushes and cellphones, there are several problems inherent to...ferrite materials. In this report, various ferrite configurations were evaluated using Computer Simulation Technology , and several high performance...ferrite configurations were evaluated using Computer Simulation Technology , and several high performance models were selected for construction and

  2. Simple and Efficient Rout for Synthesis of Spinel Nanopigments

    Directory of Open Access Journals (Sweden)

    Leila Torkian

    2013-01-01

    Full Text Available Nano-sized CoxMg1−xAl2O4 (x = 0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1 inorganic pigments were synthesized via combustion method using β-alanine, as a single and novel fuel, at 800°C in open furnace. The obtained powders were characterized by means of X-ray diffraction (XRD, energy dispersive X-ray (EDX elemental analysis, diffuse reflectance spectrum (DRS, CIE L*a*b* color measurements, and scanning electron microscope (SEM. XRD patterns show that all calcined powders have single phase cubic spinel structure. EDX analysis revealed the composition of desired spinels. The diffuse reflectance spectra of the CoxMg1−xAl2O4 (x > 0 pigments confirmed the presence of tetrahedrally coordinated Co2+ ions in the spinel lattice. The colorimetric data pointed out the formation of blue pigments (for x > 0, corresponding to highly negative values of b*, and the bluest color was produced for x = 0.8 and 1. SEM images showed nanoparticles with less than 30 nm crystallite size and flakes-like appearance of all synthesized powders.

  3. Impact of disorder on ionic charge in spinel compounds

    Energy Technology Data Exchange (ETDEWEB)

    Surble, Suzy [Materiaux fonctionnels pour l' energie, CEA - CNRS - Ecole Centrale Paris, CEA/DEN/SRMA 91191 Gif-sur-Yvette and SPMS, 92295 Chatenay-Malabry (France)], E-mail: suzy.surble@ecp.fr; Baldinozzi, Gianguido; Simeone, David; Gosset, Dominique [Materiaux fonctionnels pour l' energie, CEA - CNRS - Ecole Centrale Paris, CEA/DEN/SRMA 91191 Gif-sur-Yvette and SPMS, 92295 Chatenay-Malabry (France); Thome, Lionel [CSNSM, CNRS - Universite d' Orsay, 91405 Orsay (France)

    2008-06-15

    In order to obtain a correlation between the ionic charge and the local environment, the evolution of valence charges of cations in different 2-3 spinel compounds was investigated as a function of the temperature. The evolution of the structural parameters in normal (MgAl{sub 2}O{sub 4}), mixed (MgGa{sub 2}O{sub 4}) and inverse (MgIn{sub 2}O{sub 4}) spinels as a function of the temperature was extracted from X-ray diffraction patterns collected during different thermal annealings. The evolution of these structural parameters as a function of the disorder is analyzed within the bond valence shell model: large variations of the cation valence are observed in these three spinel compounds. From this analysis, a strong correlation between the change of the cation valence and the local disorder is pointed out. Including this dependence in the microscopic models may provide a better agreement between experimental observations and simulations.

  4. Cation disorder in high-dose, neutron-irradiated spinel

    International Nuclear Information System (INIS)

    Sickafus, K.E.; Larson, A.C.; Yu, N.; Nastasi, M.; Hollenberg, G.W.; Garner, F.A.; Bradt, R.C.

    1994-08-01

    The objective of this effort is to determine whether MgAl 2 O 4 spinel is a suitable ceramic for fusion applications. Here, the crystal structures of MgAl 2 O 4 spinel single crystals irradiated to high neutron fluences [>5·10 26 n/m 2 (E n > 0.1 MeV)] were examined by neutron diffraction. Crystal structure refinement of the highest dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by ∼ 20% while increasing by ∼ 8% on octahedral sites. Since the neutron scattering length for Mg is considerably larger than for Al, this results is consistent with site exchange between Mg 2+ ions on tetrahedral sites and Al 3+ ions on octahedral sites. Least-squares refinements also indicated that, in all irradiated samples, at least 35% of Mg 2+ and Al 3+ ions in the crystal experienced disordering replacements. This retained dpa on the cation sublattices is the largest retained damage ever measured in an irradiated spinel material

  5. Structural properties of Cd–Co ferrites

    Indian Academy of Sciences (India)

    , 0·95 and 1·0), were prepared by standard ceramic method and characterized by XRD, IR and SEM techniques. X-ray analysis confirms the formation of single phase cubic spinel structure. Lattice constant and grain size of the samples ...

  6. Preparation of ferrite MFe2O4 (M = Co, Ni) ribbons with nanoporous structure and their magnetic properties.

    Science.gov (United States)

    Wang, Zhongli; Liu, Xiaojuan; Lv, Minfeng; Chai, Ping; Liu, Yao; Meng, Jian

    2008-09-11

    Spinel ferrite, MFe 2O 4 (M = Co, Ni), ribbons with nanoporous structure were prepared by electrospinning combined with sol-gel technology. The ribbons were formed through the agglomeration of magnetic nanoparticles with PVP as the structure directing template. The length of the polycrystalline ribbons can reach millimeters, and the width of the ribbons can be tuned from several micrometers to several hundred nanometers by changing the concentration of precursor. The nanoporous structure was formed during the decomposition of PVP and inorganic salts. The ribbons exhibited weak saturation magnetizations and low coercivities at room temperature, but at low temperature, saturation magnetizations and coercivities increased a lot, especially for CoFe 2O 4 ribbons, reaching 72 emu/g and 1.45 T at 2 k, respectively. These novel magnetic ribbons can potentially be used in micro/nano electronic devices, gas-sensors, and catalysts.

  7. Influence of the sintering temperature on the magnetic and electric properties of NiFe2O4 ferrites

    Directory of Open Access Journals (Sweden)

    Fabio Luis Zabotto

    2012-06-01

    Full Text Available This study evaluates the structural, microstructural, electric and magnetic properties of nickel ferrite samples prepared through the solid state reaction. It was observed that an increase in the sintering temperature produces a higher cation concentration in the A site when compared to the B site. The assessment of magnetic properties showed that an increase in grain size leads to a decrease in the coercive fields verging on superparamagnetic values, while the saturation magnetization increases up to 46.5 Am².kg-1 for samples sintered at 1200 ºC. The dc electric resistivity behavior of samples was attributed to the increase in the cross-sectional area of grains as well as the different oxidation states and distribution of cations amongst the lattice sites of the spinel structure.

  8. Rapid phase synthesis of nanocrystalline cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugavel, T., E-mail: shanmugavelnano@gmail.com [Department of Physics, Paavai Engineering College, Namakkal -637018 (India); Raj, S. Gokul [Department of Physics, Vel Tech University, Avadi, Chennai - 600 062 (India); Rajarajan, G. [Department of Physics, Mahendra Engineering College, Mallasamudram -637503 (India); Kumar, G. Ramesh [Department of Physics, University College of Engineering, Anna University Chennai, Arni- 632317 (India)

    2014-04-24

    Synthesis of single phase nanocrystalline Cobalt Ferrite (CoFe{sub 2}O{sub 4}) was achieved by single step autocombustion technique with the use of citric acid as a chelating agent in mono proportion with metal. Specimens prepared with this method showed significantly higher initial permeability's than with the conventional process. Single phase nanocrystalline cobalt ferrites were formed at very low temperature. Surface morphology identification were carried out by transmission electron microscopy (TEM) analysis. The average grain size and density at low temperature increased gradually with increasing the temperature. The single phase formation is confirmed through powder X-ray diffraction analysis. Magnetization measurements were obtained at room temperature by using a vibrating sample magnetometer (VSM), which showed that the calcined samples exhibited typical magnetic behaviors. Temperature dependent magnetization results showed improved behavior for the nanocrystalline form of cobalt ferrite when compared to the bulk nature of materials synthesized by other methods.

  9. Ferritic/martensitic steels: Promises and problems

    International Nuclear Information System (INIS)

    Klueh, R.L.; Ehrlich, K.; Abe, F.

    1992-01-01

    Ferritic/martensitic steels are candidate structural materials for fusion reactors because of their higher swelling resistance, higher thermal conductivity, lower thermal expansion, and better liquid-metal compatibility than austenitic steels. Irradiation effects will ultimately determine the applicability of these steels, and the effects of irradiation on microstructure and swelling, and on the tensile, fatigue, and impact properties of the ferritic/martensitic steels are discussed. Most irradiation studies have been carried out in fast reactors, where little transmutation helium forms. Helium has been shown to enhance swelling and affect tensile and fracture behavior, making helium a critical issue, since high helium concentrations will be generated in conjunction with displacement damage in a fusion reactor. These issues are reviewed to evaluate the status of ferritic/martensitic steels and to assess the research required to insure that such steels are viable candidates for fusion applications

  10. Ferrite LTCC based phased array antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Two phased array antennas realized in multilayer ferrite LTCC technology are presented in this paper. The use of embedded bias windings in these designs allows the negation of external magnets which are conventionally employed with bulk ferrite medium. This reduces the required magnetostatic field strength by 90% as compared to the traditional designs. The phase shifters are implemented using the SIW technology. One of the designs is operated in the half mode waveguide topology while the other design is based on standard full mode waveguide operation. The two phase shifter designs are integrated with two element patch antenna array and slotted SIW array respectively. The array designs demonstrate a beam steering of 30° and ±19° respectively for a current excitation of 200 mA. The designs, due to their small factor can be easily integrated in modern communication systems which is not possible in the case of bulk ferrite based designs.

  11. Elasticity of some mantle crystal structures. I - Pleonaste and hercynite spinel.

    Science.gov (United States)

    Wang, H.; Simmons, G.

    1972-01-01

    The elasticity of high-pressure mantle phases can be characterized by using data for chemically similar crystal compounds. The single-crystal elastic constants are determined as a function of pressure and temperature for pleonaste spinel and at room conditions for hercynite spinel. The bulk modulus increases from 1.95 Mb for pleonaste spinel to 2.10 Mb for hercynite spinel. Low or negative values of the pressure derivatives of shear constants are characteristic of the spinel structure and imply a low kinetic barrier to phase transformations and diffusion. Compressional and shear velocities of the spinel phase of olivine are estimated as a function of mean atomic weight by using the pleonaste and hercynite data.

  12. Structural phases, magnetic properties and Maxwell-Wagner type relaxation of CoFe2O4/Sr2Co2Fe12O22 ferrite composites

    Science.gov (United States)

    Patel, Chirag K.; Solanki, Neha P.; Singh, Charanjeet; Jotania, Rajshree B.; Chauhan, Chetna C.; Kulkarni, Shailja D.; Shirsath, Sagar E.

    2017-07-01

    CoFe2O4 (S:Y-1:0) and Sr2Co2Fe12O22 (S:Y-0:1) ferrites were synthesized separately by using chemical coprecipitation technique and calcined at 1000 °C for 5 h. The mixed ferrite composites (S:Y-3:7, 4:6, 5:5, 6:4 and 7:3) were prepared by physical mixing of individual ferrite powders in required weight proportions. The prepared composites were heated at 1150 °C for 5 h in a muffle furnace and then slowly cooled to room temperature. The prepared ferrites were characterized using various instrumental techniques like FTIR, XRD, SEM, VSM and dielectric measurements. The x-ray diffraction studies of pure Sr2Co2Fe12O22 ferrite sample show the presence of M and Y-type hexagonal phases, while the composites consist of spinel and Y-type phases. FTIR spectra of all samples show two bands of Fe-O stretching vibrations. VSM results of composites reveal that the values of the saturation magnetization (M s) vary from 50.44 emu g-1 to 31.21 emu g-1, while remanent magnetization values found from 11.18 emu g-1 to 3.70 emu g-1. A higher value of coercivity (H c  =  562 emu g-1) is observed in the composite S:Y-3:7 but M r/M s ratio of pure and composites is found to be less than 0.5. The dielectric behavior is explained using Maxwell-Wegner type interfacial polarization and N. Rezlescu’s model.

  13. Microwave assisted solid state reaction method: Investigations on electrical and magnetic properties NiMgZn ferrites

    International Nuclear Information System (INIS)

    Chandra Babu Naidu, K.; Madhuri, W.

    2016-01-01

    The spinel ferrite of compositions Ni 0.2 Mg 0.8−x Zn x Fe 2 O 4 (x = 0.2, 0.4, 0.6, 0.8) are synthesized using microwave double sintering technique. X-ray diffraction study reveals formation of single phase spinel cubic structure. The lattice parameter (a), average crystallite size (D) and bulk density (ρ b ) are increasing with zinc content. Fourier-transform infrared spectra are recorded to locate octahedral and tetrahedral sites. The dielectric constant (ε r ), loss tangent (tanδ), ac, dc-electrical conductivities (σ ac and σ dc ) are increasing while Curie transition temperature (T c ) and activation energies (E a ) are decreasing with zinc substitution. Power law fit is applied to logσ versus logω plots to evaluate dc-electrical conductivity and exponent (n) at room temperature. Electrical conduction mechanism and relaxation time (τ) are reported from impedance analysis. Hysteresis loop attributes that saturation magnetization (M s ), anisotropy constant (K 1 ) and coercivity (H c ) are decreasing with substituent. Low coercivity of 1.96–2.89 G obtained is suitable for magnetic recording applications. - Highlights: • M-H loop attributes ferri to paramagnetic transition of Microwave sintered NiMgZn ferrites. • M r ∼3 × 10 −4 –2.4 × 10 −2  emu/g reveal the weak super para magnetic particles. • Cation distribution is made from magnetic moment of all samples. • High ε r and low H c attribute super capacitors and recording applications. • Nyquist plots confirm the semiconducting nature of all compositions.

  14. Microwave assisted solid state reaction method: Investigations on electrical and magnetic properties NiMgZn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Babu Naidu, K.; Madhuri, W., E-mail: madhuriw12@gmail.com

    2016-09-15

    The spinel ferrite of compositions Ni{sub 0.2}Mg{sub 0.8−x} Zn{sub x}Fe{sub 2}O{sub 4} (x = 0.2, 0.4, 0.6, 0.8) are synthesized using microwave double sintering technique. X-ray diffraction study reveals formation of single phase spinel cubic structure. The lattice parameter (a), average crystallite size (D) and bulk density (ρ{sub b}) are increasing with zinc content. Fourier-transform infrared spectra are recorded to locate octahedral and tetrahedral sites. The dielectric constant (ε{sub r}), loss tangent (tanδ), ac, dc-electrical conductivities (σ{sub ac} and σ{sub dc}) are increasing while Curie transition temperature (T{sub c}) and activation energies (E{sub a}) are decreasing with zinc substitution. Power law fit is applied to logσ versus logω plots to evaluate dc-electrical conductivity and exponent (n) at room temperature. Electrical conduction mechanism and relaxation time (τ) are reported from impedance analysis. Hysteresis loop attributes that saturation magnetization (M{sub s}), anisotropy constant (K{sub 1}) and coercivity (H{sub c}) are decreasing with substituent. Low coercivity of 1.96–2.89 G obtained is suitable for magnetic recording applications. - Highlights: • M-H loop attributes ferri to paramagnetic transition of Microwave sintered NiMgZn ferrites. • M{sub r} ∼3 × 10{sup −4}–2.4 × 10{sup −2} emu/g reveal the weak super para magnetic particles. • Cation distribution is made from magnetic moment of all samples. • High ε{sub r} and low H{sub c} attribute super capacitors and recording applications. • Nyquist plots confirm the semiconducting nature of all compositions.

  15. Influence of magnesia in the infiltration of magnesia-spinel refractory bricks by different clinkers

    OpenAIRE

    Gonçalves, Geraldo Eduardo; Pacheco, Graziella Rajão Cota; Brito, Modestino Alves de Moura; Silva, Sérgio Luiz Cabral da; Lins, Vanessa de Freitas Cunha

    2015-01-01

    Abstract In cement production, which involves the production of cement clinker in rotary kilns, the main refractories used are magnesia-spinel bricks. These bricks may suffer infiltration by the clinker liquid phase, resulting in the corrosion of the spinel and the formation of low refractoriness mineralogical phases, such as the Q phase (C20A13M3S3), which compromises refractory performance. Thus, the aim of this work is to correlate the infiltration resistance of magnesia-spinel bricks made...

  16. Synthesis, characterization and formation mechanism of SiC/spinel nanocomposite

    International Nuclear Information System (INIS)

    Tavangarian, Fariborz; Li, Guoqiang

    2014-01-01

    Highlights: • SiC/spinel nanocomposite was synthesized from talc, aluminum and graphite powders. • A mechanism was suggested for the SiC/spinel nanocomposite formation. • The SiC/spinel nanocomposite powder had a mean crystallite size of about 9 nm. • During the formation of nanocomposite some intermediate compounds were formed. - Abstract: This paper reports the successful synthesis of SiC/spinel (MgAl 2 O 4 ) nanocomposite from talc, aluminum and graphite powders. The initial powders were mixed to obtain stoichiometric spinel containing 27.26 wt.% SiC. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques were utilized to characterize the synthesized powders. SiC/spinel nanocomposite was obtained after 6 h ball milling of initial materials in argon atmosphere with subsequent annealing at 1200 °C for 1 h in vacuum. The obtained nanocomposite had crystallites size between 1 and 15 nm with the mean diameter of 9 nm. The SiC/spinel composite formation mechanism was scrutinized. The results showed that SiC/spinel nanocomposite was not produced directly and the formation of some intermediate compounds is unavoidable during the synthesis procedure. The SiC/spinel nanocomposite powder may be a potential nanocomposite for high temperature applications with self-crack-healing capability

  17. Formation and magnetic properties of Mn-Zn ferrites nanoparticles

    International Nuclear Information System (INIS)

    Kronkalns, G.

    2003-01-01

    The magnetic properties of ferrites are dependent on the crystalline structure and the location of metal ions in the material. The correct crystalline structure of a certain ferrite is formed by a special, very complex, technology. Bulk ferrites are synthesized at high temperatures (>1300 K) under a special, very complex, thermal treatment. On the other hand, the preparation of ferrite nanoparticles for magnetic fluids (MF) synthesis demands another special technology. More commonly used is the wet chemical coprecipitation production technology of magnetic nanoparticles for MF. The ferrites synthesized by the wet chemical method have different magnetic characteristics if compared o the ferrites prepared by standard ceramic methods. In this paper the preparation and physical properties of ultrafine Mn 0.5 Zn 0.5 Fe 2 O 4 ferrite particles and MF on its base, after their special thermal treatment, are studied. (author)

  18. Structural, spectral, dielectric and magnetic properties of Tb–Dy doped Li-Ni nano-ferrites synthesized via micro-emulsion route

    Energy Technology Data Exchange (ETDEWEB)

    Junaid, Muhammad, E-mail: junaid.malik95@yahoo.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Iqbal, F. [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Murtaza, Ghulam [Centre for Advanced Studies in Physics, Government College University, Lahore 54000 (Pakistan); Akhtar, Majid Niaz; Ahmad, Mukhtar [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Shakir, Imran [Deanship of scientific research, College of Engineering, King Saud University, PO Box 800, Riyadh 11421 (Saudi Arabia); Warsi, Muhammad Farooq [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2016-12-01

    Terbium (Tb) and dysprosium (Dy) doped lithium-nickel nano-sized ferrites (Li{sub 0.2}Ni{sub 0.8}Tb{sub 0.5x}Dy{sub 0.5x}Fe{sub 2−x}O{sub 4} where x=0.00−0.08) were prepared by micro-emulsion technique. The X-ray diffraction (XRD) patterns confirmed the single phase cubic spinel structure. The lattice constant was increased due to larger ionic radii of Tb{sup 3+} and Dy{sup 3+} cations. The crystallite size was found in the range 30–42 nm. The FTIR (Fourier transform infrared spectroscopy) spectra revealed two significant absorption bands (~400–600 cm{sup −1}) which indicate the formation of cubic spinel structure. The peaking behavior of dielectric parameters was observed beyond 1.5 GHz. The dielectric constant and dielectric loss were found to decrease by the increase of Tb–Dy contents and frequency. The doping of Tb and Dy in Li–Ni ferrites led to increase the coercive field (120–156 Oe). The smaller magnetic and dielectric parameters suggested the possible utility of these nano-materials in switching and microwave devices applications. - Highlights: • Li{sub 0.2}Ni{sub 0.8}Tb{sub 0.5x}Dy{sub 0.5x}Fe{sub 2-x}O{sub 4} ferrites were synthesized by micro-emulsion route. • Tb and Dy addition improves coercivity while decreased saturation magnetization. • These nanomaterials can be useful in microwave and switching devices applications.

  19. Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5-x Mg x Fe2O4 nanoparticle ferrites

    Science.gov (United States)

    R, M. Rosnan; Z, Othaman; R, Hussin; Ali, A. Ati; Alireza, Samavati; Shadab, Dabagh; Samad, Zare

    2016-04-01

    In this study, nanocrystalline Co-Ni-Mg ferrite powders with composition Co0.5Ni0.5-x Mg x Fe2O4 are successfully synthesized by the co-precipitation method. A systematic investigation on the structural, morphological and magnetic properties of un-doped and Mg-doped Co-Ni ferrite nanoparticles is carried out. The prepared samples are characterized using x-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and vibrating sample magnetometry (VSM). The XRD analyses of the synthesized samples confirm the formation of single-phase cubic spinel structures with crystallite sizes in a range of ˜ 32 nm to ˜ 36 nm. The lattice constant increases with increasing Mg content. FESEM images show that the synthesized samples are homogeneous with a uniformly distributed grain. The results of IR spectroscopy analysis indicate the formation of functional groups of spinel ferrite in the co-precipitation process. By increasing Mg2+ substitution, room temperature magnetic measurement shows that maximum magnetization and coercivity increase from ˜ 57.35 emu/g to ˜ 61.49 emu/g and ˜ 603.26 Oe to ˜ 684.11 Oe (1 Oe = 79.5775 A·m-1), respectively. The higher values of magnetization M s and M r suggest that the optimum composition is Co0.5Ni0.4Mg0.1Fe2O4 that can be applied to high-density recording media and microwave devices. Project supported by the Ibnu Sina Institute for Scientific and Industrial Research, Physics Department of Universiti Teknologi Malaysia and the Ministry of Education Malaysia (Grant Nos. Q.J130000.2526.04H65).

  20. Magnetic and thermodynamic properties of nanosized Zn ferrite with normal spinal structure synthesized using a facile method.

    Science.gov (United States)

    Zhang, Yunong; Shi, Quan; Schliesser, Jacob; Woodfield, Brian F; Nan, Zhaodong

    2014-10-06

    Normal spinel zinc ferrite (ZnFe2O4) nanoparticles (NPs) with zero net magnetization were synthesized by a facile coprecipitation method in which two kinds of organic alkali, namely, 1-amino-2-propanol (MIPA) and bis(2-hydroxypropyl)-amine (DIPA), were used. The diameters of the ZnFe2O4 NPs were determined to be about 7 and 9 nm for samples prepared with MIPA and DIPA, respectively, and the normal spinel structure was confirmed by the magnetic property measurement at room temperature and the temperature dependence of the direct current magnetization. These results are different from those reported in the literature, where ZnFe2O4 NPs show a nonzero net magnetization. The heat capacity of the ZnFe2O4 NPs synthesized using DIPA was measured using a physical property measurement system in the temperature range from 2 to 300 K, and the thermodynamic functions were calculated based on the curve fitting of the experimental heat capacity data. The heat capacity of the ZnFe2O4 NPs was compared with that of a nanosized (Zn(0.795)Fe(0.205))[Zn(0.205)Fe(1.795)]O4 material studied in the literature, indicating that the Debye temperature of the present sample is more comparable with that of the bulk ZnFe2O4 reported by Westrum et al.

  1. Morphology, microstructure, and magnetic properties of ordered large-pore mesoporous cadmium ferrite thin film spin glasses.

    Science.gov (United States)

    Reitz, Christian; Suchomski, Christian; Chakravadhanula, Venkata Sai Kiran; Djerdj, Igor; Jagličić, Zvonko; Brezesinski, Torsten

    2013-04-01

    Herein, we report the synthesis, microstructure, and magnetic properties of cadmium ferrite (CdFe2O4) thin films with both an ordered cubic network of 18 nm diameter pores and single-phase spinel grains averaging 13 nm in diameter. These mesoporous materials were produced through facile polymer templating of hydrated nitrate salt precursors. Both the morphology and the microstructure, including cation site occupancy and electronic bonding configuration, were analyzed in detail by electron microscopy, grazing incidence small-angle X-ray scattering, Raman and X-ray photoelectron spectroscopy, and N2-physisorption. The obtained data demonstrate that the network of pores is retained up to annealing temperatures as high as 650 °C--the onset of crystallization is at ϑ = (590 ± 10) °C. Furthermore, they show that the polymer-templated samples exhibit a "partially" inverted spinel structure with inversion parameter λ = 0.40 ± 0.02. This differs from microcrystalline CdFe2O4 which shows virtually no inversion. Magnetic susceptibility studies reveal ferrimagnetic spin coupling below 147 K and further point to the likelihood of glassy behavior at low temperature (T(f) ≈ 60 K). In addition, analysis of room temperature magnetization data indicates the presence of sub-10 nm diameter superparamagnetic clusters in an otherwise paramagnetic environment.

  2. Effect of Dy3+ substitution on structural and magnetic properties of nanocrystalline Ni-Cu-Zn ferrites

    Science.gov (United States)

    Kabbur, S. M.; Ghodake, U. R.; Nadargi, D. Y.; Kambale, Rahul C.; Suryavanshi, S. S.

    2018-04-01

    Nanocrystalline Ni0.25Cu0.30Zn0.45DyxFe2-xO4 (x = 0.0, 0.025, 0.05, 0.075, 0.1 and 0.125 mol.) ferrimagnetic oxides have been synthesized by sol-gel autocombustion route. X-ray diffraction study reveals the formation of spinel cubic structure with an expansion of the unit cell by Dy addition. Bertaut method was employed to propose the site occupancy i.e. cation distribution for elements at A-tetrahedral and B-octahedral sites of spinel lattice. The intrinsic vibrational absorption bands i.e. υ1 (712-719 cm-1) and υ2 (496-506 cm-1) are observed for tetrahedral and octahedral sites respectively. The microstructural aspect confirms the formation of an average grain size (∼7-99 nm) with presence of expected elements. Magnetization studies reveal that the magnetic moments are no longer linear but exhibit canting effect due to spin frustration. The frequency dispersion spectrum of initial permeability has been explained based on grain size, saturation magnetization and anisotropy constant. Thermal hysteresis curve (initial permeability versus temperature) indicates magnetic disordering to paramagnetic state at Néel temperature (TN). High values of TN show that the present ferrite samples are cation-ordered with d-electrons contributing towards the magnetic interaction at the sublattice.

  3. Interplay between structural and magnetic phase transitions in copper ferrite studied with high-resolution neutron diffraction

    Science.gov (United States)

    Balagurov, A. M.; Bobrikov, I. A.; Pomjakushin, V. Yu.; Sheptyakov, D. V.; Yushankhai, V. Yu.

    2015-01-01

    A detailed neutron diffraction study of copper ferrite in a broad temperature range has allowed to precisely access the peculiarities of magnetic and structural phase transitions in it. On heating from 2 to 820 K, a fully inverted tetragonal (sp. gr. I41/amd) spinel CuFe2O4 is observed up to a TC≈660 K, where a cubic phase (sp. gr. Fd3m) appears, and up to T≈700 K, both structural phases coexist. The inversion parameter of spinel structure does not change at the transition to the cubic phase. Deformation of the (Cu,Fe)O6 octahedra in the tetragonal phase corresponds to the Jahn-Teller nature of the structural phase transition. Néel ferrimagnetic structure - a ferromagnetic ordering of the magnetic moments of Fe3+ in the tetrahedral (A) and moments of Fe3+ and Cu2+ in the octahedral (B) positions with opposite directions of magnetization of the sublattices - disappears at TN≈750 K. The magnetic moment in the A-positions (Fe3+) and the total one in the B-positions (Fe3++Cu2+) at Ttheory. In the co-existence range of structural phases diffraction peaks are significantly broadened. The size effects providing the main contribution to peak broadening is also superimposed with the microstrain-conditioned peak broadening. In the tetragonal phase, microstrains in the crystallites are highly anisotropic.

  4. Study of structural, electrical and magnetic properties of Cr doped Ni–Mg ferrite nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Mohd, E-mail: md.hashim09@gmail.com [Department of Applied Physics, Aligarh Muslim University, Aligarh 202 002 (India); Meena, S.S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kotnala, R.K. [National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110 012 (India); Shirsath, Sagar E. [Spin Device Technology Centre, Department of Information Engineering, Shinshu University, Nagano 380-8553 (Japan); Roy, Aashis S. [Department of Materials Science, Gulbarga University, Gulbarga 585 106, Karnataka (India); Parveen, Ameena [Department of Physics, Govt. First Grade College, Gurmitkal Yadgir 585 214, Karnataka (India); Bhatt, Pramod [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kumar, Shalendra [School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773 (Korea, Republic of); Jotania, R.B. [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380 009 (India); Kumar, Ravi [Centre for Material Science Engineering, National Institute of Technology, Hamirpur 171 005, HP (India); Alimuddin [Department of Applied Physics, Aligarh Muslim University, Aligarh 202 002 (India)

    2014-07-25

    Highlights: • Our studies reveal that the all samples (x = 0.0–1.0) have mixed spinel structure. • The lattice constant and H{sub hf} decrease with increasing Cr{sup 3+} ions. • Cr{sup 3+} ions occupy at B-site confirmed by Mössbauer spectroscopy. • Line width of both the sextets increase with increasing Cr{sup 3+} ions. • The ac resistivity decreases with increasing the frequency. - Abstract: We have reported the effect of Cr{sup 3+} ion doping on the structural, ac transport and Mössbauer spectral studies of ferrite nanoparticles Ni{sub 0.5}Mg{sub 0.5}Fe{sub 2−x}Cr{sub x}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) prepared by sol–gel auto combustion technique. The micro-structural studies of the samples were obtained by using scanning electron microscopy (SEM). The dependence of Mössbauer parameters, viz., line width, isomer shift, quadrupole splitting and hyperfine magnetic field on Cr{sup 3+} substitution have been analysed. Hyperfine magnetic field and isomer shift values decreases whereas line width increases with Cr{sup 3+} substitution. Rietveld refinement and Mössbauer spectroscopy studies reveal that the Ni{sub 0.5}Mg{sub 0.5}Fe{sub 2−x}Cr{sub x}O{sub 4} with various concentrations of x belongs to mixed spinel structure. Nèel’s molecular field model is used to explain the variation of hyperfine magnetic field with increasing Cr{sup 3+} substitution.

  5. Ferromagnetic Behavior in Zinc Ferrite Nanoparticles Synthesized ...

    African Journals Online (AJOL)

    Zinc ferrite have been produced and used by humans since long time, however understanding of ZnFe2O4 as a nano structured materials is very useful in order to be used for technological applications. ZnFe2O4 structural, magnetic and electrical properties are different when synthesized using different techniques.

  6. Synthesis of lithium ferrites from polymetallic carboxylates

    Directory of Open Access Journals (Sweden)

    STEFANIA STOLERIU

    2008-10-01

    Full Text Available Lithium ferrite was prepared by the thermal decomposition of three polynuclear complex compounds containing as ligands the anions of malic, tartaric and gluconic acid: (NH42[Fe2.5Li0.5(C4H4O53(OH4(H2O2]×4H2O (I, (NH46[Fe2.5Li0.5(C4H4O63(OH8]×2H2O (II and (NH42[Fe2.5Li0.5(C6H11O73(OH7] (III. The polynuclear complex precursors were characterized by chemical analysis, IR and UV–Vis spectra, magnetic measurements and thermal analysis. The obtained lithium ferrites were characterized by XRD, scanning electron microscopy, IR spectra and magnetic measurements. The single α-Li0.5Fe2.5O4 phase was obtained by thermal decomposition of the tartarate complex annealed at 700 °C for 1 h. The magnetization value ≈ 50 emu g-1 is lower than that obtained for the bulk lithium ferrite due to the nanostructural character of the ferrite. The particle size was smaller than 100 nm.

  7. Modeling of austenite to ferrite transformation

    Indian Academy of Sciences (India)

    It should be noted that the values of the parameters in modeling procedure can be found in an earlier study (Tong et al 2004). 4. Results and discussion. In figures 1(a)–(c), the achieved results from the modeling of austenite to ferrite transformation are exhibited. In figure 1(a), the austenite grains achieved from the normal ...

  8. Residual stresses in cold drawn ferritic rods

    International Nuclear Information System (INIS)

    Atienza, J.M.; Martinez-Perez, M.L.; Ruiz-Hervias, J.; Mompean, F.; Garcia-Hernandez, M.; Elices, M.

    2005-01-01

    The residual stress state generated by cold-drawing in a ferritic steel rod has been determined. Stress profiles in the three principal directions were measured by neutron and X-ray diffraction and calculated by 3D finite element simulation. The agreement between the simulations and the experimental data is excellent

  9. Neutron diffraction in a frustrated ferrite

    International Nuclear Information System (INIS)

    Mirebeau, I.; Iancu, G.; Gavoille, G.; Hubsch, J.

    1994-01-01

    The competition between a long range ordered ferrimagnetic lattice and small fluctuating clusters have been probed by neutron diffraction in a titanium magnesium frustrated ferrite. The description of the system is then compared to the predictions of several theoretical models for frustrated systems. 3 figs., 8 refs

  10. Magnetic resonance in superparamagnetic zinc ferrite

    Indian Academy of Sciences (India)

    and EPR spectroscopy (Singh et al 2008a, b, 2010). In-field. Mössbauer spectroscopy at low temperature performed on these samples indicate that nanosized zinc ferrite exhibits antiferromagnetic ordering below blocking temperature. (Singh et al 2012). To get information about the spin- dynamics of nanosized system, ...

  11. Modeling of austenite to ferrite transformation

    Indian Academy of Sciences (India)

    Abstract. In this research, an algorithm based on the Q-state Potts model is presented for modeling the austenite to ferrite transformation. In the algorithm, it is possible to exactly track boundary migration of the phase formed during transformation. In the algorithm, effects of changes in chemical free energy, strain free energy ...

  12. Magnetic resonance in superparamagnetic zinc ferrite

    Indian Academy of Sciences (India)

    In the present work, we have synthesized zinc ferrite nanoparticles by nitrate method. Presence of almost zero value of coercivity and remanence in the hysteresis of these samples shows the superparamagnetic nature at room temperature. Electron paramagnetic resonance spectroscopy performed on these samples in the ...

  13. Nonstoichiometry and phase stability of Al and Cr substituted Mg ferrite nanoparticles synthesized by citrate method

    Energy Technology Data Exchange (ETDEWEB)

    Ateia, Ebtesam E.; Mohamed, Amira T., E-mail: atawfik@sci.cu.edu.eg

    2017-03-15

    The spinel ferrite Mg{sub 0.7}Cr{sub 0.3}Fe{sub 2}O{sub 4}, and Mg{sub 0.7}Al{sub 0.3}Fe{sub 2}O{sub 4} were prepared by the citrate technique. All samples were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Micrographs (HRTEM), Energy Dispersive X ray Spectroscopy (EDAX) and Atomic Force Microscope (AFM). XRD confirmed the formation of cubic spinel structure of the investigated samples. The average crystallite sizes were found to be between 24.7 and 27.5 nm for Al{sup 3+} and Mg{sup 2+} respectively. The substitution of Cr{sup 3+}/Al{sup 3+} in place of Mg{sup 2+} ion initiates a crystalline anisotropy due to large size mismatch between Cr /Al and Mg{sup 2+}, which creates strain inside the crystal volume. According to VSM results, by adding Al{sup 3+} or Cr{sup 3+} ions at the expense of Mg{sup 2+}, the saturation magnetization increased. The narrow hysteresis loop of the samples indicates that the amount of dissipated energy is small, which is desirable for soft magnetic applications. Magnetic dynamics of the samples were studied by measuring magnetic susceptibility versus temperature at different magnetic fields. The band gap energy, which was calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function, decreases with increasing the particle size. Furthermore, the band gaps were quite narrow (1.5–1.7 eV), hence the investigated samples could act as visible light driven photo catalysts. To sum up the addition of trivalent Al{sup 3+}, and Cr{sup 3+} ions enhanced the optical, magnetic and structure properties of the samples. Mg{sub 0.7} Cr{sub 0.3}Fe{sub 2}O{sub 4} sample will be a better candidate for the optical applications and will also be a guaranteeing hopeful for technological applications. - Highlights: • Nanoparticles of (Mg{sub 0.7} Al{sub 0.3} Fe{sub 2}O{sub 4}) ferrite are the potential candidates for various

  14. Synthesis of Ca-doped spinel by Ultrasonic Spray Pyrolysis

    OpenAIRE

    Camargo, M.T.T.; Jacques, Q.; Caliman, L.B.; Miagava, J.; Hotza, D.; Castro, R.H.R.; Gouvêa, D.

    2016-01-01

    MgAl2O4 is a stable catalyst support with potential for replacing gamma-alumina in several applications. However, synthesis of magnesium spinel requires elevated temperatures to avoid phase separation (in MgO and Al2O3) at low temperatures, leading to coarsening and reduction of active surface area. In this work, nano CaO-doped and undoped magnesium aluminate were successfully prepared by Ultrasonic Spray Pyrolysis (USP), using a simple adapted experimental set-up operating at 1100 °C. During...

  15. Hydrothermal synthesis of nanostructured spinel lithium manganese oxide

    Science.gov (United States)

    Liu, Zhanqiang; Wang, Wen-lou; Liu, Xianming; Wu, Minchang; Li, Dan; Zeng, Zhen

    2004-04-01

    Nanostructured spherical spinel lithium manganese oxide (LiMnO) with about 200 nm in diameter was synthesized for the first time by mild hydrothermal method. The formation of the nanostructured spheres was through self-assembly of the nanoparticles and nanobelts. The influence of the reaction temperature and the time of formation of the nanostructures have been systematically studied. The thermal stability of the nanostructures has been examined by heating-treatment at different temperatures. Powder X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, thermogravimetric analysis and inductively coupled plasma-atomic emission spectroscopy were used to characterize the products.

  16. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Harzali, Hassen, E-mail: harzali@mines-albi.fr [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Saida, Fairouz; Marzouki, Arij; Megriche, Adel [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Baillon, Fabien; Espitalier, Fabienne [Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi CT cedex 09 (France); Mgaidi, Arbi [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Taibah University, Faculty of Sciences & art, Al Ula (Saudi Arabia)

    2016-12-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P{sub diss}=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  17. Size-Strain Analysis of Iron-Excess Mn-Zn Ferrite Nanoparticles Using Synchrotron Diffraction and Its Correlation with Magnetic Saturation and Isoelectric pH.

    Science.gov (United States)

    Ichikawa, Rodrigo U; Parra, João P R L L; Martins, Murillo L; Yoshito, Walter K; Saeki, Margarida J; Turrillas, Xavier; Martinez, Luis G

    2018-08-01

    Iron-excess Mn-Zn ferrite nanoparticles were prepared by coprecipitation with sodium hydroxide (NaOH) at different concentrations (0.1, 0.2, 0.5 and 1.0 mol/L). The results of X-ray diffraction (XRD) analysis using Whole Powder Pattern Modeling (WPPM) showed that higher concentrations of NaOH promote crystallite growth and broader dispersion in crystallite sizes. Energy dispersive X-ray spectroscopy indicates that zinc loss is noticeable when [NaOH] ≥ 0.2 mol/L. XRD revealed also a significant less-crystalline phase contribution alongside the main peaks of the nanocrystalline cubic spinel ferrite phase. The less-crystalline fraction is lower for the ferrite obtained with 0.2 mol/L of NaOH, being about 50% and more than 70% for the other samples. Despite of the less-crystalline fraction and the excess of iron, no secondary phases were detected. The Warren curves showed that the concentration of NaOH significantly influences the microstrain in the crystallites, being smaller for the sample obtained with NaOH at 0.2 mol/L. The sample prepared with this condition presented the better properties to be used as magnetic tracer in clinical diagnoses combining small mean crystallite size, low microstrain, which resulted in materials with higher magnetic saturation and high surface charge under blood pH.

  18. Impedance spectral analysis and scaling behavior of Mn2+–Si4+ substituted Mn–Zn ferrites

    Science.gov (United States)

    Vasoya, N. H.; Saija, K. G.; Dolia, S. N.; Jha, Prafulla K.; Modi, K. B.

    2017-11-01

    This communication reports complex impedance (Z *  =  Z‧  ‑  iZ″) spectral analysis of polycrystalline spinel ferrite system, Mn0.7+x Zn0.3Si x Fe2‑2x O4 (x  =  0.0–0.3), synthesized by a solid-state reaction route over the broad frequency (f  =  20 Hz–1 MHz) and temperature (T  =  300–673 K) ranges. Variation of Z‧(f, T) showing a typical negative temperature coefficient of resistant type behavior. Cole-Cole plots (Z″ versus Z‧) have been used to determine grain and grain boundary resistances, capacitances, relaxation frequencies and relaxation times. Relaxation time is found to decrease with temperature and it obeys the Arrhenius relationship. The corresponding activation energy values are found to be about ~0.6 eV suggesting conduction due to the polaron hopping based on the electron carriers. Evidence of the components from both localized and delocalized relaxations is observed. The scaling of Z″/Z max by using f max as a scaling parameter is more successful as compared to that carried out using σ dc as a scaling quantity. The results revealed that the complex dielectric parameters and structure of the ferrite ceramics are strongly coupled properties.

  19. Structural, magnetic and electrical characterization of Mg-Ni nano-crystalline ferrites prepared through egg-white precursor

    Science.gov (United States)

    Gabal, M. A.; Al Angari, Y. M.; Zaki, H. M.

    2014-08-01

    Soft Ni-Mg nano-crystalline ferrites with the general formula Ni1-xMgxFe2O4 (0≤x≤1) were synthesized through egg-white method. The precursor decomposition was followed by thermal analysis techniques. The obtained ferrites were characterized by X-ray diffraction, Fourier transform infrared and transmission electron microscopy measurements. X-ray diffraction showed the cubic spinel structure with crystallite size variation within the range 20-45 nm. The different structural data obtained were discussed in the view of ionic radii of the entire ions and their distribution within the lattice. The appropriate suggested cation distribution was then confirmed through Fourier transform infrared as well as electrical and magnetic properties measurements. Transmission electron microscopy exhibited a nano-crystal aggregation phenomenon. The observed size of the spherical particles agrees well with that obtained by X-ray diffraction. Hysteresis loop measurements revealed dilution in the obtained magnetic parameters by Mg-substitution due to the preferential occupancy of Mg2+ ions by the octahedral sites. Ac-electrical conductivity as a function of temperature and frequency exhibited a semi-conducting behavior with conductivity decreases by increasing Mg-content. The change in the slope of the curve indicates the changing in the conduction mechanism from electron hopping to polaron mechanism by increasing temperature. The obtained structural, electrical and magnetic properties were explained based on the cation distribution among tetrahedral and octahedral sites.

  20. Effect of pH on Structural, Magnetic and FMR Properties of Hydrothermally Prepared Nano Ni Ferrite

    Directory of Open Access Journals (Sweden)

    Lafta Sadeq H.

    2017-03-01

    Full Text Available Nano nickel ferrite particles were prepared at pH values 1.5, 4, 7, 10, 13 by a hydrothermal method using metal chlorides and NaOH as an oxidant and solution basicity controller. There is a phase transition from hematite to spinel ferrite that begins when the pH reaches 4. The lowest crystallite size (4 nm was associated with a highest lattice constant (8.345 Å, at pH=4. Whereas maximum crystallite size 64.5 nm corresponds lattice constant of 8.298 Å at pH=10. The highest magnetization (48 emu/g value was achieved for the sample prepared at pH=7, which at the same time has a lower coercivity. The samples synthesized at pH ≥4 show superparamagnetic behavior owing to its low particle size and to zero field cooling and field cooling measurements. The ferromagnetic resonance (FMR cavity tests analysis show that the broadened linewidth (770 Oe and high imaginary permeability or high microwave absorption which is linked to high magnetization and low coercivity of superparamagnetic particles and their aggregation. There was a shift in the resonance field due to internal fields and cation distribution.

  1. Effects of Additives and Sintering Time on the Microstructure of Ni-Zn Ferrite and Its Electrical and Magnetic Properties

    Directory of Open Access Journals (Sweden)

    Abdollah Hajalilou

    2014-01-01

    Full Text Available This work aims to investigate the relationship between the microstructure of Ni-Zn ferrite and its electrical and magnetic properties in the presence and absence of as small amounts as 0.12% of 0.4CaO + 0.8SiO2 over different sintering times. The X-ray diffraction pattern showed a single spinel phase formation in all the samples. The results indicate that grain growth occurred by increasing sintering time from 15 to 270 min in the two types of samples prepared in this study although it was greatly impeded by the additive oxides. Moreover, the oxides increase the resistivity of the ferrite and decrease its zinc loss. Magnetic properties such as induction magnetization (BS and saturation magnetization (MS decreased in the presence of the additives while its coercivity (HC increased. Finally, the density of the samples was observed to increase with increasing sintering time in both types of the samples but with a higher value in the samples with no additives.

  2. Mössbauer and XRD studies of NiCuZn ferrites by Sol-Gel auto-combustion

    International Nuclear Information System (INIS)

    Lei Chenglong; Lin Qing; Zhang Hui; He Yun; Huang Haifu

    2013-01-01

    The Ni 0.6 Cu 0.2 Zn 0.2 Ce x Fe 2-x O 4 ferrites (0≤x≤0.85) have been prepared by Sol-Gel auto-combustion method and we have investigated the effect of impurity CeO 2 phase to the microstructure and hyperfine magnetic field in spinel ferrite. The results of XRD patterns confirm the average crystallite size of samples decreases with Ce 3+ substitution increasing and the lattice parameters vary as a function of x content. 57 Fe Mössbauer spectra at room temperature for all samples confirm the [Fe 3+ - O 2- -Fe 3+ ] super exchange interaction decrease due to cerium substitution. For low temperature auto-combustion samples it reveals one normal sextet line and one doublet line x≤0.25, which shows well-resolved ferromagnetic order. Lattice defects are determined and Mössbauer spectrums vary from magnetic sextet to relaxation doublet at x≥0.45 due to a mass of CeO 2 phase. In contrast, the Mössbauer spectra for the samples sintered at 800°C/3h detect the secondary phase α -Fe 2 O 3 where the cation distribution occurs and it collapses to paramagnetic doublet (x≥0.85). Ce 3+ substitution has its maximum limit values of super exchange interaction and high sintering temperature will affect this interaction. (author)

  3. Catalytic properties of nickel ferrites for oxidation of glucose, β-nicotiamide adenine dinucleotide (NADH) and methanol

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, R. [Departamento de Química, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto (Mexico); Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain); Gutiérrez, S. [Departamento de Química, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto (Mexico); Menéndez, N. [Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain); Herrasti, P., E-mail: pilar.herrasti@uam.es [Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain)

    2014-02-15

    Highlights: ► NiFe{sub 2}O{sub 4} nanoparticles obtained by electrochemical method are effective catalyst. ► A partially inverse spinel was obtained with 57% Fe{sup 3+} in tetrahedral position. ► A non-enzymatic electrode using NiFe{sub 2}O{sub 4} nanoparticles has been manufactured. -- Abstract: Nickel ferrite nanoparticles (NiFe{sub 2}O{sub 4}) were synthesized by electrochemical method and used as catalyst for direct oxidation of glucose, NADH and methanol. Characterization of these nanoparticles was carried out by X-ray diffraction, Mössbauer spectroscopy, and colloidal properties such as hydrodynamic radius and Zeta potential. To evaluate the catalytic properties of these nanoparticles against the oxidation process, paste graphite electrodes mixing nickel ferrites and different conductive materials (graphite, carbon nanotubes) and binders agents (mineral oil, 1-octylpyridinium hexafluorophosphate (nOPPF6)) were used. The results prove good catalytic properties of these materials, with an oxidation potential around 0.75, 0.5 and 0.8 V for glucose, NADH, and methanol, respectively.

  4. Effect of rare earth oxides and La{sup 3+} ion concentration on some properties of Ni–Zn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ateia, Ebtesam E., E-mail: ebtesam@sci.cu.edu.eg; Ahmed, M.A.; Salah, L.M.; El-Gamal, A.A.

    2014-07-15

    The effect of both the rare earth ions and the La{sup 3+} ion concentration on the dielectric properties of Ni{sub 0.5}Zn{sub 0.5}R{sub y}Fe{sub 2−y}O{sub 4}; 0.0≤y≤0.9, R=La, Yb, Dy and Ce is studied. All the samples are sintered at 1250 °C with heating rate of 4 °C/min and sintering time of 35 h. The ionic radii of the used rare earth (Yb{sup 3+}, Dy{sup 3+}, Ce{sup 3+} and La{sup 3+}) are too large to occupy the octahedral site. They form a secondary phases on the grain boundaries. The X-ray data shows that the lattice parameter for the un- substituted ferrite sample is larger than the substituted one, which is the main feature for all rare earth elements. The dielectric properties show that the pure sample has a larger dielectric constant as well as a larger valence exchange with respect to substituted one. This means that introducing rare earth ions into the samples decreases ε′ owing to the decreasing Fe–Fe interaction. The lowest conduction for La substituted sample is attributed to the nature of La{sup 3+} ions which is insoluble in the spinel lattice so it hindered Fe–R (3d–4f) coupling. This feature can help to obtain well applicable ferrites.

  5. Preparation and characterization chemistry of nano-crystalline Ni-Cu-Zn ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Mohd, E-mail: md.hashim09@gmail.com [Department of Applied Physics, Aligarh Muslim University, Aligarh 202002 (India); Alimuddin [Department of Applied Physics, Aligarh Muslim University, Aligarh 202002 (India); Shirsath, Sagar E. [Spin Device Technology Centre, Faculty of Engineering, Shinshu University, Nagano 380-8553 (Japan); Kumar, Shalendra [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kumar, Ravi [Centre for Material Science Engineering, National Institute of Technology, Hamirpur, HP (India); Roy, Aashis S. [Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka (India); Shah, Jyoti; Kotnala, R.K. [National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2013-02-05

    Highlights: Black-Right-Pointing-Pointer Single phase Ni{sub 0.5}Cu{sub 0.25}Zn{sub 0.25}Fe{sub 2-x}In{sub x}O{sub 4} ferrites were synthesized by citrate-nitrate precursor auto combustion. Black-Right-Pointing-Pointer Magnetic properties decreased due to the substitution of In{sup 3+} ions. Black-Right-Pointing-Pointer Dielectric properties decreased with increase in frequency. Black-Right-Pointing-Pointer This composition can be used for multilayer chip inductor (MLCI) applications. - Abstract: In submitted research; nanocrystalline powders having elements Ni{sub 0.5}Cu{sub 0.25}Zn{sub 0.25}Fe{sub 2-x}In{sub x}O{sub 4} with varied amounts of indium (x = 0.0, 0.1, 0.2, 0.3 and 0.4) were grown-up by modified citrate to nitrate alchemy. The realism of single phase cubic spinel creation of the synthesized ferrite samples was studied by the DTA-TGA, XRD, SEM, EDX, FT-IR, VSM and dielectric measurements. SEM was applied to inspect the morphological variations and EDX was used to determine the compositional mass ratios. The studies on the dielectric constant ({epsilon} Prime ), dielectric loss ({epsilon} Double-Prime ), loss tangent (tan {delta}), ac conductivity ({sigma}{sub ac}), resistive and reactive parts of the impedance analysis (Z' and Z') at room temperature were also carried out. The saturation magnetizations (Ms) were determined using the vibrating sample magnetometer (VSM). Ms. decreased with the increase In{sup 3+} doping content, as Fe{sup 3+} of 5{mu}{sub B} ions are replaced by In{sup 3+} of 0 {mu}{sub B} ions.

  6. Effects of Thermal Annealing on Structural and Magnetic Properties of Lithium Ferrite Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jovic, Natasa G.; Masadeh, Ahmad S.; Kremenovic, Aleksandar S.; Antic, Bratislav V.; Blanusa, Jovan L.; Cvjeticanin, Nikola D.; Goya, Gerardo F.; Antisari, Marco Vittori; Bozin, Emil S.; (FPC-Serbia); (MSU); (Zaragoza); (ENEA); (Columbia); (Vinca)

    2010-01-12

    Pure, crystalline, {approx}10 nm lithium ferrite phase (Li{sub 0.5}Fe{sub 2.5}O{sub 4}), was successfully synthesized at very low temperature using a modified combustion method. The crystal structure and microstructure evolution of this system upon annealing were monitored by a careful investigation of X-ray diffractograms collected on a synchrotron source. Comparative analysis of the results obtained from the full profile Rietveld method (in reciprocal space) and the pair distribution function method (in direct space) was carried out. Nanocrystalline samples exhibit similar crystal structure, on average, with a partial ordering of Li{sup +} and Fe{sup 3+} ions between octahedral 4b and 12d sites on the spinel crystal lattice (space group P4{sub 3}32). After annealing at 973 K, cation distribution changes to a completely ordered, resembling that which is seen in the bulk lithium ferrite. The PDF analysis reveals abnormally high values of oxygen atomic displacement parameters in tetrahedral 8c sites (O1) indicating a significant disordering of the O1 network and suggests migration of lithium ions from 4b sites to the outer layers of nanoparticles. Analysis of room temperature Moessbauer spectra has shown that the hyperfine field for Fe{sup 3+} ions in tetrahedral 8c sites is the most sensitive on increasing the particle size and improving the crystallinity. From the differential thermal analysis, it was found that a lower driving force is required to induce an order-disorder phase transition in nanocrystalline samples, compared to the bulk-like sample, presumably due to the higher crystal disordering in these samples.

  7. Effects of Thermal Annealing on Structural and Magnetic Properties of Lithium Ferrite Nanoparticles

    International Nuclear Information System (INIS)

    Jovic, Natasa G.; Masadeh, Ahmad S.; Kremenovic, Aleksandar S.; Antic, Bratislav V.; Blanusa, Jovan L.; Cvjeticanin, Nikola D.; Goya, Gerardo F.; Antisari, Marco Vittori; Bozin, Emil S.

    2009-01-01

    Pure, crystalline, ∼10 nm lithium ferrite phase (Li 0.5 Fe 2.5 O 4 ), was successfully synthesized at very low temperature using a modified combustion method. The crystal structure and microstructure evolution of this system upon annealing were monitored by a careful investigation of X-ray diffractograms collected on a synchrotron source. Comparative analysis of the results obtained from the full profile Rietveld method (in reciprocal space) and the pair distribution function method (in direct space) was carried out. Nanocrystalline samples exhibit similar crystal structure, on average, with a partial ordering of Li + and Fe 3+ ions between octahedral 4b and 12d sites on the spinel crystal lattice (space group P4 3 32). After annealing at 973 K, cation distribution changes to a completely ordered, resembling that which is seen in the bulk lithium ferrite. The PDF analysis reveals abnormally high values of oxygen atomic displacement parameters in tetrahedral 8c sites (O1) indicating a significant disordering of the O1 network and suggests migration of lithium ions from 4b sites to the outer layers of nanoparticles. Analysis of room temperature Moessbauer spectra has shown that the hyperfine field for Fe 3+ ions in tetrahedral 8c sites is the most sensitive on increasing the particle size and improving the crystallinity. From the differential thermal analysis, it was found that a lower driving force is required to induce an order-disorder phase transition in nanocrystalline samples, compared to the bulk-like sample, presumably due to the higher crystal disordering in these samples.

  8. Electrical and morphological properties of magnetocaloric nano ZnNi ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, O.M., E-mail: omhemeda@yahoo.co.uk [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Mostafa, Nasser Y. [Materials and Corrosion Group, Department of Chemistry, Faculty of Science, Taif University (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Abd Elkader, Omar H. [Electron Microscope & Thin Films Department, Physics Division, National Research Center, Dokki 12622, Cairo (Egypt); Electron Microscope Unit, Zoology Department, College of Science, King Saud University, Riyadh (Saudi Arabia); Hemeda, D.M.; Tawfik, A.; Mostafa, M. [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt)

    2015-11-15

    A series of Zn{sub 1–x}Ni{sub x}Fe{sub 2}O{sub 4} nano ferrite (with x=0, 0.2, 0.4, 0.6, 0.8, and 1) compositions were synthesized using the combustion technique. The powder samples were characterized by XRD. The X-ray analysis showed that the samples were single phase spinel cubic structure. The AC resistivity decreases by increasing the frequency from 1 kHz to 10 kHz. As the frequency of the applied field increases the hopping of charge carrier also increase, thereby decreasing the resistivity. A shift in dielectric maximum is observed toward higher temperature with increasing the Ni content from 536 K to 560 K at 1 kHz. The HRTEM (high resolution TEM) images of four compositions have lattice spacing which confirms the crystalline nature of the samples. The surface morphology SEM of the sample consists of some grains with relatively homogenies distribution with an average size varying from 0.85 to 0.92 μm. The values for entropy change in this work are still small but are significally higher than the values that have been reported for iron oxide nanoparticle. The magnetic entropy change was calculated from measurements of M (H, T) where H is the magnetic field and T is the temperature. The maximum value of entropy change (∆S) obtained near Curie temperature which makes these material candidates for magnetocaloric applications. - Highlights: • Nanoparticles of Ni–Zn ferrite were prepared by solution combustion method. • A shift in dielectric maximum is observed toward high temperature with increasing the Ni content. • The inter planner distance obtained from HRTEM coincide with the f XRD results. • The entropy change vs. temperature shows a broad maximum near Curie temperature. • This results are useful for the operation of cooling devices.

  9. Enhancement in dielectric and magnetic properties of Ni–Zn ferrites prepared by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, S. [Applied Thermal Physics Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000, Pakistan. (Pakistan); Department of Materials Science and Engineering, Zhejiang University (China); Saleemi, A.S.; Fatima-tuz-Zahra [Applied Thermal Physics Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000, Pakistan. (Pakistan); Anis-ur-Rehman, M., E-mail: marehman@comsats.edu.pk [Applied Thermal Physics Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000, Pakistan. (Pakistan)

    2013-09-25

    Highlights: •Cr-Zn co-doped Ni-Zn ferrites were prepared with a newly reported sol gel method. •Phase purity and a very good control of crystallite and particle size are obtained. •Low eddy current losses are obtained due to low dielectric losses. •Operational frequency of doped Ni-Zn ferrites could be increased up to GHz ranges. -- Abstract: Due to its high permeability, Mn–Zn ferrite is the material of choice for high frequency applications up to a few MHz. At increased operational frequency, Ni–Zn ferrites are more suitable than Mn–Zn ferrites due to their low eddy current losses and low dielectric losses. To combine all these properties and to increase the operational frequency up to GHz, we have prepared Ni{sub 0.5}Zn{sub 0.5}Cr{sub x}Mn{sub 0.5−x}Fe{sub 1.5}O{sub 4} (x = 0.1, 0.2, 0.3, 0.4, 0.5), with a simplified sol gel method. Prepared samples show high saturation magnetization, low coercivity, and low dielectric loss. The dielectric loss in the frequency range 1 MHz to 1.3 GHz remained almost constant as the Cr content was increased in the samples. The crystallite size and lattice parameters of these samples were calculated from X-ray Diffraction (XRD) data analysis. The crystallite size for each sample was calculated using the Scherrer formula considering the most intense peak (3 1 1) and the results were compared with the Scanning Electron Microscope (SEM) images of these samples. Powder X-ray diffraction (XRD) patterns confirmed the single phase spinel structure for these samples. Wayne Kerr Precession Component Analyzer 6440B and Agilent E4991 Impedance Analyzer were used to study the dielectric constant (ε′) and the dielectric loss tangent (tan δ) of these samples as a function of frequency in the frequency range 100 Hz to 1 MHz and 1 MHz to 1.29 GHz respectively. Quantum design PPMS model 6700 was used to study the magnetic properties of these samples.

  10. Synthesis and characterization of Fe{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4} ferrite magnetic nanoclusters using simple thermal decomposition method

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Ibrahim; Zamanian, Ali, E-mail: a-zamanian@merc.ac.ir; Behnamghader, Aliasghar

    2016-08-15

    This paper presents experimental results regarding the effect of the quantity of solvent on formation of the Fe–Zn ferrite nanoparticles during thermal decomposition. A ternary system of Fe{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4} has been synthesized by a thermal decomposition method using metal acetylacetonate in high temperature boiling point solvent and oleic acid. The X-ray diffraction study was used to determine phase purity, crystal structure, and average crystallite size of iron–zinc ferrite nanoparticles. The average crystallite size of nanoparticles was increased from 13 nm to 37 nm as a result of reducing the solvent from 30 ml to 10 ml in a synthesis batch. The diameter of particles and morphology of the particles were determined by transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM). Mid and far Fourier transform infrared (FT-IR) measurement confirmed monophasic spinel structure of ferrite. Furthermore, the DC magnetic properties of the samples were studied using the vibrating sample magnetometer (VSM). The largest Fe–Zn ferrite nanoparticles exhibited a relatively high saturation magnetization of 96 emu/g. Moreover, Low-field AC susceptibility measurement indicated blocking temperature of nanoparticles around 170–200 K. - Highlights: • Narrow dispersed nanoclusters Fe–Zn ferrites prepared by a simple thermal decomposition route. • Increase of solvent content in reaction cause reduce the size of nanoparticles. • The XRD parameters are refined by the Rietveld method. • Saturation magnetization increases while coercivity decreases with increasing the particle size of ferrites.

  11. Aqueous slip casting of MgAl2O4 spinel powder

    Indian Academy of Sciences (India)

    Keywords. MgAl2O4 spinel; phosphate coating; aluminium dihydrogen phosphate; orthophosphoric acid; slip casting; freeze granulation; double-stage firing process. 1. Introduction. Magnesium aluminate (MgAl2O4) spinel (MAS) possesses many important thermal, chemical, mechanical and physical properties (Hing 1976 ...

  12. Enhancement photocatalytic activity of spinel oxide (Co, Ni3O4 by combination with carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Kahdum Bashaer J.

    2017-09-01

    Full Text Available In this study, some types of composites consisting of multi-walled carbon nanotubes (MWCNTs and spinel oxide (Co, Ni3O4 were synthesized by simple evaporation method. These composites were characterized by UV–Vis diffuse reflectance spectroscopy, X-rays diffraction(XRD, Scanning electron microscopy (SEM and specific surface area(SBET. The photocatalytic activity of the prepared composites was investigated by the following removal of Bismarck brown G (BBG dye from its aqueous solutions. The obtained results showed that using MWCNTs in combination with spinel oxide to produced composites (spinel/MWCNTs which succeeded in increasing the activity of spinel oxide and exhibited higher photocatalytic activity than spinel oxide alone. Also it was found that, multiwalled carbon nanotubes were successful in increasing the adsorption and improving the activity of photocatalytic degradation of Bismarck brown G dye(BBG. The obtained results showed that spinel/MWCNTs was more active in dye removal in comparison with each of spinel oxide and MWCNTs alone under the same reaction conditions. Also band gap energies for the prepared composites showed lower values in comparison with neat spinel. This point represents a promising observation as these composites can be excited using a lower energy radiation sources.

  13. Synthesis of high surface area spinel-type MgAl2O4 nanoparticles by

    Indian Academy of Sciences (India)

    68

    H2O)2]2[Mg(dipic)2] precursor has smaller crystallite size in comparison with the spinel synthesized through .... Iwamoto, Fabrication of porous spinel. (MgAl2O4) from porous alumina using a template method, Ceramics International 39 (2013).

  14. PREPARATION OF NICKEL - COBALT SPINEL OXIDES Ni x CO 3-x ...

    African Journals Online (AJOL)

    X-ray diffraction patterns showed that the oxides crystallize in a cubic spinel phase. Electrical conductivity as well as porosity depends on the preparation route. KEY WORDS: Nickel cobalt spinel oxides, Porosity, Electrical conductivity, Mixed oxides electrodes, Carbon paste electrode, Pechini sol-gel method. Bull. Chem.

  15. Effect of particle size on microstructure and strength of porous spinel ...

    Indian Academy of Sciences (India)

    The lightweight Al2O3–MgO refractories with high strength and high slag resistance were prepared, using the porous spinel ceramics with small pore size and homogenous pore distribution as aggregates (Yan et al 2008, 2009). Generally, the spinel can be synthesized by an electrofu- sion method, a sintering method and ...

  16. Evaluation of thermobarometry for spinel lherzolite fragments in alkali basalts

    Science.gov (United States)

    Ozawa, Kazuhito; Youbi, Nasrrddine; Boumehdi, Moulay Ahmed; McKenzie, Dan; Nagahara, Hiroko

    2017-04-01

    Geothermobarometry of solid fragments in kimberlite and alkali basalts, generally called "xenoliths", provides information on thermal and chemical structure of lithospheric and asthenospheric mantle, based on which various chemical, thermal, and rheological models of lithosphere have been constructed (e.g., Griffin et al., 2003; McKenzie et al., 2005; Ave Lallemant et al., 1980). Geothermobarometry for spinel-bearing peridotite fragments, which are frequently sampled from Phanerozoic provinces in various tectonic environments (Nixon and Davies, 1987), has essential difficulties, and it is usually believed that appropriated barometers do not exist for them (O'Reilly et al., 1997; Medaris et al., 1999). Ozawa et al. (2016; EGU) proposed a method of geothermobarometry for spinel lherzolite fragments. They applied the method to mantle fragments in alkali basalts from Bou Ibalhatene maars in the Middle Atlas in Morocco (Raffone et al. 2009; El Azzouzi et al., 2010; Witting et al., 2010; El Messbahi et al., 2015). Ozawa et al. (2016) obtained 0.5GPa pressure difference (1.5-2.0GPa) for 100°C variation in temperatures (950-1050°C). However, it is imperative to verify the results on the basis of completely independent data. There are three types of independent information: (1) time scale of solid fragment extraction, which may be provided by kinetics of reactions induced by heating and/or decompression during their entrapment in the host magma and transportation to the Earth's surface (Smith, 1999), (2) depth of the host basalt formation, which may be provided by the petrological and geochemical studies of the host basalts, and (3) lithosphere-asthenosphere boundary depths, which may be estimated by geophysical observations. Among which, (3) is shown to be consistent with the result in Ozawa et al. (2016). We here present that the estimated thermal structure just before the fragment extraction is fully supported by the information of (1) and (2). Spera (1984) reviewed

  17. Hydrothermal spinel, corundum and diaspore in lower oceanic crustal troctolites from the Hess Deep Rift

    Science.gov (United States)

    Nozaka, Toshio; Meyer, Romain; Wintsch, Robert P.; Wathen, Bryan

    2016-06-01

    Aluminous spinel, corundum and diaspore are reported from intensely altered parts of primitive troctolites recovered from IODP Site U1415 at the Hess Deep Rift. The spinel is green-colored, has an irregular shape, has low Cr concentrations, and is so distinct from primary igneous chromite. Corundum and diaspore occur mainly at the rims of green spinel grains with a texture suggesting a sequential replacement of spinel by corundum, and then corundum by diaspore. The green spinel is associated with anorthite and pargasite, which is overgrown by tremolite that forms coronitic aggregates with chlorite around olivine. These petrographic observations are supported by pressure-temperature pseudosections, which predict spinel + pargasite stability field, and tremolite/hornblende + chlorite field at lower temperature conditions. From these pseudosections and simplified system phase diagrams, estimated formation temperature conditions calculated at 2 kbar are 650-750 °C for spinel + pargasite, 410-690 °C for tremolite/hornblende + chlorite, 400-710 °C for corundum, and diaspore. Because the aluminous spinel occurs in the domains that were previously occupied by magmatic plagioclase, and because spinel-bearing rocks characteristically have high Al2O3/CaO and Al2O3/SiO2 ratios, it is likely that the stabilization of spinel was caused by the loss of Ca2+ and SiO2(aq) in high-temperature hydrothermal fluids. The results of this study suggest that (1) the concentrations of aluminous phases in the lower oceanic crust are presently underestimated, and (2) chemical modification of the lower oceanic crust due to high-temperature hydrothermal metasomatic reactions could be common near spreading axes.

  18. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    International Nuclear Information System (INIS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-01-01

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe 3 O 4 and SrFe 12 O 19 ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic

  19. Plasma spot welding of ferritic stainless steels

    International Nuclear Information System (INIS)

    Lesnjak, A.; Tusek, J.

    2002-01-01

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H 2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  20. Low-Loss Ferrite Components for NASA Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ferrite based isolators and circulators have been successfully demonstrated at microwave, millimeter-wave and submillimeter-wave frequencies. These components are...

  1. Preparation of single-crystal copper ferrite nanorods and nanodisks

    International Nuclear Information System (INIS)

    Du Jimin; Liu Zhimin; Wu Weize; Li Zhonghao; Han Buxing; Huang Ying

    2005-01-01

    This article, for the first time, reports the preparation of single-crystal copper ferrite nanorods and nanodisks. Using amorphous copper ferrite nanoparticles synthesized by reverse micelle as reaction precursor, single-crystal copper ferrite nanorods were synthesized via hydrothermal method in the presence of surfactant polyethylene glycol (PEG), however, copper ferrite nanodisks were prepared through the same procedures except the surfactant PEG. The resulting nanomaterials have been characterized by powder X-ray diffraction (XRD), selected electron area diffraction (SEAD), and transmission electron microscopy (TEM). The bulk composition of the samples was determined by means of X-ray photoelectron spectroscopy (XPS)

  2. Structure, morphology and magnetic properties of Mg((x))Zn((1 - x))Fe2O4 ferrites prepared by polyol and aqueous co-precipitation methods: a low-toxicity alternative to Ni((x))Zn((1 - x))Fe2O4 ferrites.

    Science.gov (United States)

    Daigle, A; Modest, J; Geiler, A L; Gillette, S; Chen, Y; Geiler, M; Hu, B; Kim, S; Stopher, K; Vittoria, C; Harris, V G

    2011-07-29

    The synthesis and properties of Mg((x))Zn((1 - x))Fe(2)O(4) spinel ferrites as a low-toxicity alternative to the technologically significant Ni((x))Zn((1 - x))Fe(2)O(4) ferrites are reported. Ferrite nanoparticles have been formed through both the polyol and aqueous co-precipitation methods that can be readily adapted to industrial scale synthesis to satisfy the demand of a variety of commercial applications. The structure, morphology and magnetic properties of Mg((x))Zn((1 - x))Fe(2)O(4) were studied as a function of composition and particle size. Scanning electron microscopy images show particles synthesised by the aqueous co-precipitation method possess a broad size distribution (i.e. ∼ 80-120 nm) with an average diameter of the order of 100 nm ± 20 nm and could be produced in high process yields of up to 25 g l(-1). In contrast, particles synthesised by the polyol-based co-precipitation method possess a narrower size distribution with an average diameter in the 30 nm ± 5 nm range but are limited to smaller yields of ∼ 6 g l(-1). Furthermore, the polyol synthesis method was shown to control average particle size by varying the length of the glycol surfactant chain. Particles prepared by both methods are compared with respect to their phase purity, crystal structure, morphology, magnetic properties and microwave properties.

  3. Ferrite grade iron oxides from ore rejects

    Indian Academy of Sciences (India)

    Unknown

    Ferrite grade iron oxides from ore rejects. 333. S 250 MK III were used to find out the particle size distributions in the final oxide products. 3. Results and discussion. 3.1 Phase identification. The dhkl values of all oxide products were compared with the JCPDS files: 24–81 and 25–1402. All were found to be mainly γ-Fe2O3 ...

  4. Magnetocapacitance effects in MnZn ferrites

    Directory of Open Access Journals (Sweden)

    Y. M. Xu

    2015-11-01

    Full Text Available The magnetocapacitance effects of MnZn ferrites with different initial permeabilities have been studied systematically. Both intrinsic effect associated with magnetoelectric coupling and extrinsic effect, which means the combined contribution of magnetoresistance and the Maxwell-Wagner effect, have been observed simultaneously. Analysis shows that the relationship between the origins of both is in competitive equilibrium. Either of both mechanisms plays a dominant role in magnetocapacitance effects under different conditions, respectively, such as permeability and frequency of applied signals.

  5. Ferritic stainless steels: corrosion resistance + economy

    International Nuclear Information System (INIS)

    Remus, A.L.

    1976-01-01

    Ferritic stainless steels provide corrosion resistance at lower cost. They include Type 409, Type 439, 18SR, 20-Mo (1.6 Mo), 18-2 (2 Mo), 26-1S, E-Brite 26-1, 29 Cr-4 Mo, and 29 Cr-4 Mo-2 Ni. Their corrosion and mechanical properties are examined. Resistance to stress-corrosion cracking is an advantage compared to austenitic types

  6. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    Wintec

    GHz region and chlorine gas sensors (Gotic et al 1998;. Gopal Reddy et al 1999). Among the ferrites, the ... (10 ml, 0⋅5 molar) and nickel nitrate (10 ml, 0⋅5 molar) were added slowly to a mixture of NaOH (10 ml, .... duced the surface to volume ratio increases and the num- ber of iron ions in B sites increases. This results in ...

  7. Cadmium substituted high permeability lithium ferrite

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Polycrystalline Li0⋅5 – x/2CdxFe2⋅5 – x/2O4 ferrites where x = 0, 0⋅1, 0⋅2, 0⋅3, 0⋅4, 0⋅5 and 0⋅6 were pre- pared by a double sintering ceramic technique and characterized by X-ray diffraction and scanning electron microscopy (SEM). The lattice parameter is found to increase monotonically with the cadmium ...

  8. Black and green pigments based on chromium-cobalt spinels

    Energy Technology Data Exchange (ETDEWEB)

    Eliziario, Sayonara A., E-mail: sayonaraea@iq.unesp.br [Departamento de Fisico-Quimica, Instituto de Quimica, UNESP - Univ Estadual Paulista, Araraquara, SP (Brazil); Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil); Andrade, Jeferson M. de [Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil); Lima, Severino J.G. [Departamento de Engenharia Mecanica, CT, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil); Paskocimas, Carlos A. [Universidade Federal do Rio Grande do Norte, CT, Natal, RN (Brazil); Soledade, Luiz E.B. [Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil); Hammer, P.; Longo, E. [Departamento de Fisico-Quimica, Instituto de Quimica, UNESP - Univ Estadual Paulista, Araraquara, SP (Brazil); Souza, Antonio G.; Santos, Ieda M.G. [Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil)

    2011-09-15

    Highlights: {yields} Co(Co{sub 2-x}Cr{sub x})O{sub 4} powders with different chromium concentrations (x = 0, 0.25 and 1) were prepared by the polymeric precursor method. {yields} Co(CoCr)O{sub 4} and Co(Co{sub 1.75}Cr{sub 0.25})O{sub 4} displayed a dark color and CoCr{sub 2}O{sub 4} was green. {yields} The colors were related to the different oxidation states of Cr and Co. {yields} Cobalt enrichment result in an increasing presence of Co(III) and a decrease amount of Cr(VI). - Abstract: Chromium and cobalt oxides are widely used in the manufacture of industrial pigments. In this work, the Co(Co{sub 2-x}Cr{sub x})O{sub 4} powders with different chromium concentrations (x = 0, 0.25 and 1) were synthesized by the polymeric precursor method, heat treatment between 600 and 1000 deg. C. These powders were characterized by X-ray diffraction, infrared spectroscopy, colorimetry, UV-vis absorption and X-ray photoelectron spectroscopies. Even with the addition of chromium, the XRD patterns revealed that all powders crystallize in a single spinel cubic structure. The spinels with higher cobalt amount, Co(CoCr)O{sub 4} and Co(Co{sub 1.75}Cr{sub 0.25})O{sub 4}, displayed a dark color, without the Co{sup 3+} reduction observed in Co{sub 3}O{sub 4} between 900 and 950 deg. C. The spinel with higher chromium amount, CoCr{sub 2}O{sub 4}, was green. The colors were directly related to the occupation of tetrahedral and octahedral sites by the chromophores, as well as to the different oxidation states of chromium and cobalt. The different optical band gap values estimated from UV-vis spectra suggested the existence of intermediary energy levels within the band gap. X-ray photoelectron spectroscopy confirmed an increasing presence of Co(III) and a decreasing amount of Cr(VI) with cobalt enrichment.

  9. A New Spinel-Olivine Oxybarometer: Near-Liquidus Partitioning of V between Olivine-Melt, Spinel-Melt, and Spinel-Olivine in Martian Basalt Composition Y980459 as a Function of Oxygen Fugacity

    Science.gov (United States)

    Papike, J. J.; Le, L.; Burger, P. V.; Shearer, C. K.; Bell, A. S.; Jones, J.

    2013-01-01

    Our research on valence state partitioning began in 2005 with a review of Cr, Fe, Ti, and V partitioning among crystallographic sites in olivine, pyroxene, and spinel [1]. That paper was followed by several on QUE94201 melt composition and specifically on Cr, V, and Eu partitioning between pyroxene and melt [2-5]. This paper represents the continuation of our examination of the partitioning of multivalent V between olivine, spinel, and melt in martian olivine-phyric basalts of Y980459 composition [6, 7]. Here we introduce a new, potentially powerful oxybarometer, V partitioning between spinel and olivine, which can be used when no melt is preserved in the meteorite. The bulk composition of QUE94201 was ideal for our study of martian pyroxene-phyric basalts and specifically the partitioning between pyroxene-melt for Cr, V, and Eu. Likewise, bulk composition Y980459 is ideal for the study of martian olivine-phyric basalts and specifically for olivine-melt, spinel-melt, and spinel-olivine partitioning of V as a function of oxygen fugacity.

  10. Influence of copper ions on structural and non-linear optical properties in manganese ferrite nanomaterials

    Science.gov (United States)

    Yuvaraj, S.; Manikandan, N.; Vinitha, G.

    2017-11-01

    A series of Mn1-xCuxFe2O4 (x = 0, 0.15, 0.30, 0.45, 0.60 and 1) particles were prepared using chemical co-precipitation method with metal nitrates as precursor materials. Samples were synthesized under various annealing temperatures and 800 °C was found to be the optimal temperature for phase formation. Powder XRD analyses confirm the formation of spinel manganese ferrites along with the α-Fe2O3 phase which got reduced with increase in copper concentration. Samples were characterized using spectroscopic and microscopic techniques. UV-Diffuse reflectance spectroscopy was employed to calculate the band gap which varied between 1.51 eV and 1.83 eV. HR-SEM images reveal the spherical nature of the particles. Ferromagnetic nature of these materials was confirmed from vibrating sample magnetometer (VSM) measurements. Z-scan technique was employed to measure the non-linear optical properties. The non-linear refraction, non-linear absorption and non-linear susceptibility are found to be of the order of 10-8 cm2/W, 10-4 cm/W and 10-6 esu respectively. The samples showed a defocusing effect which was utilized to explain the optical limiting behavior at the same wavelength using the continuous-wave laser beam. The results show that these materials have potential for exploitation towards device applications like optical limiting and switching.

  11. Structural and electrical properties of Cu-doped Ni-Zn nanocrystalline ferrites for MLCI applications

    Science.gov (United States)

    Venkatesh, D.; Ramesh, K. V.

    2017-11-01

    Polycrystalline Cu substituted Ni-Zn ferrites with chemical composition Ni0.5Zn0.5‑x-CuxFe2O4 (x = 0.00 to 0.25 in steps of 0.05) have been prepared by citrate gel autocombustion method. The samples for electrical properties have been sintered at 900∘C for 4 h. The X-ray diffraction patterns of all samples indicate the formation of single phase spinel cubic structure. The value of lattice parameter is decreases with increasing Cu concentration. The estimated cation distribution can be derived from X-ray diffraction intensity calculations and IR spectra. The tetrahedral and octahedral bond lengths, bond angles, cation-cation and cation-anion distances were calculated by using experimental lattice parameter and oxygen positional parameters. It is observed that Cu ions are distributed in octahedral site and subsequently Ni and Fe ions in tetrahedral site. The grain size of all samples has been calculated by Scanning Electron Microscopy (SEM) images. The variations in DC electrical resistivity and dielectric constant have been explained on the basis of proposed cation distribution.

  12. Microstructure and Superparamagnetic Properties of Mg-Ni-Cd Ferrites Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. M. Eltabey

    2014-01-01

    Full Text Available Magnesium substituted nickel cadmium ferrite nanoparticles MgxNi0.6−xCd0.4Fe2O4 (from x = 0 to 0.6 with step 0.1 have been synthesized by the chemical coprecipitation route. X-ray diffraction (XRD and infrared spectroscopy (FTIR revealed that the obtained powders have a single phase of cubic spinel structure. The crystallite sizes calculated from XRD data have been confirmed using transmission electron microscopy (TEM showing that the powders are consisting of nanosized grains with an average size range 5–1.5 nm. Magnetic hysteresis loops were traced at 6.5 K as well as at room temperature using VSM. It was found that, due to the Mg2+-ions substitution, the values of saturation magnetization Ms for the investigated samples were decreased, whereas the coercive field Hc increased. Both zero field cooling (ZFC and field cooling (FC curves are measured in the temperature range (6.5–350 K and the values of blocking temperature TB were determined. No considerable variation in the values of TB was observed with increasing Mg-content, whereas the values of the effective anisotropy constant Keff were increased.

  13. Cu{sup 2+}-modified physical properties of Cobalt-Nickel ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekhar Babu, K.; Rao, K. Rama [Department of Physics, Andhra University, Visakhapatnam, Andhra Pradesh 530003 (India); Rajesh Babu, B., E-mail: rajeshbabu.bitra@gmail.com [Department of Physics, GVP College of Engineering for Women, Visakhapatnam, Andhra Pradesh 530048 (India)

    2017-07-15

    Highlights: • In this work, Influence of Cu and cation redistribution is discussed in detail. • Theoretical and experimental results related to distribution, lattice constant are found to be consistent. • Substitution of Cu significantly modifies the magnetization, permeability, grain size and resistivity. - Abstract: The present study focused on structural, magnetic and electrical properties of Cu substituted Co-Ni ferrite nanoparticles synthesized by sol-gel combustion method. X-ray diffraction, Fourier Transform infra-red spectroscopy (FTIR), magnetization, magnetic permeability and resistivity measurements were carried out to study the structural, magnetic and electrical properties. X-ray diffraction pattern confirms single phase spinel formation. Crystallite size determined from Scherer’s method increases with Cu concentration. Distribution of cations was estimated from X-ray line intensity calculations, suggest that the majority of Cu{sup 2+} ions occupy octahedral (B) site. Saturation magnetization exhibit increasing trend from 40 emu/g (x = 0.0) to 60 emu/g (x = 0.4) with Cu concentration, though higher magnetic moment Ni ions are replaced by lower magnetic moment Cu ions. Magnetic permeability increases with increasing Cu concentration and shows a flat profile in the frequency range 1–50 MHz. Significant modification in DC electrical resistivity and activation energy are explained on the basis of hopping mechanism.

  14. Observation of magnetic anomalies in one-step solvothermally synthesized nickel-cobalt ferrite nanoparticles.

    Science.gov (United States)

    Datt, Gopal; Sen Bishwas, Mousumi; Manivel Raja, M; Abhyankar, A C

    2016-03-07

    Magnetic anomalies corresponding to the Verwey transition and reorientation of anisotropic vacancies are observed at 151 K and 306 K, respectively, in NiCoFe2O4 nanoparticles (NPs) synthesized by a modified-solvothermal method followed by annealing. Cationic disorder and spherical shape induced non-stoichiometry suppress the Verwey transition in the as-synthesized NPs. On the other hand, reorientation of anisotropic vacancies is quite robust. XRD and electron microscopy investigations confirm a single phase spinel structure and the surface morphology of the as-synthesized NPs changes from spherical to octahedral upon annealing. Rietveld analysis reveals that the Ni(2+) ions migrate from tetrahedral (A) to octahedral (B) sites upon annealing. The Mössbauer results show canted spins in both the NPs and the strength of superexchange is stronger in Co-O-Fe than Ni-O-Fe. Magnetic force images show that the as-synthesised NPs are single-domain whereas the annealed NPs are multi-domain octahedral particles. The FMR study reveals that both the NPs have a broad FMR line-width; and resonance properties are consistent with the random anisotropy model. The broad inhomogeneous FMR line-width, observation of the Verwey transition, tuning of the magnetic domain structure as well as the magnetic properties suggest that the NiCoFe2O4 ferrite NPs may be promising for future generation spintronics, magneto-electronics, and ultra-high-density recording media as well as for radar absorbing applications.

  15. Magnesium Ferrite (MgFe2O4 Nanostructures Fabricated by Electrospinning

    Directory of Open Access Journals (Sweden)

    Wiengmoon Amporn

    2008-01-01

    Full Text Available Abstract Magnesium ferrite (MgFe2O4 nanostructures were successfully fabricated by electrospinning method. X-ray diffraction, FT-IR, scanning electron microscopy, and transmission electron microscopy revealed that calcination of the as-spun MgFe2O4/poly(vinyl pyrrolidone (PVP composite nanofibers at 500–800 °C in air for 2 h resulted in well-developed spinel MgFe2O4nanostuctures. The crystal structure and morphology of the nanofibers were influenced by the calcination temperature. Crystallite size of the nanoparticles contained in nanofibers increased from 15 ± 4 to 24 ± 3 nm when calcination temperature was increased from 500 to 800 °C. Room temperature magnetization results showed a ferromagnetic behavior of the calcined MgFe2O4/PVP composite nanofibers, having their specific saturation magnetization (M s values of 17.0, 20.7, 25.7, and 31.1 emu/g at 10 Oe for the samples calcined at 500, 600, 700, and 800 °C, respectively. It is found that the increase in the tendency ofM sis consistent with the enhancement of crystallinity, and the values ofM sfor the MgFe2O4samples were observed to increase with increasing crystallite size.

  16. Improvement on the magnetic and dielectric behavior of hard/soft ferrite nanocomposites

    Science.gov (United States)

    Mansour, S. F.; Hemeda, O. M.; Abdo, M. A.; Nada, W. A.

    2018-01-01

    Nanocomposites from M-type hexaferrite BaFe11.7Al0.15Zn0.15O19 and spinel ferrite Mn0.8Mg0.2Fe2O4 nanoparticles according to the formula [(x)(Ba Fe11.7Al0.15 Zn0.15O19) + (1 - x)(Mn0.8 Mg0.2Fe2O4); x = 0.3, 0.4 and 0.5] have been manufactured by the citrate combustion method. The structure and morphology of the nanocomposites were appointed by X-ray diffraction (XRD) analysis and field emission scanning electron microscopy (FESEM). The remanent magnetization and coercivity of the nanocomposites became 2 and 2.5 times higher, respectively by adding BaFe11.7Al0.15 Zn0.15O19 phase. The Cole-Cole plots of the nanocomposite x = 0.4 at the selected temperatures shows two successive semicircles at all the selected temperatures. The first low frequencies semicircle elucidates the contribution of the grain boundary and the second one, at high frequencies, gives the contribution of grain to conduction process. Multilateral applications for exchange spring magnets can be manufactured using those nanocomposites.

  17. A comparison of the magnetism of cobalt-, manganese-, and nickel-ferrite nanoparticles

    Science.gov (United States)

    Demirci, Ç. E.; Manna, P. K.; Wroczynskyj, Y.; Aktürk, S.; van Lierop, J.

    2018-01-01

    The microstructure, composition and magnetism of CoFe2O4, MnFe2O4 and NiFe2O4 nanoparticles of comparable sizes (∼20 nm) and interparticle spacings (∼20 nm) have been characterized from 10 to 400 K. The cation distributions of the tetrahedral and octahedral sites of the particles, that have cubic spinel structures, have a high degree of inversion, ∼0.98 for CoFe2O4, ∼0.80 for MnFe2O4 and NiFe2O4 nanoparticles. The blocking temperatures were  ∼300 K for the MnFe2O4 and NiFe2O4 nanoparticles, while the CoFe2O4 nanoparticles, due to their higher intrinsic anisotropy had a significantly higher blocking temperature above 400 K. Specifically, the magnetocrystalline anisotropy of the CoFe2O4 nanoparticles was K=(2.96+/-0.03)×106 ergs cm‑3, while for the MnFe2O4 nanoparticles, K=(0.04+/-0.01)×106 ergs cm‑3, and for the NiFe2O4 nanoparticles, K=(0.07+/-0.01)×106 ergs cm‑3. The magnetism of these three ferrite systems are discussed in detail with regards to their microstructures and cation distributions.

  18. Effect of hydrothermal heat treatment on magnetic properties of copper zinc ferrite rf sputtered films

    Directory of Open Access Journals (Sweden)

    Jasmeet Kaur

    2016-05-01

    Full Text Available The hydrothermal treatment to the nano-structured films can overcome the destruction of the films. The Cu-Zn Ferrite films were fabricated by RF-sputtering on quartz substrates. Subsequently, the as deposited films were heat treated using hydrothermal process. The X-ray diffraction pattern of the as-deposited and hydrothermal treated films indicate nano-crystalline cubic spinel structure. The amorphous nature of the films is removed after hydrothermal treatment with decreased crystallite size. The field emission scanning electron micrographs showed merged columnar growth for as deposited films, which changes to well define columns after hydrothermal heating. The homogeneous cluster distribution is observed in surface view of the hydrothermal treated films. Hydrothermal treated films show merging of in-plane and out of plane magnetization plots (M(H whereas the M(H plots of as deposited films show angular dependence. The strong angular dependence is observed in the FMR spectra due to the presence of a uniaxial anisotropy in the films. The ferromagnetic interactions decrease in hydrothermal heated films due to the reduced shape anisotropy and crystallite size.

  19. Effect of synthesis methods and a comparative study of structural and magnetic properties of zinc ferrite

    Directory of Open Access Journals (Sweden)

    Md. Sazzad Hossain

    2017-10-01

    Full Text Available Zinc ferrite samples were prepared by two different routes which are chemical co-precipitation and standard solid state double sintering method. Structural properties of ZnFe2O4 were determined, and initial particle size was found as 5 nm in the samples prepared by chemical co-precipitation technique. The XRD patterns showed the single phase of ZnFe2O4 spinel structure and confirmed by the lattice parameter and the unmixed hkl values for both the synthesis techniques. M-H curves at room temperature showed superparamagnetic nature of the samples sintered from 200°C to 600°C, synthesized by chemical co-precipitation technique. The Mössbauer analysis at room temperature showed a doublet which is the signature of superparamagnetic nature, and it is in agreement with the acquired M-H curves. The magnetization of ZnFe2O4 synthesized by chemical co-precipitation method was found higher than the magnetization of ZnFe2O4 synthesized by the solid-state double sintering method in the sintering temperature from 1100°C to 1300°C.

  20. Seeded growth of ferrite nanoparticles from Mn oxides: observation of anomalies in magnetic transitions.

    Science.gov (United States)

    Song, Hyon-Min; Zink, Jeffrey I; Khashab, Niveen M

    2015-07-28

    A series of magnetically active ferrite nanoparticles (NPs) are prepared by using Mn oxide NPs as seeds. A Verwey transition is identified in Fe3O4 NPs with an average diameter of 14.5 nm at 96 K, where a sharp drop of magnetic susceptibility occurs. In MnFe2O4 NPs, a spin glass-like state is observed with the decrease in magnetization below the blocking temperature due to the disordered spins during the freezing process. From these MnFe2O4 NPs, MnFe2O4@Mn(x)Fe(1-x)O core-shell NPs are prepared by seeded growth. The structure of the core is cubic spinel (Fd3¯m), and the shell is composed of iron-manganese oxide (Mn(x)Fe(1-x)O) with a rock salt structure (Fm3¯m). Moiré fringes appear perpendicular to the 〈110〉 directions on the cubic shape NPs through the plane-matched epitaxial growth. These fringes are due to the difference in the lattice spacings between MnFe2O4 and Mn(x)Fe(1-x)O. Exchange bias is observed in these MnFe2O4@Mn(x)Fe(1-x)O core-shell NPs with an enhanced coercivity, as well as the shift of hysteresis along the field direction.

  1. Seeded Growth of Ferrite Nanoparticles from Mn oxides : Observation of Anomalies in Magnetic Transitions

    KAUST Repository

    Song, Hyon-Min

    2015-06-17

    A series of magnetically active ferrite nanoparticles (NPs) are prepared by using Mn oxide NPs as seeds. Verwey transition is identified in Fe3O4 NPs with an average diameter of 14.5 nm at 96 K, where a sharp drop of magnetic susceptibility occurs. In MnFe2O4 NPs, spin glass-like state is observed with the decrease of magnetization below the blocking temperature due to the disordered spins during the freezing process. From these MnFe2O4 NPs, MnFe2O4@MnxFe1-xO core-shell NPs are prepared by seeded growth. The structure of core is cubic spinels (Fd-3m), and shell is composed of iron-manganese oxide (MnxFe1-xO) with a rock salt structure (Fm-3m). Moiré fringes appear perpendicular to <110> directions on the cubic shape NPs through the plane-matched epitaxial growth. These fringes are due to the difference in their lattice spacings between MnFe2O4 and MnxFe1-xO. Exchange bias is observed in these MnFe2O4@MnxFe1-xO core-shell NPs with an enhanced coercivity as well as the shift of hysteresis along the field direction.

  2. Electrical and morphological properties of magnetocaloric nano ZnNi ferrite

    Science.gov (United States)

    Hemeda, O. M.; Mostafa, Nasser Y.; Abd Elkader, Omar H.; Hemeda, D. M.; Tawfik, A.; Mostafa, M.

    2015-11-01

    A series of Zn1-xNixFe2O4 nano ferrite (with x=0, 0.2, 0.4, 0.6, 0.8, and 1) compositions were synthesized using the combustion technique. The powder samples were characterized by XRD. The X-ray analysis showed that the samples were single phase spinel cubic structure. The AC resistivity decreases by increasing the frequency from 1 kHz to 10 kHz. As the frequency of the applied field increases the hopping of charge carrier also increase, thereby decreasing the resistivity. A shift in dielectric maximum is observed toward higher temperature with increasing the Ni content from 536 K to 560 K at 1 kHz. The HRTEM (high resolution TEM) images of four compositions have lattice spacing which confirms the crystalline nature of the samples. The surface morphology SEM of the sample consists of some grains with relatively homogenies distribution with an average size varying from 0.85 to 0.92 μm. The values for entropy change in this work are still small but are significally higher than the values that have been reported for iron oxide nanoparticle. The magnetic entropy change was calculated from measurements of M (H, T) where H is the magnetic field and T is the temperature. The maximum value of entropy change (ΔS) obtained near Curie temperature which makes these material candidates for magnetocaloric applications.

  3. Defect engineering of mesoporous nickel ferrite and its application for highly enhanced water oxidation catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Qiudi; Liu, Cunming; Wan, Yangyang; Wu, Xiaojun; Zhang, Xiaoyi; Du, Pingwu

    2018-02-01

    Spinel nickel ferrite (NiFe2O4) emerges as a promising low-cost catalyst for water splitting but it usually shows low catalytic activity because of its limited number of active sites and poor conductivity. For the first time, herein we have successfully overcome its weaknesses using defect engineering approach by creating oxygen vacancies in NiFe2O4. The existence of oxygen vacancy not only shifts up the d-band center, strengthens the adsorption of H2O, and thus provides more active catalytic sites, but also tunes the electron configuration and creates massive number of defective donor states in the band gap to facilitate charge transfer processes. The optimal defective catalyst showed significantly enhanced catalytic OER performance with an OER overpotential as low as 0.35 V at 10 mA cm-2 and a Tafel slope of only ~40 mV dec-1. Moreover, the impressive specific mass and area current density of 17.5 A g-1 and 0.106 A m-2 at 1.58 V vs. RHE have been achieved, which are ~23 and ~36 times higher than that of defect-free counterpart, respectively.

  4. The performance of perovskites and spinels as catalysts for oxygen reduction in solid oxide fuel cell cathodes

    Science.gov (United States)

    Martin, Boris E.

    The lack of understanding of the catalytic process at the state-of-the-art cathode material surface in solid oxide fuel cells, (La0.8Sr 0.2)0.98MnO3+delta (LSM), has hindered the design of better catalysts. The objectives of this study were to design a system enabling the comparison of catalytic activities of different cathode materials independently of morphological factors, as well as to resolve catalytic processes at the LSM surface. The selection and optimization of potential cathode materials were performed on the basis of thermal expansion, four-probe dc-conductivity and thermoelectric power measurements in air. The materials studied as potential cathodes were tungsten, niobium and molybdenum doped barium cobaltite perovskites, copper manganese, cobalt manganese and cobalt ferrite spinels as well as strontium doped lanthanum cobalt ferrites and lanthanum manganite perovskites. The doped barium cobaltites were found lo offer superior electrical conductivity when octahedral site transition metal average valence was mixed 3+ /4+ compared to mixed 2+/3+. On the other hand, the loss of conductivity associated with octahedral site doping rendered these materials inadequate for solid oxide fuel cells (SOFC) cathode applications. Copper manganese spMd was found to exhibit electrical conductivity as high as ˜200 S.cm-1 at 1073 K and thermal expansion ˜ 11 ppm/K between 298 K and 1200 K. Thermal and chrono-potentiometric studies were used to determine the oxygen diffusivity, in cobalt and strontium doped lanthanum iron perovskites (LSCF), and revealed that the activation of strontium doped lanthanum manganese perovskites (LSM) under cathodic bias is kinetically limited by its rate of oxygen surface exchange, suggesting that the cathodic activation of LSM is due to its change in oxygen content under bias. The electronic defect structure of the cubic spinels was resolved in a defect reaction model involving the thermally activated redox of Cu + and Mn4+ to Cu2+ and Mn3

  5. Contribution to the structural study of austeno-ferritic steels. Morphological and analytical definition of the ferritic phase

    International Nuclear Information System (INIS)

    Bathily, Alassane.

    1977-07-01

    Conditions of fast and selective austenite dissolution were defined by means of current-voltage curves using AISI 316-type materials (welding beads). The ferritic phase was isolated and identified with X-rays. The percentages of ferrite were compared gravimetrically with those obtained by traditional methods. The ferrite isolated was chemically analysed by atomic absorption, the only doubtful value being carbon. It is shown by this method that a morphological study of the solidification of the ferritic lattice is possible, even for percentages around 1% [fr

  6. On the influence of applied fields on spinel formation

    International Nuclear Information System (INIS)

    KORTE, C.; FARER, J.K.; RAVISHANKAR, N.; MICHAEL, JOSEPH R.; SCHMALZRIED, J.; CARTER, C.B.

    2000-01-01

    Interfaces play an important role in determining the effect of electric fields on the mechanism of the formation spinel by solid-state reaction. The reaction occurs by the movement of phase boundaries but the rate of this movement can be affected by grain boundaries in the reactants or in the reaction product. Only by understanding these relationships will it be possible to engineer their behavior. As a particular example of such a study, MgIn 2 O 4 can be formed by the reaction between single-crystal MgO substrate and a thin film of In 2 O 3 with or without an applied electric field. High-resolution backscattered electron (BSE) imaging and electron backscattered diffraction (EBSD) in a scanning electron microscope (SEM) has been used to obtain complementary chemical and crystallographic information

  7. On the influence of applied fields on spinel formation

    Energy Technology Data Exchange (ETDEWEB)

    KORTE,C.; FARER,J.K.; RAVISHANKAR,N.; MICHAEL,JOSEPH R.; SCHMALZRIED,J.; CARTER,C.B.

    2000-04-04

    Interfaces play an important role in determining the effect of electric fields on the mechanism of the formation spinel by solid-state reaction. The reaction occurs by the movement of phase boundaries but the rate of this movement can be affected by grain boundaries in the reactants or in the reaction product. Only by understanding these relationships will it be possible to engineer their behavior. As a particular example of such a study, MgIn{sub 2}O{sub 4} can be formed by the reaction between single-crystal MgO substrate and a thin film of In{sub 2}O{sub 3} with or without an applied electric field. High-resolution backscattered electron (BSE) imaging and electron backscattered diffraction (EBSD) in a scanning electron microscope (SEM) has been used to obtain complementary chemical and crystallographic information.

  8. Local probing spinel and perovskite complex magnetic systems

    CERN Document Server

    De Pinho Oliveira, Goncalo; Lima Lopes, Armandina Maria

    Materials with multifunctional physical properties are crucial for the modern society, especially those which display a strong coupling between magnetic, lattice and polar degrees of freedom. This by far unexploited capability promises new paradigm-shift technologies for cooling technologies, magnetic data storage, high-frequency magnetic devices, spintronics, and micro-electromechanical systems. Alongside with the understanding of the properties of these materials, the need to improve them and to make them smaller and more efficient is a current goal. Device miniaturization towards very high-density data storage stands also as a trend in modern science and technology. Here, the integration of several functions into one material system has become highly desirable. Research in this area has already highlighted complex magnetic materials with po- tential for multifunctional applications based on spinel type structures like CdMn2O4 or multiferroic CdCr2S4 or even RCrO3 with orthorhombically distorted perovskite ...

  9. Introduction to porous spinel for refractory (high temp material

    Directory of Open Access Journals (Sweden)

    Kumar Saurav

    2016-09-01

    Full Text Available The paper examines thermal properties of materials. The transient pulse method was used for specific heat, thermal diffusivity and thermal conductivity determination. Porous MgO was synthesis by heating pellets at 1100 °C for 1 h. The resultant porous MgO was then immersed in 10 mol/L aluminum nitrate solution, dried, and reheated at 1300 °C for 2 h to convert it to spinel. The evaluation was performed with the help of mathematical apparatus used for study of fractal structures properties. The method results from generalized relations that were designed for study of physical properties of fractal structures. As it is shown these relations are in a good agreement with the equations used for the description of time responses of temperature for the pulse input of supplied heat.

  10. Spinel and post-spinel phase assemblages in Zn2TiO4: an experimental and theoretical study

    Science.gov (United States)

    Zhang, Yanyao; Liu, Xi; Shieh, Sean R.; Bao, Xinjian; Xie, Tianqi; Wang, Fei; Zhang, Zhigang; Prescher, Clemens; Prakapenka, Vitali B.

    2017-02-01

    Zn2TiO4 spinel (Zn2TiO4-Sp) was synthesized by a solid-state reaction method (1573 K, room P and 72 h) and quasi-hydrostatically compressed to 24 GPa using a DAC coupled with a synchrotron X-ray radiation (ambient T). We found that the Zn2TiO4-Sp was stable up to 21 GPa and transformed to another phase at higher P. With some theoretical simulations, we revealed that this high- P phase adopted the CaTi2O4-type structure (Zn2TiO4-CT). Additionally, the isothermal bulk modulus ( K T) of the Zn2TiO4-Sp was experimentally obtained as 156.0(44) GPa and theoretically obtained as 159.1(4) GPa, with its first pressure derivative K_{{T}}' as 3.8(6) and 4.37(4), respectively. The volumetric and axial isothermal bulk moduli of the Zn2TiO4-CT were theoretically obtained as K T = 150(2) GPa (K_{{T}}' = 5.4(2); for the volume), K T- a = 173(2) GPa (K_{{{T-}}a}' = 3.9(1); for the a-axis), K T- b = 74(2) GPa (K_{{{T-}}b}' = 7.0(2); for the b-axis), and K T- c = 365(8) GPa (K_{{{T-}}c}' = 1.5(4); for the c-axis), indicating a strong elastic anisotropy. The Zn2TiO4-CT was found as 10.0 % denser than the Zn2TiO4-Sp at ambient conditions. The spinel and post-spinel phase assemblages for the Zn2TiO4 composition at high T have been deduced as Zn2TiO4-Sp, ZnTiO3-ilmenite + ZnO-wurtzite, ZnTiO3-ilmenite + ZnO-rock salt, ZnTiO3-perovskite + ZnO-rock salt, and Zn2TiO4-CT as P increases, which presumably implies a potential stability field for a CT-type Mg2SiO4 at very high P.

  11. Method of microbially producing metal gallate spinel nano-objects, and compositions produced thereby

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E.; Jellison, Jr., Gerald E.; Love, Lonnie J.; Moon, Ji Won; Phelps, Tommy J.; Ivanov, Ilia N.; Kim, Jongsu; Park, Jehong; Lauf, Robert

    2018-01-16

    A method of forming a metal gallate spinel structure that includes mixing a divalent metal-containing salt and a gallium-containing salt in solution with fermentative or thermophilic bacteria. In the process, the bacteria nucleate metal gallate spinel nano-objects from the divalent metal-containing salt and the gallium-containing salt without requiring reduction of a metal in the solution. The metal gallate spinel structures, as well as light-emitting structures in which they are incorporated, are also described.

  12. The effect of Y2O3 addition on thermal shock behavior of magnesium aluminate spinel

    Directory of Open Access Journals (Sweden)

    Pošarac Milica

    2009-01-01

    Full Text Available The effect of yttria additive on the thermal shock behavior of magnesium aluminate spinel has been investigated. As a starting material we used spinel (MgAl2O4 obtained by the modified glycine nitrate procedure (MGNP. Sintered products were characterized in terms of phase analysis, densities, thermal shock, monitoring the damaged surface area in the refractory specimen during thermal shock and ultrasonic determination of the Dynamic Young modulus of elasticity. It was found that a new phase between yttria and alumina is formed, which improved thermal shock properties of the spinel refractories. Also densification of samples is enhanced by yttria addition.

  13. Exchange-coupling of hard and soft magnetic sublattices and magnetic anomalies in mixed spinel NiFe0.75Cr1.25O4 nanoparticles

    Science.gov (United States)

    Lyubutin, I. S.; Starchikov, S. S.; Baskakov, A. O.; Gervits, N. E.; Lin, Chun-Rong; Tseng, Yaw-Teng; Lee, Wen-Jen; Shih, Kun-Yauh

    2018-04-01

    A set of single-crystalline nanoparticles (NPs) of nickel-chromium ferrite NiFe0.75Cr1.25O4 with a cubic spinel structure were synthesized and investigated. The NPs size can be varied from about 5 to 50 nm by the final annealing of the precursor at different temperatures. The distribution of cations over the tetrahedral (A) and the octahedral [B] sites (Fe0.75 Ni0.25) [Ni0.75 Cr1.25] O4 was established from the magnetic and Mössbauer measurements. In large NPs, the magnetic structure at low temperatures is close to the collinear antiferromagnetic (AFM) structure of the Neel type; and the total magnetic moment Mtot of the ferrite coincides with the direction of the B-sublattice moment. Several size-dependent magnetic anomalies were revealed. Three types of magnetic ions present in the A- and B- sublattices cause the competition of AFM and FM exchange interactions resulting in the highly frustrated magnetic ordering and the occurrence of canted magnetic structure in the octahedral B-sublattice. The frustrated structure is very flexible and significantly subjected to temperature and applied field. It results in several magnetic anomalies observed, including the occurrence of magnetic compensation, abnormal behavior of ZFC and FC magnetization curves and hysteresis loops. It was shown that magnetic anomalies can be explained in terms of exchange coupling of "soft" and "hard" magnetic B- and A-sublattices. This effect in the (Fe0.75 Ni0.25) [Ni0.75Cr1.25] O4 NPs can be considered as an atomic-scale analog of a similar effect observed in two-phase exchange-coupled alloys developed for permanent magnets and for the perpendicular recoding media.

  14. The Effect of Contact Non-equilibrium Plasma on Structural and Magnetic Properties of MnХFe3 - XО4Spinels.

    Science.gov (United States)

    Frolova, L A; Derhachov, M P

    2017-08-23

    Nano-sized manganese ferrites Mn х Fe 3 - х О 4 (х = 0-1.3) were prepared using contact non-equilibrium plasma (CNP) in two different pH (11.5 and 12.5). The influence of synthesis conditions (e.g., cation ratio and initial pH) on phase composition, crystallite size, and magnetic properties were investigated employing X-ray diffraction (XRD), differential thermal analysis (DTA), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and magnetic measurement techniques. The formation of monodispersed faceted ferrite particles at х = 0-0.8 was shown. The FTIR spectra revealed reflection in region 1200-1700 cm -1 caused by the presence of water adsorbed on the surface of Fe 3 - x Mn x O 4 micro-granules or embedded into their crystal lattice. The most sensitivity of reflection spectra to the composition changes takes place within a 400-1200 cm -1 range, typical to the stretching vibrations of Fe(Mn)-O (up to 700 cm -1 ), Fe(Mn)-OH, and Fe(Mn)-OH 2 bonds (over 700 cm -1 ). The XRD results showed that the nanocrystalline Mn х Fe 3 - х О 4 (0 spinel crystal structure with average crystallite size 48-49 A. The decrease of crystalline size with the x increase was also observed.

  15. Combustion synthesis by reaction and characterization of structural Ni-Zn ferrite doped with copper; Sintese por reacao de combustao e caracterizacao estrutural de ferritas Ni-Zn dopadas com cobre

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, J.; Santos, J.R.D.; Cunha, R.B.L.; Feitosa, C.A.; Costa, A.C.F.M., E-mail: joeldadantas@yahoo.com.br, E-mail: jakelineedm@gmail.com [Universidade Federal de Campina Grande (LabSMac/UFCG), PB (Brazil). Lab. de Sintese de Materiais Ceramicos

    2012-07-01

    The present stud aims to evaluate the effect of doping with Cu{sup 2+} ions concentrations of 0.0, 0.1, 0.2, 0.3 and 0.4 mol in the synthesis and structure of Ni-Zn ferrite. Samples were synthesized by the method of the combustion reaction and characterized by measuring the temperature as a function of reaction time, X-ray diffraction (XRD) and infrared spectroscopy in Fourier transform (FTIR). The combustion temperature and time were 646, 900, 989, 975 and 735°C and 210, 175, 220, 210 and 110 seconds for the sample doped with 0.0, 0.1, 0.2, 0.3 and 0.4 mol of copper, respectively. XRD results show that all concentrations of copper evaluated, there was only a training phase inverse spinel ferrite and Ni-Zn FTIR spectra show absorption bands below 1000cm{sup -1}, which are characteristics of the spinel type AB{sub 2}O{sub 4-} (author)

  16. The crystallisation trends of spinels in tertiary basalts from Rhum and Muck and their petrogenetic significance. [chemical composition changes during crystal formation

    Science.gov (United States)

    Ridley, W. I.

    1977-01-01

    Spinels found in transitional olivine basalts from the Islands of Rhum and Muck in the British Tertiary Province are analyzed to determine their chemical variability and their relationship to silicate phases. Chemical zoning of the cores of spinels which spilled into the basaltic liquid may be due to a reaction between the spinel and the liquid resulting in more Fe- and Ti-rich spinels. In addition, a peritectic-type reaction seems to have occurred, causing the transformation of aluminum spinel to chrome spinel with precipitation of plagioclase. Changes in the basaltic liquid are reflected by these transformations in the spinel composition.

  17. Electroless Ni–P–ferrite composite coatings for microwave ...

    Indian Academy of Sciences (India)

    posite coating, namely, Ni–P–ferrite, nanosized ferrite particles are co-deposited in the Ni–P matrix. The composite coating with thickness less than ∼0.1 mm has been produced and found to exhibit about 20 db of absorption of microwave in the range of 12–18 GHz, which can be exploited for radar applications. 2.

  18. Nano copper ferrite: A reusable catalyst for the synthesis of , ...

    Indian Academy of Sciences (India)

    Copper ferrite nano material as reusable heterogeneous initiator in the synthesis of , -unsaturated ketones and allylation to acid chlorides are presented. The reaction of allylichalides with various acid chlorides is achieved in the presence of copper ferrite nano powders at room temperature in tetrahydrofuran (THF).

  19. Synthesis and characterization of zinc ferrite nanoparticles obtained ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The self-propagating low-temperature combustion method was used to produce nanocrystalline particles of zinc ferrite. The products were characterized for chemical and phase composition, morphology and magnetic properties. The results obtained showed the formation of single-phase zinc ferrite nanoparticles.

  20. A seeded ambient temperature ferrite process for treatment of AMD ...

    African Journals Online (AJOL)

    A seeded ambient temperature ferrite process for treatment of AMD waters: magnetite formation in the presence and absence of calcium ions under steady state operation. ... promising for AMD treatment. Keywords: Ferrite process, Magnetite seed, Calcium interference, Acid mine drainage (WaterSA: 2003 29(2): 117-124) ...

  1. Fundamental study of a one-step ambient temperature ferrite ...

    African Journals Online (AJOL)

    Fundamental study of a one-step ambient temperature ferrite process for treatment of acid mine drainage waters: rapid communication. ... The approach involves the controlled oxidation of ferrous-containing AMD water at ambient temperatures in the presence of magnetite seed. The resulting oxidation product is the ferrite ...

  2. Influence of rare earth (Nd{sup +3}) doping on structural and magnetic properties of nanocrystalline manganese-zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Pranav P., E-mail: drppn1987@gmail.com [Department of Physics, Goa University, Taleigao Plateau, Goa, 403206 (India); Tangsali, R.B. [Department of Physics, Goa University, Taleigao Plateau, Goa, 403206 (India); Meena, S.S.; Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India)

    2017-04-15

    Ultrafine nanopowders of Mn{sub 0.6}Zn{sub 0.4}Fe{sub 2-x}Nd{sub x}O{sub 4} (x = 0, 0.04, 0.06, 0.08, and 0.1) were prepared using combustion method. The influence of Nd{sup +3} doping on structural parameters, morphological characteristics and magnetic properties were investigated. Formation of pure spinel phase was confirmed using X-ray powder diffraction (XRPD). Nd{sup +3} doping in Mn-Zn ferrite samples have shown remarkable influence on all the properties that were under investigation. An increase in lattice constant commensurate with increasing Nd{sup +3} concentrations was observed in the samples. The crystallite size calculated from XRPD data and grain size observed from Transmission Electron Microscope showed a proportionate decrement with increment in rare earth doping. An increase in mass density, X-ray density, particle strain and decrease in porosity were the other effects noticed on the samples as a result of Nd{sup +3} doping. The corresponding tetrahedral, octahedral bond lengths and bond angles estimated from XRPD data have also shown substantial influence of the Nd{sup +3} doping. Magnetic parameters namely saturation magnetization (M{sub S}) and net magnetic moment η{sub B}, estimated using vibrating sample magnetometer (VSM) were found to depend on the Nd{sup +3} doping. Mössbauer spectroscopy was employed to study the magnetic environment of Mössbauer active ions and detection of superparamagnetic behavior in nanocrystalline rare earth ferrite material. The isomer shift values obtained from Mössbauer spectra indicate the presence of Fe{sup +3} ions at tetrahedral site (A-site) and octahedral site (B-site), respectively. - Highlights: • Synthesis of Nd doped Mn-Zn ferrite nanoparticles using combustion method. • Successful doping of Nd{sup +3} at octahedral site in ferrite structure. • Existence of Fe{sup +3} oxidation state at both A-Site and B-site. • Enhanced saturation magnetization due to altered cation distribution by Nd doping

  3. Microwave processed bulk and nano NiMg ferrites: A comparative study on X-band electromagnetic interference shielding properties

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Babu Naidu, K., E-mail: chandrababu954@gmail.com [Ceramic Composite Laboratory, Centre for Crystal Growth, SAS, VIT University, Vellore 632014, Tamilnadu (India); Madhuri, W., E-mail: madhuriw12@gmail.com [Ceramic Composite Laboratory, Centre for Crystal Growth, SAS, VIT University, Vellore 632014, Tamilnadu (India); IFW, Leibniz Institute for Solid State and Materials Research, Technische Universität Dresden, 01069 Dresden (Germany)

    2017-02-01

    Bulk and nano Ni{sub 1-x}Mg{sub x}Fe{sub 2}O{sub 4} (x = 0–1) samples were synthesized via microwave double sintering and microwave assisted hydrothermal techniques respectively. The diffraction pattern confirmed the formation of cubic spinel phases in case of both the ferrites. The larger bulk densities were achieved to the bulk than that of nano. In addition, a comparative study on X-band (8.4–12 GHz) electromagnetic interference shielding properties of current bulk and nanomaterials was elucidated. The results showed that the bulk Ni{sub 0.6}Mg{sub 0.4}Fe{sub 2}O{sub 4} composition revealed the highest total shielding efficiency (SE{sub T}) of ∼17 dB. In comparison, the shielding efficiency values of all bulk contents were higher than that of nano because of larger bulk densities. Moreover, the ac-electromagnetic parameters such as electrical conductivity (σ{sub ac}), the respective real (ε′ & μ′) and imaginary parts (ε″ & μ″) of complex permittivity and permeability were investigated as a function of gigahertz frequency. The bulk ferrites of x = 0.4 & 0.6 showed the high ε″ of 10.26 & 6.71 and μ″ of 3.65 & 3.09 respectively at 12 GHz which can work as promising microwave absorber materials. Interestingly, nanoferrites exhibited negative μ″ values at few frequencies due to geometrical effects which improves the microwave absorption. - Highlights: • Bulk and nano NiMg ferrites are prepared by microwave and hydrothermal method. • X-band EMI shielding properties are studied for both bulk and nano ferrites. • Bulk Ni{sub 0.6}Mg{sub 0.4}Fe{sub 2}O{sub 4} revealed the highest SE{sub T} of ∼17 dB at 8.4 GHz. • Bulk x = 0.4 & 0.6 showed the high ε″ and μ″ at 12 GHz for absorber applications.

  4. Performance Variation of Ferrite Magnet PMBLDC Motor with Temperature

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech

    2015-01-01

    The price fluctuations of rare earth metals and the uncertainty in their availability has generated an increased interest in ferrite magnet machines. The influence of temperature on BH characteristics of the ferrite magnet differ considerably from that of the rare earth magnet and hence, requires...... a different approach when deciding their operating point. In this work, laboratory measured BH curves of a ferrite magnet are used for estimating the possibility of demagnetization in a segmented axial torus (SAT) permanent magnet brushless DC (PMBLDC) motor. The BH characteristics for different temperatures...... have been used to study the performance variation of the ferrite magnet SAT PMBLDC motor with temperature. A detailed analysis is carried out to ensure that, the designed ferrite magnet motor is capable of delivering the specified torque throughout the operating speed, without any irreversible...

  5. Superior magnetic properties of Ni ferrite nanoparticles synthesized by capping agent-free one-step coprecipitation route at different pH values

    Science.gov (United States)

    Iranmanesh, P.; Tabatabai Yazdi, Sh.; Mehran, M.; Saeednia, S.

    2018-03-01

    In this work, well-dispersed nanoparticles of NiFe2O4 with diameters less than 10 nm and good crystallinity and excellent magnetic properties were synthesized via a simple one-step capping agent-free coprecipitation route from metal chlorides. The ammonia was used as the precipitating agent and also the solution basicity controller. The effect of pH value during the coprecipitation process was investigated by details through microstructural, optical and magnetic characterizations of the synthesized particles using X-ray diffraction, transmission electron microscopy, Fourier transform infrared and UV-vis spectroscopy, and vibrating sample magnetometer. The results showed that the particle size, departure from the inverse spinel structure, the band gap value and the magnetization of Ni ferrite samples increase with pH value from 9 to 11 indicating the more pronounced surface effects in the smaller nanoparticles.

  6. Structure and magnetic properties of Mg0.35Cu0.2Zn0.45Fe2O4 ferrite synthesized by co-precipitation method

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2017-05-01

    Full Text Available Mg0.35Cu0.2Zn0.45Fe2O4 nanosize particles have been synthesized by chemical co-precipitation method and characterized by X-ray diffraction (XRD and vibrating sample magnetometry (VSM. The XRD patterns confirmed the single phase spinel structure of the synthesized powder. The average crystallite size of the powder varied from 14 to 55 nm by changing annealing temperature. The activation energy for crystal growth was estimated as about 18.61KJ/mol. With the annealing temperature increasing, saturation magnetization (MS was successively increased while the coercivity (HC was first increased, passed through a maximum and then declined. The sintering temperature has significant influence on bulk density, initial permeability and Curie temperature of Mg0.35Cu0.2Zn0.45Fe2O4 ferrite.

  7. Analysis of ferrite nanoparticles in the flow of ferromagnetic nanofluid.

    Directory of Open Access Journals (Sweden)

    Noor Muhammad

    Full Text Available Theoretical analysis has been carried out to establish the heat transport phenomenon of six different ferromagnetic MnZnFe2O4-C2H6O2 (manganese zinc ferrite-ethylene glycol, NiZnFe2O4-C2H6O2 (Nickel zinc ferrite-ethylene glycol, Fe2O4-C2H6O2 (magnetite ferrite-ethylene glycol, NiZnFe2O4-H2O (Nickel zinc ferrite-water, MnZnFe2O4-H2O (manganese zinc ferrite-water, and Fe2O4-H2O (magnetite ferrite-water nanofluids containing manganese zinc ferrite, Nickel zinc ferrite, and magnetite ferrite nanoparticles dispersed in a base fluid of ethylene glycol and water mixture. The performance of convective heat transfer is elevated in boundary layer flow region via nanoparticles. Magnetic dipole in presence of ferrites nanoparticles plays a vital role in controlling the thermal and momentum boundary layers. In perspective of this, the impacts of magnetic dipole on the nano boundary layer, steady, and laminar flow of incompressible ferromagnetic nanofluids are analyzed in the present study. Flow is caused by linear stretching of the surface. Fourier's law of heat conduction is used in the evaluation of heat flux. Impacts of emerging parameters on the magneto-thermomechanical coupling are analyzed numerically. Further, it is evident that Newtonian heating has increasing behavior on the rate of heat transfer in the boundary layer. Comparison with available results for specific cases show an excellent agreement.

  8. Znx-1CuxMn2O4 spinels; synthesis, structural characterization and electrical evaluation

    International Nuclear Information System (INIS)

    Mendez M, F.; Lima, E.; Bosch, P.; Pfeiffer, H.; Gonzalez, F.

    2010-01-01

    This work presents the structural characterization and electrical evaluation of Zn x-1 Cu x Mn 2 O 4 spinels, which are materials presented as secondary phases into the vari stor ceramic systems. Samples were analyzed by X-ray diffraction, solid-state nuclear magnetic resonance, infrared spectroscopy, scanning electron microscopy and impedance spectroscopy. Although, the addition of copper to the ZnMn 2 O 4 spinel did not produce morphological changes, the structure and electrical behaviors changed considerably. Structurally, copper addition induced the formation of partial inverse spinels, and its addition increases significantly the electrical conductivity. Therefore, the formation of Zn x-1 Cu x Mn 2 O 4 spinels, as secondary phases into the vari stor materials, may compromise significantly the vari stor efficiency. (Author)

  9. Following the Amphibolite to Greenschist Metamorphic Path through the Structural Parameters of Spinels from Amsaga (Mauritania

    Directory of Open Access Journals (Sweden)

    Davide Lenaz

    2018-01-01

    Full Text Available We investigated the crystal and structural behavior of several Cr-bearing spinels from the Archean chromitites of Amsaga (Mauritania. The chemical and structural data testified a retrograde metamorphism from amphibolite to greenschist facies, witnessed by relative changes in the amount of all the major oxides (Cr, Al, Mg, Fe2+, Fe3+, the relative proportion of Fe3+/Fetot as well as the structural parameters, including the cell edge and the oxygen coordinate. The general agreement between electron microprobe and Mössbauer data indicates that the analyzed spinels are stoichiometric. The structural data revealed that the oxygen positional parameter of amphibole-bearing samples is the highest observed among Cr-bearing spinels with similar Cr# and Mg#. Consequently, it is suggested that a structural study of detrital Cr-spinels could be important in discriminating an amphibole-chromitite source from an ophiolite source.

  10. Cation distribution controlled dielectric, electrical and magnetic behavior of In{sup 3+} substituted cobalt ferrites synthesized via solid-state reaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Rabia, E-mail: rabiabest@gmail.com [Department of Physics, National Institute of Technology, Hamirpur, H.P 177 005 (India); Sharma, K.K., E-mail: kk.gautam@yahoo.co.in [Department of Physics, National Institute of Technology, Hamirpur, H.P 177 005 (India); Kaur, Pawanpreet [Department of Physics, National Institute of Technology, Hamirpur, H.P 177 005 (India); Kumar, Ravi [Centre for Material Science and Engineering, National Institute of Technology, Hamirpur, H.P 177 005 (India)

    2014-12-15

    We report the structural, cation distribution, dielectric, electrical and magnetic properties of CoFe{sub 2−x}In{sub x}O{sub 4} (0.0 ≤ x ≤ 0.6) ferrites. Rietveld fitted X-ray diffraction (XRD) patterns confirm the formation of single phase cubic spinel structure with Fd3m space group for all the samples. The comprehensive analysis of XRD based cation distribution has been performed to see the effect of In{sup 3+} ions substitution on various structural parameters such as site ionic radii, edge and bond lengths, interionic distances etc. The dielectric constant and tangent loss have been studied as a function of temperature and frequency. The dielectric data presented in electric modulus form reveals the presence of non-Debye relaxation behavior in considered ferrites. Both the AC and DC conductivities as a function of temperature are found to decrease with increasing In{sup 3+} content. The power law behavior of AC-conductivity indicates a strong correlation among electrons in these systems. The isothermal magnetization versus applied field curves with high field slope and significant coercivity suggest that studied materials are highly anisotropic with canted spin structures and exhibit ferrimagnetic behavior at 300 K. Magnetization gets enhanced up to 40% of In{sup 3+} substitution. The observed low dielectric losses and high resistivity can find their application in power transformers at high frequencies. - Highlights: • Rietveld refinement of CoIn{sub x}Fe{sub 2−x}O{sub 4} samples shows single phase cubic spinel structure. • Cation distribution matches well with experimental integrated intensity ratios. • Strength of magnetic interactions is found to increase with increasing In{sup 3+} substitution. • The present systems are highly correlated. • These material are promising candidate for power transformers at high frequencies.

  11. CASS Ferrite and Grain Structure Relationship

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Clayton O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Michael T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-13

    This document summarizes the results of research conducted at Pacific Northwest National Laboratory (PNNL) to determine whether, based on experimental measurements, a correlation existed between grain structure in cast austenitic stainless steel (CASS) piping and ferrite content of the casting alloy. The motivation for this research lies in the fact that ultrasonic testing (UT) is strongly influenced by CASS grain structure; knowledge of this grain structure may help improve the ability to interpret UT responses, thereby improving the overall reliability of UT inspections of CASS components.

  12. Plasticity of oxide dispersion strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Zakine, C.; Prioul, C.; Alamo, A.; Francois, D.

    1993-01-01

    Two 13%Cr oxide dispersion strengthened (ODS) ferritic alloys, DT and DY, exhibiting different oxide particle size distribution and a χ phase precipitation were studied. Their tensile properties have been tested from 20 to 700 C. Experimental observations during room temperature tensile tests performed in a scanning electronic microscope have shown that the main damage mechanism consists in microcracking of the χ phase precipitates on grain boundaries. These alloys are high tensile and creep resistant between 500 and 700 C. Their strongly stress-sensitive creep behaviour can be described by usual creep laws and incorporating a threshold stress below which the creep rate is negligible. (orig.)

  13. Ramsdellite-MnO2 for lithium batteries: The ramsdellite to spinel transformation

    CSIR Research Space (South Africa)

    Thackeray, MM

    1993-06-01

    Full Text Available with the lithiated ramsdellite phase. At 300°C, under vacuum, the lithiated ramsdellite phase Li0.5MnO2 transforms to the spinel LiMn2O4; at 300-400°C, in air, it oxidizes slowly and transforms to a defect spinel LiMn2O4+delta (0 < delta < = 0.5) via an intermediate...

  14. Spinels as cathodes for the electrochemical reduction of O2 and NO

    DEFF Research Database (Denmark)

    Simonsen, Vibe Louise Ernlund; Find, D.; Lilliedal, M.

    2007-01-01

    Spinels were synthesised and investigated as electro-catalyst for the electrochemical reduction of oxygen and nitric oxide using cyclic voltammetry and cone shaped electrodes. The following four spinels were investigated; CoFe2O4, NiFe2O4, CuFe2O4 and Co3O4. The composition CuFe2O4 revealed the l...

  15. Elemental Mercury Oxidation over Fe-Ti-Mn Spinel: Performance, Mechanism, and Reaction Kinetics.

    Science.gov (United States)

    Xiong, Shangchao; Xiao, Xin; Huang, Nan; Dang, Hao; Liao, Yong; Zou, Sijie; Yang, Shijian

    2017-01-03

    The design of a high-performance catalyst for Hg 0 oxidation and predicting the extent of Hg 0 oxidation are both extremely limited due to the uncertainties of the reaction mechanism and the reaction kinetics. In this work, Fe-Ti-Mn spinel was developed as a high-performance catalyst for Hg 0 oxidation, and the reaction mechanism and the reaction kinetics of Hg 0 oxidation over Fe-Ti-Mn spinel were studied. The reaction orders of Hg 0 oxidation over Fe-Ti-Mn spinel with respect to gaseous Hg 0 concentration and gaseous HCl concentration were approximately 1 and 0, respectively. Therefore, Hg 0 oxidation over Fe-Ti-Mn spinel mainly followed the Eley-Rideal mechanism (i.e., the reaction of gaseous Hg 0 with adsorbed HCl), and the rate of Hg 0 oxidation mainly depended on Cl • concentration on the surface. As H 2 O, SO 2 , and NO not only inhibited Cl • formation on the surface but also interfered with the interface reaction between gaseous Hg 0 and Cl • on the surface, Hg 0 oxidation over Fe-Ti-Mn spinel was obviously inhibited in the presence of H 2 O, SO 2 , and NO. Furthermore, the extent of Hg 0 oxidation over Fe-Ti-Mn spinel can be predicted according to the kinetic parameter k E-R , and the predicted result was consistent with the experimental result.

  16. Oxidation behavior of ferritic-martensitic and ODS steels in supercritical water

    Science.gov (United States)

    Bischoff, Jeremy

    water corroded much faster than those in steam (1.5 to 2 times faster). Additionally, during these corrosion tests a marker experiment was performed with the deposition of micrometric palladium markers on the surface of some samples prior to oxidation. The markers were found at the outer-inner layer interface, consistent with a corrosion mechanism of outward migration of iron to form the outer layer and inward migration of oxygen to form the inner layer. The discrepancy between the SCW and steam environments suggests that the outward migration of iron may be the rate-limiting step. A detailed study of the oxide advancement was performed using the TEM by analyzing the inner and diffusion layer structure. Energy-filtered TEM images were acquired to analyze the micrometric and nanometric distribution of elements in these layers. Such images from the inner layer revealed the presence of localized chromium enrichment regions associated with the presence of pores. Additionally, an iron-chromium nanometric segregation was observed and may be associated with the mixture of Fe3O4 and FeCr2O4. In the diffusion layer, small nanometric chromium-rich oxide particles were seen within metal grains. The (Fe,Cr)3O4 spinel oxide has an inverse spinel structure as Fe3O4 but becomes normal spinel as FeCr 2O4, thus the structure changes depending on the chromium content. Additionally, the spinel structure was analyzed using the ligand theory and showed that chromium does not migrate and that the main diffusing species is the Fe2+ ion. Calculations of the amount of iron leaving the inner layer showed that this amount accounted for the amount of iron necessary to form the outer layer, thus no dissolution of oxide in SCW is observed. Additionally, the differences in oxidation behavior in steam and SCW suggest that the rate-limiting step for the corrosion of ferritic-martensitic steels is the iron outward migration. The iron migration is driven by the gradient in the Fe2+/Fe 3+ ratio and is

  17. Improvement of room temperature electric polarization and ferrimagnetic properties of Co{sub 1.25}Fe{sub 1.75}O{sub 4} ferrite by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, R.N., E-mail: rnbhowmik.phy@pondiuni.edu.in [Department of Physics, Pondicherry University, R.V. Nagar, Kalapet, Pondicherry 605014 (India); Sinha, A.K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2017-01-01

    We report the improvement of electric and magnetic properties of the chemical routed samples of Co{sub 1.25}Fe{sub 1.75}O{sub 4} ferrite. Synchrotron X-ray diffraction pattern confirmed the cubic spinel structure in all samples. Raman spectroscopy provided the information of mixed-type cubic spinel structure, where Co{sup 2+} and Fe{sup 3+} ions order both in octahedral and tetrahedral sites. The thermal heat treatment has brought a systematic change in electric polarization and magnetic parameters. At a critical annealing temperature (T{sub AN}) of 800 °C, the sample has shown the highest magnetic coercivity ~596 Oe and relatively large squareness ~0.5. The electrical conductivity, dielectric loss and dielectric constant have decreased with increase of T{sub AN}. The dielectric constant becomes stable for T{sub AN} above 800 °C. The samples annealed in the temperature range 900–1000 °C have shown a good signature of ferroelectric polarization, although it is under saturation value and leakage of polarization due to conductive effect is observed. This work shows the scope of the improvement of electric polarization due to capacitive effect on increasing the annealing temperature of as-prepared Co ferrite sample. - Highlights: • Nanoparticles of Co{sub 1.25}Fe{sub 1.75}O{sub 4} ferrite have been prepared in alkaline medium. • Room temperature ferrimagnetism is confirmed in all samples. • Nanoparticles have been annealed to tailor magnetic and ferroelectric properties. • Some of the samples showed good signature of ferroelectric properties. • Role of conductive effect and capacitive effect understood.

  18. INFLUENCE OF THE PREPARATION METHOD ON THE STRUCTURE,PHASE FORMATION AND MAGNETIC PROPERTIES OF TEMPLATED CUFE2O4 SPINEL

    Directory of Open Access Journals (Sweden)

    N. Najmoddin

    2014-09-01

    Full Text Available The synthesis of mesoporous CuFe2O4 spinel by several nanocasting strategies (i.e., multi-step nanocasting, one step nanocasting, modified solid-liquid, in which copper and iron nitrates are used as precursors and Pluronic P123 as surfactant, is explored. We have also checked the effect of pH, citric acid and sodium citrate in multi-step nanocasting method. The modified solid-liquid method which contains impregnating mesoporous silica by molten state salts in a non-ionic solvent seems to be the best choice to obtain single phase ordered mesoporous copper ferrite. Other methods suffer from the presence of copper oxide or hematite as impurities or lack of integrity in the mesoporous structure. Increasing pH up to 9.5 does not enhance the phase formation inside the pores of the silica matrix. The citric acid yields a fine structure but does not facilitate the phase formation. Adding sodium citrate neither heals the phase formation nor the structure of the final product. Moreover, vinyl- functionalized mesoporous silica exploited in this study as a hard template entraps both metal nitrates in the pores, assisting impregnation procedure

  19. Determination of transition metal ion distribution in cubic spinel Co1.5Fe1.5O4 using anomalous x-ray diffraction

    Directory of Open Access Journals (Sweden)

    M. N. Singh

    2015-08-01

    Full Text Available We report anomalous x-ray diffraction studies on Co ferrite with composition Co1.5Fe1.5O4 to obtain the distribution of transition metal ions in tetrahedral and octahedral sites. We synthesize spinel oxide (Co1.5Fe1.5O4 through co-precipitation and subsequent annealing route. The imaginary part (absorption of the energy dependent anomalous form factor is measured and the real part is calculated theoretically through Kramers–Krönig transformation to analyze anomalous x-ray diffraction peak intensities. Fe and Co K-edge x-ray absorption near edge structure (XANES spectra are used to estimate charge states of transition metals. Our analysis, within experimental errors, suggests 44% of the tetrahedral sites contain Co in +2 oxidation state and the rest 56% sites contain Fe in +2 and +3 oxidation states. Similarly, 47% of the octahedral sites contain Fe in +3 oxidation states, whereas, the rest of the sites contain Co in +2 and +3 oxidation states. While a distinct pre-edge feature in the Fe K-edge XANES is observed, Co pre-edge remains featureless. Implications of these results to magnetism are briefly discussed.

  20. Synthesis and optical property of zinc aluminate spinel cryogels

    Directory of Open Access Journals (Sweden)

    Lifen Su

    2016-06-01

    Full Text Available Zinc aluminate spinel cryogels with various molar ratio of Al/Zn are synthesized by sol–gel technology followed by vacuum freeze drying. The structures and optical properties are both found to be affected by the molar ratios of Al/Zn and annealed temperatures. The peaks of zinc oxide (ZnO and zinc dialuminum oxide (ZnAl2O4 are both obtained for the samples with more Zn content annealed at 750 °C or upward. The composites have a large surface area (137 m2/g with mesoporous structure after annealing at 750 °C. The SEM images reveal that the ZnAl2O4 crystals formed a multilayer structure with redundant ZnO particles which deposited on it. Furthermore, the maximum infrared reflectance is about 80% with an improvement of 35% in the infrared region after annealing at 950 °C compared with that of 450 °C, which indicates that these porous cryogels have a potential application as thermal insulating materials at a high temperature.